Fuel Treatment Efficacy & Landscape Resiliency Research & Knowledge Sharing Event

February 2023

Acknowledgement and Accountability

The University of British Columbia, where we are gathered today, is located on the unceded ancestral territories of the Musqueam, Squamish and Tsleil-Waututh First Nations.

Through our research and work, we have the privilege of collaborating with and working on the territories of many other Indigenous Nations around the province of British Columbia.

We honour these lands and the people who stewarded them through generations. In doing so, we reflect on how histories of people and place are integral to understanding the modern fire challenge and solutions for our future.

Fuel Treatment Efficacy & Landscape Resiliency Research & Knowledge Sharing Event

Dr. Lori Daniels, Dr. Greg Greene, Georgina Preston, Kea Rutherford, Jennifer Baron & Jocelyn Laflamme Forest and Conservation Sciences, UBC-Vancouver & PICS Wildfire and Carbon Project

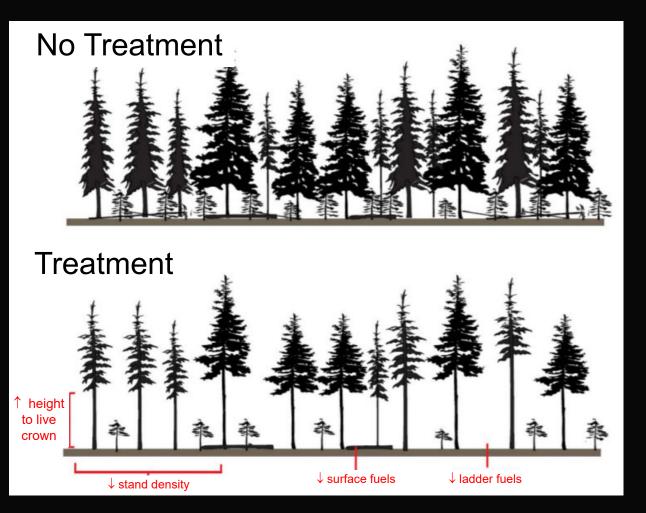
Dr. Kira Hoffman & Dr. Alana Clason Bulkley Valley Research Centre, Smithers

February 2023

Forest and Fuel Metrics

What metrics are needed to model fire behaviour?

Representative Fire Weather

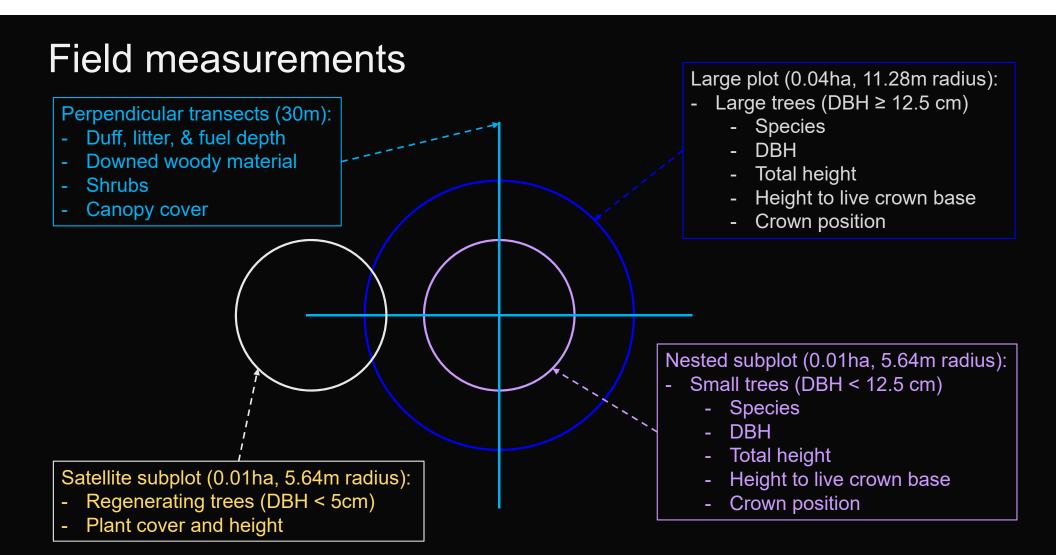

What is the optimal representation of the "90th percentile"?

Fuel Treatment Efficacy Do fuel treatments reduce fire behaviour and effects?

Modelling Fire Behaviour

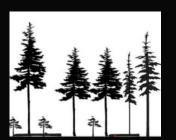
Which models represent fire behaviour, effects, and resilience?

Treatment Goals & Assessing Efficacy

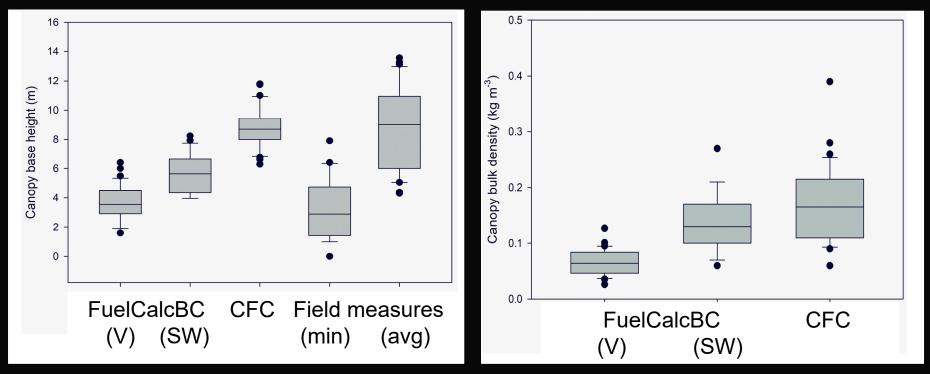


Treatment goals:

↓ surface fire intensity
↓ active crown fire
↑ fire resilience


Fuels mitigation:
 ↓ tree density
 ↑ height to live crown
 ↓ surface fuels

Assessing efficacy: Field measures + Fire behaviour models


Fuel Metrics

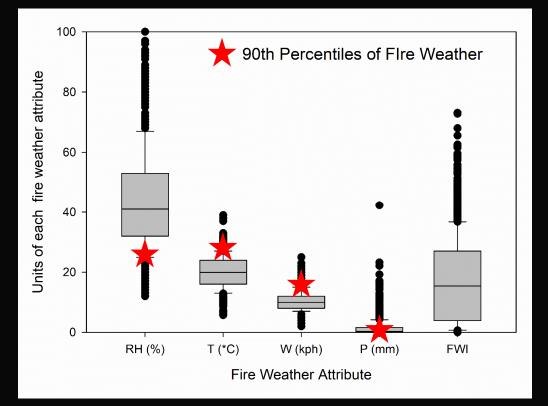
• direct measures, estimate with tools or models

Canopy base height (m)

Canopy bulk density (kg m³)

Representative Fire Weather

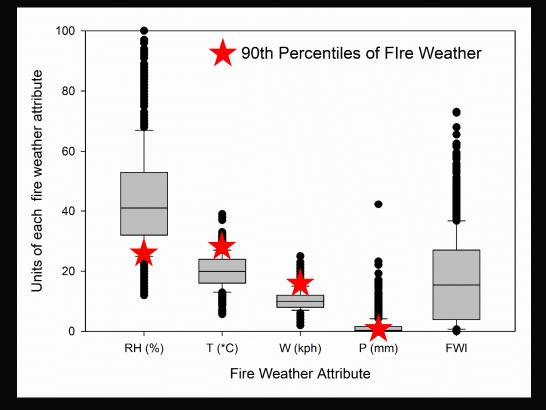
What is the optimal way to represent the "90th percentile"?

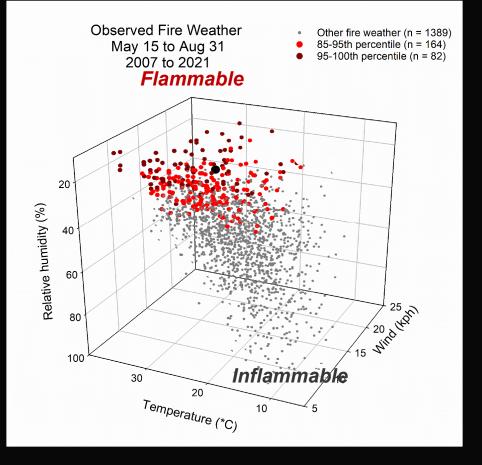

Source of fire weather data? What years are available? reliable? usable? > Post 2005 What is the fire season (months + days)?

- BC stations, NRCan grid
- **Based on Ecodivisions** (e.g. May15-Aug31)

Representative Fire Weather

What is the optimal way to represent the "90th percentile"? How to derive the 90th percentile?


Standard method: Calculate 90th (10th) percentiles 90^{th} : T = 25°C, W = 15kph 10^{th} : RH = 27%, P = 0mm


Concern: Combination may not exist, resulting indices unrealistic

Representative Fire Weather

What is the optimal way to represent the "90th percentile"?

How to derive the 90th percentile?

Forest and Fuel Metrics

What metrics are needed to model fire behaviour?

Representative Fire Weather

What is the optimal way to represent the "90th percentile"?

Fuel Treatment Efficacy Do fuel treatments reduce fire behaviour and effects?

Modelling Fire Behaviour

Which models represent fire behaviour, effects, and resilience?

Collaborations: BCWS – BCCFA – UBC – SXFN

Revelstok

NACFOR

SIFCo HPCF

Nelson

CCF

WLCF

SXFN

Kamloops

WBCF

LLCF

Merritt

VFCF

ECF

Phase 1: 2019-2021

Williams Lake, Esk'etemc, Logan Lake + Westbank First Nation CFs

Phase 2: 2021-2022

Vermillion Forks, Nakusp, Kaslo, SIFCo, Harrop-Procter + Creston, Stswecem'c Xget'tem First Nation

Phase 3: 2023+

Additional Communities + WRR Treatments

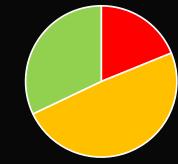
Assessing Treatment Efficacy: Paired Plots

Assessing Treatments: Fire Behaviour Modelling

 Topography location elevation slope aspect slope angle 	 Weather 90th percentile 2007-2021 T, RH, Rain Wind Ninja 	 Fuels stand density, BA, canopy cover, CBH calculate canopy bulk density surface wood (<7cm), FF + duff grass fuel loads (O1 types)
	tensity Calculator s critical values	
	Prediction Syster consumption	 Crown Fire Initiation and Spread type of fire probability of crown fire

Fire Types Predicted by Different Models (n = 178)


Model	Predicted Fire Type	SFI			
wouer		Crown fire	Surface fire		
FBP	Crown fire	28	9		
	Surface fire	39	102		
CFIS	Crown fire	34	26		
	Surface fire	33	85		


73% AgreementSFI overpredicted crown fire67% Agreementboth overpredicted crown fire

62% Agreement, both overpredicted surface fire

Model	Predicted Fire Type	FBP			
Model	Fredicted File Type	Continuous crown	Intermittent crown	Surface	
CFIS	Active crown fire	0	1	10	
	Passive crown fire	4	12	33	
	Surface fire	4	16	98	

Treatment Efficacy: Fire Behaviour Modelling

CFIS + FBP @ 90th percentile fire weather:

19% Active crown 29.9 m min⁻¹ 49% Passive crown 13.8 m min⁻¹ 32% Surface fire 3.4 m min⁻¹

1% Active crown 32.0 m min^{-1} 18% Passive crown 13.4 m min⁻¹ 81% Surface fire 8.1 m min⁻¹

Treatment Efficacy: Fire Behaviour Modelling

No Treatment

CFIS + FBP @ 90th percentile fire weather:

n = 53		Active Crown	Passive Crown	Surface Fire	
新茶料		240	130	200	Canopy (ha ⁻¹)
		1170	410	770	Subcanopy (ha-1)
		0.17	0.16	0.14	CBD (kg/m ³)
Treatment		6.4	5.0	9.0	CBH (m)
			100	170	Canopy (ha ⁻¹)
李李丰玉			240	270	Subcanopy (ha-1)
苯苯苯不			0.06	0.09	CBD (kg/m ³)
↑ height to live crown			5.6	10.0	CBH (m)
					y decreases,
\downarrow stand density	and	CBH incre	eases, shift	toward su	ırface fire.

Case Studies on Fuels Treatment Efficacy

Daniels

Dry Forests – Williams Lake, Esk'etemc, Logan Lake and Westbank FN Community Forests

Preston

Dry Forests – SXFN Dog and Canoe Creek WUI

Rutherford

Kootenay Mix – Creston, Harrop Proctor, Kaslo, Nakusp and Slocan Community Forests

Fuels Mitigation: Are treatments working?

Efficacy: Will a treatment work? Effectiveness: Did treatments work when challenged by wildfire?

(Tremont Creek Fire in Logan Lake, BC, 2021 Source: Garnett Mierau)

Logan Lake: Treatment Effectiveness

Treatment n = 5 t height to live crown t stand density

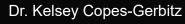
Actual > predicted (planned ignition) 76% mortality of 286 trees 94% crown scorch 90% ground scorch to mineral soil (n = 9) = 212 surface impact

Actual < predicted (suppression) 18% mortality of 95 trees 13% crown scorch 73% ground scorch with FF+duff intact (n = 4) = 93 surface impact

Expand research on effectiveness requires:
 Location, year and type of fuel treatments
 Overlay of wildfire occurrence

To reduce wildfire size and severity requires:
 Change at landscape scales and more "good" fire

Take Home Messages


- Treatments are effective for reducing aerial + surface fuels
- Support for proactive fuel treatments and management of dry forests toward resilience
- Fire behaviour modelling indicates efficacy of treatments, consistent with post-fire observations
- Challenges and limitations of current modelling approaches

Next Steps and Future Collaborations

- Assess efficacy: fuel loads, potential fire behaviour, and indicators of forest resilience to wildfires
- Use models that include mortality functions and indicators
- Expand research and modelling on efficacy (forests, treatments, time) and effectiveness (post-fire)
- Refine field protocols for operational use (e.g., Survey123)

Jen Baron (PhD Candidate)

Dr. Lori Daniels

Mike Stefanuk

(PhD Student)

Dr. Kira Hoffman

Georgina Preston (MSc Student)

Dr. Sarah Dickson-Hoyle

Kea Rutherford (MSc Student)

Kate Kitchens (PhD Candidate)

Jeremy Greenburg (MSc Student)

(MSc Student)

Dr. Florencia Tiri

Gracie Crafts (MSc Student)

Ingrid Farnell

Thanks to our collaborators and the agencies that fund our research

