The Lifetime Prevention Schedule

Establishing Priorities among Effective Clinical Prevention Services in British Columbia

> Summary and Technical Report May 2024 Update

An update of clinically preventable burden and cost-effectiveness estimates for all services reviewed to date.

Acknowledgments

This project was completed under the guidance of the Lifetime Prevention Schedule Expert Committee. Current committee members are:

- Andrea Godfreyson (Chair) Director, Injury & Clinical Prevention, Population and Public Health Division, BC Ministry of Health
- Lindsay Arscott Director, Primary Care Quality, Primary Care, BC Ministry of Health
- Charlyn Black Professor, School of Population and Public Health, UBC
- Martin Dawes Professor of Family Practice, Department of Family Practice, Faculty of Medicine, University of British Columbia
- **Brian Emerson** Deputy Provincial Health Officer, Office of the Provincial Health Officer
- Janet Evans Family Doctor and Medical Director of CGB Medical in Kelowna, Family Practice Services Division
- **Tijana Fazlagic** Executive Director, PharmaCare Benefits Branch, Pharmaceutical Services, BC Ministry of Health
- **Fabio Feldman** Executive Director, Prevention, Screening, and Hereditary Cancer Program, BC Cancer
- Jillian Hannah Policy Analyst, Laboratory Services, Pharmaceutical, Laboratory and Blood Services Division, BC Ministry of Health
- Hilary Ho Policy Analyst, Provincial & Specialized Services, Acute and Provincial Services Branch, Hospital & Provincial Health Services, BC Ministry of Health
- Zahra Hussein Provincial Lead, Primary Care, Child Health BC
- **Penny Liao-Lussier** Provincial Director, Primary Care & Prevention, Child Health BC
- Julie MacFarlane Provincial Lead, Screening Programs, Perinatal Services BC
- Jemal Mohamed Senior Health Economist, Health Technology Assessment, BC Ministry of Health
- **Megan Oakey** Provincial Manager, Injury Prevention, Population and Public Health, BC Centre for Disease Control
- **Pamela Parkinson** Manager, Lifetime Prevention Schedule, Population and Public Health, BC Ministry of Health
- Cheryl Peters Senior Scientist, Cancer Prevention, BC Cancer
- Jonathan Robinson Executive Director, Healthy Living and Health Promotion, Population and Public Health, BC Ministry of Health
- Nicholas Schnee Executive Director, Cardiac Services BC, Stroke Service BC and Provincial Specialized Programs and Clinical Policy
- Guylène Thériault Co-chair, Canadian Task Force on Preventive Health Care
- **Rachel Yeung-Thompson** Director, Maternal and Child Health & Healthy Public Policy, Population and Public Health, BC Ministry of Health
- Hannah Neilson-Welch Policy Analyst, Lifetime Prevention Schedule, Population and Public Health, BC Ministry of Health

Table of Contents

ACKNOWLEDGMENTS	2
TABLE OF CONTENTS	3
EXECUTIVE SUMMARY	7
BACKGROUND	7
CPS INTERVENTION RATE	8
SUMMARY OF THE CLINICALLY PREVENTABLE BURDEN AND COST-EFFECTIVENESS	
COMPARISON BY CLINICALLY PREVENTABLE BURDEN	
COMPARISON BY COST-EFFECTIVENESS	
COMBINED COMPARISON USING CPB AND CE	14
LIST OF ABBREVIATIONS	16
CLINICAL PREVENTION IN CHILDREN AND YOUTH	22
SCREENING FOR ASYMPTOMATIC DISEASE OR RISK FACTORS	
Vision Screening for Amblvopia	
United States Preventive Service Task Force Recommendations (2017)	
Canadian Task Force on Preventive Health Care Recommendations (1990)	
Canadian Task Force on Preventive Health Care Recommendations (1994)	
BC Early Childhood Vision Screening Program	
What is Amblyopia	
Modelling the Clinically Preventable Burden	
Modelling Cost-Effectiveness	
Summary	
United States Proventive Services Task Force Decommendations	
Canadian Task Force on Preventive Health Care Recommendations	
Modelling the Clinically Preventable Burden	35
Modelling Cost-Effectiveness	
Summary	
Screening for, and Treatment of, Anxiety in Children and Youth	
United States Preventive Services Task Force Recommendations (2022)	
Best in the World	
Modelling the Clinically Preventable Burden	
Modelling Cost-Effectiveness	
Summary	
BEHAVIOURAL COUNSELLING INTERVENTIONS	
Growth Monitoring and Healthy Weight Management in Children and Youth	
United States Preventive Services Task Force Recommendations (2017)	
Canadian Task Force on Preventive Health Care (2015)	
Desi III life Wolld	
Modelling the Clinically Preventable Burden	
Modelling Cost-Effectiveness	
Summary	
Promotion of Breastfeeding	
Canadian Task Force on Preventive Health Care (2004)	
United States Preventive Services Task Force Recommendations (2008)	
Modelling the Clinically Preventable Burden	
Modelling Cost-Effectiveness	
Summary	
Preventing Tobacco Use in Children and Youth	
Canadian Task Force on Preventive Health Care Recommendations (2017)	
Officer Approaches to Provention	
Uner Approaches to Flevention	
Best in the World	
Modelling the Clinically Preventable Burden	
Modelling Cost-Effectiveness	

Summary	
PREVENTIVE MEDICATION / DEVICES	
Fissure Sealants for Dental Health in Children	
The Cochrane Oral Health Group (2017)	
Dental Sealants - Modelling the Clinically Preventable Burden	
Dental Sealants - Modelling Cost-Effectiveness	
Dental Sealants – Summary	
CLINICAL PREVENTION IN ADULTS	
SCREENING FOR A SYMPTOMATIC DISEASE OF DISE FACTORS	101
SCREENING FOR AS IMPTOMATIC DISEASE OR RISK FACTORS	
Canadian Task Earse on Dreventive Health Care Decommon dations (2011)	191
United States Proventive Services Task Force Pacommendations (2011)	
Modelling the Clinically Preventable Burden	
Modelling Cost-Effectiveness	
Summary	
Screening for Cervical Cancer	
Background	
Cervical Cancers in BC	
Current Cytology-Based Screening for Cervical Cancers	
HrHPV-Based Screening for Cervical Cancers	
Comparison of No Screening, Cytology-Based Screening and HPV-Based Screening	
Screening for Colorectal Cancer	
United States Preventive Services Task Force Recommendations (2021)	
Canadian Task Force on Preventive Health Care (2016)	
Best in the World	
Current Screening Rates in BC	
Modelling the Clinically Preventable Burden	
Modelling Cost-Effectiveness	
Summary – Males and Females	
Summary Males Only	
Summary – Mates Only	
Canadian Task Force on Preventive Health Care (2016)	
United States Preventive Services Task Force Recommendations (2014)	316
Modelling the Clinically Preventable Burden	
Modelling Cost-Effectiveness	
Summary	
Hypertension Screening and Treatment	
United States Preventive Services Task Force Recommendations (2021)	
Canadian Task Force on Preventive Health Care (2013)	
Definition of Hypertension	
Best in the World	
Current Screening Rates in BC	
Modelling the Clinically Preventable Burden	
Modelling Cost-Effectiveness	
Summary – Males and Females	
Summary – Females Only.	
Summary – Males Only	
Screening for Caralovascular Disease Kisk and Treatment with Statins	
Canadian Cardiovascular Society (2016)	
Modelling the Clinically Preventable Burden	
Modelling Cost-Effectiveness	382
Summary	
Screening for Prediabetes and Type 2 Diabetes Mellitus	
United States Preventive Services Task Force Recommendations (2021)	
Canadian Task Force on Preventive Health Care (2012)	
Best in the World	
Modelling the Clinically Preventable Burden	
The Intervention(s)	
Modelling Cost-Effectiveness	
Summary	

Screening for Depression in the General Adult Population	
Canadian Task Force on Preventive Health Care (2013)	
United States Preventive Services Task Force Recommendations (2016)	
Modelling the Clinically Preventable Burden	
Modelling Cost-Effectiveness	
Summary – Excluding Harms	
Summary – Including Harms	
Screening for Depression in Pregnant and Postpartum Women	
Canadian Task Force on Preventive Health Care (2013)	
United States Preventive Services Task Force Recommendations (2016)	
Modelling the Clinically Preventable Burden	
Modelling Cost-Effectiveness	
Summary	
Screening for Primary Prevention of Fragility Fractures	
Canadian Task Force on Preventive Health Care Recommendations (2023)	
United States Preventive Services Task Force Recommendations (2018)	
Best in the world.	
Modelling the Chincarly Preventable Burden	
Nodering Cost-Effectiveness	484
Screening for Abdominal Aprile Angurusms	490 101 م/
United States Preventive Services Task Force Recommendations	
Modelling the Clinically Preventable Burden	
Modelling Cost Effectiveness	
Summary	
SCREENING FOR SEXUALLY TRANSMITTED INFECTIONS AND BLOOD BORNE PATHOGENS	511
Human Immunodeficiency Virus	511
United States Preventive Services Task Force Recommendations (2013)	511
Canadian Task Force on Preventive Health Care Recommendations (2016)	
Modelling the Clinically Preventable Burden	511
Modelling Cost-Effectiveness	
Summary	
Screening for Chlamydial / Gonococcal Infections – Evidence Update	
Background	
2021 CTFPHC Recommendation Statement	
2021 USPSTF Recommendation Statement	
Evidence of Effectiveness	
Evidence of Potential Harms	
Are There Alternatives?	530
Conclusions	
Hepatitis C Virus	
United States Preventive Services Task Force Recommendations (2013)	
United States Preventive Services Task Force Recommendations – (2019 DRAFT)	
Canadian Task Force on Preventive Health Care Recommendations (2017)	533
Background	
Modelling the Clinically Preventable Burden	
Modelling Cost-Effectiveness	
Summary	
BEHAVIOURAL COUNSELLING INTERVENTIONS	
Definition	
Prevention of Sexually Transmitted Diseases	
Canadian Task Force on Preventive Health Care (2001)	
United States Preventive Services Task Force Recommendations (2014)	
Modelling the Clinically Preventable Burden	
Niodelling Cost-Effectiveness	
Summary	
Smoking Cessation Advice and Help to Quit	
United States Preventive Services Lask Force Recommendations (2009)	
Canadian Task Force on Preventive Health Care Recommendations (1994)	
Modelling Cost Effectiveness	
viouening Cost-Effectiveness	
Summary	

617
618
618
619
658
658
659
660
660
660
663
666
667
667
667
671
674
680
680

Establishing Priorities among Effective Clinical Prevention Services in British Columbia: 2023/24 Update

Executive Summary

Background

The report, *A Lifetime of Prevention*, was published by the Clinical Prevention Policy Review Committee (CPPRC) in December of 2009.¹ A key goal of the CPPRC was to determine which clinical prevention services are worth doing in British Columbia (BC), culminating in a proposed Lifetime Prevention Schedule (LPS). Clinical prevention services were included on the LPS if they were considered to be effective, had a significant positive impact on population health and were cost-effective.

Clinical prevention services (CPS) are defined as:

Manoeuvres pertaining to primary and early secondary prevention (i.e., immunization, screening, counselling and preventive medication/device) offered to the general population (asymptomatic) based on age, sex and risk factors for disease and delivered on a one-provider-to-one-client basis, with two qualifications:

(*i*) the provider could work as a member of a care team or as part of a system tasked with providing, for instance, a screening service; and

(*ii*) the client could belong to a small group (e.g. a family, a group of smokers) that is jointly benefiting from the service.

This definition does not refer to the type of provider or the type of funding. This allows for the evaluation of the appropriate implementation of the service as a separate program planning matter.

Since 2009, a total of 31 CPS have been reviewed by the Lifetime Prevention Schedule Expert Committee (LPSEC) for potential inclusion in the LPS.

In the past two fiscal years (2022/23 and 2023/24) major updates have been made to the following four CPS; preventing tobacco use in children and youth, screening for cervical cancer, screening for primary prevention of fragility fractures and screening for prediabetes / type 2 diabetes. In addition, the LPSEC completed an evidence update for routine aspirin use for the prevention of cardiovascular disease and colorectal cancer, screening for chlamydial / gonococcal infections and the use of fluoride varnish for the prevention of dental caries in children. A new CPS, screening and interventions to reduce anxiety in children and youth was also modelled. Finally, all other existing models were given a 'light' refresh to update costs

¹ Clinical Prevention Policy Review Committee. A Lifetime of Prevention: A Report of the Clinical Prevention Policy Review Committee. 2009. Available at

http://www.health.gov.bc.ca/library/publications/year/2009/CPPR_Lifetime_of_Prevention_Report.pdf. Accessed July 2017.

from 2017 to 2022 Canadian dollars. As such, all costs in this document are in 2022 Canadian dollars unless stated otherwise.

Note that this document has a companion document, the *Reference and Key Assumptions Document*, in which all key model assumptions are recorded in one location.

CPS Intervention Rate

Table ES-1 provides a one-page summary of the CPS reviewed by the LPSEC to date. Included on the table are the relevant cohort and the frequency with which the service is to be provided. In addition, an estimated rate of coverage for the service in British Columbia and the best rate in the world is provided.

For example, the best available evidence suggests that screening for colorectal cancer is effective in the general asymptomatic population ages 45 to 75 (the relevant cohort). Ideally, screening should take place every 2 years (frequency) using a fecal immunochemical test (FIT). An estimated 50% (rate of coverage in BC) of the relevant cohort in BC are currently receiving screening at this frequency. International evidence suggests that this rate could be improved to 77% (best rate in the world).

Table ES1: Potential Clinical Prevention Services in B.C.Summary of the Applicable Cohort, Service Frequency and Coverage

			Estimated Coverage		
Clinical Prevention Services	Cohort / Timing	Frequency / Intensity	B.C.	'BiW'(1)	
Screening for Asymptomatic Disease or Risk Factors - Childre	n/Youth (C/Y)				
Vision screening for amblyopia	Ages 3-5	At least once	93%	93%	
Screening for depression	Ages 12 - 18	Annually	Unknown	57%	
Screening for anxiety	Ages 8 - 18	Annually	Unknown	57%	
Behavioural Counseling Interventions - Children/Youth (C/Y)					
Growth monitoring and healthy weight management in	Δσes 6 - 17	Screening - At all appropriate primary care visits	Unknown	13%	
children and youth	1,200 1,	Intervention - Attendance at >70% of ten 2- hour sessions.	7.2%	7.2%	
Promotion of breastfeeding	During pregnancy and after birth	Multiple sessions	Unknown	46%	
Preventing tobacco use (school-aged children & youth)	Ages 6 - 17	Annually	Unknown	53%	
Preventive Medication / Devices - Children	On permanent teeth at time of		·		
Dental sealants	tooth eruption (ages 6 - 12)	4 times (on 1st and 2nd bicuspids & molars)	Unknown	59%	
Screening for Asymptomatic Disease or Risk Factors - Adults					
Screening for breast cancer	Ages 50 - 74	Every 2 - 3 years	52%	88%	
Screening (cytology-based) for cervical cancer	Ages 25 - 69	Every 3 years	69%	69%	
Screening (HPV-based) for cervical cancer	Ages 25 - 69	Every 5 years	0%	69%	
Screening for colorectal cancer	Ages 45 - 75	FIT every 2 years	50%	77%	
Screening for lung cancer	Ages 55 - 74 with a 30 pack-year smoking history	Annually for 3 consecutive years	Unknown	6%/60%	
Screening for hypertension	Ages 18 and older	Screening - At least once every 2 years	Unknown	88%	
Screening for cardiovascular disease risk and treatment		Screening - Once every 5 years	Unknown	48%	
(with statins)	Ages 40 - 74	Management - Ongoing	Unknown	30%	
Screening for prediabetes / type 2 diabetes	Ages 35 - 70 with overweight or	Every 3 years	Unknown	81%	
Screening for depression	Obesity Nonpregnant adults ages 18+	At least once	Unknown	12%	
Screening for depression	Pregnant and postpartum women	At least once per birth by 8 weeks postnatally	Unknown	39%	
Screening for fragility fractures	Females age ≥ 65	Every 8 years	Unknown	58%	
Screening for abdominal aortic aneurysm	Males age 65 who have ever smoked	One-time	Unknown	86%	
Screening for Sexually Transmitted Infections and Blood Bor	ne Pathogens - Adults				
		Low risk - Once		45%	
		Increased risk - Every 3 - 5 years	20%	63%	
Screening for human immunodeficiency virus	Ages 15 - 65	Very high risk - Every year		83%	
		During all pregnancies	96%	97%	
Screening for benatitis C virus	Adults born between 1945 - 1965	One-time	31%	83%	
Pahavioural Counceling Interventions Adults	Addits bolin between 1945 - 1965	Olle-time	51/0	03/0	
Prevention of sexually transmitted infections (STIs)	All sexually active adolescents and adults who are at increased risk for STIs	30 min to ≥2 hours of intensive behavioral counseling	Unknown	29%	
Counselling and interventions to prevent tobacco use	Ages 18 and older	Up to 90 min of total counseling time, during	19%	51%	
		Screening - Annually during primary care visits	Unknown	93%	
Alcohol micuse screening and brief sourceling	Ages 19 and older	Screening Program were the	Unknown	070/	
Alconol misuse screening and bher coursening	Ages 18 and Older	Brief Intervention - Three 10-minute sessions	Unknown	97%	
		(30 minutes)	Unknown	41%	
		Simple screen annually	Unknown	40%	
Screening and interventions to reduce unhealthy drug	Ages 18 and older	If simple screen positive, detailed screen	Unknown	15%	
use	ARES TO GUN OLDER	If detailed screen positive, brief intervention	Unknown	33%	
		Screening - Ongoing	Unknown	73%	
Screening for and management of obesity	Ages 18 and older	Management - At least one-time of 12 - 26	Unknown	33%	
		Screening for risk - Every year	Unknown	18%	
Preventing falls	Community–dwelling elderly ages	Exercise or physical therapy - At least 150 minutes of moderate intensity / week	Unknown	Unknown	
	+50	Vitamin D supplementation - 800 IU / day for	Unknown	61%	
Preventive Medication / Devices - Adults					
Folic acid supplementation for the prevention of neural tube defects	Reproductive-age females	0.4 to 0.8 mg (400 - 800µg) of folic acid daily	Unknown	34%	
(1) 'BiW' = best in world; (2) CPB = clinically preventable burden; (3) CE	= cost-effectiveness		·		

Summary of the Clinically Preventable Burden and Cost-Effectiveness

Table ES-2 also provides a one-page summary of the CPS reviewed by the LPSEC to date. Included on this table, however, is information on the clinically preventable burden (CPB) and cost-effectiveness (CE) associated with each of the maneuvers.

CPB is defined as the total quality-adjusted life years that could be gained if the clinical preventive service was to be delivered at recommended intervals to a BC birth cohort of 40,000 individuals over the years of life that a service is recommended. CE is defined as the average net cost per QALY gained by offering the clinical preventive service at recommended intervals to a BC birth cohort over the recommended age range.

The *CPB* columns identify the clinically preventable burden (in terms of quality adjusted life years or QALYs) that is being achieved in BC based on current coverage, and the potential CPB if the best coverage rate in the world (BiW) could be achieved. For example, if coverage for colorectal cancer screening were as high as the BiW (77%), we would expect a CPB of 3,617 QALYs. Since BC's coverage is at 50%, a CPB of 2,349 QALYs is being achieved. This is 1,268 QALYs short of the potential 3,617 QALYs achievable based on BiW coverage, as identified in the *Gap* column.

Note that coverage rates in BC are only known for 8 of the maneuvers reviewed by the LPSEC to date.

The *CE* columns identify the cost-effectiveness ratio associated with a service stated in terms of the cost per QALY. The ratio is given based on the use of a 1.5% and a 0% discount rate. For example, the cost/QALY associated with colorectal cancer screening in BC is estimated at \$18,064, based on a discount rate of 1.5%. If a 0% discount rate is used, then the cost/QALY would be reduced to \$12,562.²

² For a discussion on discounting, see the section on *Discounting* in the companion *Reference and Key Assumptions Document.*

Table ES2: Potential Clinical Prevention Services in B.C.Summary of the Clinically Preventable Burden and Cost-Effectiveness

	CPB(2) (0% Discount)		CE(3) (% Discount)		
Clinical Prevention Services	B.C.	'BiW'(1)	Gap	1.5%	0%
Screening for Asymptomatic Disease or Risk Factors - Children/Youth (C/Y)					
Vision screening for amblyopia	2.4	2.4	0	\$5,169,538	\$453,110
Screening for depression (ages 12-18)	Unknown	1,880		\$28,359	\$26,423
Screening for anxiety (ages 8-18)	Unknown	3,247		\$12,552	\$12,200
Behavioural Counseling Interventions - Children/Youth (C/Y)					
Growth monitoring and healthy weight management in children and	105	105	0	622 680	620 7FC
youth	195	195	0	ŞSS,08U	\$20,750
Interventions to support breastfeeding	6,299	9,291	2,992	Cost-saving	Cost-saving
Preventing tobacco use (school-aged children & youth)	Unknown	22,935		Cost-saving	Cost-saving
Preventive Medication / Devices - Children					
Dental sealants	Unknown	157		Cost-saving	Cost-saving
Screening for Asymptomatic Disease or Risk Factors - Adults					
Screening for breast cancer	815	1,380	565	\$20,211	\$18,783
Screening (cytology-based) for cervical cancer	4,034	4,034	0	\$5,077	\$3,808
Screening (HPV-based) for cervical cancer	0	4,215	4,215	\$2,502	\$1,610
Screening for colorectal cancer	2,349	3,617	1,268	\$18,064	\$12,562
Screening for lung cancer	Unknown	2,060		\$2,122	\$1,969
Screening for hypertension	Unknown	16,548		Cost-saving	\$269
Screening for cardiovascular disease risk and treatment (with statins)	Unknown	7,102		\$4,487	\$2,105
Screening for prediabetes and type 2 diabetes mellitus	Unknown	3,655		Cost-saving	Cost-saving
Screening for depression in general adult population	Unknown	-7		Dominated	Dominated
Screening for depression in pregnant and postpartum women	Unknown	99		\$24,425	\$21,003
Screening for fragility fractures	Unknown	348		\$18,832	\$15,205
Screening for abdominal aortic aneurysm	Unknown	495		\$9,300	\$7,479
Screening for Sexually Transmitted Infections and Blood Borne Pathogens -	Adults				
Screening for human immunodeficiency virus	Unknown	360		\$18,930	\$18,930
Screening for hepatitis C virus	*	555		\$3,846	\$1,632
Behavioural Counseling Interventions - Adults					
Prevention of sexually transmitted infections (STIs)	Unknown	3,267		\$12,454	\$12,454
Counselling and interventions to prevent tobacco use	3,704	5,904	2,200	Cost-saving	Cost-saving
Screening and behavioural counseling interventions to reduce	Unknown	F 702		¢10 147	¢10 147
unhealthy alcohol use	UNKNOWN	5,705		\$10,147	\$10,147
Screening and interventions to reduce unhealthy drug use	Unknown	325		\$62,440	\$48,951
Screening for and management of obesity	Unknown	2,278		\$14,150	\$13,292
Preventing falls	Unknown	450		\$35,988	\$35,988
Preventive Medication / Devices - Adults					
Folic acid supplementation for the prevention of neural tube defects	Unknown	74		\$398,537	\$231,765

(1) 'BiW' = best in world; (2) CPB = clinically preventable burden; (3) CE = cost-effectiveness

* More than 31% of the 1945-1964 birth cohort in BC has been screened for hepatitis C. The CPB for this CPS is calculated based on the 1945 - 1964 birth cohort that has not yet been screened.

Comparison by Clinically Preventable Burden

Figure ES-1 provides a summary of the CPB associated with each service. Results are displayed based on a 0% discount rate. Results based on a 1.5% discount rate are available in the main body of this document. Using a 1.5% discount rate tends to reduce the CPB.³ The results are organized from left to right based on the services with the highest to lowest potential CPB. For example, full implementation of the service *preventing tobacco use in children and youth* (Tobacco – C/Y) (i.e., achieving levels that are comparable to the best in the world) would result in a CPB of 22,935 QALYs, the highest of any service reviewed.

For the eight services for which BC coverage rates are known, we have indicated (by the darker bar insert) what proportion of the potential BiW rate is currently being achieved in BC.

The black bars associated with each service represent a potential range in CPB based on oneway sensitivity analysis. That is, the range is based on varying (over a plausible range) the one assumption that has the largest effect on the results generated by the model. Simultaneously varying more than one assumption would increase the potential range. A larger range suggests a higher sensitivity to the assumptions used.

³ For a discussion on discounting, see the section on *Discounting* in the companion *Reference and Key Assumptions Document.*

Note that the labels on the horizontal axis in Figures ES-1 and ES-2 refer to the CPS included in Table ES-1. The 'A' refers to adults, the 'C' to children, the 'C/Y' to children/youth and the 'Ca' to cancer.

Comparison by Cost-Effectiveness

Figure ES-2 provides a summary of the CE associated with each service. Results are displayed based on a 1.5% discount rate. Results based on a 0% discount rate are available in the body of the text. Using a 0% discount rate tends to improve the CE. Furthermore, the results are organized from left to right based on the services with the best to worst potential CE, including a plausible range for each service based on sensitivity analysis. Six of the CPS are cost-saving (far left of the chart). These six have been ordered from left to right based on the highest to lowest CPB. For four of the six, the sensitivity analysis indicates that the results could move out of the cost-saving range. For the other two (*counselling and interventions to prevent tobacco use in adults* and *dental sealants in children*) the sensitivity analysis suggests that the intervention is cost-saving, regardless of the changes in model assumptions.

On the far right of the chart are three CPS in which the results indicate a cost per QALY that is greater than \$100,000, including *folic acid supplementation for the prevention of neural tube defects* (with a CE of \$398,537 per QALY ranging from \$280,380 to \$989,319), *vision screening for amblyopia* (with a CE of \$5,169,538 per QALY ranging from \$24,390 to \$12,921,661) and *screening for depression in adults* (the model results for this CPS suggest that the harms likely outweigh the benefits, thus the CPS is not worth doing at any cost).

The base models include an estimate of costs associated with a person's time used in accessing the preventive service. The most significant effect of these inclusions/exclusions is seen in services that require frequent contact with health care providers, such as behavioural counselling to prevent alcohol misuse in adults. For this service, the cost/QALY is reduced from \$10,147 to being cost-saving if patient time costs are excluded.

Combined Comparison Using CPB and CE

The results for CPB and CE are combined in Figure ES-3. CPB is on the vertical axis, ranging from 0 to 24,000 QALYs. CE is on the horizontal axis, ranging from \$100,000/QALY at the intersection of the x- and y-axis to cost-saving at the right of the x-axis. By arranging CPB and CE in this manner, the most positive results are on the upper right of the chart and the least positive results are in the lower left of the chart. We also divided CPB into three equal segments as follows; 0 to 8,000 QALYs, 8,001 to 16,000 QALYs and 16,001 to 24,000 QALYs. CE was also divided into equal segments as follows: \$100,000 to \$50,000 per QALY, \$50,000 to \$0 per QALY and cost-saving.

The resulting nine segments are shown in Figure ES-3. Services in the upper right segment have the most favourable combination of CPB and CE while services in the lower left segment have the least favourable combination of CPB and CE.

Figure ES3: Establishing Priorities Among Effective Clinical Prevention Services in BC

Page 15

List of Abbreviations

AAA - Abdominal Aortic Aneurysm

- AABR Automated Auditory Brainstem Response
- ABR Auditory Brainstem Response
- ACC American College of Cardiology
- ACR Albumin to Creatinine Ratio
- AD Anti-Depressant(s)
- AD Atopic Dermatitis
- ADAM Aneurysm Detection and Management
- AHA American Heart Association
- AMI Acute Myocardial Infarction
- AOBP Automated Office Blood Pressure
- APC Annual Percent Change
- apoB Apolipoprotein B
- AQoLS Alcohol Quality of Life Scale
- ASA Acetylsalicylic Acid
- ASCVD Atherosclerotic Cardiovascular Disease
- ASIR Age-standardized Incidence Rate
- ASSIST Alcohol, Smoking and Substance Involvement Screening Test
- AOAE Automated Otoacoustic Emissions
- AUD Australian Dollars
- AUDIT Alcohol Use Disorders Identification Test
- AUGIB Acute Upper Gastrointestinal Bleeding
- BC British Columbia
- BCCSU British Columbia Centre on Substance Use
- BCEHP British Columbia Early Hearing Program
- BC-HTC BC Hepatitis Testers Cohort
- BD Binge Drinking
- BDI Beck Depression Inventory
- BiW Best in the World
- BFHI Baby Friendly Hospital Initiative
- BMD Bone Mineral Density
- BMI-Body Mass Index
- BMT Bone Marrow Transplant
- CAD Canadian Dollars
- CAGE Cut Down, Annoyed, Guilty, Eye-Opener

CANRISK - Canadian Diabetes Risk Assessment Questionnaire

CBT - Cognitive Behavioural Therapy

CCHD - Critical Coronary Heart Disease - also used for Critical Congenital Heart Defects

CCHS – Canadian Community Health Survey

CCS - Canadian Cardiovascular Society

CCSA – Canadian Centre on Substance Abuse (former name of Canadian Centre on Substance Use and Addiction)

CCSUA - Canadian Centre on Substance Use and Addiction

CISUR - Canadian Institute for Substance Use Research

CDC - Centers for Disease Control and Prevention

CE-Cost-Effectiveness

CGAS - Children's Global Assessment Scale

CHD - Coronary Heart Disease

CHEP - Canadian Hypertension Education Program

CI - Confidence Interval

CIN - Cervical Intraepithelial Neoplasia

CISUR - Canadian Institute for Substance Use Research

CKD - Chronic Kidney Disease

CLEM - Cardiovascular Life Expectancy Model

CMG – Case Mix Group

COF - Canadian Obesity Foundation

CPB - Clinically Preventable Burden

CPCSSN - Canadian Primary Care Sentinel Surveillance Network

CPS – Clinical Prevention Service

CRC - Colorectal Cancer

 $CSS-Canadian\ Cardiovascular\ Society$

CSVS - Canadian Society for Vascular Surgery

CTADS – Canadian Tobacco, Alcohol and Drugs Survey

CTFPHC - Canadian Task Force on Preventive Health Care

CUD - Cannabis Use Disorder

CV-Cardiovascular

 $CVD-Cardiovascular\ Disease$

DAA - Direct-acting antivirals

DAST-10 - 10 item Drug Abuse Screening Test

dB-Decibels

DPP - Diabetes Prevention Program

DSM - Diagnostic and Statistical Manual of Mental Disorders

DXA - Dual-Energy X-ray Absorptiometry

ECG-Electrocardiogram

eGFR - Estimated Glomerular Filtration Rate

ES – Executive Summary

ESRD - End-stage Renal Disease

ETS - Environmental Tobacco Smoke

EVAR - Endovascular Aneurysm Repair

FAEE - Fatty Acid Ethyl Esters

FAS - Fetal Alcohol Syndrome

FASD – Fetal Alcohol Spectrum Disorder

FDA – Food and Drug Administration (US)

FINDRISC - Finnish Diabetes Risk Score

FIN-D2D - Finland's National Diabetes Prevention Program

FIT – Fecal Immunochemical Test

FOBT – Fecal Occult Blood Test

FPG - Fasting Plasma Glucose

FRAX - Fracture Risk Assessment Tool

FRS – Framingham Heart Study Risk Score

FTE – Full Time Equivalent

gFOBT – Guaiac Fecal Occult Blood Test

GBD study - Global Burden of Disease study

GI-Gastrointestinal

GCBT - Group Cognitive Behavioural Therapy

GSMS - Great Smoky Mountains Study

GP - General Practitioner

HBV - Hepatitis B virus

HCC - Hepatocellular Carcinoma

HCV - Hepatitis C Virus

HCP – Health Care Provider

HDL-C – High-Density Lipoprotein Cholesterol

HEAPK - HealthLinkBC Eating and Activity Program for Kids

HIV - Human Immunodeficiency Virus

HMO - Health Maintenance Organization

HPV – Human Papillomavirus

hrHPV - High Risk Human Papillomavirus

HR - Hazard Ratio

ICD - International Classification of Diseases

ID – Intellectual Disability

ICBP - International Cancer Benchmarking Partnership

ICBT - Individual Cognitive Behavioural Therapy

IRR - Incidence Risk Ratio

IOTF -- International Obesity Task Force

IR – Intermediate Risk

IQ – Intelligence Quotient

ISH -- Intentional Self-Harm

LEEP – Loop Electrosurgical Excision Procedure

LDL - Low-Density Lipoprotein

LDL-C - Low-Density Lipoprotein Cholesterol

LHA – Local Health Areas

LRTI - Lower Respiratory Tract Infection

LPS – Lifetime Prevention Schedule

LPSEC - Lifetime Prevention Schedule Expert Committee

LYL – Life Years Lost

MASS - Multicentre Aneurysm Screening Study

MAST - Michigan Alcoholism Screening Test

MDD - Major Depressive Disorder

MEA – Middle Ear Analysis

MEND - Mind, Exercise, Nutrition, Do It!

MI - Myocardial Infarction

MPR - Medication Possession Ratio

mRS - Modified Rankin Scale

MSP -- Medical Service Plan

NHANES - National Health and Nutrition Examination Survey

 $\ensuremath{\text{NICE}}-\ensuremath{\text{National}}\xspace$ Institute for Health and Clinical Excellence

NICU - Neonatal Intensive Care Unit

NSAID - Nonsteroidal Anti-Inflammatory Drug

NSDUH – National Survey on Drug Use and Health

NTD – Neural Tube Defect

NAT - Nucleic Acid Testing

OAE - Otoacoustic Emissions

OBPM - Office Blood Pressure Measurement

OM – Otitis Media

 $\ensuremath{\mathsf{OME}}-\ensuremath{\mathsf{Otitis}}$ Media with Effusion

OR – Odds Ratio

PCHI - Permanent Childhood Hearing Impairment

PCI - Percutaneous Coronary Intervention

PCP - Primary Care Provider

PDC - Proportion of Days Covered

PHQ-A - Patient Health Questionnaire for Adolescents

PHSA - Provincial Health Services Authority

POS – Pulse Oximetry Screening

PPV - Positive Predictive Value

PSBC - Perinatal Services British Columbia

PWID - Persons Who Inject Drugs

QALY - Quality-Adjusted Life-Year

QoL – Quality of life

RCT - Randomized Controlled Trial

RNA - Ribonucleic Acid

RR – Relative Risk

SAE - Serious adverse event

SAMHSA - US Substance Abuse and Mental Health Services Administration

SASQ - Single Alcohol Screening Question

SBIRT - Screening, Brief Intervention and Referral to Treatment

SCARED - Screen for Child Anxiety Related Disorders

SCID - Severe Combined Immune Deficiency

SF-36 - Short Form (Health Survey) with 36 items

 $SG-Standard\ Gamble$

SIDS – Sudden Infant Death Syndrome

SPIN - Social Phobia Inventory

SUD – Substance Use Disorder

SVR - Sustained Virologic Response

T2DM – Type 2 Diabetes Mellitus

TC - Total Cholesterol

TEOAE – Transient Evoked Otoacoustic Emissions

TG - Triglycerides

TREC – T-cell Receptor Excision Circles

TTO – Time Trade-Off

UK – United Kingdom

UKPDS - UK Prospective Diabetes Study

UKSAT – United Kingdom Small Aneurysm Trial

UNHS – Universal Newborn Hearing Screening

 $US-United\ States$

USD – United States Dollars

USPSTF - United States Preventive Services Task Force

WHO - World Health Organization

Clinical Prevention in Children and Youth

Screening for Asymptomatic Disease or Risk Factors

Vision Screening for Amblyopia

United States Preventive Service Task Force Recommendations (2017)

Among children younger than 6 years, 1% to 6% have amblyopia or its risk factors (strabismus, anisometropia, or both). Early identification of vision abnormalities could prevent the development of amblyopia.

The USPSTF recommends vision screening at least once in all children aged 3 to 5 years to detect amblyopia or its risk factors (*B* recommendation).

The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of vision screening in children younger than 3 years (I statement).⁴

Canadian Task Force on Preventive Health Care Recommendations (1990)

In the 1990 publication on well-baby care in the first 2 years of life, the CTFPHC recommended that there was good evidence to include repeated examination of the eyes and hearing during the first year of life in the periodic health examination. This was given an 'A' recommendation.⁵ Based on this information, vision screening was included in the BC Lifetime Prevention Schedule.⁶

Canadian Task Force on Preventive Health Care Recommendations (1994)

Once detected, simple refractive errors affecting visual acuity are readily treatable with eye glasses. However, evidence for the treatment of amblyopia is more controversial and inconclusive. It is widely held that for any potential benefit to be realized, amblyopia must be detected during the "sensitive" period, i.e. between birth and about the seventh year.

Systematic screening for visual deficits has been found to decrease prevalence later.

Fair evidence for inclusion in periodic health examination (B Recommendation).⁷

The Canadian Task Force website does state: "Guidelines and other material from the Canadian Task Force on the Periodic Health Examination (1979-2006) are presented for informational purposes only. The material has not been reviewed or approved by the

⁴ Grossman DC, Curry SJ, Owens DK et al. Vision Screening in Children Aged 6 Months to 5 Years: US Preventive Services Task Force Recommendation Statement. *Journal of the American Medical Association*. 2017; 318(9): 836-44.

⁵ Canadian Task Force on the Periodic Health Examination. Periodic health examination, 1990 update: 4. Wellbaby care in the first 2 years of life. *Canadian Medical Association Journal*. 1990; 143(9): 867-72.

⁶ Clinical Prevention Policy Review Committee. A Lifetime of Prevention: A Report of the Clinical Prevention Policy Review Committee. 2009. Available at

http://www.health.gov.bc.ca/library/publications/year/2009/CPPR_Lifetime_of_Prevention_Report.pdf. Accessed August 2013.

⁷ Feightner JW. *Canadian Guide to Clinical Preventive Health Care: Chapter 27: Routine Preschool Screening for Visual and Hearing Problems*. 1994. Available at http://canadiantaskforce.ca/wp-

content/uploads/2013/03/Chapter27_preschool_visualhear94.pdf?0136ff. Accessed November 2013.

current Canadian Task Force on Preventive Health Care. It may not reflect current evidence or current standards of practice."⁸

In short, the Canadian Task Force on Preventive Health Care does not have a current recommendation on vision screening for children.

BC Early Childhood Vision Screening Program

In 2005, the BC Ministry of Health (MoH) announced its intention to screen all children in the province for vision disorders before they reached six years of age. This universal vision screening program was established with the goal of not only detecting amblyopia or its risk factors but also major refractive errors (e.g. myopia or nearsightedness, hyperopia or farsightedness and astigmatism).⁹ The current model, based on evidence of effectiveness from the 2017 USPSTF review, only includes screening for amblyopia and its risk factors.

The Human Early Learning Partnership at UBC was asked to conduct an evaluation of the Vision Screening Program to track the program's effectiveness in achieving the provincial goal established by the Ministry of Health. The results of the evaluation were published in 2012, and form the basis for much of our modeling.¹⁰

What is Amblyopia

Amblyopia is a "functional reduction in visual acuity characterized by abnormal processing of visual images by the brain".¹¹ More simply, it is a condition in which the brain ceases to process normal visual inputs from (usually) one or (rarely) both eyes. It can result from several underlying conditions, such as misalignment of the eyes (strabismus) or unequal refractive power (anisometropia) that if untreated early in life (i.e. by 7 or 8 years old) eventually result in the visual processing center of the brain ignoring information (in whole or part) from the eye providing less useful visual information.

A primary reason behind early childhood screening for amblyopia is the assumption that there is a developmental 'critical period' during which the neural circuitry can potentially be reshaped by experience, with this critical period closing by about age seven. Current evidence suggests that neuroplasticity continues through later childhood and into adulthood and that the adult brain retains the capacity to re-wire, although perhaps in ways distinct from the brain prior to age seven. This suggests the possibility that treatment for amblyopia in adults as well as children may be effective.¹²

⁸ Canadian Task Force on Preventive Health Care. *The Red Brick: The Canadian Guide to Clinical Preventive Health Care (1994)*. 1994. Available at <u>https://canadiantaskforce.ca/the-red-brick-the-canadian-guide-to-clinical-preventive-health-care-1994/</u>. Accessed May 2019.

⁹ Human Early Learning Partnership. Screening Research and Evaluation Unit. *BC Early Childhood Vision Screening Program. Final Evaluation Report.* 2012. Available at

https://www2.gov.bc.ca/assets/gov/health/managing-your-health/women-children-maternal-health/bc-earlychildhood-vision-screening-program.pdf. Accessed May 2019.

¹⁰ Human Early Learning Partnership. Screening Research and Evaluation Unit. *BC Early Childhood Vision Screening Program. Final Evaluation Report.* 2012. Available at

https://www2.gov.bc.ca/assets/gov/health/managing-your-health/women-children-maternal-health/bc-earlychildhood-vision-screening-program.pdf. Accessed May 2019.

¹¹ Grossman DC, Curry SJ, Owens DK et al. Vision Screening in Children Aged 6 Months to 5 Years: US Preventive Services Task Force Recommendation Statement. *Journal of the American Medical Association*. 2017; 318(9): 836-44.

¹² The Lasker/IRRF Initiative for Innovation in Vision Science. *Amblyopia: Challenges and Opportunities*. 2017. Available online at <u>http://www.laskerfoundation.org/new-noteworthy/articles/amblyopia-challenges/</u>. Accessed January 2020.

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with screening children once in kindergarten, to detect the presence of amblyopia or its risk factors. We base our calculations on BC data reported in the evaluation of the BC Early Childhood Vision Screening Program.

In modelling CPB, we made the following assumptions:

- 99.56% of individuals in a birth cohort of 40,000 (or 39,831, Table 2, row *a*) would survive to age 5, based on data from the BC life tables for 2018 to 2020.
- Solebo et al. conducted a systematic review and found the prevalence of amblyopia in children under the age of 6 ranged from 1.0% to 3.8% depending on the criteria for amblyopia.¹³
- The USPSTF estimates the prevalence of strabismus, anisometropia (both risk factors for amblyopia) and amblyopia combined range from 1% to 6% among US children younger than 6 years.¹⁴
- For our model, we use the mid-point of the range for the USPSTF reported combined prevalence of amblyopia and its risk factors (3.50%) for the base case (Table 2, row *b*) and the range in sensitivity analysis.
- In the eight consecutive school years starting in 2007/08, 93.1% of BC kindergarten students completed vision screens (Table 2, row *d*). Completed screens ranged from a low of 79.2% of students in the Northern Health Authority in 2007/08 school year to a high of 96.6% in the Vancouver Island Health Authority the 2007/08 school year.^{15,16} We use the range of completed screens in our sensitivity analysis.
- The BC Early Childhood Vision Screening Program (BCECVSP) uses two of three tests to screen kindergarten children, combining the Randot Preschool Stereotest (for stereopsis) with either the SureSight Vision Screener or the HOTV vision chart for detection of refractive errors.
- The Vision in Preschoolers study compared vision screening tests administered by professionals. At a specificity (rate of true negatives) of 90% the SureSight Vision Screener had a sensitivity (rate of true positives) of 89% to detect amblyopia. The HOTV vision chart had a sensitivity of 73% at a specificity of 89%. The Random Dot E stereotest had a sensitivity of 63% to detect amblyopia at a specificity of 90%.¹⁷
- Nishimura and colleagues tested vision screening tests / devices on children ages 4 and 5 in a Canadian school. The results of the vision screening tests / devices were compared with the results of an eye exam by a licensed optometrist. The sensitivity of each test / device individually was calculated along with all possible combination

¹³ Solebo AL, Cumberland PM and Rahi JS. Whole-population vision screening in children aged 4–5 years to detect amblyopia. *The Lancet*. 2015; 385(9984): 2308-19.

¹⁴ Jonas DE, Amick HR, Wallace IF et al. Vision screening in children aged 6 months to 5 years: evidence report and systematic review for the US Preventive Services Task Force. *Journal of the American Medical Association*. 2017; 318(9): 845-58.

¹⁵ Human Early Learning Partnership. Screening Research and Evaluation Unit. *BC Early Childhood Vision Screening Program. Final Evaluation Report.* 2012. Available at

https://www2.gov.bc.ca/assets/gov/health/managing-your-health/women-children-maternal-health/bc-earlychildhood-vision-screening-program.pdf. Accessed May 2019.

¹⁶ Keren Massey, Manager, Early Childhood Health, Public Health Services Branch, BC Ministry of Health. September 25, 2019. Personal communication.

¹⁷ Vision in Preschoolers Study Group. Comparison of preschool vision screening tests as administered by licensed eye care professionals in the Vision in Preschoolers Study. *Ophthalmology*. 2004; 111(4): 637-50.

of devices. The results of the two photoscreeners (Plusoptix S12 and Spot) and an acuity test (Cambridge Crowded Acuity cards) in addition to the Randot Preschool Stereotest are shown in Table 1 below.¹⁸

Table 1: Sensitivity and Specificity of Screening ToolCombinations				
Tools	Sensitivity	Specificity		
Acuity and Randot	0.67 (0.60 - 0.72)	0.69 (0.64 - 0.72)		
Plusoptix and Randot	0.72 (0.65 - 0.78)	0.80 (0.77 - 0.84)		
Spot and Randot	0.68 (0.61 - 0.74)	0.85 (0.82 -0.88)		

- Notwithstanding slight differences between individual photo screeners and between acuity tests, the sensitivity results for the tests combined with the Randot test appear to converge to a relatively narrow range.
- We model a sensitivity for testing in BC of 0.695 (midpoint of 0.67 and 0.72) using a combination of either the SureSight photo screener or the HOTV acuity test along with the Randot Preschool Stereotest. (Table 2, row *e*). We range this from 0.60 to 0.78 in our sensitivity analysis.
- In a study including 86 children diagnosed with amblyopia by age 5, Campbell and Charney found that 28 (32.6%) were diagnosed during routine eye exams by a primary care physician while the others were identified by a school screener, an ophthalmologist or an optometrist.¹⁹ We assumed, therefore, that amblyopia would be diagnosed in 32.6% in the absence of an organized, universal screening program (Table 2, row *f*).
- Across the 2007/08 2009/10 school years, 54.2% of children who were referred from the Vision Screening Program in BC saw an eye doctor within one year of referral, with most of those visits within four months of referral (Table 2, row *h*).²⁰
- A review of childhood amblyopia by Tailor et al. suggests that treatment adherence ranges from less than 50% for occlusion without educational intervention, to 80% for occlusion with educational intervention, to between 80.6 93% for binocular treatments, especially those involving computer games or videos.²¹
- We model a treatment adherence of 50% given that there does not appear to be any standard educational intervention in BC, and vary this between 50% and 80% in our sensitivity analysis (Table 2, row *j*).

¹⁸ Nishimura M, Wong A, Cohen A et al. Choosing appropriate tools and referral criteria for vision screening of children aged 4–5 years in Canada: a quantitative analysis. *BMJ Open.* 2019; 9(9): e032138.

¹⁹ Campbell LR and Charney E. Factors associated with delay in diagnosis of childhood amblyopia. *Pediatrics*. 1991; 87(2): 178-85.

²⁰ Human Early Learning Partnership. Screening Research and Evaluation Unit. *BC Early Childhood Vision Screening Program. Final Evaluation Report.* 2012. Available at

https://www2.gov.bc.ca/assets/gov/health/managing-your-health/women-children-maternal-health/bc-earlychildhood-vision-screening-program.pdf. Accessed May 2019.

²¹ Tailor V, Bossi M, Greenwood JA et al. Childhood amblyopia: current management and new trends. *British Medical Bulletin.* 2016; 119(1): 75-86.

- The reported incidence of recurrence in successfully treated cases of amblyopia varies substantially.^{22,23} McConachie and Gottlieb suggest a range in recurrence rates of between 13 24% for two or more logMAR lines at one year.²⁴
- In keeping with considering two or more logMAR lines to be clinically significant, we model using a recurrence rate of 18.5% (midpoint of 13% and 24%, Table 2, row *l*), and use the upper and lower bounds in our sensitivity analysis.
- We assumed an average life expectancy for a 5 year-old of 77.7 years (Table 2, row *q*), based on data from the BC life tables for 2018 to 2020.
- Individuals with amblyopia rely on their non-amblyopic eye for visual information. Since the amblyopic eye does not contribute to vision, the loss of vision for any reason in the non-amblyopic eye is a significant event.
- The annual incidence of permanent visual impairment or blindness attributable to loss of vision in the non-amblyopic eye (for any reason) has been estimated at .00004 (.00001 to 0.00006) during the ages of 5 to 15 years, 0.00005 (0.00004 to 0.00007) for ages 16 to 64 and 0.00046 (0.00039 to 0.00052) for ages $65+^{25}$ (Table 2, rows *r*, *s* and *t*).
- In screening a cohort of 40,000, we would expect to find and treat 165 five-year olds with amblyopia (Table 2, row *k*). Of these, approximately 134 (Table 2, row *m*) would retain the benefits of treatment. Without treatment, 1.6 would be expected to have permanent visual impairment or blindness attributable to loss of vision in the non-amblyopic eye. Most of this visual impairment / blindness (75%) would occur after age 65.
- In assessing the disability associated with vision impairment, the Global Burden of Disease (GBD) study found the following:²⁶
 - mild vision impairment ("has some difficulty with distance vision, for example reading signs, but no other problems with eyesight") is associated with a disability weight of 0.003 (95% CI of 0.001 to 0.007)
 - monocular distance vision loss ("is blind in one eye and has difficulty judging distances") is associated with a disability weight of 0.017 (95% CI of 0.009 to 0.029)
 - moderate vision impairment ("has vision problems that make it difficult to recognize faces or objects across a room") is associated with a disability weight of 0.031 (95% CI of 0.019 to 0.049)
 - severe vision impairment ("has severe vision loss, which causes difficulty in daily activities, some emotional impact [for example worry], and some difficulty going outside the home without assistance") is associated with a disability weight of 0.184 (95% CI of 0.125 to 0.258)

²² Saxena R, Puranik S, Singh D et al. Factors predicting recurrence in successfully treated cases of anisometropic amblyopia. *Indian Journal of Ophthalmology*. 2013; 61(11): 630.

²³ Gunton KB. Advances in amblyopia: what have we learned from PEDIG trials? *Pediatrics*. 2013; 131(3): 540-7.

²⁴ Maconachie GD and Gottlob I. The challenges of amblyopia treatment. *Biomedical Journal*. 2015; 38(6): 510-6.

²⁵ Carlton J, Karnon J, Czoski-Murray C et al. The clinical effectiveness and cost-effectiveness of screening programmes for amblyopia and strabismus in children up to the age of 4-5 years: a systematic review and economic evaluation. *Health Technology Assessment*. 2008; 12(25): xi-194.

²⁶ Institute for Health Metrics and Evaluation. *GBD 2016 sequelae, health states, health state lay descriptions, and disability weights.* Available online at http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights. Accessed December 2019.

- blindness is associated with a disability weight of 0.187 (95% CI of 0.124 to 0.260).
- We model a disability weight of 0.187 (Table 2, row *u*) if the non-amblyopic eye becomes blind.
- While blindness is associated with a reduced QoL, considerable debate exists about whether or not **living with amblyopia** reduces QoL.
- In a 2002 study assessing the cost-effectiveness of *treatment* for amblyopia, Membrano and colleagues assumed a reduction in QoL of 3.5% associated with living with amblyopia, based on their own assessment of 75 patients.²⁷
- In 2004, Konig and Barry published the results of the long-term cost-effectiveness of a hypothetical screening program for untreated amblyopia in 3-year-old children in German kindergartens.²⁸ They assumed a reduction in QoL of 4.0% associated with living with amblyopia (yielding a cost per QALY of \$14,323²⁹) and then used a range of 0% to 8.0% in their univariate sensitivity analysis (yielding a cost per QALY of \$3.67 million and \$7,176, respectively).
- In 2008, Carlton and colleagues published an extensive systematic review and economic evaluation of the clinical effectiveness and cost-effectiveness of screening programmes for amblyopia and strabismus in children up to the age of 4-5 years.³⁰ Based on their review, they then developed their own model in which the base case included the assumption of no change in QoL associated with living with amblyopia due to the lack of "direct evidence of a utility effect". The resulting costs per QALY for screening at ages 3 or 4 ranged from \$1.07 million to \$1.62 million. In their sensitivity analysis they included a 2.0% reduction in QoL associated with living with amblyopia, resulting in the costs per QALY for screening at ages 3 or 4 being reduced to between \$12,980 and \$20,891.
- In 2011, Carlton and Kaltenthaler published a systematic review to identify the health-related quality of life (HRQoL) implications of amblyopia and/or its treatment.³¹ Based on a review of 35 publications, they conclude that the HRQoL implications of amblyopia are "related specifically to amblyopia treatment, rather than to the condition itself. These included impact on family life, social interactions, difficulties in undertaking daily activities, as well as feelings and behaviour." They recommend that "further research is required to assess the immediate and long-term effects of amblyopia and/or its treatment on HRQoL".

²⁷ Membreno JH, Brown MM, Brown GC et al. A cost-utility analysis of therapy for amblyopia. *Ophthalmology*. 2002; 109(12): 2265-71.

²⁸ König H-H and Barry J-C. Cost-utility analysis of orthoptic screening in kindergarten: a Markov model based on data from Germany. *Pediatrics*. 2004; 113(2): e95-e108.

²⁹ All costs in the following sections have been converted to 2017 Canadian dollars.

³⁰ Carlton J, Karnon J, Czoski-Murray C et al. The clinical effectiveness and cost-effectiveness of screening programmes for amblyopia and strabismus in children up to the age of 4-5 years: a systematic review and economic evaluation. *Health Technology Assessment*. 2008; 12(25): xi-194.

³¹ Carlton J and Kaltenthaler E. Amblyopia and quality of life: a systematic review. *Eye.* 2011; 25(4): 403.

- Research on the QoL implications of amblyopia and/or its treatment continues, with the focus seemingly remaining on the QoL implications associated with treatment rather than living with amblyopia.^{32,33,34}
- Sufficient evidence exists to suggest a *disutility* associated with **treatment for amblyopia.** We model a 3.6% disutility (based on the midpoint of the reduction in QoL observed by Membrano et al³⁵ (3.5%) and van de Graaf et al³⁶ (3.7%)) for a period of six months for children receiving treatment (Table 2, rows *n* & *o*).
- We have found no convincing evidence of significant QoL reductions associated with **living with amblyopia** and therefore do not include these impacts in the base model. In our sensitivity analysis, we include a QoL reduction of 0.003 (ranging from 0.001 to 0.007), based on disability weights calculated by the Global Burden of Disease study for mild vision impairment.³⁷ In addition, we calculate what the threshold QoL reductions associated with living with amblyopia would be to achieve a cost per QALY of \$50,000 and \$25,000.
- Beyond correcting refractive errors, experts differ as to whether amblyopia should be treated at all (especially with occlusion therapy).³⁸
- The effectiveness of interventions in improving amblyopia is fairly contentious. The USPSTF noted an average improvement of approximately one line on the logMAR chart among children treated with patching plus eyeglasses (without any pretreatment).³⁹ The other treatment methods reviewed resulted in an average of less than one line on the Snellen eye chart. A change of one line in the Snellen eye chart is not considered to be clinically significant.^{40,41,42} Indeed, the most recent evidence review for the USPSTF concluded that "studies directly evaluating the effectiveness

³² Chen Y, Chen X, Chen J et al. Longitudinal impact on quality of life for school-aged children with amblyopia treatment: perspective from children. *Current Eye Research*. 2016; 41(2): 208-14.

³³ Bokhary K. Impact of amblyopia treatment on vision-related quality of life. *Optometry: Open Access.* 2016; 1(2):

³⁴ Buckley CY, Whittle JC, Verity L et al. The effect of childhood eye disorders on social relationships during school years and psychological functioning as young adults. *British and Irish Orthoptic Journal*. 2018; 14(1): 35-44.

³⁵ Membreno JH, Brown MM, Brown GC et al. A cost-utility analysis of therapy for amblyopia. *Ophthalmology*. 2002; 109(12): 2265-71.

³⁶ van de Graaf ES, van Kempen-du Saar H, Looman CW et al. Utility analysis of disability caused by amblyopia and/or strabismus in a population-based, historic cohort. *Graefe's Archive for Clinical and Experimental Ophthalmology*. 2010; 248(12): 1803-7.

³⁷ Institute for Health Metrics and Evaluation. *GBD 2016 sequelae, health states, health state lay descriptions, and disability weights.* Available online at <u>http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights.</u> Accessed December 2019.

³⁸ Kulp MT, Cotter SA, Connor AJ et al. Should amblyopia be treated? *Ophthalmic and Physiological Optics*. 2014; 34(2): 226-32.

³⁹ Grossman DC, Curry SJ, Owens DK et al. Vision Screening in Children Aged 6 Months to 5 Years: US Preventive Services Task Force Recommendation Statement. *Journal of the American Medical Association*. 2017; 318(9): 836-44.

⁴⁰ Gibson R and Sanderson H. Observer variation in ophthalmology. *British Journal of Ophthalmology*. 1980; 64(6): 457-60.

⁴¹ Laidlaw D, Abbott A and Rosser D. Development of a clinically feasible logMAR alternative to the Snellen chart: performance of the "compact reduced logMAR" visual acuity chart in amblyopic children. *British Journal of Ophthalmology*. 2003; 87(10): 1232-4.

⁴² Beck RW, Moke PS, Turpin AH et al. A computerized method of visual acuity testing: adaptation of the early treatment of diabetic retinopathy study testing protocol. *American Journal of Ophthalmology*. 2003; 135(2): 194-205.

of screening were limited and do not establish whether vision screening in preschool children is better than no screening."43

Other assumptions used in assessing the clinically preventable burden are detailed in the Reference Document.

Based on these assumptions, the CPB associated with screening for amblyopia in children ages 3 to 5 is 2.4 QALYs (Table 2, row w).

Table 2: CPB of Screening for Amblyopia in 5 Year-Olds in a Birth Cohort of 40,000						
Bow						
Label	Variable	Base Case	Data Source			
	5 Vear olds in cohort	30 831	BC Life Tables			
h	Prevalence of amblyonia	3 50%	JU SUCCENTE TABLES			
	5 year-olds with amblyopia	1 394	=a*b			
d	Bate of screening for kindergarten children	93.1%	- u b			
	Average sensitivity of refractive and stereo tests combined	69.5%	v v			
f	% of amblyonia that are undetected (asymptomatic)	67.4%	v			
	5 year-olds with amblyopia or risk factors detected through	0,11,0	•			
g	screening and referred to eve doctor	608	= c * d * e * f			
h	Proportion of referrals that see eve doctor	54.2%	V			
	5 year-olds with amblyopia or risk factors detected through		=g * h			
i	screening seeing physician for followup	330				
j	Treatment compliance	50.0%	V			
k	Individuals with amblyopia who are treatment compliant	165	= i * j			
I	Recurrence in those treated for amblyopia	18.5%	V			
m	Individuals with lasting change due to screening and treatment	134	= k * (1- l)			
n	Quality of Life reduction due to treatment	0.036	V			
0	Length of Treatment, months	6	٧			
р	Estimated QALYs lost due to treatment	3.0	= k * n * (o / 12)			
q	Average life expectancy of a 5 year old	77.7	BC Life Table			
r	Incidence of permanent visual impairment or blindness - 5-15 yrs	0.00004	V			
s	Incidence of permanent visual impairment or blindness - 16-64 yrs	0.00005	V			
t	Incidence of permanent visual impairment or blindness - 65+ yrs	0.00046	V			
	Change in QoL associated with permanent visual impairment or	0 197				
u	blindness	0.187	\checkmark			
v	Estimated QALYs gained due to avoided vision loss	5.3	Calculated			
w	Net QALYs gained through intervention, CPB	2.4	= v - p			

∨ = Estimates from the literature

We also modified several major assumptions and recalculated the CPB as follows:

- Assume the disutility associated with living with amblyopia is changed from 0.0 to • 0.001: CPB = 13.0
- Assume the disutility associated with living with amblyopia is changed from 0.0 to • 0.003: CPB = 34.1

⁴³ Jonas DE, Amick HR, Wallace IF et al. Vision screening in children aged 6 months to 5 years: evidence report and systematic review for the US Preventive Services Task Force. Journal of the American Medical Association. 2017; 318(9): 845-58.

• Assume the disutility associated with living with amblyopia is changed from 0.0 to 0.007: **CPB = 76.4**

As expected, assumptions about the disutility associated with living with amblyopia dominate the sensitivity analysis. Moving from an assumption of no disutility to just 0.7% disutility changes the CPB from 2.4 (the base case) to 76.4. No other variable even comes close to influencing the results in such an important manner (see below).

- Assume the prevalence of amblyopia is reduced from 3.5% to 1.0% (Table 2, row b): CPB = 0.7
- Assume the prevalence of amblyopia is increased from 3.5% to 6.0% (Table 2, row b): CPB = 4.1
- Assume the screening rate decreases from 93.1% to 79.2% (Table 2, row d): CPB = 2.0
- Assume the screening rate increases from 93.1% to 96.6% (Table 2, row d): CPB = 2.5
- Assume joint testing sensitivity decreases from 69.5% to 60%. (Table 2, row e): CPB = 2.0
- Assume joint testing sensitivity increases from 69.5% to 78%. (Table 2, row e): CPB = 2.7
- Assume treatment compliance increases from 50% to 80% (Table 2, row j): CPB = 3.8
- Assume the recurrence of amblyopia decreases from 18.5% to 13.0% (Table 2, row 1): CPB = 2.7
- Assume the recurrence of amblyopia increases from 18.5% to 24.0% (Table 2, row 1): CPB = 2.0
- Assume the incidence of permanent visual impairment or blindness is at the low end of the range (Table 2, rows r, s, t): CPB = 1.0
- Assume the incidence of permanent visual impairment or blindness is at the high end of the range (Table 2, rows r, s, t): CPB = 4.1
- Assume the disutility associated with permanent visual impairment or blindness is reduced from -0.187 to -0.124 (Table 2, row u): **CPB = 0.6**
- Assume the disutility associated with permanent visual impairment or blindness is increased from -0.187 to -0.260 (Table 2, row u): CPB = 4.5

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with screening all children at least once between the ages of 3 and 5 years, to detect the presence of amblyopia or its risk factors.

In modelling CE, we made the following assumptions:

• In their 2008 analysis, Carlton and colleagues estimated a cost per screen of between £9.26 and £12.90, equivalent to between \$20.51 and \$28.57 in 2022 CAD.⁴⁴ They

⁴⁴ Carlton J, Karnon J, Czoski-Murray C et al. The clinical effectiveness and cost-effectiveness of screening programmes for amblyopia and strabismus in children up to the age of 4-5 years: a systematic review and economic evaluation. *Health Technology Assessment*. 2008; 12(25): xi-194.

included screening invitation, orthoptists time, equipment costs, room rental and data entry costs in their estimate.

- In fiscal 2017/18, BC health authorities spent an estimated \$691,939 (\$761,451 in 2022 CAD) to screen approximately 43,771 kindergarten age children.⁴⁵ This represents a cost of \$17.40 per screen (Table 3, row *d*).
- Visits to the optometrist cost \$47.08 for a full eye exam (Table 3, row i).⁴⁶
- For patient time and travel costs, we estimated two hours of patient time required per physician visit.
- The estimated cost of interventions (Table 3, row *l*) are based on information in the economic evaluation by Carlton et al.⁴⁷ The cost of an intervention is estimated at £1,015 (95% CI of £907 to £1,122) in 2006 British Pounds Sterling or \$2,370 (95% CI of \$2,118 to \$2,620) in 2022 CAD.
- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with screening for amblyopia in children ages 3 to 5 is 5,169,538 per QALY (Table 3, row *r*).

⁴⁵ Khalilah Alwani, Policy Analyst, Women's, Maternal and Early Childhood Health, Public Health Services Branch, BC Ministry of Health. February 24, 2021. Personal Communication.

⁴⁶ BC Doctors of Optometry. *MSP and Your Eye Health*. 2023. Available at

https://bc.doctorsofoptometry.ca/patients/medical-services-

plan/#:~:text=MSP%20and%20Your%20Eye%20Health,19%20and%2065%20and%20older. Accessed March 2023.

⁴⁷ Carlton J, Karnon J, Czoski-Murray C et al. The clinical effectiveness and cost-effectiveness of screening programmes for amblyopia and strabismus in children up to the age of 4-5 years: a systematic review and economic evaluation. *Health Technology Assessment*. 2008; 12(25): xi-194.

Table 3: CE of Screening for Amblyopia in 3-5 Year-Olds in a Birth Cohort of							
	40,000 (B.C.)						
Row							
Label	Variable	Base Case	Data Source				
а	5 Year olds in cohort	39,831	Table 1 row b				
b	Screening rate	93%	Table 1, row d				
С	# of screens	37,082	= a * b				
	Costs of screening						
d	Screening cost per child in BC	\$17.40	V				
e	Cost of screening over lifetime of birth cohort	\$645,235	= c * d				
	Costs of follow-up visits to Optometrist						
£	Cases of amblyopia detected through screening and	609	Table 1 rowi				
Т	referred to optometrist	608	Table 1, row I				
g	Proportion of referrals that see optometrist	54.2%	Table 1, row j				
h	Number seeing optometrist	330	= f * g				
i	Cost of full eye exam	\$47.08	V				
j	Value of patient time and travel for office visit	\$74.32	Ref Doc				
k	k Costs of follow-up visits to Optometrist \$40,00		= h * (i + j)				
	Costs of interventions						
-	Estimated intervention cost	\$2,370	٧				
m	# of interventions	165	Table 1, row m				
n Total cost over lifetime of birth cohort		\$390,458	= l * m				
	CE calculation						
0	Lifetime cost of screening and interventions	\$1,075,695	= e + k + n				
р	QALYs saved (0% discount rate)	2.4	Table 1, row y				
q	QALYs saved (1.5% discount rate)	0.2	Calculated				
r	CE (\$/QALY saved)	\$5,169,538	= o / q				

√ = Estimates from the literature

We also modified several major assumptions and recalculated the cost per QALY as follows:

- Assume the disutility associated with treating amblyopia is reduced from 0.036 to 0.0 (Table 2, row n): CE = \$338,952
- Assume the disutility associated with living with amblyopia is changed from 0.0 to 0.001: CE = \$166,031
- Assume the disutility associated with living with amblyopia is changed from 0.0 to 0.003: CE = \$56,555
- Assume the disutility associated with living with amblyopia is changed from 0.0 to 0.007: **CE** = **\$24,390**
- Threshold disutility for living with amblyopia required to produce a CE of \$50,000 / QALY: 0.0034
- Threshold disutility for living with amblyopia required to produce a CE of \$25,000 / QALY: 0.0068
- Assume the disutility associated with treating amblyopia is reduced from 0.036 to 0.0 (Table 2, *row p*) *and* assume the disutility associated with living with amblyopia is changed from 0.0 to 0.007: CE = \$22,854

Any assumption about the disutility associated with **living with amblyopia** dramatically reduces the cost / QALY. Adding just a 0.1% disutility changes the cost / QALY from \$5.2 million to \$0.17 million. If the disutility is changed to 0.68%, the cost / QALY would be \$25,000.

- Assume the prevalence of amblyopia is reduced from 3.5% to 1.0% (Table 2, row b): CE = \$12,921,661
- Assume the prevalence of amblyopia is increased from 3.5% to 6.0% (Table 2, row b): CE = \$3,877,517
- Assume joint testing sensitivity decreases from 69.5% to 60%. (Table 2, row e): CE = \$5,660,506
- Assume joint testing sensitivity increases from 69.5% to 78%. (Table 2, row e): CE = \$4,831,625
- Assume treatment compliance increases from 50% to 80% (Table 2, row j): CE = \$3,934,630
- Assume the recurrence of amblyopia decreases from 18.5% to 13.0% (Table 2, row l): CE = \$2,547,519
- Assume the recurrence of amblyopia increases from 18.5% to 24.0% (Table 2, row 1): CE = n/a (intervention is <u>harmful</u> [1.5% discount])
- Assume the incidence of permanent visual impairment or blindness is at the low end of the range (Table 2, rows r, s, t): CE = n/a (intervention is <u>harmful</u> [1.5% discount])
- Assume the incidence of permanent visual impairment or blindness is at the high end of the range (Table 2, rows r, s, t): CE = \$793,704
- Assume the disutility associated with permanent visual impairment or blindness is reduced from -0.187 to -0.124 (Table 2, row u): CE = n/a (intervention is <u>harmful</u> [1.5% discount])
- Assume the disutility associated with permanent visual impairment or blindness is increased from -0.187 to -0.260 (Table 2, row u): CE = \$743,411
- Assume the cost per intervention is reduced from \$2,370 to \$2,118 (Table 3, row l): CE = \$4,970,016
- Assume the cost per intervention is increased from \$2,370 to \$2,620 (Table 3, row 1): CE = \$5,367,476

Summary

The clinically preventable burden (CPB) associated with screening all children at least once between the ages of 3 and 5 years, to detect the presence of amblyopia or its risk factors, is 2.4 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated at \$5,169,538 per QALY (see Table 4).

Table 4: Screening for Amblyopia in 3-5 Year-Olds in a Birth Cohort of 40,000					
	Summary				
	Base				
	Case	Ra	ange		
CPB (Potential QALYs Gaine	ed)				
A	ssume No Current	Service			
1.5% Discount Rate	0.2	-0.9	44.1		
3% Discount Rate	-0.8	-1.6	28.3		
0% Discount Rate	2.4	0.6	76.4		
CE (\$/QALY) including patie	ent time costs				
1.5% Discount Rate	\$5,169,538	\$24,390	\$12,921,661		
3% Discount Rate	_*	\$38,053	_*		
0% Discount Rate	\$453,110	\$14,075	\$1,132,584		
CE (\$/QALY) excluding patient time costs					
1.5% Discount Rate	\$5,051,852	\$23,835	\$12,803,975		
3% Discount Rate	_*	\$37,186	_*		
0% Discount Rate	\$442,795	\$13,755	\$1,122,269		

* Intervention resulted in a loss of QALYs. Therefore CE was dominated.

Whether or not the screening of all children at least once between the ages of 3 and 5 years to detect the presence of amblyopia or its risk factors is cost-effective depends largely on assumptions made regarding QoL reductions associated with **living with amblyopia**. The uncertainty associated with this single parameter is so large that reasonable assumptions could result in a range of values indicating that screening is clearly **not cost-effective** to it being **highly cost-effective**. As noted by Karnon et al, the "existing evidence is so weak that it is difficult to even assign a probability of disutility, let alone an expected disutility value."⁴⁸ Nevertheless, the lack of research evidence does not necessarily mean the lack of an effect. Models such as the one above can help clarify "the decision-making process by explicitly identifying the key factors underlying the uncertainty in the cost-effectiveness estimates. Decision makers can then consider the likely value of these specific parameters…or they may choose to focus on other decision factors"⁴⁹ when choosing to implement, enhance or disinvest / de-adopt a specific program.

In summary, the cost-effectiveness of screening all children in BC at least once between the ages of 3 and 5 years to detect the presence of amblyopia or its risk factors is highly sensitive to assumptions about the disutility associated with living with amblyopia. If we assume no disutility (the base case), then the cost per QALY is \$5.2 million. However, adding just a 0.1% disutility changes the cost / QALY from \$5.2 million to \$0.17 million. If the disutility is changed to 0.7%, the cost / QALY would be \$24,390.

⁴⁸ Karnon J, Carlton J, Czoski-Murray C et al. Informing disinvestment through cost-effectiveness modelling. *Applied Health Economics and Health Policy*. 2009; 7(1): 1-9.

⁴⁹ Karnon J, Carlton J, Czoski-Murray C et al. Informing disinvestment through cost-effectiveness modelling. *Applied Health Economics and Health Policy*. 2009; 7(1): 1-9.

Screening for Major Depressive Disorder in Youth

United States Preventive Services Task Force Recommendations⁵⁰

This recommendation applies to children and adolescents aged 18 years or younger who do not have a diagnosis of MDD [major depressive disorder].

The USPSTF recommends screening for MDD in adolescents aged 12 to 18 years. Screening should be implemented with adequate systems in place to ensure accurate diagnosis, effective treatment, and appropriate follow-up. (B recommendation)

The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of screening for MDD in children aged 11 years or younger. (I statement)

Canadian Task Force on Preventive Health Care Recommendations

The CTFPHC does not have a specific recommendation on depression screening for children or adolescents.⁵¹

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with screening for MDD in adolescents ages 12 to 18.

In modelling CPB, we made the following assumptions:

- The USPSTF "found no evidence on appropriate or recommended screening intervals, and the optimal interval is unknown...opportunistic screening may be appropriate for adolescents, who may have infrequent health care visits."⁵² For adolescents with risk factors for MDD, "repeated screening may be most productive."⁵³
- Rand and colleagues evaluated primary care visits by US adolescents and found that many did not have any primary care visits during a 12-month period.⁵⁴ Averaging the data presented for the relevant 12 – 18 year old group, 56.9% had a primary care visit during the last 12-month period.
- Skehar and colleagues found that adolescents 12 14 years old who were continuously enrolled in private insurance in the US made an average of 0.58 wellcare visits per year.⁵⁵

com.ezproxy.library.ubc.ca/science/article/pii/S0022347618310850. Accessed December 2018.

⁵⁰ Siu AL. Screening for depression in children and adolescents: US Preventive Services Task Force recommendation statement. *Annals of Internal Medicine*. 2016; 164(5): 360-6.

⁵¹ Joffres M, Jaramillo A, Dickinson J et al. Recommendations on screening for depression in adults. *Canadian Medical Association Journal*. 2013; 185(9): 775-82.

⁵² Siu AL. Screening for depression in children and adolescents: US Preventive Services Task Force recommendation statement. *Annals of Internal Medicine*. 2016; 164(5): 360-6.

⁵³ Siu AL. Screening for depression in children and adolescents: US Preventive Services Task Force recommendation statement. *Annals of Internal Medicine*. 2016; 164(5): 360-6.

⁵⁴ Rand CM and Goldstein NP. Patterns of primary care physician visits for US adolescents in 2014: implications for vaccination. *Academic Pediatrics*. 2018; 18(2): S72-S8.

⁵⁵ Sekhar DL, Ba DM, Liu G et al. Major depressive disorder screening remains low even among privately insured adolescents. *Journal of Pediatrics*. 2018: Available at <u>https://www-sciencedirect-</u>

- Using data provided by the BC Ministry of Health, Health Sector Information, Analysis and Reporting Division⁵⁶ we were able to generate BC-specific rates of primary care visits and average visits per year for the fiscal years ending in 2012/13 to 2016/17, in total and by sex, as shown in Table 1 below.
- For the five years considered, the average proportion of adolescents ages 10-19 visiting a GP is 70%, and the average number of GP visits per adolescent is 2.07 per year. The proportion of males visiting a GP was 65.4% and for females it was 75.0%. The average number of visits per male in the population was 1.75 and for females was 2.42.

Table 1: General Practitioner Visits by AdolescentsBritish Columbia, 2012/13 to 2016/17						
Age	Age Population in Each Age Group					
Group	2012/13	2013/14	2014/15	2015/16	2016/17	Total
10 - 14	234,780	231,544	230,178	230,177	232,010	1,158,689
15 - 19	284,482	282,214	279,997	276,909	272,677	1,396,279
Total	519,262	513,758	510,175	507,086	504,687	2,554,968
		Number	of Unique In	dividuals wi	th GP Visit	
10 - 14	163,332	160,912	158,653	160,260	159,826	802,983
15 - 19	205,821	200,410	196,629	192,566	189,547	984,973
Total	369,153	361,322	355,282	352,826	349,373	1,787,956
	Proportion of Individuals with a GP Visit					
10 - 14	69.6%	69.5%	68.9%	69.6%	68.9%	69.3%
15 - 19	72.3%	71.0%	70.2%	69.5%	69.5%	70.5%
Total	71.1%	70.3%	69.6%	69.6%	69.2%	70.0%
			Number	of GP Visits		
10 - 14	429,881	422,188	412,182	413,411	407,442	2,085,104
15 - 19	681,806	659,038	641,316	619,790	601,925	3,203,875
Total	1,111,687	1,081,226	1,053,498	1,033,201	1,009,367	5,288,979
GP Visits per Individual in Total Population						
10 - 14	1.83	1.82	1.79	1.80	1.76	1.80
15 - 19	2.40	2.34	2.29	2.24	2.21	2.29
Total	2.14	2.10	2.06	2.04	2.00	2.07

⁵⁶ Aciemme (Sam) Ospan, Senior Manager, Lifetime Prevention Schedule, Healthy Living and Health Promotion Branch, BC Ministry of Health. January 30, 2019. Personal communication.
Table 1: General Practitioner Visits by Adolescents													
		British Col	umbia, 2012	2/13 to 2016	6/17								
			Males										
Age		P	opulation in	Each Age Gro	oup								
Group	2012/13	2013/14	2014/15	2015/16	2016/17	Total							
10 - 14	121,031	119,378	118,720	118,572	119,586	597,287							
15 - 19	149,279	147,563	145,417	143,117	140,451	725,827							
Total	270,310	266,941	264,137	261,689	260,037	1,323,114							
		Number of Unique Males with GP Visit											
10 - 14	82,970	81,960	80,756	81,067	80,862	407,615							
15 - 19	95,992	93,224	91,170	89,118	87,596	457,100							
Total	178,962	175,184	171,926	170,185	168,458	864,715							
	Proportion of Males with a GP Visit												
10 - 14	68.6%	68.7%	68.0%	68.4%	67.6%	68.2%							
15 - 19	64.3%	63.2%	62.7%	62.3%	62.4%	63.0%							
Total	66.2%	65.6%	65.1%	65.0%	64.8%	65.4%							
			Number	of GP Visits									
10 - 14	215,841	211,444	206,909	206,013	202,386	1,042,593							
15 - 19	270,303	259,637	253,874	244,381	238,257	1,266,452							
Total	486,144	471,081	460,783	450,394	440,643	2,309,045							
GP Visits per Male in Total Population													
10 - 14	1.78	1.77	1.74	1.74	1.69	1.75							
15 - 19	1.81	1.76	1.75	1.71	1.70	1.74							
Total	1.80	1.76	1.74	1.72	1.69	1.75							

Table 1: General Practitioner Visits by Adolescents

British Columbia, 2012/13 to 2016/17												
			Female	S								
Age		P	opulation in	Each Age Gro	oup							
Group	2012/13	2013/14	2014/15	2015/16	2016/17	Total						
10 - 14	113,749	112,166	111,458	111,605	112,424	561,402						
15 - 19	135,203	134,651	134,580	133,792	132,226	670,452						
Total	248,952	246,817	246,038	245,397	244,650	1,231,854						
	Number of Unique Females with GP Visit											
10 - 14	80,381	78,955	77,909	79,202	78,985	395,432						
15 - 19	109,865	107,210	105,496	103,488	101,995	528,054						
Total	190,246	186,165	183,405	182,690	180,980	923,486						
	Proportion of Females with a GP Visit											
10 - 14	70.7%	70.4%	69.9%	71.0%	70.3%	70.4%						
15 - 19	81.3%	79.6%	78.4%	77.3%	77.1%	78.8%						
Total	76.4%	75.4%	74.5%	74.4%	74.0%	75.0%						
			Number	of GP Visits								
10 - 14	214,033	210,738	205,270	207,393	205,052	1,042,486						
15 - 19	411,487	399,386	387,411	375,393	363,660	1,937,337						
Total	625,520	610,124	592,681	582,786	568,712	2,979,823						
	GP Visits per Female in Total Population											
10 - 14	1.88	1.88	1.84	1.86	1.82	1.86						
15 - 19	3.04	2.97	2.88	2.81	2.75	2.89						
Total	2.51	2.47	2.41	2.37	2.32	2.42						

Source: BC Ministry of Health, Health Sector Information, Analysis and Reporting Division Calculations by H. Krueger & Associates, Inc.

- In our model, we assume a maximum (best in the world) adolescent depression screening rate of 57.0% ($81.5\%^{57}$ times 70.0%) and that screening for this 57.0% of adolescents (Table 6, row *ah*) is completed at each well-care visit, or 2.07 times per year (Table 6, row *ag*),⁵⁸ during the seven years of an adolescent's life between 12 and 18 years of age.
- In our model for **males**, we assume a maximum (best in the world) depression screening rate of 53.3% (81.5%⁵⁹ times 65.4%) and that screening for this 53.3% of male adolescents (Table 6a, row *ah*) is completed at each well-care visit, or 1.75 times per year (Table 6a, row *ag*),⁶⁰ during the seven years of an adolescent's life between 12 and 18 years of age.
- In our model for **females**, we assume a maximum (best in the world) depression screening rate of 61.1% (81.5%⁶¹ times 75.0%) and that screening for this 61.1% of female adolescents (Table 6b, row *ah*) is completed at each well-care visit, or 2.42 times per year (Table 6b, row *ag*),⁶² during the seven years of an adolescent's life between 12 and 18 years of age.
- Patten et al. estimate that for the Canadian population aged 15-25 the annual prevalence of MDD was 5.0% (95% CI 4.2% 5.7%) and the lifetime prevalence was 8.8% (95% CI 7.9% 9.7%).⁶³
- Avenevoli et al. report that the annual and lifetime prevalence of MDD in 13-18 year olds in the US is 7.5% and 11.0% respectively.⁶⁴
- Using data from the US National Survey on Drug Use and Health (NSDUH) Mojtabai and colleagues found that the annual prevalence of MDD in the US has increased from 5.6% in 2005 to 7.2% in 2014 for 12-13year olds, 9.1% to 11.8% in 14-15 year olds and 11.2% to 14.7% in 16-17 year olds.⁶⁵
- Vasiliadis and colleagues found that there was no significant difference between Canadian and US rates of depression and subsequent use of mental health services.⁶⁶
- Using the detailed data tables publicly available from the US NSDUH, we calculated the aggregate rates of 12-month major depressive episodes for the years 2014 (the

⁵⁷ Davis M, Jones J, So A et al. Adolescent depression screening in primary care: Who is screened and who is at risk? *Journal of Affective Disorders*. 2022; 299: 318-25.

⁵⁸ Sekhar DL, Ba DM, Liu G et al. Major depressive disorder screening remains low even among privately insured adolescents. *Journal of Pediatrics*. 2018: Available at <u>https://www-sciencedirect-</u>

com.ezproxy.library.ubc.ca/science/article/pii/S0022347618310850. Accessed December 2018.

⁵⁹ Davis M, Jones J, So A et al. Adolescent depression screening in primary care: Who is screened and who is at risk? *Journal of Affective Disorders*. 2022; 299: 318-25.

⁶⁰ Sekhar DL, Ba DM, Liu G et al. Major depressive disorder screening remains low even among privately insured adolescents. *Journal of Pediatrics*. 2018: Available at <u>https://www-sciencedirect-</u>

com.ezproxy.library.ubc.ca/science/article/pii/S0022347618310850. Accessed December 2018.

⁶¹ Davis M, Jones J, So A et al. Adolescent depression screening in primary care: Who is screened and who is at risk? *Journal of Affective Disorders*. 2022; 299: 318-25.

⁶² Sekhar DL, Ba DM, Liu G et al. Major depressive disorder screening remains low even among privately insured adolescents. *Journal of Pediatrics*. 2018: Available at <u>https://www-sciencedirect-</u>

com.ezproxy.library.ubc.ca/science/article/pii/S0022347618310850. Accessed December 2018.

⁶³ Patten SB, Wang JL, Williams JV et al. Descriptive epidemiology of major depression in Canada. *The Canadian Journal of Psychiatry*. 2006; 51(2): 84-90.

⁶⁴ Avenevoli S, Swendsen J, He J-P et al. Major depression in the National Comorbidity Survey–Adolescent Supplement: prevalence, correlates, and treatment. *Journal of the American Academy of Child & Adolescent Psychiatry*. 2015; 54(1): 37-44.

⁶⁵ Mojtabai R, Olfson M and Han B. National trends in the prevalence and treatment of depression in adolescents and young adults. *Pediatrics*. 2016; 138(6): e20161878.

⁶⁶ Vasiliadis H-M, Lesage A, Adair C et al. Do Canada and the United States differ in prevalence of depression and utilization of services? *Psychiatric Services*. 2007; 58(1): 63-71.

end of Mojtabai and colleague's data) through 2017, using the tables from 2015⁶⁷ (containing data for 2014 and 2015) and 2017⁶⁸ (containing data for 2016 and 2017), splitting the results by age and sex. The results, shown in Table 2, indicate a substantial difference in major depressive episodes between the sexes, with the annual prevalence of MDE being consistently lower in males than females.

• Similar overall data to the US NSDUH has been reported in the McCreary Centre's *Balance and Connection in BC* report summarizing the results of the 2018 BC adolescent Health Survey. Adolescents in grades 7 through 12 were surveyed and 10% of males reported "mental health conditions", while 20% of females reported the same.⁶⁹

⁶⁷ Substance Abuse and Mental Health Services Administration. *Reports and Detailed Tables from the 2015 National Survey on Drug Use and Health (NSDUH)*. 2015. Available at

https://www.samhsa.gov/data/nsduh/reports-detailed-tables-2015-NSDUH. Accessed February 2019.

⁶⁸ Substance Abuse and Mental Health Services Administration. *Reports and Detailed Tables from the 2017 National Survey on Drug Use and Health (NSDUH)*. 2017. Available at

https://www.samhsa.gov/data/nsduh/reports-detailed-tables-2017-NSDUH. Accessed February 2019.

⁶⁹ McCreary Centre Society. Balance and Connection in BC: The Health and Well-Being of our Youth. Results of the 2018 BC Adolescent Health Survey. 2019. Available at

https://www.mcs.bc.ca/pdf/balance_and_connection.pdf. Accessed May 2019.

Table 2: (US) National Survey on Drug Use and Health

12-Montl	n MDE Events,	By Age and	Sex

2014 - 2017 Results

	12 Year Olds											
Male Female Calculated Total												
Year	Sample Size	MDE %	MDE (n)	Sample Size	MDE %	MDE (n)	Sample Size	MDE %	MDE (n)	_		
2014	1,347	2.8%	38	1,293	8.9%	115	2,640	5.8%	153			
2015	1,346	2.2%	30	1,307	8.7%	114	2,653	5.4%	143			
2016	1,323	3.1%	41	1,291	6.9%	89	2,614	5.0%	130			
2017	1,329	2.7%	36	1,269	7.0%	89	2,598	4.8%	125	_		
Total	5,345	2.7%	144	5,160	7.9%	407	10,505	5.2%	551			

13 Year Olds											
		Male			Female		Cal	Calculated Total			
	Sample Size	MDE %	MDE (n)	Sample Size	MDE %	MDE (n)	Sample Size	MDE %	MDE (n)		
2014	1,433	3.9%	56	1,388	13.8%	192	2,821	8.8%	247		
2015	1,428	3.9%	56	1,394	16.8%	234	2,822	10.3%	290		
2016	1,479	3.8%	56	1,414	15.3%	216	2,893	9.4%	273		
2017	1,507	3.6%	54	1,423	14.5%	206	2,930	8.9%	261		
Total	5,847	3.8%	222	5,619	15.1%	848	11,466	9.3%	1,070		

14 Year Olds											
		Male			Female			Calculated Total			
	Sample Size	MDE %	MDE (n)	Sample Size	MDE %	MDE (n)	Sample Size	MDE %	MDE (n)		
2014	1,491	4.6%	69	1,443	17.1%	247	2,934	10.7%	315		
2015	1,491	4.1%	61	1,411	19.0%	268	2,902	11.3%	329		
2016	1,484	5.2%	77	1,432	20.5%	294	2,916	12.7%	371		
2017	1,492	5.2%	78	1,385	19.0%	263	2,877	11.8%	341		
Total	5,958	4.8%	284	5.671	18.9%	1.072	11.629	11.7%	1.356		

15 Year Olds											
		Male			Female		Cal	Calculated Total			
Year	Sample Size	MDE %	MDE (n)	Sample Size	MDE %	MDE (n)	Sample Size	MDE %	MDE (n)		
2014	1,483	5.5%	82	1,451	20.7%	300	2,934	13.0%	382		
2015	1,438	5.3%	76	1,486	26.7%	397	2,924	16.2%	473		
2016	1,512	6.5%	98	1,498	21.0%	315	3,010	13.7%	413		
2017	1,460	7.4%	108	1,427	27.2%	388	2,887	17.2%	496		
Total	5,893	6.2%	364	5,862	23.9%	1,400	11,755	15.0%	1,764		

16 Year Olds											
		Male			Female		Cal	Calculated Total			
	Sample Size	MDE %	MDE (n)	Sample Size	MDE %	MDE (n)	Sample Size	MDE %	MDE (n)		
2014	1,467	7.5%	110	1,469	20.7%	304	2,936	14.1%	414		
2015	1,459	9.9%	144	1,384	22.3%	309	2,843	15.9%	453		
2016	1,487	9.4%	140	1,409	25.8%	364	2,896	17.4%	503		
2017	1,508	9.8%	148	1,389	24.1%	335	2,897	16.7%	483		
Total	5,921	9.2%	542	5,651	23.2%	1,311	11,572	16.0%	1,853		

17 Year Olds										
		Male			Female			Calculated Total		
	Sample Size	MDE %	MDE (n)	Sample Size	MDE %	MDE (n)	Sample Size	MDE %	MDE (n)	
2014	1,392	9.7%	135	1,350	21.0%	284	2,742	15.3%	419	
2015	1,434	9.1%	130	1,333	21.5%	287	2,767	15.1%	417	
2016	1,415	9.7%	137	1,337	24.7%	330	2,752	17.0%	467	
2017	1,419	11.6%	165	1,418	25.5%	362	2,837	18.5%	526	
Total	5,660	10.0%	567	5,438	23.2%	1,262	11,098	16.5%	1,829	

Source for Sample Size and MDE %: National Survey on Drug Use and Health, 2014 - 2017 Calculations by H. Krueger & Associates, Inc.

- Based on the data in Table 2, we assume an annual prevalence of MDD of 5.2% in 12 year olds (Table 6, row *b*), 7.9% in 12 year old females (Table 6b, row *b*) and 2.7% in 12 year old males (Table 6a, row *b*).
- We assume an annual prevalence of MDD of 9.3% in 13 year olds (Table 6, row *f*), 15.1% in 13 year old females (Table 6b, row *f*) and 3.8% in 13 year old males (Table 6a, row *f*).
- We assume an annual prevalence of MDD of 11.7% in 14 year olds (Table 6, row *j*), 18.9% in 14 year old females (Table 6b, row *j*) and 4.8% in 14 year old males (Table 6a, row *j*).
- We assume an annual prevalence of MDD of 15.0% in 15 year olds (Table 6, row *n*), 23.9% in 15 year old females (Table 6b row *n*) and 6.2% in 15 year old males (Table 6a, row *n*).
- We assume an annual prevalence of MDD of 16.0% in 16 year olds (Table 6, row *r*), 23.2% in 16 year old females (Table 6b row *r*) and 9.2% in 16 year old males (Table 6a, row *r*).
- We assume an annual prevalence of MDD of 16.5% in 17 and 18 year olds (Table 6, row *v*), 23.2% in 17 and 18 year old females (Table 6b row *v*) and 10.0% in 17 and 18 year old males (Table 6a, row *v*).
- In 2017, 17.2% of US high school students had seriously considered attempting suicide during the previous 12 months, 13.6% had made a plan about how they would attempt suicide, 7.4% had actually attempted suicide and 2.4% had made a suicide attempt resulting in an injury, poisoning or overdose that had to be treated by a doctor or nurse.⁷⁰
- In BC in 2013, 12.2% of students in grades 7 12 had seriously considered attempting suicide during the previous 12 months and 6.2% had actually attempted suicide.⁷¹
- Suicide mortality among youth ages 15 19 in BC between 2011 and 2013 is 4.7 / 100,000 population.⁷²
- The ratio of attempted suicides to completed suicides among adolescents is estimated to be 50:1 to 100:1.⁷³
- Rohde and colleagues report that 19% (95% CI of 14.4% 22.9%) of adolescents with MDD had at least one suicide attempt by age 30, compared with 3% (95% CI of 1.6% and 5.1%) of adolescents without MDD.⁷⁴

⁷⁰ Kann L, McManus T, Harris WA et al. Youth risk behavior surveillance—United States, 2017. *MMWR Surveillance Summaries*. 2018; 67(8): 1.

⁷¹ BC Office of the Provincial Health Officer. *Is "Good", Good Enough? A Report on the Health & Well-Being of Children & Youth in BC.* Available online at http://www.childhealthindicatorsbc.ca/findings/mental-emotional-health-well-being/suicidality. Accessed December 2018.

⁷² BC Office of the Provincial Health Officer. *Is "Good", Good Enough? A Report on the Health & Well-Being of Children & Youth in BC.* Available online athttp://www.childhealthindicatorsbc.ca/findings/mental-emotional-health-well-being/suicidality. Accessed December 2018.

⁷³ Shain BN. Suicide and suicide attempts in adolescents. *Pediatrics*. 2007; 120(3): 669-76.

⁷⁴ Rohde P, Lewinsohn PM, Klein DN et al. Key characteristics of major depressive disorder occurring in childhood, adolescence, emerging adulthood, and adulthood. *Clinical Psychological Science*. 2013; 1(1): 41-53.

- A 2018 systematic review by Johnson et al found that adolescent depression increased the risk of adult depression by 2.78 times (OR of 2.78; 95% CI of 1.97 – 3.93).⁷⁵
- Based on the evidence from Rohde et al ⁷⁶ and Johnson et al⁷⁷ noted above, we have assumed that the effect of adolescent depression on suicide would continue until age 34.
- Based on data from the 2013⁷⁸, 2014⁷⁹ and 2015⁸⁰ BC Vital Statistics annual reports, 24.3% of deaths in males and 15.5% of deaths in females ages 15-19 are due to intentional self-harm (see Table 3).

	Table 3: Total Deaths and Deaths Attributable to Intentional Self-Harm (ISH) British Columbia, 2013 to 2015												
						Ма	les						
		2013			2014			2015		20	2013 - 2015 Combined		
		Deaths	% of Deaths		Deaths	% of Deaths		Deaths	% of Deaths		Deaths	% of Deaths	
Age	All	Attributable	Attributable	All	Attributable	Attributable	All	Attributable	Attributable	All	Attributable	Attributable	
Group	Deaths	to ISH	to ISH	Deaths	to ISH	to ISH	Deaths	to ISH	to ISH	Deaths	to ISH	to ISH	
10-14	10	1	10.0%	12	2	16.7%	12	1	8.3%	34	4	11.8%	
15-19	58	5	8.6%	64	24	37.5%	59	15	25.4%	181	44	24.3%	
20-24	119	16	13.4%	99	22	22.2%	110	22	20.0%	328	60	18.3%	
25-44	650	107	16.5%	669	119	17.8%	757	89	11.8%	2,076	315	15.2%	
	837	129	15.4%	844	167	19.8%	938	127	13.5%	2,619	423	16.2%	
						Fem	ales						
		2013			2014			2015		20	013 - 2015 Cor	nbined	
		Deaths	% of Deaths		Deaths	% of Deaths		Deaths	% of Deaths		Deaths	% of Deaths	
Age	All	Attributable	Attributable	All	Attributable	Attributable	All	Attributable	Attributable	All	Attributable	Attributable	
Group	Deaths	to ISH	to ISH	Deaths	to ISH	to ISH	Deaths	to ISH	to ISH	Deaths	to ISH	to ISH	
10-14	11	0	0.0%	3	0	0.0%	5	0	0.0%	19	0	0.0%	
15-19	29	6	20.7%	26	3	11.5%	29	4	13.8%	84	13	15.5%	
20-24	55	15	27.3%	37	9	24.3%	43	9	20.9%	135	33	24.4%	
25-44	368	42	11.4%	392	44	11.2%	337	25	7.4%	1,097	111	10.1%	

12.2%

• Tables 4 and 5 provide data on the expected number of deaths in a BC birth cohort of 20,000 males (see Table 4) and 20,000 females (see Table 5) and how many of those deaths would be attributable to intentional self-harm (see Table 3). Total deaths and deaths attributable to intentional self-harm (ISH) from age 12 to 34 are considered.

414

38

9.2%

1,335

157

11.8%

• In the birth cohort of 20,000 males, 66 of the 398 (16.6%) deaths between the ages of 12 and 34 are due to ISH, resulting in 3,240 life-years lost due to ISH (see Table 4).

463

63

13.6%

458

56

⁷⁵ Johnson D, Dupuis G, Piche J et al. Adult mental health outcomes of adolescent depression: a systematic review. *Depression and Anxiety*. 2018; 35: 700-16.

 ⁷⁶ Rohde P, Lewinsohn PM, Klein DN et al. Key characteristics of major depressive disorder occurring in childhood, adolescence, emerging adulthood, and adulthood. *Clinical Psychological Science*. 2013; 1(1): 41-53.
 ⁷⁷ Johnson D, Dupuis G, Piche J et al. Adult mental health outcomes of adolescent depression: a systematic review. *Depression and Anxiety*. 2018; 35: 700-16.

⁷⁸ BC Vital Statistics Agency. Annual Report 2013. Selected Vital Statistics and Health Status Indicators. 2015. Available at <u>https://www2.gov.bc.ca/assets/gov/birth-adoption-death-marriage-and-divorce/statistics-reports/annual-reports/2013/pdf/annual-report-2013.pdf</u>. Accessed December 2018.

⁷⁹ BC Vital Statistics Agency. *Annual Report 2014. Selected Vital Statistics and Health Status Indicators.* 2015. Available at <u>https://www2.gov.bc.ca/assets/gov/birth-adoption-death-marriage-and-divorce/statistics-reports/annual-reports/2014/pdf/annual-report-2014.pdf</u>. Accessed December 2018.

⁸⁰ BC Vital Statistics Agency. *Annual Report 2015. Selected Vital Statistics and Health Status Indicators.* 2015. Available at <u>https://www2.gov.bc.ca/assets/gov/birth-adoption-death-marriage-and-divorce/statistics-reports/annual-reports/2015/pdf/annual-report-2015.pdf</u>. Accessed December 2018.

	Table 4: Deaths and Life Years Lost Attributable to Intentional Self-Harm (ISH) Males in a British Columbia Male Birth Cohort of 20 000											
Age Group	Males in Males in Birth Cohort	Deaths	% of Deaths due to ISH	# of Deaths due to ISH	Average Life Years Lived	Life Years Lost due to ISH						
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	19,903 19,902 19,900 19,898 19,896 19,891 19,885 19,876 19,876 19,851 19,835 19,817 19,796 19,775 19,775 19,751 19,727 19,702 19,676 19,676	1 2 3 4 6 9 11 14 16 18 20 22 23 24 25 26 27	11.8% 11.8% 24.3% 24.3% 24.3% 24.3% 18.3% 18.3% 18.3% 18.3% 18.3% 15.2% 15.2% 15.2% 15.2%	0.1 0.2 0.7 1.1 1.6 2.2 2.8 2.5 2.9 3.3 3.7 4.0 3.6 3.7 3.8 3.9 4.1	68.6 67.6 66.7 64.7 63.7 62.7 61.7 60.8 59.8 59.8 57.9 57.0 57.0 56.0 55.1 54.1 53.1 53.1	10 13 16 45 69 99 137 171 151 175 194 216 227 199 202 207 209 212						
30 31 32 33 34 Total	19,621 19,593 19,564 19,535 19,505	28 28 29 29 30 398	15.2% 15.2% 15.2% 15.2% 15.2% 16.6%	4.2 4.3 4.4 4.5 4.6 66	51.2 50.2 49.3 48.3 47.4	214 215 215 215 216 3,240						

In the birth cohort of 20,000 females, 24 of 165 (14.4%) deaths between the ages of 12 and 34 are due to ISH, resulting in 1,263 life-years lost due to ISH (see Table 5).

	Table 5: Deaths and Life Years Lost Attributable to										
		Inte	ntional Sel	f-Harm (IS	H)						
	in a Br	itish Col	umbia Fema	le Birth Coho	ort of 20,00	0					
	Individuals				Average	Life Years					
Age	in Birth		% of Deaths	# of Deaths	Life Years	Lost due to					
Group	Cohort	Deaths	due to ISH	due to ISH	Lived	ISH					
11	19,914										
12	19,913	1	0.0%	0.0	72.6	0					
13	19,911	2	0.0%	0.0	71.6	0					
14	19,910	2	0.0%	0.0	70.6	0					
15	19,907	2	15.5%	0.3	69.6	24					
16	19,904	3	15.5%	0.5	68.6	36					
17	19,900	4	15.5%	0.7	67.6	46					
18	19,894	6	15.5%	0.9	66.6	58					
19	19,888	6	15.5%	1.0	65.7	63					
20	19,881	7	24.4%	1.6	64.7	104					
21	19,874	7	24.4%	1.7	63.7	106					
22	19,867	7	24.4%	1.8	62.7	113					
23	19,859	8	24.4%	1.9	61.7	118					
24	19,851	8	24.4%	2.0	60.8	119					
25	19,843	8	24.4%	2.0	59.8	120					
26	19,834	9	10.1%	0.9	58.8	52					
27	19,825	9	10.1%	0.9	57.8	53					
28	19,816	9	10.1%	1.0	56.8	54					
29	19,806	10	10.1%	1.0	55.9	55					
30	19,796	10	10.1%	1.0	54.9	57					
31	19,785	11	10.1%	1.1	53.9	60					
32	19,773	11	10.1%	1.2	52.9	61					
33	19,761	12	10.1%	1.2	51.9	63					
34	19,749	13	10.1%	1.3	51.0	65					
Total		165	14.4%	24		1,263					

• Depression has an important influence on a person's QoL. Studies have also shown that individuals with current or treated depression report lower preference scores for depression health states than the general population.^{81,82} Pyne and colleagues suggest that "public stigma may result in the general population being less sympathetic to the suffering of individuals with depression and less willing to validate the impact of depression symptoms."⁸³ Revicki and Wood, based on input from patients with depression who had completed at least eight weeks of anti-depressant (AD) medication, identified the following health state utilities: severe depression = 0.30, moderate depression = 0.55 to 0.63, mild depression = 0.64 to 0.73 and

⁸¹ Pyne JM, Fortney JC, Tripathi S et al. How bad is depression? Preference score estimates from depressed patients and the general population. *Health Services Research*. 2009; 44(4): 1406-23.

⁸² Gerhards SA, Evers SM, Sabel PW et al. Discrepancy in rating health-related quality of life of depression between patient and general population. *Quality of Life Research*. 2011; 20(2): 273-9.

⁸³ Pyne JM, Fortney JC, Tripathi S et al. How bad is depression? Preference score estimates from depressed patients and the general population. *Health Services Research*. 2009; 44(4): 1406-23.

antidepressant maintenance therapy = 0.72 to 0.83.⁸⁴ Whiteford and colleagues⁸⁵ suggest the following health utilities:

0	Severe depression	0.35 (95% CI of 0.18-0.53)
0	Moderate depression	0.59 (95% CI of 0.45-0.72)
0	Mild depression	0.84 (95% CI of 0.78-0.89)

- For modelling purposes we assumed an equal proportion of individuals with mild, moderate and severe depression and used the average quality of life provided by Whiteford and colleagues of 0.59 (95% CI of 0.47 to 0.72). Based on a general population QoL of 0.85 (see Reference Document), depression results in a reduction in QoL of 31% (0.85-0.59 / 0.85) (95% CI of 15% to 45%) (see Table 6, row z).
- When a longitudinal perspective is taken, 30% of adult patients with depression remain undetected at 1 year and only 14% at the end of 3 years, or approximately one out of seven patients with treatable depression.^{86,87,88}
- Applying the adult rate of undiagnosed treatable depression to adolescents may result in understating the number of adolescents with undetected depression in BC as adolescents are more likely than adults to seek advice from peers rather than seek professional help.⁸⁹
- For modelling purposes, we assumed that 25% of adolescent major depressive disorder is undiagnosed treatable depression and varied this between 15% and 35% in the sensitivity analysis (Table 6, row *ae*).
- The USPSTF only found two screening methods that it deemed adequate for use with adolescents, the Patient Health Questionnaire for Adolescents (PHQ-A) and the Beck Depression Inventory (BDI). The sensitivity of a screening instrument refers to the number of people with the illness, in this case, depression correctly identified by the test. The specificity of the test is the number of people without the illness that are correctly identified by the test.
- For the PHQ-A, Johnson et al. found a sensitivity of 73% and a specificity of 94%.⁹⁰ They report a positive predictive value (probability that the disease is present when the test is positive) of 56% for MDD and a negative predictive value of 97%. The PHQ-A has been validated compared to a structured clinical interview.

and anxiety in primary care. *BMJ*. 1999; 318(7181): 436-40.

⁸⁴ Revicki DA and Wood M. Patient-assigned health state utilities for depression-related outcomes: differences by depression severity and antidepressant medications. *Journal of Affective Disorders*. 1998; 48(1): 25-36.

 ⁸⁵ Whiteford HA, Degenhardt L, Rehm J et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. *The Lancet*. 2013; 382(9904): 1575-86.
 ⁸⁶ Kessler D, Heath I, Lloyd K et al. Cross sectional study of symptom attribution and recognition of depression

⁸⁷ Kessler D, Bennewith O, Lewis G et al. Detection of depression and anxiety in primary care: follow up study. *BMJ*. 2002; 325(7371): 1016-7.

⁸⁸ Tylee A and Walters P. Underrecognition of anxiety and mood disorders in primary care: why does the problem exist and what can be done? *The Journal of Clinical Psychiatry*. 2006; 68(2): 27-30.

⁸⁹ Dr. Jana Davidson, Psychiatrist-in-Chief, Children's & Women's Mental Health Programs, Children's and Women's Health Centre of BC. May 6, 2019. Personal communication.

⁹⁰ Johnson JG, Harris ES, Spitzer RL et al. The patient health questionnaire for adolescents: validation of an instrument for the assessment of mental disorders among adolescent primary care patients. *Journal of Adolescent Health*. 2002; 30(3): 196-204.

- In their analysis of the BDI, Canals et al. found for a cut-off score of 11 (i.e. 11 and higher = depressed) the sensitivity of BDI was 90%, the specificity was 86% and the positive predictive value was 20%.⁹¹
- Roberts et al. found sensitivity of BDI at 83.7%, specificity at 80.9% and positive predictive value at 10.2% when referenced against DSM III clinical diagnosis.⁹²
- The USPSTF considers the PHQ-A to be the best test to use in assessing adolescent depression. We will therefore assume use of the PHQ-A in our base model (with a sensitivity of 73% and a specificity of 94%) (Table 6, rows *ai & aj*). We will assume use of the BDI in our sensitivity analysis, taking the average of the Canals and Roberts studies for sensitivity (86.9%) and specificity (83.5%) of the BDI. Because of the potential harms of misdiagnosis, it is useful to apply a second test if individuals test positive with the PHQ-A. When this is modelled we begin with the PHQ-A and then apply the BDI. In the base model, the second test sensitivity is set to 100% and the specificity to 0% in order to correctly carry through the all first tests results to the rest of the model (Table 6, rows *am & an*).
- Merikangas and colleagues found that 40.9% of female and 36.5% of male adolescents in the US aged 13-17 years with major depressive disorder received mental health services for their illness.⁹³
- Mojtabai and colleagues found a similar overall rate in 2005, reporting that 36.4% of adolescents 12 -17 sought treatment. This rate increased modestly to 42.0% in 2014 in US adolescents aged 12-17.⁹⁴
- On the other hand, research by Ghandour et al based on 2016 survey results in the US found that 79.0% (95% CI of 74.4% to 83.0%) of adolescents aged 12-17 with diagnosed depression received mental health treatment or counselling.⁹⁵ In females 3 17 years old (the only sex breakdown available), the number was 80.7% (95% CI of 76.2 to 84.5%) and in males 3 17 years old it was 75.2% (95% CI of 67.9 to 81.3%). Unfortunately, the study by Ghandour et al does not provide information on the extent of that treatment or the type of treatment.
- Updating Mojtabai and colleague's numbers using the 2016 and 2017 data from the NSDUH shows that a total of 40.3% of individuals with a 12-month major depressive episode either saw or talked to a health professional or used prescription medication. Averaging the rates for the two years, the number is 31.8% for males and 43.3% for females.⁹⁶
- Mojtabai and colleagues found that of those US adolescents aged 12-17 seeking treatment for their MDD, 20.0% reported use of prescription medication while 50.7%

https://www.samhsa.gov/data/nsduh/reports-detailed-tables-2017-NSDUH. Accessed February 2019.

⁹¹ Canals J, Blade J, Carbajo G et al. The Beck Depression Inventory: Psychometric characteristics and usefulness in nonclinical adolescents. *European Journal of Psychological Assessment*. 2001; 17(1): 63.

⁹² Roberts RE, Lewinsohn PM and Seeley JR. Screening for adolescent depression: A comparison of depression scales. *Journal of the American Academy of Child & Adolescent Psychiatry*. 1991; 30(1): 58-66.

⁹³ Merikangas KR, He J-p, Burstein M et al. Service utilization for lifetime mental disorders in US adolescents: results of the National Comorbidity Survey–Adolescent Supplement (NCS-A). *Journal of the American Academy of Child & Adolescent Psychiatry*. 2011; 50(1): 32-45.

⁹⁴ Mojtabai R, Olfson M and Han B. National trends in the prevalence and treatment of depression in adolescents and young adults. *Pediatrics*. 2016; 138(6): e20161878.

⁹⁵ Ghandour RM, Sherman LJ, Vladutiu CJ et al. Prevalence and treatment of depression, anxiety, and conduct problems in US children. *The Journal of Pediatrics*. 2018:

⁹⁶ Substance Abuse and Mental Health Services Administration. *Reports and Detailed Tables from the 2017 National Survey on Drug Use and Health (NSDUH)*. 2017. Available at

reported receiving counselling or therapy.⁹⁷ No sex breakdown of counselling or therapy rates was available. NSDUH data for 2016 and 2017 show medication rates of 17.3% for males and 21.7% for females.⁹⁸

- The Mental Health Parity and Addiction Equity Act in the US "generally prevents group health plans and health insurance issuers that provide mental health or substance use disorder (MH/SUD) benefits from imposing less favorable benefit limitations on those benefits than on medical/surgical benefits."⁹⁹ The lack of similar legislation in BC may result in treatment seeking rates being lower in BC than are reflected in the US data, especially for non-pharmacological interventions (e.g. counselling).¹⁰⁰
- In our model, we reduce the US treatment rate(s) by an absolute value of 10% to account for possibly lower treatment rates in BC.
- Data provided by the BC Ministry of Health indicate that for fiscal years 2011/12 through 2015/16 (5 years), 15.7% of BC adolescents (12 -18) diagnosed with major depression had a prescription for fluoxetine filled within one month of diagnosis, 19.7% within three months of diagnosis (i.e. an additional 4%) and 22.2% within six months of diagnosis (i.e. an additional 2.5% since the three-month point). These rates are 14.1%, 17.5% and 19.5%, respectively, for males and 16.6%, 20.9% and 23.6%, respectively, for females.¹⁰¹
- It is not uncommon to see wait times of 2 6 months for non-pharmacological depression interventions (e.g. cognitive behavioural therapy or individual counselling) in BC.¹⁰²
- We consider four distinct groups in our model, that branch from the group of individuals who received a positive screen for major depressive disorder as follows:

⁹⁸ Substance Abuse and Mental Health Services Administration. *Reports and Detailed Tables from the 2017 National Survey on Drug Use and Health (NSDUH)*. 2017. Available at

https://www.samhsa.gov/data/nsduh/reports-detailed-tables-2017-NSDUH. Accessed February 2019.

⁹⁷ Mojtabai R, Olfson M and Han B. National trends in the prevalence and treatment of depression in adolescents and young adults. *Pediatrics*. 2016; 138(6): e20161878.

⁹⁹ Centers for Medicare & Medicaid Services. *The Mental Health Parity and Addiction Equity Act (MHPAEA)*. 2019. Available at <u>https://www.cms.gov/cciio/programs-and-initiatives/other-insurance-</u>

protections/mhpaea_factsheet.html. Accessed May 2019.

¹⁰⁰ Dr. Jana Davidson, Psychiatrist-in-Chief, Children's & Women's Mental Health Programs, Children's and Women's Health Centre of BC. May 6, 2019. Personal communication.

¹⁰¹ Aciemme (Sam) Ospan, Senior Manager, Lifetime Prevention Schedule, Healthy Living and Health Promotion Branch, BC Ministry of Health. April 18, 2019. Personal communication.

¹⁰² Dr. Jana Davidson, Psychiatrist-in-Chief, Children's & Women's Mental Health Programs, Children's and Women's Health Centre of BC. May 6, 2019. Personal communication.

- We model each group over different time horizons:
 - False Positives (no MDD) are modelled as being treated for six months after which time we assume that it becomes clear that this group has been incorrectly screened positive and treatments cease for this group.
 - The group with correctly diagnosed MDD that ends up being single event MDD, is also modelled as receiving treatment for six months after which time we assume that no further treatments are undertaken or necessary.
 - The group with correctly diagnosed MDD that ends up being recurrent is modelled as receiving treatment for one year after the index event. We model that this group receives treatment for seven subsequent events during their lifetime, each lasting one year.
 - The group with correctly diagnosed MDD that ends up being persistent is modelled as receiving treatment for twenty years after the index event. We model that this group continues to use anti-depressants throughout this time.
- For modelling purposes, we assume that 50.5% (60.5% 10%) of adolescents with MDD seek treatment (60.5% is the mid-point of 42%¹⁰³ and 79%¹⁰⁴) and vary this from 32% to 69% in our sensitivity analysis (Table 6, rows *be*, *bu* & *co*).
- Of those seeking treatment, 50.7% receive counselling or therapy (Table 6, rows *bf*, *bv* & *cp*).
- In modelling for males, we assume that 43.5% (53.5% 10%) of male adolescents with MDD seek treatment (53.5% is the mid-point of 31.8%¹⁰⁵ and 75.2%¹⁰⁶) and vary this from 21.8% to 65.2% in our sensitivity analysis (Table 6a, rows *be, bu & co*).

¹⁰³ Mojtabai R, Olfson M and Han B. National trends in the prevalence and treatment of depression in adolescents and young adults. *Pediatrics*. 2016; 138(6): e20161878.

¹⁰⁴ Ghandour RM, Sherman LJ, Vladutiu CJ et al. Prevalence and treatment of depression, anxiety, and conduct problems in US children. *The Journal of Pediatrics*. 2018:

¹⁰⁵ Substance Abuse and Mental Health Services Administration. *Reports and Detailed Tables from the 2017 National Survey on Drug Use and Health (NSDUH)*. 2017. Available at

https://www.samhsa.gov/data/nsduh/reports-detailed-tables-2017-NSDUH. Accessed February 2019. ¹⁰⁶ Ghandour RM, Sherman LJ, Vladutiu CJ et al. Prevalence and treatment of depression, anxiety, and conduct problems in US children. *The Journal of Pediatrics*. 2018:

- In modelling for females, we assume that 52.0% (62.0% 10%) of female adolescents with MDD seek treatment (62.0% is the mid-point of $43.3\%^{107}$ and $80.7\%^{108}$) and vary this from 33.3% to 70.7% in our sensitivity analysis (Table 6b, rows *be*, *bu* & *co*).
- In our model, we assume that 19.7% (Table 6, row *ap*) of *all individuals* screened positive for depression will fill anti-depressant prescriptions during the first three months of treatment and that this increases to 22.2% during months 4 6 after a positive screen (Table 6, row *ar*).
- In our model for males, we assume that 17.5% (Table 6a, row *ap*) of *all males* screened positive for depression will fill anti-depressant prescriptions during the first three months of treatment and that this increases to 19.5% during months 4 6 after a positive screen (Table 6a, row *ar*).
- In our model for females, we assume that 20.9% (Table 6b, row ap) of **all females** screened positive for depression will fill anti-depressant prescriptions during the first three months of treatment and that this increases to 23.6% during months 4 6 after a positive screen (Table 6b, row ar).
- We model anti-depressant use among recurrent MDD cases and the first year of persistent MDD at 22.2% (Table 6, row *bo*) and assume that after the first year, *all* of the persistent MDD cases are taking anti-depressant medication (Table 6, row *cj*)
- In males, we model anti-depressant use among recurrent MDD cases and the first year of persistent MDD at 19.5% (Table 6a, row *bo*) and assume that after the first year, *all* of the persistent MDD cases are taking anti-depressant medication (Table 6a, row *cj*)
- In females, we model anti-depressant use among recurrent MDD cases and the first year of persistent MDD at 23.6% (Table 6b, row *bo*) and assume that after the first year, *all* of the persistent MDD cases are taking anti-depressant medication (Table 6b, row *cj*)
- Cognitive behavioural therapy (CBT) is considered to be a "well-established intervention" for depression in adolescents.¹⁰⁹
- The systematic review prepared by Forman-Hoffman and colleagues for the USPSTF estimated that CBT leads to a clinical improvement in MDD for 12.1% (Table 6, row *bi*) of adolescents receiving this therapy compared to a placebo.¹¹⁰

¹⁰⁷ Substance Abuse and Mental Health Services Administration. *Reports and Detailed Tables from the 2017 National Survey on Drug Use and Health (NSDUH)*. 2017. Available at

https://www.samhsa.gov/data/nsduh/reports-detailed-tables-2017-NSDUH. Accessed February 2019.

¹⁰⁸ Ghandour RM, Sherman LJ, Vladutiu CJ et al. Prevalence and treatment of depression, anxiety, and conduct problems in US children. *The Journal of Pediatrics*. 2018:

¹⁰⁹ Weersing VR, Jeffreys M, Do M-CT et al. Evidence base update of psychosocial treatments for child and adolescent depression. *Journal of Clinical Child & Adolescent Psychology*. 2017; 46(1): 11-43.

¹¹⁰ Forman-Hoffman V, McClure E, McKeeman J et al. Screening for Major Depressive Disorder in children and adolescents: a systematic review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2016; 164(5): 342-9.

- Cipriani and colleagues conducted a meta-analysis on efficacy and tolerability of antidepressants in adolescents with major depressive disorder and concluded that "only fluoxetine was statistically significantly more effective than placebo."¹¹¹
- In the clinical guideline for the USPSTF, Siu only identifies one type of selective serotonin reuptake inhibitor (SSRI) with a "good" quality study supporting its use in treating MDD in adolescents: fluoxetine.¹¹²
- The systematic review prepared by Forman-Hoffman and colleagues for the USPSTF estimated that fluoxetine alone leads to a clinical improvement in MDD for 25.7% (95% CI of 16.2% to 35.2%) of adolescents taking it (Table 6, row *bb, bq & cl*).
- The systematic review prepared by Forman-Hoffman and colleagues for the USPSTF estimated that when fluoxetine is combined with CBT, the clinical improvement in MDD increases to 36.2% (95% CI of 27.2% to 45.2%).
- The Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines recommend two treatment phases for depression:¹¹³
 - an acute phase, lasting 8 to 12 weeks, targeting symptom remission and restoration of functioning
 - a maintenance phase, lasting 6 to 24 months, targeting prevention of recurrence and return to full functioning and quality of life
- Depression is a highly recurrent disorder.¹¹⁴ On average, half of individuals experiencing at least one MDE during their lifetime will experience between 5-9 recurrent episodes during their lifetime.^{115,116,117}
- In a follow-up of individuals using anti-depressants, Colman and colleagues reported that 24% of patients were still using anti-depressants 10-years later.¹¹⁸
- In our model, we assume that 50% of the MDD cases are single events and the remainder will be recurrent or persistent MDD (Table 6, row *ax*).
- We model that 5.3% of the MDD cases are persistent (22.2% 6-month anti-depressant use in BC adolescents x 24% still using anti-depressants 10 years later = 5.3% of MDD) (Table 6, row *cc*), which leaves 44.7% of the initial MDD cases that recur multiple times in an individual's lifetime (100% 50% 5.3% = 44.7%) (Table 6, row *bm*).

 ¹¹¹ Cipriani A, Zhou X, Del Giovane C et al. Comparative efficacy and tolerability of antidepressants for major depressive disorder in children and adolescents: a network meta-analysis. *The Lancet*. 2016; 388(10047): 881-90.
 ¹¹² Siu AL. Screening for depression in children and adolescents: US Preventive Services Task Force

recommendation statement. Annals of Internal Medicine. 2016; 164(5): 360-6.

¹¹³ Lam RW, McIntosh D, Wang J et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: section 1. Disease burden and principles of care. *The Canadian Journal of Psychiatry*. 2016; 61(9): 510-23.

¹¹⁴ Burcusa SL and Iacono WG. Risk for recurrence in depression. *Clinical Psychology Review*. 2007; 27(8): 959-85.

¹¹⁵ Kessler RC, Zhao S, Blazer DG et al. Prevalence, correlates, and course of minor depression and major depression in the National Comorbidity Survey. *Journal of Affective Disorders*. 1997; 45(1): 19-30.

 ¹¹⁶ Kessler RC and Walters EE. Epidemiology of DSM-III-R major depression and minor depression among adolescents and young adults in the national comorbidity survey. *Depression and Anxiety*. 1998; 7(1): 3-14.
 ¹¹⁷ Colman I, Naicker K, Zeng Y et al. Predictors of long-term prognosis of depression. *Canadian Medical Association Journal*. 2011; 183(17): 1969-76.

¹¹⁸ Colman I, Croudace TJ, Wadsworth ME et al. Psychiatric outcomes 10 years after treatment with antidepressants or anxiolytics. *The British Journal of Psychiatry*. 2008; 193(4): 327-31.

- For males, we model that 4.7% of the MDD cases are persistent (19.5% 6-month anti-depressant use in BC adolescents x 24% still using anti-depressants 10 years later = 4.7% of MDD) (Table 6a, row *cc*), which leaves 45.3% of the initial MDD cases that recur multiple times in an individual's lifetime (100% 50% 4.7% = 45.3%) (Table 6a, row *bm*).
- For females, we model that 5.7% of the MDD cases are persistent (23.6% 6-month anti-depressant use in BC adolescents x 24% still using anti-depressants 10 years later = 5.7% of MDD) (Table 6b, row *cc*), which leaves 44.3% of the initial MDD cases that recur multiple times in an individual's lifetime (100% 50% 5.7% = 44.3%) (Table 6b, row *bm*).
- We have modelled an additional 7 episodes after the index MDD episode for a total of eight (8) MDD events for recurrent MDD (Table 6, row *bs*). For discounting purposes, we model these as occurring eight years apart throughout the lifetime of the affected individuals.
- Approximately 60% of patients stay on anti-depressant medication for at least 3 months and 45% for at least 6 months.^{119,120} For those diagnosed with depression and taking medication, an average of 71% of days in a 180-day period had anti-depressant use and 62% of days in a 365-day period had anti-depressant use.¹²¹ On average, anti-depressants are taken on 226 days each year.¹²²
- The average length of an adolescent depressive episode has been reported to range between 24.4 and 27 weeks.^{123,124}
- Van der Voort and colleagues report that single episodes of MDD recover within six months of onset and that individuals with syndromal (recurrent) MDD take up to twelve months to recover fully.¹²⁵
- Following van der Voort and colleagues, we model single episodes of MDD as recovering within 6 months (Table 6, row *bc*) and recurrent episodes as recovering within one year (Table 6, row *br*). We model persistent MDD as requiring treatment throughout the lifetime (Table 6, row *ct*). We model persistent treatment for the 20 years from 15 years old (mid-point of the 12 -18 year old cohort) to 34 years of age, consistent with Tables 4 & 5.

¹¹⁹ Solberg LI, Trangle MA and Wineman AP. Follow-up and follow-through of depressed patients in primary care: the critical missing components of quality care. *The Journal of the American Board of Family Practice*. 2005; 18(6): 520-7.

¹²⁰ Cantrell CR, Eaddy MT, Shah MB et al. Methods for evaluating patient adherence to antidepressant therapy: a real-world comparison of adherence and economic outcomes. *Medical Care*. 2006; 44(4): 300-3.

¹²¹ Puyat JH, Kazanjian A, Wong H et al. Comorbid chronic general health conditions and depression care: a population-based analysis. *Psychiatric Services*. 2017; 68(9): 907-15.

¹²² Puyat JH, Kazanjian A, Wong H et al. Comorbid chronic general health conditions and depression care: a population-based analysis. *Psychiatric Services*. 2017; 68(9): 907-15.

 ¹²³ Rohde P, Lewinsohn PM, Klein DN et al. Key characteristics of major depressive disorder occurring in childhood, adolescence, emerging adulthood, and adulthood. *Clinical Psychological Science*. 2013; 1(1): 41-53.
 ¹²⁴ Avenevoli S, Swendsen J, He J-P et al. Major depression in the National Comorbidity Survey–Adolescent Supplement: prevalence, correlates, and treatment. *Journal of the American Academy of Child & Adolescent Psychiatry*. 2015; 54(1): 37-44.

¹²⁵ van der Voort T, Seldenrijk A, van Meijel B et al. Functional versus syndromal recovery in patients with major depressive disorder and bipolar disorder. *Journal of Clinical Psychiatry*. 2015; 76: e809-e14.

- Several recent meta-analyses suggest that internet-based cognitive behavioural therapy may be effective in treating general depression in adults.^{126,127} The evidence that is currently available is insufficient to justify modelling this approach for adolescents with MDD.
- We model treatment for those with a positive MDD screen by time period as follows:
 - \circ 0 3 months after screening: 19.7% of positive screened adolescents (17.5% males, 20.9% females) are taking anti-depressants.
 - \circ 4 6 months after screening: 22.2% of positive screen adolescents are taking anti-depressants and 25.6% are in counselling or therapy (Table 6 rows *bg*, *bw* & *cq*), with half of the therapy group in individual sessions and half in group sessions. The 25.6% is based on 50.5% seeking treatment multiplied by 50.7% of those seeking treatment attending therapy / counselling.
 - For males the counselling rate is 22.1% (43.5% treatment seeking x 50.7% counselling rate among treatment seekers) (Table 6a rows bg, bw & cq).
 - For females the counselling rate is 26.4% (52.0% treatment seeking x 50.7% counselling rate among treatment seekers) (Table 6b rows bg, bw & cq).
 - 7-12 months after screening: 22.2% of correctly diagnosed adolescents with recurrent or persistent MDD are on anti-depressants and 25.6% are in counselling or therapy, with half of the therapy group in individual sessions and half in group sessions.
 - 13+ months after screening: all of the correctly diagnosed adolescents with persistent MDD are on anti-depressants. We assume that the 25.6% in counselling or therapy receive four (4) individual sessions annually.
 - Recurrent MDD: for each year of recurrent MDD, 22.2% of individuals with recurrent MDD take anti-depressants and 25.6% receive therapy (5 sessions).

¹²⁶ Karyotaki E, Riper H, Twisk J et al. Efficacy of self-guided internet-based cognitive behavioral therapy in the treatment of depressive symptoms: a meta-analysis of individual participant data. *JAMA Psychiatry*. 2017; 74(4): 351-9.

¹²⁷ Twomey C and O'Reilly G. Effectiveness of a freely available computerised cognitive behavioural therapy programme (MoodGYM) for depression: meta-analysis. *Australian & New Zealand Journal of Psychiatry*. 2017; 51(3): 260-9.

	Treatment Modeling for Positive MDD Screens							
		٦T	False Positive					
		Single Event	Recurrent	Persistent	Screens			
0.2 Months	Pharmacological		19.7% anti-depressant rate					
0-5 Монтнз	Therapeutic	None						
4 6 Months	Pharmacological	22.2% anti-depressant rate						
4-010011115	Therapeutic							
7-12 Months	Pharmacological		22.2% anti-de					
7-12 10011(115	Therapeutic	Notrostmont	25.6% receiving therapy		Notrostmont			
12. Months	Pharmacological	No treatment	No Trootmont	100% anti- depressant rate	NO treatment			
13+ MONTINS	Therapeutic		No treatment	25.6% receiving therapy				

• Revicki and Wood found that antidepressant maintenance therapy resulted in a weighted average QoL of 0.78 (95% CI of 0.63 to 0.93).¹²⁸ Based on a general population QoL of 0.85 (see Reference Document), antidepressant maintenance therapy results in a reduction in QoL of 8% (0.85-0.78 / 0.85) (95% CI of 26% to no reduction) (Table 6, row *au*).

¹²⁸ Revicki DA and Wood M. Patient-assigned health state utilities for depression-related outcomes: differences by depression severity and antidepressant medications. *Journal of Affective Disorders*. 1998; 48(1): 25-36.

CPB for Both Sexes

Based on these assumptions, the CPB associated with screening for major depressive disorder in adolescents (both sexes) ages 12 to 18 is 1,880 QALYs (see Table 6, row *da*).

Table 6: CPB of Screening for MDD in Adolescents Ages 12 - 18			
	In a BC Birth Cohort of 40,00	0	
Row			
Label	Variable	Base case	Data Source
а	Number of life years, 12 year olds	39,814	BC Life Table
b	Annual rate of MDD, 12 year olds	5.2%	√
С	Life years with MDD, 12 year olds	2,070	= a * b
d	Life years without MDD, 12 year olds	37,743	= a - c
е	Number of life years, 13 year olds	39,810	BC Life Table
f	Annual rate of MDD, 13 year olds	9.3%	V
g	Life years with MDD, 13 year olds	3,702	= e * f
h	Life years without MDD, 13 year olds	36,108	= e - g
i	Number of life years, 14 year olds	39,806	BC Life Table
j	Annual rate of MDD, 14 year olds	11.7%	٧
k	Life years with MDD, 14 year olds	4,657	= i * j
I	Life years without MDD, 14 year olds	35,149	= i - k
m	Number of life years, 15 year olds	39,801	BC Life Table
n	Annual rate of MDD, 15 year olds	15.0%	√
0	Life years with MDD, 15 year olds	5,970	= m * n
р	Life years without MDD, 15 year olds	33,831	= m - o
q	Number of life years, 16 year olds	39,793	BC Life Table
r	Annual rate of MDD, 16 year olds	16.0%	√
s	Life years with MDD, 16 year olds	6,367	= q * r
t	Life years without MDD, 16 year olds	33,426	= q - s
u	Number of life years, 17 and 18 year olds	79,550	BC Life Table
v	Annual rate of MDD, 17 and 18 year olds	16.5%	√
w	Life years with MDD, 17 and 18 year olds	13,126	= u * v
х	Life years without MDD, 17 and 18 year olds	66,424	= u - w
У	Life years with MDD between 12 and 18	35,893	= c + g + k + o + s + w
z	QoL decrement due to depression	0.31	√
аа	QALYs lost during adolescence due to depression	11,127	= y * z
ab	Deaths attributable to ISH between the ages of 12 and 34	90	Tables 4 & 5
ac	QALYS lost due to deaths attributable to ISH between the ages of 12 and 34	4,504	Tables 4 & 5
ad	Total QALYs lost due to depression in adolescence	15,630	= aa + ac
ae	% MDD undetected in lifetime	25.0%	٧
af	Life years with undetected MDD in cohort between 12 - 18 years of age	8,973	= y * ae
ag	Number of well care visits per year	2.07	V
ah	Depression screening rate	57.0%	√
ai	Sensitivity (rate of true positives), initial test	73.0%	√
aj	Specificity (rate of true negatives), initial test	94.0%	√
ak	Number of MDD cases correctly identified, initial test	7,729	= af * ag * ah * ai
al	Number of MDD cases diagnosed incorrectly, initial test	17,180	= (d + h + l + p + t + x) * ag * ah * (1 - aj)
am	Sensitivity (rate of true positives), 2nd test	100.0%	No second test in base model
an	Specificity (rate of true negatives), 2nd test	0.0%	No second test in base model
	Incorrectly Diagnosed MDD Cases		
ао	Number of MDD cases diagnosed incorrectly, overall	17,180	= al * (1 - an)
ар	Rate of anti-depressants, months 0 - 3	19.7%	V V
aq	Number taking anti-depressants months 0 - 3	3,385	= ao * ap
ar	Rate of anti-depressants, months 4 - 6	22.2%	√
as	Number taking anti-depressants months 4 - 6	3,814	= ao * ar
at	Life years on anti-depressants	1,800	= (ag * 0.25) + (as * 0.25)
au	QoL decrement due to anti-depressant therapy	0.08	V V
av	QALYs Gained (or Lost), Incorrectly Diagnosed MDD	-144.0	=- (at * au)

Table 6 (continued): CPB of Screening for MDD in Adolescents Ages 12 - 18			
	In a BC Birth Cohort of 40,0	00	
	Correctly Diagnosed MDD Cases		
	Single Event MDD		
aw	Number of MDD cases correctly identified, overall	7,729	= ak * am
ax	Rate of single event MDD in correct diagnoses	50.0%	V
ay	Number of single event MDD cases	3,864	= aw * ax
az	Rate of 6-month anti-depressant use	22.2%	V
ba	Number on anti-depressants	858	= ay * az
bb	Clinical improvement rate due to anti-depressants	25.7%	٧
bc	Length of single event MDD, years	0.5	V
bd	Depression-free life years gained due to anti-depressants	110.2	= ab * bb * bc
be	Treatment seeking rate	50.5%	V
bf	Rate counselling among treatment seekers	50.7%	V
bg	Overall counselling rate	25.6%	= be * bf
bh	Number in counselling	989	= ay * bg
bi	Clinical improvement rate due to counselling	12.1%	V
bj	Length of single event MDD counselling, years	0.25	V
bk	Depression-free life years gained due to counselling	29.9	= bh * bi * bj
	Recurrent MDD		
bl	Number of MDD cases correctly identified, overall	7,729	= ak * am
bm	Rate of recurrent MDD in correct diagnoses	44.7%	V
bn	Number of recurrent MDD cases	3,453	= bl * bm
bo	Rate of 12-month anti-depressant use	22.2%	V
bp	Number on anti-depressants	766	= bn * bo
bq	Clinical improvement rate due to anti-depressants	25.7%	V
br	Length of recurrent MDD event, years	1.0	V
bs	Number of recurrent episodes, lifetime	8.0	V
bt	Depression-free life years gained due to anti-depressants	1,576	= bp * bq * br * bs
bu	Treatment seeking rate	50.5%	V
bv	Rate counselling among treatment seekers	50.7%	V
bw	Overall counselling rate	25.6%	= bu * bv
bx	Number in counselling	884	= bn * bw
by	Clinical improvement rate due to counselling	12.1%	V
bz	Length of recurrent MDD counselling, years	0.75	V
са	Depression-free life years gained due to counselling	642	= bx * by * bz *bs
	Persistent MDD		
cb	Number of MDD cases correctly identified, overall	7,729	= ak * am
СС	Rate of persistent MDD in correct diagnoses	5.3%	√
cd	Number of persistent MDD cases	412	= cb * cc
ce	Rate of first year anti-depressant use	22.2%	V
cf	Number on anti-depressants	91	= cd * ce
cg	Clinical improvement rate due to anti-depressants	25.7%	V
ch	Length of treatment	1.0	V
ci	Depression-free life years gained due to anti-depressants, year 1	23.5	= cf * cg * ch
cj	Rate of anti-depressant use years 2 - 20	100.0%	V
ck	Number on anti-depressants	412	= cd * cj
cl	Clinical improvement rate due to anti-depressants	25.7%	V
cm	Length of treatment	19.0	V
cn	Depression-free life years gained due to anti-depressants, years 2 - 20	2,011	= ck * cl * cm
со	Treatment seeking rate	50.5%	V
ср	Rate counselling among treatment seekers	50.7%	V
cq	Overall counselling rate	25.6%	= co * cp
cr	Number in counselling	105	= cd * cq
CS	Lunical improvement rate due to counselling	12.1%	V .
ct	Length of effect persistent event MDD counselling, years	20.0	V
cu	Depression-tree life years gained due to counselling	255	= cr * cs * ct
	Summary of QALYs Gained with Screening		
CV	Individuals with MDD helped by treatment	680	= aw * ((az * bb) + (bg * bi))
cw	Depression free life years due to screening, correctly diagnosed MDD	4,647	= (Dd + DK) + (Dt + ca) + (cl + cn + cu)
СХ	Reduction in % of total life years with MDD due to screening	12.95%	= cw / y
су	UALYS gained due to screening, correctly diagnosed MDD	2,024	= cx * ad
CZ	QALYS due to treating incorrectly diagnosed MDD	-144	= av
da	INET QALTS as a result of screening (CPB)	1,880	= cy + cz

√ = Estimates from the literature

For the sensitivity analysis of the base model (both sexes), we modified a number of major assumptions and recalculated the CPB as follows:

- Assume the rate of undetected MDD decreases from 25% to 15% (Table 6, row *ae*): CPB = 1,070
- Assume the rate of undetected MDD increases from 25% to 35% (Table 6, row *ae*): **CPB = 2,689**
- Assume a second round of screening (with BDI) is introduced, with a sensitivity of 86.9% and a specificity of 83.5% (Table 6, rows *am & an*): CPB = 1,735
- Assume the rate of treatment seeking increases from 50.5% to 69% (Table 6, row *be*): CPB = 2,028
- Assume the rate of treatment seeking decreases from 50.5% to 32% (Table 6, row *be*): CPB = 1,732
- Assume the QoL decrement for depression is reduced from 31% to 15% (Table 6, row *z*) and the QoL decrement for anti-depressant maintenance therapy is reduced from 8% to 0% (i.e. no decrement) (Table 6, row *au*): CPB = 1,280
- Assume the QoL decrement for depression is increased from 31% to 45% (Table 6, row *z*) and the QoL decrement for anti-depressant maintenance therapy is increased from 8% to 26% (Table 6, row *au*): CPB = 2,206
- Assume that the screening rate is only applied to one visit per year per patient, rather than 2.07 (Table 6, row *ag*): **CPB = 908**

CPB for Males

Based on the above assumptions for males, the CPB associated with screening for major depressive disorder in male adolescents' ages 12 to 18 is 739 QALYs (see Table 6a, row da).

Table 6a: CPB of Screening for MDD in Male Adolescents Ages 12 - 18				
	In a BC Birth Cohort of 40,00	0		
Row				
Label	Variable	Base case	Data Source	
а	Number of life years, 12 year olds	19,902	BC Life Table	
b	Annual rate of MDD, 12 year olds	5.2%	V	
с	Life years with MDD, 12 year olds	1,035	= a * b	
d	Life years without MDD, 12 year olds	18,867	= a - c	
е	Number of life years, 13 year olds	19,900	BC Life Table	
f	Annual rate of MDD, 13 year olds	9.3%	V	
g	Life years with MDD, 13 year olds	1,851	= e * f	
h	Life years without MDD, 13 year olds	18,050	= e - g	
i	Number of life years, 14 year olds	19,898	BC Life Table	
j	Annual rate of MDD, 14 year olds	11.7%	V	
k	Life years with MDD, 14 year olds	2,328	= i * j	
I	Life years without MDD, 14 year olds	17,570	= i - k	
m	Number of life years, 15 year olds	19,896	BC Life Table	
n	Annual rate of MDD, 15 year olds	15.0%	√	
0	Life years with MDD, 15 year olds	2,984	= m * n	
р	Life years without MDD, 15 year olds	16,911	= m - o	
q	Number of life years, 16 year olds	19,891	BC Life Table	
r	Annual rate of MDD, 16 year olds	16.0%	V	
s	Life years with MDD, 16 year olds	3,183	= q * r	
t	Life years without MDD. 16 year olds	16.709	= q - s	
u	Number of life years, 17 and 18 year olds	39.761	BC Life Table	
v	Annual rate of MDD. 17 and 18 year olds	16.5%	V	
w	Life years with MDD. 17 and 18 year olds	6.560	= u * v	
x	Life years without MDD. 17 and 18 year olds	33.200	= µ - w	
v	Life years with MDD between 12 and 18	17,941	= c + g + k + 0 + s + w	
7	Ool decrement due to depression	0.31	√	
 	OALY's lost during adolescence due to depression	5.562	= v * 7	
ab	\sim Deaths attributable to ISH between the ages of 12 and 34	66	Table 4	
ac	OALYS lost due to deaths attributable to ISH between the ages of 12 and 34	3,240	Table 4	
ad	Total OALY's lost due to depression in adolescence	8 802	= aa + ac	
ae	% MDD undetected in lifetime	25.0%	v	
af	Life years with undetected MDD in cohort between 12 - 18 years of age	4 485	= v * ae	
20	Number of well care visits per year	1 75	- y uc	
26 26	Depression screening rate	52.2%		
21	Sensitivity (rate of true positives) initial tect	72.0%		
21	Sensitivity (rate of true positives), initial test	94.0%		
aj ok	Number of MDD cases correctly identified initial test	2 054		
	Number of MDD cases diagnosod incorrectly, initial test	6 790	-ai ag aii ai -(d +b + 1 + p + t + y) * 2g * 2b * (1 - 2i)	
2m	Sonsitivity (rate of true positives) and test	100.0%	No second test in base model	
20	Sensitivity (rate of true positives), 2nd test	100.0%	No second test in base model	
an	Incorrectly Diagnosed MDD cases	0.076	No second test in base model	
20	Number of MDD cases diagnosed incorrectly overall	6 780	= al * (1 - an)	
20	Rate of anti-depresents months $0-3$	17 5%		
ap 20	Number taking anti-depressants months 0 - 3	1 100	- 20 * 20	
ay	Pate of anti-depressants months 4 6	10 50/		
	Number taking anti-depressants menths 4 - 0	1 22/	v - 20 * 2r	
d5 	Information anti-depressants months 4 - 0	1,324 620	$= dU \cdot dI$ - (20 * 0.25) + (20 * 0.25)	
	Del decrement due to aptideproceant therapy	0.00	-(ay 0.25) + (a5 0.25)	
au	OALY's Gained (or Lost) Incorrectly Diagnosed MDD	-50 2	v = - (at * au)	
l av	I GALIS GUINCU (DI LUSU), INCONCLUY DIAGNUSCU WIDD	-30.2		

Table 6a (continued): CPB of Screening for MDD in Male Adolescents Ages 12 - 18 Image 06 Birth Cohort of 40,000				
	In a BC Birth Conort of 40,00	00		
	Correctly Diagnosed MDD cases			
	Single Event WDD	2.054	- ak * am	
aw	Pate of single event MDD in correct diagneses	3,054		
ax	Rate of single event MDD in correct diagnoses	50.0%	V	
ay		1527	= aw + ax	
az	Rate of 6-month anti-depressant use	19.5%	V	
ba	Number on anti-depressants	298	= ay ≛ az	
bb	Clinical improvement rate due to anti-depressants	25.7%	V	
bC	Length of single event MDD, years	0.5	V	
bd	Depression-free life years gained due to anti-depressants	38.3	= ab * bb * bc	
be	Treatment seeking rate	43.5%	V	
bf	Rate counselling among treatment seekers	50.7%	V	
bg	Overall counselling rate	22.1%	= be * bf	
bh	Number in counselling	337	= ay * bg	
bi	Clinical improvement rate due to counselling	12.1%	V	
bj	Length of single event MDD counselling, years	0.25	V	
bk	Depression-free life years gained due to counselling	10.2	= bh * bi * bj	
	Recurrent MDD			
bl	Number of MDD cases correctly identified, overall	3,054	= ak * am	
bm	Rate of recurrent MDD in correct diagnoses	45.3%	٧	
bn	Number of recurrent MDD cases	1383	= bl * bm	
bo	Rate of 12-month anti-depressant use	19.5%	٧	
bp	Number on anti-depressants	270	= bn * bo	
bq	Clinical improvement rate due to anti-depressants	25.7%	V	
br	Length of recurrent MDD event, years	1.0	V	
bs	Number of recurrent episodes, lifetime	8.0	V	
bt	Depression-free life years gained due to anti-depressants	555	= bp * bq * br * bs	
bu	Treatment seeking rate	43.5%	V	
bv	Rate counselling among treatment seekers	50.7%	V	
bw	Overall counselling rate	22.1%	= bu * bv	
bx	Number in counselling	305	= bn * bw	
by	Clinical improvement rate due to counselling	12.1%	V	
bz	Length of recurrent MDD counselling, years	0.75	V	
са	Depression-free life years gained due to counselling	222	= bx * by * bz *bs	
	Persistent MDD			
cb	Number of MDD cases correctly identified, overall	3,054	= ak * am	
СС	Rate of persistent MDD in correct diagnoses	4.7%	V	
cd	Number of persistent MDD cases	144	= cb * cc	
ce	Rate of first year anti-depressant use	19.5%	V	
cf	Number on anti-depressants	28	= cd * ce	
cg	Clinical improvement rate due to anti-depressants	25.7%	V	
ch	Length of treatment	1.0	V	
ci	Depression-free life years gained due to anti-depressants, year 1	7.2	= cf * cg * ch	
cj	Rate of anti-depressant use years 2 - 20	100.0%	 √	
ck	Number on anti-depressants	144	= cd * cj	
cl	Clinical improvement rate due to anti-depressants	25.7%	V	
cm	Length of treatment	19.0	V	
cn	Depression-free life years gained due to anti-depressants, years 2 - 20	701	= ck * cl * cm	
со	Treatment seeking rate	43.5%	V	
ср	Rate counselling among treatment seekers	50.7%	V	
са	Overall counselling rate	22.1%	= co * cp	
cr	Number in counselling	32	= cd * ca	
CS	Clinical improvement rate due to counselling	12.1%	√	
ct	Length of effect persistent event MDD counselling, vears	20.0	V	
cu	Depression-free life years gained due to counselling	77	= cr * cs * ct	
	Summary of OALYs Gained with Screening			
CV.	Individuals with MDD beloed by treatment	235	= aw * ((az * bb) + (bg * bi))	
CW/	Depression free life years due to screening, correctly diagnosed MDD	1609	=(bd + bk) + (bt + ca) + (ci + ca + cu)	
	Reduction in % of total life years with MDD due to screening	8 07%		
	OALYs gained due to screening correctly diagnosed MDD	700	- cw / y = cv * ad	
	OALVs due to treating incorrectly diagnosed MDD	-50	= 34	
da da	Net OALVs as a result of screening (CPP)	- 30 720	-av	
ud	וייני ערבוש מש מ ובשעור טו שנוכבווווא (נרט)	153	- LY + L2	

√ = Estimates from the literature

For the sensitivity analysis of the base model for males, we modified a number of major assumptions and recalculated the CPB as follows:

- Assume the rate of undetected MDD decreases from 25% to 15% (Table 6a, row *ae*): CPB = 423
- Assume the rate of undetected MDD increases from 25% to 35% (Table 6a, row *ae*): CPB = 1,055
- Assume a second round of screening (with BDI) is introduced, with a sensitivity of 86.9% and a specificity of 83.5% (Table 6a, rows *am* & *an*): CPB = 678
- Assume the rate of treatment seeking increases from 43.5% to 65.2% (Table 6a, row *be*): CPB = 815
- Assume the rate of treatment seeking decreases from 43.5% to 21.8% (Table 6a, row *be*): CPB = 664
- Assume the QoL decrement for depression is reduced from 31% to 15% (Table 6a, row *z*) and the QoL decrement for anti-depressant maintenance therapy is reduced from 8% to 0% (i.e. no decrement) (Table 6a, row *au*): CPB = 532
- Assume the QoL decrement for depression is increased from 31% to 45% (Table 6a, row *z*) and the QoL decrement for anti-depressant maintenance therapy is increased from 8% to 26% (Table 6a, row *au*): CPB = 852
- Assume that the screening rate is only applied to one visit per year per patient, rather than 1.75 (Table 6a, row *ag*): **CPB = 422**

CPB for Females

Based on the above assumptions for females, the CPB associated with screening for major depressive disorder in female adolescents' ages 12 to 18 is 1,078 QALYs (see Table 6b, row da).

Table 6b: CPB of Screening for MDD in Female Adolescents Ages 12 - 18				
	In a BC Birth Cohort of 40,00	0		
Row				
Label	Variable	Base case	Data Source	
а	Number of life years, 12 year olds	19,913	BC Life Table	
b	Annual rate of MDD, 12 year olds	5.2%	√	
С	Life years with MDD, 12 year olds	1,035	= a * b	
d	Life years without MDD, 12 year olds	18,878	= a - c	
е	Number of life years, 13 year olds	19,911	BC Life Table	
f	Annual rate of MDD, 13 year olds	9.3%	√	
g	Life years with MDD, 13 year olds	1,852	= e * f	
h	Life years without MDD, 13 year olds	18,060	= e - g	
i	Number of life years, 14 year olds	19,910	BC Life Table	
j	Annual rate of MDD, 14 year olds	11.7%	√	
k	Life years with MDD, 14 year olds	2,329	= i * j	
I	Life years without MDD, 14 year olds	17,580	= i - k	
m	Number of life years, 15 year olds	19,907	BC Life Table	
n	Annual rate of MDD, 15 year olds	15.0%	V	
0	Life years with MDD, 15 year olds	2,986	= m * n	
р	Life years without MDD, 15 year olds	16,921	= m - o	
q	Number of life years, 16 year olds	19,904	BC Life Table	
r	Annual rate of MDD, 16 year olds	16.0%	V	
S	Life years with MDD, 16 year olds	3,185	= q * r	
t	Life years without MDD, 16 year olds	16,719	= q - s	
u	Number of life years, 17 and 18 year olds	39,794	BC Life Table	
v	Annual rate of MDD, 17 and 18 year olds	16.5%	V	
w	Life years with MDD, 17 and 18 year olds	6,566	= u * v	
х	Life years without MDD, 17 and 18 year olds	33,228	= u - w	
у	Life years with MDD between 12 and 18	17,953	= c + g + k + o + s + w	
z	QoL decrement due to depression	0.31	V	
аа	QALYs lost during adolescence due to depression	5,566	= y * z	
ab	Deaths attributable to ISH between the ages of 12 and 34	24	Table 5	
ac	QALYS lost due to deaths attributable to ISH between the ages of 12 and 34	1,263	Table 5	
ad	Total QALYs lost due to depression in adolescence	6,829	= aa + ac	
ae	% MDD undetected in lifetime	25.0%	v	
af	Life years with undetected MDD in cohort between 12 - 18 years of age	4,488	= y * ae	
ag	Number of well care visits per year	2.42	V	
ah	Depression screening rate	61.1%	√	
ai	Sensitivity (rate of true positives), initial test	73.0%	√	
aj	Specificity (rate of true negatives), initial test	94.0%	√	
ak	Number of MDD cases correctly identified, initial test	4,845	= af * ag * ah * ai	
al	Number of MDD cases diagnosed incorrectly, initial test	10,769	= (d + h + l + p + t + x) * ag * ah * (1 - aj)	
am	Sensitivity (rate of true positives), 2nd test	100.0%	No second test in base model	
an	Specificity (rate of true negatives), 2nd test	0.0%	No second test in base model	
	Incorrectly Diagnosed MDD cases			
ао	Number of MDD cases diagnosed incorrectly, overall	10,769	= al * (1 - an)	
ар	Rate of anti-depressants, months 0 - 3	20.9%	V	
aa	Number taking anti-depressants months 0 - 3	2,251	= ao * ap	
ar	Rate of anti-depressants, months 4 - 6	23.6%	√ 	
as	Number taking anti-depressants months 4 - 6	2,541	= ao * ar	
at	Life years on anti-depressants	1,198	=(aq * 0.25) + (as * 0.25)	
au	QoL decrement due to antidepressant therapy	0.08	V	
av	QALYs Gained (or Lost), Incorrectly Diagnosed MDD	-95.8	= - (at * au)	

In a BC Brith Cohort of 40.000Correctly Diagnose MDO caseSingle Event MDDavRate of single event MDD correct dignoses30.0%VNumber of MDD cases22.2= avavRate of 6-month anti-depressants52.2= avavAtter of 6-month anti-depressants52.5%Vbb Clinical improvement rate due to anti-depressants52.5%Vbb Clinical improvement rate due to anti-depressants52.5%VVbb Clinical improvement rate due to counselling12.5%Vbb Clinical improvement rate due to counselling <tr< th=""><th></th><th>Table 6b (continued): CPB of Screening for MDD in Fen</th><th>nale Adole</th><th>scents Ages 12 - 18</th></tr<>		Table 6b (continued): CPB of Screening for MDD in Fen	nale Adole	scents Ages 12 - 18	
Correctly Display Event MDDawNumber of MDD asses correctly identified, overall4,845awA start of angle event MDD cases5,00%awV2awA start of angle event MDD cases2,422awaw2,826bwA start of angle event MDD cases2,427bwA start of angle event MDD cases2,57%VbwChrist angle ovent MDD, years2,57%VbbChrist angle ovent MDD, years3,55whbbChrist angle ovent MDD, years3,55whbbDepression free life years gained due to anti-depressants3,75whbbDepression free life years gained due to anti-depressants3,25whbbDepression free life years gained due to counselling6,39= a,y* tagbiCinical improvement rate due to counselling19,3= bh* bh* bhbiIndige event MDD conselling, years2,25VbiNamber of MDD cases correctly identified, overall4,845= ak* ambiNamber of MDD cases2,146= bh* bh* bhbiNamber of MDD cases correctly identified, overall4,845= whbiNamber of recurrent MDD coses2,136VbiNamber of MDD cases2,166vbiNamber of MDD cases2,166whbiNamber of MDD cases3,001vbiNamber of MDD cases2,57%VbiNamber of MDD cases2,56%v <th></th> <th>In a BC Birth Cohort of 40,00</th> <th>00</th> <th></th>		In a BC Birth Cohort of 40,00	00		
Single Creent MODImage: Single Creent MOD in correct diagnoses50.0%axRute of single event MDD cases50.0%vaxRute of single event MDD cases22.0%vbxNumber of single event MDD parse23.6%vbxNumber on anti-depressants57.2= ay* azbbClinical improvement rate due to anti-depressants25.7%vbbDepression-free life years gained due to anti-depressants50.0%vbbTeatment seeking rate50.0%vbbTeatment seeking rate50.7%vbbTeatment seeking rate50.7%vbbDepression-free life years gained due to counselling12.1%vbbCherola improvement rate due to counselling12.1%vbbDepression-free life years gained due to counselling13.3= ah* bit bit bitbbDepression-free life years gained due to counselling13.3= ah* bit bit bitbbDepression-free life years gained due to counselling13.3= ah* bit bitbbDepression-free life years gained due to counselling13.0vbbDepression-free life years gained due to anti-depressants23.6%ybbDepression-free life years gained due to anti-depressants23.6%ybbNumber of MDD cases correct yidentified, overall4.485= ah* ambbNumber of MDD cases correct yidentified, overall4.485= bit bitbbNumber of MDD cases correct yidentified, overal		Correctly Diagnosed MDD cases			
aw Number of MDD cases correctly identified, overall 4,845 = a* a* am aw Number of single event MDD cases 2022 = aw * ax aw Number of single event MDD cases 2022 = aw * ax bw Number on anti-depresants 572 = ay * az bb Clinical improvement rate due to anti-depresants 573 V bb Depresation-free if years gained due to anti-depresants 52,0% V bb Depresation-free if years gained due to anti-depresants 52,0% V bb Depresation-free if years gained due to anti-depresants 52,0% V bb Depresation-free if years gained due to courselling 639 = a* + bit bb Integrition in counselling, years 0.25 V bb Depresation-free if years gained due to counselling, years 1.33 = bh * bit > bit bb Integrition anti-depresants 5.07 V V bb Integrition anti-depresants 2.06 V V bb Integrition anti-depresants 1.0 V V		Single Event MDD			
ax Rate of single event MDD cases 2004 V ax Number of single event MDD cases 222 = av * ax ax Rate of 5-month anti-depresants 572 = ay * ax bb Number on anti-depresants 25.7% V bc Length of single event MDD, years 0.5 V bd Depression-free life years gained due to anti-depressants 7.5. = b* bc bc Testime seeking rate 52.0% V V bd Depression-free life years gained due to out-depressants 50.7% V bc Consolling among treatment seeking rate 22.0% V bd Oversion-free life years gained due to ounselling 12.3% V bd Depression-free life years gained due to ounselling 13.3 = b* b* b* bd Depression-free life years gained due to ounselling 13.3 = b* b* 10 bd Depression-free life years gained due to ounselling 12.3% V 10 bd Depression-free life years gained due to ounselling 10.4 4.9%	aw	Number of MDD cases correctly identified, overall	4,845	= ak * am	
av Number of single event MOD cases 2422 = av * ac act Rate of Growth anti-depressants 236% V bb Number on anti-depressants 572 = av * ac bc Inicial improvement rate due to anti-depressants 25.7% V bb Depression-free life years gained due to anti-depressants 5.5 V bc Depression-free life years gained due to anti-depressants 5.0% V bc Depression-free life years gained due to anti-depressants 5.0% V bc Depression-free life years gained due to anti-depressants 5.0% V bc Intervent due to courselling, years 0.25 V bc Depression-free life years gained due to courselling, years 0.25 V bc Number of MOD cases correctly identified, overall 4.845 = ak * am bn Number of ROD cases 2.16% V bn Number of ROD cases 2.16%	ах	Rate of single event MDD in correct diagnoses	50.0%	V	
az Rate of -month anti-depressants 572 = ay * az b) Number on anti-depressants 572 = ay * az b) Clinical improvement rate due to anti-depressants 25.7% V b) Length of raigle event NDD Qvars 0.5 V b) Depression-free life years gained due to anti-depressants 75.5 = ab * bb * bc b) Teratment seeking rate 52.0% V b) Teratment seeking rate 52.0% V b) Teratment seeking rate 52.0% V c) Length of unsetling rate 52.0% V c) Length of angle event NDD Counselling 52.0% V c) Length of recurrent NDD cases correctly identified, overall 42.8% V c) Number of NDD cases correctly identified, overall 42.8% V c) Number of recurrent NDD cases 52.0% V c) Length of recurrent cases 42.0% V	ay	Number of single event MDD cases	2422	= aw * ax	
bb Number on anti-depressants 572 = ay* az bc Linclain improvement rate due to anti-depressants 25.7% V bc Length of single event MDD, years 0.5 V bc Length of single event MDD, years 0.5 V bc Personaling among treatment seekers 0.5 V bc Intac counselling rate 26.4% = be* bf bc Mate counselling rate 26.4% = be* bf bc Number of MDD counselling, years 0.25 V bc Depression-free life years gained due to counselling 10.3 = bb* b* b5 bc Depression-free life years gained due to counselling 13.3 = bb* b* b* bc Depression-free life years gained due to counselling 13.4% V bc Depression-free life years gained due to counselling 13.4% V bc Number of MDD cases counselling 12.4% V bc Indue dipressants 507 > bb* b bc Indue dipressants 507 > bb	az	Rate of 6-month anti-depressant use	23.6%	V	
bbClinical improvement rate due to anti-depresants25.7%VbdDepression-free life years gained due to anti-depresants73.5 $=ab^+bb^+bc^-$ bdDepression-free life years gained due to anti-depresants73.5 $=ab^+bb^+bc^-$ bdDepression-free life years gained due to anti-depresants50.7%VbdDepression-free life years gained due to acounselling50.7%VbdDepression-free life years gained due to acounselling12.1%VbdLangth of angle event MDD conselling years0.25VbdDepression-free life years gained due to acounselling13.3 $=bh^+b^+b^+$ bdNumber of motorect diagnoses44.3% \sqrt bdNumber of motorect diagnoses44.3% \sqrt bdRecorrent MDD cases21.06 \sqrt bdNumber of accurrent MDD cases23.6% \sqrt bdClinical improvement rate due to anti-depresants50.7% \sqrt bdClinical improvement rate due to anti-depresants52.7% \sqrt bdClinical improvement rate due to anti-depresants50.7% \sqrt bdUnder of accurrent MDD event, years1.0 \sqrt bdNumber of accurrent MDD event, years1.04 \sqrt bdNumber of accurrent MDD cases concelling23.7% \sqrt bdUnder depressant use52.0% \sqrt bdWorther devent rate52.0% \sqrt bdNumber of accurrent spices, lifetime30.0 \sqrt bd	ba	Number on anti-depressants	572	= ay * az	
bcLength of single event MDD, years0.5. \vee bdDepresion-free life years gained due to anti-depressants73.5.= ah*bh*bcbeTreatment seeking rate50.7% \vee bfRate counselling rate26.4%= be*bfbnNumber in counselling rate26.4%= be*bfb1Utional improvement rate due to counselling12.1% \vee b1Lingth of single event MDD conselling, years0.25. \vee b2Depression-free life years gained due to counselling13.3.= bh*b*bb1Length of single event MDD consect diagnoses44.3% \vee b1Number of MDD cases counselling13.4.= ak*amb3Number of moto cases21.46.= bl*bmb4number of moto cases21.46.> bl*mb5Number of moto cases23.6% \vee b6Number of nument MDD cases23.6% \vee b7Number of moto-case saints507> bb* bob7Interiment seeking rate25.0% \vee b8Depression-free life years gained due to anti-depressants1.041= bb*bb* bbb9Number of nument rate due to anti-depressants50.7% \vee b9Number of moto-free pressant seekers50.7% \vee b9Number of nument rate due to anti-depressants1.041= bb*bb* bbb9Number of nument rate due to anti-depressants1.041= bb*bbb9Number of nument rate due to anti-depressants26.7% \vee </td <td>bb</td> <td>Clinical improvement rate due to anti-depressants</td> <td>25.7%</td> <td>V</td>	bb	Clinical improvement rate due to anti-depressants	25.7%	V	
bedDepression-free life years gained due to anti-depressants73.5 $=ab^+bb^+bc$ ber Treatment seekering armong treatment seekers 52.0% \vee bfAtter counselling rate 26.4% $=be^+bf$ bhNumber in counselling rate 26.4% $=be^+bf$ bhNumber in counselling rate 26.4% $=be^+bf$ bhNumber in counselling version 0.25 \vee biClinical improvement rate due to counselling 13.3 $=bh^+b^+b^+$ biLength of single event MDD counselling, version 0.25 \vee bkDepression-free life years gained due to counselling 13.3 $=bh^+b^+b^+$ biNumber of MDD cases correctly identified, overall 4.445 $=ak^+am$ bnRate of the correct diagnoses 44.3% \vee bnRate of the correct diagnoses 23.6% \vee bnRate of the correct diagnoses 23.6% \vee bnRate of the correct diagnoses 23.6% \vee bnRate of the correct diagnoses 23.7% \vee bnRate counselling rate 25.7% \vee bnIterating the due to anti-depressants 25.7% \vee bnIterating the counselling 50.7% \vee bnIterating the counselling 50.7% \vee bnDepression-free life years gained due to anti-depressants 50.7% \vee bnDepression-free life years gained due to anti-depressants 50.7% \vee bnNumber of number	bc	Length of single event MDD, years	0.5	V	
be breatment seeking rate52.0%VbfRate counselling rate50.7%VbgOverall counselling rate26.4%= be* bfbhNumber in counselling12.1%VbkDepression-free life years gained due to counselling13.3= bh* bi* bibkDepression-free life years gained due to counselling13.3= bh* bi* bibkDepression-free life years gained due to counselling13.3= bh* bi* bibkDepression-free life years gained due to counselling13.3= bh* bi* bibnNumber of MDD cases21.46= bl* bmbnNumber of meurent MDD cases21.46+ bl* bmbnRecurrent MDD cases23.6%VbcRecurrent MDD cases23.6%VbcRecurrent MDD cases23.6%VbcNumber on anti-depressants50.7%VbcNumber on anti-depressants1.04VbcNumber of recurrent topoides, lifetime8.0VbcNumber of recurrent topoides, lifetime50.7%VbcNumber of recurrent NDD conselling12.1%VbcNumber of recurrent NDD conselling12.1%VbcNumber of action trait due to counselling12.1%VbcNumber of mDD cases correctly identified, overall4.445= ak* amcounselling retarement tabe due to counselling12.1%VbcLingth of recurrent NDD conselling, years0.75V </td <td>bd</td> <td>Depression-free life years gained due to anti-depressants</td> <td>73.5</td> <td>= ab * bb * bc</td>	bd	Depression-free life years gained due to anti-depressants	73.5	= ab * bb * bc	
bf Rate counselling among treatment seekers 50.7% ∨ bg Overall counselling rate 26.4% = be* bf bh Clinical improvement rate due to counselling 12.1% ∨ b Length of single event MDD counselling years 0.25 ∨ b Depression-free life years gained due to counselling 13.3 = bh* b1* bj b Recurrent MDD Recurrent MDD b Number of MDD cases correctly identified, overall 4,845 = ak * am b Number of recurrent MDD cases 21.46 = b1* bm b Rate due pression free life years gained due to accounselling 23.6% ∨ b Rate due pression free life years gained due to accounselling 23.6% ∨ b Rate counselling rate 23.6% ∨ b Rate counselling rate 26.7% ∨ b Length of recurrent MDD cases 20.0 ∨ b Rate counselling rate 50.7% ∨ b Rate counselling rate 50.7% ∨ b Rate counselling rate 56.6 = bn * bw b Clinical improvement rate due to acti-depressant 1.041 = bp * bq * br * bs b Rate counselling rate 56	be	Treatment seeking rate	52.0%	V	
bgOverall counselling rate26.4%= be * bfbhNumber in counselling639= by * bgbiClinical improvement rate due to counselling, years0.25vbiDepression free life years gained due to counselling19.3= bh * bi * bi *biNumber of MDD cases21.4%vbiNumber of MDD cases21.46= bh * bi *biNumber of recurrent MDD cases21.46= bh * bmbiNumber of recurrent MDD cases21.46= bh * bmbiNumber of recurrent MDD cases21.36vbiNumber of recurrent MDD cases21.36vbiNumber of recurrent MDD cases25.7%vbiNumber of recurrent projectes, lifetime8.0vbiNumber of recurrent projectes, lifetime8.0vbiNumber of recurrent projectes, lifetime8.0vbiTrastment seeking rate52.0%vbiRate counselling rate26.4%= bu * bvbiRate counselling rate26.4%= bu * bvbiClinical improvement rate due to counselling12.1%vbiRate of recurrent MDD counselling, years0.75vbiRate of recurrent MDD counselling, years0.75vbiRecident MDD26.6%= bh * bwbiRecident MDD cases27.6%vciRecident MDD27.5%vciRecident MDD27.6%v <t< td=""><td>bf</td><td>Rate counselling among treatment seekers</td><td>50.7%</td><td>V</td></t<>	bf	Rate counselling among treatment seekers	50.7%	V	
bhNumber in conselling639 $= ay^{+} bg$ biClinical improvement rate due to conselling, years12.1%, vvbiLength of single event MDD counselling, years19.3 $= bh^{+}bi^{+}bj$ bi Depression-free life years gained due to counselling19.3 $= bh^{+}bi^{+}bj$ bi Number of MDD cases correctly identified, overall4,845 $= ak^{+}am$ binRate of recurrent MDD cases21.4%, vvbinRate of current MDD cases22.6%, vvbinRate of larmonth anti-depressant use23.6%, vvbinRate of larmonth anti-depressant use23.6%, vvbinIndig regression-free life years gained due to anti-depressants507 $= bh^{+}bo$ binLongton-free life years gained due to anti-depressants1.00vbinRegression-free life years gained due to anti-depressants1.00vbinTreatment seeking rate52.0%, vvvbinTreatment seeking rate52.0%, vvvbinRegression-free life years gained due to counselling10.41, *bx *by *bx *bxvbinRegression-free life years gained due to counselling12.1%, vvbinChricial improvement rate due to counselling12.1%, vvbinChricial improvement rate gained due to counselling12.1%, vvbinChricial improvement rate gained due to counselling12.1%, vvbinChricial improvement rate gained due to counselling <td>bg</td> <td>Overall counselling rate</td> <td>26.4%</td> <td>= be * bf</td>	bg	Overall counselling rate	26.4%	= be * bf	
biClinical improvement rate due to counselling12.1%VbiLength of single event MDD counselling, years0.25VbiDepression-free life years gained due to counselling19.3= bh * b) * b) *biNumber of MDD cases correctly identified, overall4,845= akt * ambinNumber of mourned table, overall4,845= akt * ambinRate of recurrent MDD is correct diagnoses44.3%VbinNumber of mourned table, overall4,845= abt * binbinRate of 12-month anti-depressant use23.6%VbinNumber on anti-depressants50.7= bn * bobinClinical improvement rate due to anti-depressants1.00VbinNumber of recurrent MDD event, years1.00VbinNumber of recurrent peisodes, lifetime8.0VbinTreatment seeking rate52.7%VbinTreatment seeking rate52.7%VbinTreatment seeking rate52.7%VbinNumber in counselling, years0.75VbinNumber in counselling, years0.75VbinNumber in counselling, years0.75VbinNumber of mourne table due counselling111=bx * by *	bh	Number in counselling	639	= ay * bg	
b) Length of single event MDD counselling, years 10.3 y bk Depression-free life years gained due to counselling 19.3 = bh * bi * bj bk Depression-free life years gained due to counselling 4,845 = ak * am bk Number of recurrent MDD cases 21,66 = bl * bm bk Number of recurrent MDD cases 21,66 = bl * bm bk Depression-free life years gained due to anti-depressants 25,7% V bk Clinical improvement rate due to anti-depressants 25,7% V V bk Depression-free life years gained due to anti-depressants 1,00 V V bk Depression-free life years gained due to anti-depressants 1,001 -V V bk Depression-free life years gained due to anti-depressants 1,001 -bb * bb * bb V bk Recurrent MDD counselling, years 0,75 V V bk Number of neurent MDD counselling, years 0,75 V V bk Number of MDD cases arg gained due to counselling 11,15,15 V V Coersistent MDD Coersistent MDD Coersistent MDD </td <td>bi</td> <td>Clinical improvement rate due to counselling</td> <td>12.1%</td> <td>v v</td>	bi	Clinical improvement rate due to counselling	12.1%	v v	
bk Depression-free life years gained due to counselling 19.3 = bh * bi * bj Recurrent MDD Recurrent MDD Recurrent MDD Add to the set of the set of MDD cases correctly identified, overall 4,845 = ak * am bm Number of recurrent MDD in correct diagnoses 44,336 V bn Number of recurrent MDD cases 2146 = bi * bom bo Rate of 12-month anti-depressant use 23,676 V bp Number on anti-depressant use 25,776 V bc Length of recurrent MDD event, years 1.0 V bs Number of recurrent MDD event, years 1.0 V bu Treatment seeking rate 52,076 V bu Treatment seeking rate 52,076 V bu Treatment seeking rate 52,076 V bu Number in counselling rate 26,476 = bu * bv bx Number in counselling rate 26,476 = bu * bv bx Number in counselling rate 27,57 V ba Length of recurrent MD	bi	Length of single event MDD counselling, years	0.25	V	
Image: constraint of the programImage: constraint of the programbitNumber of MDD cases correctly identified, overall4,845= ak * ambitNumber of recurrent MDD cases2146= bit * bmbitRate of recurrent MDD cases2146= bit * bmbitRate of recurrent MDD cases23.6%vbitNumber on anti-depressant use23.6%vbitLength of recurrent MDD event, years1.0vbitLength of recurrent MDD event, years1.0vbitDepression-free iffe years gained due to anti-depressants1.04vbitDepression-free iffe years gained due to anti-depressants1.04= bp * bo * bsbitDepression-free iffe years gained due to conselling56.6= bit * bwbitChical improvement rate due to counselling12.1%vbitDepression-free iffe years gained due to counselling12.1%vbitChical improvement rate due to counselling411= bx * by * bz * bsbitDepression-free iffe years gained due to counselling411= bx * dw * amcaDepression-free iffe years gained due to counselling411= bx * dw * amcaRate of presistent MDDPersistent MDDPersistent MDDcaNumber of forD cases correctly identified, overall4,845= ak * amcaRate of persistent MDD cases correctly identified, overall4,845= ak * amcaRate of persistent MDD cases correctly identified, overall1.0<	bk	Depression-free life years gained due to counselling	19.3	= bh * bi * bi	
bil Number of MDD cases correctly identified, overall 4,845 = ak * am bm Rate of recurrent MDD in correct diagnoses 44,3% V bm Number of recurrent MDD cases 21,46 =bl* bm box Rate of 12-month anti-depressant use 23,6% V bn Number on anti-depressant use 23,6% V bn Number on anti-depressant use 25,7% V br Length of recurrent MDD event, years 1.0 V bs Number of recurrent episodes, lifetime 8.0 V bu Treatment seeking rate 52,0% V bu Treatment seeking rate 52,0% V bw Overall counselling rate 26,4% = bu* bv bx Number in counselling 12,1% V by Clinical improvement rate due to counselling 12,1% V by Clinical improvement rate due to counselling 411 = bx * by * bz * bs by Clinical improvement rate due to counselling 411 = bx * by * bz * bs by Clinical improvement rate due to anti-depressants 6,5 = cd.* e clinical improvement rate due to anti-depressants 5,7% V clinical improvement rate due to anti-de		Recurrent MDD			
bm Rate of recurrent MDD in correct diagnoses 44.3% V bm Number of recurrent MDD cases 2146 = b1* bm bo Rate of 12-month anti-depressants 507 = bm* bo bg Clinical improvement rate due to anti-depressants 507 = bm* bo bg Linical improvement rate due to anti-depressants 1.0 V br Length of recurrent MDD event, years 1.0 V bt Depression-free life years gained due to anti-depressants 1.0.41 = bp* bg* br* bs bu Treatment seeking rate 52.0% V bv Rate counselling anong treatment seekers 50.7% V bv Overall counselling rate 26.4% = bu* bv bx Number in counselling, years 0.75 V ca Depression-free life years gained due to counselling 411 = bx* by *bs *bs ca Depression-free life years gained due to counselling 411 = bx* by *bs *bs ca Depression-free life years gained due to counselling 4.845 = ak* am ca Rate of first year ant-depressant wese 2.6% V ca Depression-free life years gained due to anti-depressants 65 = cd* cc ca Rate of first year a	bl	Number of MDD cases correctly identified, overall	4.845	= ak * am	
International control of recurrent MDD cases1246= b1 * bmboRate of 12-month anti-depressants use23.6%VbyNumber on anti-depressants50.7= bn * boclinical improvement rate due to anti-depressants25.7%VbrLength of recurrent episodes, lifetime8.0VbuTreatment seeking rate50.0%VbuTreatment seeking rate50.0%VbuTreatment seeking rate50.0%VbvRate counselling among treatment seekers50.7%VbvNumber in counselling566= bn * bwbzUnital improvement rate due to counselling111= bx * by * bz * bsbzLength of recurrent MDD counselling, years0.75VcaDepression-free life years gained due to counselling411= bx * by * bz * bsbzLength of provement rate due to counselling411= bx * by * bz * bscaRate of first year anti-depressants65= cd * cccaRate of first year anti-depressants65= cd * cccaRate of first year anti-depressants276= cb * cccaRate of first year anti-depressants276= cd * cccdRate of first year anti-depressants276= cd * cc <t< td=""><td>hm</td><td>Rate of recurrent MDD in correct diagnoses</td><td>44.3%</td><td>v v</td></t<>	hm	Rate of recurrent MDD in correct diagnoses	44.3%	v v	
box Partice of 12 month anti-depressant use 12.6% V by Number on anti-depressant use 22.6% V by Clinical improvement rate due to anti-depressants 507 = bn* bo by Length of recurrent MDD event, years 1.0 V bs Number of recurrent pisodes, lifetime 8.0 V bt Depression-free life years gained due to anti-depressants 1.041 = bp* bq* br* bs bu Treatment seeking rate 52.0% V bv Rate counselling among treatment seekers 50.7% V bv Overall counselling rate 26.4% = bn* bv by Clinical improvement rate due to counselling 12.1% V bz Length of recurrent MDD counselling, years 0.75 V ca Depression-free life years gained due to counselling 411 = bx* by* by* bs cb Rate of persistent MDD cases 2.7% V cd Number of ADD cases correctly identified, overall 4.845 = ak* am cc Rate of first year anti-depressant use 23.6% V cd Number of persistent MDD cases 2.76 = cd * cc cg Clinical improvement rate due to anti-depressants 25.7% V<	hn	Number of recurrent MDD cases	2146	= bl * bm	
bit Number of anti-depressants 12.000 = bn* bo bq Clinical improvement rate due to anti-depressants 25.7% V bs Number of recurrent topisodes, lifetime 8.0 V bs Number of recurrent episodes, lifetime 8.0 V bs Depression-free life years gained due to anti-depressants 1.041 = bp* bg* br* bs bu Treatment seeking rate 52.0% V bw Overall counselling arong treatment seekers 50.7% V bw Overall counselling rate 26.6% = bu* bw by Lingth of recurrent MDD counselling, years 0.75 V col Number of motion MDD counselling, years 0.75 V col Number of motion tomb Do counselling 411 = bx* by* bz* bs col Number of motion tomb Do counselling 411 = bx* by* bz* counselling col Number of paristent MDD counselling, years 2.76 = cd* ac col Rate of persistent MDD in correct diagnoses 2.76 = cd* ac col Rate of persistent MDD in correct diagnoses 2.76 = cd* ac col Rate of persistent MDD in correct diagnoses 2.7% V cd Number of paristent MDD in correct diagnoses <t< td=""><td>ho</td><td>Rate of 12-month anti-depressant use</td><td>23.6%</td><td>- 51 5111 V</td></t<>	ho	Rate of 12-month anti-depressant use	23.6%	- 51 5111 V	
upp thinker bqChinical improvement rate due to anti-depressants25.7%VbrLength of recurrent MDD event, years1.0VbrLength of recurrent the pisodes, lifetime8.0VbtDepression-free life years gained due to anti-depressants1.041=bp*bq*br*bsbuTreatment seeking rate52.0%VbvRate counselling mong treatment seekers50.7%VbwOverall counselling rate26.4%=bu*bwbxNumber in counselling, rate26.6%=bn*bwbyClinical improvement rate due to counselling12.1%VbyClinical improvement rate due to counselling411=bx*by*bz*bs <i>Persistent MDD</i> 0.75VcaDepression-free life years gained due to counselling411=bx*by*bz*bs <i>Persistent MDD</i> 000Number of MDD cases correctly identified, overall4,845=ak *amc.Rate of persistent MDD in correct diagnoses5.7%VVcdNumber of persistent MDD in correct diagnoses25.7%VcdNumber of anti-depressant se25.7%VcdNumber of anti-depressant se25.7%VcdNumber of anti-depressant se25.7%VcdRate of first year anti-depressants25.7%VcdRate of anti-depressant se25.7%VcdRate of anti-depressant se25.7%VcdRate of anti-depressant se25.7% <td>hn</td> <td>Number on anti-depressants</td> <td>507</td> <td>- hn * ho</td>	hn	Number on anti-depressants	507	- hn * ho	
adjClinical improvement rate due to arti-depressants23.7%VbrLength of recurrent episodes, lifetime8.0VbtDepression-free life years gained due to anti-depressants1,041= bp*bg *bf *bsbuTreatment seeking rate52.0%VbwOverall counselling rate26.4%= bu* bwbwOverall counselling rate26.4%= bu* bwbxNumber in counselling, rate26.4%= bu* bwbzLength of recurrent MDD counselling, years0.75VcaDepression-free life years gained due to counselling411= bx* by* bz *bsbzLength of recurrent MDD counselling, years0.75VcaDepression-free life years gained due to counselling411= bx* by* bz *bscaRate of persistent MDD cases correctly identified, overall4.845= ak* amccRate of first year anti-depressant use23.6%VcdNumber of mDD cases correctly identified, overall1.0VcdNumber on anti-depressant use25.7%VcdRate of first year anti-depressants25.7%VcdNumber on anti-depressant use25.7%VcdRate of anti-depressant use years 2.20100.0%VcdNumber on anti-depressants276= cd* cccgClinical improvement rate due to anti-depressants, years 2.20100.0%VcdNumber on anti-depressant years 2.20100.0%VcdClinic	bp	Clinical improvement rate due to anti depressants	25.7%	- 511 50	
unitLocVbsNumber of recurrent repisodes, lifetime8.0VbuTreatment seeking rate52.0%VbuTreatment seeking rate52.0%VbvRate counselling among treatment seekers50.7%VbwOverall counselling rate26.4%= bu * bvbxNumber in counselling rate26.4%= bu * bvbvRate counselling rate26.4%= bu * bvbvClinical improvement rate due to counselling12.1%VcaDepression-free life years gained due to counselling411= b* bv * bz * bspersesion-free life years gained due to counselling411= b* bv * bz * bscaRepression-free life years gained due to counselling4,845= ak * amcaRate of persistent MDD in correct diagnoses5.7%VcdNumber of fuzzer anti-depressant use23.6%VcdNumber on anti-depressant use23.6%VcdClinical improvement rate due to anti-depressants, year 116.7= cf * cg * chcdRate of anti-depressant use25.7%VVcdDepression-free life years gained due to anti-depressants, year 2.20100.0%VcdRate of anti-depressant use years 2.20100.0%VcdClinical improvement rate due to anti-depressants, years 2.2013.44= cd * cicdClinical improvement rate due to anti-depressants, years 2.20100.0%VcdClinical improvement r	by	Longth of recurrent MDD event, vears	23.7%	v v	
bt Depression-free life years gained due to anti-depressants 1,041 = bp * bq * br * bs bu Treatment seeking rate 52,0% V bu Rate counselling rate 52,0% V bu Rate counselling rate 26,4% = bu * bv bx Number in counselling rate 26,4% = bu * bv bx Number in counselling rate 26,4% = bu * bv by Clinical improvement rate due to counselling 12,1% V bz Length of recurrent MDD counselling, years 0.75 V cc Rate of persistent MDD cases correctly identified, overall 4,845 = ak * am cc Rate of persistent MDD cases 2.76 v v cd Number of persistent MDD cases 2.76 v v cd Rate of first year anti-depressant use 23.6% v v cd Number of anti-depressant use 25.7% V v cd Length of treatment 1.0 v v cd Length of treatment 1.0 v v cd Clinica	bi	Number of recurrent onicodes, lifetime	1.0	V	
DutDepression-free life years gained due to anti-depressants1,041-00405butTreatment seeking rate52.0%vvbvRate counselling rate26.4%= bu * bvbxNumber in counselling rate26.6%= bn * bwbyClinical improvement rate due to counselling12.1%vbzNumber in counselling, years0.75vcaDepression-free life years gained due to counselling411= bx * by * bz * bscaDepression-free life years gained due to counselling411= bx * by * bz * bscade for scient MDD cases correctly identified, overall4,845= ak * amccRate of persistent MDD in correct diagnoses5.7%VcdNumber of persistent MDD cases276= cb * ccceRate of first year anti-depressants65= cd * eecgClinical improvement rate due to anti-depressants25.7%VchLength of treatment1.0VciDepression-free life years gained due to anti-depressants25.7%VcdInical improvement rate due to anti-depressants, year 116.7= cf * cg * chcjRate of anti-depressants25.7%VVcdLength of treatment1.0VcdIndumber on anti-depressants25.7%VcdIndumber on anti-depressants276= cd * cgcjRate of anti-depressants276= cd * cgciRate of a	US ht	Depression free life years gained due to anti-depressents	8.0 1.041	v - bo * bo * br * bc	
butIteratinent seeking rate2.0%VbvRate counselling among treatment seekers50.7%VbwOverall counselling ate26.4%= bu * bvbxNumber in counselling12.1%VbzLength of recurrent MDD counselling, years0.75VcaDepression-free life years gained due to counselling411= bx * by * bz * bsPersistent MDDConstruction of MDD cases correctly identified, overall4,845= ak * amccRate of persistent MDD in correct diagnoses5.7%Vcdakt of first year anti-depressant use23.6%VccRate of first year anti-depressant use23.6%Vcdinclai Improvement rate due to anti-depressants25.7%Vcdakt of first year anti-depressant use23.6%Vcdakt of first year anti-depressant use23.6%Vcdclicia Improvement rate due to anti-depressants25.7%Vcdclicia Improvement rate due to anti-depressants, year 116.7= cd * cg * chcd * cg * ch276= cd * cgcd * cg * ch1cd * cg * ch1cd * cg * cd * cgclicical improvement rate due to anti-depressants, year 2 - 2010.0%VckNumber of persistent MDDcd * cg * cd * cg <td co<="" td=""><td>Dt</td><td>Depression-free life years gained due to anti-depressants</td><td>1,041</td><td></td></td>	<td>Dt</td> <td>Depression-free life years gained due to anti-depressants</td> <td>1,041</td> <td></td>	Dt	Depression-free life years gained due to anti-depressants	1,041	
bwOverall counselling rate 30.7% VbwNumber in counselling 566 $= bn * bw$ byClinical improvement rate due to counselling 12.1% VbzLength of recurrent MDD counselling, years 0.75 VcaDepression-free life years gained due to counselling 411 $= bx * by * bz * bs$ Persistent MDDbbNumber of MDD cases correctly identified, overall 4.845 $= ak * am$ ccRate of persistent MDD cases 5.7% Vcaake of first year anti-depressant use 23.6% VcRate of first year anti-depressants 25.7% VceRate of first year anti-depressants 25.7% Vchick at the intervention of the persist persist of the persist persist of the persist pe	bu	Pete sourcelling energy treatment and liers	52.0%	V	
bx Number in counselling rate 26.4% = b0 * bw bx Number in counselling, years 0.75 V ca Depression-free life years gained due to counselling, years 0.75 V ca Depression-free life years gained due to counselling, years 0.75 V ca Depression-free life years gained due to counselling, years 0.75 V cb Number of MDD cases correctly identified, overall 4.845 = ak * am cc Rate of persistent MDD cases 276 = cb * cc ce Rate of first year anti-depressant use 23.6% V cd Number on anti-depressants 25.7% V cd Rumern tate due to anti-depressants, year 1 16.7 = cd * ce cg Clinical improvement rate due to anti-depressants, year 1 16.7 = cd * cj ci Rate of anti-depressant use years 2-20 100.0% V ck Number on anti-depressants 25.7% V cm Length of treatment 1.0 V V ck Number on anti-depressants 25.7% V V V <t< td=""><td>DV</td><td></td><td>50.7%</td><td>V</td></t<>	DV		50.7%	V	
bx Number in counselling 566 = 0n * bw by Clinical improvement rate due to counselling 12.1% V ca Depression-free life years gained due to counselling 411 = bx * by * bz * bs exact of persistent MDD cases correctly identified, overall 4,845 = ak * am cc Rate of persistent MDD cases 276 = cb * cc cd Number of persistent MDD cases 276 = cb * cc cd Number on anti-depressant use 23.6% V cf Number on anti-depressant use 25.7% V cd Number of persistent MDD cases 25.7% V cd Rate of first year anti-depressants 25.7% V cd Number on anti-depressants 25.7% V cd Depression-free life years gained due to anti-depressants, year 1 16.7 = cd * ce ed * ce cd Rate of anti-depressant use years 2 - 20 100.0% V V cd Number on anti-depressants 276 = cd * cd cd cd Clinical improvement rate due to anti-depressants, years 2 - 20 1,348 = ck * cl * cm <td>wd</td> <td></td> <td>26.4%</td> <td>= bu * bv</td>	wd		26.4%	= bu * bv	
by Clinical improvement rate due to counselling 12.1% V bz Length of recurrent MDD counselling, years 0.75 V ca Depression-free life years gained due to counselling 411 =bx * by * bz * bs cb Number of MDD cases correctly identified, overall 4,845 =ak * am cc Rate of persistent MDD correct diagnoses 5.7% V cd Number of persistent MDD cases 276 = cb * cc ce Rate of first year anti-depressant use 23.6% V cf Number on anti-depressant use 23.6% V cd Inumber on anti-depressant use 10.0 V cd Inumber on anti-depressant use years 2 - 20 100.0% V ck Number on anti-depressant use years 2 - 20 100.0% V ck Number on anti-depressants 25.7% V ck Number on anti-depressants 25.7% V cd Clinical improvement rate due to anti-depressants, years 2 - 20 100.0% V ck Number on anti-depressants 25.7% V V ck Number	bx	Number in counselling	566	= bn * bw	
bz Length of recurrent MDD counselling, years 0.75 V ca Depression-free life years gained due to counselling 411 = bx * by * bz * bs ca Depression-free life years gained due to counselling 411 = bx * by * bz * bs cb Number of MDD cases correctly identified, overall 4,845 = ak * am cc Rate of persistent MDD in correct diagnoses 5.7% V cd Number of persistent MDD cases 23.6% V cd Number on anti-depressant use 23.6% V cf Number on anti-depressant use 25.7% V ch Length of treatment 1.0 V cd Depression-free life years gained due to anti-depressants, year 1 16.7 = cf * cg * ch cj Rate of anti-depressant use years 2 - 20 100.0% V ck Number on anti-depressant use years 2 - 20 100.0% V cm Length of treatment 19.0 V V cd Clinical improvement rate due to anti-depressants, years 2 - 20 1,348 = ck * cl * cm co Treatment seeking rate 52.0% V	by	Clinical improvement rate due to counselling	12.1%	V	
case Depression-free life years gained due to counselling 411 = bx * by * bz * bs Persistent MDD Persistent MDD Persistent MDD cc Rate of persistent MDD in correct diagnoses 5.7% V cd Number of Persistent MDD cases 276 = cb * cc ce Rate of first year anti-depressant use 23.6% V cf Number on anti-depressant use 23.6% V cf Number on anti-depressant use 25.7% V ch Length of treatment 1.0 V cd Depression-free life years gained due to anti-depressants, year 1 16.7 = cf * cg * ch cj Rate of anti-depressant use years 2 - 20 100.0% V ck Number on anti-depressant use years 2 - 20 100.0% V ck Number on anti-depressant use years 2 - 20 100.0% V cd Clinical improvement rate due to anti-depressants, year 2 - 20 1,348 = ck * cl * cm cd Clinical improvement rate due to anti-depressants, years 2 - 20 1,348 = ck * cl * cm cd O V V V V	bz	Length of recurrent MDD counselling, years	0.75	V	
Persistent MDDcbNumber of MDD cases correctly identified, overall4,845= ak * amccRate of persistent MDD in correct diagnoses5.7%VcdNumber of persistent MDD cases276= cb * ccceRate of first year anti-depressant use23.6%VcfNumber on anti-depressant use65= cd * cecgClinical improvement rate due to anti-depressants25.7%VchLength of treatment1.0VchLength of treatment1.0VckNumber on anti-depressants276= cd * cg * chcjRate of anti-depressant use years 2 - 20100.0%VckNumber on anti-depressants276= cd * cjcdClinical improvement rate due to anti-depressants276= cd * cjcdClinical improvement rate due to anti-depressants276= cd * cjcdClinical improvement rate due to anti-depressants, years 2 - 201,348= ck * cl * cmcoTreatment seeking rate52.0%VVcdDepression-free life years gained due to anti-depressants, years 2 - 201,348= ck * cl * cmcoTreatment seeking rate52.0%VVcdQuerall counselling among treatment seekers50.7%VcdQuerall counselling mong treatment seekers50.7%VcdClinical improvement rate due to counselling12.1%VctLength of effect persistent event MDD counselling,	са	Depression-free life years gained due to counselling	411	= bx * by * bz *bs	
cbNumber of MDD cases correctly identified, overall4,845 $= ak^* am$ ccRate of persistent MDD in correct diagnoses5.7%VcdNumber of persistent MDD cases276 $= cb^* cc$ ceRate of first year anti-depressant use23.6%VcfNumber on anti-depressants65 $= cd^* ce$ cgClinical improvement rate due to anti-depressants, 25.7%VchLength of treatment1.0VchDepression-free life years gained due to anti-depressants, year 116.7 $= cf^* cg^* ch$ cjRate of anti-depressant use years 2 · 20100.0%VckNumber on anti-depressants25.7%VcdClinical improvement rate due to anti-depressants, year 116.7 $= cd^* cg^* ch$ cdClinical improvement rate due to anti-depressants, year 2 · 20100.0%VcmLength of treatment19.0VcmLength of treatment19.0VcmLength of treatment seeking rate52.0%VcoTreatment seeking rate50.7%VcqOverall counselling among treatment seekers50.7%VcqOverall counselling rate26.4% $= co^* cp$ crNumber in counselling73 $= cd^* cq$ csClinical improvement rate due to counselling, years20.0VcdLength of effect persistent event MDD counselling, years20.0VcdLength of effect persistent event MDD counselling <t< td=""><td></td><td>Persistent MDD</td><td></td><td></td></t<>		Persistent MDD			
ccRate of persistent MDD in correct diagnoses5.7%VcdNumber of persistent MDD cases276= cb * ccceRate of first year anti-depressant use23.6%VcfNumber on anti-depressant use25.7%VchLength of treatment1.0VciDepression-free life years gained due to anti-depressants, year 116.7= cf * cg * chcjRate of anti-depressant use years 2 · 20100.0%VckNumber on anti-depressant use years 2 · 20100.0%VckNumber on anti-depressants25.7%VcmLength of treatment19.0VcmLength of treatment19.0VcmLength of treatment19.0VcoTreatment seeking rate52.0%VcoTreatment seeking rate52.0%VcoTreatment seeking rate52.0%VcoTreatment seeking rate26.4%= co * cpcrNumber in counselling among treatment seekers50.7%VcdDepression-free life years gained due to counselling12.1%VctLength of effect persistent event MDD counselling, years20.0VctLength of effect persistent event MDD counselling176= cr * cs * ctccSummary of QALYS Gained with Screening17.1% x wcvIndividuals with MDD helped by treatment448= aw * ((az * bb) + (bg * bi))cwDepression free life yea	cb	Number of MDD cases correctly identified, overall	4,845	= ak * am	
cdNumber of persistent MDD cases 276 $= cb * cc$ ceRate of first year anti-depressant use 23.6% \vee cfNumber on anti-depressants 65 $= cd * ce$ cgClinical improvement rate due to anti-depressants 25.7% \vee chLength of treatment 1.0 \vee ciDepression-free life years gained due to anti-depressants, year 1 16.7 $= cf * cg * ch$ cjRate of anti-depressant use years 2 - 20 100.0% \vee ckNumber on anti-depressants 276 $= cd * cj$ cdClinical improvement rate due to anti-depressants 25.7% \vee cmLength of treatment 19.0 \vee cmLength of treatment 19.0 \vee cmLength of treatment 19.0 \vee coTreatment seeking rate 52.7% \vee cqOverall counselling among treatment seekers 50.7% \vee cqOverall counselling rate 26.4% $= co * cp$ crNumber in counselling 73 $= cd * cq$ csClinical improvement rate due to counselling, years 20.0 \vee cuDepression-free life years gained due to uselling, years 20.0 \vee ctLength of effect persistent event MDD counselling, years 20.0 \vee ctLength of effect persistent event MDD counselling, years 20.0 \vee cuDepression-free life years due to screening 176 $= cr * cs * ct$ Summ	CC	Rate of persistent MDD in correct diagnoses	5.7%	V	
ccRate of first year anti-depressant use23.6%VcfNumber on anti-depressants65= cd * cecgClinical improvement rate due to anti-depressants25.7%VchLength of treatment1.0VciDepression-free life years gained due to anti-depressants, year 116.7= cf * cg * chcjRate of anti-depressant use years 2 - 20100.0%VckNumber on anti-depressants276= cd * cjclClinical improvement rate due to anti-depressants276VcmLength of treatment19.0VcmLength of treatment19.0VcmDepression-free life years gained due to anti-depressants, years 2 - 201,348= ck * cl * cmcoTreatment seeking rate52.0%VcoTreatment seeking rate52.0%VcqOverrall counselling rate26.4%= co * cpcrNumber in counselling73= cd * cqcsClinical improvement rate due to counselling, years20.0VctLength of effect persistent event MDD counselling, years20.0VcuDepression-free life years gained due to screening176= cr * cs * ctcvIndividuals with MDD helped by treatment448= aw * ((az * bb) + (bg * bi))cwDepression free life years with MDD due to screening17.19%= cw / ycvIndividuals with MDD helped by treatment448= aw * ((az * bb) + (bc + ca) + (ci + cn + cu) <td>cd</td> <td>Number of persistent MDD cases</td> <td>276</td> <td>= cb * cc</td>	cd	Number of persistent MDD cases	276	= cb * cc	
cfNumber on anti-depressants65= cd * cecgClinical improvement rate due to anti-depressants25.7%VchLength of treatment1.0VcdDepression-free life years gained due to anti-depressants, year 116.7= cf * cg * chcjRate of anti-depressant use years 2 - 20100.0%VckNumber on anti-depressants276= cd * cjclClinical improvement rate due to anti-depressants25.7%VcmLength of treatment19.0VcmDepression-free life years gained due to anti-depressants, years 2 - 201,348= ck * cl * cmcoTreatment seeking rate52.0%VcoTreatment seeking rate50.7%VcqOverall counselling among treatment seekers50.7%VcqOverall counselling rate26.4%= co * cpcrNumber in counselling173= cd * cqctLength of effect persistent event MDD counselling, years20.0VctLength of effect persistent event MDD counselling176= cr * cs * ctcvIndividuals with MDD helped by treatment448= aw * ((az * bb) + (bg * bi))cwDepression free life years due to screening, correctly diagnosed MDD3,086= (bd + bk) + (bt + ca) + (ci + cn + cu)cxReduction in % of total life years with MDD due to screening17.19%= cw / ycyQALYs gained due to screening, correctly diagnosed MDD	се	Rate of first year anti-depressant use	23.6%	V	
cgClinical improvement rate due to anti-depressants25.7%VchLength of treatment1.0VciDepression-free life years gained due to anti-depressants, year 116.7 $=$ cf * cg * chcjRate of anti-depressant use years 2 · 20100.0%VckNumber on anti-depressants276 $=$ cd * cjclClinical improvement rate due to anti-depressants25.7%VcmLength of treatment19.0VcmLength of treatment19.0VcoTreatment seeking rate52.0%VcoTreatment seeking rate52.0%VcqOverall counselling among treatment seekers50.7%VcqOverall counselling rate26.4% $=$ co * cpcrNumber in counselling73 $=$ cd * cqcsClinical improvement rate due to counselling, years20.0VctLength of effect persistent event MDD counselling, years20.0VcuDepression-free life years gained due to screening176 $=$ cr * cs * ctSummary of QALYS Gained with ScreeningcvIndividuals with MDD helped by treatment448 $=$ aw * ((az * bb) + (bg * bi))cwDepression free life years due to screening, correctly diagnosed MDD3,086 $=$ (bd + bk) + (bt + ca) + (ci + cn + cu)cxReduction in % of total life years with MDD due to screening17.19% $=$ cw / ycyQALYs gained due to screening, correctly diagnosed MDD1,174	cf	Number on anti-depressants	65	= cd * ce	
chLength of treatment1.0VciDepression-free life years gained due to anti-depressants, year 116.7= cf * cg * chcjRate of anti-depressant use years 2 - 20100.0%VckNumber on anti-depressants276= cd * cjclClinical improvement rate due to anti-depressants25.7%VcmLength of treatment19.0VcnDepression-free life years gained due to anti-depressants, years 2 - 201,348= ck * cl * cmcoTreatment seeking rate52.0%VcpRate counselling among treatment seekers50.7%VcqOverall counselling rate26.4%= co * cpcrNumber in counselling73= cd * cqcsClinical improvement rate due to counselling, years20.0VctLength of effect persistent event MDD counselling, years20.0VcuDepression-free life years gained due to counselling176= cr * cs * ctSummary of QALYS Gained with Screening17.6= cr * cs * ctcvIndividuals with MDD helped by treatment448= aw * ((az * bb) + (bg * bi))cwDepression free life years with MDD due to screening17.19%= cw / ycyQALYS gained due to screening, correctly diagnosed MDD1,078= cv + cz	cg	Clinical improvement rate due to anti-depressants	25.7%	V	
ciDepression-free life years gained due to anti-depressants, year 116.7= cf * cg * chcjRate of anti-depressant use years 2 - 20100.0%VckNumber on anti-depressants276= cd * cjclClinical improvement rate due to anti-depressants25.7%VcmLength of treatment19.0VcnDepression-free life years gained due to anti-depressants, years 2 - 201,348= ck * cl * cmcoTreatment seeking rate52.0%VcqOverall counselling among treatment seekers50.7%VcqOverall counselling rate26.4%= co * cpcrNumber in counselling73= cd * cqcsClinical improvement rate due to counselling, years20.0VctLength of effect persistent event MDD counselling, years20.0VctLength of effect persistent event MDD counselling176= cr * cs * ctSummary of QALYS Gained with Screening17.19%= aw * ((az * bb) + (bg * bi))cwDepression free life years with MDD due to screening17.19%= cw / ycyQALYs gained due to screening, correctly diagnosed MDD3,086= (bd + bk) + (bt + ca) + (ci + cn + cu)cxReduction in % of total life years with MDD due to screening17.19%= cw / ycyQALYs gained due to screening, correctly diagnosed MDD-96= awdaNet QALYs as a result of screening (CPB)1,078= cy + cz	ch	Length of treatment	1.0	V	
cjRate of anti-depressant use years 2 - 20100.0%VckNumber on anti-depressants276= cd * cjclClinical improvement rate due to anti-depressants25.7%VcmLength of treatment19.0VcnDepression-free life years gained due to anti-depressants, years 2 - 201,348= ck * cl * cmcoTreatment seeking rate52.0%VcqOverall counselling among treatment seekers50.7%VcqOverall counselling rate26.4%= co * cpcrNumber in counselling73= cd * cqcsClinical improvement rate due to counselling, years20.0VctLength of effect persistent event MDD counselling, years20.0VctLength of effect persistent event MDD counselling176= cr * cs * ctSummary of QALYS Gained with ScreeningcvIndividuals with MDD helped by treatment448= aw * ((az * bb) + (bg * bi))cwDepression free life years with MDD due to screening17.19%= cw / ycvIndividuals with MDD helped by treatment448= aw * ((az * bb) + (ci + cn + cu)cxReduction in % of total life years with MDD due to screening17.19%= cw / ycyQALYs gained due to screening, correctly diagnosed MDD1,174= cx * adczQALYs due to treating incorrectly diagnosed MDD-96= avdaNet QALYs as a result of screening (CPB)1,078= cy + cz	ci	Depression-free life years gained due to anti-depressants, year 1	16.7	= cf * cg * ch	
ckNumber on anti-depressants276= cd * cjclClinical improvement rate due to anti-depressants25.7%VcmLength of treatment19.0VcnDepression-free life years gained due to anti-depressants, years 2 - 201,348= ck * cl * cmcoTreatment seeking rate52.0%VcpRate counselling among treatment seekers50.7%VcqOverall counselling rate26.4%= co * cpcrNumber in counselling73= cd * cqcsClinical improvement rate due to counselling, years20.0VctLength of effect persistent event MDD counselling, years20.0VcuDepression-free life years gained due to counselling176= cr * cs * ctSummary of QALYs Gained with ScreeningcvIndividuals with MDD helped by treatment448= aw * ((az * bb) + (bg * bi))cwDepression free life years due to screening, correctly diagnosed MDD3,086= (bd + bk) + (bt + ca) + (ci + cn + cu)cxReduction in % of total life years with MDD due to screening17.19%= cw / ycyQALYs gained due to screening, correctly diagnosed MDD1,174= cx * adczQALYs due to treating incorrectly diagnosed MDD-96= avdaNet QALYs as a result of screening (CPB)1,078= cy + cz	cj	Rate of anti-depressant use years 2 - 20	100.0%	V	
clClinical improvement rate due to anti-depressants25.7%VcmLength of treatment19.0VcnDepression-free life years gained due to anti-depressants, years 2 - 201,348= ck * cl * cmcoTreatment seeking rate52.0%VcpRate counselling among treatment seekers50.7%VcqOverall counselling rate26.4%= co * cpcrNumber in counselling73= cd * cqcsClinical improvement rate due to counselling, years20.0VctLength of effect persistent event MDD counselling, years20.0VcuDepression-free life years gained due to counselling176= cr * cs * ctSummary of QALYS Gained with ScreeningcvIndividuals with MDD helped by treatment448= aw * ((az * bb) + (bg * bi))cwDepression free life years with MDD due to screening17.19%= cw / ycyQALYs gained due to screening, correctly diagnosed MDD1,174= cx * adczQALYs due to treating incorrectly diagnosed MDD-96= avdaNet QALYs as a result of screening (CPB)1,078= cy + cz	ck	Number on anti-depressants	276	= cd * cj	
cmLength of treatment19.0VcnDepression-free life years gained due to anti-depressants, years 2 - 201,348= ck * cl * cmcoTreatment seeking rate52.0%VcpRate counselling among treatment seekers50.7%VcqOverall counselling rate26.4%= co * cpcrNumber in counselling73= cd * cqcsClinical improvement rate due to counselling, years20.0VctLength of effect persistent event MDD counselling, years20.0VcuDepression-free life years gained due to counselling176= cr * cs * ctSummary of QALYS Gained with ScreeningcvIndividuals with MDD helped by treatment448= aw * ((az * bb) + (bg * bi))cwDepression free life years with MDD due to screening17.19%= cw / ycxReduction in % of total life years with MDD due to screening17.19%= cw / ycyQALYs gained due to creening, correctly diagnosed MDD1,174= cx * adczQALYs due to treating incorrectly diagnosed MDD-96= avdaNet QALYs as a result of screening (CPB)1,078= cy + cz	cl	Clinical improvement rate due to anti-depressants	25.7%	V	
cnDepression-free life years gained due to anti-depressants, years 2 - 201,348= ck * cl * cmcoTreatment seeking rate52.0%VcpRate counselling among treatment seekers50.7%VcqOverall counselling rate26.4%= co * cpcrNumber in counselling73= cd * cqcsClinical improvement rate due to counselling, years20.0VctLength of effect persistent event MDD counselling, years20.0VcuDepression-free life years gained due to counselling176= cr * cs * ctSummary of QALYS Gained with ScreeningcvIndividuals with MDD helped by treatment448= aw * ((az * bb) + (bg * bi))cwDepression free life years due to screening, correctly diagnosed MDD3,086= (bd + bk) + (bt + ca) + (ci + cn + cu)cxReduction in % of total life years with MDD due to screening17.19%= cw / ycyQALYs gained due to creening, correctly diagnosed MDD1,174= cx * adczQALYs due to treating incorrectly diagnosed MDD-96= avdaNet QALYs as a result of screening (CPB)1,078= cy + cz	cm	Length of treatment	19.0	V	
coTreatment seeking rate52.0%VcpRate counselling among treatment seekers50.7%VcqOverall counselling rate26.4%= co * cpcrNumber in counselling73= cd * cqcsClinical improvement rate due to counselling, years20.0VctLength of effect persistent event MDD counselling, years20.0VcuDepression-free life years gained due to counselling176= cr * cs * ctSummary of QALYs Gained with ScreeningcvIndividuals with MDD helped by treatment448= aw * ((az * bb) + (bg * bi))cwDepression free life years due to screening, correctly diagnosed MDD3,086= (bd + bk) + (bt + ca) + (ci + cn + cu)cxReduction in % of total life years with MDD due to screening17.19%= cw / ycyQALYs gained due to screening, correctly diagnosed MDD1,174= cx * adczQALYs due to treating incorrectly diagnosed MDD-96= avdaNet QALYs as a result of screening (CPB)1,078= cy + cz	cn	Depression-free life years gained due to anti-depressants, years 2 - 20	1,348	= ck * cl * cm	
cpRate counselling among treatment seekers50.7%VcqOverall counselling rate26.4%= co * cpcrNumber in counselling73= cd * cqcsClinical improvement rate due to counselling, years12.1%VctLength of effect persistent event MDD counselling, years20.0VcuDepression-free life years gained due to counselling176= cr * cs * ctSummary of QALYs Gained with ScreeningcvIndividuals with MDD helped by treatment448= aw * ((az * bb) + (bg * bi))cwDepression free life years due to screening, correctly diagnosed MDD3,086= (bd + bk) + (bt + ca) + (ci + cn + cu)cxReduction in % of total life years with MDD due to screening17.19%= cw / ycyQALYs gained due to screening, correctly diagnosed MDD1,174= cx * adczQALYs due to treating incorrectly diagnosed MDD-96= avdaNet QALYs as a result of screening (CPB)1,078= cy + cz	со	Treatment seeking rate	52.0%	V	
cqOverall counselling rate26.4%= co * cpcrNumber in counselling73= cd * cqcsClinical improvement rate due to counselling12.1%VctLength of effect persistent event MDD counselling, years20.0VcuDepression-free life years gained due to counselling176= cr * cs * ctSummary of QALYs Gained with ScreeningcvIndividuals with MDD helped by treatment448= aw * ((az * bb) + (bg * bi))cwDepression free life years due to screening, correctly diagnosed MDD3,086= (bd + bk) + (bt + ca) + (ci + cn + cu)cxReduction in % of total life years with MDD due to screening17.19%= cw / ycyQALYs gained due to screening, correctly diagnosed MDD1,174= cx * adczQALYs due to treating incorrectly diagnosed MDD-96= avdaNet QALYs as a result of screening (CPB)1,078= cy + cz	ср	Rate counselling among treatment seekers	50.7%	V	
crNumber in counselling73= cd * cqcsClinical improvement rate due to counselling12.1%VctLength of effect persistent event MDD counselling, years20.0VcuDepression-free life years gained due to counselling176= cr * cs * ctSummary of QALYs Gained with ScreeningcvIndividuals with MDD helped by treatment448= aw * ((az * bb) + (bg * bi))cwDepression free life years due to screening, correctly diagnosed MDD3,086= (bd + bk) + (bt + ca) + (ci + cn + cu)cxReduction in % of total life years with MDD due to screening17.19%= cw / ycyQALYs gained due to screening, correctly diagnosed MDD1,174= cx * adczQALYs due to treating incorrectly diagnosed MDD-96= avdaNet QALYs as a result of screening (CPB)1,078= cy + cz	cq	Overall counselling rate	26.4%	= co * cp	
csClinical improvement rate due to counselling12.1%VctLength of effect persistent event MDD counselling, years20.0VcuDepression-free life years gained due to counselling176= cr * cs * ctSummary of QALYs Gained with ScreeningcvIndividuals with MDD helped by treatment448= aw * ((az * bb) + (bg * bi))cwDepression free life years due to screening, correctly diagnosed MDD3,086= (bd + bk) + (bt + ca) + (ci + cn + cu)cxReduction in % of total life years with MDD due to screening17.19%= cw / ycyQALYs gained due to screening, correctly diagnosed MDD1,174= cx * adczQALYs due to treating incorrectly diagnosed MDD-96= avdaNet QALYs as a result of screening (CPB)1,078= cy + cz	cr	Number in counselling	73	= cd * cq	
ct Length of effect persistent event MDD counselling, years 20.0 V cu Depression-free life years gained due to counselling 176 = cr * cs * ct Summary of QALYs Gained with Screening 176 = cr * cs * ct cv Individuals with MDD helped by treatment 448 = aw * ((az * bb) + (bg * bi)) cw Depression free life years due to screening, correctly diagnosed MDD 3,086 = (bd + bk) + (bt + ca) + (ci + cn + cu) cx Reduction in % of total life years with MDD due to screening 17.19% = cw / y cy QALYs gained due to screening, correctly diagnosed MDD 1,174 = cx * ad cz QALYs due to treating incorrectly diagnosed MDD -96 = av da Net QALYs as a result of screening (CPB) 1,078 = cy + cz	CS	Clinical improvement rate due to counselling	12.1%	V	
cu Depression-free life years gained due to counselling 176 = cr * cs * ct Summary of QALYs Gained with Screening 176 = cr * cs * ct cv Individuals with MDD helped by treatment 448 = aw * ((az * bb) + (bg * bi)) cw Depression free life years due to screening, correctly diagnosed MDD 3,086 = (bd + bk) + (bt + ca) + (ci + cn + cu) cx Reduction in % of total life years with MDD due to screening 17.19% = cw / y cy QALYs gained due to screening, correctly diagnosed MDD 1,174 = cx * ad cz QALYs due to treating incorrectly diagnosed MDD -96 = av da Net QALYs as a result of screening (CPB) 1,078 = cy + cz	ct	Length of effect persistent event MDD counselling, years	20.0	V	
Summary of QALYs Gained with Screening cv Individuals with MDD helped by treatment 448 = aw * ((az * bb) + (bg * bi)) cw Depression free life years due to screening, correctly diagnosed MDD 3,086 = (bd + bk) + (bt + ca) + (ci + cn + cu) cx Reduction in % of total life years with MDD due to screening 17.19% = cw / y cy QALYs gained due to screening, correctly diagnosed MDD 1,174 = cx * ad cz QALYs due to treating incorrectly diagnosed MDD -96 = av da Net QALYs as a result of screening (CPB) 1,078 = cy + cz	cu	Depression-free life years gained due to counselling	176	= cr * cs * ct	
cv Individuals with MDD helped by treatment 448 = aw * ((az * bb) + (bg * bi)) cw Depression free life years due to screening, correctly diagnosed MDD 3,086 = (bd + bk) + (bt + ca) + (ci + cn + cu) cx Reduction in % of total life years with MDD due to screening 17.19% = cw / y cy QALYs gained due to screening, correctly diagnosed MDD 1,174 = cx * ad cz QALYs due to treating incorrectly diagnosed MDD -96 = av da Net QALYs as a result of screening (CPB) 1,078 = cy + cz		Summary of QALYs Gained with Screening			
cw Depression free life years due to screening, correctly diagnosed MDD 3,086 = (bd + bk) + (bt + ca) + (ci + cn + cu) cx Reduction in % of total life years with MDD due to screening 17.19% = cw / y cy QALYs gained due to screening, correctly diagnosed MDD 1,174 = cx * ad cz QALYs due to treating incorrectly diagnosed MDD -96 = av da Net QALYs as a result of screening (CPB) 1,078 = cy + cz	cv	Individuals with MDD helped by treatment	448	= aw * ((az * bb) + (bg * bi))	
cx Reduction in % of total life years with MDD due to screening 17.19% = cw / y cy QALYs gained due to screening, correctly diagnosed MDD 1,174 = cx * ad cz QALYs due to treating incorrectly diagnosed MDD -96 = av da Net QALYs as a result of screening (CPB) 1,078 = cy + cz	CW	Depression free life years due to screening, correctly diagnosed MDD	3,086	= (bd + bk) + (bt + ca) + (ci + cn + cu)	
cy QALYs gained due to screening, correctly diagnosed MDD 1,174 = cx * ad cz QALYs due to treating incorrectly diagnosed MDD -96 = av da Net QALYs as a result of screening (CPB) 1,078 = cy + cz	СХ	Reduction in % of total life years with MDD due to screening	17.19%	= cw / y	
cz QALYs due to treating incorrectly diagnosed MDD -96 = av da Net QALYs as a result of screening (CPB) 1,078 = cy + cz	су	QALYs gained due to screening, correctly diagnosed MDD	1,174	= cx * ad	
da Net QALYs as a result of screening (CPB) 1,078 = cy + cz	CZ	QALYs due to treating incorrectly diagnosed MDD	-96	= av	
	da	Net QALYs as a result of screening (CPB)	1,078	= cy + cz	

√ = Estimates from the literature

For the sensitivity analysis of the base model for females, we modified a number of major assumptions and recalculated the CPB as follows:

- Assume the rate of undetected MDD decreases from 25% to 15% (Table 6b, row *ae*): CPB = 609
- Assume the rate of undetected MDD increases from 25% to 35% (Table 6b, row *ae*): **CPB = 1,548**
- Assume a second round of screening (with BDI) is introduced, with a sensitivity of 86.9% and a specificity of 83.5% (Table 6b, rows *am* & *an*): CPB = 1,004
- Assume the rate of treatment seeking increases from 52.0% to 70.7% (Table 6b, row *be*): CPB = 1,161
- Assume the rate of treatment seeking decreases from 52.0% to 33.3% (Table 6b, row *be*): CPB = 995
- Assume the QoL decrement for depression is reduced from 31% to 15% (Table 6b, row *z*) and the QoL decrement for anti-depressant maintenance therapy is reduced from 8% to 0% (i.e. no decrement) (Table 6b, row *au*): CPB = 680
- Assume the QoL decrement for depression is increased from 31% to 45% (Table 6b, row *z*) and the QoL decrement for anti-depressant maintenance therapy is increased from 8% to 26% (Table 6b, row *au*): CPB = 1,295
- Assume that the screening rate is only applied to one visit per year per patient, rather than 2.42 (Table 6b, row *ag*): **CPB = 445**

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with screening for major depressive disorder in adolescents.

In modelling CE, we made the following assumptions:

- An adolescent depression screening rate of 7.4% (Table 7, row *c*), completed at each well-care visit, or 2.07 times per year (Table 7, row *b*),¹²⁹ during the seven years of an adolescent's life between 12 and 18 years of age. We model the number available for screening as the sum of adolescents of each age in the cohort (Table 7, row *a*).
- The cost of each 10 minute primary care provider office visit is \$35.97 (see Reference Document) (Table 7, row *e*).
- The value of patient time for each visit to a primary care office is \$74.32 (see Reference Document) (Table 7, row *f*).
- The proportion of each office visit attributable to screening is 50% (see Reference Document) (Table 7, row *g*).
- If a second screening is applied (Table 7, row *k*), then all individuals with a positive screen on the first test make another visit to their primary care provider for the second screen. 50% of the office visit time is assumed to be used for the second screen (Table 7, row *g*).
- Both the PHQ-A¹³⁰ and BDI are available online. The PHQ-A is free, but the BDI is copyright (though unlicensed copies exist online) and therefore each use of the BDI is considered to occur through properly licensed channels and cost \$5.05 per use (Table 7, row n).¹³¹
- We have assumed that each positive depression diagnosis results in one (1) follow-up visit to the primary care provider. It is assumed that the entire visit is devoted to the depression diagnosis (100% of office visit cost and patient cost) (Table 7, row *r*).
- We have assumed that each depression diagnosis resulting in a course of antidepressant medication results in two (2) additional visits to a primary care provider to monitor prescription effectiveness (Table 7, row *ab*).
- We model treatment for those with a positive MDD screen by time period as follows:
 - \circ 0 3 months after screening: 19.7% of positive screened adolescents are taking anti-depressants (Table 7, row *t*).
 - For males this rate is 17.5% (Table 7a, row *t*)
 - For females this rate is 20.9% (Table 7b, row *t*)
 - \circ 4 6 months after screening: 22.2% of positive screen adolescents are taking anti-depressants and 25.6% are in counselling or therapy (Table 7 row *ad*),

¹²⁹ Sekhar DL, Ba DM, Liu G et al. Major depressive disorder screening remains low even among privately insured adolescents. *Journal of Pediatrics*. 2018: Available at <u>https://www-sciencedirect-com.ezproxy.library.ubc.ca/science/article/pii/S0022347618310850</u>. Accessed December 2018.

¹³⁰ PHQ-9 modified for Adolescents (PHQ-A) Available at <u>http://www.uacap.org/uploads/3/2/5/0/3250432/phq-</u>a.pdf. Accessed November 2018.

¹³¹ Pearson Clinical Assessment Canada. *Beck Depression Inventory*®—II. 2018. Available at https://www.pearsonclinical.ca/store/caassessments/en/Store/Professional-Assessments/Personality-%26-Biopsychosocial/Brief/Beck-Depression-Inventory-II/p/P100008037.html. Accessed March 2023.

with half of the therapy group in individual sessions and half in group sessions.

- For males the counselling rate is 22.1% (Table 7a row *ad*).
- For females the counselling rate is 26.4% (Table 7b row *ad*).
- \circ 7 12 months after screening: 22.2% of **correctly diagnosed** adolescents with **recurrent or persistent MDD** are on anti-depressants and 25.6% are in counselling or therapy, with half of the therapy group in individual sessions and half in group sessions (To avoid double-counting, counselling for these individuals is modelled in the 4 6 month time period).
- \circ 13+ months after screening: all of the **correctly diagnosed** adolescents with **persistent MDD** are on anti-depressants. We assume that the 25.6% in counselling or therapy receive four (4) individual sessions annually (Table 7 row *bk*).
 - For males the counselling rate is 22.1% (Table 7a row *bk*).
 - For females the counselling rate is 26.4% (Table 7b row *bk*).
- Recurrent MDD: for each year of recurrent MDD, 22.2% of individuals with recurrent MDD take anti-depressants and 25.6% receive therapy (Table 7 row *cc*).
 - For males the counselling rate is 22.1% (Table 7a row *cc*).

Treatment Modeling for Positive MDD Screens								
		Ti	False Positive					
		Single Event	Recurrent	Persistent	Screens			
0-3 Months	Pharmacological		19.7% anti-depressant rate					
0 - 5 พื้อกับกับ	Therapeutic		None					
1 - 6 Months	Pharmacological	22.2% anti-depressant rate						
4 - 0 101011113	Therapeutic							
7 12 Months	Pharmacological		22.2% anti-depressant rate					
7 - 12 Wommis	Therapeutic		25.6% receiving therapy					
	Pharmacological	No treatment		100% anti-	No treatment			
12+ Months	Pharmacological		No Treatment	depressant rate				
	Therapeutic			25.6% receiving				
	merapeutic			therapy				

• For females the counselling rate is 26.4% (Table 7b row *cc*).

- 50% of the MDD cases are single events and 50% will be recurrent (Table 7, row *ax*), split into 5.3% (Table 7, row *bf*) of the total that are persistent (i.e. requiring continuing treatment) and 44.7% of the total that occur on a recurrent basis (Table 7, row *bu*).
- For males, 50% of MDD cases will be recurrent (Table 7a, row *ax*), split into 4.7% (Table 7a, row *bf*) of the total that are persistent (i.e. requiring continuing treatment) and 45.3% of the total that occur on a recurrent basis (Table 7a, row *bu*).

- For females, 50% of MDD cases will be recurrent (Table 7, row *ax*), split into 5.7% (Table 7, row *bf*) of the total that are persistent (i.e. requiring continuing treatment) and 44.3% of the total that occur on a recurrent basis (Table 7, row *bu*).
- Each patient with persistent MDD visits their primary care provider an additional 2 times each year for mental health related matters.^{132,133} (Table 7, row *bs*)
- Treatment length for persistent MDD is modelled at 20 years, in keeping with Tables 4 & 5.
- For recurrent cases, there are an additional 7 episodes after the index MDD episode (Table 7, row *bw*). For discounting purposes, we model these as occurring eight years apart throughout the lifetime of the affected individuals.
- When group CBT is given, it is typically provided in a group setting of 10 individuals and lasts between 10 – 15 sessions. Each session is approximately 1.5 hours long (Table 7, row *an*).¹³⁴
- We assume one hour of total travel time per patient to attend each CBT session (Table 7, row *ao*).
- We assume that each session is provided by a grade III clinical social worker, Level 13 with 6 years of experience. We assume 25% benefits and 40% non-worked hours and a wage rate of \$48.01 / hr¹³⁵ for a total cost per *worked* hour of \$79.22 (\$48.01 + (\$48.01 * 0.25) + (\$48.01 * 0.40)).
- We assume that each of 12 group CBT sessions lasts 1.5 hours and that the preparation time is also 1.5 hours, for a total cost of \$237.66 (3 hours * \$79.22) per session for the clinical social worker (Table 7, row *ai*, *bm* & *ch*).
- We model that half (50%) of adolescents receiving counselling interventions receive 12 group CBT sessions (Table 7, rows *aq*) lasting 1.5 hours in groups of 10 (Table 7, rows *ar*) for their initial sessions. Subsequent CBT requirements as a result of recurring MDD are reduced to 5 sessions each time (Table 7, row *cp*).
- We model that the other half (50%) of adolescents receiving counselling interventions receive 12 individual counselling sessions with a clinical social worker (Table 7, rows *ah*). These sessions also last 1.5 hours.
- Individuals with persistent MDD receive four sessions of individual counselling each year (Table 7, row *bl*).
- March and colleagues' report, upon which the USPSTF recommendation was based, started the treatment at 10mg of fluoxetine daily, increased to 20mg/day after one week and, if necessary, up to a maximum of 40mg/day by week eight of the twelve week trial.¹³⁶

 ¹³² Wong ST, Manca D, Barber D et al. The diagnosis of depression and its treatment in Canadian primary care practices: an epidemiological study. *Canadian Medical Association Journal Open*. 2014; 2(4): e337-42.
 ¹³³ Valenstein M, Vijan S, Zeber JE et al. The cost–utility of screening for depression in primary care. *Annals of Internal Medicine*. 2001; 134(5): 345-60.

¹³⁴ Dr. Kelly Price, Senior Psychologist, Child and Youth Mental Health Branch, B.C. Ministry of Children and Families. January 8, 2019. Personal communication.

¹³⁵ Health Employers Association of BC. *Provincial Agreement between the Health Science Professionals Bargaining Association and Health Employers Association of BC April 1, 2019 – March 31, 2022*. Available at https://www.heabc.bc.ca/public/CAs/HSP/HSP2019-2022.pdf. Accessed March 2023.

¹³⁶ March J, Silva S, Petrycki S et al. Fluoxetine, cognitive-behavioral therapy, and their combination for adolescents with depression: Treatment for Adolescents With Depression Study (TADS) randomized controlled trial. *Journal of the American Medical Association*. 2004; 292(7): 807-20.

- Fluoxetine is available in 10mg and 20mg doses.¹³⁷ We model daily treatment with 20mg fluoxetine (or generic equivalent). The cost ranges between \$0.37 0.52 per 20mg pill for the "BC, Canada" geography. The dispensing fee ranges from \$10.00 10.95.¹³⁸ Using the mid-point of the above ranges and assuming a 30-day dose is dispensed each time, the modelled annual cost of treatment is \$288 ((\$0.445 * 365) + (12 * \$10.48)) (Table 7, row *aj*). Using the high and low numbers of the ranges above, we use a high of \$321 and low of \$255 / year in our sensitivity analysis.
- Clayton and Barcelo estimated the direct costs associated with death by suicide in the province of New Brunswick to be \$5,693 (in 1996 CAD) or \$9,153 in 2022 CAD, including ambulance, hospital, physician, autopsy, and funeral services plus the cost of police investigations.¹³⁹
- Kinchin and Doran estimated the direct costs per youth suicide in Australia to be \$9,721 (in 2014 AUD) or \$9,356 in 2022 CAD.¹⁴⁰
- Shepard et al estimated that the direct costs per nonfatal suicide attempt are 10% higher than the direct costs per completed suicide in the US.¹⁴¹
- For modelling purposes, we have assumed the direct costs per death by suicide in BC to be \$9,255 (\$9,153 + \$9,356 / 2) (Table 7, row *db*) and the direct cost per suicide attempt to be \$10,180 (\$9,255 * 1.1) (Table 7, row *dc*).
- The ratio of attempted suicides to death by suicide among adolescents is estimated to be 50:1 to 100:1.¹⁴² One-third (33%) of suicide attempts in adolescents require medical attention.¹⁴³ For modelling purposes, we assumed that there would be 25 attempted suicides requiring medical attention per death by suicide (Table 7, row *df*) (based on the midpoint between 50 and 100 times 33%) and varied this from 17 to 33 in the sensitivity analysis.
- In a US study by Wright and colleagues, adolescents ages 13-17 who screened negative for depression utilized \$2,357 (in 2013 USD) in health care services in the 12-month period following the screening. By comparison, adolescents who screened positive for moderate to severe depression utilized \$8,173 in health care services in the 12-month period following the screening.¹⁴⁴ We assumed that the difference of \$5,816 (\$8,173 \$2,357) would be avoided in those adolescents for whom treatment for MDD was effective. This comes to \$5,853 (2022 CAD) (Table 7, row *di*).

¹³⁷ Pacific Blue Cross. *Pharmacy Compass*. 2023. Available at <u>https://www.pac.bluecross.ca/pharmacycompass</u>. Accessed March 2023.

¹³⁸ Pacific Blue Cross. *Pharmacy Compass*. 2023. Available at <u>https://www.pac.bluecross.ca/pharmacycompass</u>. Accessed March 2023.

¹³⁹ Clayton D and Barcel A. The cost of suicide mortality in New Brunswick, 1996. *Chronic Diseases in Canada*. 1999; 20(2): 89-95.

¹⁴⁰ Kinchin I and Doran CM. The cost of youth suicide in Australia. *International Journal of Environmental Research and Public Health*. 2018; 15(4): 672-82.

¹⁴¹ Shepard DS, Gurewich D, Lwin AK et al. Suicide and suicidal attempts in the United States: costs and policy implications. *Suicide and Life-Threatening Behavior*. 2016; 46(3): 352-62.

¹⁴² Shain BN. Suicide and suicide attempts in adolescents. *Pediatrics*. 2007; 120(3): 669-76.

¹⁴³ Kann L, McManus T, Harris WA et al. Youth risk behavior surveillance—United States, 2017. *MMWR Surveillance Summaries*. 2018; 67(8): 1.

¹⁴⁴ Wright DR, Katon WJ, Ludman E et al. Association of adolescent depressive symptoms with health care utilization and payer-incurred expenditures. *Academic Pediatrics*. 2016; 16(1): 82-9.

CE for Both Sexes

Based on these assumptions, the CE associated with screening for major depressive disorder in adolescents ages 12 to 18 is 28,359 / QALY (Table 7, row dp).

Table 7: CE of Screening for MDD in Adolescents Ages 12 - 18				
	In a BC Birth Cohort of 40,000			
Row				
Label	Variable	Base case	Source	
а	Life years, 12 to 18 year olds	278,575	Table 6, rows $a + e + l + m + q + u$	
b	Number of well care visits per year	2.07	V	
С	Depression screening rate	57.0%	V	
d	Number of screens conducted, cohort total	328,690	= a * b * c	
e	Cost of 10 minute office visit	\$35.97	Ref Doc	
t	Value of patient time and travel for office visit	\$74.32	Ref Doc	
g	Portion of 10-minute visit for screening	50%	Ref Doc	
i	Initial screening cost	\$16,125,032 7 720		
i	Number of MDD cases diagnosed incorrectly, initial test	17 180		
J	Second screen applied	17,100 NO	Table 6 row am	
	Number to be re-screened	0	= $i + i$ (if applicable)	
m	Cost of second screening test, each	\$5.05	v	
n	Cost of second screening	\$0	=1*(((e+f)*g)+m)	
0	Number of MDD cases correctly identified, overall	7.729	Table 6, row ao	
p	Number of MDD cases diagnosed incorrectly, overall	17.180	Table 6, row ap	
a	Total number of MDD cases diagnosed	24.909	= 0 + p	
r	Follow up visits, each diagnosed depression	1	Assumed	
s	Follow up visit cost	\$2,747,247	= q * (e + f) * r	
	Treatment 0 - 3 months post diagnosis (All positive screens)			
t	Anti-depressant rate, 0 - 3 months	19.7%	V	
u	Number on anti-depressants	4,907	= q * t	
v	Cost of medication, per year	\$288	V	
w	Cost of medication, 0 - 3 months	\$353,313	= u * v * 0.25	
	Treatment 4 - 6 months post diagnosis (All positive screens)			
х	Anti-depressant rate, 4 - 6 months	22.2%	V	
у	Number on anti-depressants	5,530	= q * x	
z	Cost of medication, per year	\$288	٧	
aa	Cost of medication, 4 - 6 months	\$398,150	= y * z * 0.25	
ab	Follow up visits for medication review, per patient	1	V	
ac	Cost of medication follow-up	\$609,889	= y * ab * (e + f)	
ad	Counselling rate	25.6%	Table 6	
ae	Number receiving counselling	6,378	= q * ad	
af	Rate of individual counselling	50.0%	V	
ag	Number receiving individual counselling	3,189	= ae * af	
ah	Number of CBI sessions	12	v	
ai	Cost of clinical social worker per session	\$237.66	V	
aj		\$9,094,277		
ak	Travel time, in hours	1.5	V	
di	Patient time, cost par bour	1.0 ¢27.16	V Rof Doc	
an	Patient time, cost per nour	\$3 554 903	= ag * ab * (ak + al) * am	
20	Rate of group courselling	50.0%		
an	Number receiving individual counselling	3,189	= ae * ao	
an	Number of CBT sessions	12	v	
ar	Number of individuals in each session	10	v v	
as	Cost of offering group CBT (social worker)	\$909.428	= (ap / ar) * ag * ai	
at	Session length, in hours	1.5	V	
au	Travel time, in hours	1.0	V	
av	Patient time cost per hour	\$37.16	Ref Doc	
aw	Patient time cost, group CBT treatment sessions	\$3,554,903	= ap *aq * (at + au) * av	
	Treatment 7 - 12 months post diagnosis (recurrent and persistent MDD only)			
ах	Rate of recurrent and persistent MDD, correctly diagnosed	50.0%	V	
ay	Anti-depressant rate, 7 - 12 months	22.2%	V	
az	Number on anti-depressants	858	= o * ax * ay	
ba	Cost of medication, per year	\$288	v	
bb	Cost of medication, 7 - 12 months	\$123,538	= az * ba * 0.5	
bc	Counselling costs	\$0	Included in 4 - 6 month	
		70	counselling costs	

Table 7 (continued): CE of Screening for MDD in Adolescents Ages 12 - 18 In a BC Birth Cabact of 40,000				
	In a BC Birth Conort of 40,000			
he	Apti-depressent rate 12+ months	100.0%	21	
bf	Rate of persistent MDD, correctly diagnosed	5.3%	v v	
bg	Number on anti-depressants	412	= o * be * bf	
bh	Cost of medication, per year	\$288	v	
bi	Additional years of medication	19	√	
bj	Cost of medication, 2 - 20 years	\$2,253,339	= bg * bh * bi	
bk	Counselling rate, for persistent MDD	25.6%	√	
bl	Number of CBI sessions, per year	4 \$227.66	V	
bn	Cost of offering individual CBT (social worker), years 2 - 20	\$237.00	v = hg * hi * hl * hk * hm	
bo	Session length, in hours	1.5	√	
bp	Travel time, in hours	1.0	V	
bq	Patient time cost per hour	\$37.16	Ref Doc	
br	Patient time cost, first CBT treatment sessions	\$2,907,433	= bg * bi * bl * (bo + bp) * bq	
bs	Additional physician visits due to anti-depressant medication, each year	2	√ ►= * ►: * ►= * (= · . €)	
Dt	Treatment for Recurrent MDD (after index event)	\$1,725,838	= bg $+$ bl $+$ bs $+$ (e + f)	
bu	Rate of recurrent MDD, correctly diagnosed	44.7%	V	
bv	Number of individuals with recurrent MDD	3453	= o * bu	
bw	Number of additional recurrent MDD events after index event	7	V	
bx	Length of each recurrent MDD event, years	1	<u>۷</u>	
by	Anti-depressant rate, recurrent MDD	22.2%	V	
bz	Number on anti-depressants	766	= bv * by	
ca	Cost of medication, per year	\$288 \$1 545 237	v - bz * ca * bw * by	
CC	Counselling rate, for recurrent MDD	25.6%	<u>− 52 ca 5w 5x</u> √	
cd	Number individuals in therapy, per recurrent MDD event	884	= bv * cc	
ce	Rate of individual counselling	50.0%	V	
cf	Number receiving individual counselling	442	= cd * ce	
cg	Number of CBT sessions	5	V	
ch	Cost of clinical social worker per session	\$237.66	V	
ci	Session length in hours	33,070,369 1 5	- ci cg cii bw	
ck	Travel time, in hours	1.0	v	
cl	Patient time cost per hour	\$37.16	Ref Doc	
cm	Patient time cost, individual CBT sessions, recurrent MDD	\$1,437,159	= cf * cg * (cj + ck) * cl * bw	
cn	Rate of group counselling	50.0%	V	
CO	Number receiving group counselling	442	= cd * cn	
cp cq	Number of individuals in each session	10	v v	
cr	Cost of offering group CBT (social worker)	\$367,659	= (co / cq) * cp * ch * bw	
CS	Session length, in hours	1.5	V	
ct	Travel time, in hours	1.0	√	
cu	Patient time cost per hour	\$37.16	Ref Doc	
CV	Patient time cost, group CBT, recurrent MDD	\$1,437,159	= co * cp * (cs + ct) * cu * bw	
cw	Sub-total, Screening & Screening Follow-up Cost	\$20,872,879	= h + n + s	
сх	Sub-total, Medication and Medication Follow-up Cost	\$7,009,305	= w + aa + ac + bb + bj + bt + cb	
су	Sub-total, Individual Counselling Cost	\$22,574,723	= aj + an + bn + br + ci + cm	
da da	Sub-total, Group Counselling Cost	\$6,269,149	= as + aw + cr + cv	
ua	Potential Costs Avoided	330,720,033	- + + + + + + + + + + + + + + + + + + +	
db	Direct costs per completed suicide	\$9,255	V	
dc	Direct cost per attempted suicide	\$10,180	√	
dd	Completed suicides avoided due to screening	11.66	Table 6, row ab * Table 6, row cx	
de	Costs avoided due to suicides avoided	\$107,872	= db * dd	
	Attempted suicides requiring medical attention per completed suicide	25 \$2,966,247	V - dc * dd * df	
dh	Number of people for whom treatment is effective	680.4	Table 6. row cv	
di	Health care cost avoided in first 12 months after screening due to effective treatment	\$5,853	√	
dj	Health care cost avoided, total	\$3,982,413	= dh * di	
dk	Net Costs of Intervention	\$49,669,423	= da - de - dg - dj	
dl	Net QALYs Gained	1,880	Table 6, row da	
dm	Cost Effectiveness (CE) of Intervention, \$/QALY	\$26,423	= dk / dl	
dn	Net Cost of Intervention (1.5% Discount)	\$44,357,141	Calculated	
do	Net QALYs Gained (1.5% Discount)	1,564	Calculated	
dp	LOST Effectiveness (CE) of intervention, \$/QALY (1.5% Discount)	\$28,359	= an /do	

v = Estimates from the literature

For the sensitivity analysis, we modified a number of major assumptions and recalculated the CE as follows:

- Assume the rate of undetected MDD decreases from 25% to 15% (Table 6, row *ae*): CE = \$44,688
- Assume the rate of undetected MDD increases from 25% to 35% (Table 6, row *ae*): CE = \$21,958
- Assume a second round of screening (with BDI) is introduced, with a sensitivity of 86.9% and a specificity of 83.5% (Table 6, rows *am* & *am*): **CE** = **\$21,922**
- Assume the rate of treatment seeking increases from 50.5% to 69% (Table 6, row *aq*): CE = \$30,785
- Assume the rate of treatment seeking decreases from 50.5% to 32% (Table 6, row *aq*): CE = \$25,512
- Assume the QoL decrement for depression is reduced from 31% to 15% (Table 6, row *z*) and the QoL decrement for anti-depressant maintenance therapy is reduced from 8% to 0% (i.e. no decrement) (Table 6, row *bg*): CE = \$44,504
- Assume QoL decrement for depression is increased from 31% to 45% (Table 6, row *z*) and the QoL decrement for anti-depressant maintenance therapy is increased from 8% to 26% (Table 6, row *bg*): CE = \$23,814
- Assume number of visits after depression diagnosis increases from 1 to 2 (Table 7, row *r*): CE = \$30,039
- Assume the cost of medication increases from \$288/year to \$321/year (Table 7, rows *v*, *z*, *ba*, *bh* & *ca*): CE = \$28,625
- Assume the cost of medication decreases from \$288/year to \$255/year (Table 7, rows *v*, *z*, *ba*, *bh* & *ca*): CE = \$28,093
- Assume the number of suicide attempts per completed suicide is increased from 25 to 33 (Table 7, row *df*): CE = \$27,853
- Assume the number of suicide attempts per completed suicide is reduced from 25 to 17 (Table 7, row *df*): CE = \$28,865
- Assume the direct cost of completed suicide doubles from \$9,255 to \$18,150 (Table 7, row *db*) and the direct cost of attempted suicide doubles from \$10,180 to \$20,360 (Table 7, row *dc*): CE = \$26,721
- Assume that the screening rate is only applied to one visit per year per patient, rather than 2.07 (Table 6, row ag): CE = \$28,359

CE for Males

Based on the above assumptions for males, the CE associated with screening for major depressive disorder in male adolescents' ages 12 to 18 is \$26,659 (see Table 7a, row dp).

Table 7a: CE of Screening for MDD in Male Adolescents Ages 12 - 18				
	In a BC Birth Cohort of 40,000			
Row				
Label	Variable	Base case	Source	
а	Life years, 12 to 18 year olds	139,248	Table 6, rows a + e + l + m + q + u	
b	Number of well care visits per year	1.75	V	
с	Depression screening rate	53.3%	√	
d	Number of screens conducted, cohort total	129,884	= a * b * c	
е	Cost of 10 minute office visit	\$35.97	Ref Doc	
f	Value of patient time and travel for office visit	\$74.32	Ref Doc	
g	Portion of 10-minute visit for screening	50%	Ref Doc	
h	Initial screening cost	\$7,162,440	= d * (e + f) * g	
i	Number of MDD cases correctly identified, initial test	3,054	Table 6, row ak	
j	Number of MDD cases diagnosed incorrectly, initial test	6,789	Table 6, row al	
k	Second screen applied	NO	Table 6, row am	
	Number to be re-screened	0	= i + j (if applicable)	
m	Cost of second screening test, each	\$5.05	V	
n	Cost of second screening	\$0	= l * (((e + f) * g) + m)	
0	Number of MDD cases correctly identified, overall	3,054	Table 6, row ao	
р	Number of MDD cases diagnosed incorrectly, overall	6,789	Table 6, row ap	
q	Total number of MDD cases diagnosed	9,843	= o + p	
r	Follow up visits, each diagnosed depression	1	Assumed	
S	Follow up visit cost	\$1,085,587	= q * (e + f) * r	
	Treatment 0 - 3 months post diagnosis (All positive screens)			
t	Anti-depressant rate, 0 - 3 months	17.5%	V	
u	Number on anti-depressants	1,723	= q * t	
v	Cost of medication, per year	\$288	V	
w	Cost of medication, 0 - 3 months	\$124,022	= u * v * 0.25	
	Treatment 4 - 6 months post diagnosis (All positive screens)			
x	Anti-depressant rate, 4 - 6 months	19.5%	V	
У	Number on anti-depressants	1,919	= q * x	
Z	Cost of medication, per year	\$288	V	
aa	Cost of medication, 4 - 6 months	\$138,196	= y * z * 0.25	
ab	Follow up visits for medication review, per patient	1	V	
ac	Cost of medication follow-up	\$211,689	= y * ab * (e + f)	
ad	Counselling rate	22.1%	Table 6	
ae	Number receiving counselling	21/1	= q * ad	
ar	Rate of Individual counselling	50.0%	V	
ag		1,085	= ae * af	
an	Number of CBT sessions	12	V	
ai	Cost of clinical social worker per session	\$237.66	V 	
dj ok		\$3,095,515		
ak		1.5		
an	Patient time, cost par bour	1.0 \$27.16	Rof Doc	
an	Patient time, cost per noui	\$37.10	$-2\pi + 2h + (2k + 2l) + 2m$	
	Pate of group coupcelling	51,210,020		
20	Number receiving individual councelling	1.085	- 20 * 20	
ap	Number of CBT sessions	1,085		
ay	Number of individuals in each session	10	v V	
26	Cost of offering group CBT (social worker)	\$200 551	- (an / ar) * ag * ai	
at		15		
20	Travel time in hours	1.0	N N	
av	Patient time cost per hour	\$37.16	Ref Doc	
21/	Patient time cost group CBT treatment sessions	\$1,210,020	= an *an * (at + au) * av	
	Treatment 7 - 12 months nost diagnosis (recurrent and nersistent MDD only)	\$1,210,020		
ax	Rate of recurrent and persistent MDD correctly diagnosed	50.0%	y/	
21/	Anti-denressant rate 7-12 months	19.5%		
27	Number on anti-depressants	298	= 0 * 2x * 2v	
ba	Cost of medication, per year	\$288	v	
bb	Cost of medication. 7 - 12 months	\$42.879	= az * ba * 0.5	
			Included in 4 - 6 month	
bc	Counselling costs	\$0	counselling costs	

Table 7a (continued): CE of Screening for MDD in Male Adolescents Ages 12 - 18 In a BC Birth Cohort of 40,000			
	Treatment 13+ months post diagnosis (persistent MDD only)		
he	Anti-depressant rate 13+ months	100.0%	<u>۷</u>
bf	Rate of persistent MDD, correctly diagnosed	4.7%	v
bg	Number on anti-depressants	144	= o * be * bf
bh	Cost of medication, per year	\$288	V
bi	Additional years of medication	19	V
bj	Cost of medication, 2 - 20 years	\$785,458	= bg * bh * bi
bk	Counselling rate, for persistent MDD	22.1%	V
bl	Number of CBT sessions, per year	4	V
bm	Cost of clinical social worker per session	\$237.66	V
bn	Cost of offering individual CBT (social worker), years 2 - 20	\$571,800	= bg * bi * bl * bk * bm
bo	Session length, in hours	1.5	V
bp	Travel time, in hours	1.0	٧
bq	Patient time cost per hour	\$37.16	Ref Doc
br	Patient time cost, first CBT treatment sessions	\$1,013,460	= bg * bi * bl * (bo + bp) * bq
bs	Additional physician visits due to anti-depressant medication, each year	2	V
bt	Cost of additional physician visits, persistent MDD	\$601,585	= bg * bi * bs * (e + f)
	Treatment for Recurrent MDD (after index event)	15.00/	
bu	kate of recurrent MDD, correctly diagnosed	45.3%	V
DV	Number of additional recurrent MDD sugges after index events	1,383	= o * bu
by	Inversion additional recurrent NDD events after index event	1	V
by	Anti-denressant rate, recurrent MDD	10 5%	V
by h-	Number on anti-depresents	19.5%	V - hu * hu
02	Rumber on anti-depressants	270	= DV · Dy
Ld ch	Cost of medication, per year	⇒200 ¢E42.970	v - bz * co * bw * by
CD	Counselling rate for recurrent MDD	3545,679	- D2 Ca DW DX
cd	Courisening rate, for recurrent MDD	22.1%	v * cc
C0	Rate of individual courselling	50.0%	- DV CC
ce	Nate of Individual counselling	152	v – cd * co
CI	Number of CBT sessions	155	
ch	Cost of clinical social worker per session	\$237.66	V
ci	Cost of offering individual CBT (social worker)	\$1 269 021	- cf * cg * ch * hw
ci	Session length in hours	1 5	v
ck	Travel time in hours	1.0	V
cl	Patient time cost per hour	\$37.16	Ref Doc
cm	Patient time cost, individual CBT sessions, recurrent MDD	\$496.053	= cf * cg * (ci + ck) * cl * bw
cn	Rate of group counselling	50.0%	√
со	Number receiving group counselling	153	= cd * cn
ср	Number of CBT sessions	5	V
cq	Number of individuals in each session	10	V
cr	Cost of offering group CBT (social worker)	\$126,902	= (co / cq) * cp * ch * bw
CS	Session length, in hours	1.5	V
ct	Travel time, in hours	1.0	V
cu	Patient time cost per hour	\$37.16	Ref Doc
CV	Patient time cost, group CBT, recurrent MDD	\$496,053	= co * cp * (cs + ct) * cu * bw
	Sub tatal Carooning Collour up Cost	69.249.026	
CW	Sub-total, Suberling & Suberling Follow-up COSt Sub-total, Medication and Medication Follow-up Cost	\$0,248,U26	= 11 + 11 + 5
	Sub-total Individual Councelling Cost	\$7,447,709	
C7	Sub-total Group Courselling Cost	\$7,000,000 \$7,1/7 E77	$-a_{j} + a_{11} + b_{11} + b$
42 d2	Total Cost of Intervention	\$2,142,52/ \$20 //0/ 121	$- a_{0} + a_{0} + c_{1} + c_{2}$
ua	Potential Costs Avoided	720,734,131	+
dh	Direct costs ner completed suicide	¢0.255	N
dc	Direct cost per attempted suicide	\$10 180	v √
dd dd	Completed suicides avoided due to screening	5 94	Table 6 row ab * Table 6 row cv
de	Costs avoided due to suicides avoided	\$54 929	= db * dd
df	Attempted suicides requiring medical attention per completed suicide	25	uu √
<u> </u>	,		
dg	Costs avoided due to suicide attempts avoided	\$1,510,472	= dc * dd * df
dg dh	Costs avoided due to suicide attempts avoided Number of people for whom treatment is effective	\$1,510,472 234.6	= dc * dd * df Table 6. row cv
dg dh di	Costs avoided due to suicide attempts avoided Number of people for whom treatment is effective Health care cost avoided in first 12 months after screening due to effective treatment	\$1,510,472 234.6 \$5.853	= dc * dd * df Table 6, row cv √
dg dh di di	Costs avoided due to suicide attempts avoided Number of people for whom treatment is effective Health care cost avoided in first 12 months after screening due to effective treatment Health care cost avoided. total	\$1,510,472 234.6 \$5,853 \$1,372.854	= dc * dd * df Table 6, row cv V = dh * di
dg dh di dj dk	Costs avoided due to suicide attempts avoided Number of people for whom treatment is effective Health care cost avoided in first 12 months after screening due to effective treatment Health care cost avoided, total Net Costs of Intervention	\$1,510,472 234.6 \$5,853 \$1,372,854 \$17,555.876	= dc * dd * df Table 6, row cv V = dh * di = da - de - dg - di
dg dh di dj dk dl	Costs avoided due to suicide attempts avoided Number of people for whom treatment is effective Health care cost avoided in first 12 months after screening due to effective treatment Health care cost avoided, total Net Costs of Intervention Net QALYS Gained	\$1,510,472 234.6 \$5,853 \$1,372,854 \$17,555,876 739	= dc * dd * df Table 6, row cv V = dh * di = da - de - dg - dj Table 6, row da
dg dh di dj dk dl dm	Costs avoided due to suicide attempts avoided Number of people for whom treatment is effective Health care cost avoided in first 12 months after screening due to effective treatment Health care cost avoided, total Net Costs of Intervention Net QALYS Gained Cost Effectiveness (CE) of Intervention, \$/QALY	\$1,510,472 234.6 \$5,853 \$1,372,854 \$17,555,876 739 \$23,746	= dc * dd * df Table 6, row cv V = dh * di = da - de - dg - dj Table 6, row da = dk / dl
dg dh dj dk dl dm	Costs avoided due to suicide attempts avoided Number of people for whom treatment is effective Health care cost avoided in first 12 months after screening due to effective treatment Health care cost avoided, total Net Costs of Intervention Net QALYS Gained Cost Effectiveness (CE) of Intervention, \$/QALY Not Cost of Intervention (1.5% Discount)	\$1,510,472 234.6 \$5,853 \$1,372,854 \$17,555,876 739 \$23,746	= dc * dd * df Table 6, row cv V = dh * di = da - dg - dj Table 6, row da = dk / dl
dg dh di dj dk dl dm dn	Costs avoided due to suicide attempts avoided Number of people for whom treatment is effective Health care cost avoided in first 12 months after screening due to effective treatment Health care cost avoided, total Net Costs of Intervention Net QALYS Gained Cost Effectiveness (CE) of Intervention, \$/QALY Net Cost of Intervention (1.5% Discount) Net QALYS Gained (1.5% Discount)	\$1,510,472 234.6 \$5,853 \$1,372,854 \$17,555,876 739 \$23,746 \$15,767,461	= dc * dd * df Table 6, row cv V = dh * di = da - dg - dj Table 6, row da = dk / dl Calculated
dg dh di dj dk dl dm dn do	Costs avoided due to suicide attempts avoided Number of people for whom treatment is effective Health care cost avoided in first 12 months after screening due to effective treatment Health care cost avoided, total Net Costs of Intervention Net QALYS Gained Cost Effectiveness (CE) of Intervention, \$/QALY Net Cost of Intervention (1.5% Discount) Net QALYS Gained (1.5% Discount) Cost Effectiveness (CE) of Intervention \$/QALY (1.5% Discount) Cost Effectiveness (CE) of Intervention \$/QALY (1.5% Discount)	\$1,510,472 234.6 \$5,853 \$1,372,854 \$17,555,876 739 \$23,746 \$15,767,461 591	= dc * dd * df Table 6, row cv v $= dh * di$ $= da - dg - dj$ Table 6, row da $= dk / dl$ Calculated Calculated $= dk / dc$

✓ = Estimates from the literature

For the sensitivity analysis of the base model for males, we modified a number of major assumptions and recalculated the CE as follows:

- Assume the rate of undetected MDD decreases from 25% to 15% (Table 6a, row *ae*): CE = \$42,486
- Assume the rate of undetected MDD increases from 25% to 35% (Table 6a, row *ae*): CE = \$20,411
- Assume a second round of screening (with BDI) is introduced, with a sensitivity of 86.9% and a specificity of 83.5% (Table 6a, rows *am & am*): CE = \$21,131
- Assume the rate of treatment seeking increases from 43.5% to 65.2% (Table 6a, row *aq*): CE = \$29,485
- Assume the rate of treatment seeking decreases from 43.5% to 21.8% (Table 6a, row *aq*): CE = \$23,178
- Assume the QoL decrement for depression is reduced from 31% to 15% (Table 6a, row *z*) and the QoL decrement for anti-depressant maintenance therapy is reduced from 8% to 0% (i.e. no decrement) (Table 6a, row *bg*): CE = \$39,883
- Assume QoL decrement for depression is increased from 31% to 45% (Table 6a, row z) and the QoL decrement for anti-depressant maintenance therapy is increased from 8% to 26% (Table 6a, row bg): CE = \$22,720
- Assume number of visits after depression diagnosis increases from 1 to 2 (Table 7a, row *r*): CE = \$28,415
- Assume the cost of medication increases from \$288/year to \$321/year (Table 7a, rows *v*, *z*, *ba*, *bh* & *ca*): CE = \$26,905
- Assume the cost of medication decreases from \$288/year to \$255/year (Table 7a, rows *v*, *z*, *ba*, *bh* & *ca*): CE = \$26,413
- Assume the number of suicide attempts per completed suicide is increased from 25 to 33 (Table 7a, row *df*): CE = \$25,978
- Assume the number of suicide attempts per completed suicide is reduced from 25 to 17 (Table 7a, row *df*): CE = \$27,339
- Assume the direct cost of completed suicide doubles from \$9,255 to \$18,150 (Table 7a, row *db*) and the direct cost of attempted suicide doubles from \$10,180 to \$20,360 (Table 7a, row *dc*): CE = \$24,543
- Assume that the screening rate is only applied to one visit per year per patient, rather than 1.75 (Table 6a, row *ag*): CE = \$26,659
CE for Females

Based on the above assumptions for males, the CE associated with screening for major depressive disorder in female adolescents' ages 12 to 18 is 30,982 (see Table 7b, row dp).

	Table 7b: CE of Screening for MDD in Female Adolescen	nts Ages 1	2 - 18
	In a BC Birth Cohort of 40,000		
Row Label	Variable	Base case	Source
а	Life years, 12 to 18 year olds	139,339	Table 6, rows a + e + I + m + q + u
b	Number of well care visits per year	2.42	V
С	Depression screening rate	61.1%	V
d	Number of screens conducted, cohort total	206,029	= a * b * c
е	Cost of 10 minute office visit	\$35.97	Ref Doc
f	Value of patient time and travel for office visit	\$74.32	Ref Doc
g	Portion of 10-minute visit for screening	50%	Ref Doc
h	Initial screening cost	\$11,361,493	= d * (e + f) * g
i	Number of MDD cases correctly identified, initial test	4,845	Table 6, row ak
j	Number of MDD cases diagnosed incorrectly, initial test	10,769	Table 6, row al
K I	Second screen applied	NO	lable 6, row am
		Ú ĆE OE	= 1 + J (IT applicable)
m	Lost of second screening test, each	\$5.05 ¢0	V
- 11	Cost of Second Screening	50 4 94E	$=1^{\circ} (((e+1)^{\circ}g) + iii)$
0	Number of MDD cases diagnaged incorrectly, overall	4,645	Table 6, row an
p a	Total number of MDD cases diagnosed	10,709	
r v	Follow up visits each diagnosed depression	13,014	Assumed
5	Follow up visits, each diagnosed depression	\$1 722 032	= a * (e + f) * r
	Treatment 0 - 3 months post diagnosis (All positive screens)	<i>\$1,722,032</i>	
t	Anti-depressant rate 0 - 3 months	20.9%	V
u	Number on anti-depressants	3.263	= a * t
v	Cost of medication, per year	\$288	V
w	Cost of medication, 0 - 3 months	\$234,955	= u * v * 0.25
	Treatment 4 - 6 months post diagnosis (All positive screens)		
х	Anti-depressant rate, 4 - 6 months	23.6%	V
у	Number on anti-depressants	3,685	= q * x
z	Cost of medication, per year	\$288	V
aa	Cost of medication, 4 - 6 months	\$265,308	= y * z * 0.25
ab	Follow up visits for medication review, per patient	1	٧
ac	Cost of medication follow-up	\$406,400	= y * ab * (e + f)
ad	Counselling rate	26.4%	Table 6
ae	Number receiving counselling	4,116	= q * ad
af	Rate of individual counselling	50.0%	٧
ag	Number receiving individual counselling	2,058	= ae * af
ah	Number of CBT sessions	12	V
ai	Cost of clinical social worker per session	\$237.66	V
aj	Cost of offering individual CBT (social worker)	\$5,869,806	= ag * ah * ai
ak	Session length, in hours	1.5	v ,
ai	Iravel time, in hours	1.0	V
am	Patient time, cost per hour	\$37.16	Ref Doc
20	Patient time cost, individual CBT treatment sessions	\$2,294,475 50.0%	$= dg \cdot d\Pi \cdot (dK + dI) \cdot d\Pi$
20	Number receiving individual councelling	2 058	- 20 * 20
ap	Number of CBT sessions	12	- de do
ar	Number of individuals in each session	10	V
as	Cost of offering group CBT (social worker)	\$586,981	= (ap / ar) * ag * ai
at	Session length, in hours	1.5	v
au	Travel time, in hours	1.0	V
av	Patient time cost per hour	\$37.16	Ref Doc
aw	Patient time cost, group CBT treatment sessions	\$2,294,475	= ap *aq * (at + au) * av
	Treatment 7 - 12 months post diagnosis (recurrent and persistent MDD only)		
ax	Rate of recurrent and persistent MDD, correctly diagnosed	50.0%	V
ay	Anti-depressant rate, 7 - 12 months	23.6%	V
az	Number on anti-depressants	572	= o * ax * ay
ba	Cost of medication, per year	\$288	V
bb	Cost of medication, 7 - 12 months	\$82,321	= az * ba * 0.5
hr	Counselling costs	ŚŊ	Included in 4 - 6 month
		, ²⁰	counselling costs

	Table 7b (continued): CE of Screening for MDD in Female Adol	escents A	ges 12 - 18
	In a BC Birth Cohort of 40,000		
ho	Treatment 13+ months post diagnosis (persistent MDD only)	100.0%	N
be	Rate of persistent MDD, correctly diagnosed	5.7%	V
bg	Number on anti-depressants	276	= o * be * bf
bh	Cost of medication, per year	\$288	V
bi	Additional years of medication	19	V
bj	Cost of medication, 2 - 20 years	\$1,511,075	= bg * bh * bi
bk	Counselling rate, for persistent MDD	26.4%	V
bl	Number of CBT sessions, per year	4	V
bm	Lost of offering individual CRT (social worker), years 2 - 20	\$237.66	V - bg * bi * bl * bk * bm
bo	Session length in hours	15	- bg bi bi bk biii
bp	Travel time, in hours	1.0	V
bq	Patient time cost per hour	\$37.16	Ref Doc
br	Patient time cost, first CBT treatment sessions	\$1,949,706	= bg * bi * bl * (bo + bp) * bq
bs	Additional physician visits due to anti-depressant medication, each year	2	٧
bt	Cost of additional physician visits, persistent MDD	\$1,157,336	= bg * bi * bs * (e + f)
hu	Treatment for Recurrent MDD (after index event)	44.20/	
bu	Number of individuals with recurrent MDD	2 1/6	- o * bu
bw	Number of additional recurrent MDD events after index event	7	0 bu
bx	Length of each recurrent MDD event, years	1	V
by	Anti-depressant rate, recurrent MDD	23.6%	V
bz	Number on anti-depressants	507	= bv * by
са	Cost of medication, per year	\$288	٧
cb	Cost of medication, recurrent MDD	\$1,021,107	= bz * ca * bw * bx
cc	Counselling rate, for recurrent MDD	26.4%	V
ca	Number Individuals in therapy, per recurrent NDD event	566	= bV * cc
ce	Number receiving individual counselling	283	v - cd * ce
cg	Number of CBT sessions	5	- cu cc
ch	Cost of clinical social worker per session	\$237.66	V
ci	Cost of offering individual CBT (social worker)	\$2,353,283	= cf * cg * ch * bw
cj	Session length, in hours	1.5	٧
ck	Travel time, in hours	1.0	V
cl	Patient time cost per hour	\$37.16	Ref Doc
cm cn	Patient time cost, individual CBT sessions, recurrent MDD	\$919,886 50.0%	= cr + cg + (cj + ck) + cl + bw
со	Number receiving group counselling	283	= cd * cn
ср	Number of CBT sessions	5	v
cq	Number of individuals in each session	10	V
cr	Cost of offering group CBT (social worker)	\$235,328	= (co / cq) * cp * ch * bw
CS	Session length, in hours	1.5	٧
ct	Travel time, in hours	1.0	V
cu	Patient time cost per nour	\$37.16	Ref Doc
CV		2919,000	
CW	Sub-total, Screening & Screening Follow-up Cost	\$13,083,525	= h + n + s
CX	Sub-total, Medication and Medication Follow-up Cost	\$4,678,501	= w + aa + ac + bb + bj + bt + cb
CY C7	Sub-total, Individual Counselling Cost	\$14,702,142	= aj + an + bn + br + ci + cm = as + aw + cr + cv
da	Total Cost of Intervention	\$36.500.837	$= c_{x} + c_{x} + c_{y} + c_{z}$
	Potential Costs Avoided		
db	Direct costs per completed suicide	\$9,255	V
dc	Direct cost per attempted suicide	\$10,180	٧
dd	Completed suicides avoided due to screening	4.10	Table 6, row ab * Table 6, row cx
de	Costs avoided due to suicides avoided	\$37,956	= db * dd
dt	Attempted suicides requiring medical attention per completed suicide	25 \$1.042.726	V - dc * dd * df
dh	Number of people for whom treatment is effective	ې1,043,726 ۸۵۶ ۸	Table 6 row cv
di	Health care cost avoided in first 12 months after screening due to effective treatment	\$5,853	√
dj	Health care cost avoided, total	\$2,624,408	= dh * di
dk	Net Costs of Intervention	\$32,794,747	= da - de - dg - dj
dl	Net QALYs Gained	1,078	Table 6, row da
dm	Cost Effectiveness (CE) of Intervention, \$/QALY	\$30,420	= dk / dl
dn	Net Cost of Intervention (1.5% Discount)	\$29,195,113	Calculated
do	Net QALYs Gained (1.5% Discount)	942	Calculated
dp	Cost Effectiveness (CE) of Intervention, \$/QALY (1.5% Discount)	\$30,982	= dn /do

v = Estimates from the literature

For the sensitivity analysis of the base model for females, we modified a number of major assumptions and recalculated the CE as follows:

- Assume the rate of undetected MDD decreases from 25% to 15% (Table 6b, row *ae*): CE = \$48,594
- Assume the rate of undetected MDD increases from 25% to 35% (Table 6b, row *ae*): CE = \$24,144
- Assume a second round of screening (with BDI) is introduced, with a sensitivity of 86.9% and a specificity of 83.5% (Table 6b, rows *am* & *am*): **CE** = **\$23,804**
- Assume the rate of treatment seeking increases from 52.0% to 70.7% (Table 6b, row *aq*): CE = \$33,580
- Assume the rate of treatment seeking decreases from 52.0% to 33.3% (Table 6b, row *aq*): CE = \$27,944
- Assume the QoL decrement for depression is reduced from 31% to 15% (Table 6b, row *z*) and the QoL decrement for anti-depressant maintenance therapy is reduced from 8% to 0% (i.e. no decrement) (Table 6b, row *bg*): **CE** = **\$51,606**
- Assume QoL decrement for depression is increased from 31% to 45% (Table 6b, row *z*) and the QoL decrement for anti-depressant maintenance therapy is increased from 8% to 26% (Table 6b, row *bg*): CE = \$25,608
- Assume number of visits after depression diagnosis increases from 1 to 2 (Table 7b, row *r*): CE = \$32,730
- Assume the cost of medication increases from \$288/year to \$321/year (Table 7b, row *aj*): CE = \$31,276
- Assume the cost of medication decreases from \$288/year to \$255/year (Table 7b, row *aj*): CE = \$30,687
- Assume the number of suicide attempts per completed suicide is increased from 25 to 33 (Table 7b, row *df*): CE = \$30,686
- Assume the number of suicide attempts per completed suicide is reduced from 25 to 17 (Table 7b, row *df*): CE = \$31,277
- Assume the direct cost of completed suicide doubles from \$9,255 to \$18,150 (Table 7b, row *db*) and the direct cost of attempted suicide doubles from \$10,180 to \$20,360 (Table 7b, row *dc*): CE = \$30,025
- Assume that the screening rate is only applied to one visit per year per patient, rather than 2.42 (Table 6b, row *ag*): CE = \$30,982

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for, and treatment of, major depressive disorder (MDD) in adolescents ages 12 to 18 is estimated to be 1,564 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated at \$28,359 per QALY (see Table 8).

In male adolescents ages 12-18, the CPB with screening for, and treatment of, MDD is estimated to be 591 QALYs while the CE is estimated at \$26,659 per QALY (see Table 8a).

In female adolescents ages 12-18, the CPB with screening for, and treatment of, MDD is estimated to be 942 QALYs while the CE is estimated at \$30,982 per QALY (see Table 8b).

Table 8: Screening fo Ages 12 - 18 in a BC	or MDD in A Birth Coho	dolescen rt of 40,00	ts DO							
Sun	nmary									
	Base									
Case Range										
CPB (Potential QALYs Gained)										
Assume N	o Current Serv	ice								
1.5% Discount Rate	1,564	756	2,247							
3% Discount Rate	1,377	665	1,985							
0% Discount Rate	1,880	908	2,689							
CE (\$/QALY) including patient time	e costs									
1.5% Discount Rate	\$28,359	\$21,922	\$44,688							
3% Discount Rate	\$29,797	\$22,372	\$48,197							
0% Discount Rate	\$26,423	\$21,172	\$40,089							
CE (\$/QALY) <i>excluding</i> patient tim	e costs									
1.5% Discount Rate	\$11,737	\$7,882	\$18,769							
3% Discount Rate	\$12,190	\$7,791	\$20,145							
0% Discount Rate	\$11,245	\$8,049	\$17,114							

Table 8a: Screening for MDD in Male Adolescents Ages 12 - 18 in a BC Birth Cohort of 40,000 Summary Base

	Case	Rai	nge
CPB (Potential QALYs Gained)			
Assume No	o Current Servi	ice	
1.5% Discount Rate	591	338	848
3% Discount Rate	507	290	730
0% Discount Rate	739	422	1,055
CE (\$/QALY) including patient time	costs		
1.5% Discount Rate	\$26,659	\$20,411	\$42,486
3% Discount Rate	\$28,900	\$21,754	\$47,260
0% Discount Rate	\$23,746	\$18,648	\$36,449
CE (\$/QALY) <i>excluding</i> patient time	e costs		
1.5% Discount Rate	\$10,385	\$7,761	\$17,035
3% Discount Rate	\$11,167	\$8,152	\$18,911
0% Discount Rate	\$9,501	\$7,365	\$14,823

Table 8b: Screening for MDD in Female Adolescents Ages 12 - 18 in a BC Birth Cohort of 40,000

Sul	ninary		
	Base		
	Case	Rai	nge
CPB (Potential QALYs Gained)			
Assume I	No Current Serv	ice	
1.5% Discount Rate	942	389	1,358
3% Discount Rate	856	354	1,236
0% Discount Rate	1,078	445	1,548
CE (\$/QALY) including patient tim	ne costs		
1.5% Discount Rate	\$30,982	\$23,804	\$51,606
3% Discount Rate	\$31,447	\$23,496	\$53 <i>,</i> 938
0% Discount Rate	\$30,420	\$24,183	\$48,220
CE (\$/QALY) <i>excluding</i> patient tin	ne costs		
1.5% Discount Rate	\$13,350	\$9,071	\$22,237
3% Discount Rate	\$13,357	\$8,655	\$22,910
0% Discount Rate	\$13,493	\$9,728	\$21,388

Screening for, and Treatment of, Anxiety in Children and Youth

United States Preventive Services Task Force Recommendations (2022)

The USPSTF recommends screening for anxiety in children and adolescents aged 8 to 18 years. (B Recommendation)

*The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of screening for anxiety in children 7 years or younger. (I Recommendation)*¹⁴⁵

Best in the World

Screening

- In a survey of Pennsylvania primary care providers 67.1% reported screening their adolescent patients for general mental health problems at most well visits.¹⁴⁶
- A large pediatric primary care network in the US was able to achieve annual screening rates for depression of 81.5% in adolescents ages 12 17 after they expanded their universal depression screening guideline to encompass all well-visits for adolescents ages 12 and older.¹⁴⁷
- For modelling purposes, we have assumed a best in the world screening rate of 81.5%.

Visits to a Primary Care Provider

- Using data provided by the BC Ministry of Health, Health Sector Information, Analysis and Reporting Division¹⁴⁸ we were able to generate BC-specific rates of primary care visits and average visits per year for the fiscal years ending in 2012/13 to 2016/17, in total and by sex, as shown in Table 1 below.
- For the five years considered, the average proportion of adolescents ages 10-19 visiting a GP is 70%, and the average number of GP visits per adolescent is 2.07 per year. The proportion of males visiting a GP was 65.4% and for females it was 75.0%. The average number of visits per male in the population was 1.75 and for females was 2.42.

¹⁴⁵ US Preventive Service Task Force. US Preventive Services Task Force Recommendation Statement. Screening for anxiety in children and adolescents: US Preventive Services Task Force recommendation statement. *JAMA*. 2022; 328(14): 1438-44.

¹⁴⁶ Diamond G,O'Malley A, Wintersteen M et al. Attitudes, practices, and barriers to adolescent suicide and mental health screening: A survey of Pennsylvania primary care providers. *Journal of Primary Care & Community Health.* 2012; 3(1): 29-35.

¹⁴⁷ Davis M, Jones J, So A et al. Adolescent depression screening in primary care: Who is screened and who is at risk? *Journal of Affective Disorders*. 2022; 299: 318-25.

¹⁴⁸ Aciemme (Sam) Ospan, Senior Manager, Lifetime Prevention Schedule, Healthy Living and Health Promotion Branch, BC Ministry of Health. January 30, 2019. Personal communication.

	Table 1: (General P British Col	r actitione umbia, 2012	r Visits by 2/13 to 2016	7 Adolesce 5/17	ints							
Age		oup											
Group	2012/13	Total											
10 - 14	234,780	231,544	230,178	230,177	232,010	1,158,689							
15 - 19	284,482	282,214	279,997	276,909	272,677	1,396,279							
Total	519,262	513,758	510,175	507,086	504,687	2,554,968							
10 - 14	163,332	160,912	158,653	160,260	159,826	802,983							
15 - 19	205,821	200,410	196,629	192,566	189,547	984,973							
Total	369,153	361,322	355,282	352,826	349,373	1,787,956							
	Proportion of Individuals with a GP Visit												
10 - 14	69.6%	69.5%	68.9%	69.6%	68.9%	69.3%							
15 - 19	72.3%	71.0%	70.2%	69.5%	69.5%	70.5%							
Total	71.1%	70.3%	69.6%	69.6%	69.2%	70.0%							
			Number	of GP Visits									
10 - 14	429,881	422,188	412,182	413,411	407,442	2,085,104							
15 - 19	681,806	659,038	641,316	619,790	601,925	3,203,875							
Total	1,111,687	1,081,226	1,053,498	1,033,201	1,009,367	5,288,979							
		GP Visits	s per Individ	ual in Total P	opulation								
10 - 14	1.83	1.82	1.79	1.80	1.76	1.80							
15 - 19	2.40	2.34	2.29	2.24	2.21	2.29							
Total	2.14	2.10	2.06	2.04	2.00	2.07							

	Table 1: (General P	ractitione	r Visits by	Adolesce	ents							
	British Columbia, 2012/13 to 2016/17 Males												
			Males										
Age		P	opulation in	Each Age Gro	oup								
Group	2012/13	2013/14	2014/15	2015/16	2016/17	Total							
10 - 14	121,031	119,378	118,720	118,572	119,586	597,287							
15 - 19	149,279	147,563	145,417	143,117	140,451	725,827							
Total	270,310	266,941	264,137	261,689	260,037	1,323,114							
		Numb	er of Unique	Males with	GP Visit								
10 - 14	82,970	81,960	80,756	81,067	80,862	407,615							
15 - 19	95,992	93,224	91,170	89,118	87,596	457,100							
Total	178,962	175,184	171,926	170,185	168,458	864,715							
		Prop	ortion of Ma	ales with a G	P Visit								
10 - 14	68.6%	68.7%	68.0%	68.4%	67.6%	68.2%							
15 - 19	64.3%	63.2%	62.7%	62.3%	62.4%	63.0%							
Total	66.2%	65.6%	65.1%	65.0%	64.8%	65.4%							
			Number	of GP Visits									
10 - 14	215,841	211,444	206,909	206,013	202,386	1,042,593							
15 - 19	270,303	259,637	253,874	244,381	238,257	1,266,452							
Total	486,144	471,081	460,783	450,394	440,643	2,309,045							
		GP Vi	sits per Male	in Total Pop	oulation								
10 - 14	1.78	1.77	1.74	1.74	1.69	1.75							
15 - 19	1.81	1.76	1.75	1.71	1.70	1.74							
Total	1.80	1.76	1.74	1.72	1.69	1.75							

Table 1: General Practitioner Visits by Adolescents

		British Col	umpia, 2012	2/13 10 2016	D/1/								
	Females												
Age		P	opulation in	Each Age Gro	oup								
Group	2012/13	2013/14	2014/15	2015/16	2016/17	Total							
10 - 14	113,749	112,166	111,458	111,605	112,424	561,402							
15 - 19	135,203	134,651	134,580	133,792	132,226	670,452							
Total	248,952	246,817	246,038	245,397	244,650	1,231,854							
	Number of Unique Females with GP Visit												
10 - 14	80,381	78,955	77,909	79,202	78,985	395,432							
15 - 19	109,865	107,210	105,496	103,488	101,995	528,054							
Total	190,246	186,165	183,405	182,690	180,980	923,486							
Proportion of Females with a GP Visit													
10 - 14	70.7%	70.4%	69.9%	71.0%	70.3%	70.4%							
15 - 19	81.3%	79.6%	78.4%	77.3%	77.1%	78.8%							
Total	76.4%	75.4%	74.5%	74.4%	74.0%	75.0%							
			Number	of GP Visits									
10 - 14	214,033	210,738	205,270	207,393	205,052	1,042,486							
15 - 19	411,487	399,386	387,411	375,393	363,660	1,937,337							
Total	625,520	610,124	592,681	582,786	568,712	2,979,823							
		GP Visi	ts per Femal	e in Total Po	pulation								
10 - 14	1.88	1.88	1.84	1.86	1.82	1.86							
15 - 19	3.04	2.97	2.88	2.81	2.75	2.89							
Total	2.51	2.47	2.41	2.37	2.32	2.42							

Source: BC Ministry of Health, Health Sector Information, Analysis and Reporting Division Calculations by H. Krueger & Associates, Inc.

- In our model, we assume a maximum (best in the world) adolescent anxiety screening rate of 57.1% (81.5% times 70.0%) and that screening for this 57.1% of adolescents is completed once a year at a well-care visit, during the 11 years of life between 8 and 18 years of age.
- In our model for **males**, we assume a maximum (best in the world) anxiety screening rate of 53.3% (81.5% times 65.4%) and that screening for this 53.3% of males is completed once a year at a well-care visit, during the 11 years of life between 8 and 18 years of age.
- In our model for **females**, we assume a maximum (best in the world) anxiety screening rate of 61.1% (81.5% times 75.0%) and that screening for this 61.1% of females is completed once a year at a well-care visit, during the 11 years of life between 8 and 18 years of age.

Receipt of Treatment

- Based on a recent systematic review covering large representative / population-based epidemiological surveys that used rigorous diagnostic measures, just 44.2% of children ages 4-18 with mental disorders received any services for these conditions.¹⁴⁹
- Based on evidence from 2 large health maintenance organizations in the western United States and a network of community health centers in the Northeast, 63.6% of adolescents ages 12 to 21 initiated treatment within the three months of being diagnosed with a mental disorder (63.0% of males and 63.9% of females).¹⁵⁰
- For modelling purposes, we have assumed a best in the world treatment rate of 63.6%.

Modelling the Clinically Preventable Burden

In this section, we model the CPB associated with screening for, and treatment of, anxiety in children and adolescents aged 8 to 18 years of age.

Definitions

- "Anxiety can be a normal emotional and physiological response to potential threats. Fears during childhood and adolescence commonly occur as part of normal development. Anxiety disorders are distinguished from normal anxiety by persistent, disproportionate, or distorted responses leading to impaired functioning in everyday life."¹⁵¹
- "The Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) defines seven anxiety disorders: separation anxiety disorder, selective mutism, specific phobia, social anxiety disorder (social phobia), panic disorder, agoraphobia, and generalized anxiety disorder. These diagnoses require a degree of severity, persistence, and associated impairment at home or school, or during other developmentally appropriate activities. Anxiety disorders co-occur frequently...The

 ¹⁴⁹ Barican J, Yung D, Schwartz C et al. Prevalence of childhood mental disorders in high-income countries: A systematic review and meta-analysis to inform policymaking. *Evidence Based Mental Health*. 2022; 25: 36-44.
 ¹⁵⁰ O'Connor B, Lewandowski E, Rodriguez S et al. Usual care for adolescent depression from symptom identification through treatment initiation. *JAMA Pediatrics*. 2016; 170(4): 373-80.

¹⁵¹ Canadian Paediatric Society. Position Statement: Anxiety in Children and Youth: Part 1 – Diagnosis. October 2022. Available online at <u>https://cps.ca/en/documents/position/anxiety-in-children-and-youth-diagnosis</u>. Accessed July 2023.

ages of onset for specific anxiety disorders are associated with developmental stages. Anxiety disorders can have a waxing and waning course. They can also remit and relapse, and different anxiety disorders can resolve or emerge in the same child over time."¹⁵²

Defining and Estimating the Population at Risk

- Based on a 2022 systematic review and meta-analysis analyzing high-quality, population-based epidemiological surveys that used robust diagnostic measures, the prevalence of **diagnosed anxiety disorders** at any given time among 4–18 years olds in high-income countries was estimated to be 5.2% (95% CI of 3.2% to 8.2%).¹⁵³
- The 2019 Canadian Health Survey on Children and Youth found that 5.3% of 5 to 17 year-olds in BC had been **diagnosed** by a health professional as having an anxiety disorder; 4.7% in males and 6.0% in females.¹⁵⁴
- While this provides us with an estimate of the number of children and youth with a **diagnosed anxiety disorder**, how many children and youth might have an **undiagnosed anxiety disorder** as "the rationale for routine screening is to identify undiagnosed youth who may benefit from effective treatment for anxiety disorders."¹⁵⁵
- As much as half of all mental disorders in Canada may be undiagnosed.¹⁵⁶
- According to the McCreary Centre Society 2018 BC Adolescent Health Survey, 19% of students in grades 7 through 12 **self-reported** anxiety disorder/panic attacks, 13% in males and 29% in females.¹⁵⁷ Of students in grade 7, 13% self-reported an anxiety disorder.¹⁵⁸ Self-report may overestimate the true rate of potentially diagnosable anxiety disorders. Similar or even higher rates, however, have been observed when a sample of adolescents are assessed for a diagnosable anxiety disorder (see next bullet).
- In an assessment of a representative sample of the US population of adolescents aged 13 to 17 years (the National Comorbidity Survey Replication Adolescent Supplement) the prevalence estimates for diagnosable anxiety disorders was 24.9%. The authors note that most disorders diagnosed in the survey "do not meet criteria for a diagnosis of serious emotional disturbance (i.e., a DSM-IV disorder with a Children's Global Assessment Scale score ≤50)."¹⁵⁹

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310076301. Accessed November 2023.

https://www.mcs.bc.ca/pdf/2023_bc_ahs_grade7_infosheet.pdf. Accessed November 2023.

¹⁵² Ibid.

 ¹⁵³ Barican J, Yung D, Schwartz C et al. Prevalence of childhood mental disorders in high-income countries: A systematic review and meta-analysis to inform policymaking. *Evidence Based Mental Health*. 2022; 25: 36-44.
 ¹⁵⁴ Statistics Canada. Table 13-10-0763-01 Health characteristics of children and youth aged 1 to 17 years. *Canadian Survey on Children and Youth 2019*. Available online at

¹⁵⁵ Viswanathan M, Wallace I, Middleton J et al. Screening for anxiety in children and adolescents: Evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2022; 328(14): 1445-55.

¹⁵⁶ Lim K., Jacobs P, Ohinmaa A et al. A new population-based measure of the economic burden of mental illness in Canada. *Chronic Diseases in Canada*. 2008; 28(3): 92-8.

 ¹⁵⁷ McCreary Centre Society. Balance and Connection in BC: The Health and Well-being of Our Youth, Results of the 2018 BC Adolescent Health Survey. 2019. Available online at <u>www.mcs.bc.ca</u>. Accessed July 2023.
 ¹⁵⁸ McCreary Centre Society. The Health and Well-being of BC's Grade 7's. Available online at

¹⁵⁹ Kessler R, Avenevoli S, Costello J et al. Prevalence, persistence, and sociodemographic correlates of DSM-IV disorders in the National Comorbidity Survey Replication Adolescent Supplement. *Archives of General Psychiatry*. 2012; 69(4): 372-80.

- In their assessment of the National Comorbidity Survey Replication Adolescent Supplement data, Merikangas et al estimated that 8.3% of adolescents ages 13-18 had a severe anxiety disorder. Severe disorders required certain levels of both distress and impairment to be present. Distress needed to be identified as "severe or very severe" and impairment needed to be identified as "a lot" or "extreme" impairment in activities of daily living.¹⁶⁰
- For modelling purposes, we started with the assumption that 4.7% males and 6.0% of females in BC ages 5-17 have been **diagnosed** with anxiety.¹⁶¹ Furthermore, actual rates of anxiety disorders could be as high as 13% in males and 29% in females.¹⁶² In the sensitivity analysis we reduce the estimated actual rates of anxiety disorders by a third.
- Anxiety disorders are 2.0 times as prevalent in 13-19 year old vs 6-12 year old males. Anxiety disorders are 3.7 times as prevalent in 13-19 year old vs 6-12 year old females.¹⁶³
- Based on these assumptions, a total of 8,353 (21.0%) of 18-year olds would have an anxiety disorder in a BC birth cohort of 40,000 (see Table 2). Of these 8,353, a total of 6,225 (74.5%) would currently be undiagnosed. The proportion of undiagnosed cases is higher in females (4,576 of 5,769 or 79.3%) than males (1,650 of 2,584 or 63.8%).

	Table 2: Estimated Prevalence of Diagnosed and Undiagnosed Anxiety Disorders																				
								Betv	veer	the	Ages	of 8 a	nd 18	3							
							ln a	a Britisł	n Col	umbi	a Birth	Cohor	t of 4	0,000							
Without a Child / Youth Screening Program and Treatment																					
		ŀ	Female							Male						Total	Popula	ition			
	Diagnosed Undiagnosed Total					tal		Diagı	nosed	Undia	gnosed	То	tal		Diagn	osed	Undiag	gnosed	Tot	tal	
Age	# Alive	%	#	%	#	%	#	# Alive	%	#	%	#	%	#	# Alive	%	#	%	#	%	#
8	19,918	1.6%	319	6.2%	1,235	7.8%	1,554	19,907	2.4%	478	4.1%	816	6.5%	1,294	39,824	2.00%	796	5.2%	2,051	7.2%	2,848
9	19,917	2.2%	443	8.6%	1,710	10.8%	2,153	19,906	2.6%	518	4.5%	895	7.1%	1,413	39,822	2.42%	962	6.5%	2,604	9.0%	3,566
10	19,915	2.9%	568	11.0%	2,184	13.8%	2,753	19,904	2.8%	559	4.9%	973	7.7%	1,532	39,820	2.83%	1,127	7.9%	3,158	10.8%	4,285
11	19,914	3.5%	693	13.4%	2,659	16.8%	3,352	19,903	3.0%	599	5.3%	1,052	8.3%	1,651	39,817	3.25%	1,292	9.3%	3,711	12.6%	5,003
12	19,913	4.1%	817	15.7%	3,134	19.8%	3,951	19,902	3.2%	640	5.7%	1,130	8.9%	1,770	39,815	3.66%	1,457	10.7%	4,264	14.4%	5,721
13	19,911	4.4%	880	16.9%	3,374	21.4%	4,255	19,900	3.5%	689	6.1%	1,217	9.6%	1,906	39,812	3.94%	1,569	11.5%	4,592	15.5%	6,161
14	19,910	4.7%	943	18.2%	3,615	22.9%	4,558	19,898	3.7%	738	6.6%	1,304	10.3%	2,042	39,808	4.22%	1,681	12.4%	4,919	16.6%	6,600
15	19,907	5.1%	1,006	19.4%	3,856	24.4%	4,862	19,896	4.0%	787	7.0%	1,391	10.9%	2,178	39,803	4.51%	1,793	13.2%	5,246	17.7%	7,040
16	19,904	5.4%	1,069	20.6%	4,096	25.9%	5,165	19,891	4.2%	836	7.4%	1,477	11.6%	2,314	39,795	4.79%	1,905	14.0%	5,573	18.8%	7,478
17	19,900	5.7%	1,131	21.8%	4,336	27.5%	5,467	19,885	4.5%	885	7.9%	1,564	12.3%	2,449	39,784	5.07%	2,017	14.8%	5,900	19.9%	7,916
18	19,894	6.0%	1,194	23.0%	4,576	29.0%	5,769	19,876	4.7%	934	8.3%	1,650	13.0%	2,584	39,770	5.35%	2,128	15.7%	6,225	21.0%	8,353

¹⁶³ Gadermann A, Petteni M, Janus M et al. Prevalence of mental health disorders among immigrant, refugee, and non-immigrant children and youth in British Columbia, Canada. *JAMA Network Open - Psychiatry*. 2022; 5(2): e2144934. doi:10.1001/jamanetworkopen.2021.44934.

¹⁶⁰ Merikangas K, He J, Burstein M et al. Lifetime prevalence of mental disorders in U.S. adolescents: Results from the National Comorbidity Survey Replication Adolescent Supplement (NCS-A). *Journal of the American Academy of Child & Adolescent Psychiatry*. 2010; 49(10): 980-9.

¹⁶¹ Statistics Canada. Table 13-10-0763-01 Health characteristics of children and youth aged 1 to 17 years. *Canadian Survey on Children and Youth 2019*. Available online at

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310076301. Accessed November 2023.

¹⁶² McCreary Centre Society. *Balance and Connection in BC: The Health and Well-being of Our Youth, Results of the 2018 BC Adolescent Health Survey.* 2019. Available online at <u>www.mcs.bc.ca</u>. Accessed July 2023.

Harms Associated with Anxiety in Children and Youth

- "Several reviews of anxiety disorders in children and adolescents reported longitudinal associations of anxiety disorders over time both with the same disorder and other anxiety or depressive disorders, suggesting the heightened risk for secondary depression."¹⁶⁴
- The Great Smoky Mountains Study (GSMS), started in 1992, is a longitudinal, community-representative study in North Carolina that followed up 1,420 participants from 9 years old aiming to assess the prevalence of psychiatric disorders in childhood and their development over time. Foley and colleagues assessed proximal psychiatric risk factors for suicidality in this cohort between the ages of 9 and 16.¹⁶⁵ Suicidality included wanting to die, suicidal ideation, suicide plans or suicide attempt(s). Depression was the major risk factor for suicidality, especially when depression was comorbid with an anxiety disorder. Anxiety disorders on their own, however, did not significantly increase the risk of suicidality.
- Common childhood psychiatric disorders are associated with a higher probability of adverse outcomes in adulthood such as health problems (e.g. multiple psychiatric problems, suicidality, life-threatening illness), legal (e.g. felony charge, incarceration), financial (e.g. high school dropout, being fired from multiple jobs) and social (e.g. teen parenthood, lack of familial and peer social support).¹⁶⁶
- Anxiety disorders in children and adolescents have a negative impact on a families functioning, psychological well-being and physical health.¹⁶⁷

Quality of Life

- Based on a community sample of 1,719 Norwegian adolescents aged 12–17, 17.0% had a medium or high level of anxiety (as measured by the Spence Children's Anxiety Scale), 8.9% in males and 24.2% in females.¹⁶⁸
- In the Norwegian study, a high level of anxiety was observed in 7.1% (3.4% in males and 10.4% in females) and a medium level of anxiety was observed in a further 9.9% (5.5% in males and 13.8% in females).¹⁶⁹ That is, 42% (38% of males and 43% of females) had a high level of anxiety and 58% (62% of males and 57% of females) had a medium level of anxiety.

 ¹⁶⁴ Viswanathan M, Wallace I, Middleton J et al. Screening for Depression, Anxiety, and Suicide Risk in Children and Adolescents: An Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 221.
 AHRQ Publication No. 22-05293-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2022.
 ¹⁶⁵ Foley D, Goldston D, Costello J et al. Proximal risk factors for suicidality in youth: The Great Smokey Mountains Study. Archives of General Psychiatry. 2006; 63: 1017-24.

¹⁶⁶ Costello J, Copeland W, Angold A. The Great Smoky Mountains Study: Developmental epidemiology in the southeastern United States. *Social Psychiatry and Psychiatric Epidemiology*, 2016; 51(5): 639-46.

¹⁶⁷ Senaratne R, Van Ameringen M, Mancini C et al. The burden of anxiety disorders on the family. *The Journal of Nervous and Mental Disease*. 2010; 198(12): 876-80.

¹⁶⁸ Raknes S, Pallesen S, Himle J et al. Quality of life in anxious adolescents. *Child and Adolescent Psychiatry and Mental Health*. 2017; 11(33)

¹⁶⁹ Raknes S, Pallesen S, Himle J et al. Quality of life in anxious adolescents. *Child and Adolescent Psychiatry and Mental Health*. 2017; 11(33)

- In the Norwegian study, those with a medium or high level of anxiety had a reduction in QoL (as measured with the Questionnaire for Measuring Health-Related Quality of Life in Children and Adolescents Revised Version) of 16.7% and 25.2%, respectively, compared with those adolescents with a low level of anxiety.¹⁷⁰ We used these reductions in QoL in our modelling and modified these reductions in QoL by +/- 25% in the sensitivity analysis.
- Disability weights developed for the Global Burden of Disease (GBD) study are a useful source as a proxy for QoL.¹⁷¹ While not specifically for children and/or adolescents, the disability weights for anxiety identified by the GBD are as follows:¹⁷²

Mild anxiety disorders - 0.03 (95% CI of 0.018 to 0.046) "Feels mildly anxious and worried, which makes it slightly difficult to concentrate, remember things, and sleep. The person tires easily but is able to perform daily activities."

Moderate anxiety disorders - 0.133 (95% CI of 0.091 to 0.186) "Feels anxious and worried, which makes it difficult to concentrate, remember things, and sleep. The person tires easily and finds it difficult to perform daily activities."

Severe anxiety disorders - 0.523 (95% CI of 0.362 to 0.677) "Constantly feels very anxious and worried, which makes it difficult to concentrate, remember things and sleep. The person has lost pleasure in life and thinks about suicide."

No Intervention

Estimating the Quality of Life Reduction Due to Undiagnosed Anxiety

• We calculated that living with undiagnosed anxiety disorders in children and youth between the ages of 8 and 18 in a BC birth cohort of 40,000 would be associated with a loss of 9,765 QALYs. The majority of this loss of QALYs would be in the female population (7,080 QALYs lost or 72.5% of the total) (see Table 3).

¹⁷⁰ Raknes S, Pallesen S, Himle J et al. Quality of life in anxious adolescents. *Child and Adolescent Psychiatry and Mental Health*. 2017; 11(33)

¹⁷¹ Salomon JA, Haagsma JA, Davis A et al. Disability weights for the Global Burden of Diseases 2013 study. *The Lancet Global Health*. 2015; 3: e712-e723.

¹⁷² Institute for Health Metrics and Evaluation. *GBD 2016 sequelae, health states, health state lay descriptions, and disability weights*. Available online at <u>http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights</u>. Accessed August 2023.

Table 3: QALYs Lost Due to Undiagnosed Anxiety Disorders

Between the Ages of 8 and 18

In a British Columbia Birth Cohort of 40,000

Without a Child / Youth Screening Program and Treatment

Level of Anxiety														
				Female							Male			
		Diagno	osed	Undiag	nosed	Tot	al		Diagno	osed	Undiag	nosed	Tota	al
Age	# Alive	Medium	High	Medium	High	Medium	High	# Alive	Medium	High	Medium	High	Medium	High
		57%	43%	57%	43%				62%	38 %	62%	38%		
8	19,918	182	137	704	531	886	668	19,907	296	182	506	310	802	492
9	19,917	253	191	975	735	1,227	926	19,906	321	197	555	340	876	537
10	19,915	324	244	1,245	939	1,569	1,184	19,904	347	212	603	370	950	582
11	19,914	395	298	1,516	1,143	1,911	1,441	19,903	372	228	652	400	1,024	627
12	19,913	466	352	1,786	1,347	2,252	1,699	19,902	397	243	701	429	1,098	673
13	19,911	502	379	1,923	1,451	2,425	1,830	19,900	427	262	755	462	1,182	724
14	19,910	538	406	2,061	1,555	2,598	1,960	19,898	458	281	808	495	1,266	776
15	19,907	573	433	2,198	1,658	2,771	2,090	19,896	488	299	862	528	1,350	828
16	19,904	609	459	2,335	1,761	2,944	2,221	19,891	519	318	916	561	1,434	879
17	19,900	645	486	2,472	1,864	3,116	2,351	19,885	549	336	969	594	1,518	931
18	19,894	680	513	2,608	1,968	3,288	2,481	19,876	579	355	1,023	627	1,602	982
						Q	ALYS L	ost						
8				118	134		- 1				85	78		
9				163	185		- 1				93	86		
10				208	237		- 1				101	93		
11				253	288		- 1				109	101		
12				298	340		- 1				117	108		
13				321	366		- 1				126	117		
14				344	392		- 1				135	125		
15				367	418		- 1				144	133		
16				390	444		- 1				153	141		
17				413	470						162	150		
18				436	496		- 1				171	158		
Total				3,312	3,768						1,395	1,290		

• The next sections will provide evidence on the effectiveness of available interventions in treating anxiety in those ages 8-18, how many undiagnosed 8-18 years olds with anxiety disorder would be diagnosed with a screening program and how many of these formerly undiagnosed 8-18 years olds would receive and benefit from treatment.

Screening Tools

- "Currently, only 2 screening instruments are widely used in clinical practice for detecting anxiety: Screen for Child Anxiety Related Disorders (SCARED) and Social Phobia Inventory (SPIN)."¹⁷³
- SCARED is a 41-item parent and child self-report measure used to screen for anxiety disorders in children ages 8 to 18 years. A total score is available as well as for the following scales: GAD, separation anxiety disorder, panic disorder, and social

¹⁷³ US Preventive Service Task Force. US Preventive Services Task Force Recommendation Statement. Screening for anxiety in children and adolescents: US Preventive Services Task Force recommendation statement. *JAMA*. 2022; 328(14): 1438-44.

anxiety disorder. Administration time is 10 minutes. A 10-item short form is also available. $^{\rm 174}$

- SPIN is a 21-item scale to assess social anxiety using DSM-IV criteria, including an item assessing duration of symptoms (social anxiety must be present for at least 6 months). Administration time is 10 minutes.¹⁷⁵
- SPIN is specific to assessing symptoms of social anxiety. The sensitivity of SPIN ranges from 0.80 to 0.86 while the specificity ranges from 0.77 to 0.85.^{176,177,178}
- The sensitivity and specificity of SCARED is dependent to some degree on the anxiety disorder. Diagnosing global anxiety, separation anxiety, social phobia or any anxiety have a sensitivity ranging from 0.78 0.88 and a specificity ranging from 0.56 0.81.^{179,180,181} For modelling purpose we will use the mid-point of the range for sensitivity (0.83) and the mid-point of the range for specificity after excluding the 0.56 (0.75 for a range from 0.68 to 0.81).
- With a true prevalence rate for anxiety disorder of 7.7% (the estimated average rate in BC males ages 8-12, see *Defining and Estimating the Population at Risk*), a sensitivity of 0.83 and a specificity of 0.75, 78% of positive screens would be false positive results. With a true prevalence of 13.8% (the estimated average rate in BC females ages 8-12), 65% of positive screens would be false positive results. With a true prevalence of 11.3% (the estimated average rate in BC males ages 13-18), 70% of positive screens would be false positive results. With a true prevalence of 25.2% (the estimated average rate in BC females ages 13-18), 47% of positive screens would be false positive results.
- It is because of these high false positive rates that "anxiety screening tools alone are not sufficient to diagnose anxiety. If the screening test is positive for anxiety, a confirmatory diagnostic assessment and follow-up is required."¹⁸²

¹⁷⁴ Viswanathan M, Wallace I, Middleton J et al. Screening for Depression, Anxiety, and Suicide Risk in Children and Adolescents: An Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 221.
AHRQ Publication No. 22-05293-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2022.
¹⁷⁵ Viswanathan M, Wallace I, Middleton J et al. Screening for Depression, Anxiety, and Suicide Risk in Children and Adolescents: An Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 221.
¹⁷⁶ Viswanathan M, Wallace I, Middleton J et al. Screening for Depression, Anxiety, and Suicide Risk in Children and Adolescents: An Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 221.
AHRQ Publication No. 22-05293-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2022.
¹⁷⁶ Tsai C, Wang S, Juang K et al. Use of the Chinese (Taiwan) version of the Social Phobia Inventory (SPIN)

among early adolescents in rural areas: Reliability and validity study. *Journal of the Chinese Medical Association*. 2009; 72(8): 422-9.

¹⁷⁷ Ranta K, Kaltiala-Heino R, Rantanen P et al. Screening social phobia in adolescents from general population: The validity of the Social Phobia Inventory (SPIN) against a clinical interview. *European Psychiatry*. 2007; 22(4): 244-51.

¹⁷⁸ Ranta K, Kaltiala-Heino R, Rantanen P et al. The Mini-Social Phobia Inventory: Psychometric properties in an adolescent general population sample. *Comprehensive Psychiatry*. 2012; 53(5): 630-7.

¹⁷⁹ Canals J, Hernández-Martínez C, Cosi S et al. Examination of a cutoff score for the Screen for Child Anxiety Related Emotional Disorders (SCARED) in a non-clinical Spanish population. *Journal of Anxiety Disorders*. 2012; 26(8): 785-91.

¹⁸⁰ Bailey K, Chavira D, Stein M et al. Brief measures to screen for social phobia in primary care pediatrics. *Journal of Pediatric Psychology*. 2006; 31(5): 512-21.

¹⁸¹ Muris P, Merckelbach H, Kindt M et al. The utility of Screen for Child Anxiety Related Emotional Disorders (SCARED) as a tool for identifying children at high risk for prevalent anxiety disorders. *Anxiety, Stress & Coping: An International Journal.* 2001; 14(3): 265-83.

¹⁸² US Preventive Service Task Force. US Preventive Services Task Force Recommendation Statement. Screening for anxiety in children and adolescents: US Preventive Services Task Force recommendation statement. *JAMA*. 2022; 328(14): 1438-44.

- The five essential components of an anxiety-focused assessment in children and youth include:¹⁸³
 - o Patient history and parent-reported symptoms and functioning
 - o Focused medical, developmental, and mental health history
 - Results from standardized rating scales
 - A review of past assessments (e.g., reports from allied HCPs, early child care, or school settings), and
 - Direct observation of the child and parent-child interactions

Effectiveness of the Intervention(s)

- The two primary interventions include pharmacotherapy and cognitive behavioural therapy (CBT). Pharmacotherapy appears to be less effective than CBT in improving functioning and producing remission or the loss of all anxiety diagnoses.
- Pharmacotherapy, on average, results in a 5.14 (95% CI 3.21 to 7.08) improvement in functioning as measured by the *Children's Global Assessment Scale* (CGAS) while CBT results in a 7.54 (95% CI 2.84 to 12.23) improvement.¹⁸⁴
- The CGAS is a rating of functioning aimed at children and young people aged 6-17 years old. The child or young person is given a single score between 1 and 100, based on a clinician's assessment of a range of aspects related to a child's psychological and social functioning. The score will put them in one of ten categories that range from 'extremely impaired' (1-10) to 'doing very well' (91-100).
- With respect to producing remission or the loss of all anxiety diagnosis, pharmacotherapy has a modest effect (risk ratio of 1.20 [95% CI of 1.00 to 1.45]) while CBT, on average, results in a risk ratio of 3.09 (95% CI of 1.98 to 4.80).¹⁸⁵

Cognitive Behavioural Therapy

Examples of the Interventions

• Villabø and colleagues randomly assigned 165 children ages 7 – 13 to individual (ICBT) or group cognitive behavioural therapy (GCBT) or to be on a waitlist (WL). Treatment in both conditions consisted of 14 sessions (12 child sessions and two parent sessions) delivered over a 12-week period following the *Coping Cat* manual. Each child received training in anxiety management skills and faced anxiety-provoking situations (i.e., "exposure"). Children randomized to GCBT met individually with one of the two group therapists for the first three sessions before joining a group from session four onwards. The GCBT approach comprised treatment groups consisting of a mean of 4.63 participants each with treatment provided by 32 community therapists (most being clinical psychologists or social workers with a master's degree). The therapists had an average of 44 months of clinical experience with youth. A loss of all anxiety disorders was observed in 6% for WL, 38% for ICBT and 56% for GCBT. These gains improved to 72% and 78% for ICBT and

¹⁸³ Klein B, Rajendram R, Hrycko S et al. Canadian Paediatric Society Position Statement. Anxiety in children and youth: Part 1 – diagnosis. *Paediatrics & Child Health.* 2023; 28: 45–51.

 ¹⁸⁴ Viswanathan M, Wallace I, Middleton J et al. Screening for Depression, Anxiety, and Suicide Risk in Children and Adolescents: An Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 221.
 AHRQ Publication No. 22-05293-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2022.
 ¹⁸⁵ Viswanathan M, Wallace I, Middleton J et al. Screening for Depression, Anxiety, and Suicide Risk in Children

and Adolescents: An Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 221. AHRQ Publication No. 22-05293-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2022.

GCBT, respectively, at 24-months. Drop-out rates were lower in GCBT (7% vs. 29%), suggesting that GCBT may be better tolerated than ICBT.¹⁸⁶

- Arendt et al. randomly allocated 109 children and adolescents ages 7 to 17 to receive group CBT or remain on a waitlist. The group CBT consisted of the *Cool Kids* program that has a focus on teaching youths to recognize their emotions, challenge negative automatic thinking and gradually confront feared situations. The treatment consisted of ten 2-hour weekly group sessions with six to seven youths and their parents in each group. For those receiving group CBT, 48.2% were free of all anxiety diagnosis post-treatment, compared with 5.7% on the waitlist. This improvement increased to 57.9% at 3 months post-treatment and was maintained at this improved level at 12 months post-treatment.¹⁸⁷
- Stjerneklar and co-authors randomly allocated 70 adolescents (13–17 years) with anxiety disorders to the 14-weeks therapist-guided internet-based CBT (ICBT) program *ChilledOut Online* or to a waitlist condition. The program teaches CBT strategies for adolescents through eight online modules of approximately 30 minutes, with a focus on psychoeducation, cognitive restructuring and graded exposure. Those assigned to the ICBT received a 20-minute phone call introducing them to the program and during which the therapist and adolescent agreed to and scheduled a weekly supportive phone call. For those receiving group CBT, 28.6% were free of all anxiety diagnosis post-treatment, compared with 3.1% on the waitlist. These gains were maintained at 3-month follow-up.¹⁸⁸

Effectiveness of CBT in Producing the Loss of All Anxiety Diagnosis

- The examples above are three of the RCTs included in the USPSTF analysis of the effectiveness of CBT interventions in leading to the loss of all anxiety diagnosis following treatment in children and youth. In Table 4 below we have included summary results from the relevant studies included by the USPSTF.¹⁸⁹
- Three studies had at least one year of follow-up and also focused on group CBT (see Table 4).^{190,191,192} Based on the weighted average for these three studies, group CBT results in remission in 68% of children and youth participating, versus remission in 6% of controls. For modelling purposes, we have assumed that group CBT is effective in 62% (68% 6%) of children and youth, with a range from 52% to 71%.

¹⁸⁶ Villabø M, Narayanan M, Compton S et al. Cognitive–behavioral therapy for youth anxiety: An effectiveness evaluation in community practice. *Journal of Consulting Clinical Psychology*. 2018; 86(9): 751-64.

¹⁸⁷ Arendt K, Thastum M, Hougaard E. Efficacy of a Danish version of the Cool Kids program: A randomized wait-list controlled trial. *Acta Psychiatrica Scandinavica*. 2015; DOI: 10.1111/acps.12448.

¹⁸⁸ Stjerneklar S, Hougaard E, McLellan L et al. A randomized controlled trial examining the efficacy of an internet-based cognitive behavioral therapy program for adolescents with anxiety disorders. *PLoS ONE*. 2019; 14(9): e0222485.

¹⁸⁹ Viswanathan M, Wallace I, Middleton J et al. Screening for Depression, Anxiety, and Suicide Risk in Children and Adolescents: An Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 221. AHRQ Publication No. 22-05293-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2022. See Appendix G Figure 19 on page 290.

¹⁹⁰ Villabø M, Narayanan M, Compton S et al. Cognitive–behavioral therapy for youth anxiety: An effectiveness evaluation in community practice. *Journal of Consulting Clinical Psychology*. 2018; 86(9): 751-64.

¹⁹¹ Arendt K, Thastum M, Hougaard E. Efficacy of a Danish version of the Cool Kids program: A randomized wait-list controlled trial. *Acta Psychiatrica Scandinavica*. 2015; DOI: 10.1111/acps.12448.

¹⁹² Shortt A, Barrett P, Fox T. Evaluating the FRIENDS program: A cognitive-behavioral group treatment for anxious children and their parents. *Journal of Clinical Child Psychology*. 2001; 30(4): 525-35.

Table 4: Remission or Loss Of All Anxiety Diagnosis in Children and Youth Following Cognitive Behavioural Therapy **Results** (Loss of All Anxiety Diagnosis) Year Dropout Post-Author Published N Age Intervention % Treatment 3 Months 6 Months 12 Months 24 Months Villabø et al 2018 55 7 - 13 Individual CBT 29.0% 38.0% 45.0% 72.0% 55 Group CBT 7.0% 56.0% 48.0% 78.0% 55 Control 6.0% Arendt et al 2015 56 7 - 16 Group CBT 48.2% 57.9% 57.9% 53 Control 5.7% Shortt et al 2001 6 - 10 68.0% 54 Group Family CBT 11.1% 69.0% 17 Control 6.0% Barrett et al 1996 28 7 - 14 Individual CBT 9.7% 57.1% 71.4% 25 Ind + Family CBT 7.4% 84.0% 84.0% 26 Control 26.0% Ishikawa et al 2019 26 8 - 15 Ind + Family CBT 0.0% 15.4% 33.3% 49.0% 25 Control 4.0% Stjerneklar et al 2019 35 13-17 Internet CBT 28.6% 30.3% Control 35 3.1% Perrin et al 2019 20 10 - 18 Individual CBT 10.0% 80.0% 90.0% 20 Control 0.0% Holmes et al 2014 20 7 - 12 Ind + Family CBT 10.0% 17.6% 50.0% 0.0% 22 Control Full Guided Parent-Thirlwall et al 7 - 12 2013 64 21.9% 50.0% **Delivered CBT Brief Guided Parent-**61 24.6% 39.0% **Delivered CBT** 69 Control 25.0% Waite et al 2019 15 13 - 18 Internet CBT 6.7% Internet CBT with 26.7% 15 13.3% Parents 30 Control 13.3%

Summary

- "CBT should be offered to all children with anxiety disorders as first-line treatment, while fluoxetine should be considered for children who do not improve with CBT alone."¹⁹³
- For modelling purposes, we have assumed that the vast majority of individuals with anxiety disorders detected by routine screening will be in the mild to moderate range and thus favour CBT over pharmacotherapy. CBT would occur in group sessions (mean of 6 participants) which appear to be better tolerated and likely more cost-effective than individual CBT sessions. The sessions will be led by a PhD trained clinical psychologist or a master's trained social worker. Group sessions start with 2-3 individual sessions to acclimatize the child/adolescent.

¹⁹³ Schwartz C, Barican J, Yung D et al. Six decades of preventing and treating childhood anxiety disorders: A systematic review and meta-analysis to inform policy and practice. *Evidence Based Mental Health.* 2019; 22: 103-10.

With Intervention

Prevalence of Diagnosed vs. Undiagnosed Anxiety

- In Table 2 we had estimated that, of the 19,918 females alive in the BC cohort of 40,000 at age eight, 319 would have been diagnosed with anxiety and 1,235 would be living with undiagnosed anxiety. That is, 19,599 (19,918 319) of the females alive in the cohort at age 8 would not have diagnosed anxiety and would thus be eligible for screening (see Table 5). Of these 19,599, 70.4% would visit a GP (13,798) of whom 81.5% (11,245) would be screened (see Table 10). With an estimated 6.2% undiagnosed anxiety disorder rate (see Table 2), we would expect 697 (11,245 * 6.2%) new cases of anxiety disorder to be identified. However, based on the sensitivity (0.83) and specificity (0.75) of the screening test (SCARED), we would expect 579 of the 697 (697 * 0.83) cases to be identified as true positive cases and a further 1,091 cases would be identified as false positives (see Table 10). These false positives would then be ruled out by a confirmatory diagnostic assessment.
- Using this approach, we have modelled that the number of undiagnosed 18 year old females in the BC birth cohort would be reduced from 4,576 without a child / youth screening program (see Table 2) to 613 with a child / youth screening program (see Table 5).
- Using this same approach for males, we have modelled that the number of undiagnosed 18 year old males in the BC birth cohort would be reduced from 1,650 without a child / youth screening program (see Table 2) to 224 with a child / youth screening program (see Table 6).

Table 5: Estimated Prevalence of Diagnosed and Undiagnosed Anxiety Disorders														
	Females Between the Ages of 8 and 18													
	In a British Columbia Birth Cohort of 40,000													
With a Child / Youth Screening Program and Treatment														
Estimated # with # Without Visit GP #														
			True +		Cumulative									
Age	# Alive	Diag	Undiag	Total	Anxiety	%	#	81.5%	0.83	False +	True +			
8	19,918	319	1,235	1,554	19,599	70.4%	13,798	11,245	579	1,091	579			
9	19,917	1,022	1,131	2,153	18,895	70.4%	13,302	10,841	511	963	1,090			
10	19,915	1,658	1,095	2,753	18,258	70.4%	12,853	10,476	478	901	1,568			
11	19,914	2,260	1,091	3,352	17,654	70.4%	12,428	10,129	461	869	2,028			
12	19,913	2,846	1,105	3,951	17,067	70.4%	12,015	9,792	451	851	2,480			
13	19,911	3,360	895	4,255	16,552	70.4%	11,652	9,497	354	317	2,834			
14	19,910	3,777	781	4,558	16,133	70.4%	11,357	9,256	302	270	3,135			
15	19,907	4,141	720	4,862	15,766	78.8%	12,424	10,125	304	272	3,439			
16	19,904	4,508	657	5,165	15,396	78.8%	12,132	9,888	271	242	3,710			
17	19,900	4,841	626	5,467	15,058	78.8%	11,866	9,671	252	226	3,963			
18	19,894	5,156	613	5,769	14,738	78.8%	11,613	9,465	242	216	4,205			

Table 6: Estimated Prevalence of Diagnosed and Undiagnosed Anxiety Disorders

			nent										
		Esti	imated #										
			Anxiety	/	Diagnosed	(Tab	ole 1)	Screened	True +		Cumulative		
Age	# Alive	Diag	Undiag	Total	Anxiety	%	#	81.5%	0.83	False +	True +		
8	19,907	478	816	1,294	19,429	68.2%	13,250	10,799	367	1,326	367		
9	19,906	886	527	1,413	19,020	68.2%	12,971	10,572	232	838	600		
10	19,904	1,159	373	1,532	18,746	68.2%	12,785	10,419	162	585	762		
11	19,903	1,362	290	1,651	18,542	68.2%	12,645	10,306	124	449	887		
12	19,902	1,527	244	1,770	18,375	68.2%	12,532	10,214	104	374	990		
13	19,900	1,680	227	1,906	18,221	68.2%	12,427	10,128	96	227	1,086		
14	19,898	1,824	218	2,042	18,074	68.2%	12,326	10,046	91	216	1,177		
15	19,896	1,965	213	2,178	17,931	63.0%	11,296	9,207	82	194	1,259		
16	19,891	2,096	218	2,314	17,795	63.0%	11,211	9,137	83	197	1,342		
17	19,885	2,228	221	2,449	17,657	63.0%	11,124	9,066	84	198	1,426		
18	19,876	2,360	224	2,584	17,516	63.0%	11,035	8,993	84	199	1,510		

Estimating Receipt of Treatment and Treatment Effectiveness

• Not all children and youth with a newly diagnosed anxiety disorder would go on to receive treatment. We have assumed that of the 5,715 with a newly diagnosed anxiety disorder (4,205 females and 1,510 males), 63.6% (or 3,635, see Table 7) would go on to receive treatment. Treatment would be effective in producing remission of the anxiety disorder in 62% (or 2,253, see Table 7) of individuals who receive treatment.

Table 7: Newly Diagnosed, Receipt of Treatment and Remission of										
Anxiety Disorder										
Between the Ages of 8 and 18										
	In a British Columbia Birth Cohort of 40,000									
		With a	a Child ,	/ Youth Scre	eening Pro	ogram and	d Treatment			
	Newl	y Diagno	sed	Rece	ive Treatr	nent	Treat	ment Effe	ctive	
	Females	Males		Females	Males	Total	Females	Males	Total	
Age	Table 5	Table 11	Total	63.6	63.6%			62%		
8	579	367	946	368	234	602	228	145	373	
9	511	232	743	325	148	473	201	92	293	
10	478	162	640	304	103	407	188	64	252	
11	461	124	585	293	79	372	182	49	231	
12	451	104	555	287	66	353	178	41	219	
13	354	96	450	225	61	286	140	38	177	
14	302	91	393	192	58	250	119	36	155	
15	304	82	386	193	52	246	120	32	152	
16	271	83	354	172	53	225	107	33	140	
17	252	84	336	161	53	214	100	33	133	
18	242	84	326	154	53	207	95	33	129	
Total	4,205	1,510	5,715	2,674	960	3,635	1,658	595	2,253	

Estimating the QALYs Gained Due to Newly Diagnosed and Treated Anxiety

• The quality of life for these 2,253 individuals in remission would return to normal, resulting in a gain of 3,246 QALYs (2,330 in females and 916 in males, see Table 8).

Table 8: QALYs Gained Due to Newly Treated Anxiety Disorders Detwoon the Ages of 8 and 18													
Between the Ages of 8 and 18													
In a British Columbia Birth Cohort of 40,000													
			With a	Child / Yo	uth S	creening	Progr	am and T	reatme	ent			
	Cumulati	ve # in Re	emission	Le	evel of	Anxiety				QALYs	Gained		
	Females	Males		Fema	les	Male	es	Fema	les		Mal	es	
Age	Table 7	Table 7	Total	Medium	High	Medium	High	Medium	High	Total	Medium	High	Total
				57%	43%	57%	43%	16.7%	25.2%		16.7%	25.2%	
8	228	145	373	130	98	83	62	21.7	24.7	46.4	13.8	15.7	29.5
9	430	237	666	245	185	135	102	40.9	46.6	87	22.5	25.6	48.1
10	618	301	919	352	266	171	129	58.8	67.0	126	28.6	32.6	61.2
11	800	350	1,149	456	344	199	150	76.1	87	163	33.3	37.9	71.2
12	978	391	1,368	557	420	223	168	93	106	199	37.2	42.3	79.5
13	1,117	428	1,546	637	480	244	184	106	121	227	40.8	46.4	87
14	1,236	464	1,701	705	532	265	200	118	134	252	44.2	50.3	94
15	1,356	497	1,853	773	583	283	214	129	147	276	47.3	53.8	101
16	1,463	529	1,992	834	629	302	228	139	159	298	50.4	57	108
17	1,563	562	2,125	891	672	321	242	149	169	318	54	61	114
18	1,658	595	2,253	945	713	339	256	158	180	337	57	65	121
Total										2,330	•		916

• Other assumptions used in assessing the clinically preventable burden are detailed in the Reference Document.

Summary of CPB – Males and Females

Based on these assumptions, the CPB associated with screening for, and treatment of, anxiety in children and adolescents aged 8 to 18 years of age in a BC birth cohort of 40,000 is 3,247 QALYs (see Table 9).

Table 9:	CPB of Screening for and Treatment of Anxiety ir	Childre	n and Youth
	in a B.C. Birth Cohort of 40,000		
Row Label	Variable	Base case	Data Source
а	Age to start screening	8	V
b	Age to stop screening / brief intervention	18	V
	Without an Adolescent Screening Program / Treatment		
с	Prevalence of females with undiagnosed anxiety at age 18	4,576	Table 2
d	Prevalence of males with undiagnosed anxiety at age 18	1,650	Table 2
е	Prevalence of undiagnosed anxiety at age 18	6,225	= c + d
f	QALYs lost in females due to undiagnosed anxiety disorders	7,080	Table 3
g	QALYs lost in males due to undiagnosed anxiety disorders	2,685	Table 3
h	QALYs lost due to undiagnosed anxiety disorders	9,765	= f + g
	With an Adolescent Screening Program / Treatment		
i	Prevalence of females with undiagnosed anxiety at age 18	613	Table 5
j	Prevalence of males with undiagnosed anxiety at age 18	224	Table 6
k	Prevalence of undiagnosed anxiety at age 18	837	= c + d
I	QALYs lost in females due to undiagnosed anxiety disorders	4,750	= f - Table 8 p22
m	QALYs lost in males due to undiagnosed anxiety disorders	1,769	= g - Table 8 s22
n	QALYs lost due to undiagnosed anxiety disorders	6,519	= l + m
	QALYs Gained With Screening / Treatment		
0	Total QALYs gained - Females (CPB)	2,331	= f - I
р	Total QALYs gained - Males (CPB)	916	= g - m
q	Total QALYs gained (CPB)	3,247	= o + p

√ = Estimates from the literature

We also modified a number of major assumptions and recalculated the CPB as follows:

- Reduce the estimated actual rates of anxiety disorders by a third, from 29.0% to 19.3% in females and from 13.0% to 8.3% in males **CPB = 2,001**
- Reduce the QoL values by 25% CPB = 2,435
- Increase the QoL values by 25% CPB = 4,058
- Reduce the number who receive treatment by 25%, from 63.6% to 47.7% CPB = 2,435
- Increase the number who receive treatment by 25%, from 63.6% to 79.5% **CPB** = **4,058**
- Reduce the proportion receiving treatment for whom the treatment is effective from 62% to 52% CPB = 2,723
- Increase the proportion receiving treatment for whom the treatment is effective from 62% to 71% CPB = 3,718

Summary of CPB – Females Only

Based on these assumptions, the CPB associated with screening for, and treatment of, anxiety in females aged 8 to 18 years of age in a BC birth cohort of 40,000 is 2,330 QALYs (see Table 9).

We also modified a number of major assumptions and recalculated the CPB as follows:

- Reduce the estimated actual rates of anxiety disorders by a third, from 29.0% to 19.3% **CPB = 1,474**
- Reduce the QoL values by 25% CPB = 1,748
- Increase the QoL values by 25% CPB = 2,913
- Reduce the number who receive treatment by 25%, from 63.6% to 47.7% CPB = 1,748
- Increase the number who receive treatment by 25%, from 63.6% to 79.5% **CPB** = 2,913
- Reduce the proportion receiving treatment for whom the treatment is effective from 62% to 52% CPB = 1,955
- Increase the proportion receiving treatment for whom the treatment is effective from 62% to 71% CPB = 2,669

Summary of CPB – Males Only

Based on these assumptions, the CPB associated with screening for, and treatment of, anxiety in males aged 8 to 18 years of age in a BC birth cohort of 40,000 is 916 QALYs (see Table 9).

We also modified a number of major assumption and recalculated the CPB as follows:

- Reduce the estimated actual rates of anxiety disorders by a third, from 13.0% to 8.3% **CPB = 526**
- Reduce the QoL values by 25% CPB = 687
- Increase the QoL values by 25% CPB = 1,145
- Reduce the number who receive treatment by 25%, from 63.6% to 47.7% CPB = 687
- Increase the number who receive treatment by 25%, from 63.6% to 79.5% **CPB** = 1,145
- Reduce the proportion receiving treatment for whom the treatment is effective from 62% to 52% CPB = 768
- Increase the proportion receiving treatment for whom the treatment is effective from 62% to 71% CPB = 1,049

Modelling Cost-Effectiveness

In this section, we model CE associated with screening for, and treatment of, anxiety in children and adolescents aged 8 to 18 years of age in a BC birth cohort of 40,000.

In calculating CE, we made the following assumptions:

- The cost of an office visit to a General Practitioner (GP) in BC is estimated at \$35.97.¹⁹⁴ The administration of SCARED for screening purposes would take 10 minutes, or the entirety of one office visit.
- A follow-up anxiety-focused assessment in children and youth would be required for all individuals who test 'positive' on the screen, including those with true and false positive results. The assessment will rule out the false positive results.
- As noted previously, the five essential components of an anxiety-focused assessment in children and youth include:¹⁹⁵
 - o Patient history and parent-reported symptoms and functioning
 - Focused medical, developmental, and mental health history
 - Results from standardized rating scales
 - A review of past assessments (e.g., reports from allied HCPs, early child care, or school settings), and
 - Direct observation of the child and parent-child interactions
- We have assumed that the follow-up anxiety-focused assessment in children and youth to confirm a true positive and to rule out a false positive would involve MSP Fee Code 00622 A full consultation for an emotionally disturbed child by a psychiatrist: "Diagnostic interview or examination, including mental status and treatment recommendation, assessment of parents, guardian, or other relatives and written report" is reimbursed at \$450.67 by MSP.¹⁹⁶ A follow-up anxiety-focused assessment in children and youth would be required for all individuals who test 'positive' on the screen
- Treatment costs for costing purposes we have assumed that CBT would occur in 12 sessions with the first 3 sessions being one-on-one with the therapist (to acclimatize the child/adolescent) before joining a group of with 6 participants for 9 sessions. The individual and group sessions will be led by a PhD trained clinical psychologist paid \$59.31 / hour¹⁹⁷ (annual salary of \$115,655) or a master's trained social worker paid \$47.47 / hour¹⁹⁸ (annual salary of \$92,567). For modelling purposes we have used the mid-point between these two wage rates. The individual sessions will be one hour in length while the group sessions will be two hours in length. The average cost per individual receiving treatment would be \$601 (see Table 10).

 ¹⁹⁴ Ministry of Health. *Medical Services Commission Payment Schedule*. 2021. Available at <u>https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/medical-services-plan/msc-payment-schedule-may-2021.pdf</u>. Accessed September 2022.
 ¹⁹⁵ Klein B, Rajendram R, Hrycko S et al. Canadian Paediatric Society Position Statement. Anxiety in children and

¹⁹⁵ Klein B, Rajendram R, Hrycko S et al. Canadian Paediatric Society Position Statement. Anxiety in children and youth: Part 1 – diagnosis. *Paediatrics & Child Health.* 2023; 28: 45–51.

 ¹⁹⁶ Ministry of Health. *Medical Services Commission Payment Schedule*. May 1, 2022. Available online at https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/medical-services-plan/msc_payment_schedule_-may_2022.pdf. Accessed September 2023.
 ¹⁹⁷ Wage rate based on a Grade A Psychologist with four years of experience effective April 1, 2022. See Health

 ¹⁹⁷ Wage rate based on a Grade A Psychologist with four years of experience effective April 1, 2022. See Health Sciences Association of BC *Wage Calculator* available at <u>https://calc.hsabc.org/</u>. Accessed November 2023.
 ¹⁹⁸ Wage rate based on a Grade IV Social Worker with four years of experience effective April 1, 2022. See Health Sciences Association of BC *Wage Calculator* available at <u>https://calc.hsabc.org/</u>. Accessed November 2023.
 ²⁰²³ Wage rate based on a Grade IV Social Worker with four years of experience effective April 1, 2022. See Health Sciences Association of BC *Wage Calculator* available at <u>https://calc.hsabc.org/</u>. Accessed November 2023.

Table 10: Estimated Costs per Tr	eatme	nt
# of hours direct contact - One-on-one Sessions	18	(3 * 6)
# of hours direct contact - Group Sessions	18	(9 * 2)
Prep time - One-on-one Sessions	9	(0.5 * 18)
Prep time - Group Sessions	9	(1.0 * 9)
Total Hours	54	
Hourly Rate - Master's trained Social Worker	\$47.47	
Hourly Rate - PhD trained Psychologist	\$59.31	
Wages	\$2,883	
Benefit Rate	25%	
Benefit costs	\$721	_
Estmated Cost per Group Treatment	\$3,604	-
Estmated Treatment Cost per Attendee	\$601	-

- Patient/parent time costs resulting from receiving, as well as travelling to and from, a service are valued based on the average hourly wage rate in BC in 2022 (\$31.49¹⁹⁹) plus 18% benefits for an average cost per hour of \$37.16. In the absence of specific data on the amount of time required, we assume two hours per service.
- For those receiving treatment, we have assumed 30 minutes of travel time to and from treatment plus the actual treatment time. Patient time costs associated with treatment would therefore be 6 hours for the three one-on-one sessions and 27 hours for the nine group sessions.
- Table 11 provides an overview of the costs of screening and treatment in females between the ages of 8 and 18 in a BC birth cohort of 40,000. For example, 11,245 8-year olds would be screened. Screening costs include primary care provider costs of \$404,489 (11,245 screens times \$35.97 per screen) and patient costs of \$835,742 (11,245 screens times 2 hours per screen times \$37.16 per hour). Screening would result in 1,670 positive results. In order to rule out false positive results, all 1,670 individuals would receive a full assessment costing \$450.67. Of the 579 true positive results (see Table 5), 368 would go on to receive treatment (see Table 7) at a cost of \$601 per treatment (see Table 10). Patient costs during treatment consist of 33 hours per patient times \$37.16 per hour.
- Table 12 provides an overview of the costs of screening and treatment in males between the ages of 8 and 18 in a BC birth cohort of 40,000.

¹⁹⁹ BC Stats. *Earning & Employment Trends – August 2022*. Available at https://www2.gov.bc.ca/assets/gov/data/statistics/people-populationcommunity/income/earnings_and_employment_trends_data_tables.pdf. Accessed September 2022.

	Table 11: Estimated Cost of Screening and Treatment for Anxiety									
Females Between the Ages of 8 and 18										
	In a British Columbia Birth Cohort of 40,000									
	#			Р	ositive Scree	ens	R	Receive Treatment		
	Screened	РСР	Patient	Total	Physician	Patient			Patient	
Age	Table 5	Cost	Cost	Table 5	Cost	Cost	Table 7	Cost	Cost	
8	11,245	\$404,489	\$835,742	1,670	\$752,540	\$124,101	368	\$221,058	\$451,319	
9	10,841	\$389,948	\$805,697	1,474	\$664,488	\$109,581	325	\$195,193	\$398,511	
10	10,476	\$376,804	\$778,539	1,379	\$621,550	\$102,500	304	\$182,580	\$372,760	
11	10,129	\$364,342	\$752,791	1,330	\$599,226	\$98,818	293	\$176,022	\$359,372	
12	9,792	\$352,234	\$727,774	1,302	\$586,685	\$96 <i>,</i> 750	287	\$172,338	\$351,851	
13	9,497	\$341,594	\$705 <i>,</i> 790	671	\$302,378	\$49,865	225	\$135,335	\$276,303	
14	9,256	\$332,949	\$687,929	571	\$257 <i>,</i> 349	\$42,439	192	\$115,181	\$235,157	
15	10,125	\$364,211	\$752,519	576	\$259,588	\$42,809	193	\$116,183	\$237,203	
16	9,888	\$355,658	\$734,849	513	\$231,064	\$38,105	172	\$103,417	\$211,138	
17	9,671	\$347,856	\$718,729	478	\$215,464	\$35,532	161	\$96,434	\$196,884	
18	9,465	\$340,452	\$703,430	458	\$206,609	\$34,072	154	\$92,471	\$188,792	
TOTAL	110,385	\$3,970,537	\$8,203,790	10,422	\$4,696,939	\$774,572	2,674	\$1,606,211	\$3,279,289	

	Table 12: Estimated Cost of Screening and Treatment for Anxiety									
	Males Between the Ages of 8 and 18									
In a British Columbia Birth Cohort of 40,000										
	# Positive Screens Receive Treatment							tment		
	Screened	РСР	Patient	Total	РСР	Patient			Patient	
Age	Table 6	Cost	Cost	Table 6	Cost	Cost	Table 7	Cost	Cost	
8	10,799	\$388,445	\$802,592	1,693	\$763,038	\$125,833	234	\$140,385	\$286,614	
9	10,572	\$380,266	\$785,693	1,071	\$482,535	\$79,575	148	\$88,778	\$181,251	
10	10,419	\$374,785	\$774,368	747	\$336,787	\$55,540	103	\$61,963	\$126,505	
11	10,306	\$370,707	\$765,942	573	\$258,455	\$42,622	79	\$47,551	\$97,081	
12	10,214	\$367,384	\$759,075	478	\$215,488	\$35,536	66	\$39,646	\$80,942	
13	10,128	\$364,293	\$752,691	322	\$145,300	\$23,961	61	\$36,582	\$74,687	
14	10,046	\$361,356	\$746,622	307	\$138,445	\$22,831	58	\$34,856	\$71,164	
15	9,207	\$331,160	\$684,232	276	\$124,262	\$20,492	52	\$31,285	\$63,873	
16	9,137	\$328,661	\$679,068	280	\$126,064	\$20,789	53	\$31,739	\$64,799	
17	9,066	\$326,105	\$673,786	282	\$127,021	\$20,947	53	\$31,980	\$65,291	
18	8,993	\$323,492	\$668,387	283	\$127,429	\$21,014	53	\$32,083	\$65,501	
TOTAL	108,887	\$3,916,653	\$8,092,456	6,312	\$2,844,826	\$469,140	960	\$576,847	\$1,177,708	

Summary of CE – Males and Females

- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with screening for, and treatment of, anxiety in children and adolescents aged 8 to 18 years of age in a BC birth cohort of 40,000 is \$12,552 per QALY (Table 13, row *aa*).

Youth in a B.C. Birth Cohort of 40,000									
Row Label	Variable	Base case	Data Source						
	Cost of Screening and Treatment								
а	Screening - Primary care provider costs - Females	\$3,970,537	Table 11						
b	Screening - Patient time costs - Females	\$8,203,790	Table 11						
с	Screening - Primary care provider costs - Males	\$3,916,653	Table 12						
d	Screening - Patient time costs - Males	\$8,092,456	Table 12						
e	Full assessment - Physician costs - Females	\$4,696,939	Table 11						
f	Full assessment - Patient time costs - Females	\$774,572	Table 11						
g	Full assessment - Physician costs - Males	\$2,844,826	Table 12						
h	Full assessment - Patient time costs - Males	\$469,140	Table 12						
i	Treament costs - Females	\$1,606,211	Table 11						
j	Treatment patient costs - Females	\$3,279,289	Table 11						
k	Treament costs - Males	\$576,847	Table 12						
I	Treatment patient costs - Males	\$1,177,708	Table 12						
m	Females	\$22,531,338	= a + b + e + f + i + j						
n	Males	\$17,077,631	= c + d + g + h + k + 1						
0	Total Cost of Screening and Treatment	\$39,608,969	= m + n						
	CE per QALY Gained								
р	Total QALYs gained - Females	2,331	Table 9						
q	CE (\$/QALY gained) - Females	\$9,667	= m / p						
r	Total QALYs gained - Males	916	Table 9						
S	CE (\$/QALY gained) - Males	\$18,646	= n / r						
t	Total QALYs gained - Total	3,247	Table 9						
u	CE (\$/QALY gained) - Total	\$12,200	= o / t						
v	Total QALYs gained, 1.5% Discount - Females	2,123	Calculated						
w	CE (\$/QALY gained), 1.5% Discount - Females	\$9,957	Calculated						
х	Total QALYs gained, 1.5% Discount - Males	839	Calculated						
У	CE (\$/QALY gained), 1.5% Discount - Males	\$19,125	Calculated						
Z	Total QALYs gained, 1.5% Discount - Total	2,962	Calculated						
аа	CE (\$/QALY gained), 1.5% Discount - Total	\$12,552	Calculated						

Table 13: CE of Screening for and Treatment of Anxiety in Children and

√ = Estimates from the literature

We also modified several major assumptions and recalculated the cost per QALY as follows:

- Reduce the estimated actual rates of anxiety disorders by a third, from 29.0% to • 19.3% in females and from 13.0% to 8.3% in males - CE = \$17,228
- Reduce the QoL values by 25% CE = \$16,737•
- Increase the QoL values by 25% CE = \$10,042•
- Reduce the number who receive treatment by 25%, from 63.6% to 47.7% CE = • \$16,031

- Increase the number who receive treatment by 25%, from 63.6% to 79.5% CE = \$10,465
- Reduce the proportion receiving treatment for whom the treatment is effective from 62% to 52% CE = \$14,966
- Increase the proportion receiving treatment for whom the treatment is effective from 62% to 71% CE = \$10,961

Summary of CE – Females Only

Based on these assumptions, the CE associated with screening for, and treatment of, anxiety in female children and adolescents aged 8 to 18 years of age is 9,957 per QALY (Table 13, row *w*).

We also modified several major assumptions and recalculated the cost per QALY as follows:

- Reduce the estimated actual rates of anxiety disorders by a third, from 29.0% to 19.3% CE = \$13,165
- Reduce the QoL values by 25% CE = \$13,276
- Increase the QoL values by 25% CE = \$7,965
- Reduce the number who receive treatment by 25%, from 63.6% to 47.7% CE = \$12,553
- Increase the number who receive treatment by 25%, from 63.6% to 79.5% CE = \$8,399
- Reduce the proportion receiving treatment for whom the treatment is effective from 62% to 52% CE = \$11,871
- Increase the proportion receiving treatment for whom the treatment is effective from 62% to 71% CE = \$8,695

Summary of CE – Males Only

Based on these assumptions, the CE associated with screening for, and treatment of, anxiety in male children and adolescents aged 8 to 18 years of age is \$19,125 per QALY (Table 13, row *y*).

We also modified several major assumptions and recalculated the cost per QALY as follows:

- Reduce the estimated actual rates of anxiety disorders by a third, from 13.0% to 8.3% CE = \$28,498
- Reduce the QoL values by 25% CE = \$25,500
- Increase the QoL values by 25% CE = \$15,300
- Reduce the number who receive treatment by 25%, from 63.6% to 47.7% CE = \$24,836
- Increase the number who receive treatment by 25%, from 63.6% to 79.5% CE = \$15,698
- Reduce the proportion receiving treatment for whom the treatment is effective from 62% to 52% CE = \$22,803
- Increase the proportion receiving treatment for whom the treatment is effective from 62% to 71% CE = \$16,700

Summary

Males and Females

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for, and treatment of, anxiety in children and adolescents aged 8 to 18 years of age in a British Columbia birth cohort of 40,000 is estimated to be 2,962 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$12,552 per QALY (see Table 14).

Table	Table 14: Screening for and Treatment of Anxiety inChildren and Youth							
	In a B.C.	Birth Cohort	of 40,000					
		Summary						
		Base						
		Case	Rai	nge				
CPB (Pot	tential QALYs Gaine	ed)						
1.5%	6 Discount Rate	2,962	1,835	3,702				
3%	Discount Rate	2,707	1,687	3,384				
0% I	Discount Rate	3,247	2,001	4,058				
CE (\$/Q/	ALY) including patie	ent time costs						
1.5%	6 Discount Rate	\$12,552	\$10,042	\$17,228				
3%	Discount Rate	\$12,921	\$10,337	\$17,629				
0% I	Discount Rate	\$12,200	\$9,760	\$16,844				
CE (\$/Q/	ALY) excluding patie	ent time costs						
1.5%	6 Discount Rate	\$5,603	\$4,482	\$7,006				
3%	Discount Rate	\$5,790	\$4,632	\$7,207				
0% I	Discount Rate	\$5,425	\$4,340	\$6,814				

Females Only

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for, and treatment of, anxiety in female children and adolescents aged 8 to 18 years of age in a British Columbia birth cohort of 40,000 is estimated to be 2,123 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$9,957 per QALY (see Table 15).

Table 15: Screening for and Treatment of Anxiety in									
Children and Youth									
In a B.C.	In a B.C. Birth Cohort of 40,000								
Sum	mary - Female	s Only							
	Base	,							
	Case	Ra	nge						
CPB (Potential QALYs Gaine	ed)								
1.5% Discount Rate	2,123	1,349	2,654						
3% Discount Rate	1,938	1,237	2,422						
0% Discount Rate	2,331	1,474	2,913						
CE (\$/QALY) including patie	nt time costs								
1.5% Discount Rate	\$9,957	\$7,965	\$13,276						
3% Discount Rate	\$10,260	\$8,208	\$13,680						
0% Discount Rate	\$9,667	\$7,734	\$12,890						
CE (\$/QALY) excluding patie	ent time costs								
1.5% Discount Rate	\$4,555	\$3,644	\$6,074						
3% Discount Rate	\$4,710	\$3,768	\$6,279						
0% Discount Rate	\$4,408	\$3,526	\$5,877						

Males Only

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for, and treatment of, anxiety in male children and adolescents aged 8 to 18 years of age in a British Columbia birth cohort of 40,000 is estimated to be 839 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$19,125 per QALY (see Table 16).

Table 16: Screening for and Treatment of Anxiety in									
Children and Youth									
In a B.C.	In a B.C. Birth Cohort of 40,000								
Sum	mary - Males	s Only							
	Base								
	Case	Rai	nge						
CPB (Potential QALYs Gaine	d)								
1.5% Discount Rate	839	486	1,048						
3% Discount Rate	769	450	962						
0% Discount Rate	916	526	1,145						
CE (\$/QALY) including paties	nt time costs								
1.5% Discount Rate	\$19,125	\$15,300	\$28,498						
3% Discount Rate	\$19,624	\$15,699	\$28,971						
0% Discount Rate	\$18,646	\$14,917	\$28,041						
CE (\$/QALY) excluding patie	nt time costs								
1.5% Discount Rate	\$8,256	\$6,605	\$11,079						
3% Discount Rate	\$8,510	\$6,808	\$11,334						
0% Discount Rate	\$8,012	\$6,410	\$10,833						

Behavioural Counselling Interventions

Growth Monitoring and Healthy Weight Management in Children and Youth

United States Preventive Services Task Force Recommendations (2017)²⁰⁰

Approximately 17% of children and adolescents aged 2 to 19 years in the United States have obesity, and almost 32% of children and adolescents are overweight or have obesity. Obesity in children and adolescents is associated with morbidity such as mental health and psychological issues, asthma, obstructive sleep apnea, orthopedic problems, and adverse cardiovascular and metabolic outcomes (e.g., high blood pressure, abnormal lipid levels, and insulin resistance). Children and adolescents may also experience teasing and bullying behaviors based on their weight. Obesity in childhood and adolescence may continue into adulthood and lead to adverse cardiovascular outcomes or other obesity-related morbidity, such as type 2 diabetes.

The USPSTF recommends that clinicians screen for obesity in children and adolescents 6 years and older and offer or refer them to comprehensive, intensive behavioral interventions to promote improvements in weight status. (Grade B recommendation)

Canadian Task Force on Preventive Health Care (2015)²⁰¹

We recommend growth monitoring²⁰² at all appropriate²⁰³ primary care visits using the 2014 WHO Growth Charts for Canada. (Strong recommendation; very low quality evidence)

This growth monitoring recommendation applies to all children and youth 0-17 years of age who present to primary care.

For children and youth aged 2 to 17 years who are overweight or obese, we recommend that primary care practitioners offer or refer to structured behavioural interventions²⁰⁴ aimed at healthy weight management. (Weak recommendation; moderate quality evidence)

These management recommendations apply to children and youth 2–17 years of age who are overweight or obese. Children and youth with health conditions where weight management is inappropriate are excluded.

The CTFPHC concludes that "the most effective behavioural interventions were those that were delivered by a specialized interdisciplinary team, involved group sessions, and

 ²⁰⁰ US Preventive Services Task Force. Screening for obesity in children and adolescents: US Preventive Services Task Force Recommendation Statement. *Journal of American Medical Association*. 2017; 317(23): 2417-26.
 ²⁰¹ Canadian Task Force on Preventive Health Care. Recommendations for growth monitoring, and prevention and management of overweight and obesity in children and youth in primary care. *Canadian Medical Association*

Journal. 2015; 187(6): 411-21.

²⁰² Growth monitoring consists of measurement of height or length, weight and BMI calculation or weight for length according to age.

²⁰³ **Appropriate primary care visits** include scheduled health supervision visits, visits for immunizations or medication renewal, episodic care or acute illness, and other visits where the primary care practitioner deems it appropriate. Primary care visits are completed at primary health care settings, including those outside of a physician's office (e.g. public health nurses carrying out a well-child visit at a community setting).

²⁰⁴ **Structured interventions** are behavioural modification programs that involve several sessions that take place over weeks to months, follow a comprehensive-approach delivered by a specialized inter-disciplinary team, involve group sessions, and incorporate family and parent involvement. Behaviourally-based interventions may focus on diet, increasing exercise, making lifestyle changes, or any combination of these. These can be delivered by a primary health care team in the office or through a referral to a formal program within or outside of primary care, such as hospital-based, school-based or community programs.

incorporated family and parent involvement". Furthermore, "where structured behavioural interventions for weight management in children and youth are not yet available in Canada, primary care practitioners and policy makers should consider their development a priority."²⁰⁵

Best in the World

- Research evidence suggests that growth monitoring in children and youth is, at best, inconsistent in paediatric practice. Dorsey et al. found that BMI was documented in only 3 of 600 (0.5%) charts they reviewed. Of the 239 children/youth at risk of being overweight or obese, 41 (17%) had documented treatment recommendations, usually consisting of general advice regarding diet and exercise.²⁰⁶
- Barlow and colleagues noted that only 6.1% of charts they reviewed contained a plot of BMI. They conclude, however, that "despite low BMI curve use, paediatricians recognized most overweight/obese children with a BMI at or above the 95th percentile. BMI plotting may increase recognition in mildly overweight children." ²⁰⁷
- Based on self-report, an estimated 11% of Community Paediatricians and 7% of Family Physicians across Canada routinely assess their paediatric patients for obesity. Furthermore, only 60% of Community Paediatricians and 30% of Family Physicians across Canada use recommended methods for identifying paediatric obesity.²⁰⁸
- Based on a review of medical records in the US, only 5.5% of physicians documented BMI and 4.3% plotted BMI. Residents were more likely to document (13.0% vs 3.0%) and plot (9.0% vs 2.7%) BMI than attending physicians.²⁰⁹
- For the purposes of this project, we have assumed that documented growth monitoring in children and youth of 13% are equivalent to the best in the world (based on rates observed for US physician residents²¹⁰).
- Estimating the best in the world rate for the proportion of children with obesity who have been referred to a comprehensive, intensive behavioral intervention is challenging. In the UK, MEND has been implemented on a national scale since 2007.²¹¹ Between 2007 and 2010, 21,132 families were referred to MEND 7-13 in that country.^{212,213} We were unable to find more recent estimates. In 2016, there were

²⁰⁵ Canadian Task Force on Preventive Health Care. Recommendations for growth monitoring, and prevention and management of overweight and obesity in children and youth in primary care. *Canadian Medical Association Journal*. 2015; 187(6): 411-21.

²⁰⁶ Dorsey KB, Wells C, Krumholz HM et al. Diagnosis, evaluation, and treatment of childhood obesity in pediatric practice. *Archives of Pediatrics & Adolescent Medicine*. 2005; 159(7): 632-8.

²⁰⁷ Barlow SE, Bobra SR, Elliott MB et al. Recognition of childhood overweight during health supervision visits: Does BMI help pediatricians? *Obesity*. 2007; 15(1): 225-32.

²⁰⁸ He M, Piché L, Clarson CL et al. Childhood overweight and obesity management: A national perspective of primary health care providers' views, practices, perceived barriers and needs. *Paediatrics & Child Health*. 2010; 15(7): 419-26.

²⁰⁹ Hillman JB, Corathers SD and Wilson SE. Pediatricians and screening for obesity with body mass index: Does level of training matter? *Public Health Reports*. 2009; 124(4): 561-7.

²¹⁰ Hillman JB, Corathers SD and Wilson SE. Pediatricians and screening for obesity with body mass index: Does level of training matter? *Public Health Reports*. 2009; 124(4): 561-7.

²¹¹ Aicken C, Roberts H and Arai L. Mapping service activity: The example of childhood obesity schemes in England. *BioMed Central Public Health*. 2010; 10(1): 310.

²¹² Fagg J, Chadwick P, Cole T et al. From trial to population: A study of a family-based community intervention for childhood overweight implemented at scale. *International Journal of Obesity*. 2014; 38(10): 1343-49.

²¹³ Fagg J, Cole T, Cummins S et al. After the RCT: Who comes to a family-based intervention for childhood overweight and obesity when it is implemented at scale in the community? *Journal of Epidemiology and Community Health.* 2015; 69: 142-8.

5,328,000 children ages 7-13 in the UK²¹⁴ with a 19% rate of obesity²¹⁵ (or 1,012,320 7-13 year-olds with obesity). The 21,132 families thus represents approximately 2.1% of children with obesity in the UK.

- In New South Wales, Australia, an estimated 8.2% of children ages 7-13 with obesity participated in the Go4Fun child obesity treatment program between 2009 and 2012.²¹⁶
- In BC, approximately 0.8% of children/youth with obesity and their families began a structured behavioural intervention aimed at healthy weight management in a given year (see section on *Structured Interventions in BC* below).
- For the purposes of this project, we have assumed that a <u>cumulative</u> (over 12 years) program start rate of approximately 9.8% of children/youth with obesity to a comprehensive, intensive behavioral intervention, as observed in BC, is equivalent to the best rate in the world.

Structured Interventions in BC

A number of organizations, including the BC Ministry of Health, the Childhood Obesity Foundation and Child Health BC, have worked diligently during the last decade and a half in developing a "comprehensive approach including promotion, prevention and intervention for children and teens who are departing from a healthy weight trajectory."²¹⁷ Structured interventions that have been implemented in the province include 1) Shapedown BC, 2) Mind, Exercise, Nutrition, Do It! (MEND) (which was replaced by Generation Health), and 3) HealthLinkBC Eating and Activity Program for Kids (HEAPK). There are numerous additional healthy lifestyle resources available in BC (including Canadian online resources), such as Live 5-2-1-0, Aim2Be and Kidsport BC.²¹⁸

Shapedown BC

• The Shapedown BC intervention was funded through ActNow in 2006, at which time it was the only available intervention for BC children and youth with obesity. Shapedown BC is a "multidisciplinary weight management program that provides medical, nutritional, and psychological support for children and youth aged 6-17 years who are working with their families to recognize and overcome challenges to active living and healthy eating."²¹⁹ The intervention consists of 10 weekly group sessions lasting 2 hours with each session including 10-12 families. Children and their families are eligible for referral if the child/adolescent is obese (BMI > 97% ile) or overweight (BMI >85% ile) with at least one co-morbidity (e.g. impaired glucose

content/uploads/2015/02/COF_CHWII_Our_Journey_Mar_2014_FINAL1.pdf. Accessed July 2020.

 ²¹⁴ Fagg J, Chadwick P, Cole T et al. From trial to population: A study of a family-based community intervention for childhood overweight implemented at scale. *International Journal of Obesity*. 2014; 38(10): 1343-49.
 ²¹⁵ Arai L, Panca M, Morris S et al. Time, monetary and other costs of participation in family-based child weight management interventions: Qualitative and systematic review evidence. *PloS ONE*. 2015; 10(4): 1-12.

²¹⁶ Welsby D, Nguyen B, O-Hara B et al. Process evaluation of an up-scaled community based child obesity treatment program. *BMC Public Health*. 2014; 14: 140.

²¹⁷ Childhood Obesity Foundation. *Childhood Healthy Weights Intervention Initiative: Our Journey*. March 2014. Available online at <u>https://childhoodobesityfoundation.ca/wp-</u>

²¹⁸ BC Children's Hospital. Endocrinology & Diabetes Unit. *Lifestyle Intervention Programs in BC*. 2020. Available at <u>http://www.bcchildrens.ca/endocrinology-diabetes-site/documents/lifestylebc.pdf</u>. Accessed October 2020.

²¹⁹ Bradbury J, Day M, & Scarr J. *British Columbia's Continuum for the Prevention, Management, and Treatment of Health Issues Related to Overweight and Obesity in Children and Youth, BC.* Childhood Obesity Foundation & Child Health BC. October 2015. Available online at <u>http://childhoodobesityfoundation.ca/wp-</u>content/uploads/2016/07/ChildhoodObesity report webMRsingle fnl-1.pdf. Accessed July 2020.

fasting, dyslipidemia, hypertension, obstructive sleep apnea). A medical referral is required.²²⁰

- Of the original 214 referrals between March of 2007 and March of 2009, 144 were invited to participate and 119 attended the first session while 39 completed all 10 sessions.²²¹
- In 2012, the Ministry of Health entered into a partnership with the Childhood Obesity Foundation (COF) to expand the Shapedown BC program model to all health authorities over a two year period. By March of 2015, a program had been established in each health authority, although the program in Northern Health closed in January of 2015.²²²
- During the 2.5 year time period between January of 2013 and June of 2015, a total of 1,071 referrals were made. Of the 1,071 referrals, 446 were invited to participate and 395 attended the first session while 292 completed at least 7 of the group sessions.²²³
- Additional information for the fiscal years from 2015/16 through 2019/20 is summarized in Table 1.^{224,225} On average, 40% of referrals are invited to participate. Prior to this invitation, each potential participant goes through an initial primary screening process and then a comprehensive four hour multi-disciplinary intake review. Of those invited to participate, 79% begin the program and of those who begin the program, 74% complete at least 7 of the 10 sessions.
- Individual counselling sessions are offered for the families throughout the process and until the youth turns 18 (see Table 1). These sessions include a post-group debrief and may include a session(s) during the group process to convince a child/youth to stay with the process.

²²⁰ Panagiotopoulos C, Ronsley R, Al-Dubayee M et al. The Centre for Healthy Weights—Shapedown BC: A family-centered, multidisciplinary program that reduces weight gain in obese children over the short-term. *International Journal of Environmental Research and Public Health*. 2011; 8(12): 4662-78.

²²¹ Panagiotopoulos C, Ronsley R, Al-Dubayee M et al. The Centre for Healthy Weights—Shapedown BC: A family-centered, multidisciplinary program that reduces weight gain in obese children over the short-term. *International Journal of Environmental Research and Public Health*. 2011; 8(12): 4662-78.

²²² Centre for Healthy Weights - Shapedown BC. *Provincial Management and Evaluation Report Cycles I – VII: January 2013 – June 2015*. September 2015.

²²³ Centre for Healthy Weights - Shapedown BC. *Provincial Management and Evaluation Report Cycles I – VII: January 2013 – June 2015*. September 2015.

²²⁴ Centre for Healthy Weights - Shapedown BC. *Provincial Management and Evaluation Report: March 31, 2015* - April 1, 2016.

²²⁵ Arlene Cristall, Provincial Lead, The Centre for Healthy Weights – Shapedown BC. September 8, 2020. Personal communication.

Table 1: Shapedown BC									
Trends in Program Referrals to Program Completion									
Time Period									
Jan '13 to									
,	June '15	2015/16	2016/17	2017/18	2018/19	2019/20**	Total		
Referrals	1,071	556	557	623	729	637	4,173		
Invited to Participate	446	288	250	238	262	204	1,688		
% of Referrals Invited to Participate	42%	52%	45%	38%	36%	32%	40%		
Began Program	395	230	201	195	207	104	1,332		
% of Invited to Participate Who Began Program	89%	80%	80%	82%	79%	51%	79%		
Completed Program*	292	143	170	162	159	59	985		
% Who Began Program Who Completed Program	74%	62%	85%	83%	77%	57%	74%		
% of Referrals Who Completed Program	27%	26%	31%	26%	22%	9%	24%		
Individual Counselling									
Families		79	102	121	77	95	474		
Sessions		179	217	258	185	286	1,125		
Sessions / Family		2.3	2.1	2.1	2.4	3.0	2.4		
* Completed at least 7 of the 10 group sessions. ** The Covid pandemic began in March of 2020.									

MEND / Generation Health

- Mind, Exercise, Nutrition, Do It! (MEND) is a community-based age-specific (MEND 5-7 and MEND 7-13) 10-week program delivered by trained leaders with recreation and /or health backgrounds. Children must have a BMI-for-age above the 85th percentile. Families self-refer to the program.²²⁶
- Between April 2013 and June 2014, 351 children and their families enrolled in 33 MEND 7-13 programs. Of the 351, a total of 329 began the program and 226 attended at least 70% of the sessions.²²⁷
- During the three months from April to June of 2014, 26 children and their families enrolled in 3 MEND 5-7 programs. Of the 26, a total of 25 began the program and 20 attended at least 70% of the sessions. The evaluation of the program noted that there were significant recruitment challenges for this age cohort.²²⁸

²²⁶ Childhood Obesity Foundation. *Shifting the Destination by Shifting the Trajectory: Evaluation Report*. March 2015. Available online at https://childhoodobesityfoundation.ca/wp-content/uploads/2015/02/CHWII-Healthy-Weights-Evaluation-Full-Report.pdf. Accessed July 2020.

²²⁷ Childhood Obesity Foundation. *Shifting the Destination by Shifting the Trajectory: Evaluation Report*. March 2015. Available online at https://childhoodobesityfoundation.ca/wp-content/uploads/2015/02/CHWII-Healthy-Weights-Evaluation-Full-Report.pdf. Accessed July 2020.

²²⁸ Childhood Obesity Foundation. *Shifting the Destination by Shifting the Trajectory: Evaluation Report*. March 2015. Available online at https://childhoodobesityfoundation.ca/wp-content/uploads/2015/02/CHWII-Healthy-Weights-Evaluation-Full-Report.pdf. Accessed July 2020.

- Between September 2014 and June 2015, 246 children and their families enrolled in 27 MEND 7-13 programs. Of the 246, a total of 185 began the program. No information is provided on how many attended at least 70% of the sessions.²²⁹
- Between July 2015 and June 2016, 485 children and their families enrolled in 45 MEND 7-13 programs. During this phase, the BMI entry criteria were temporarily expanded to include children of a healthy weight, if a risk factor was present. Of the 485, however, a total of 304 began the program who had a BMI-for-age 85th percentile or above. No information is provided on how many attended at least 70% of the sessions.²³⁰

Table 2: MEND 5-7 and 7-13								
Trends in Enrollment to Program Completion								
Program and Time Period								
	MEND 7-13	MEND 5-7	MEND 7-13	MEND 7-13				
	Apr '13 to	April '14 -	July '14 to	July '15 to				
	June '14	June '14	June '15	June '16	Total			
Enrolled in Program	351	26	246	485	377			
Began Program	329	25	185	304	354			
% of Enrolled in Program	0/1%	06%	75%	62%	01%			
Who Began Program	J470	5078	73/0	0378	5478			
Completed Program*	226	20	NA	NA	246			
% Who Began Program Who	60%	80%			60%			
Completed Program	0.570	0070			0378			
* Completed at least 70% of t	he sessions.							

Generation Health

- Between April of 2017 and February of 2018 the Childhood Obesity Foundation, the BC Ministry of Health and the University of Victoria initiated a planning and consultation phase to develop a community-based "made in BC" childhood healthy weights early intervention program for families with children between ages 8 and 12 who are above the 85th percentile for BMI-for-age. The program was designed between January and August of 2018 with an initial implementation between September 2018 and June 2019. Finally, the program, called Generation Health, was scaled up between September of 2019 and June of 2020.²³¹
- The program uses a lifestyle behaviour approach to promoting healthy weights in children and youth with a focus on healthy eating habits, physical activity and a healthy body image. The program includes 10 weekly group sessions 1.5 to 2 hours long with a focus on "healthy eating and active living, goal setting, family mealtimes and family physical activity, sleep hygiene, healthy body image and self-compassion, as well as positive parenting." In addition, the program includes 10 weekly online

²³¹ Childhood Obesity Foundation. *Introducing ...Generation Health*. Available online at https://generationhealth.ca/wp-content/uploads/2019/10/FHLP-BROCHURE-FINAL.pdf. Accessed July 2020.

²²⁹ Childhood Obesity Foundation. *MEND Scale-Up and Implementation Evaluation Report:* 2014 – 2016. January 2017. Available online at https://childhoodobesityfoundation.ca/wp-content/uploads/2015/02/COF-MEND-2014-16-Eval-Report-2017-FINAL.pdf. Accessed July 2020.

²³⁰ Childhood Obesity Foundation. *MEND Scale-Up and Implementation Evaluation Report:* 2014 – 2016. January 2017. Available online at https://childhoodobesityfoundation.ca/wp-content/uploads/2015/02/COF-MEND-2014-16-Eval-Report-2017-FINAL.pdf. Accessed July 2020.
sessions, 4 group activities as well as a maintenance phase during which program participants receive regular virtual check-ins.²³²

- Between October of 2018 and April of 2019, the program delivered two full 10-week program cycles at seven sites in the province (the prototype phase). During those two cycles, 88 children and their families enrolled in the programs, 66 began the program and 39 attended at least 70% of the sessions.²³³
- Between October of 2019 and April of 2020, the program delivered two full 10-week program cycles at eight sites in the province (the partial scale-up phase). During those two cycles, 117 children and their families enrolled in the programs, 80 began the program and 52 attended at least 70% of the sessions.²³⁴

Table 3: Generation Health (8 - 12 Years of Age)									
Trends in Enrollment to Program Completion									
	Time Period								
	Oct '18 to	Oct '19 to							
	Apr '19	Apr '20	Total						
Enrolled in Program 88 117 205									
Began Program	63	80	143						
% of Enrolled in Program Who Began Program	72%	68%	70%						
Completed Program*	39	52	91						
% Who Began Program Who Completed Program 62% 65% 64%									
* Completed at least 70% of the sessions.									

HealthLinkBC Eating and Activity Program for Kids

- HealthLinkBC Eating and Activity Program for Kids (HEAPK) is a telephone-based intervention that includes 8 scheduled telephone calls with a pediatric registered dietitian and a qualified exercise professional. Calls take from 30-60 minutes each and focus on topics such as family mealtimes, healthy drink choices, increasing fun physical activities and reducing screen time.²³⁵
- Between 2014/15 and 2019/20, a total of 341 participants participated in at least one phone call with either the dietitian or the exercise professional. Between 2015/16 and 2018/19 (years with complete information), 306 participants began the program (an average of 77 per year) and 116 (38%) participated in at least four of the eight calls.²³⁶

²³² Childhood Obesity Foundation. *Generation Health*. Available online at https://childhoodobesity.foundation.cg/early_intervention_program_2/#toggle_id_7_Accessed_https://childhoodobesity.foundation.cg/early_intervention_program_2/#toggle_id_7_Accessed_https://childhoodobesity.foundation.cg/early_intervention_program_2/#toggle_id_7_Accessed_https://childhoodobesity.foundation.cg/early_intervention_program_2/#toggle_id_7_Accessed_https://childhoodobesity.foundation.cg/early_intervention_program_2/#toggle_id_7_Accessed_https://childhoodobesity.foundation.cg/early_intervention_program_2/#toggle_id_7_Accessed_https://childhoodobesity.foundation.cg/early_intervention_program_2/#toggle_id_7_Accessed_https://childhoodobesity.foundation.cg/early_intervention_program_2/#toggle_id_7_Accessed_https://childhoodobesity.foundation.cg/early_intervention_program_2/#toggle_id_7_Accessed_https://childhoodobesity.foundation.cg/early_intervention_program_2/#toggle_id_7_Accessed_https://childhoodobesity.foundation.cg/early_intervention_program_2/#toggle_id_7_Accessed_https://childhoodobesity.foundation.cg/early_intervention_program_2/#toggle_id_7_Accessed_https://childhoodobesity.foundation.cg/early_intervention_program_2/#toggle_id_7_Accessed_https://childhoodobesity.foundation.cg/early_intervention_program_2/#toggle_id_7_Accessed_https://childhoodobesity.foundation_genet_foun

https://childhoodobesityfoundation.ca/early-intervention-program-2/#toggle-id-7. Accessed July 2020.

 ²³³ Childhood Obesity Foundation. Family Healthy Living Program: Final Evaluation Report June 2019.
 ²³⁴ Childhood Obesity Foundation. Generation Health: Evaluation Report June 2020.

 ²³⁵ Childhood Obesity Foundation. *HealthLinkBC Eating and Activity Program for Kids*. Available online at https://childhoodobesityfoundation.ca/healthlinkbc-eating-activity-program-kids/. Accessed July 2020.
 ²³⁶ Margaret Yandel, Policy Lead, Office of the Provincial Dietitian. Personal Communication. June 2020.

Summary

- Combining the 2018/19 fiscal year data from Shapedown BC and Generation Health, a total of 270 (207 + 63) children and their families began a structured behavioural intervention aimed at healthy weight management. Of these 270 children and their families, 198 (159 + 39) attended at least 70% of the sessions. The 73% completion rate (198/270) is better than the 50-60% completion rate observed in similar programs in Australia²³⁷ and the UK²³⁸ (see below). Potential reasons for this include the enhanced screening upon referral and the inclusion of ono-on-one counselling throughout the group process provided by Shapedown BC. Consistent attendance is important in achieving the beneficial program outcomes.²³⁹
- During the three years from 2016/17 to 2018/19, Shapedown BC had a completion rate of 81% (Table 1).
- We did not use the more current 2019/20 data due to the potential effect of the Covid-19 pandemic (starting in March of 2020) on attendance and completion rates.
- Of 3,148 children / youth recruited between July 2009 and October of 2012 to the Go4Fun community-based child obesity treatment program in New South Wales, Australia, 336 (10.7%) did not attend any sessions, 2,812 (89.3%) attended one or more sessions and 1,520 (48.3%) completed ≥75% of sessions.²⁴⁰ Poor program adherence is associated with a low level of parental literacy.²⁴¹
- In the UK, of 18,289 children and their families referred to MEND 7-13 (Mind, Exercise, Nutrition...Do It!), 13,998 (76.5%) started the program and 8,311 (45.4% of 'referrals' and 59.4% of 'starters') attended at least 75% of the sessions.²⁴²
- In 2021, there were an estimated 33,878 children/youth ages 6 17 in BC with obesity (see Table 8 below). If we assume an approximate equal distribution by age, then there would be approximately 2,823 (33,878 / 12 years) children/youth in any given age group. Assuming a similar equal distribution in treated cases (22.5 in each age group), then approximately 0.8% in each age group begin treatment each year. Assuming that there are no individuals repeating the intervention in subsequent years, a cumulative 9.8% of the cohort of 2,823 6-year-olds that progress through 12 years of intervention opportunity (until they are 17) will have started a treatment program. With a completion rate of 73.3%, 7.2% of BC children/youth with obesity would receive the full benefits of a structured behavioural intervention aimed at healthy weight management in a given year.

²³⁷ Hardy L, Mihrshahi S, Gale J et al. Translational research: Are community-based child obesity treatment programs scalable? *BMC Public Health*. 2015; 15: 652.

²³⁸ Fagg J, Cole T, Cummins S et al. After the RCT: Who comes to a family-based intervention for childhood overweight and obesity when it is implemented at scale in the community? *Journal of Epidemiology and Community Health.* 2015; 69: 142-8.

²³⁹ Khanal S, Choi L, Innes-Hughes C et al. Dose response relationship between program attendance and children's outcomes in a community based weight management program for children and their families. *BMC Public Health*. 2019; 19: 716.

²⁴⁰ Hardy L, Mihrshahi S, Gale J et al. Translational research: Are community-based child obesity treatment programs scalable? *BMC Public Health*. 2015; 15: 652.

²⁴¹ Khanal S, Choi L, Innes-Hughes C et al. Dose response relationship between program attendance and children's outcomes in a community based weight management program for children and their families. *BMC Public Health*. 2019; 19: 716.

²⁴² Fagg J, Cole T, Cummins S et al. After the RCT: Who comes to a family-based intervention for childhood overweight and obesity when it is implemented at scale in the community? *Journal of Epidemiology and Community Health.* 2015; 69: 142-8.

• The estimated coverage of 9.8% is higher than the 2.1% observed in the UK and the 8.2% in Australia (see section on *Best in the World* above). We model using a cumulative 9.8% of the cohort starting the intervention and 73.3% of those starting completing the intervention.

Modelling the Clinically Preventable Burden

In this section, we model CPB associated with growth monitoring in children and youth ages 0-17 and the offer of, or referral to, structured behavioural interventions aimed at healthy weight management for children and youth aged 2 to 17 years who are overweight or obese.

In modelling CPB, we made the following assumptions:

Defining the Population at Risk – Number of Children and Youth in BC

- There were 873,990 children and youth ages 0 17 living in BC in 2021 (Table 4).²⁴³ The majority of these children and youth would be eligible for growth monitoring.
- There were 787,763 children and youth ages 2 17 living in BC in 2017 (Table 4). Children and youth ages 2 17 who are overweight or obese could be offered structured behavioural interventions aimed at healthy weight management.

Table 4: Number of Children and Youth								
British Columbia, 2021 by	Age and Sex							
Age Group	Population							
Males								
0 - 1	44,539							
2 - 5	95,740							
6 - 11	153,672							
12 - 17	154,197							
Subtotal - 0 to 17	448,148							
Subtotal - 2 to 17	403,609							
Females								
0 - 1	41,688							
2 - 5	89,926							
6 - 11	144,491							
12 - 17	149,737							
Subtotal - 0 to 17	425,842							
Subtotal - 2 to 17	384,154							
Total								
0-1	86,227							
2 - 5	185,666							
6 - 11	298,163							
12 - 17	303,934							
Total - 0 to 17	873,990							
Total - 2 to 17	787,763							

²⁴³ BC Stats. *British Columbia Population Estimates*. Available online at <u>https://bcstats.shinyapps.io/popApp/</u>. Accessed March 2023.

Defining the Population at Risk – Number of Children and Youth in BC with Excess Weight

- In adults, a BMI of between 25.0 kg/m² and 29.9 kg/m² is considered overweight and a BMI \geq 30.0 kg/m² is considered obese. In children, however, median BMI changes dramatically with age, suggesting that an age-specific approach is required when estimating excess weight in children.²⁴⁴ Three different organizations have attempted to address this by suggesting an approach to defining excess weight in children.
- In 2000, the Centres for Diseases Control (CDC) in the United States recommended that children/youth with a BMI at or above the 95th percentile on the current US growth curve be considered obese and that children/youth between the 85th and 95th percentile be considered overweight.
- Also in 2000, the International Obesity Task Force (IOTF) suggested an alternative approach, specifically designed for international comparisons. They recommended extrapolating the adult cut-points of 25 and 30 kg/m² backwards to sex- and age-specific cut-points for children and youth. Growth curves were generated from using large, nationally representative cross-sectional surveys from the US, Brazil, Great Britain, Hong Kong, the Netherlands and Singapore.
- In 2006 and 2007 the World Health Organization (WHO) suggested an approach which used ideal growth curves. Children/youth with a BMI of between one to two standard deviations (SD) above the mean would be considered overweight and those with a BMI greater than two SD above the mean considered obese. One SD approximates the 84th percentile while two SD approximates the 97.7th percentile.²⁴⁵
- The approach used matters. In a comparison of the three approaches applied to Canadian children / youth ages 2-17 using measured height and weight from 2004, the WHO approach yielded an overall prevalence of excess weight of 34.7%, the CDC approach 28.4% and the IOTF approach 26.2%.²⁴⁶
- We use IOTF cut-offs in our modelling. Where WHO cut-offs have been used in the source data, we have scaled these to estimate excess weight based on IOTF cut-offs.
- Ideally, excess weight should be calculated based on measured, rather than self-reported, height and weight. Unfortunately, data using measured height and weight is collected less frequently due to the additional costs involved.
- We estimated the prevalence of overweight and obesity in BC children as follows:
 - For 2 5 year-olds: The proportion of 2-5 years olds with overweight and obesity, based on measured height and weight, is available in Canada for 2004 based on IOTF cut-offs (overweight males 13.1%, females 17.3%; obese males 6.3%, females 6.4%).²⁴⁷ Excess weight rates in Canadian children have remained relatively stable since the early 2000s.^{248,249} Absent more recent

²⁴⁴ Cole TJ, Bellizzi MC, Flegal KM et al. Establishing a standard definition for child overweight and obesity worldwide: international survey. *British Medical Journal*. 2000; 320(7244): 1240-45.

²⁴⁵ Note that only 0-2 year-old children have WHO longitudinal data; 2-5 year-old data is mostly cross-sectional from six countries and data thereafter have been added by the WHO using modified CDC data from older US studies.

²⁴⁶ Shields M and Tremblay MS. Canadian childhood obesity estimates based on WHO, IOTF and CDC cutpoints. *International Journal of Pediatric Obesity*. 2010; 5(3): 265-73.

²⁴⁷ Statistics Canada. *Measured Obesity. Overweight Canadian Children and Adolescents*. 2005. Available at https://www150.statcan.gc.ca/n1/pub/82-620-m/2005001/pdf/4193660-eng.pdf. Accessed May 2020.

²⁴⁸ Rokholm B, Baker J, Sorensen T. The levelling off of the obesity epidemic since the year 1999: A review of evidence and perspectives. *Obesity Reviews*. 2010; 11: 835-46.

²⁴⁹ Jaacks L, Vandevijvere S, Pan A et al. The obesity epidemic: Stages of the global epidemic. *The Lancet Diabetes and Endocrinology*. 2019; 7: 231-40.

measured data for Canada or BC, we use measured 2004 Canadian data and assume that the excess weight rates in this age group have continued to remain stable to the present.

- For 6 17 year-olds: The prevalence of excess weight, based on measured height and weight, is available in Canada for children ages 5-11 and 12-17 for 2011, 2013, 2015 and 2017 (see Table 5).²⁵⁰
 - The prevalence in Table 3 is based on WHO cut-offs. We adjusted this WHO-based prevalence to IOTF-based prevalence using data from Shields and Tremblay (see Table 6).²⁵¹
 - On average, rates of excess weight in BC are lower than the Canadian average.²⁵² To adjust from Canadian to BC estimates, we used the most recent five years of excess weight prevalence data in the H. Krueger & Associates Inc. risk factor model^{253,254,255} for Canada and BC. We compared rates of overweight and obesity in both jurisdictions for children and youth ages 5 17 and calculated a 5-year average ratio between Canadian and BC prevalence rates by sex and excess weight class (see Table 7). These ratios were then applied to the current Canadian prevalence data to estimate BC prevalence rates by sex and excess weight class.
 - Based on these adjustments, the rate of *overweight* in BC males/females ages 2-5 was reduced from 13.1% / 17.3% to 12.3% / 16.2% and the rate of *obesity* in BC males/females ages 2-5 was reduced 6.3% / 6.4% to 5.5% / 4.4% (see Table 8).

 ²⁵⁰ Statistics Canada. Overweight and obesity based on measured body mass index, by age group and sex.
 Available at <u>https://www150.statcan.gc.ca/t1/tb11/en/cv.action?pid=1310037301#timeframe</u>. Accessed June 2020.
 ²⁵¹ Shields M and Tremblay MS. Canadian childhood obesity estimates based on WHO, IOTF and CDC cutpoints. *International Journal of Pediatric Obesity*. 2010; 5(3): 265-73.

points. *International Journal of Pediatric Obesity*. 2010; 5(3): 265-73. ²⁵² Krueger H, Krueger J, Koot J. Variation across Canada in the economic burden attributable to excess weight, tobacco smoking and physical inactivity. *Canadian Journal of Public Health*. 2015; 106(4): e171-77.

 ²⁵³ Krueger H, Williams D, Ready A et al. Improved estimation of the health and economic burden of chronic disease risk factors in Manitoba, Canada. *Chronic Diseases and Injuries in Canada*. 2013; 33(4): 236-246.
 ²⁵⁴ Krueger H, Krueger J, Koot J. Variation across Canada in the economic burden attributable to excess weight, tobacco smoking and physical inactivity. *Canadian Journal of Public Health*. 2015; 106(4): e171-77.
 ²⁵⁵ Krueger H, Koot J, Andres E. The economic benefits of fruit and vegetable consumption in Canada. *Canadian*

Journal of Public Health. 2017; 108(2): e152-61.

Table 5: Prevalence of Measured Excess Weight in Canada, 2011 - 2017														
	Ages 5 - 17													
Overweight														
			2011		2013				2015			2017		
			95% Co	nfidence	95% Confidence			95% Confidence			95% Confidence			
			Inte	erval	Interval				Interval			Interval		
-	Age Group	Prevalence	Low	High	Prevalence	Low	High	Prevalence	Low	High	Prevalence	Low	High	
	5 - 11	19.7%	14.8%	25.8%	14.1%	10.9%	18.0%	13.7%	9.2%	20.0%	15.8%	13.2%	18.8%	
Males	12 - 17	19.0%	12.6%	27.6%	23.4%	17.8%	30.2%	21.2%	16.9%	26.3%	15.5%	9.2%	25.1%	
	All (5 - 17)	19.3%	15.1%	24.4%	18.7%	15.4%	22.5%	17.2%	14.2%	20.6%	15.7%	12.4%	19.7%	
	5 - 11	19.3%	15.8%	23.3%	19.4%	14.1%	26.2%	15.0%	11.0%	20.2%	21.3%	17.5%	25.7%	
Females	12 - 17	20.9%	14.8%	28.6%	17.6%	10.7%	27.5%	18.9%	13.4%	26.0%	20.6%	14.5%	28.4%	
	All (5 - 17)	20.1%	15.6%	25.4%	18.5%	13.0%	25.6%	16.9%	14.5%	19.6%	21.0%	16.8%	25.9%	
Poth	5 - 11	19.5%	16.2%	23.2%	16.7%	13.4%	20.6%	14.3%	11.2%	18.1%	18.5%	15.7%	21.7%	
Both	12 - 17	19.9%	15.0%	25.9%	20.6%	16.7%	25.0%	20.1%	16.9%	23.7%	18.1%	14.7%	22.0%	
Sexes	All (5 - 17)	19.7%	16.5%	23.3%	18.6%	15.9%	21.7%	17.0%	15.3%	18.9%	18.3%	16.3%	20.6%	
						Obes	e							
			2011			2013			2015			2017		
			95% Co	nfidence		95% Cor	nfidence		95% Confidence			95% Co	nfidence	
			Inte	erval		Inte	rval		Inte	rval		Inte	rval	
-	Age Group	Prevalence	Low	High	Prevalence	Low	High	Prevalence	Low	High	Prevalence	Low	High	
	5 - 11	19.6%	15.6%	24.3%	8.4%	4.8%	14.1%	13.9%	10.3%	18.7%	11.5%	6.8%	19.0%	
Males	12 - 17	10.7%	7.5%	14.9%	21.0%	12.6%	33.0%	15.3%	10.4%	22.0%	12.6%	8.7%	17.9%	
	All (5 - 17)	15.1%	12.6%	17.9%	14.6%	10.2%	20.4%	14.6%	11.5%	18.4%	12.0%	9.2%	15.5%	
	5 - 11	6.3%	4.1%	9.7%	9.4%	6.7%	13.0%	10.6%	7.3%	15.3%	7.6%	5.5%	10.3%	
Females	12 - 17	9.6%	6.0%	15.2%	11.7%	8.7%	15.6%	12.1%	7.1%	19.9%	10.9%	7.7%	15.3%	
	All (5 - 17)	8.0%	5.7%	11.1%	10.5%	8.1%	13.5%	11.4%	7.5%	16.9%	9.1%	7.4%	11.1%	
Both	5 - 11	13.2%	10.5%	16.4%	8.9%	6.6%	11.7%	12.4%	9.2%	16.4%	9.6%	6.7%	13.5%	
Sexes	12 - 17	10.2%	7.3%	14.1%	16.5%	11.7%	22.9%	13.8%	10.5%	17.9%	11.8%	8.9%	15.4%	
JEACS	All (5 - 17)	11.7%	9.9%	13.7%	12.6%	10.0%	15.8%	13.0%	10.1%	16.6%	10.6%	8.7%	12.7%	

Table 6: Prevalence of Measured Excess Weight in Canada 2017Adjusted to IOTF Cut-offsAges 5 - 17												
Overweight												
	WHO (Base) IOTF											
				95% Co	nfidence							
				Inte	erval							
	Age Group		Prevalence	Low	High							
	5 - 11	15.8%	13.2%	18.8%		11.4%	9.5%	13.6%				
Males	12 - 17	15.5%	9.2%	25.1%		15.0%	8.9%	24.3%				
	All (5 - 17)	15.7%	12.4%	19.7%		-	-	-				
	5 - 11	21.3%	17.5%	25.7%		19.1%	15.7%	23.0%				
Females	12 - 17	20.6%	14.5%	28.4%		19.3%	13.6%	26.7%				
	All (5 - 17)	21.0%	16.8%	25.9%		-	-	-				
			Obese									
		WH	O (Base)			IOTF					
			95% Co	nfidence			95% Co	nfidence				
			Inte	erval			Inte	erval				
	Age Group	Prevalence	Low	High		Prevalence	Low	High				
	5 - 11	11.5%	6.8%	19.0%		6.1%	3.6%	10.0%				
Males	12 - 17	12.6%	8.7%	17.9%		9.3%	6.4%	13.2%				
	All (5 - 17)	12.0%	9.2%	15.5%		-	-	-				
	5 - 11	7.6%	5.5%	10.3%		4.6%	3.3%	6.2%				
Females	12 - 17	10.9%	7.7%	15.3%		8.6%	6.1%	12.0%				
	All (5 - 17)	9.1%	7.4%	11.1%		-	-	-				

Table 7: Prevalence of Measured Excess Weight in Canada and BC											
IOTF Cut-offs, 2017											
	Ages 5 - 17										
Canada BC											
_	Age Group	Overweight	Obese		Overweight	Obese					
Maloc	5 - 11	11.4%	6.1%		10.7%	5.3%					
iviales	12 - 17	15.0%	9.3%		14.1%	8.1%					
Females	5 - 11	19.1%	4.6%		17.8%	3.1%					
. emailed	12 - 17	19.3%	8.6%		18.1%	5.9%					

• In 2021, an estimated 160,438 children and youth ages 2-17 in BC had excess weight, with 43,072 having obesity (see Table 8). The 33,878 children and youth ages 6 – 17 with obesity are most likely to be offered structured behavioural interventions aimed at healthy weight management.

Table 8: Number of Children and Youth with Excess Weight											
	:	British Colum	bia, 202	1 by Age and Se	ex						
		Percer	nt			Numb	er				
Age Group	Population	Overweight	Obese	Excess Weight	Overweight	Obese	Excess Weight				
Males											
2-5	95,740	12.3%	5.5%	17.8%	11,763	5,260	17,023				
6 - 11	153,672	10.7%	5.3%	16.0%	16,446	8,136	24,582				
12 - 17	154,197	14.1%	8.1%	22.1%	21,699	12,455	34,154				
Subtotal - 2 to 17	403,609	12.4%	6.4%	18.8%	49,908	25,851	75,759				
Females											
2-5	89,926	16.2%	4.4%	20.6%	14,562	3,934	18,496				
6 - 11	144,491	17.8%	3.1%	21.0%	25,790	4,504	30,294				
12 - 17	149,737	18.1%	5.9%	24.0%	27,105	8,783	35,889				
Subtotal - 2 to 17	384,154	17.6%	4.5%	22.0%	67,458	17,221	84,679				
Total											
2-5	185,666	14.2%	5.0%	19.1%	26,325	9,194	35,519				
6 - 11	298,163	14.2%	4.2%	18.4%	42,236	12,640	54,877				
12 - 17	303,934	16.1%	7.0%	23.0%	48,805	21,238	70,042				
Total - 2 to 17	787,763	14.9%	5.5%	20.4%	117,366	43,072	160,438				

Excess Weight in Childhood and Youth as a Predictor of Excess Weight in Adulthood

• Evidence suggests that excess weight in children/youth often persists into adulthood. The USPSTF recommendation statement references a systematic review and metaanalysis by Simmonds and colleagues which found that obese children had a relative risk of obesity as adults of 5.21 (95% CI, 4.50 - 6.02) and that 70% of obese youth will still be obese after 30 years of age.^{256,257}

²⁵⁶ Simmonds M, Llewellyn A, Owen C et al. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. *Obesity reviews*. 2016; 17(2): 95-107.

²⁵⁷ Grossman DC, Bibbins-Domingo K, Curry SJ et al. Screening for obesity in children and adolescents: US Preventive Services Task Force recommendation statement. *Journal of the American Medical Association*. 2017; 317(23): 2417-26.

• For modelling purposes, we assumed that there would be a linear change in obesity from age 17 to age 30, and that at 30 years of age, 70% of obese 17-year-olds would continue to be obese. We assumed no further transitions between weight classes for the original group of 17 year-olds with excess weight after age 30.

Calculating Life Years Lost

- Obesity reduces an individual's longevity.^{258,259}
- Di Angelantonio and colleagues published a study assessing the relationship between excess weight and all-cause mortality based on a meta-analysis of 239 prospective studies from four continents.²⁶⁰ Based on strict inclusion criteria (the study analyses excluded the first 5 years of follow-up and was restricted to never-smokers without pre-existing chronic disease), males who are overweight (BMI of 25 to <30), obese class I (BMI of 30 to <35), obese class II (BMI of 35 to < 40) or obese class III (BMI of ≥40) have a 12%, 70%, 168% and 324%, respectively, increased risk of premature mortality, compared with males of a healthy weight. Females who are overweight, obese class I, obese class II or obese class III have an 8%, 37%, 86% and 173%, respectively, increased risk of premature mortality, compared with females of a healthy weight.
- Research by Fontaine and colleagues suggests that the number of life years lost by the US white population ages 20-29 increases with increasing levels of excess weight, from 0.6 (0.8 for males and 0.4 for females) years for overweight, 1.9 years (2.2 for males and 1.6 for females) for obese class I and 3.8 years (4.2 for males and 3.4 for females) for obese class II.²⁶¹
- In Australia, compared with normal weight females age 20-29, females age 20-29 who are overweight would live 3.6 fewer years, females with class I obesity would live 6.1 fewer years and females with class II/III obesity would live 7.7 fewer years. Compared with normal weight males age 20-29, males age 20-29 who are overweight would live 4.2 fewer years, males with class I obesity would live 8.3 fewer years and males with class II/III obesity would live 8.3 fewer years and males with class II/III obesity would live 10.5 fewer years.
- Not all research studies have found this association. Research by Steensma et al in Canada found that life expectancy was *significantly longer* for both males and females with overweight compared with their normal weight colleagues.²⁶³ This so-called "obesity paradox" found in a number of studies may be at least partially due to using self-reported height and weight in calculating BMI, the imperfect nature of

²⁵⁸ Peeters A, Barendregt JJ, Willekens F et al. Obesity in adulthood and its consequences for life expectancy: a life-table analysis. *Annals of Internal Medicine*. 2003; 138(1): 24-32.

²⁵⁹ Finkelstein EA, Brown DS, Wrage LA et al. Individual and aggregate years-of-life-lost associated with overweight and obesity. *Obesity*. 2010; 18(2): 333-9.

²⁶⁰ Di Angelantonio E, Bhupathiraju SN, Wormser D et al. Body-mass index and all-cause mortality: individualparticipant-data meta-analysis of 239 prospective studies in four continents. *The Lancet*. 2016; 388(10046): 776-86. See etable 7 in the Supplementary Material.

²⁶¹ Fontaine K, Redden D, Wang C et al. Years of life lost due to obesity. JAMA. 2003; 289(2): 187-93.

²⁶² Lung T, Jan S, Tan E et al. Impact of overweight, obesity and severe obesity on life expectancy of Australian adults. *Epidemiology and Population Health*. 2019; 43: 782-9.

²⁶³ Steensma C, Loukine L, Orpana H et al. Comparing life expectancy and health-adjusted life expectancy by body mass index category in adult Canadians: a descriptive study. *Population health metrics*. 2013; 11(1): 21.

BMI as a predictor of metabolic risk, confounding due to pre-existing diseases at baseline and inadequately controlling for tobacco use.^{264,265}

• For modelling purposes we have assumed a mid-point in life years lost (LYL) between the US²⁶⁶ and Australian estimates²⁶⁷ and used the range in the sensitivity analysis.

Obese class I males -5.25 LYL (2.2 to 8.3)

Obese class II/III males - 7.35 LYL (4.2 to 10.5)

Obese class I females - 3.85 LYL (1.6 to 6.1)

Obese class II/III females - 5.55 LYL (3.4 to 7.7)

- Based on 2011 data, Twells and colleagues found that 11.7% / 9.7% of males/females ages 18 and older in BC would be in obese class I, 2.7% / 2.5% in class II and 0.6% / 1.7% in class III.²⁶⁸
- We combine the sex-specific proportion of BC individuals in each weight class with the life years lost estimates from the US and Australia to determine a weighted average life years lost for an individual with obesity in BC (see Table 9). Males with obesity lose an average of 5.7 (2.6 to 8.8) years of life (see Table 13, row 1) while females lose an average of 4.4 (2.1 to 6.6) years of life (see Table 13, row m). For modelling purposes, we reduce life years based on obesity status at 30 years old.

	Tak	Je J. Weigin	eu Average					ily	
		Obesity Distribution in BC Population	Proportion of Individuals with Obesity	Life	Years Lo	st ^{2,3}	Weight Years Lo w	ed Avera ost for Ind ith Obesi	age Life dividual ty
		in 2011 ¹	in each Class	Base	Low	High	Base	Low	High
	Class I	11.7%	78.0%	5.25	2.2	8.3			
Male	Class II	2.7%	18.0%	7.35	4.2	10.5	5.7	2.6	8.8
	Class III	0.6%	4.0%	7.35	4.2	10.5			
	Class I	9.7%	69.8%	3.85	1.6	6.1			
Female	Class II	2.5%	18.0%	5.55	3.4	7.7	4.4	2.1	6.6
	Class III	1.7%	12.2%	5.55	3.4	7.7			
¹ Twells	etal. ² Fon	taine et al. ³ Lung e	et al.						

Table 9: Weighted Average Life Years Lost Due to Obesity

²⁶⁴ Di Angelantonio E, Bhupathiraju SN, Wormser D et al. Body-mass index and all-cause mortality: individualparticipant-data meta-analysis of 239 prospective studies in four continents. *The Lancet*. 2016; 388(10046): 776-86. See etable 7 in the Supplementary Material.

 ²⁶⁵ Chrysant S and Chrysant G. The single use of body mass index for the obesity paradox is misleading and should be used in conjunction with other obesity indices. *Postgraduate Medicine*. 2019; 131(2): 96–102.
 ²⁶⁶ Fontaine K, Redden D, Wang C et al. Years of life lost due to obesity. *JAMA*. 2003; 289(2): 187-93.

²⁶⁷ Lung T, Jan S, Tan E et al. Impact of overweight, obesity and severe obesity on life expectancy of Australian adults. *Epidemiology and Population Health*. 2019; 43: 782-9.

²⁶⁸ Twells LK, Gregory DM, Reddigan J et al. Current and predicted prevalence of obesity in Canada: a trend analysis. *CMAJ Open.* 2014; 2(1): E18.

Estimating the Quality of Life Reduction

• Obesity also reduces an individual's quality of life.

In Children / Youth

- An Australian study used a community-based sample of 1,569 children (mean age of 10.4 years) to assess the effect of excess weight on QoL.²⁶⁹ They found that QoL as identified by parents was reduced by 3.7% for overweight and 9.7% for obesity whereas QoL as identified by children was reduced by 1.5% for overweight and 8.1% for obesity.
- A further Australian study of 2,890 adolescents also assessed the effect of excess weight on QoL.²⁷⁰ They found that overweight is associated with a disutility of 0.018 while obesity is associated with a disutility of 0.059. The disutility associated with overweight was only significant in girls (0.039) while the disutility associated with obesity was significant in both girls (0.084) and boys (0.041).
- Based on a meta-analysis of 11 studies with 13,210 study participants using the PedsQL index to assess QoL in children and youth, Ul-Haq and colleagues found a clear dose relationship between excess weight and QoL.²⁷¹ Overweight was associated with a reduction in the total PedsQL score of 1.43 (95% CI of 0.32 to 2.55) while obesity was associated with a reduction of 10.63 (95% CI of 7.24 to 14.03). This is based on the assessment being completed by the child/adolescent. If the parent completes the assessment, overweight was associated with a reduction in the total PedsQL score of 2.60 (95% CI of 1.19 to 4.00) while obesity was associated with a reduction of 18.87 (95% CI of 11.14 to 26.60).
- The relationship between excess weight and poor QoL is strengthened with increasing age through childhood and adolescence.²⁷²
- For the purposes of this project, we adjusted the PedsQL overall scores as identified by children/youth in the Ul-Haq et al study²⁷³ to reflect Child Health Utility-9 Dimension (CHU-9D) scores.²⁷⁴ The CHU-9D has been specifically developed for economic evaluations in children 5 years of age and older. The results suggest a change in utility associated with overweight and obesity of 0.003 (95% CI of 0.0 to 0.006) and 0.026 (95% CI of 0.017 to 0.036), respectively. We apply the QoL disutility of 0.026 (or 2.6%) (see Table 13, row e) associated with *obesity*, but not overweight, to children and youth between the ages of 6 17.
- Based on a meta-analysis of 21 studies assessing paediatric obesity interventions, Steele et al found that weight loss is strongly and significantly associated with

²⁶⁹ Williams J, Wake M, Hesketh K et al. Health-related quality of life of overweight and obese children. *JAMA*. 2005; 293(1): 70-6.

²⁷⁰ Keating CL, Moodie ML, Richardson J et al. Utility-based quality of life of overweight and obese adolescents. *Value in Health.* 2011; 14(5): 752-8.

²⁷¹ Ul-Haq Z, Mackay D, Fenwick E et al. Meta-analysis of the association between Body Mass Index and Healthrelated Quality of Life among children and adolescents, assessed using the Pediatric Quality of Life Inventory Index. *The Journal of Pediatrics*. 2013; 162(2): 280-6.

²⁷² Killedar A, Lung T, Petrou S et al. Weight status and health-related quality of life during childhood and adolescence: Effects of age and socioeconomic position. *Pediatrics*. 2020; 44: 637-45.

²⁷³ Ul-Haq Z, Mackay D, Fenwick E et al. Meta-analysis of the association between Body Mass Index and Healthrelated Quality of Life among children and adolescents, assessed using the Pediatric Quality of Life Inventory Index. *The Journal of Pediatrics*. 2013; 162(2): 280-6.

²⁷⁴ Lamb T, Frew E, Ives N et al. Mapping the Paediatric Quality of Life Inventory (PedQLTM) generic core scales onto the Child Health Utility Index-9 Dimension (CHU-9D) score for economic evaluation in children. *PharmacoEconomics*. 2018; 36: 451-65.

increases in QoL ($R^2 = 0.87$). An estimated decrease of 1 BMI unit (approximately 5 pounds in a 10-year old) is required for a clinically significant change in QoL.²⁷⁵

In Adults

A UK study used a community-based sample ≥ 16 years of age of 14,117 to assess the effect of excess weight on QoL.²⁷⁶ They found a utility of -0.019 (95% CI of -0.026 to -0.011) associated with overweight (BMI of 25 to <30) compared to normal weight (BMI of 18.5 to <25) in their unadjusted model. After adjusting for age, sex, alcohol use, physical activity, fruit and vegetable consumption, smoking status, ethnicity, marital status, educational attainment, and income, however, this utility was no longer statistically significant (-0.005 with a 95% CI of -0.029 to 0.019). The utility associated with obesity class I & II (BMI of 30 to <40) and class III (BMI ≥40) remained significant after adjustment at -0.031 (95% CI of -0.020 to -0.041) and -0.105 (95% CI of -0.072 to -0.137) respectively. Table 10 shows the weighted disutility results based on the distribution of obesity classes in BC.²⁷⁷

	Table 1	0: Weighted	Average Dis	utility i	n Adu	lts (16-	+) Due to	o Obesit	y		
		Obesity Distribution in BC Population	Proportion of Individuals with Obesity	[Disutility	2	Weighted Average Disutilit for Individual with Obesit				
		in 2011 ¹	in each Class	Base	Low	High	Base	Low	High		
	Class I	11.7%	78.0%	0.031	0.020	0.041					
Male	Class II	2.7%	18.0%	0.031	0.020	0.041	0.034	0.022	0.045		
	Class III	0.6%	4.0%	0.105	0.070	0.137					
	Class I	9.7%	69.8%	0.031	0.020	0.041					
Female	Class II	2.5%	18.0%	0.031	0.020	0.041	0.040	0.026	0.053		
	Class III	1.7%	12.2%	0.105	0.070	0.137					
¹ Twells e	¹ Twells et al. ² Maheswaran et al.										

- For modelling purposes, we assume a QoL disutility of 0.026 (0.017 to 0.036) in children and youth ages 6 17 with obesity and a QoL disutility of 0.034 (0.022 to 0.045) in males ages 18 and older with obesity (see Table 13, row f) and of 0.040 (0.026 to 0.053) in females ages 18 and older with obesity (see Table 13, row g).
- We combine life years, prevalence of obesity and reduction in quality of life to generate the current (in the absence of an intervention) burden of child / adolescent obesity in BC as shown in Table 11. Life years lived by the cohort is shown in the "Life Years" column(s). Males have a shorter life expectancy so the male column ends at 81 years of age compared with 85 for females. Life years lost due to obesity is reflected in the "Proportion Obese" column which ends at 75 and 81 years for males and females respectively.
- In the absence of an intervention, obesity in children and youth between the ages of 6 and 17 would result in a reduction of 4,908 QALYs (2,567 in males and 2,341 in females) due to a reduction in QoL associated with obesity (see Table 11 and Table 13, rows h & i).

²⁷⁵ Steele R, Gayes L, Dalton III W et al. Change in health-related quality of life in the context of paediatric obesity interventions: A meta-analytic review. *Health Psychology*. 2016; 35(10): 1097-1109.

²⁷⁶ Maheswaran H, Petrou S, Rees K et al. Estimating EQ-5D utility values for major health behavioural risk factors in England. *Journal of Epidemiology and Community Health*. 2013; 67(1): 172-80.

²⁷⁷ Twells LK, Gregory DM, Reddigan J et al. Current and predicted prevalence of obesity in Canada: a trend analysis. *CMAJ Open.* 2014; 2(1): E18.

					Life Yea	ars Lived	Quality	y of Life	QALYs Lo	st Due
	Life	Years	Proporti	on Obese	with C	besity	Redu	iction	Obe	sity
ge	М	F	М	F	M	F	Μ	F	M	F
6	19,909	19,920	5.3%	3.1%	1,054	621	0.026	0.026	27	16
, ,	19,907	19,918	5.3%	3.1% 2.1%	1,054	621	0.026	0.026	27	10
9	19,900	19,917	5.3%	3.1%	1,054	621	0.026	0.026	27	16
10	19 904	19 915	5.3%	3.1%	1,054	621	0.020	0.020	27	16
11	19,903	19,914	5.3%	3.1%	1.054	621	0.026	0.026	27	16
12	19,901	19,912	8.1%	5.9%	1,607	1.168	0.026	0.026	42	30
13	19,899	19,911	8.1%	5.9%	1,607	1,168	0.026	0.026	42	30
14	19,897	19,908	8.1%	5.9%	1,607	1,168	0.026	0.026	42	30
15	19,893	19,906	8.1%	5.9%	1,607	1,168	0.026	0.026	42	30
16	19,888	19,902	8.1%	5.9%	1,606	1,167	0.026	0.026	42	30
17	19,880	19,897	8.1%	5.9%	1,606	1,167	0.026	0.026	42	30
18	19,870	19,891	7.9%	5.7%	1,568	1,140	0.034	0.040	53	46
19	19,858	19,885	7.7%	5.6%	1,530	1,113	0.034	0.040	52	45
20	19,843	19,878	7.5%	5.5%	1,492	1,085	0.034	0.040	51	43
21	19,826	19,871	7.3%	5.3%	1,454	1,058	0.034	0.040	49	42
22	19,807	19,863	7.1%	5.2%	1,415	1,031	0.034	0.040	48	41
23	19,786	19,855	7.0%	5.1%	1,377	1,003	0.034	0.040	47	40
24	19,763	19,847	6.8%	4.9%	1,338	976	0.034	0.040	45	39
25	19,739	19,839	6.6%	4.8%	1,300	949	0.034	0.040	44	38
26	19,714	19,830	6.4%	4.6%	1,262	922	0.034	0.040	43	37
27	19,689	19,821	6.2%	4.5%	1,223	894	0.034	0.040	42	36
28	19,662	19,811	6.0%	4.4%	1,185	867	0.034	0.040	40	35
29	19,635	19,801	5.8%	4.2%	1,147	840	0.034	0.040	39	34
30	19,607	19,790	5.7%	4.1%	1,109	813	0.034	0.040	38	33
31	19,579	19,779	5.7%	4.1%	1,107	812	0.034	0.040	38	33
32	19,550	19,767	5.7%	4.1%	1,105	812	0.034	0.040	38	33
33	19,520	19,755	5.7%	4.1%	1,104	811	0.034	0.040	37	32
34	19,489	19,742	5.7%	4.1%	1,102	811	0.034	0.040	37	32
35	19,458	19,729	5.7%	4.1%	1,100	810	0.034	0.040	37	32
36	19,425	19,715	5.7%	4.1%	1,098	810	0.034	0.040	37	32
37	19,392	19,700	5.7%	4.1%	1,096	809	0.034	0.040	3/	32
38	19,357	19,685	5.7%	4.1%	1,094	808	0.034	0.040	3/	32
39	19,321	19,669	5.7%	4.1%	1,092	808	0.034	0.040	3/	32
40	19,283	19,652	5.7%	4.1%	1,090	807	0.034	0.040	37	32
41	19,245	19,034	5.7%	4.1%	1,088	806	0.034	0.040	37	32
42	19,204	19,015	5.7%	4.1%	1,080	805	0.034	0.040	37	32
45	19,102	19,594	5.770	4.170	1,005	803	0.034	0.040	37	22
44	19,117	19,572	5.770	4.170	1,001	004 902	0.034	0.040	37	22
45	19,071	19,549	5.7%	4.170	1,075	803	0.034	0.040	27	22
40	18 970	19,024	5.7%	4.1%	1 073	801	0.034	0.040	36	32
48	18 915	19.469	5.7%	4.1%	1,075	799	0.034	0.040	36	32
49	18,857	19 438	5.7%	4.1%	1,005	798	0.034	0.040	36	32
50	18 795	19 405	5.7%	4 1%	1 063	797	0.034	0.040	36	32
51	18,729	19.370	5.7%	4.1%	1.059	795	0.034	0.040	36	32
52	18.659	19.332	5.7%	4.1%	1.055	794	0.034	0.040	36	32
53	18,583	19,291	5.7%	4.1%	1.051	792	0.034	0.040	36	32
54	18,503	19,247	5.7%	4.1%	1.046	790	0.034	0.040	36	32
55	18,417	19,199	5.7%	4.1%	1.041	788	0.034	0.040	35	32
56	18.325	19.148	5.7%	4.1%	1.036	786	0.034	0.040	35	31
57	18,226	19,092	5.7%	4.1%	1,030	784	0.034	0.040	35	31
58	18,120	19,032	5.7%	4.1%	1,024	781	0.034	0.040	35	31
59	18,006	18,966	5.7%	4.1%	1,018	779	0.034	0.040	35	31
60	17,884	18,895	5.7%	4.1%	1,011	776	0.034	0.040	34	31
61	17,752	18,817	5.7%	4.1%	1,004	773	0.034	0.040	34	31
62	17,610	18,733	5.7%	4.1%	996	769	0.034	0.040	34	31
63	17,458	18,641	5.7%	4.1%	987	765	0.034	0.040	34	31
64	17,293	18,541	5.7%	4.1%	978	761	0.034	0.040	33	30
65	17,116	18,432	5.7%	4.1%	968	757	0.034	0.040	33	30
66	16,925	18,312	5.7%	4.1%	957	752	0.034	0.040	32	30
67	16,719	18,181	5.7%	4.1%	945	747	0.034	0.040	32	30
68	16,496	18,038	5.7%	4.1%	933	741	0.034	0.040	32	30
69	16,256	17,881	5.7%	4.1%	919	734	0.034	0.040	31	29
70	15,997	17,709	5.7%	4.1%	904	727	0.034	0.040	31	29
71	15,718	17,520	5.7%	4.1%	889	719	0.034	0.040	30	29
72	15,416	17,313	5.7%	4.1%	872	711	0.034	0.040	30	28
73	15,092	17,085	5.7%	4.1%	853	702	0.034	0.040	29	28
74	14,742	16,835	5.7%	4.1%	833	691	0.034	0.040	28	28
75	14,365	16,561	5.7%	4.1%	812	680	0.034	0.040	28	27
76	13,960	16,260	-	4.1%	-	668	0.034	0.040	-	27
77	13,526	15,929	-	4.1%	-	654	0.034	0.040	-	26
78	13,061	15,567	-	4.1%	-	639	0.034	0.040	-	26
79	12,563	15,171	-	4.1%	-	623	0.034	0.040	-	25
80	12,033	14,737	-	4.1%	-	605	0.034	0.040	-	24
81	11,469	14,263	-	4.1%	-	586	0.034	0.040	-	23
82	-	13,747	-	-	-	-	0.034	0.040	-	-
83	-	13,186	-	-	-	-	0.034	0.040	-	-
84	-	12,579	-	-	-	-	0.034	0.040	-	-
	-	11.925	-	-	-	-	0.034	0.040	-	-

Note that this table ONLY accounts for the population with obesity as these are the individuals that would be targeted by weight management interventions.

Effectiveness of the Intervention

- The CTFPHC notes that "structured interventions are behavioural modification programs that involve several sessions that take place over weeks to months, follow a comprehensive-approach delivered by a specialized inter-disciplinary team, involve group sessions, and incorporate family and parent involvement. Behaviourally-based interventions may focus on diet, increasing exercise, making lifestyle changes, or any combination of these. These can be delivered by a primary health care team in the office or through a referral to a formal program within or outside of primary care, such as hospital-based, school-based or community programs."²⁷⁸
- The systematic review and meta-analysis for the CTFPHC found that the overall effectiveness of behavioural interventions resulted in a -0.54 drop in BMI (95% CI from -0.73 to -0.36). This decrease, however, was not maintained 6-12 months after the intervention (0.08 change in BMI, 95% CI from -0.07 to 0.23). The most effective interventions included a focus on both diet and exercise (-1.09 drop in BMI, 95% CI from -1.84 to -0.34). The review also found a statistically significant improvement in blood pressure and QoL.²⁷⁹ Interventions reduced the prevalence of overweight from 40% to 35% and obesity from 33% to 31% over a duration of up to 36 months.²⁸⁰
- The USPSTF review grouped interventions by intensity using hours of contact (≤ 5 hours, 6 to 25 hours, 26 to 51 hours and ≥ 52 hours. The comprehensiveness of the interventions was determined by a focus on both diet and physical activity as well as instruction in and support for the use of behavioural management techniques. Effective higher intensity interventions included multipole components, including "sessions targeting both the parent and child (separately, together, or both); offered individual sessions (both family and group); provided information about healthy eating, safe exercising, and reading food labels; encouraged the use of stimulus control (e.g., limiting access to tempting foods and limiting screen time), goal setting, self-monitoring, contingent rewards, and problem solving; and included supervised physical activity sessions."²⁸¹ Most often these interventions were delivered by a multi-disciplinary team outside of the clinician's office.
- In interventions with ≥ 52 hours of contact time, a mean decrease in BMI of 1.10 (95% CI from 0.89 to 1.30) was observed at 6-12 months. In interventions with 26 to 51 hours of contact time, the mean decrease in BMI was 0.34 (95% CI from 0.16 to 0.54). Just 4 of 26 (15%) interventions with less than 26 hours of contact time showed statistically significant benefits.²⁸²
- The USPSTF identified four RCTs of family-based behavioural treatment programs with a longer follow-up (10 years). In these studies, 85% of children had obesity at baseline. Among the children with obesity who participated in interventions involving at least 30 contact hours, 52% continued to have obesity as adults. By way

²⁷⁸ Canadian Task Force on Preventive Health Care. Recommendations for growth monitoring, and prevention and management of overweight and obesity in children and youth in primary care. *Canadian Medical Association Journal*. 2015; 187(6): 411-21.

 ²⁷⁹ Peirson L, Fitzpatrick-Lewis D, Morrison K et al. Treatment of overweight and obesity in children and youth: a systematic review and meta-analysis. *Canadian Medical Association Open Access Journal*. 2015; 3(1): e35-e46.
 ²⁸⁰ Canadian Task Force on Preventive Health Care. Recommendations for growth monitoring, and prevention and management of overweight and obesity in children and youth in primary care. *Canadian Medical Association Journal*. 2015; 187(6): 411-21.

²⁸¹ US Preventive Services Task Force. Screening for obesity in children and adolescents: US Preventive Services Task Force Recommendation Statement. *JAMA*. 2017; 317(23): 2417-26.

²⁸² O'Conner E, Evans C, Burda B et al. Screening for obesity and intervention for weight management in children and adolescents: Evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2017; 317(23): 2427-44.

of comparison, longitudinal studies without interventions and with similar follow-up reported obesity rates of 64% to 87% among adults who had obesity as children.²⁸³

- A systematic review and meta-analysis by King and co-authors found that participation in structured physical activity interventions for children and youth with obesity was associated with reduced depression, increased self-esteem and improved body image.²⁸⁴
- A systematic review and meta-analysis by Gow et al. found that "pediatric obesity treatment improves self-esteem and body image in the short and medium term."²⁸⁵
- In our modelling we assume a reduction of 18.8% (52% of obese children / youth receiving the intervention who are obese adults compared with 64% in untreated children / youth). We use the CTFPHC results (reduction from 33% to 31% after 36 months, or 6.1%) as our lower sensitivity bound and 40.2% (52% of obese children / youth receiving the intervention who are obese adults compared with [the upper USPSTF case] 87% in untreated children / youth) (Table 13, row *s*).
- With an intervention, obesity in children and youth between the ages of 6 and 17 would result in a reduction of 62.4 QALYs (32.3 in males and 30.1 in females) due to a reduction in QoL associated with obesity (see Table 12 and Table 13, rows t & u).

²⁸³ US Preventive Services Task Force. Screening for obesity in children and adolescents: US Preventive Services Task Force Recommendation Statement. *JAMA*. 2017; 317(23): 2417-26.

 ²⁸⁴ King J, Jebeile H, Garnett S et al. Physical activity based pediatric obesity treatment, depression, self-esteem and body image: A systematic review and meta-analysis. *Mental Health and Physical Activity*. 2020; 19: 100342.
 ²⁸⁵ Gow M, Tee M, Garnett S et al. Pediatric obesity treatment, self-esteem, and body image: A systematic review with meta-analysis. *Pediatric Obesity*. 2020; 15(3).

		Table 12: Life Years Lived and QALYs Lost Living with Obesity												
I						Post-Inte	erventio	on						
					Age	6 - 85 in a BC	Cohort o	f 40,000						
		Life Yea	ars Lived Dhesity	Cummulative Proportion	Cummulative	Cummulative Proportion		Obesity Reduction	Impact	entio	Qual Li	ity of fe	QALYs due	Saved
		(Tab	le 11)	Starting	Stopping	Starting	Finishing	From	r	1	Redu	iction	Interv	ention
	Age	M	F	Treatment	Treatment	Treatment	Treatment	Treatment	M	F	M	F	M	F
	7	1,054	621	1.6%		1.6%	73%	18.8%	2.4	1.4	0.026	0.026	0.05	0.02
	8	1,054	621	2.5%		2.5%	73%	18.8%	3.5	2.1	0.026	0.026	0.09	0.05
	9 10	1,054	621 621	3.3%		3.3%	73% 73%	18.8% 18.8%	4.7 5 0	2.8	0.026	0.026	0.12	0.07
	10	1,054	621	4.9%		4.1%	73%	18.8%	7.1	4.2	0.020	0.020	0.15	0.03
	12	1,607	1,168	5.7%		5.7%	73%	18.8%	12.6	9.2	0.026	0.026	0.33	0.24
	13	1,607	1,168	6.5%		6.5%	73%	18.8%	14.4	10.5	0.026	0.026	0.38	0.27
	14	1,607	1,168	8.2%		8.2%	73%	18.8%	18.0	11.8	0.026	0.026	0.42	0.31
	16	1,606	1,167	9.0%	0.0%	9.0%	73%	18.8%	19.8	14.4	0.026	0.026	0.52	0.37
	17	1,606	1,167	9.8%	0.0%	9.8%	73%	18.8%	21.6	15.7	0.026	0.026	0.56	0.41
	10	1,500	1,140	9.8%	0.0%				20.6	15.4	0.034	0.040	0.72	0.61
	20	1,492	1,085	9.8%	0.0%				20.1	14.6	0.034	0.040	0.68	0.59
	21	1,454	1,058	9.8%	0.0%				19.6	14.2	0.034	0.040	0.66	0.57
	22	1,415	1,031	9.8%	0.0%				19.1	13.9	0.034	0.040	0.65	0.56
	24	1,338	976	9.8%	0.0%				18.0	13.1	0.034	0.040	0.61	0.53
	25	1,300	949	9.8%	0.0%				17.5	12.8	0.034	0.040	0.59	0.51
	26 27	1,262	922 894	9.8%	0.0%				17.0	12.4 12.0	0.034	0.040	0.58	0.50
	28	1,185	867	9.8%	0.0%				16.0	11.7	0.034	0.040	0.54	0.47
	29	1,147	840	9.8%	0.0%				15.4	11.3	0.034	0.040	0.52	0.45
	30	1,109	813	9.8%	0.0%				14.9	10.9	0.034	0.040	0.51	0.44
	32	1,105	812	9.8%	0.0%				14.9	10.9	0.034	0.040	0.51	0.44
	33	1,104	811	9.8%	0.0%				14.9	10.9	0.034	0.040	0.50	0.44
	34	1,102	811 810	9.8%	0.0%				14.8 14.8	10.9 10.9	0.034	0.040	0.50	0.44
	36	1,098	810	9.8%	0.0%				14.8	10.9	0.034	0.040	0.50	0.44
	37	1,096	809	9.8%	0.0%				14.8	10.9	0.034	0.040	0.50	0.44
	38 39	1,094	808 808	9.8%	0.0%				14.7 14.7	10.9 10.9	0.034	0.040	0.50	0.44
	40	1,090	807	9.8%	0.0%				14.7	10.9	0.034	0.040	0.50	0.44
	41	1,088	806	9.8%	0.0%				14.7	10.9	0.034	0.040	0.50	0.43
	42	1,086	805	9.8%	0.0%				14.6	10.8	0.034	0.040	0.50	0.43
	44	1,083	804	9.8%	0.0%				14.6	10.8	0.034	0.040	0.49	0.43
	45	1,078	803	9.8%	0.0%				14.5	10.8	0.034	0.040	0.49	0.43
	46	1,075	802	9.8%	0.0%				14.5	10.8	0.034	0.040	0.49	0.43
	48	1,069	799	9.8%	0.0%				14.4	10.8	0.034	0.040	0.49	0.43
	49	1,066	798	9.8%	0.0%				14.4	10.8	0.034	0.040	0.49	0.43
	50	1,063	797	9.8%	0.0%				14.3	10.7	0.034	0.040	0.49	0.43
	52	1,055	795	9.8%	0.0%				14.5	10.7	0.034	0.040	0.48	0.43
	53	1,051	792	9.8%	0.0%				14.2	10.7	0.034	0.040	0.48	0.43
	54	1,046	790	9.8%	0.0%				14.1	10.6	0.034	0.040	0.48	0.43
	55	1,041	786	9.8%	0.0%				14.0	10.6	0.034	0.040	0.48	0.43
	57	1,030	784	9.8%	0.0%				13.9	10.6	0.034	0.040	0.47	0.42
	58	1,024	781	9.8%	0.0%				13.8	10.5	0.034	0.040	0.47	0.42
	59 60	1,018	776	9.8%	0.0%				13.7	10.5 10.4	0.034	0.040	0.47	0.42
	61	1,004	773	9.8%	0.0%				13.5	10.4	0.034	0.040	0.46	0.42
	62	996	769	9.8%	0.0%				13.4	10.4	0.034	0.040	0.46	0.41
	63 64	987 978	765 761	9.8%	0.0%				13.3 13.2	10.3 10.3	0.034	0.040	0.45	0.41
	65	968	757	9.8%	0.0%				13.0	10.2	0.034	0.040	0.44	0.41
	66	957	752	9.8%	0.0%				12.9	10.1	0.034	0.040	0.44	0.41
	67	945	747	9.8%	0.0%				12.7	10.1	0.034	0.040	0.43	0.40
	69	919	734	9.8%	0.0%				12.0	9.9	0.034	0.040	0.43	0.40
	70	904	727	9.8%	0.0%				12.2	9.8	0.034	0.040	0.41	0.39
	71	889	719	9.8%	0.0%				12.0	9.7	0.034	0.040	0.41	0.39
	72	853	702	9.8%	0.0%				11.7	9.0 9.4	0.034	0.040	0.40	0.38
	74	833	691	9.8%	0.0%				11.2	9.3	0.034	0.040	0.38	0.37
	75	812	680	9.8%	0.0%				10.9	9.2	0.034	0.040	0.37	0.37
	76 77	-	668 654	9.8%	0.0%					9.0 8.8	0.034	0.040		0.36
	78	-	639	9.8%	0.0%				-	8.6	0.034	0.040	-	0.35
	79	-	623	9.8%	0.0%				-	8.4	0.034	0.040	-	0.34
	80	-	605	9.8%	0.0%				-	8.1	0.034	0.040	-	0.33
	81 82	-	080	9.8% 9.8%	0.0%				-	7.9 -	0.034	0.040	-	-
	83	-	-	9.8%	0.0%				-	-	0.034	0.040	-	-
	84	-	-	9.8%	0.0%				-	-	0.034	0.040	-	-
	రం Total	- 79,337	- 62,206	9.8%	0.0%				- 981	- 783	0.034	0.040	32.3	30.1
1														

Note that this table ONLY accounts for the population with obesity as these are the individuals that would be targeted by weight management interventions.

Potential Harms Associated with the Intervention

- The CTFPHC review found no identified harms associated with the behavioural interventions.²⁸⁶
- A 2019 systematic review and meta-analysis by Jebeile and co-authors found that "structured, professionally run pediatric obesity treatment is not associated with an increased risk of depression or anxiety and may result in a mild reduction in symptoms."²⁸⁷

Summary of CPB

• Other assumptions used in assessing CPB are detailed in the Reference Document.

Based on these assumptions, the CPB associated with growth monitoring in children and youth ages 0-17 along with the offer of, or referral to, structured behavioural interventions aimed at healthy weight management for children and youth aged to 17 years who are overweight or obese is 195 QALYs (see Table 13, row z). The CPB of 195 represents the gap between no coverage and the 'best in the world' growth monitoring coverage as observed in BC, i.e. 9.8% of birth cohort would receive an intervention sometime between the ages of 6 and 17 and that 73.3% of those receiving the intervention would attend at least 70% of the sessions.

²⁸⁶ Canadian Task Force on Preventive Health Care. Recommendations for growth monitoring, and prevention and management of overweight and obesity in children and youth in primary care. *Canadian Medical Association Journal*. 2015; 187(6): 411-21.

²⁸⁷ Jebeile H, Gow M, Baur L et al. Association of pediatric obesity treatment, including a dietary component, with change in depression and anxiety: A systematic review and meta-analysis. *JAMA Pediatrics*. 2019; 173(1): e192841.

Table 1	Table 13: CPB of Screening for Excess Weight and Healthy Weight									
	Intervention									
	In Children and Adolescents Ages 6 - 1	.7								
	In a BC Birth Cohort of 40.000									
	Burden of Obesity									
а	Years of life lived in cohort, male	1,385,340	Table 11							
b	Years of life lived in cohort, female	1,492,943	Table 11							
С	Years of life lived in cohort, with obesity, male	79,337	Table 11							
d	Years of life lived in cohort, with obesity, female	62,206	Table 11							
e	Disutility of obesity, ages 6 - 17	0.026	V							
f	Disutility of obesity, age 18+, male	0.034	V							
g	Disutility of obesity, age 18+, female	0.040	V							
h	QALYs lost due to obesity, male	2,567	Table 11							
i	QALYs lost due to obesity, female	2,341	Table 11							
j	Number of obese 30 year-olds, male	1,109	Table 11							
k	Number of obese 30 year-olds, female	813	Table 11							
	Life years lost due to obesity, per individual, male	5.7	V							
m	Life years lost due to obesity, per individual, female	4.4	V							
n	Total life years lost due to obesity, male	6,332	= j * l							
0	Total life years lost due to obesity, female	3,546	= k * m							
р	Total life years lost due to obesity	9,878	= n + o							
	Benefits of Screening and Intervention									
q	Cummulative proportion treated over 12 years	9.8%	V							
r	Proportion completing treatment	73.3%	V							
S	Reduction in obesity due to treatment	18.8%	V							
t	QALYs saved due to treatment, male	32.3	Table 12							
u	QALYs saved due to treatment, female	30.1	Table 12							
v	Reduction in number of obese 30 year-olds, male	14.9	Table 12							
w	Reduction in number of obese 30 year-olds, female	10.9	Table 12							
x	Life years saved due to intervention, male	85.3	= v * l							
у	Life years saved due to intervention, female	47.8	= w * m							
z	QALYs Gained due to intervention	195	= t + u + x +y							

√ = Estimates from the literature

Sensitivity Analysis

We also modified a number of major assumptions and recalculated the CPB as follows:

- Assume that the life years lost due to obesity is decreased from 5.7 years to 2.6 years in males and from 4.4 years to 2.1 years in females (Table 13, rows *l* & *m*): CPB = 127
- Assume that the life years lost due to obesity is increased from 5.7 years to 8.8 years in males and from 4.4 years to 6.6 years in females (Table 13, rows *l* & *m*): CPB = 263
- Assume that the quality of life reduction living with obesity changes from 0.026 to 0.017 for adolescents, from 0.034 to 0.022 in adult males, and from 0.040 to 0.026 in adult females (Table 13, rows e, f & g): CPB = 174
- Assume that the quality of life reduction living with obesity changes from 0.026 to 0.036 for adolescents, from 0.034 to 0.045 in adult males, and from 0.040 to 0.053 in adult females (Table 13, rows e, f & g): CPB = 216
- Assume that the reduction in obesity due to completing the intervention decreases from 18.8% to 6.1% (Table 13, row *s*): **CPB = 63**
- Assume that the reduction in obesity due to completing the intervention increases from 18.8% to 40.2% (Table 13, row *s*): CPB = 419

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with growth monitoring and healthy weight management in children and youth, in a British Columbia birth cohort of 40,000.

In estimating CE, we made the following assumptions:

Annual Visits to a General Practitioner

- Children in families that do not have a regular health care provider (HCP) are unlikely to enter a weight monitoring/management process. Based on 2017/18 CCHS data, 83.3% of families in BC have a regular HCP.²⁸⁸
- Between fiscal years 2012/13 and 2016/17, the average proportion of BC youth aged 10 14 who visited a general practitioner (GP) was 69.3% and for ages 15 19 the average was 70.5%.²⁸⁹
- In our model we assume that 100% of newborns (0 years) are seen by a primary care provider, and that the screening rate for 10 14 year-olds applies to 1 9 year-olds as well.

Screening Frequency

• The CTFPHC recommends growth monitoring at all appropriate primary care visits. Appropriate primary care visits are defined as "scheduled health supervision visits, visits for immunizations or medication renewal, episodic care or acute illness, and other visits where the primary care practitioner deems it appropriate. Primary care visits are completed at primary health care settings, including those outside of a

²⁸⁸ Statistics Canada. *Canadian Community Health Survey: Public Use Microdata File, 2017/2018 (Catalogue number: 82M0013X2020001).* 2020: All computations, use and interpretation of these data are entirely that of H. Krueger & Associates Inc.

²⁸⁹ Aciemme (Sam) Ospan, Senior Manager, Lifetime Prevention Schedule, Healthy Living and Health Promotion Branch, BC Ministry of Health. January 30, 2019. Personal communication. (*Taken from the adolescent depression model analysis*)

physician's office (e.g. public health nurses carrying out a well-child visit at a community setting)."²⁹⁰ The Canadian Paediatric Association recommends that well-child visits take place at 1 week, at 2, 4, 6 and 12 months, annually from ages 2-5 and then every year or two until the child is 18 years of age.²⁹¹

• For modelling purposes, we assumed that growth monitoring would occur annually between the ages of 0-17 at a well-child visit. Table 14 shows the number of screening opportunities and the number of actual screens conducted from 0 - 17 years of age based on the best in world rate of 13% observed in US physicians (residents).²⁹²

Table 14: Visits to Primary Care Provider and Weight Screens Conducted Ages 0 - 17 for a BC Cohort of 40,000

			Proportio Prima	n Visiting v Care	Num	ber of	BiW Screening				
	Life	Voarc	Prov	vidor	Onnor	tunitios	Rate	Scroons (onducted		
	Life	-	FIUV	iuei	Oppon	-	Nate	Scieense	-		
Age	M	F	%	%	M	F	%	M	F		
0	19,927	19,937	100.0%	100.0%	19,927	19,937	13.0%	2,591	2,592		
1	19,920	19,931	69.3%	69.3%	13,804	13,812	13.0%	1,795	1,796		
2	19,916	19,927	69.3%	69.3%	13,802	13,809	13.0%	1,794	1,795		
3	19,914	19,925	69.3%	69.3%	13,801	13,808	13.0%	1,794	1,795		
4	19,912	19,923	69.3%	69.3%	13,799	13,807	13.0%	1,794	1,795		
5	19,910	19,921	69.3%	69.3%	13,798	13,805	13.0%	1,794	1,795		
6	19,909	19,920	69.3%	69.3%	13,797	13,804	13.0%	1,794	1,795		
7	19,907	19,918	69.3%	69.3%	13,796	13,803	13.0%	1,793	1,794		
8	19,906	19,917	69.3%	69.3%	13,795	13,803	13.0%	1,793	1,794		
9	19,905	19,916	69.3%	69.3%	13,794	13,802	13.0%	1,793	1,794		
10	19,904	19,915	69.3%	69.3%	13,793	13,801	13.0%	1,793	1,794		
11	19,903	19,914	69.3%	69.3%	13,793	13,800	13.0%	1,793	1,794		
12	19,901	19,912	69.3%	69.3%	13,792	13,799	13.0%	1,793	1,794		
13	19,899	19,911	69.3%	69.3%	13,790	13,798	13.0%	1,793	1,794		
14	19,897	19,908	69.3%	69.3%	13,789	13,797	13.0%	1,793	1,794		
15	19,893	19,906	70.5%	70.5%	14,025	14,033	13.0%	1,823	1,824		
16	19,888	19,902	70.5%	70.5%	14,021	14,031	13.0%	1,823	1,824		
17	19,880	19,897	70.5%	70.5%	14,016	14,027	13.0%	1,822	1,824		
Total	358,293	358,499	-		255,130	255,277		33,167	33,186		

Cost of Screening

• Patient time costs resulting from receiving, as well as travelling to and from, a service are valued based on the average hourly wage rate in BC in 2022 ($\$31.49^{293}$) plus 18% benefits for an average cost per hour of \$37.16. In the absence of specific data on the amount of time required, we assume two hours per service (2 * \$37.16 = \$74.32) (Table 16, row *f*).

²⁹¹ Canadian Paediatric Association. *Caring for Kids: Information for parents from Canada's paediatricians*. Available at <u>http://www.caringforkids.cps.ca/handouts/schedule_of_well_child_visits</u>. Accessed July 2020.

community/income/earnings_and_employment_trends_data_tables.pdf. Accessed September 2022.

²⁹⁰ Canadian Task Force on Preventive Health Care. Recommendations for growth monitoring, and prevention and management of overweight and obesity in children and youth in primary care. *Canadian Medical Association Journal*. 2015; 187(6): 411-21.

²⁹² Hillman JB, Corathers SD and Wilson SE. Pediatricians and screening for obesity with body mass index: Does level of training matter? *Public Health Reports*. 2009; 124(4): 561-7.

²⁹³ BC Stats. *Earning & Employment Trends – August 2022*. Available at https://www2.gov.bc.ca/assets/gov/data/statistics/people-population-

• The estimated cost of a visit to a GP of \$35.97 (Table 16, row *e*) is based on the average cost of an office visit between the ages of 2 and 79.²⁹⁴ A key question is whether one or more preventive maneuvers might be completed during an individual office visit. If evidence is available on this question, either research evidence or specific advice from our GP advisors given their knowledge of the BC practice environment, then that evidence is used in the modelling. If no evidence is available, however, then we assume that 50% of an office visit is required per preventive maneuver and modify this from 33% to 66% in the sensitivity analysis (Table 16, row *d*).

Program Costs

- The costs of operating Shapedown BC between April 1, 2019 and March 31, 2020 are \$1,742,799 (or \$1,853,463 in 2022 CAD).²⁹⁵
- During the three fiscal years from 2016/17 to 2018/19, a total of 603 families started the 10-week program at an average cost of \$8,671 per family (\$1,742,799 * 3 / 603) or \$9,222 in 202 CAD. The average cost per family ranged from \$8,419 in 2018/19 to \$8,937 in 2017/18.
- Between October of 2019 and April of 2020, Generation Health delivered two full 10-week program cycles at eight sites in the province (the partial scale-up phase).²⁹⁶ Once fully implemented, Generation Health is expected to operate two full 10-week program cycles at ten sites in the province allowing 200 children and their families to be enrolled in the program.²⁹⁷
- Not all families that enroll actually start the program. Based on data to date,²⁹⁸ an estimated 70% of enrolled families start the program, or a projected 140 families. A number of families may also have more than one child in the program (an average of 1.12 children per family to date²⁹⁹) suggesting that 157 children would start the program once fully implemented.
- Estimated costs for Generation Health once fully implemented are \$695,700 per year.³⁰⁰ This includes costs for centralized management and support (\$230,500), administration fees (\$63,000), program resources (\$20,000), centralized marketing and promotion (\$30,000), training (\$25,000) and local site delivery costs (staffing [\$207,200], host organization fee [\$40,000], recreation passes for families [\$30,000], and other program materials [\$50,000]).
- The estimated cost per child starting the program would be \$4,431 (\$695,700 / 157) or \$4,712 in 2022 CAD.
- Combining the 2018/19 fiscal year data from Shapedown BC and Generation Health, a total of 270 (207 + 63) children and their families began a structured behavioural intervention aimed at healthy weight management. The weighted cost per child would

²⁹⁴ Ministry of Health. *Medical Services Commission Payment Schedule*. 2021. Available at <u>https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/medical-services-plan/msc-payment-schedule-may-</u> <u>2021.pdf</u>. Accessed September 2022.

²⁹⁵ Arlene Cristall, Provincial Lead, The Centre for Healthy Weights – Shapedown BC. September 2020. Personal communication.

²⁹⁶ Childhood Obesity Foundation. *Generation Health: Evaluation Report June 2020*.

²⁹⁷ Karen Strange, Project Director, Generation Health, Childhood Obesity Foundation. October 9, 2020. Personal communication.

²⁹⁸ Childhood Obesity Foundation. *Generation Health: Evaluation Report June 2020*.

²⁹⁹ Childhood Obesity Foundation. *Generation Health: Evaluation Report June 2020*.

³⁰⁰ Karen Strange, Project Director, Generation Health, Childhood Obesity Foundation. October 9, 2020. Personal communication.

thus be \$8,170 (207*\$9,222 + 63*\$4,712)/270)). Once Generation Health is fully implemented, we would expect the weighted cost per child to decrease to \$7,277 (207*\$9,222 + 157*\$4,712)/364)).

- For modelling purposes, we assumed a program cost per child of \$8,170 (Table 16, row *j*) and reduced this to \$7,277 in the sensitivity analysis.
- Patient time costs resulting from receiving, as well as travelling to and from, the healthy weight intervention are estimated at 3 hours per session (a 2-hour session plus 30 minutes to travel to and then from the session) or \$111.48 (\$37.16 * 3) (Table 16, row *l*). We model that 10 sessions are offered.
- Table 15 shows the number in the cohort of 40,000 that begin a healthy weight intervention program each year.

Table 15: Number Starting Healthy Weight						
Treatment						
	Age 6 -	- 17 in a B(Cohort of 4	0,000		
	Number					
	Life Years	Lived with	Proportion	Starting		
	Obesity (Table 11)	Starting	Treat	ment	
Age	М	F	Treatment	М	F	
6	1,054	621	0.8%	8.6	5.1	
7	1,054	621	0.8%	8.6	5.1	
8	1,054	621	0.8%	8.6	5.1	
9	1,054	621	0.8%	8.6	5.1	
10	1,054	621	0.8%	8.6	5.1	
11	1,054	621	0.8%	8.6	5.1	
12	1,607	1,168	0.8%	13.1	9.5	
13	1,607	1,168	0.8%	13.1	9.5	
14	1,607	1,168	0.8%	13.1	9.5	
15	1,607	1,168	0.8%	13.1	9.5	
16	1,606	1,167	0.8%	13.1	9.5	
17	1,606	1,167	0.8%	13.1	9.5	
Total	15,964	10,731	9.8%	130	88	

Costs Avoided Due to a Reduction in Obesity

- Obesity is associated with higher *annual medical care costs* (e.g., hospitalization, physician, drug, etc.). Research in BC identified these costs as \$698 (in males) and \$952 (in females) per year for obesity (BMI of ≥30) in 2015 CAD or \$794/\$1,083 respectively in 2022 CAD (Table 16, rows *s* & *t*).³⁰¹
- We assumed that the excess costs associated with obesity would be avoided during the remaining lifetime of the individual after a successful weight management program (Table 16, rows *q* & *r*). We also modified this assumption so that costs would only be avoided for a ten year period after a successful weight management program.

³⁰¹ H. Krueger & Associates Inc. The Economic Burden of Risk Factors in British Columbia: Excess Weight, Tobacco Smoking, Alcohol Use, Physical Inactivity and Low Fruit and Vegetable Consumption. 2018. Vancouver, B.C.: Provincial Health Services Authority, Population and Public Health Program.

Summary of CE

- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with growth monitoring in children and youth ages 0 - 17 and the offer of, or referral to, structured behavioural interventions aimed at healthy weight management for children and youth ages 2 to 17 years who are obese is 33,680 / QALY(Table 16, row *v*).

Table	e 16: CE of Screening for Excess Weight and Healthy	Weight Ir	ntervention
	In a BC Birth Cohort of 40,000		
Row Label	Variable	Base case	Data Source
	Cost of Screening		
а	Screening frequency (in years)	1	V
b	Healthy weight monitoring screens conducted, 0 - 17 years, males	33,167	Table 14
С	Healthy weight monitoring screens conducted, 0 - 17 years, females	33,186	Table 14
d	Proportion of office visit required for short screen	50.0%	٧
е	Cost of 10-minute office visit	\$35.97	٧
f	Patient time costs / office visit	\$74.32	٧
g	Cost of healthy weight screening	\$3,659,035	= (b + c) * d * (e + f)
	Cost of Healthy Weight Intervention		
h	Number of interventions started, 6 - 17 years, males	130	Table 15
i	Number of interventions started, 6 - 17 years, females	88	Table 15
j	Cost of intervention, per individual	\$8,170	V
k	Cost of healthy weight intervention	\$1,781,131	= (h + i) * j
I	Patient time costs per session	\$111.48	٧
m	Number of intervention sessions	10	٧
n	Patient time cost	\$243,036	= (h + i) * l * m
0	Total cost of intervention	\$2,024,167	= k + n
р	Total cost of screening and healthy weight intervention, cohort	\$5,683,202	= g + o
	Costs Avoided due to Healthy Weight Intervention		
q	Life years with avoided obesity, lifetime, males	981	Table 12
r	Life years with avoided obesity, lifetime, females	783	Table 12
S	Annual excess medical cost for individuals with obesity, males	\$794	V
t	Annual excess medical cost for individuals with obesity, females	\$1,083	V
u	Cost avoided due to healthy weight intervention, males	\$779,068	= q * s
v	Cost avoided due to healthy weight intervention, females	\$847,602	= r * t
W	Cost avoided due to healthy weight intervention, cohort	\$1,626,670	= u + v
	Cost Effectiveness of Screening and Healthy Weight Intervention		
х	Net Cost of Screening and Healthy Weight Intervention	\$4,056,533	= p - w
у	QALYs gained due to intervention	195	Table 13, row z
Z	CE (\$/QALY Saved)	\$20,756	= x / y
аа	Net Cost of Screening and Healthy Weight Intervention, 1.5% Discount	\$4,023,200	Calculated
ab	QALYs saved, 1.5% Discount	119	Calculated
ас	CE (\$/QALY Saved), 1.5% Discount	\$33,680	= aa / ab

√ = Estimates from the literature

Sensitivity Analysis

We also modified a number of major assumptions and recalculated the CE as follows:

- Assume that the life years lost due to obesity is decreased from 5.7 years to 2.6 years in males and from 4.4 years to 2.1 years in females (Table 13, rows *l* & *m*): CE = \$53,423
- Assume that the life years lost due to obesity is increased from 5.7 years to 8.8 years in males and from 4.4 years to 6.6 years in females (Table 13, rows *l* & *m*): CE = \$24,685
- Assume that the quality of life reduction living with obesity changes from 0.026 to 0.017 for adolescents, from 0.034 to 0.022 in adult males, and from 0.040 to 0.026 in adult females (Table 13, rows e, f & g): CE = \$37,442
- Assume that the quality of life reduction living with obesity changes from 0.026 to 0.036 for adolescents, from 0.034 to 0.045 in adult males, and from 0.040 to 0.053 in adult females (Table 13, rows e, f & g): CE = \$30,782
- Assume that the reduction in obesity due to completing the intervention decreases from 18.8% to 6.1% (Table 13, row *s*): CE = \$120,128
- Assume that the reduction in obesity due to completing the intervention increases from 18.8% to 40.2% (Table 13, row *s*): **CE** = **\$11,635**
- Assume that the proportion of an office visit for weight measurement is decreased from 50% to 33% (Table 16, row *d*): CE = \$24,630
- Assume that the proportion of an office visit for weight measurement is increased from 50% to 67% (Table 16, row *d*): CE = \$42,729
- Assume that the cost of the weight management program per individual is reduced from \$8,170 to \$7,277 (Table 16, row *j*): CE = \$32,320
- Assume that costs avoided would only last for ten years, rather than a lifetime, after a successful weight management program (Table 16, rows m & n): CE = \$597,544

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with growth monitoring in children and youth ages 0-17 and the offer of, or referral to, structured behavioural interventions aimed at healthy weight management for children and youth ages 2 to 17 years who are overweight or obese is estimated to be 119 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$33,680 per QALY (see Table 17).

Table 17: Screening for Excess Weight and Healthy Weight Intervention in a Birth Cohort of 40,000							
	Summary						
		Base					
	-	Case	Range				
CPB (Pote	ential QALYs Gained)						
	Assum	e No Currei	nt Service				
	1.5% Discount Rate	119	39	256			
	3% Discount Rate	75	24	162			
	0% Discount Rate	195	63	419			
CE (\$/QAI	Y) including patient ti	ime costs					
	1.5% Discount Rate	\$33,680	\$11,635	\$597,544			
	3% Discount Rate	\$49,923	\$19,349	\$668,679			
	0% Discount Rate	\$20,756	\$5,230	\$533,834			
CE (\$/QALY) excluding patient time costs							
	1.5% Discount Rate	\$13,688	\$2,317	\$293,343			
	3% Discount Rate	\$21,751	\$6,219	\$324,478			
	0% Discount Rate	\$6,896	Cost saving	\$264,885			

Promotion of Breastfeeding

Canadian Task Force on Preventive Health Care (2004)

Breastfeeding has been shown in both developing and developed countries to improve the health of infants and their mothers, making it the optimal method of infant nutrition.

The CTFPHC concludes that there is good evidence to recommend providing structured antepartum educational programs and postpartum support to promote breastfeeding initiation and duration. (A recommendation)

Unfortunately, advice from a woman's primary clinician (such as family physician, obstetrician or midwife) has not been sufficiently evaluated, and a research gap remains in this area.

*The CTFPHC concludes that there is insufficient evidence to make a recommendation regarding advice by primary caregivers to promote breastfeeding. (I Recommendation)*³⁰²

United States Preventive Services Task Force Recommendations (2008)

The USPSTF recommends interventions during pregnancy and after birth to promote and support breastfeeding. This is a grade B recommendation.

There is convincing evidence that breastfeeding provides substantial health benefits for children and adequate evidence that breastfeeding provides moderate health benefits for women.

Adequate evidence indicates that interventions to promote and support breastfeeding increase the rates of initiation, duration, and exclusivity of breastfeeding.

The USPSTF concludes that there is moderate certainty that interventions to promote and support breastfeeding have a moderate net benefit.

Interventions may include multiple strategies, such as formal breastfeeding education for mothers and families, direct support of mothers during breastfeeding observations, and the training of health professional staff about breastfeeding and techniques for breastfeeding support.

Although the activities of individual clinicians to promote and support breastfeeding are likely to be positive, additional benefit may result from efforts that are integrated into systems of care.³⁰³

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with interventions aimed at improving longer term (6 months) exclusive breastfeeding rates in a British Columbia birth cohort of 40,000.

Breastfeeding promotion interventions in developed countries are associated with a 28% increase (odds ratio or OR = 1.28, 95% CI of 1.11 - 1.48) in short-term (1–3 months)

³⁰² Palda VA, Guise J-M and Wathen CN. Interventions to promote breast-feeding: applying the evidence in clinical practice. *Canadian Medical Association Journal*. 2004; 170(6): 976-8.

³⁰³ US Preventive Services Task Force. Primary care interventions to promote breastfeeding: US Preventive Services Task Force recommendation statement. *Annals of Internal Medicine*. 2008; 149(8): 560-4.

exclusive breastfeeding and a 44% increase (OR = 1.44, 95% CI of 1.13 - 1.84) in long-term (6–8 months) exclusive breastfeeding.³⁰⁴

Research evidence does not clearly identify which types or components of breastfeeding promotion interventions are effective. In their review for the USPSTF, Chung and colleagues "did not find that formal or structured breastfeeding education or individual-level professional support significantly affected the breastfeeding outcomes. [They] did find that lay support significantly increased the rate of any and exclusive breastfeeding in the short-term." They also noted that interventions including both pre- and post-natal components are important. Finally, "the BFHI (Baby Friendly Hospital Initiative) is effective in increasing exclusive breastfeeding rates, at least up to 6 months after delivery." ³⁰⁵

From the perspective of a CPS, then, it may be most important for the clinician to refer their pregnant patient or new mother to an intervention including lay support.

Breastfeeding is associated with the following health benefits for the infant:

- Any breastfeeding is associated with a 40% reduction (OR = 0.60, 95% CI of 0.46 0.78) in the risk of otitis media (OM) compared to no breastfeeding (Table 2, row k). ³⁰⁶ The overall incidence of OM is 1.9 episodes in the first year of life (Table 2, row j).³⁰⁷
- Exclusive breastfeeding for 3 months or longer is associated with a 42% reduction (OR = 0.58, 95% CI of 0.41 0.92) in the risk of atopic dermatitis (AD) compared to exclusive breastfeeding for less than 3 months (Table 2, row *n*). ³⁰⁸ AD has a cumulative incidence of 0.165 in the first two years of life (Table 2, row *m*). ³⁰⁹
- Any breastfeeding is associated with a 64% reduction (OR = 0.36, 95% CI of 0.32 0.41) in the risk of gastrointestinal infection (GI) compared to no breastfeeding (Table 2, row q). ³¹⁰ GI is associated with 0.222 ambulatory visits (Table 2, row p) and 0.00298 hospitalizations per infant < 1 year old. ³¹¹
- Exclusive breastfeeding for 4 months or longer is associated with a 72% reduction (OR = 0.28, 95% CI of 0.14 0.54) in the risk of lower respiratory tract infection (LRTI) compared to formula feeding (Table 2, row *t*).³¹² The overall incidence of LRTI in infants is 0.0409 cases (Table 2, row *s*) with a death rate of 0.0000732 (Table 2, row *v*).³¹³
- Breastfeeding for 3 months or longer is associated with a 27% reduction (OR = 0.73, 95% CI of 0.59 0.92) in the risk of asthma compared to no breastfeeding in families

 ³⁰⁴ Chung M, Raman G, Trikalinos T et al. Interventions in primary care to promote breastfeeding: an evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2008; 149(8): 565-82.
 ³⁰⁵ Ibid.

³⁰⁶ Ibid.

³⁰⁷ Bartick M and Reinhold A. The burden of suboptimal breastfeeding in the United States: a pediatric cost analysis. *Pediatrics*. 2010; 125(5): e1048-e56.

 ³⁰⁸ Chung M, Raman G, Trikalinos T et al. Interventions in primary care to promote breastfeeding: an evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2008; 149(8): 565-82.
 ³⁰⁹ Bartick M and Reinhold A. The burden of suboptimal breastfeeding in the United States: a pediatric cost analysis. *Pediatrics*. 2010; 125(5): e1048-e56.

³¹⁰ Chung M, Raman G, Trikalinos T et al. Interventions in primary care to promote breastfeeding: an evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2008; 149(8): 565-82.

³¹¹ Bartick M and Reinhold A. The burden of suboptimal breastfeeding in the United States: a pediatric cost analysis. *Pediatrics*. 2010; 125(5): e1048-e56.

 ³¹² Chung M, Raman G, Trikalinos T et al. Interventions in primary care to promote breastfeeding: an evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2008; 149(8): 565-82.
 ³¹³ Bartick M and Reinhold A. The burden of suboptimal breastfeeding in the United States: a pediatric cost analysis. *Pediatrics*. 2010; 125(5): e1048-e56.

without a history of asthma (Table 2, row *aa*). ³¹⁴ The cumulative incidence of asthma during childhood is 0.127 (Table 2, row *z*) with a death rate of 0.00000273 (Table 2, row *cc*). ³¹⁵

- Any breastfeeding is associated with a 24% reduction (OR = 0.76, 95% CI of 0.67 0.86) in the risk of overweight or obesity compared to no breastfeeding (Table 2, row *hh & mm*). Each month of breastfeeding is associated with a 4% reduced risk of overweight or obesity.³¹⁶
- The 2021 rate of overweight and obesity (adjusted-self reported) for ages 20 and older in BC is taken from Table of Statistics Canada (see Table 1).³¹⁷ Rates of overweight and obesity for those under the age of 20 are taken from Table 8 in the *Growth Monitoring and Healthy Weight Management in Children and Youth* section above. Based on these rates and mean survival rates by age group, a birth cohort of 40,000 in BC would be expected to include 978,388 years in a 'state' of overweight and 649,371 years in a 'state' of obesity (see Table 1).

Table 1: Years of Life as Overweight or Obese							
	In a BC Birth Cohort of 40,000						
	Years of Life		Years of		Years of		
Age	in Birth	%	Life	%	Life		
Group	Cohort	Overweigh	Overweigh	Obese	Obese		
0-4	199,377	14.2%	28,312	5.0%	9,969		
5-9	199,132	14.2%	28,277	4.2%	8,364		
10-14	199,065	16.1%	32,049	7.0%	13,935		
15-19	198,894	16.1%	32,022	7.0%	13,923		
20-24	198,385	28.3%	56,143	18.8%	37,296		
25-29	197,592	28.3%	55,919	18.8%	37,147		
30-34	196,633	28.3%	55,647	18.8%	36,967		
35-39	195,517	37.9%	74,101	24.0%	46,924		
40-44	194,174	37.9%	73,592	24.0%	46,602		
45-49	192,462	37.9%	72,943	24.0%	46,191		
50-54	190,154	34.2%	65,033	31.0%	58,948		
55-59	186,897	34.2%	63,919	31.0%	57,938		
60-64	182,174	34.2%	62,304	31.0%	56,474		
65-69	175,175	38.6%	67,617	24.8%	43,443		
70-74	164,644	38.6%	63,553	24.8%	40,832		
75-79	148,766	38.6%	57,424	24.8%	36,894		
80+	231,954	38.6%	89,534	24.8%	57,525		
Total	3,250,997	30.1%	978,388	20.0%	649,371		

 ³¹⁴ Chung M, Raman G, Trikalinos T et al. Interventions in primary care to promote breastfeeding: an evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2008; 149(8): 565-82.
 ³¹⁵ Bartick M and Reinhold A. The burden of suboptimal breastfeeding in the United States: a pediatric cost

³¹³ Bartick M and Reinhold A. The burden of suboptimal breastfeeding in the United States: a pediatric cost analysis. *Pediatrics*. 2010; 125(5): e1048-e56.

 ³¹⁶ Chung M, Raman G, Trikalinos T et al. Interventions in primary care to promote breastfeeding: an evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2008; 149(8): 565-82.
 ³¹⁷ Statistics Canada. *Table 13-10-0096-01, Health Characteristics, Annual Estimates*. Available online at https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310009601. Accessed March 2023.

- Overweight/obesity is associated with a reduced life expectancy of approximately 0.6 and 5.0 years, respectively (see Reference Document). Given the average life expectancy in BC of 82.4 years, this represents a reduction in life expectancy of 0.73% (0.6 / 82.4) associated with overweight (Table 2, row *jj*) and 6.07% (5.0 / 82.4) for obesity (Table 2, row *oo*).
- Breastfeeding for 3 months or longer is associated with a 19% reduction (OR = 0.81, 95% CI of 0.74 0.89) in the risk of type 1 diabetes compared to breastfeeding for less than 3 months (Table 2, row *rr*). ³¹⁸ The overall incidence of type 1 diabetes is 0.000186 (Table 2, row *qq*) with a death rate of 0.00000121 (Table 2, row *tt*). ³¹⁹
- Breastfeeding for less than 6 months is associated with a 12% reduction (OR = 0.88, 95% CI of 0.80 0.96) in the risk of childhood leukemia while breastfeeding for more than 6 months is associated with a 24% reduction (OR = 0.76, 95% CI of 0.68 0.84) in the risk of childhood leukemia compared to no breastfeeding (Table 2, row *yy*). ³²⁰ The overall incidence of childhood leukemia is 0.0000321 (Table 2, row *xx*) with a five-year death rate 39.8% (Table 2, row *aaa*) for children younger than 15. ³²¹
- Any breastfeeding is associated with a 36% reduction (OR = 0.64, 95% CI of 0.51 0.81) in the risk of sudden infant death syndrome (SIDS) compared to no breastfeeding (Table 2, row *fff*). ³²² The overall incidence of SIDS is 0.00054 (Table 2, row *eee*).³²³

Breastfeeding is associated with the following health benefits for the mother:

- The risk of breast cancer is reduced by 4.3% for each year of breastfeeding. ³²⁴ We have assumed a reduced risk of 2.15% for each 6 months of breastfeeding (Table 2, row *jjj*). The lifetime probability of developing (female) breast cancer is 11.5% (Table 2, row *iii*).³²⁵ Breast cancer is associated with a reduced life expectancy of 12.9 years (see Reference Document, Table 2, row *mmm*).
- Any breastfeeding is associated with a 21% reduction (OR = 0.79, 95% CI of 0.68–0.91) in the risk of ovarian cancer compared to no breastfeeding (Table 1-2, row *ppp*). Cumulative breastfeeding of at least 12 months is associated with a 28% reduction (OR = 0.72, 95% CI of 0.54–0.97) in the risk of ovarian cancer compared to no breastfeeding. ³²⁶ Ovarian cancer is associated with a reduced life expectancy of 16.5 years (see reference Document, Table 2, row *sss*).

 ³¹⁸ Chung M, Raman G, Trikalinos T et al. Interventions in primary care to promote breastfeeding: an evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2008; 149(8): 565-82.
 ³¹⁹ Bartick M and Reinhold A. The burden of suboptimal breastfeeding in the United States: a pediatric cost analysis. *Pediatrics*. 2010; 125(5): e1048-e56.

³²⁰ Chung M, Raman G, Trikalinos T et al. Interventions in primary care to promote breastfeeding: an evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2008; 149(8): 565-82.

³²¹ Bartick M and Reinhold A. The burden of suboptimal breastfeeding in the United States: a pediatric cost analysis. *Pediatrics*. 2010; 125(5): e1048-e56.

 ³²² Chung M, Raman G, Trikalinos T et al. Interventions in primary care to promote breastfeeding: an evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2008; 149(8): 565-82.
 ³²³ Bartick M and Reinhold A. The burden of suboptimal breastfeeding in the United States: a pediatric cost analysis. *Pediatrics*. 2010; 125(5): e1048-e56.

³²⁴ Chung M, Raman G, Trikalinos T et al. Interventions in primary care to promote breastfeeding: an evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2008; 149(8): 565-82.

 ³²⁵ Canadian Cancer Society's Advisory Committee on Cancer Statistics. *Canadian Cancer Statistics 2014*. 2014.
 Canadian Cancer Society. Available at www.cancer.ca/statistics. Accessed February 2015.

³²⁶ Chung M, Raman G, Trikalinos T et al. Interventions in primary care to promote breastfeeding: an evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2008; 149(8): 565-82.

• Other assumptions used in assessing the clinically preventable burden are detailed in the Reference Document.

Based on these assumptions, the CPB associated with interventions aimed at improving rates of exclusive breastfeeding at 6 months from 0% to 60% is 9,291 QALYs (Table 2, row *vvv*).

Table 2. CFD OF FIOMOUON OF Dreastreeuing in a Difth Conort of 40,000					
Row Label	Variable	Base Case	Data Source		
a	Infants in birth cohort	40.000	Bata bource		
b	Current proportion exclusively breastfed for 6 months	41%	V		
<u>~</u> د	Number exclusively breastfed for 6 months	16.400	= (a * c)		
Ū	Effectiveness of breastfeeding promotion interventions in increasing	20,100	(3 0)		
d	adherence to breastfeeding for 6 months	44%	V		
е	Increase in exclusive 6-month breastfeeding with 100% adherence	10.384	= (a - c) * d		
f	Estimated adherence with intervention	75%	Assumed		
g	Increase in exclusive 6-month breastfeeding with intervention	7.788	= (e * f)		
h	Total proportion exclusively breastfed for 6 months with intervention	60%	=(c+g)/a		
	Health Benefits for the Infant		(* 8// -		
i	Average life expectancy of an infant in BC	82.4	V		
i	Average cases of otitis media (OM) in first year	1.90	V		
k	Effectiveness of breastfeeding in reducing risk of OM	40.0%	V		
1	Reduced cases of OM with intervention	5.919	= (g * i) * k		
m	Average cases of atopic dermatitis (AD) in first 2 years	0.165	√ √		
n	Effectiveness of breastfeeding in reducing risk of AD	42.0%	V		
0	Reduced cases of AD with intervention	540	= (g * m) * n		
p	Average cases of gastrointestinal infection (GI) in first year	0.222	, √		
q	Effectiveness of breastfeeding in reducing risk of GI	64.0%	V		
r	Reduced cases of GI with intervention	1.107	= (g * p) * q		
s	Average cases of lower respiratory tract infection (LTRI) in first year	0.041	√		
t	Effectiveness of breastfeeding in reducing risk of LTRI	72.0%	V		
u	Reduced cases of LTRI with intervention	229	= (g * s) * t		
v	Average rate of death due to LTRI	0.0000732	, <u>,</u> , , √		
w	Effectiveness of breastfeeding in reducing risk of LTRI	72.0%	V		
x	Reduced deaths due to LTRI with intervention	0.41	= (g * v) * w		
У	Life years gained with intervention	33.8	= x * i		
z	Average cases of childhood asthma	0.127	V		
аа	Effectiveness of breastfeeding in reducing risk of asthma	27.0%	V		
bb	Reduced cases of asthma with intervention	267	= (g * z) * aa		
СС	Average rate of death due to asthma	0.000027	V		
dd	Effectiveness of breastfeeding in reducing risk of asthma	27.0%	V		
ee	Reduced deaths due to asthma with intervention	0.01	= (g * cc) * dd		
ff	Life years gained with intervention	0.5	= ee * i		
gg	Average % of years as overweight	30.1%	Table 1-1		
hh	Effectiveness of breastfeeding in reducing risk of overweight	24%	V		
ii	Reduced years as overweight with intervention	46,351	= g * i * gg* hh		
jj	% of life years lost with overweight	0.73%	V		
kk	Life years gained with intervention	338	= ii * jj		
П	Average % of years as obese	20.0%	Table 1		
mm	Effectiveness of breastfeeding in reducing risk of obesity	24%	V		
nn	Reduced years as obese with intervention	30,764	= g * i * ll* mm		
00	% of life years lost with obesity	6.07%	V		
рр	Life years gained with intervention	1,867	= nn * oo		
qq	Average cases of type 1 diabetes in children	0.0001860	V		
rr	Effectiveness of breastfeeding in reducing risk of type 1 diabetes	19.0%	V		
SS	Reduced cases of type 1 diabetes with intervention	0.28	= (g * qq) * rr		
tt	Average rate of death due to type 1 diabetes	0.0000012	V		
uu	Effectiveness of breastfeeding in reducing risk of type 1 diabetes	19.0%	V		
vv	Reduced deaths due to type 1 diabetes with intervention	0.002	= (g * tt) * uu		
ww	Life years gained with intervention	0.15	= vv * i		

	Table 2: CPB of Promotion of Breastfeeding in a Birth Cohort of 40,000				
Row					
Label	Variable	Base Case	Data Source		
хх	Average cases of childhood leukemia	0.0000321	V		
уу	Effectiveness of breastfeeding in reducing risk of childhood leukemia	24.0%	V		
ZZ	Reduced cases of childhood leukemia with intervention	0.06	= (g * xx) * yy		
aaa	5 year death rate due to childhood leukemia	39.8%	V		
bbb	Effectiveness of breastfeeding in reducing risk of childhood leukemia	24.0%	V		
ссс	Reduced deaths due to childhood leukemia with intervention	0.006	= zz * aaa * bbb		
ddd	Life years gained with intervention	0.47	= ccc * i		
eee	Average rate of death due to Sudden Infant Death Syndrome (SIDS)	0.00054	V		
fff	Effectiveness of breastfeeding in reducing risk of SIDS	36.0%	V		
ggg	Reduced deaths due to SIDS with intervention	1.514	= (g * eee) * fff		
hhh	Life years gained with intervention	124.8	= ggg * i		
	Health Benefits for the Mother				
iii	Lifetime probability of developing breast cancer	11.5%	V		
jjj	Effectiveness of breastfeeding in reducing risk of breast cancer	2.15%	V		
kkk	Reduced breast cancer cases due to intervention	19.3	= (g * iii) * jjj		
III					
mmm	Life years lost per breast cancer	12.9	Ref Doc		
nnn	Life years gained with intervention	248.4	= kkk * mmm		
000	Lifetime probability of developing ovarian cancer	1.4%	V		
ррр	Effectiveness of breastfeeding in reducing risk of ovarian cancer	21%	V		
qqq	Reduced ovarian cancer cases due to intervention	22.9	= (g * 000) * ppp		
rrr					
SSS	Life years lost per ovarian cancer	16.5	Ref Doc		
ttt	Life years gained with intervention	377.8	= qqq * sss		
	Detertial OALVe gained Intervention increasing from 41% to CO%	2,992	= y + ff + kk + pp + ww +		
uuu	Potential QALYS gained, Intervention Increasing from 41% to 60%		ddd + hhh + nnn + ttt		
vvv	Potential QALYs gained, Intervention increasing from 0% to 60%	9,291	=(uuu/g) * (c+g)		

∨ = Estimates from the literature

We also modified a number of major assumptions and recalculated the CPB as follows:

- Assume the effectiveness of interventions aimed at improving rates of exclusive breastfeeding at 6 months is reduced from 44% to 13% (Table 2, row *d*): CPB = 7,184 QALYs
- Assume the effectiveness of interventions aimed at improving rates of exclusive breastfeeding at 6 months is increased from 44% to 84% (Table 2, row *d*): **CPB** = **12,011 QALYs**
- Assume the effectiveness of breastfeeding in reducing overweight and obesity is reduced from 24% to 14% (Table 2, row *hh* & *mm*): **CPB = 6,437 QALYs**
- Assume the effectiveness of breastfeeding in reducing overweight and obesity is increased from 24% to 33% (Table 2, row *hh* & *mm*): CPB = 11,860 QALYs

Modelling Cost-Effectiveness

In this section, we will calculate the CPB associated with interventions aimed at improving longer term (6 months) exclusive breastfeeding rates in a British Columbia birth cohort of 40,000.

In modelling CE, we made the following assumptions:

- **Patient time costs for office visit** We assumed that two hours of patient time would be required, including travel to and from the appointment.
- **Patient time costs for breastfeeding support groups** We assumed that a new mother would attend a breastfeeding support group once per month (lasting two hours) for six months. We assumed an additional hour for travel time for a total patient time commitment of 18 hours.
- **Otitis media** Two estimates from the US suggest a direct cost (ambulatory care and antibiotics) per case of \$156 (2007 USD)³²⁷ and \$106 (2004 USD).³²⁸ A Canadian study suggested additional hospital costs over and above physician and drug costs of 15.6%.³²⁹ We have converted the \$156 to 2022 Canadian dollars and then added 15.6% to this cost per case to reflect hospital costs for a total cost per case of \$200 (Table 3, row *p*).
- Atopic dermatitis The mean duration of atopic dermatitis is 10 years with 45% of cases being mild in severity, 45% moderate and 10% severe.³³⁰ The direct annual costs per mild, moderate and severe case are \$175, \$300, and \$405, respectively. The average weighted cost totalled \$254 CAD in 2001³³¹ or \$382 (in 2022 CAD) per case per year. Lifetime costs were estimated at \$3,820 (Table 3, row *s*).
- **Gastrointestinal infection** A US study suggests the direct costs for gastrointestinal infections and lower respiratory tract infections are \$331 per case (in 1995 USD)³³² or \$472 in 2022 CAD (Table 3, rows *v*).
- Lower respiratory tract infection See above (Table 3, rows y).
- Asthma A BC study estimated the annual direct costs attributable to asthma at \$444 per person year (in 2006 CAD)³³³ or \$585 in 2022 CAD. Based on an average treatment duration of 10 years,³³⁴ the total costs attributable to childhood asthma would be \$5,850 per case (Table 3, row *bb*).
- **Type 1 diabetes** The lifetime cost per case in the US has been estimated at \$77,463 (in 2007 USD)³³⁵ or \$85,771 in 2022 CAD (Table 3, row *kk*).

³²⁷ Bartick M and Reinhold A. The burden of suboptimal breastfeeding in the United States: a pediatric cost analysis. *Pediatrics*. 2010; 125(5): e1048-e56.

³²⁸ Zhou F, Shefer A, Kong Y et al. Trends in acute otitis media-related health care utilization by privately insured young children in the United States, 1997–2004. *Pediatrics*. 2008; 121(2): 253-60.

³²⁹ Coyte PC, Asche CV and Elden LM. The economic cost of otitis media in Canada. *International Journal of Pediatric Otorhinolaryngology*. 1999; 49(1): 27-36.

³³⁰ Barbeau M and Bpharm HL. Burden of atopic dermatitis in Canada. *International Journal of Dermatology*. 2006; 45(1): 31-6.

³³¹ Ibid.

³³² Ball TM and Wright AL. Health care costs of formula-feeding in the first year of life. *Pediatrics*. 1999; 103(Suppl. 1): 870-6.

³³³ Sadatsafavi M, Lynd L, Marra C et al. Direct health care costs associated with asthma in British Columbia. *Canadian Respiratory Journal*. 2010; 17(2): 74-80.

 ³³⁴ Bartick M and Reinhold A. The burden of suboptimal breastfeeding in the United States: a pediatric cost analysis. *Pediatrics*. 2010; 125(5): e1048-e56.
 ³³⁵ Ibid.

- **Childhood leukemia** The lifetime cost per case in the US has been estimated at \$136,444 (in 2007 USD)³³⁶ or \$151,078 in 2022 CAD (Table 3, row *nn*).
- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with interventions aimed at improving rates of exclusive breastfeeding at 6 months is cost-saving (Table 3, row *bbb*).

³³⁶ Bartick M and Reinhold A. The burden of suboptimal breastfeeding in the United States: a pediatric cost analysis. *Pediatrics*. 2010; 125(5): e1048-e56.

	Table 3: CE of Promotion of Breastfeeding in a Birth Cohort of 40,000				
Row					
Label	Variable	Base Case	Data Source		
а	Infants in birth cohort	40,000			
b	Proportion already exclusively breastfeeding for 6 months	41%	Table 2, row b		
С	Number exclusively breastfeeding for 6 months	16,400	= a * b		
d	Women eligible for intervention (support group)	23,600	= a - c		
е	Estimated adherence with intervention	75%	Assumed		
f	Women attending intervention (support group)	17,700	= d * f		
g	Effectiveness of breastfeeding promotion interventions in increasing adherence to breastfeeding for 6 months	44%	Table 2, row d		
h	# of women attending intervention (support group) who exclusively breastfeed for 6 months	7,788	= f * g		
	Costs of intervention				
i	Cost of 10-minute office visit	\$35.97	Ref Doc		
i	Value of patient time and travel for office visit	\$74.32	=2 * \$37.16		
k	Portion of 10-minute office visit for screen/referral	50%	Ref Doc		
	Estimated cost of screening	\$2.205.800	= a * (I + i) * k		
m	Value of patient time and travel for intervention	\$669	=18 * \$37.16		
n	Estimated cost of intervention over lifetime of birth cohort	\$11.839.176	= f * m		
	Cost avoided	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
0	Cases of otitis media avoided	5,919	Table 2, row l		
p	Cost per case	\$200	V		
q	Costs avoided	\$1,183,776	= 0 * p		
r	Cases of atopic dermatitis avoided	540	Table 2. row o		
S	Cost per person with atopic dermatitis	\$3.820	V		
t	Costs avoided	\$2.061.686	= r * s		
u	Cases of gastrointestinal infection avoided	1.107	Table 2. row r		
V	Cost per case	\$472	V		
w	Costs avoided	\$522.277	= u * v		
х	Cases of lower respiratory tract infection avoided	229	Table 2. row u		
v	Cost per case	\$462	V		
z	Costs avoided	\$105.956	= x * v		
аа	Cases of asthma avoided	267	Table 2, row bb		
bb	Cost per case	\$5,230	V		
CC	Costs avoided	\$1,396,674	= aa * bb		
dd	Years of overweight avoided	46,351	Table 2, row ii		
ee	Cost per year	\$258	Ref Doc		
ff	Costs avoided	\$11,958,554	= dd * ee		
gg	Years of obesity avoided	30,764	Table 2, row nn		
hh	Cost per year	\$915	Ref Doc		
ii	Costs avoided	\$28,148,918	= gg * hh		
jj	Cases of type 1 diabetes avoided	0.3	Table 2, row ss		
kk	Cost per case	\$85,771	٧		
П	Costs avoided	\$23,607	= jj * kk		
mm	Cases of childhood leukemia avoided	0.06	Table 2, row zz		
nn	Cost per case	\$151,078	V		
00	Costs avoided	\$9,064	= mm * nn		
рр	Cases of breast cancer avoided	19.3	Table 2, row kkk		
qq	Cost per case	\$33,128	Ref Doc		
rr	Costs avoided	\$637,907	= pp * qq		
SS	Cases of ovarian cancer avoided	22.9	Table 2, row qqq		
tt	Cost per case	\$93,913	Ref Doc		
uu	Costs avoided	\$2,150,300	= ss * tt		
	CE calculation				
vv	Cost of intervention over lifetime of birth cohort	\$14,044,976	= l + n		
ww	Costs avoided	\$48,198,718	= q + t + w + z + cc + ff + ii + + oo + rr + uu		
xx	QALYs saved	2,992	Table 2, row uuu		
vv	Cost of intervention over lifetime of birth cohort (1.5% discount)	\$14.044,976	Calculated		
ZZ	Costs avoided (1.5% discount)	\$30,063.495	Calculated		
aaa	QALYs saved (1.5% discount)	1,748	Calculated		
bbb	CE (\$/QALY saved)	-\$9,162	= (vv-zz)/aaa		
	·····		<i>\\\\\</i>		

v = Estimates from the literature

We also modified several major assumptions and recalculated the cost per QALY as follows:

- Assume the effectiveness of interventions aimed at improving rates of exclusive breastfeeding at 6 months is reduced from 44% to 13% (Table 2, row *d*): CE = \$9,995 per QALY
- Assume the effectiveness of interventions aimed at improving rates of exclusive breastfeeding at 6 months is increased from 44% to 84% (Table 2, row *d*): **CE** = Cost-saving
- Assume the effectiveness of breastfeeding in reducing overweight and obesity is reduced from 24% to 14% (Table 2, rows *hh* & *mm*): CE = Cost-saving
- Assume the effectiveness of breastfeeding in reducing overweight and obesity is increased from 24% to 33% (Table 2, rows *hh* & *mm*): CE = Cost-saving
- Assume the proportion of an office visit required for screening/referral is reduced from 50% to 33% (Table 3, row *k*): CE = Cost-saving
- Assume the proportion of an office visit required for screening/referral is increased from 50% to 67% (Table 3, row *k*): CE = Cost-saving

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with interventions aimed at improving rates of exclusive breastfeeding at 6 months is estimated to be 5,430 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be cost-saving (see Table 4).

Table 4: Promotion of Breastfeeding							
in a Birth Cohort of 40,000							
Su	Summary						
	Base						
	Case	Range					
CPB (Potential QALYs Gained)							
Assume No Current Service							
1.5% Discount Rate	5,430	3,762	7,019				
3% Discount Rate	3,442	2,385	4,450				
0% Discount Rate	9,291	6,437	12,011				
Gap between B.C. Current and	Best in the Worl	ld					
1.5% Discount Rate	1,748	1,211	3,388				
3% Discount Rate	1,108	768	2,116				
0% Discount Rate	2,992	2,073	5,711				
CE (\$/QALY) including patient time	costs						
1.5% Discount Rate	Cost-saving	Cost-saving	\$9,995				
3% Discount Rate	Cost-saving	Cost-saving	\$24,290				
0% Discount Rate	Cost-saving	Cost-saving Co	ost-saving				
CE (\$/QALY) excluding patient time costs							
1.5% Discount Rate	Cost-saving	Cost-saving Co	ost-saving				
3% Discount Rate	Cost-saving	Cost-saving Co	ost-saving				
0% Discount Rate	Cost-saving	Cost-saving Co	ost-saving				

Preventing Tobacco Use in Children and Youth

Canadian Task Force on Preventive Health Care Recommendations (2017)

We recommend asking children and youth (age 5–18 yr.) or their parents about tobacco use by the child or youth and offering brief information and advice, as appropriate, during primary care visits to **prevent** tobacco smoking among children and youth (weak recommendation, low-quality evidence).

We recommend asking children and youth (age 5–18 yr.) or their parents about tobacco use by the child or youth and offering brief information and advice, as appropriate, during primary care visits to **treat** tobacco smoking among children and youth (weak recommendation, low-quality evidence).³³⁷

United States Preventive Services Task Force Recommendations (2020)

The USPSTF recommends that primary care clinicians provide interventions, including education or brief counseling, to **prevent** initiation of tobacco use among school-aged children and adolescents (ages 5-17 yr.) (B Recommendation)

The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of primary care–feasible interventions for the **cessation** of tobacco use among school-aged children and adolescents (ages 5-17 yr.) (I Recommendation)³³⁸

Other Approaches to Prevention

In the review of the evidence for the 2013 recommendation,³³⁹ the USPSTF noted that the 2012 Surgeon General's Report concluded that there is a "large, robust, and consistent" evidence base that documents known effective strategies for reducing tobacco use among youth and young adults.³⁴⁰ These strategies include coordinated, multi-component approaches that combine media campaigns, price increases, school-based policies and programs and community-wide changes in policies and norms. The purpose of the USPSTF review was not to reconsider the evidence covered by the Surgeon General's Report, but rather "to review the evidence for the efficacy and harms of **primary-care relevant interventions** (emphasis added) that aim to reduce tobacco use among children and adolescents."³⁴¹

³³⁷ Canadian Task Force on Preventive Health Care. Recommendations on behavioural interventions for the prevention and treatment of cigarette smoking among school-aged children and youth. *Canadian Medical Association Journal*. 2017; 189 (8): E310-16.

³³⁸ US Preventive Service Task Force. Primary care interventions for prevention and cessation of tobacco use in children and adolescents: US Preventive Services Task Force recommendation statement. *JAMA*. 2020; 323(16): 1590-98.

³³⁹ Patnode CD, O'Connor E, Whitlock EP et al. Primary care-relevant interventions for tobacco use prevention and cessation in children and adolescents: a systematic evidence review for the U.S. Preventive Services Task Force. *Annals of Internal Medicine*. 2013; 158(4): 253-60.

³⁴⁰ U.S. Department of Health and Human Services. *Preventing Tobacco Use Among Youth and Young Adults: A Report of the Surgeon General.* 2012. Available at

http://www.cdc.gov/tobacco/data_statistics/sgr/2012/consumer_booklet/pdfs/consumer.pdf. Accessed January 2014.

³⁴¹ Patnode CD, O'Connor E, Whitlock EP et al. Primary care-relevant interventions for tobacco use prevention and cessation in children and adolescents: a systematic evidence review for the U.S. Preventive Services Task Force. *Annals of Internal Medicine*. 2013; 158(4): 253-60.

Use of E-Cigarettes

The 2017 CTFPHC report states that "this guideline does not address smokeless tobacco or ecigarettes".³⁴² They note, however, that "the number of children and youth trying e-cigarettes is increasing, and one in five youth 15-19 years of age have tried them."³⁴³

The 2020 USPSTF report does include the use of e-cigarettes in its updated guidelines, noting that "although conventional cigarette use has gradually declined among children in the US since the late 1990s, tobacco use via electronic cigarettes (e-cigarettes) is quickly rising and is now more common among youth than cigarette smoking. E-cigarette products usually contain nicotine, which is addictive, raising concerns about e-cigarette use and nicotine addiction in children. Exposure to nicotine during adolescence can harm the developing brain, which may affect brain function and cognition, attention, and mood; thus, minimizing nicotine exposure from any tobacco product in youth is important."³⁴⁴

Furthermore, the 2020 USPSTF report notes that "most of the evidence on behavioral counseling interventions to prevent tobacco use focused on prevention of cigarette smoking. Given the similar contextual and cultural issues currently surrounding the use of e-cigarettes in youth and the inclusion of e-cigarettes as a tobacco product by the FDA, the USPSTF concludes that the evidence on interventions to prevent cigarette smoking could be applied to prevention of e-cigarette use as well. The USPSTF also concludes that the evidence could be applied to prevention of cigar use, which includes cigarillos and little cigars."³⁴⁵

Best in the World

- In Oregon, 87.4% of adolescents ages 10-17 who visited a primary care provider between January 1, 2016 and December 31, 2017 had their smoking status assessed.³⁴⁶
- In Florida, 92.3% of adolescents ages 11-17 who visited a primary care provider between July 2016 and November 2017 were asked about their current cigarette smoking. Just over half (51.4%) were asked about their current use of smokeless tobacco but none were asked about their use of electronic nicotine delivery systems (ENDS).³⁴⁷
- In a national US sample of adolescents ages 12 to 17, 45.2% of those who screened positive for current cigarette smoking were advised by their clinician to quit smoking.³⁴⁸

³⁴² Canadian Task Force on Preventive Health Care. Recommendations on behavioural interventions for the prevention and treatment of cigarette smoking among school-aged children and youth. *Canadian Medical Association Journal*. 2017; 189 (8): E310-16.

³⁴³ Ibid.

³⁴⁴ US Preventive Service Task Force. Primary care interventions for prevention and cessation of tobacco use in children and adolescents: US Preventive Services Task Force recommendation statement. *JAMA*. 2020; 323(16): 1590-98.

³⁴⁵ US Preventive Service Task Force. Primary care interventions for prevention and cessation of tobacco use in children and adolescents: US Preventive Services Task Force recommendation statement. *JAMA*. 2020; 323(16): 1590-98.

³⁴⁶ Bailey S, Fankhosuer K, Marino M et al. Smoking assessment and current smoking status among adolescents in primary care. *Nicotine & Tobacco Research*. 2020; 22(11): 2098-2103.

³⁴⁷ LeLaurin J, Theis R, Thompson L et al. Tobacco-related counselling and documentation in adolescent primary care practice: Challenges and opportunities. *Nicotine & Tobacco Research*. 2020; 22(6): 1023-9.

³⁴⁸ Merianos A, Mahabee-Gittens E. Screening, counselling, and health care utilization among a national sample of adolescent smokers. *Clinical Paediatrics*. 2020; 59(4-5): 467-75.
- In a survey of 1,050 US pediatric care providers conducted in 2021, 69.4% indicated they screen patients for e-cigarette use, 63.8% counsel e-cigarette prevention and 67% counsel e-cigarette cessation.³⁴⁹
- Matheus and colleagues managed to improve screening rates for e-cigarette use from 23% to 89% of 300 adolescents with a health maintenance or sports physical visit between October 2019 and February 2020 in the US.³⁵⁰
- For modelling purposes, we have assumed that the best rate in the world for cigarette / e-cigarette screening of children / youth is 92%³⁵¹ and 89%³⁵² of those with a primary health care visit in a given year. Furthermore, 45%³⁵³ and 67%³⁵⁴ of those found positive for cigarette / e-cigarette use receive counselling to quit.

Modelling the Clinically Preventable Burden

In this section, we model CPB associated with asking children and youth or their parents about tobacco use / e-cigarette use by the child or youth and offering brief information and advice, as appropriate, during primary care visits to prevent and / or treat tobacco smoking and e-cigarette use among children and youth.

Definitions

• "Tobacco products include any product made or derived from tobacco intended for human consumption (except products that meet the definition of drugs), including, but not limited to, cigarettes, cigars (including cigarillos and little cigars), dissolvable tobacco, hookah tobacco, nicotine gels, pipe tobacco, roll-your-own tobacco, smokeless tobacco products (including dip, snuff, snus, and chewing tobacco), vapes, e-cigarettes, hookah pens, and other electronic nicotine delivery systems. 'Smoking' generally refers to the inhaling and exhaling of smoke produced by combustible tobacco products such as cigarettes, cigars, and pipes. 'Vaping' refers to the inhaling and exhaling of aerosols produced by e-cigarettes.'³⁵⁵

Defining and Estimating the Population at Risk

• "All youth are considered at risk of initiating tobacco use. Interventions to prevent the initiation of tobacco use should be provided to all youth who have not started using tobacco products yet, regardless of the presence or absence of other risk factors. The following risk factors may increase the risk of tobacco use in youth: being male, white race, not college-bound, from a rural area, having parents with lower levels of education, parental smoking, having childhood friends who smoke, being an older

³⁴⁹ Golden T, VanFrank B, Courtney-Long E. E-cigarette screening and clinical intervention behaviours among pediatric primary care providers, DocStyles 2021. *Paediatrics*. 2022; 149: 740.

³⁵⁰ Matheus C, Hein N, Narahari P et al. Improving standardized screening for e-cigarette and vaping use among adolescents. *Paediatrics*. 2021; 147 (3-Meeting Abstract): 1002.

³⁵¹ LeLaurin J, Theis R, Thompson L et al. Tobacco-related counselling and documentation in adolescent primary care practice: Challenges and opportunities. *Nicotine & Tobacco Research*. 2020; 22(6): 1023-9.

³⁵² Matheus C, Hein N, Narahari P et al. Improving standardized screening for e-cigarette and vaping use among adolescents. *Paediatrics*. 2021; 147 (3-Meeting Abstract): 1002.

³⁵³ Merianos A, Mahabee-Gittens E. Screening, counselling, and health care utilization among a national sample of adolescent smokers. *Clinical Paediatrics*. 2020; 59(4-5): 467-75.

³⁵⁴ Golden T, VanFrank B, Courtney-Long E. E-cigarette screening and clinical intervention behaviours among pediatric primary care providers, DocStyles 2021. *Paediatrics*. 2022; 149: 740.

³⁵⁵ US Preventive Service Task Force. Primary care interventions for prevention and cessation of tobacco use in children and adolescents: US Preventive Services Task Force recommendation statement. *JAMA*. 2020; 323(16): 1590-98.

adolescent, experiencing highly stressful events, and perceiving tobacco use as low risk."³⁵⁶

 Based on data from the 2018/19 Canadian Student Tobacco, Alcohol and Drugs Survey (CSTADS), just 0.80% of BC adolescents in grades 7-9 and 4.40% of BC adolescents in grades 10-12 were current smokers. Current smokers includes occasional (smoked at least one cigarette during the past 30 days, but has not smoked every day) and daily (smoke at least one cigarette per day for each of the 30 days preceding the survey) smokers (see Table 1).³⁵⁷

Table 1: Cigarette Smoking in British Columbia Adolescents in Grades 7 to 12 In 2018/19														
		Current	Current											
Current Daily Occasional														
Grade Smoker Smoker Smoker														
Grades 7-9														
Male 0.88% 0.40% 0.48%														
Female	0.72%	0.32%	0.40%											
Combined	0.80%	0.36%	0.44%											
Grades 10-12														
Male	5.26%	1.53%	3.73%											
Female	3.35%	0.96%	2.39%											
Combined	4.40%	1.24%	3.16%											
Extrapolated base	ed on data f	or Canada	I											

 Across Canada, the proportion of adolescent current smokers ages 12-17 has declined from 4.1% in 2015 to 1.1% in 2021 (see Table 2).³⁵⁸

Table 2: Trend in the Proportion of Daily or Occasional															
Smokers in Canada															
Ages 12 - 17 2015 to 2021															
Sov	2015 to 2021 Sey 2015 2016 2017 2018 2019 2020 2021														
JEA	2013	2010	2017	2010	2019	2020	2021								
Males	4.3%	3.9%	2.7%	3.3%	2.5%	2.3%	1.3%								
Females	4.0%	3.3%	4.3%	3.0%	2.5%	1.3%	1.0%								
Total _	4.1%	3.6%	3.5%	3.2%	2.5%	1.8%	1.1%								

³⁵⁷ Canadian Student Tobacco, Alcohol and Drugs Survey 2018-2019, Table 3. Available online at <u>https://www.canada.ca/en/health-canada/services/canadian-student-tobacco-alcohol-drugs-survey/2018-2019-</u>detailed-tables.html#t3. Accessed September 2022.

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310009610&pickMembers%5B0%5D=1.1&pickMembers%5B1%5D=3.1&cubeTimeFrame.startYear=2015&cubeTimeFrame.endYear=2021&referencePeriods=20150101 %2C20210101. Accessed September 2022.

³⁵⁶ US Preventive Service Task Force. Primary care interventions for prevention and cessation of tobacco use in children and adolescents: US Preventive Services Task Force recommendation statement. *JAMA*. 2020; 323(16): 1590-98.

³⁵⁸ Statistics Canada, *Smokers by Age Group*. Available online at

- In 2018 in BC among the 19% of children / youth aged 12-19 who had ever smoked tobacco, the age they first tried smoking was as follows:³⁵⁹
 - \circ Less than 9 Years old 5%
 - o 9-2%
 - o 10-3%
 - 11−3%
 - \circ 12 8%
 - o 13–14%
 - \circ 14 19%
 - \circ 15 20%
 - o 16–17%
 - 17 or older 10%
- While cigarette smoking among adolescents has decreased, use of e-cigarettes has increased dramatically. In Ontario, for example, the rate of e-cigarette use in male adolescents increased almost 3-fold during the six year period between 2013/14 and 2018/19. In female adolescents, the rate of increase during that time was even higher, at greater than 4-fold (see Figure 1).³⁶⁰

³⁵⁹ Smith A, Peled M, Poon C et al. *Understanding Tobacco Use and Vaping among BC Youth: Findings from the BC Adolescent Health Survey.* 2020. Vancouver, BC: McCreary Centre Society.

³⁶⁰ Cole A, Aleyan S, Battista K et al. Trends in youth e-cigarette and cigarette use between 2013 and 2019: Insights from repeat cross-sectional data from the COMPASS study. *Canadian Journal of Public Health*. 2021; 112: 60-69.

• In BC, the proportion of adolescents in grades 10-12 who had ever tried e-cigarettes increased from 34.3% in 2016/17 to 56.6% in 2018/19. Daily or almost daily use increased even more dramatically in the cohort, from 2.5% in 2016/17 to 11.6% in 2018/19 (see Table 3).³⁶¹

Table 3	Table 3: Use of E-Cigarettes in British Columbia														
	Ad	olescents	s in Grades	7 - 12											
		n 2016/1	7	L	n 2018/19	9									
			Daily or			Daily or									
	Ever Past 30- Almost Ever Past 30- Alm														
-	Tried Day Use Daily Use Tried Day Use														
Grades 7-9															
Male	Male 13.1% 6.4% 1.1% 23.9% 15.0%														
Female	10.9%	5.9%	0.3%	26.1%	15.8%	2.2%									
Combined	12.0%	6.1%	0.7%	25.0%	15.4%	2.5%									
Grades 10-12															
Male	38.6%	23.4%	4.0%	56.9%	40.3%	13.9%									
Female	29.9%	12.6%	1.0%	56.4%	36.7%	9.3%									
Combined	34.3%	18.1%	2.5%	56.6%	38.5%	11.6%									

- In BC, 29% of children / youth ages 12-19 used at least one nicotine-related product in the month prior to completing the 2018 BC Adolescent Health Survey. The proportion of youth that used each product was as follows:³⁶²
 - Vape pen/stick 27%
 - Cigarettes 7%
 - Cigars/cigarillos 3%
 - \circ Chewing tobacco 2%
 - \circ A hookah 2%

³⁶¹ Data for 2016/17 is from the Canadian Student Tobacco, Alcohol and Drugs Survey 2016-2017, Tables 5 & 6. Available online at <u>https://www.canada.ca/en/health-canada/services/canadian-student-tobacco-alcohol-drugs-</u>survey/2016-2017-supplementary-tables.html#t6.

Data for 2018/19 is from the Canadian Student Tobacco, Alcohol and Drugs Survey 2018-2019, Tables 5 & 6. Available online at <u>https://www.canada.ca/en/health-canada/services/canadian-student-tobacco-alcohol-drugs-survey/2018-2019-detailed-tables.html#t3</u>.

Accessed September 2022.

³⁶² Smith A, Peled M, Poon C et al. *Understanding Tobacco Use and Vaping among BC Youth: Findings from the BC Adolescent Health Survey.* 2020. Vancouver, BC: McCreary Centre Society.

• Not only are more adolescents using e-cigarettes but the intensity of use is also increasing.³⁶³ Of US high school students who used e-cigarettes in 2019, 34.2% used them at least 20 out of the past 30 days (see Table 4).³⁶⁴

Table 4: Frequency During the Among US Hig By Pro	Table 4: Frequency of Tobacco Product Use During the Past 30 Days Among US High School Students By Product, 2019														
By Product, 2019 Days of Use															
<u> </u>															
E-cigarettes	E-cigarettes 46.4% 19.4% 34.2%														
Cigars	68.6%	14.1%	17.3%												
Cigarettes	51.5%	16.0%	32.5%												
Smokeless tobacco	44.0%	18.0%	37.9%												
Hookahs	69.2%	13.2%	17.6%												

• Among US youth, the initiation of e-cigarette use, in particular "fairly regular use", tends to peak at ages 17-18 (see Table 5).³⁶⁵

Table 5: Cumulative Proportion of US Youth Who Initiate e-Cigarette Use By Age and e-Cigarette Use Outcome During 2013 to 2017														
Fairly Post 20 Regular														
Past 30- Regular														
	Age	Ever Use	Day Use	Use *										
	13	3.0%	0.8%	0.45%										
	14	6.6%	2.3%	1.0%										
	15	11.7%	4.4%	2.2%										
	16	18.6%	7.4%	3.8%										
	17	30.4%	13.1%	6.6%										
	18	41.7%	23.5%	10.3%										
* Based of products f	n the questic airly regulari	on "Have you e ly?"	ver used elec	tronic nicotine										

³⁶⁴ Wang T, Gentzke A, Creamer M et al. Tobacco product use and associated factors among middle and high school students – United States, 2019. *Morbidity and Mortality Weekly Report*. December 6, 2019; 68(12): 1-22.

³⁶³ Glantz S, Jeffers A, Winickoff J. Nicotine addiction and intensity of e-cigarette use by adolescents in the US, 2014 to 2021. *JAMA Network Open*. 2022; 5(11): e2240671.

³⁶⁵ Perez A, Bluestein M, Chen B et al. Prospectively estimating the age of initiation of e-cigarettes among U.S. youth: Finding from the Population Assessment of Tobacco and Health (PATH) study, 2013-2017. *Journal of Journal of Biometrics and Biostatistics*. 2020; Volume 11(3): DOI: 10.37421/jbmbs.2020.11.44211

• Based on data from the 2019 Canadian Tobacco and Nicotine Survey,³⁶⁶ the proportion of current smokers across Canada increased from 5.1% for those ages 15-19 to 13.3% for those ages 20-24, stabilizing at 13.3% between the ages of 25-45 and then declining modestly to 12.0% for those over the age of 45 (see Table 6). The proportion of the population reporting vaping during the past 30 days remained fairly constant between the ages of 15-24, dropping significantly thereafter (see Table 6).

	Table 6: Smoking and Vaping Status														
	By Age Group and Sex														
	Canada, 2019														
	Age	Current	Former	Never											
Sex	Group	Smoker	Smoker	Smoker	Vaping*										
Mal	Male														
	15-19 6.0% NA 92.6% 16.1%														
	20-24 15.3% 8.6% 76.0% 18.0% 25.44 13.7% 20.0% 60.4% 6.7%														
	25-44 13.7% 30.0% 69.4% 6.7% 45 13.0% 38.4% 40.0% 1.0%														
	45+ <u>12.9%</u> <u>38.1%</u> <u>49.0%</u> <u>1.9%</u>														
	Total 12.7% 26.0% 61.4% 5.8%														
Fem	Female 15.17.0 20.07.0 01.47.0 53.87.0														
	15-19 NA NA 95.0% 13.6%														
	15-19NANA95.0%13.6%20-2410.6%NA88.0%11.8%														
	25-44	12.8%	17.3%	69.9%	3.3%										
	45+	11.3%	32.2%	56.6%	1.3%										
	Total	11.1%	23.0%	65.9%	3.6%										
Tota	1														
	15-19	5.1%	NA	93.4%	15.1%										
	20-24	13.3%	5.2%	81.5%	15.2%										
	25-44	13.3%	17.1%	17.1%	5.0%										
	45+	12.0%	35.1%	35.1%	1.6%										
	Total	11.9%	24.5%	63.7%	4.7%										
Notes	s: NA = not	available; * F	Past 30-day	use											

³⁶⁶ Health Canada. *Canadian Tobacco and Nicotine Survey: 2019 Detailed Tables*. Available online at <u>https://www.canada.ca/en/health-canada/services/canadian-tobacco-nicotine-survey/2019-summary/2019-detailed-tables.html#t1</u>. Accessed September 2022.

E-Cigarette Use and Subsequent Cigarette Smoking

- Only a minority of adolescents (7.8%)³⁶⁷ or young adults (12.8%)³⁶⁸ who use ecigarettes report using them for the purpose of smoking cessation.
- Among baseline adolescent never smokers, e-cigarette users have a much higher odds of subsequent infrequent (OR=4.27, 95% CI 2.75 6.62) or frequent (OR=3.51, 95% CI 1.97 6.24) cigarette use than never smokers who do not use e-cigarettes.³⁶⁹
- The probability of cigarette smoking initiation by an adolescent **ever** e-cigarette user is 30.4% vs. 7.9% by an adolescent **never** e-cigarette user, an odds ratio of 3.62 (95% CI of 2.42 to 5.41).³⁷⁰
- Soneji and co-authors suggest three possible reasons for this high level of cigarette smoking initiation by an adolescent ever e-cigarette user. First, e-cigarette use mimics the behavioral scripts of cigarette smoking. Second, adolescents and young adults who use nicotine-containing e-cigarettes may become addicted to nicotine because e-cigarette aerosol contains highly oxidizing free-base nicotine the most addictive form of nicotine that is easily absorbed by the body. And third, e-cigarette use may activate cognitive or behavioral processes that increase the risk of smoking.³⁷¹

Harms Associated with E-Cigarette Use in Children and Youth

In addition to a higher risk of converting to conventional cigarette use, e-cigarette use in children and youth is also associated with a number of other harms.

- In a longitudinal study of 17,073 children with an average initial age of 9.9 years, ever-use of tobacco products, including e-cigarettes, was associated with inferior cognitive performance and reduced brain structure with sustained effects for at least two years.³⁷²
- Based on data from the 2016/17 US Behavioral Risk Factor Surveillance System, Obisesan and colleagues found that former e-cigarette users had a 1.60-fold (95% CI, 1.54-1.67) higher odds of reporting a history of clinical diagnosis of depression than never users, whereas current e-cigarette users had 2.10 (95% CI, 1.98-2.23) times higher odds. Additionally, higher odds of reporting depression were observed with increased frequency of use among current e-cigarette users compared with never

³⁶⁷ Tsai J, Walton K, Coleman B et al. Reasons for electronic cigarette use among middle and high school students – National Youth Tobacco Survey, United States, 2016. *Morbidity and Mortality Weekly Report*. 2018; 67(6): 196-200.

 ³⁶⁸ Hong H, Liu F, Urman R et al. Reasons for electronic cigarette use among South California young adults. In: *Proceedings of the American Thoracic Society International Conference*; May 19-24, 2017; Washington DC.
³⁶⁹ Barrington-Trimis J, Komg G, Leventhal A et al. E-cigarette use and subsequent smoking frequency among adolescents. *Paediatrics*. 2018; 142(6): e20180486.

³⁷⁰ Soneji S, Barrington-Trimis J, Wills T et al. Association between initial use of e-cigarettes and subsequent cigarette smoking among adolescents and young adults: A systematic review and meta-analysis. *JAMA Paediatrics*. 2017; 171(8):788-97.

³⁷¹ Soneji S, Barrington-Trimis J, Wills T et al. Association between initial use of e-cigarettes and subsequent cigarette smoking among adolescents and young adults: A systematic review and meta-analysis. *JAMA Paediatrics*. 2017; 171(8):788-97.

³⁷² Dai H, Doucet G, Wang Y et al. Longitudinal assessments of neurocognitive performance and brain structure associated with initiation of tobacco use in children, 2016 to 2021. *JAMA Network Open.* 2022; 5(8): e2225991.

users (**daily use**: OR, 2.39; 95% CI, 2.19-2.61; **occasional use**: OR, 1.96; 95% CI, 1.82-2.10).³⁷³

- Based on a study of 2,299 high school seniors, McCabe et al found that among users of e-cigarettes, lifetime cigarette smoking, alcohol use, marijuana use, nonmedical prescription drug use and illicit drug use (e.g. cocaine, LSD, heroin) are much higher compared with non-users of e-cigarettes. In particular, early onset of e-cigarette use (by grade 9 or earlier) was associated with an increased odds ratio of 14.2 for lifetime cigarette smoking, 70.6 for lifetime alcohol use, 16.4 for lifetime marijuana use, 9.5 for lifetime nonmedical prescription drug use and 19.2 for lifetime illicit drug use.³⁷⁴
- In their 2020 review of the available literature on the cardiovascular risk of ecigarettes, Buchman and colleagues conclude that "there is growing evidence that ecigarettes and their aerosol constituents, nicotine, carbonyl compounds, particulate matter, metals, and flavourings, can have adverse effects on the cardiovascular system" and furthermore "while there is a paucity of data, recent studies have also suggested that e-cigarette use is associated with inflammation, oxidative stress, and haemodynamic imbalance leading to increased cardiovascular diseases risk."³⁷⁵
- Dual use (combining the use of conventional cigarettes and e-cigarettes) may increase cardiovascular risk when compared with those who use only conventional cigarettes.³⁷⁶
- Based on a review of current evidence on the respiratory effects of e-cigarettes, Miyashita and Foley conclude that "e-cigarette exposure can disrupt pulmonary homeostasis, with reports of gas exchange disturbance, reduced lung function, increased airway inflammation and oxidative stress, downregulation of immunity, and increased risk of respiratory infection."³⁷⁷
- Based on a systematic review of the available literature on e-cigarette use and oral health, Yang and colleagues found that "the majority of mouth and throat symptoms experienced by e-cigarette users were relatively minor and temporary, with some evidence that conventional smokers who switched to e-cigarettes experienced mitigation of these symptoms. E-cigarette exposure increased the risk for deteriorating periodontal, dental and gingival health as well as changes to the oral microbiome. Extensive dental damage as a result of e-cigarette explosions were described in case reports."³⁷⁸
- Based on a systematic review of the available literature, Bjurlina et al found that "biomarkers of carcinogens, several with a strong link to bladder cancer, are present in the urine of e-cigarette users. Long-term implications of urothelial exposure to

³⁷³ Obisesan O, Mirbolouk M, Osei A et al. Association between e-cigarette use and depression in the Behavioral Risk Factor Surveillance System, 2016-2017. *JAMA: Public Health.* 2019; 2(12): e1916800. doi:10.1001/iamanetworkopen.2019.16800.

 ³⁷⁴ McCabe S, West B, McCabe V. Associations between early onset of e-cigarette use and cigarette smoking and other substance use among US adolescents: A national study. *Nicotine & Tobacco Research*. 2018; 923-30.
³⁷⁵ Buchanan N, Grimmer J, Tanwar V et al. Cardiovascular risk of electronic cigarettes: A review of preclinical and clinical studies. *Cardiovascular Research*. 2020; 116: 40-50.

³⁷⁶ Kim C, Paek Y, Seo H et al. Dual use of electronic and conventional cigarettes is associated with higher cardiovascular risk factors in Korean men. *Scientific Reports*. 2020; 10: 5612.

³⁷⁷ Miyashital, Foley G. E-cigarettes and respiratory health: the latest evidence. *British Medical Journal*. 2019; 366: 5027-38.

³⁷⁸ Yang I, Sandeep S, Rodriguez J. The oral health impact of electronic cigarette use: a systematic review. *Critical Reviews in Toxicology*. 2020; 50(2): 97-127.

these toxicants are unknown but concerning, given the similarities to tobacco smoke and its established relationship with bladder cancer."³⁷⁹

• Other potential harms include unintentional injuries due to device malfunctions, ingesting e-liquids by young children, nicotine toxicity and withdrawal symptoms.³⁸⁰

Estimating the Prevalence of Cigarette Smoking and E-Cigarette Use - No Intervention

- In estimating the number of current female and male adolescent **cigarette smokers** in a BC birth cohort of 40,000 we began with the assumption that 3.35% of females and 5.26% of males in grade 11 were current cigarette smokers (see Table 1). Furthermore, an additional 10%³⁸¹ of adolescents would take up cigarette smoking in grade 12 (age 17) for a total of 3.68% of females and 5.79% of males by the end of their 17th year (see Table 7). The % and number of cigarette smokers prior to age 17 is based on the age that BC youth first tried smoking (see Table 7).³⁸²
- In estimating the number of female and male adolescent **e-cigarette users** in a BC birth cohort of 40,000 we began with the assumption that 15.8% of females age 13 (Grade 8) used e-cigarettes in the past 30 days and 2.2% were daily or almost daily users. The equivalent % for males age 13 is 15.0% and 2.7% (see Table 3). By age 17 (Grade 11) 36.7% / 40.3% of females / males used e-cigarettes in the past 30 days and 9.3% / 13.9% of females / males were daily or almost daily users (see Table 3).
- A significant number of adolescents start e-cigarette use in their 18th year (see Table 5). This increase is reflected in the % and number of e-cigarette users by the end of their 18th year in Table 7.
- Hammond et al estimated that 41.9% of youth in Canada (in 2019) who smoke also vape.³⁸³
- We assumed that 22.5% of 18 year olds with past 30 day e-cigarette use **who did not smoke** would convert to cigarette smoking by age 24, based on the probability of cigarette smoking initiation by an adolescent **ever** e-cigarette user of 30.4% vs. 7.9% by an adolescent **never** e-cigarette user.³⁸⁴ The uptake of cigarette smoking by this cohort between the ages of 18 and 24 was assumed to be linear (see Table 7).
- Of exclusive experimental e-cigarette users (past 30 day use but not regular users) at age 18, 10.6% who did not transition to conventional cigarette use would remain exclusive e-cigarette users by age 24. Of exclusive established e-cigarette users

³⁷⁹ Bjurlina M, Matulewicz R, Roberts T et al. Carcinogen biomarkers in the urine of electronic cigarette users and implications for the development of bladder cancer: A systematic review. *European Urology Oncology*. 2021; 5(4): 766-783.

³⁸⁰ Chadi N, Vyver E, Belanger R. Protecting children and adolescents against the risks of vaping. *Paediatrics and Child Health*. 2021; 351-65.

³⁸¹ Smith A, Peled M, Poon C et al. Understanding Tobacco Use and Vaping among BC Youth: Findings from the BC Adolescent Health Survey. 2020. Vancouver, BC: McCreary Centre Society.

³⁸² Smith A, Peled M, Poon C et al. *Understanding Tobacco Use and Vaping among BC Youth: Findings from the BC Adolescent Health Survey.* 2020. Vancouver, BC: McCreary Centre Society.

³⁸³ Hammond D, reid J, Rynard V et al. Indicators of dependence and efforts to quit vaping among youth in Canada, England and the USA. *Tobacco Control.* 2022; 31: e25-e34.

³⁸⁴ Soneji S, Barrington-Trimis J, Wills T et al. Association between initial use of e-cigarettes and subsequent cigarette smoking among adolescents and young adults: A systematic review and meta-analysis. *JAMA Paediatrics*. 2017; 171(8):788-97.

(regular use) at age 18, 62.2% who did not transition to conventional cigarette use would remain exclusive e-cigarette users by age 24 (see Table 7).³⁸⁵

• Based on these assumptions, 5,414 (13.7%) in the BC birth cohort would be current smokers by age 24 (2,627 females [13.2%] and 2,788 males [14.1%]) while a further 5,571 (14.5%) would continue to use e-cigarettes at age 24 (2,527 females [12.7%] and 3,224 males [16.3%]) (see Table 7).

	Table 7: Estimated Prevalence of Cigarette Smoking and E-cigarette Use																				
								Betwe	een th	e Age	s of 8	and 2	4								
							In a	British (Colum	bia Birt	h Coho	ort of 4	0,000)							
						With	out a (`hild / Yo	uth Scr	eening	Program	n / Brie	, f Inter	ventio	n						
				Female						l (199	Male	п, впе	THILE	ventio			Total	Populat	ion		
					e-Ciga	rette						e-Cigar	ette					-	e-Cigar	ette	
				Past 30-	day Use						Past 30-	day Use		_				Past 30-	day Use		
		Cigai	rette	tte Excl Regular Use Regular Use Regular Use Regular Use Regular Use # % # % # % # % # % # %										ar Use		Cigar	ette	Excl Reg	ular Use	Regula	ar Use
Age	N	%	#	%	#	%	#	N	%	#	%	#	%	#	N	%	#	%	#	%	#
8	19,918	0.15%	29					19,907	0.23%	46					39,824	0.19%	75				
9	19,917	0.22%	44					19,906	0.35%	69					39,822	0.28%	113				
10	19,915	0.33%	66					19,904	0.52%	104					39,820	0.43%	170				
11	19,914	0.44%	88					19,903	0.69%	138					39,817	0.57%	226				
12	19,913	0.74%	147					19,902	1.16%	230					39,815	0.95%	377				
13	19,911	1.25%	249	13.6%	2,708	2.2%	438	19,900	1.97%	391	12.3%	2,448	2.7%	537	39,812	1.6%	641	13.0%	5,156	2.4%	975
14	19,910	1.95%	388	17.0%	3,394	4.0%	/91	19,898	3.07%	610	15.8%	3,149	5.5%	1,094	39,808	2.5%	999	16.4%	6,543	4.7%	1,886
15	19,907	2.69%	535	20.5%	4,081	5.7%	1,145	19,896	4.22%	840	19.3%	3,850	8.3%	1,651	39,803	3.5%	1,375	19.9%	7,930	7.0%	2,796
16	19,904	3.31%	660	24.0%	4,767	7.5%	1,498	19,891	5.21%	1,036	22.9%	4,550	11.1%	2,208	39,795	4.3%	1,696	23.4%	9,318	9.3%	3,706
1/	19,900	3.68%	/33	27.4%	5,454	9.3%	1,851	19,885	5.79%	1,151	26.4%	5,251	13.9%	2,765	39,784	4.7%	1,884	26.9%	10,705	10.10	4,616
18	19,894	5.04%	1,004	34.0%	0,893	14.5%	2,888	19,876	0.97%	1,385	25.7%	5,104	21.7%	4,313	39,770	0.0%	2,388	30.2%	11,997	18.1%	7,202
19	19,888	6.41%	1,274	29.5%	5,866	13.6%	2,706	19,864	8.15%	1,619	21.9%	4,343	20.3%	4,042	39,752	7.3%	2,893	25.7%	10,209	17.0%	6,748
20	19,881	0.120/	1,545	24.3%	4,839	12.7%	2,524	19,851	9.33%	1,852	14.0%	3,383	19.0%	3,770	39,732	ð.5%	3,397	21.2%	8,422	13.8%	0,294 F 0.41
21	10 967	9.13%	2,025	19.2%	3,012 2 795	10.0%	2,542	10 917	11 71%	2,000	10.4%	2,022	16 2%	2,498	39,709	9.8% 11 1%	3,901	12.7%	1 917	12 6%	5,041 5 297
22	19,007	11 86%	2,000	2 Q%	2,700	10.9%	1 978	19,017	12 90%	2,520	6.6%	2,002	1/ 0%	2 955	39,004	17 /1%	4,400	7 7%	3 050	12.0%	1 933
23	19,859	13.23%	2,627	3.7%	731	9.0%	1,796	19,775	14.10%	2,788	2.7%	541	13.6%	2,683	39,626	13.7%	4,910 5,414	3.2%	1,272	11.3%	4,479

• Figure 2 provides a visual representation of the modelled transitions between conventional and e-cigarette use between the ages of 13 and 24 in the *absence* of a child and youth screening program and brief intervention.

³⁸⁵ Wei L, Muhammad-Kah R, Hannel T et al. The impact of cigarette and e-cigarette use history on transition patterns: A longitudinal analysis of the population assessment of tobacco and health (PATH) study, 2013 – 2015. *Harm Reduction Journal*. 2020; 17(45).

Estimating the Number of Deaths and Life Years Lost Attributable to Cigarette Smoking - No Intervention

- We assumed that 53.7% of females and 51.6% of males would be light smokers (less than 10 cigarettes per day), 32.4% / 26.1% would be moderate smokers (10-19 cigarettes per day) and 13.9% / 22.4% would be heavy smokers (≥ 20 cigarettes per day).³⁸⁶
 - Of the 2,627 female cigarette smokers at age 24, 1,411 would be light smokers, 851 would be moderate smokers and 365 would be heavy smokers
 - Of the 2,788 male cigarette smokers at age 24, 1,437 would be light smokers, 727 would be moderate smokers and 623 would be heavy smokers
- On average, tobacco smoking is associated with 10 life years lost,³⁸⁷ with 6.6, 11.9 and 18.1 life years lost associated with light, moderate and heavy smoking.³⁸⁸

³⁸⁸ In BC in 2015, 56% of tobacco smokers were light smokers, 28% were moderate smokers and 17% were heavy smokers. The estimated annual economic burden attributable to premature mortality in 2015 is \$1,346 (\$891 for light, \$1,607 for moderate and \$2,439 for heavy smokers). H. Krueger & Associates Inc. *The Economic Burden of Risk Factors in British Columbia: Excess Weight, Tobacco Smoking, Alcohol Use, Physical Inactivity and Low Fruit and Vegetable Consumption.* 2017. Vancouver, B.C.: Provincial Health Services Authority, Population and Public Health Program. We used this data to estimate life years lost by smoking intensity as follows: \$891 / \$1,346 * 10 life years lost = 6.6 life years lost for light smokers; \$1,607 / \$1,346 * 10 life years lost = 11.9 life years lost for moderate smokers; \$2,439 / \$1,346 * 10 life years lost = 18.1 life years lost for heavy smokers.

 ³⁸⁶ H. Krueger & Associates Inc. *The Economic Burden of Risk Factors in British Columbia: Excess Weight, Tobacco Smoking, Alcohol Use, Physical Inactivity and Low Fruit and Vegetable Consumption.* 2017. Vancouver, B.C.: Provincial Health Services Authority, Population and Public Health Program.

³⁸⁷ Banks E, Joshy G, Weber M et al. Tobacco smoking and all-cause mortality in a large Australian cohort study: findings from a mature epidemic with current low smoking prevalence. *BioMed Central Medicine*. 2015; 13(1): 38-48.

- Total life years lost in the 2,627 female cigarette smokers at age 24 is expected to be 26,403 ((1,411 * 6.6) + (851*11.9) + (365*18.1)).
- Total life years lost in the 2,788 male cigarette smokers at age 24 is expected to be 29,421 ((1,437 * 6.6) + (727*11.9) + (623*18.1)).
- Based on data between 1990 to 2011 in the US, Lariscy and colleagues found an elevated relative risk ratio for all-cause mortality among current smokers by smoking intensity as follows:³⁸⁹
 - \circ < 10 cigarettes 1.78
 - 10-19 cigarettes 2.04
 - 20-39 cigarettes 2.47
 - $\circ \geq 40$ cigarettes -3.23
- Data from the Lariscy et al study was used to estimate the distribution of excess deaths attributable to cigarette smoking by age and sex (see Table 8).³⁹⁰

Table 8: Distribution of Excess															
Deaths Attributable to Smoking															
By Age and Sex															
Age	Age Female Male Total														
35-44	2.1%	2.7%	2.5%												
45-54	10.6%	13.3%	12.3%												
55-64	25.3%	30.5%	28.5%												
65-74	31.1%	33.8%	32.8%												
75-84	25.6%	16.9%	20.2%												
85+	5.3%	2.8%	3.8%												
Total	100%	100%	100%												

• Data from the previous two bullet points was then combined to estimate the distribution of excess deaths by age, sex and smoking intensity (see Table 9).

Tab	Table 9: Distribution of Excess Deaths Attributable to Smoking														
	By Age, Sex and Smoking Intensity														
	Females Males														
	Smoking Intensity Smoking Intensity														
Age	Light Moderate Heavy Total Light Moderate Heavy Total														
35-44	0.6%	0.7%	0.8%	2.1%	0.8%	0.9%	1.0%	2.7%							
45-54	3.0%	3.4%	4.2%	10.6%	3.8%	4.3%	5.2%	13.3%							
55-64	7.2%	8.2%	9.9%	25.3%	8.6%	9.9%	12.0%	30.5%							
65-74	8.8%	10.1%	12.2%	31.1%	9.6%	11.0%	13.3%	33.8%							
75-84	7.2%	8.3%	10.0%	25.6%	4.8%	5.5%	6.6%	16.9%							
85+	1.5%	1.7%	2.1%	5.3%	0.8%	0.9%	1.1%	2.8%							
Total	28.3%	32.4%	39.3%	100%	28.3%	32.4%	39.3%	100%							

³⁸⁹ Lariscy J, Hummer R, Rogers R. Cigarette smoking and all-cause and cause-specific adult mortality in the United States. *Demography*. 2018; 55(5): 1855-85.

³⁹⁰ Lariscy J, Hummer R, Rogers R. Cigarette smoking and all-cause and cause-specific adult mortality in the United States. *Demography*. 2018; 55(5): 1855-85.

- Lariscy et al calculated that 18% of female deaths and 26% of male deaths ages 35+ in the US between 1990 and 2011 were attributable to tobacco smoking.³⁹¹
- For modelling purposes we assumed no smoking-attributable deaths in the cohort until age 36. We then distributed smoking-attributable deaths in the cohort by age, sex and smoking intensity (as per Table 9) and then adjusted the results so that total life years lost in the female cohort of smokers would be 27,730 and in males it would be 34,518 (see above). After this adjustment, our model indicated that 25.8% of female deaths and 23.6% of male deaths in the cohort between the ages of 36 and 84 would be attributable to cigarette smoking.
- While long-term use of e-cigarettes is associated a number of harms (see section on *Harms Associated with E-Cigarette Use in Children and Youth*) it is not yet known whether such long-term use is associated with premature death and life years lost. The outbreak of vaping-associated lung illness in 2019 and 2020 resulted in at least 2,807 cases and 64 deaths in the US.³⁹² In Canada, however, just 20 cases have been identified with no deaths.³⁹³
- Based on these assumptions, 3,320 (61.3%) of the cohort who were smoking at age 24 (5,414) would die prematurely due to a smoking-attributable cause (see Table 10).
 - o 1,519 of 2,627 female smokers (57.8%) (see Table 10).
 - o 1,801 of 2,788 male smokers (64.6%) (see Table 10).

³⁹¹ Lariscy J, Hummer R, Rogers R. Cigarette smoking and all-cause and cause-specific adult mortality in the United States. *Demography*. 2018; 55(5): 1855-85.

 ³⁹² Baker M, Procter T, Belzak L et al. Vaping-associated lung illness (VALI) in Canada: A descriptive analysis of VALI cases reported from September 2019 to December 2020. *Health Promotion and Chronic Disease Prevention in Canada: Research, Policy and Practice.* 2022; 42(1): 37-44.
³⁹³ Ibid.

Table 10: Estimated Deaths and Life Years Lost Attributable to Cigarette Smoking

Between the Ages of 35 and 84 In a British Columbia Birth Cohort of 40,000

Without a Child / Youth Screening Program / Brief Intervention

	Female								Male								Total Population					
			0	Deaths					Deaths								Deaths	s Attributa	ole to Sn	noking		
		In	Att to	By Sm	noking Int	ensity	LYL /			In	Att to	By Sn	noking Int	ensity	LYL /							
Age	Pop.	Cohort	Smoking	Light I	Voderate	Heavy	Death	LYL	Pop.	Cohort	Smoking	Light	Moderate	Heavy	Death	LYL	Pop.	Light	Moderate	Heavy	Total	LYL
35	19,749								19,505								39,254					
36	19,736	13	3.1	0.9	1.0	1.2	50.8	160	19,474	31	6.3	1.8	2.0	2.5	46.5	292	39,210	2.7	3.1	3.7	9	452
37	19,722	14	3.3	0.9	1.1	1.3	49.9	164	19,442	32	6.4	1.8	2.1	2.5	45.6	294	39,164	2.8	3.2	3.8	10	458
38	19,708	14	3.4	1.0	1.1	1.4	48.9	168	19,409	33	6.6	1.9	2.2	2.6	44.7	297	39,117	2.9	3.3	4.0	10	465
39	19,693	15	3.6	1.0	1.2	1.4	47.9	174	19,375	34	6.9	2.0	2.2	2.7	43.7	301	39,068	3.0	3.4	4.1	11	475
40	19,677	16	3.8	1.1	1.2	1.5	47.0	177	19,339	35	7.1	2.0	2.3	2.8	42.8	305	39,017	3.1	3.5	4.3	11	483
41	19.661	16	4.0	1.1	1.3	1.6	46.0	183	19.303	37	7.4	2.1	2.4	2.9	41.9	309	38,964	3.2	3.7	4.5	11	492
42	19.643	18	4.3	1.2	1.4	1.7	45.1	192	19.264	38	7.7	2.2	2.5	3.0	41.0	315	38,908	3.4	3.9	4.7	12	507
43	19.625	19	4.5	1.3	1.5	1.8	44.1	199	19.225	40	8.0	2.3	2.6	3.1	40.1	321	38,849	3.5	4.1	4.9	13	520
44	19.605	20	4.8	1.4	1.6	1.9	43.1	207	19,183	41	8.3	2.4	2.7	3.3	39.1	327	38,788	3.7	4.3	5.2	13	533
45	19,584	21	5.1	1.5	1.7	2.0	42.2	217	19,140	43	8.7	2.5	2.8	3.4	38.2	333	38,724	3.9	4.5	5.4	14	549
46	19 561	23	5.5	15	1.8	21	41.2	226	19 094	46	9.2	2.6	3.0	3.6	37.3	343	38 656	4 1	4.8	5.8	15	568
47	19 537	24	5.9	17	19	23	40.3	236	19 047	48	9.6	2.0	3.0	3.8	36.4	351	38 584	4.4	5.0	6.1	15	587
48	19 511	26	6.2	1.8	2.0	2.5	39.3	246	18 996	50	10.1	2.7	3.1	4.0	35.5	359	38 508	4.6	5.3	6.4	16	605
40	10 / 9/	20	6.7	1.0	2.0	2.5	38.4	257	18 9/3	53	10.1	3.0	3.5	4.0	34.6	372	38 / 27	10	5.5	6.9	17	629
4J E0	10 / 5/	20	7.2	2.0	2.2	2.0	27.4	257	10,040	55	11.0	2.0	27	4.2	22.7	202	20 2/1	4.J	5.7	7.2	10	651
50	19,434	20	7.2	2.0	2.5	2.0	37.4 26 E	200	10,007	50	11.4	3.Z	2.0	4.5	33.7 27 0	205	28 240	5.2	6.0	7.5	20	676
51	10,200	34	0.7	2.2	2.5	3.0	30.3	201	10,027	64	12.0	3.4	3.5	4.7	32.0	410	30,245	5.0	0.4	7.0	20	702
52	19,300	34 27	0.2	2.5	2.7	3.2	33.0	295	10,705	04 69	12.9	3.0 2.0	4.2	5.0	21.0	410	28 046	6.U	0.0	0.5	21	705
55	10,332	37	0.5	2.5	2.5	3.3	34.0	222	18,055	72	14.6	3.5	4.5	5.4	20.2	420	36,040	0.4 C 0	7.5	0.5	25	755
54	19,512	39	9.5	2.7	5.1	5.7	33.7	322	10,022	75	14.0	4.1	4.7	5.7	30.2	441	37,954	0.0	7.0	9.5	24	705
55	19,270	43	10.3	2.9	3.3	4.1	32.8	338	18,545	/8	15.0	4.4	5.1	6.1	29.3	458	37,814	7.3	8.4	10.2	20	796
56	19,224	46	11.1	3.1	3.6	4.4	31.9	353	18,461	83	16.8	4.7	5.4	6.6	28.4	4/6	37,685	7.9	9.0	10.9	28	829
57	19,174	49	12.0	3.4	3.9	4.7	30.9	370	18,372	89	17.9	5.1	5.8	7.0	27.5	494	37,547	8.5	9.7	11.7	30	864
58	19,121	53	12.9	3.7	4.2	5.1	30.0	388	18,277	95	19.2	5.4	6.2	7.5	26.7	513	37,398	9.1	10.4	12.6	32	901
59	19,063	58	14.0	4.0	4.6	5.5	29.1	409	18,175	102	20.6	5.8	6.7	8.1	25.8	532	37,238	9.8	11.2	13.6	35	941
60	19,000	63	15.2	4.3	4.9	6.0	28.2	429	18,065	110	22.1	6.3	7.2	8.7	25.0	553	37,065	10.6	12.1	14.7	37	982
61	18,932	68	16.5	4.7	5.4	6.5	27.3	451	17,947	118	23.8	6.7	1.1	9.3	24.1	5/4	36,879	11.4	13.1	15.8	40	1,025
62	18,858	74	18.0	5.1	5.8	7.1	26.4	4/5	17,820	127	25.6	7.2	8.3	10.0	23.3	596	30,078	12.3	14.1	17.1	44	1,070
63	18,777	81	19.5	5.5	6.3	7.7	25.5	498	17,684	130	27.5	7.8	8.9	10.8	22.5	618	36,461	13.3	15.2	18.5	47	1,116
64	18,689	88	21.3	6.0	6.9	8.4	24.6	525	17,537	147	29.6	8.4	9.6	11.6	21.7	642	36,226	14.4	16.5	20.0	51	1,167
65	18,593	96	23.2	6.6	7.5	9.1	23.8	551	17,379	158	31.9	9.0	10.3	12.5	20.9	665	35,972	15.6	17.9	21.6	55	1,216
66	18,489	105	25.3	7.2	8.2	9.9	22.9	580	17,208	1/1	34.4	9.7	11.1	13.5	20.1	690	35,697	16.9	19.4	23.4	60	1,270
6/	18,375	114	27.7	7.8	9.0	10.9	22.0	609	17,024	184	37.1	10.5	12.0	14.6	19.3	/15	35,399	18.3	21.0	25.4	65	1,324
68	18,250	125	30.3	8.6	9.8	11.9	21.2	641	16,826	198	39.9	11.3	13.0	15.7	18.5	/39	35,075	19.9	22.8	27.6	70	1,380
69	18,113	137	33.1	9.4	10.7	13.0	20.3	6/4	16,612	214	43.1	12.2	14.0	16.9	17.7	765	34,725	21.6	24.7	29.9	/6	1,438
70	17,963	150	36.3	10.3	11.8	14.2	19.5	707	16,381	231	46.5	13.2	15.1	18.3	17.0	/90	34,344	23.4	26.9	32.5	83	1,497
/1	17,799	164	39.8	11.3	12.9	15.6	18.7	743	16,132	249	50.2	14.2	16.3	19.7	16.2	815	33,930	25.5	29.2	35.3	90	1,558
72	17,619	180	43.6	12.4	14.2	17.1	17.9	//9	15,863	269	54.2	15.3	17.6	21.3	15.5	839	33,481	27.7	31.7	38.4	98	1,618
73	17,421	198	47.9	13.5	15.5	18.8	17.1	816	15,573	290	58.4	16.5	19.0	22.9	14.8	863	32,994	30.1	34.5	41.7	106	1,680
74	17,204	217	52.6	14.9	17.0	20.6	16.3	855	15,260	313	63.0	17.8	20.4	24.8	14.1	887	32,464	32.7	37.5	45.4	116	1,742
75	16,966	238	57.7	16.3	18.7	22.7	15.5	894	14,923	337	67.9	19.2	22.0	26.7	13.4	908	31,889	35.5	40.7	49.3	126	1,802
76	16,704	261	63.3	17.9	20.5	24.9	14.7	933	14,560	363	73.1	20.7	23.7	28.7	12.7	928	31,265	38.6	44.2	53.6	136	1,860
//	16,417	287	69.6	19.7	22.6	27.3	14.0	9/2	14,170	390	/8.6	22.3	25.5	30.9	12.0	946	30,587	41.9	48.1	58.2	148	1,918
/8	16,102	315	/6.3	21.6	24.7	30.0	13.2	1,010	13,751	419	84.5	23.9	27.4	33.2	11.4	961	29,853	45.5	52.1	63.1	161	1,9/1
79	15,757	346	83.7	23.7	27.1	32.9	12.5	1,048	13,301	450	90.6	25.6	29.4	35.6	10.8	974	29,058	49.3	56.5	68.4	1/4	2,022
80	15,378	3/9	91./	26.0	29.8	36.0	11.8	1,083	12,820	481	97.0	27.4	31.4	38.1	10.1	982	28,198	53.4	61.2	/4.1	189	2,066
81	14,963	415	100.4	28.4	32.6	39.4	11.1	1,118	12,306	514	103.5	29.3	33.6	40.7	9.5	98/	27,269	57.7	66.1	80.1	204	2,104
82	14,510	453	109.7	31.0	35.6	43.1	10.5	1,148	11,759	547	110.2	31.2	35.7	43.3	9.0	986	26,269	62.2	/1.3	86.4	220	2,134
83	14,016	494	119.7	33.9	38.8	47.0	9.8	1,1/4	11,1/9	580	117.0	33.1	37.9	45.9	8.4	981	25,195	67.0	/6./	92.9	237	2,155
84	13,478	538	130.2	36.9	42.2	51.1	9.2	1,196	10,565	614	123.6	35.0	40.1	48.6	7.9	9/1	24,043	/1.8	82.3	99.7	254	2,166
Total		6,271	1,519	430	493	596	17.1	26,043		8,940	1,801	510	584	707	16.3	29,421		940	1,077	1,304	3,320	55,464

Estimating the Quality of Life Reduction with Cigarette Smoking - No Intervention

- A UK study used a community-based sample ≥ 16 years of age of 14,117 to assess the effect of tobacco smoking on QoL.³⁹⁴ After adjusting for age, sex, alcohol use, physical activity, fruit and vegetable consumption, excess weight, ethnicity, marital status, educational attainment, and income, they found a utility of -0.031 (95% CI of -0.018 to -0.045) associated with light tobacco smoking (less than 10 cigarettes per day), -0.033 (95% CI of -0.019 to -0.047) for moderate tobacco smoking (10 to 19 cigarettes per day) and -0.062 (95% CI of -0.042 to -0.082) for heavy tobacco smoking (20 or more cigarettes per day). We used the upper and lower bounds of the 95% CI in the sensitivity analysis.
- We applied the relevant QoL reductions to current smokers in the cohort (starting at age 19) who were alive at a given age (i.e. current smokers less those who died in the previous year due to smoking-attributable causes).
- Based on these assumptions, 13,805 QALYs would be lost between the ages of 19 and 84 by those living with cigarette smoking, 6,602 in females and 7,202 in males (see Table 11).

³⁹⁴ Maheswaran H, Petrou S, Rees K et al. Estimating EQ-5D utility values for major health behavioural risk factors in England. *Journal of Epidemiology and Community Health*. 2013; 67(1): 172-80.

	Table 11: Estimated Quality-Adjusted Life Years Lost Attributable to Cigarette Smoking Between the Ages of 19 and 84																	
						Be	etwee	en the <i>i</i>	Ages o	of 19 an	id 84							
					li	n a Br	itish (Columbia	a Birth	Cohort	of 40,0	000						
				W	'ithout	t a Chi	d / Yo	uth Scree	ening Pro	ogram /	Brief In	iterve	ention					
			Fe	emales						Ма	ales				То	tal Po	pulat	ion
	Sm	lokers A	Alive	Smol	QALY ing Inte	's Lost		Sr	nokers Al	ive ncity	Smok	QAL QAL	Ys Lost		Smol	QAL dag lat	Ys Lost	
Age	Light	Mod	Heavy	Light	Mod	Heavy	Total	Light	Mod	Heavy	Light	Mod	Heavy	Total	Light	Mod	Heavy	Total
19	1,411	851	365	48	31	25	103	1,437	727	623	49	26	42	117	97	57	67	221
20	1,411	851	365	48	31	25	103	1,437	727	623	49	26	42	117	97	57	67 67	221
22	1,411	851	365	48	31	25	103	1,437	727	623	49	26	42	117	97	57	67	221
23	1,411	851	365	48	31	25	103	1,437	727	623	49	26	42	117	97	57	67	221
24	1,411	851	365	48	31 21	25	103	1,437	727	623	49	26	42	117	97	57	67 67	221
26	1,411	851	365	48	31	25	103	1,437	727	623	49	26	42	117	97	57	67	221
27	1,411	851	365	48	31	25	103	1,437	727	623	49	26	42	117	97	57	67	221
28	1,411	851	365	48	31	25 25	103	1,437	727	623	49	26	42	117	97	57	67 67	221
30	1,411	851	365	48 49	32	25 25	105	1,437	727	623	49 50	20	42	120	99	57	69	221
31	1,411	851	365	49	32	25	106	1,437	727	623	50	27	43	120	99	59	69	227
32	1,411	851	365	49 40	32	25 25	106	1,437	727	623	50	27	43	120	99	59 50	69 60	227
33	1,411	851	365	49	32	25	100	1,437	727	623	50	27	43	120	99	59	69	227
35	1,411	851	365	49	32	25	106	1,437	727	623	50	27	43	120	99	59	69	227
36	1,410	850 840	364	49 40	32	25 25	106	1,435	725	621	50	27	43	120	99	58	69 68	226
38	1,409	849 848	361	49 49	31	25 25	106	1,434	725	616	50	27	45 43	120	99	58	68	225
39	1,407	847	360	49	31	25	105	1,430	719	613	50	27	43	119	99	58	68	225
40	1,406	846	358	51	33	26 26	110	1,428	716	610	52	28	44	124	103	60	70 70	234
41	1,405	844 843	355	51	33	26 26	109	1,426	714	604	52 52	28 27	44 44	123	103	60 60	70	233
43	1,402	841	353	51	33	26	109	1,421	709	601	52	27	44	123	102	60	69	232
44	1,401	840	351	51	32	25	109	1,419	706	598	52	27	43	122	102	60	69 60	231
45	1,399	838 836	349 347	51	32 32	25 25	109	1,416	703	594 591	51	27	43 43	122	102	59	69 68	230
47	1,396	835	345	51	32	25	108	1,411	697	587	51	27	43	121	102	59	68	229
48	1,394	833	342	51	32	25	108	1,408	694	583	51	27	42	120	102	59	67	228
49 50	1,392	830 828	340 337	51	32 33	25 25	107	1,405	690 687	579 574	51	27	42 43	120	102	59 61	67 69	227
51	1,388	826	334	52	33	25	111	1,398	683	570	53	27	43	123	105	61	68	234
52	1,386	823	331	52	33	25	111	1,395	679	565	53	27	43	123	105	60	68	233
53	1,383	820 817	327	52 52	33	25 24	110	1,391	674 670	559	53	27	42 42	122	105	60 60	66	232
55	1,378	814	319	52	33	24	109	1,382	664	547	52	27	41	120	104	59	66	229
56	1,375	810 806	315	52	33	24 22	108	1,378	659	541	52	27	41	119	104	59 50	65	228
58	1,371	808	305	52	32 32	23 23	108	1,373	647	534 526	52	26	40 40	119	104	59 58	64 63	225
59	1,364	797	300	52	32	23	106	1,361	640	518	51	26	39	116	103	58	62	223
60	1,359	792	294	53	33	23	108	1,355	633	509	53	26	40	118	105	59	62	226
61	1,355	787 781	287	53 52	33 32	22	107	1,348	625	490	52 52	26 25	39 38	117	105	58 58	60	224
63	1,344	775	272	52	32	21	105	1,333	608	479	52	25	37	114	104	57	58	219
64 67	1,338	768	264	52	32	20	104	1,325	599	468	51	25 24	36 25	112	103	56	57	217
66	1,324	752	235	52	31	20 19	105	1,316	500	442	51	24 24	35 34	109	105	55	53	214
67	1,316	743	234	51	31	18	100	1,296	565	427	50	23	33	107	101	54	51	207
68	1,308	733	222	51	30	17 1 <i>c</i>	98 06	1,284	552	411	50	23	32	105	101	53	49 47	203
70	1,298 1,288	723	209 195	50	30 31	16	96 100	1,272	538 523	394 376	49 52	22	31 31	102	100	52 54	47	205
71	1,277	698	179	52	30	15	97	1,245	507	356	51	22	29	102	103	53	44	200
72	1,265	684	162	52	30	13	95	1,229	489	335	50	21	27 26	99 06	102	51	41 27	194
73	1,231	651	143 123	51	29 28	12	92 89	1,213	470	287	50 49	20 20	26 24	90 92	101	50 48	37 34	181
75	1,220	633	100	50	28	8	86	1,176	428	261	48	19	21	88	98	46	30	174
76	1,202	612	75	49	27	6	82	1,155	404	232	47	18 17	19 16	84	97	44	25	166
78	1,182 1,161	590 565	48 18	48 48	20 25	4 1	78 74	1,133	379 351	201 168	46 45	17 15	16 14	79 74	95 93	42 40	20 15	148
79	1,137	538	- 1	47	23		70	1,083	322	132	44	14	11	69	91	37	11	139
80	1,111	508		49	24		73	1,056	290	94	47	14 12	8	69 67	96	38	8	143 122
81	1,083 1,052	475 440		48 47	23 21		71 68	1,027 995	257 221	54 10	46 44	12 10	5 1	ьз 56	94 91	35 31	5 1	133
83	1,018	401		45	19		64	962	183	-	43	9		51	88	28		116
84	981	359		44	17		61	927	143		41	7		48	85	24		109
Total				3.297	2.000	1.306	6.602				3.289	1.582	2.332	7.202	6.586	3.581	3.638	13.805

Estimating the Number of Deaths and QALYs Lost Attributable to e-Cigarette Use - No Intervention

- Despite the evolving evidence linking e-cigarette use to a variety of harms (see *Harms Associated with E-Cigarette Use in Children and Youth* above), little evidence currently exists quantifying the harms of e-cigarettes in terms of quality-adjusted life expectancy.
- To begin to address the gap in evidence quantifying the harms of e-cigarettes in terms of quality-adjusted life expectancy, Nutt and colleagues gathered a group of experts in 2013 and used a multi-criteria decision analysis approach in a 2-day facilitated workshop to estimate the harms of a variety of nicotine-containing products, including e-cigarettes. While not explicitly stated, it appears that the group of experts consisted of 11 authors of the subsequent publication.³⁹⁵ Using this process, they determined that e-cigarettes where just 5% as harmful as smoking conventional cigarettes.³⁹⁶
- In 2020, Allcot and Rafkin surveyed 137 public health experts whose responses indicated that e-cigarettes where 37% as harmful as smoking conventional cigarettes, when considered in terms of quality-adjusted life expectancy.³⁹⁷ There was substantial disagreement between experts, with the interquartile range of beliefs about relative harms ranging from 10% to 60%. When the experts were asked why they disagreed with the prior assessment by Nutt et al they gave three main explanations: "they disagree with how researchers interpreted the evidence available at the time, new research evidence is becoming available, and e-cigarette products have changed."398 In addition, three of the authors of the Nutt et al study had financial ties with e-cigarette producers.³⁹⁹ In particular, the consultant who facilitated the group process for the Nutt et al paper had financial ties with British American Tobacco and a number of other companies that produce smoking cessation products.⁴⁰⁰ Indeed, the editors of the publishing journal took the extraordinary step of justifying why they accepted the paper for publication despite the consultant's financial ties.⁴⁰¹ By comparison, the research by Allcot and Rafkin explicitly excluded "people with tobacco industry affiliations." 402
- Based on the available evidence, we have assumed that e-cigarettes use is 37% as harmful as smoking conventional cigarettes, when considered in terms of quality-adjusted life expectancy. This estimate was varied from 10% to 60% in the sensitivity analysis.
- Based on this assumption, e-cigarette use in the birth cohort would result in 1,695 premature deaths and a loss of 31,943 QALYs (see Table 12).

³⁹⁵ Nutt D, Phillips L, Balfour D et al. Estimating the harms of nicotine-containing products using the MCDA approach. *European Addiction Research*. 2014; 20: 218-25.

³⁹⁶ Ibid.

³⁹⁷ Allcott H, Rafkin C. *Optimal Regulation of e-Cigarettes: Theory and Evidence*. National Bureau of Economic Research Working Paper Series, August 2021. Available online at

https://www.nber.org/system/files/working_papers/w27000/w27000.pdf. Accessed November 2022. ³⁹⁸ Ibid.

³⁹⁹ Nutt D, Phillips L, Balfour D et al. Estimating the harms of nicotine-containing products using the MCDA approach. *European Addiction Research*. 2014; 20: 218-25.

⁴⁰⁰ Ibid.

⁴⁰¹ Ibid.

⁴⁰² Allcott H, Rafkin C. *Optimal Regulation of e-Cigarettes: Theory and Evidence*. National Bureau of Economic Research Working Paper Series, August 2021. Available online at

https://www.nber.org/system/files/working_papers/w27000/w27000.pdf. Accessed November 2022

Table 12: Estimated Deaths and QALYs Lost Due to e-Cigarette Use Between the Ages of 19 and 84																			
							Betw	een t	he Ag	es of	19 ai	nd 8	4						
						In a	British	Colu	mbia E	Birth Co	ohort	of 4	0,000)					
					Witho	out a C	Child / Y	outh S	creeni	ng Prog	gram /	' Brief	Inter	ventior					
			Fe	males	5			-		٨	1ales			_		Total	Popul	ation	
Age	c-(Alive	Cig Deaths	Alive	Deaths	e-Cig LE	LYL	OALYs	C- Alive	Cig Deaths	Alive	Deaths	e-Cig LE	LYL	OALYs	e-C Alive	Cig Deaths	LYL	OALYs	Total OALYs
19	1,274	0.0	8,572	0.0	66.4	0	257	1,619	0.0	8,385	0.0	61.4	0	225	16,957	0	0	482	482
20	1,545	0.0	7,363	0.0	65.4	0	182	1,852	0.0	7,353	0.0	60.5	0	172	14,716	0	0	354	354
21	1,815	0.0	6,154	0.0	64.4	0	130	2,086	0.0	6,321	0.0	59.5	0	131	12,475	0	0	261	261
22	2,086	0.0	4,945	0.0	63.5 62.5	0	91 61	2,320	0.0	5,288 4 256	0.0	58.6 57.7	0	99 72	10,234	0	0	190 133	190 133
24	2,627	0.0	2,527	0.0	61.5	0	37	2,788	0.0	3,224	0.0	56.7	0	50	5,751	0	0	87	87
25	2,627	0.0	2,527	0.0	60.5	0	37	2,788	0.0	3,224	0.0	55.8	0	50	5,751	0	0	87	87
26	2,627	0.0	2,527	0.0	59.6	0	37	2,788	0.0	3,224	0.0	54.8	0	50	5,751	0	0	87	87
27	2,627	0.0	2,527	0.0	58.0 57.6	0	37	2,788	0.0	3,224	0.0	53.9 53.0	0	50 50	5,751	0	0	87 87	87 87
29	2,627	0.0	2,527	0.0	56.6	0	37	2,788	0.0	3,224	0.0	52.1	0	50	5,751	0	0	87	87
30	2,627	0.0	2,527	0.0	55.7	0	38	2,788	0.0	3,224	0.0	51.1	0	52	5,751	0	0	89	89
31	2,627	0.0	2,527	0.0	54.7	0	38	2,788	0.0	3,224	0.0	50.2	0	52	5,751	0	0	89	89
32	2,627	0.0	2,527	0.0	53.7 52.8	0	38 38	2,788	0.0	3,224	0.0	49.3 48.4	0	52 52	5,751	0	0	89 89	89 89
34	2,627	0.0	2,527	0.0	51.8	0	38	2,788	0.0	3,224	0.0	47.4	0	52	5,751	0	0	89	89
35	2,627	0.0	2,527	0.0	50.8	0	38	2,788	0.0	3,224	0.0	46.5	0	52	5,751	0	0	89	89
36	2,623	3.1	2,526	1.1	49.9	56	38	2,781	6.3	3,221	2.7	45.6	123	51	5,747	4	178	89	268
37	2,620	3.3	2,525	1.2	48.9 47 9	57	38	2,775	6.4 6.6	3,219	2.8	44.7 43.7	123	51	5,743	4	181	89 89	270
39	2,613	3.4	2,524	1.2	47.0	61	38	2,761	6.9	3,210	3.0	42.8	125	51	5,735	4	184	89	273
40	2,609	3.8	2,521	1.3	46.0	62	39	2,754	7.1	3,210	3.1	41.9	129	53	5,731	4	191	93	283
41	2,605	4.0	2,520	1.4	45.1	64	39	2,747	7.4	3,206	3.2	41.0	130	53	5,726	5	194	92	287
42	2,601	4.3	2,518	1.5	44.1 43.1	67 70	39	2,739	7.7 8.0	3,203	3.3	40.1 30.1	133 136	53 53	5,721	5	200	92 92	293
43	2,592	4.5	2,510	1.0	42.2	73	39	2,723	8.3	3,196	3.6	38.2	130	53	5,710	5	203	92	303
45	2,587	5.1	2,513	1.8	41.2	76	39	2,714	8.7	3,192	3.8	37.3	141	53	5,705	6	217	92	309
46	2,581	5.5	2,511	2.0	40.3	79	39	2,705	9.2	3,188	4.0	36.4	146	53	5,699	6	225	92	317
47	2,575	5.9	2,509	2.1	39.3	83	39	2,695	9.6	3,184	4.2	35.5	149	53	5,693	6	232	92	324
48 49	2,569	6.7	2,500	2.5	37.4	80 90	39	2,685	10.1	3,175	4.4 4.7	33.7	155	53	5,679	7	239 249	92 91	341
50	2,555	7.2	2,501	2.6	36.5	95	40	2,663	11.4	3,170	5.0	32.8	164	55	5,671	8	258	95	353
51	2,548	7.7	2,499	2.8	35.6	99	40	2,651	12.0	3,165	5.3	31.9	169	55	5,663	8	269	95	363
52	2,539	8.2	2,496	3.0	34.6	103	40	2,638	12.9	3,159	5.7 6 1	31.0	176	54 54	5,655	9	280	95	374
54	2,530	9.5	2,492	3.5	32.8	109	40	2,610	14.6	3,135	6.5	29.3	190	54	5,635	10	304	94	398
55	2,511	10.3	2,485	3.8	31.9	120	40	2,594	15.6	3,139	7.0	28.4	198	54	5,625	11	318	94	412
56	2,499	11.1	2,481	4.1	30.9	126	40	2,577	16.8	3,132	7.5	27.5	207	54	5,613	12	332	94	426
57	2,488	12.0	2,477	4.4	30.0	132	40	2,559	17.9	3,124	8.1	26.7	215	54	5,601	12	347	93	440
59	2,475	12.9	2,472	5.2	29.1	146	39	2,540	20.6	3,115	9.3	25.0	233	53	5,587	15	380	93	430
60	2,445	15.2	2,461	5.6	27.3	154	40	2,497	22.1	3,096	10.1	24.1	244	54	5,557	16	398	95	492
61	2,429	16.5	2,455	6.2	26.4	162	40	2,474	23.8	3,085	10.9	23.3	254	54	5,540	17	417	94	511
62	2,411	18.0	2,448	6.7 7 2	25.5	172	40	2,448	25.6	3,073	11.8	22.5	265	54	5,521	19 20	437	94	530
64	2,351	21.3	2,433	8.0	24.0 23.8	191	40	2,391	29.6	3,046	13.9	20.9	289	53	5,479	20	480	93	573
65	2,347	23.2	2,424	8.8	22.9	202	39	2,359	31.9	3,031	15.0	20.1	302	53	5,455	24	503	92	595
66	2,321	25.3	2,414	9.7	22.0	213	39	2,325	34.4	3,015	16.3	19.3	315	52	5,429	26	528	91	620
67 68	2,294	27.7	2,404	10.6 11 7	21.2	225	39	2,288	37.1 39.9	2,997	17.8 19.4	18.5 17 7	329	52 51	5,401	28 31	555 582	90 90	645 672
69	2,230	33.1	2,379	13.0	19.5	253	38	2,205	43.1	2,957	21.1	17.0	359	51	5,336	34	611	89	700
70	2,194	36.3	2,365	14.3	18.7	267	40	2,158	46.5	2,934	23.1	16.2	375	53	5,298	37	642	93	735
71	2,154	39.8	2,349	15.9	17.9	283	39	2,108	50.2	2,908	25.3	15.5	391	52	5,257	41	674	91	766
72	2,111	43.6 47.9	2,331	17.6 19.6	17.1	300	39	2,054	54.2 58.4	2,881	27.7	14.8 14.1	408 427	51	5,212	45 50	709	90 89	799 834
74	2,005	52.6	2,290	21.8	15.5	338	38	1,932	63.0	2,817	33.3	13.4	445	50	5,102	55	783	87	870
75	1,953	57.7	2,266	24.3	14.7	358	37	1,864	67.9	2,780	36.6	12.7	465	49	5,046	61	823	85	908
76	1,889	63.3	2,238	27.2	14.0	380	36	1,791	73.1	2,740	40.3	12.0	485	48	4,979	68	865	83	948
// 78	1,820	69.6 76 3	2,208 2 174	30.5 34.2	13.2 12 5	404 429	35 34	1,/13	78.6 84 5	2,696 2,646	44.5 49 2	11.4 10.8	506 529	46 45	4,904 4,820	/5 83	910 958	81 79	991 1 036
79	1,660	83.7	2,135	38.6	11.8	456	33	1,538	90.6	2,592	54.5	10.1	552	43	4,727	93	1,008	77	1,084
80	1,568	91.7	2,091	43.7	11.1	486	36	1,441	97.0	2,531	60.5	9.5	576	45	4,623	104	1,062	81	1,144
81	1,468	100.4	2,042	49.6	10.5	518	36	1,337	103.5	2,464	67.3	9.0	602	43	4,506	117	1,121	79	1,200
82 83	1,358 1.238	109.7 119.7	1,985 1,921	56.5 64 7	9.8 9.2	554 594	3/ 37	1,227	110.2 117 0	2,389	75.2 84 २	გ.4 7 ዓ	661	40 40	4,374 4 225	132 149	1,185 1,256	77 76	1,261 1,332
84	1,108	130.2	1,846	74.8	8.6	641	37	986	123.6	2,210	95.0	7.3	696	40	4,056	170	1,337	77	1,414
Total		1,519		681	15.4	10,484	3,053		1,801		1,014	14.4	14,600	3,806		1,695	25,084	6,859	31,943
							<u> </u>							· ·				-	

Annual Visits to a General Practitioner

- As noted earlier, a key variable in the effectiveness of screening and brief intervention is the proportion of children and youth that make contact with a primary care provider.
- Using data provided by the BC Ministry of Health, Health Sector Information, Analysis and Reporting Division⁴⁰³ we were able to generate BC-specific rates of primary care visits and average visits per year for the fiscal years ending in 2012/13 to 2016/17, in total and by sex, as shown in Table 13 below.
- For the five years considered, the average proportion of children and youth ages 10-19 visiting a GP is 70%, and the average number of GP visits per adolescent is 2.07 per year (see Table 13). The proportion of males visiting a GP was 65.4% (see Table 13a) and for females it was 75.0% (see Table 13b). The average number of visits per male in the population was 1.75 and for females was 2.42.

Table 13: General Practitioner Visits by Children and Youth

Р	opulation in	Each Age Gro	oup	
3 2013/14	2014/15	2015/16	2016/17	Total
0 231,544	230,178	230,177	232,010	1,158,689
2 282,214	279,997	276,909	272,677	1,396,279
2 513,758	510,175	507,086	504,687	2,554,968
Number	of Unique In	dividuals wi	th GP Visit	
2 160,912	158,653	160,260	159,826	802,983
1 200,410	196,629	192,566	189,547	984,973
3 361,322	355,282	352,826	349,373	1,787,956
Propo	rtion of Indiv	iduals with a	GP Visit	
69.5%	68.9%	69.6%	68.9%	69.3%
71.0%	70.2%	69.5%	69.5%	70.5%
70.3%	69.6%	69.6%	69.2%	70.0%
	Number	of GP Visits		
1 422,188	412,182	413,411	407,442	2,085,104
6 659,038	641,316	619,790	601,925	3,203,875
87 1,081,226	1,053,498	1,033,201	1,009,367	5,288,979
GP Visit	s per Individ	ual in Total P	opulation	
1.82	1.79	1.80	1.76	1.80
2.34	2.29	2.24	2.21	2.29
2.10	2.06	2.04	2.00	2.07
	P 3 2013/14 0 231,544 2 282,214 2 513,758 Number 2 160,912 1 200,410 3 361,322 Propor 69.5% 71.0% 5 71.0% 5 71.0% 6 659,038 87 1,081,226 GP Visit 1.82 2.34 2.10	Population in 3 2013/14 2014/15 0 231,544 230,178 2 282,214 279,997 2 513,758 510,175 Number of Unique In 2 2 160,912 158,653 1 200,410 196,629 3 361,322 355,282 Proportion of Indiv 69.5% 68.9% 0 71.0% 70.2% 0 70.3% 69.6% Number of Number of 1 422,188 412,182 6 659,038 641,316 87 1,081,226 1,053,498 GP Visits per Individ 1.82 1.79 2.34 2.29 2.10 2.06	Population in Each Age Gro 3 2013/14 2014/15 2015/16 0 231,544 230,178 230,177 2 282,214 279,997 276,909 2 513,758 510,175 507,086 Number of Unique Individuals wi 2 160,912 158,653 160,260 1 200,410 196,629 192,566 3 3 361,322 355,282 352,826 Proportion of Individuals with a 69.5% 68.9% 69.6% 71.0% 70.2% 69.5% 69.6% 70.3% 69.6% 69.6% 70.3% 1 422,188 412,182 413,411 6 659,038 641,316 619,790 87 1,081,226 1,053,498 1,033,201 GP Visits per Individual in Total P 1.82 1.79 1.80 2.34 2.29 2.24 2.10 2.06 2.04	Population in Each Age Group 3 2013/14 2014/15 2015/16 2016/17 0 231,544 230,178 230,177 232,010 2 282,214 279,997 276,909 272,677 2 513,758 510,175 507,086 504,687 Number of Unique Individuals with GP Visit 2 160,912 158,653 160,260 159,826 1 200,410 196,629 192,566 189,547 3 361,322 355,282 352,826 349,373 Proportion of Individuals with a GP Visit 5 69.5% 69.5% 69.5% 6 69.5% 69.6% 68.9% 71.0% 70.2% 69.5% 69.5% 70.3% 69.6% 69.2% Mumber of GP Visits 1 422,188 412,182 413,411 407,442 6 659,038 641,316 619,790 601,925 87 1,081,226 1,053,498 <td< td=""></td<>

⁴⁰³ Aciemme (Sam) Ospan, Senior Manager, Lifetime Prevention Schedule, Healthy Living and Health Promotion Branch, BC Ministry of Health. January 30, 2019. Personal communication.

Tab	Table 13a: General Practitioner Visits by Children and Youth British Columbia 2012/12 to 2015/17												
		British Col	umbia, 2012	2/13 to 2016	5/17								
			Males										
Age		P	opulation in	Each Age Gro	oup								
Group	2012/13	2013/14	2014/15	2015/16	2016/17	Total							
10 - 14	121,031	119,378	118,720	118,572	119,586	597,287							
15 - 19	149,279	147,563	145,417	143,117	140,451	725,827							
Total	270,310	266,941	264,137	261,689	260,037	1,323,114							
		Numb	er of Unique	Males with	GP Visit								
10 - 14	82,970	81,960	80,756	81,067	80,862	407,615							
15 - 19	95,992	93,224	91,170	89,118	87,596	457,100							
Total	178,962	175,184	171,926	170,185	168,458	864,715							
		Prop	ortion of Ma	ales with a G	P Visit								
10 - 14	68.6%	68.7%	68.0%	68.4%	67.6%	68.2%							
15 - 19	64.3%	63.2%	62.7%	62.3%	62.4%	63.0%							
Total	66.2%	65.6%	65.1%	65.0%	64.8%	65.4%							
			Number	of GP Visits									
10 - 14	215,841	211,444	206,909	206,013	202,386	1,042,593							
15 - 19	270,303	259,637	253,874	244,381	238,257	1,266,452							
Total	486,144	471,081	460,783	450,394	440,643	2,309,045							
		GP Vis	sits per Male	in Total Pop	oulation								
10 - 14	1.78	1.77	1.74	1.74	1.69	1.75							
15 - 19	1.81	1.76	1.75	1.71	1.70	1.74							
Total	1.80	1.76	1.74	1.72	1.69	1.75							

Table 13b: General Practitioner Visits by Children and YouthBritish Columbia, 2012/13 to 2016/17

4		P	Female	S Fach Ann Cu		
Age		P	opulation in	Each Age Gro	oup	
Group	2012/13	2013/14	2014/15	2015/16	2016/17	Total
10 - 14	113,749	112,166	111,458	111,605	112,424	561,402
15 - 19	135,203	134,651	134,580	133,792	132,226	670,452
Total	248,952	246,817	246,038	245,397	244,650	1,231,854
		Numbe	r of Unique I	Females with	n GP Visit	
10 - 14	80,381	78,955	77,909	79,202	78,985	395,432
15 - 19	109,865	107,210	105,496	103,488	101,995	528,054
Total	190,246	186,165	183,405	182,690	180,980	923,486
		Propo	ortion of Ferr	ales with a (GP Visit	
10 - 14	70.7%	70.4%	69.9%	71.0%	70.3%	70.4%
15 - 19	81.3%	79.6%	78.4%	77.3%	77.1%	78.8%
Total	76.4%	75.4%	74.5%	74.4%	74.0%	75.0%
			Number	of GP Visits		
10 - 14	214,033	210,738	205,270	207,393	205,052	1,042,486
15 - 19	411,487	399,386	387,411	375,393	363,660	1,937,337
Total	625,520	610,124	592,681	582,786	568,712	2,979,823
		GP Visi	ts per Femal	e in Total Po	pulation	
10 - 14	1.88	1.88	1.84	1.86	1.82	1.86
15 - 19	3.04	2.97	2.88	2.81	2.75	2.89
Total	2.51	2.47	2.41	2.37	2.32	2.42

Source: BC Ministry of Health, Health Sector Information, Analysis and Reporting Division Calculations by H. Krueger & Associates, Inc.

Effectiveness of the Intervention(s)

- The USPSTF found that behavioural interventions led to an 18% (95% CI of 8% to 27%) **reduction in smoking initiation** in adolescents, based on a meta-analysis of 13 studies (RR 0.82, 95% CI of 0.73 0.92).⁴⁰⁴
- This effectiveness is almost identical to that observed by the CTFPHC who found that interventions aimed at reducing smoking initiation among non-smoking children and adolescents had an effectiveness of 18% (RR 0.82, 95% CI of 0.72 to 0.94).⁴⁰⁵
- The USPSTF found that behavioural interventions did not lead to an **increase in smoking cessation** in adolescents, based on a **meta-analysis of 9 studies** (RR 0.97, 95% CI of 0.93 1.01).⁴⁰⁶
- The CTFPHC, on the other hand, found that behavioural interventions aimed at smoking cessation among children and adolescents have an effectiveness of 34% (RR 1.34, 95% CI of 1.05 to 1.69), based on a **meta-analysis of 3 randomized controlled trials** (RCTs).⁴⁰⁷
- A significant effect was observed in 2 of the 3 RCTs included by the CTFPHC. In the study by Hollis et al, the interventions consisted of an individually tailored intervention based on the smoking status and stage of change of the individual. It included a 30-second clinician advice message, a 10-minute interactive computer program, a 5-minute motivational interview, and up to two 10-minute telephone or in person booster sessions.⁴⁰⁸ In the study by Pbert and colleagues, the intervention consisted of brief counselling by the paediatric provider followed by one visit and four telephone calls by older peer counsellors (aged 21 to 25 years).⁴⁰⁹
- Based on a limited number of studies with small sample sizes, the USPSTF found no beneficial intervention effect associated with medication on the likelihood of smoking cessation in adolescents.⁴¹⁰
- For modelling purposes we assumed an 18% (95% CI of 8% to 27%) reduction in smoking initiation and a 34% (95% CI of 5% to 69%) increase in smoking cessation in children and youth associated with screening and a behavioural intervention. We used the upper and lower bounds of the 95% CI in the sensitivity analysis.

⁴⁰⁴ Selph S, Patnode C, Bailey S et al. Primary care-relevant interventions for tobacco and nicotine use prevention and cessation in children and adolescents: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2020; 323(16): 1599-608.

⁴⁰⁵ Canadian Task Force on Preventive Health Care. Recommendations on behavioural interventions for the prevention and treatment of smoking among school-aged children and youth. *Canadian Medical Association Journal*. 2017; 189(8): e310-16.

⁴⁰⁶ Selph S, Patnode C, Bailey S et al. Primary care-relevant interventions for tobacco and nicotine use prevention and cessation in children and adolescents: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2020; 323(16): 1599-608.

⁴⁰⁷ Canadian Task Force on Preventive Health Care. Recommendations on behavioural interventions for the prevention and treatment of smoking among school-aged children and youth. *Canadian Medical Association Journal*. 2017; 189(8): e310-16.

⁴⁰⁸ Hollis J, Polen M, Whitlock E et al. Teen Reach: Outcomes from a randomized, controlled trial of a tobacco reduction program for teens seen in primary medical care. *Pediatrics*. 2005; 115(4): 981-9.

⁴⁰⁹ Pberrt L, Flint A, Fletcher K et al. Effect of a pediatric-based smoking prevention and cessation intervention for adolescents: A randomized, controlled trial. *Pediatrics*. 2008; 121(4): e738-47.

⁴¹⁰ Selph S, Patnode C, Bailey S et al. Primary care-relevant interventions for tobacco and nicotine use prevention and cessation in children and adolescents: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2020; 323(16): 1599-608.

Estimating the Prevalence of Cigarette Smoking and E-Cigarette Use – With Intervention

Based on the above assumptions, an intervention in which all screened children / youth ages 5 – 17 would receive a brief intervention re: cigarette smoking / e-cigarette use initiation and 45% of screened cigarette smokers and 67% of screened e-cigarette users receive a brief cessation intervention every two years would reduce the number of current smokers at age 24 in the birth cohort from 5,414 (see Table 7) to 4,316 (see Table 14), a reduction of 1,099 (20.3%). The number of e-cigarette users at age 24 would also be reduced from 5,751 (see Table 7) to 4,510 (see Table 14), a reduction of 1,241 (21.6%).

Table 14: Estimated Prevalence of Cigarette Smoking and E-Cigarette Use

Between the Ages of 8 and 24 In a British Columbia Birth Cohort of 40,000 With a Child / Youth Screening Program / Brief Intervention

			Ferr	nales						I	Males						Total	Popula	tion		
		No l	nterven	tion					No In	tervent	tion					No I	nterven	tion			
		(Table 7)	With	Interve	ntion		(1	Table 7)		With I	nterve	ntion		(Table 7)	With I	nterve	ntion
			e-	Cig		e-(Cig			e-(Cig		e-(Cig			e-C	Cig		e-	Cig
Age	Pop.	Cig	Ехр	Est	Cig	Exp	Est	Pop.	Cig	Exp	Est	Cig	Ехр	Est	Pop.	Cig	Exp	Est	Cig	Ехр	Est
8	19,918	29			25			19,907	46			40			39,824	75			65		
9	19,917	44			38			19,906	69			59			39,822	113			97		
10	19,915	66			56			19,904	104			89			39,820	170			145		
11	19,914	88			75			19,903	138			119			39,817	226			194		
12	19,913	147			125			19,902	230			198			39,815	377			323		
13	19,911	249	2,708	438	213	2,120	343	19,900	391	2,448	537	336	1,932	424	39,812	641	5,156	975	549	4,052	767
14	19,910	388	3,394	791	332	2,658	620	19,898	610	3,149	1,094	524	2,485	863	39,808	999	6,543	1,886	856	5,142	1,483
15	19,907	535	4,081	1,145	455	3,176	886	19,896	840	3,850	1,651	724	3,049	1,312	39,803	1,375	7,930	2,796	1,178	6,225	2,198
16	19,904	660	4,767	1,498	559	3,694	1,153	19,891	1,036	4,550	2,208	894	3,613	1,760	39,795	1,696	9,318	3,706	1,452	7,307	2,913
17	19,900	733	5,454	1,851	620	4,212	1,420	19,885	1,151	5,251	2,765	994	4,177	2,208	39,784	1,884	10,705	4,616	1,614	8,389	3,628
18	19,894	1,004	6,893	2,888	846	5,299	2,203	19,876	1,385	5,104	4,313	1,197	4,058	3,454	39,770	2,388	11,997	7,202	2,043	9,357	5,657
19	19,888	1,274	5,866	2,706	1,047	4,510	2,064	19,864	1,619	4,343	4,042	1,397	3,453	3,236	39,752	2,893	10,209	6,748	2,444	7,963	5,300
20	19,881	1,545	4,839	2,524	1,247	3,720	1,925	19,851	1,852	3,583	3,770	1,597	2,849	3,019	39,732	3,397	8,422	6,294	2,844	6,569	4,944
21	19,874	1,815	3,812	2,342	1,447	2,930	1,786	19,835	2,086	2,822	3,498	1,798	2,244	2,801	39,709	3,901	6,634	5,841	3,245	5,174	4,588
22	19,867	2,086	2,785	2,160	1,648	2,141	1,648	19,817	2,320	2,062	3,226	1,998	1,639	2,584	39,684	4,406	4,847	5,387	3,646	3,780	4,231
23	19,859	2,356	1,758	1,978	1,848	1,351	1,509	19,796	2,554	1,301	2,955	2,198	1,035	2,366	39,656	4,910	3,059	4,933	4,046	2,386	3,875
24	19,851	2,627	731	1,796	2,048	562	1,370	19,775	2,788	541	2,683	2,267	430	2,148	39,626	5,414	1,272	4,479	4,316	992	3,518

• Figure 3 provides a visual representation of the modelled transitions between conventional and e-cigarette use between the ages of 13 and 24 with a child and youth screening program and brief intervention.

Estimating the Number of Deaths and Life Years Lost Attributable to Cigarette Smoking – With Intervention

Based on the above assumptions, an intervention in which all screened children / youth ages 5 – 17 would receive a brief intervention re: cigarette smoking / e-cigarette use initiation and 45% of screened cigarette smokers and 67% of screened e-cigarette users receive a brief cessation intervention every two years would reduce the number of deaths and life years lost attributable to cigarette smoking between the ages of 36 and 84 from 3,320 / 55,464 (see Table 10) to 2,649 / 44,239 (see Table 15), a reduction of 671 deaths (20.2%) and 11,225 life years lost (20.2%).

	Table 15: Estimated Deaths and Life Years Lost Attributable to Cigarette Smoking Between the Ages of 25 and 84																					
								Be	etweer	n the A	Ages o	f 35 a	and 84	ļ								
								In a Br	itish Co	lumbia	Birth	Cohor	t of 40	,000								
							Wit	h a Child	/ Youth	Screeni	ng Prog	ram /	BriefIn	terven	tion							
			Fem	nale							<u> </u>	М	ale					7	otal Pop	oulatio	n	
				Deaths								Deaths						Death	Attributa	ble to Sr	noking	
۸ge	Dom	In Cohort	Att to	By Sn	noking Int Moderate	ensity	LYL/ Death		Don	In Cohort	Att to	By Sm	noking Int Moderate	ensity	LYL/ Death	IVI	Don	Light	Moderate	Heavy	Total	IVI
35	19.749	CONOIL	SHIOKINg	LIGHT	Woderate	. Tieavy	Death		19.505	CONOIL	SHIOKINg	LIGHT	viouerate	Tiedvy	Death	LIL	39.254	LIGIT	Woderate	Tiedvy	Total	
36	19,736	13	2.5	0.7	0.8	1.0	50.8	125	19,474	31	5.1	1.4	1.7	2.0	46.5	238	39,210	2.1	2.5	3.0	8	363
37	19,722	14	2.6	0.7	0.8	1.0	49.9	128	19,442	32	5.2	1.5	1.7	2.1	45.6	239	39,164	2.2	2.5	3.1	8	367
38	19,708	14	2.7	0.8	0.9	1.1	48.9	131	19,409	33	5.4	1.5	1.8	2.1	44.7	242	39,117	2.3	2.6	3.2	8	373
39 40	19,693	15 16	2.8	0.8	0.9	1.1	47.9 47.0	136	19,375	34 35	5.6	1.6	1.8	2.2	43.7 42.8	245	39,068	2.4	2.7	3.3	8 9	381
40	19,661	16	3.1	0.9	1.0	1.2	46.0	143	19,303	37	6.0	1.7	1.9	2.4	41.9	251	38,964	2.6	3.0	3.6	9	394
42	19,643	18	3.3	0.9	1.1	1.3	45.1	150	19,264	38	6.3	1.8	2.0	2.5	41.0	257	38,908	2.7	3.1	3.8	10	406
43	19,625	19	3.5	1.0	1.1	1.4	44.1	155	19,225	40	6.5	1.8	2.1	2.6	40.1	261	38,849	2.8	3.3	3.9	10	416
44	19,605	20	3.7	1.1	1.2	1.5	43.1	161	19,183	41	6.8 7 1	1.9	2.2	2.7	39.1	266	38,788	3.0	3.4	4.1	11	427
45 46	19,561	21	4.0	1.1	1.5	1.0	42.2	176	19,140	45 46	7.5	2.0	2.5	2.0	37.3	271	38.656	3.3	3.8	4.4 4.6	12	459
47	19,537	24	4.6	1.3	1.5	1.8	40.3	184	19,047	48	7.8	2.2	2.5	3.1	36.4	285	38,584	3.5	4.0	4.9	12	469
48	19,511	26	4.9	1.4	1.6	1.9	39.3	192	18,996	50	8.2	2.3	2.7	3.2	35.5	292	38,508	3.7	4.2	5.1	13	484
49	19,484	28	5.2	1.5	1.7	2.0	38.4	200	18,943	53	8.8	2.5	2.8	3.4	34.6	303	38,427	4.0	4.5	5.5	14	503
50 51	19,454	30	5.6	1.6	1.8	2.2	37.4	209	18,887	56 60	9.2	2.6	3.0	3.6	33.7	312	38,341	4.2	4.8 5 1	5.8 6.2	15 16	521
52	19,422	32	6.4	1.7	2.1	2.4	35.6	219	18,763	64	10.5	3.0	3.4	4.1	31.9	334	38,151	4.5	5.5	6.6	10	562
53	19,352	37	6.9	2.0	2.2	2.7	34.6	239	18,695	68	11.2	3.2	3.6	4.4	31.0	347	38,046	5.1	5.9	7.1	18	586
54	19,312	39	7.4	2.1	2.4	2.9	33.7	251	18,622	73	11.9	3.4	3.9	4.7	30.2	359	37,934	5.5	6.3	7.6	19	610
55	19,270	43	8.0	2.3	2.6	3.2	32.8	264	18,545	78	12.7	3.6	4.1	5.0	29.3	372	37,814	5.9	6.7	8.2	21	636
56 57	19,224	46 79	8.6 9.3	2.4	2.8	3.4	31.9 30.9	2/5	18,461	83	13.6 14.6	3.9 1 1	4.4	5.4 5.7	28.4	387	37,685	6.3 6.8	7.2	8.8 9.7	22	663 690
58	19,121	53	10.1	2.0	3.3	4.0	30.0	303	18,277	95	15.6	4.4	5.1	6.1	26.7	402	37,398	7.3	8.3	10.1	24	720
59	19,063	58	11.0	3.1	3.6	4.3	29.1	319	18,175	102	16.8	4.7	5.4	6.6	25.8	433	37,238	7.8	9.0	10.9	28	752
60	19,000	63	11.9	3.4	3.8	4.7	28.2	334	18,065	110	18.0	5.1	5.8	7.1	25.0	450	37,065	8.4	9.7	11.7	30	784
61 62	18,932	68 74	12.9	3.6	4.2	5.1	27.3	352	17,947	118	19.3	5.5	6.3	7.6	24.1	467	36,879	9.1	10.4	12.7	32	818
63	18,838	81	14.0	4.0	4.5	6.0	25.5	388	17,620	136	20.8	6.3	7.3	8.8	22.5	503	36,461	9.8 10.6	11.3	14.8	38	855 891
64	18,689	88	16.6	4.7	5.4	6.5	24.6	409	17,537	147	24.1	6.8	7.8	9.5	21.7	522	36,226	11.5	13.2	16.0	41	932
65	18,593	96	18.1	5.1	5.9	7.1	23.8	430	17,379	158	25.9	7.3	8.4	10.2	20.9	541	35,972	12.5	14.3	17.3	44	971
66	18,489	105	19.8	5.6	6.4	7.8	22.9	452	17,208	171	28.0	7.9	9.1	11.0	20.1	561	35,697	13.5	15.5	18.7	48	1,013
67 68	18,375	114	21.6	6.1 6.7	7.0	8.5 9.3	22.0 21.2	475 500	17,024	184 198	30.2	8.5 9.2	9.8 10 5	11.8	19.3 18.5	581 601	35,399	14.6 15.9	16.8	20.3	52 56	1,057
69	18,113	137	25.8	7.3	8.4	10.1	20.3	525	16,612	214	35.1	9.9	11.4	13.8	17.7	622	34,725	17.2	19.8	23.9	61	1,147
70	17,963	150	28.3	8.0	9.2	11.1	19.5	552	16,381	231	37.9	10.7	12.3	14.9	17.0	643	34,344	18.7	21.5	26.0	66	1,194
71	17,799	164	31.0	8.8	10.1	12.2	18.7	579	16,132	249	40.8	11.6	13.2	16.0	16.2	663	33,930	20.3	23.3	28.2	72	1,242
72	17,619	180	34.0	9.6	11.0	13.4	17.9	608	15,863	269	44.1	12.5	14.3	17.3	15.5	682	33,481	22.1	25.3	30.7	78 95	1,290
73	17,421	217	37.3 41.0	10.6	12.1	14.7	16.3	667	15,373	313	47.5 51.3	14.5	15.4	20.1	14.0	702	32,994	24.0	27.5	36.2	85 92	1,339
75	16,966	238	45.0	12.7	14.6	17.7	15.5	697	14,923	337	55.2	15.6	17.9	21.7	13.4	738	31,889	28.4	32.5	39.4	100	1,435
76	16,704	261	49.4	14.0	16.0	19.4	14.7	727	14,560	363	59.5	16.8	19.3	23.4	12.7	755	31,265	30.8	35.3	42.7	109	1,482
77	16,417	287	54.2	15.3	17.6	21.3	14.0	758	14,170	390	64.0	18.1	20.7	25.1	12.0	769	30,587	33.4	38.3	46.4	118	1,527
78 70	16,102	315	59.5	16.8 19 5	19.3	23.4	13.2 12 5	788	13,751	419 450	68.7 73 7	19.4 20.0	22.3	27.0	11.4 10.9	782 702	29,853	36.3	41.6	50.3	128	1,570
79 80	15,757 15,378	379	71.5	10.5 20.2	23.2	25.0 28.1	12.5 11.8	845	12,820	450 481	78.9	20.9	25.9 25.6	28.9 31.0	10.8	792	29,058	59.3 42.6	45.1 48.8	59.1	150	1,609
81	14,963	415	78.3	22.2	25.4	30.7	11.1	871	12,306	514	84.2	23.8	27.3	33.1	9.5	803	27,269	46.0	52.7	63.8	163	1,674
82	14,510	453	85.6	24.2	27.7	33.6	10.5	895	11,759	547	89.7	25.4	29.1	35.2	9.0	802	26,269	49.6	56.8	68.8	175	1,697
83	14,016	494	93.3	26.4	30.3	36.6	9.8	916	11,179	580	95.1	26.9	30.9	37.4	8.4	798	25,195	53.3	61.1	74.0	188	1,714
84 Total	13,478	538 6,271	101.6 1,184	28.7 335	32.9 384	39.9 465	9.2 17.1	932 20,308	10,565	ь14 8,940	100.6 1,465	28.5 415	32.6 475	39.5 575	7.9 16.3	789 23,931	24,043	57.2 750	65.6 859	79.4 1,040	202 2,649	1,722 44,239

Estimating the Quality of Life Reduction Attributable to Cigarette Smoking - With Intervention

Based on the above assumptions, an intervention in which all screened children / youth ages 5 – 17 would receive a brief intervention re: cigarette smoking / e-cigarette use initiation and 45% of screened cigarette smokers and 67% of screened e-cigarette users receive a brief cessation intervention every two years would reduce the QALYs lost between the ages of 19 and 84 by those living with cigarette smoking from 13,805 (see Table 11) to 11,007 (see Table 16), a reduction of 2,798 QALYs lost (20.3%).

Tal	Table 16: Estimated Quality-Adjusted Life Years Lost Attributable to Cigarette Smoking Between the Ages of 19 and 84														nok	ing		
						Betv	weer	the Ag	es of 2	L9 and	84							
					In a	a Briti	sh Co	lumbia E	Birth Co	hort of	40,00	0						
				Wi	th a C	hild / Y	outh (Screening	, Progra	m / Brie	fInterv	entic	n					
			Fem	ales	<u></u>					Ma	les				То	tal Po	pulat	ion
	Sn	nokers Ali	ive	Smol	QALY	s Lost		Sn	hokers Ali	ve	Smel	QAL	Ys Lost		Smol	QAL ^V	rs Lost	
Age	Light	Mod	Heavy	Light	Mod	Heavy	Total	Light	Mod	Heavy	Light	Mod	Heavy	Total	Light	Mod	Heavy	Total
19	1,100	664	284	37	24	19	81	1,169	592	507	40	21	34	95	77	45	54	176
20	1,100	664	284	37	24	19	81	1,169	592	507	40	21	34	95	77	45	54	176
21	1,100	664	284 284	37 37	24 24	19	81 81	1,169	592 592	507 507	40 40	21 21	34 34	95 95	// 77	45 45	54 54	176
23	1,100	664	284	37	24	19	81	1,169	592	507	40	21	34	95	77	45	54	176
24	1,100	664	284	37	24	19	81	1,169	592	507	40	21	34	95	77	45	54	176
25	1,100	664 664	284 284	37	24 24	19 19	81 81	1,169	592 592	507 507	40 40	21 21	34 34	95 95	// 77	45 45	54 54	1/6 176
27	1,100	664	284	37	24	19	81	1,169	592	507	40	21	34	95	77	45	54	176
28	1,100	664	284	37	24	19	81	1,169	592	507	40	21	34	95	77	45	54	176
29	1,100	664 664	284	37 20	24 25	19 20	81 87	1,169	592 502	507 507	40 /1	21	34 25	95 99	77 70	45 47	54	176 181
31	1,100	664	284	38	25	20	83	1,169	592	507	41	22	35	98	79	47	55	181
32	1,100	664	284	38	25	20	83	1,169	592	507	41	22	35	98	79	47	55	181
33	1,100	664	284	38	25	20	83	1,169	592	507	41	22	35	98	79	47	55	181
34	1,100	664	284 284	38 38	25 25	20	83 83	1,169	592 592	507	41	22	35 35	98 98	79	47 47	55	181
36	1,099	663	284	38	25	20	83	1,167	590	505	41	22	35	98	79	46	55	180
37	1,099	662	283	38	25	20	82	1,166	588	503	41	22	35	97	79	46	55	180
38	1,098	660	281 280	38 38	25 24	20 20	82 82	1,164	586 585	501 499	41 41	22 27	35 35	97 97	79 79	46 46	54 54	180 179
40	1,096	659	279	40	25	20	86	1,161	583	496	42	23	36	101	82	48	56	186
41	1,095	658	278	40	25	20	85	1,160	581	494	42	22	36	100	82	48	56	186
42	1,094	657	277	40 40	25 25	20	85 85	1,158	579 577	492	42	22 22	36	100	82 82	48 49	56	185 185
43	1,093	655	275 274	40	25 25	20 20	85	1,150	574	489 486	42	22 22	35 35	99	82 82	48 48	55	184
45	1,091	654	272	40	25	20	85	1,152	572	484	42	22	35	99	81	47	55	184
46	1,090	652	271	40	25	20	84	1,150	570	481	42	22	35	99	81	47	55	183
47	1,089	649	269 267	40 39	∠5 25	20 19	84 84	1,148	564	478 474	42 42	22 22	35 34	98 98	81 81	47 47	54 54	182
49	1,086	648	265	39	25	19	84	1,143	562	471	41	22	34	97	81	47	53	181
50	1,084	646	263	41	26	20	87	1,140	559	467	43	22	35	101	84	48	55	188
51	1,083	644 647	260	41 41	26 26	20 19	87 86	1,137	555 552	463 459	43 43	22 22	35 35	100	84 84	48 48	55 54	187 186
53	1,079	639	255	41	26	19	86	1,131	548	455	43	22	34	99	84	48	54	185
54	1,077	637	252	41	26	19	85	1,128	545	450	43	22	34	99	83	48	53	184
55	1,074	634	249	41	26	19	85	1,124	540 526	445	43	22	34	98	83	47	52	183
50	1,072	629	240 242	41 40	25 25	19	84	1,121	530 531	440 434	42	22 21	33 33	97 96	63 83	47 47	52 51	180
58	1,066	625	238	40	25	18	83	1,112	526	428	42	21	32	96	82	46	50	179
59	1,063	622	234	40	25	18	83	1,107	521	421	42	21	32	95	82	46	50	178
60 61	1,060 1,056	618 614	229	41 41	26 25	18 17	84 84	1,102	515 509	414 407	43 43	21	32	96 95	84 84	47 46	50 49	181 179
62	1,052	609	218	41	25	17	83	1,091	502	399	42	21	31	94	83	46	48	177
63	1,048	604	212	41	25	16	82	1,084	495	390	42	20	30	93	83	45	47	175
64	1,043	599	206	40 40	25 24	16 15	81 80	1,078	487 479	380	42	20	30 20	91 90	82 82	45	45	173 170
66	1,038	587	199	40	24	15	79	1,070	469	359	41	20 19	29	88	81	44 44	43	168
67	1,027	580	183	40	24	14	78	1,054	460	347	41	19	27	87	81	43	41	165
68	1,020	572	173	40	24	13	77	1,045	449	335	41	19	26	85	80	42	39	162
69 70	1,013	564 554	163 152	39 41	23 24	13 12	75 78	1,035	438 425	321 306	40 42	18 19	25 25	83 86	/9 83	41 43	38 38	158 163
71	996	544	140	41	24	11	76	1,012	412	290	41	18	24	83	82	42	35	159
72	986	533	127	40	23	10	74	1,000	398	273	41	17	22	81	81	41	33	155
73	976	521 509	112	40 20	23	9 ø	72 60	987 072	382	254	40	17 16	21	78 75	80 70	39	30 27	150
74	951	493	50 78	39	22	6	67	956	348	212	39	15	19	72	78	37	24	139
76	937	477	59	38	21	5	64	940	329	189	38	14	15	68	77	35	20	132
77	922	460	37	38	20	3	61	921	308	164	38	13	13	65	75	33	16	125
78	905 887	440 419	14	37	19 18	1	57 55	902	286 262	137 108	37 36	12 11	11 9	61 56	74 72	32 30	12 9	118 111
80	866	396		39	19		57	859	236	77	38	11	7	56	77	30	7	113
81	844	371		38	18		55	835	209	44	37	10	4	51	75	27	4	106
82	820 794	343 313		36 35	16 15		53 50	810 783	180 149	8	36 35	9 7	1	45 42	72 70	25 22	1	98 92
84	765	280		34	13		47	754	116		34	6		39	68	19		86
Total				2,571	1,559	1,018	5,148				2,675	1,287	1,897	5,858	5,246	2,846	2,915	11,007

Estimating the Number of Deaths and QALYs Lost Attributable to e-Cigarette Use – With Intervention

Based on the above assumptions, an intervention in which all screened children / youth ages 5 – 17 would receive a brief intervention re: cigarette smoking / e-cigarette use initiation and 45% of screened cigarette smokers and 67% of screened e-cigarette users receive a brief cessation intervention every two years would reduce the number of deaths and QALYs lost between the ages of 19 and 84 attributable to e-cigarette use from 1,695 / 31,943 (see Table 12) to 1,136 / 23,031 (see Table 17), a reduction of 559 deaths (33.0%) and 8,912 QALYs lost (27.9%).

			Tabl	e 17:	: Esti	imat	ed De	aths	and (QALYs	Lost	t Due	e to e	e-Ciga	rette	Use			
							Betw	een t	he Ag	ges of	19 a	nd 8	4						
					\ \ /i+	In a	British	Colu	mbia I	Birth C	ohort	t of 4	0,000) Antion					
			Fe	male	s vviu	l a Cli	nu / ro	uun sc	reeninį	g Progr A	Aales	ынент	nierve	ention		Total	Popul	ation	
Age	C-	Cig Deaths	Alive	Deaths	e-Cig	I YI	OALYS	C- Alive	Cig Deaths	Alive	Deaths	e-Cig	I YI	OALYS	e-l	Cig Deaths	I YI	OALYS	Total OALYs
19	1,047	0.0	6,574	0.0	66.4	0	240	1,619	0.0	6,690	0.0	61.4	0	179	13,263	0	0	419	419
20	1,247 1 447	0.0	5,645 4 717	0.0	65.4 64.4	0	173 125	1,852	0.0	5,867 5,045	0.0	60.5 59 5	0	137 105	11,513 9 762	0	0	311 230	311 230
22	1,648	0.0	3,789	0.0	63.5	0	88	2,320	0.0	4,223	0.0	58.6	0	79	8,011	0	0	167	167
23	1,848	0.0	2,860	0.0	62.5	0	59	2,554	0.0	3,401	0.0	57.7	0	58	6,261	0	0	117	117
25	2,048	0.0	1,932	0.0	60.5	0	36	2,788	0.0	2,578	0.0	55.8	0	40	4,510	0	0	76	76
26	2,048	0.0	1,932	0.0	59.6	0	36	2,788	0.0	2,578	0.0	54.8	0	40	4,510	0	0	76 76	76 76
27	2,048	0.0	1,932	0.0	57.6	0	36	2,788	0.0	2,578	0.0	53.9 53.0	0	40	4,510	0	0	76	76
29	2,048	0.0	1,932	0.0	56.6	0	36	2,788	0.0	2,578	0.0	52.1	0	40	4,510	0	0	76	76
30 31	2,048 2.048	0.0 0.0	1,932 1.932	0.0 0.0	55.7 54.7	0	37 37	2,788	0.0 0.0	2,578 2.578	0.0 0.0	51.1 50.2	0	41 41	4,510 4.510	0	0	78 78	78 78
32	2,048	0.0	1,932	0.0	53.7	0	37	2,788	0.0	2,578	0.0	49.3	0	41	4,510	0	0	78	78
33	2,048	0.0	1,932 1 932	0.0	52.8 51.8	0	37	2,788	0.0	2,578 2,578	0.0	48.4 47 4	0	41 41	4,510 4 510	0	0	78 78	78 78
35	2,048	0.0	1,932	0.0	50.8	0	37	2,788	0.0	2,578	0.0	46.5	0	41	4,510	0	0	78	78
36	2,046	2.5	1,931	0.9	49.9	43	37	2,783	5.1	2,577	1.8	45.6	80	41	4,508	3	122	78	201
38	2,045	2.0	1,930	0.9	48.9	44	37	2,772	5.2 5.4	2,573	1.8	44.7	81	41	4,505	3	124	78	202
39	2,038	2.8	1,928	1.0	47.0	47	37	2,766	5.6	2,571	1.9	42.8	82	41	4,499	3	129	78	207
40	2,035	2.9 3.1	1,927 1,926	1.0 1.1	46.0 45.1	47 49	38 38	2,760	5.8 6.0	2,569	2.0	41.9 41.0	84 85	43 43	4,496 4,493	3	131 134	81 81	212 214
42	2,028	3.3	1,925	1.2	44.1	51	38	2,748	6.3	2,565	2.2	40.1	86	42	4,490	3	138	81	219
43	2,025	3.5	1,924 1 922	1.2	43.1 42.2	53 55	38	2,742	6.5 6.8	2,563	2.3	39.1 38.2	88 90	42 42	4,486	3 4	141 145	81 81	222 226
45	2,021	4.0	1,921	1.4	41.2	58	38	2,735	7.1	2,558	2.5	37.3	92	42	4,479	4	150	80	230
46	2,013	4.3	1,919	1.5	40.3	61 62	38	2,720	7.5	2,555	2.6	36.4	94 07	42	4,475	4	155	80 80	235
47	2,008	4.0	1,918	1.0	39.5 38.4	66	38	2,713	8.2	2,555	2.7	35.5 34.6	97 99	42	4,470	5	165	80 80	240
49	1,998	5.2	1,914	1.8	37.4	69	38	2,696	8.8	2,547	3.1	33.7	103	42	4,461	5	172	80	252
50	1,993 1.987	5.6 6.0	1,912 1.910	2.0	36.5 35.6	72 76	40 39	2,686	9.2 9.8	2,543 2.540	3.2 3.4	32.8 31.9	106 110	43 43	4,456	5	178 185	83 83	261 268
52	1,980	6.4	1,908	2.3	34.6	79	39	2,666	10.5	2,536	3.7	31.0	114	43	4,444	6	193	83	276
53 54	1,973 1,966	6.9 7 4	1,905 1 903	2.5	33.7 32.8	83 87	39 39	2,655	11.2 11.9	2,532	3.9 4 2	30.2 29.3	119 123	43 43	4,438	6 7	202 210	82 82	284 292
55	1,958	8.0	1,900	2.9	31.9	92	39	2,630	12.7	2,524	4.5	28.4	128	43	4,423	7	220	82	301
56	1,949	8.6	1,897	3.1	30.9	96 101	39	2,617	13.6	2,519	4.8	27.5	133	43	4,416	8	229	82	311
58	1,940	9.5 10.1	1,895	3.6	29.1	101	39	2,586	14.0	2,514	5.6	25.8	139	42	4,407	9	259	81	331
59	1,919	11.0	1,886	4.0	28.2	112	39	2,570	16.8	2,502	6.0	25.0	150	42	4,388	10	262	81	343
60 61	1,907 1,894	11.9 12.9	1,881 1,877	4.3 4.7	27.3 26.4	118 124	40 39	2,552	18.0 19.3	2,496 2,489	6.5 7.0	24.1 23.3	157 163	43 43	4,377	11 12	274 287	82 82	357 369
62	1,880	14.0	1,872	5.1	25.5	131	39	2,512	20.8	2,481	7.6	22.5	170	42	4,353	13	301	81	382
63 64	1,865 1 848	15.2 16.6	1,866 1,860	5.6 6.2	24.6 23.8	138 146	39 39	2,489	22.4 24 1	2,473 2 464	8.2 8.9	21.7 20.9	177 185	42 42	4,339 4 324	14 15	315 331	81 80	396 411
65	1,830	18.1	1,853	6.7	22.9	154	39	2,439	25.9	2,454	9.6	20.1	192	41	4,307	16	347	80	426
66	1,810	19.8	1,846	7.4	22.0	163	38	2,411	28.0	2,444	10.4	19.3	201	41	4,290	18	364	79	443
68	1,789	23.6	1,838	8.1 9.0	21.2	172	38	2,381	30.2 32.5	2,433 2,420	11.3	18.5	209	40 40	4,270	21	382 400	78 78	460 478
69	1,739	25.8	1,819	9.9	19.5	193	37	2,313	35.1	2,407	13.4	17.0	227	39	4,226	23	420	77	497
70	1,711	28.3 31.0	1,808 1,796	10.9 12 1	18.7 17 9	204 217	39 39	2,276	37.9 40.8	2,392	14.6 15.9	16.2 15.5	237 246	41 40	4,200	26 28	441 463	80 79	521 541
72	1,646	34.0	1,782	13.5	17.1	230	38	2,191	44.1	2,359	17.3	14.8	256	39	4,141	31	486	78	563
73	1,609	37.3	1,767	15.0	16.3	243	37	2,143	47.5	2,340	18.9	14.1	266	39	4,107	34	510	76	586
74	1,508	41.0	1,731	18.6	15.5 14.7	258 274	37	2,092	51.3 55.2	2,320 2,297	20.7	13.4	277	38 37	4,070	37 41	535 561	75	634
76	1,473	49.4	1,711	20.8	14.0	290	35	1,977	59.5	2,272	24.8	12.0	298	36	3,983	46	589	71	660
77	1,419	54.2 59 5	1,688	23.3 26.2	13.2 12.5	309 328	34 33	1,913	64.0 68.7	2,245	27.2 29.8	11.4 10.8	309 321	34 33	3,933	51 56	618 648	69 66	687 715
79	1,294	65.3	1,632	29.5	11.8	349	33	1,771	73.7	2,182	32.7	10.1	332	32	3,814	62	680	64	744
80	1,223	71.5	1,599	33.4	11.1	372	36	1,692	78.9	2,146	36.0	9.5	343	32	3,745	69 77	714	68 66	782
82	1,144 1,059	78.3 85.6	1,561 1,518	37.9 43.2	10.5 9.8	396 424	36 36	1,518	84.2 89.7	2,107 2,063	39.5 43.5	9.0 8.4	354 365	30 28	3,668 3,581	77 87	750 788	ъь 64	852
83	966	93.3	1,468	49.5	9.2	454	36	1,423	95.1	2,016	47.8	7.9	376	27	3,484	97	830	63	893
84	864	101.6	1,411	57.1	8.6	490	37	1,322	100.6	1,963	52.7	/.3	386	26	3,374	110	876	63	939
Total		1,184		521	15.4	8,015	2,972		1,465		616	14.7	9,058	<i>2,9</i> 87		1,136	17,072	5,959	23,031

• Other assumptions used in assessing the clinically preventable burden are detailed in the Reference Document.

Summary of CPB – Males and Females

Based on these assumptions, the CPB associated with an intervention in which all screened children and youth ages 5 - 17 would receive a brief intervention re: cigarette smoking / e-cigarette use initiation and 45% of screened cigarette smokers and 67% of screened e-cigarette users receive a brief cessation intervention every two years is 22,935 QALYs (Table 18, row *aw*). The CPB of 22,935 represents the gap between no coverage and the 'best in the world' coverage.

Table 1	8: CPB of Interventions for Tobacco Use Prevention a	nd Cessati	on in Children
	and Youth in a B.C. Birth Cohort of 40,0	00	
Row Label	Variable	Base case	Data Source
а	Age to start screening	5	√
b	Age to stop screening / brief intervention	17	V
	Without an Adolescent Screening Program / Brief Intervention	-	
	Prevalence of female cigarette smokers at age 24, by smoking intensity		
c	Light	1,411	Table 7
d	Moderate	851	Table 7
e	Heavy	365	Table 7
t		2,627	= c + d + e
	Prevalence of male cigarette smokers at age 24, by smoking intensity	4 427	7.11.7
g	Light	1,437	Table 7
n	Moderate	/2/	Table 7
	Heavy	623	Table /
J		2,788	= g + n + i
К	Premature deaths in remaie cigarette smokers	1,519	Table 10
1	Life years lost due to premature deaths	26,043	Table 10
m	Premature deaths in male cigarette smokers	1,801	Table 10
n	Life years lost due to premature deaths	29,421	Table 10
0	QALYS lost due to cigarette smoking while alive (females)	6,602	Table 11
р	QALYs lost due to cigarette smoking while alive (males)	7,202	Table 11
q	Premature deaths in female e-cigarette users	681	Table 12
r	Life years lost due to premature deaths	10,484	Table 12
S	Premature deaths in male e-cigarette users	1,014	Table 12
t	Life years lost due to premature deaths	14,600	Table 12
u	QALYs lost due to e-cigarette use while alive (females)	3,053	Table 12
v	QALYs lost due to e-cigarette smoking while alive (males)	3,806	Table 12
W	Total QALYs Lost - Females	46,183	=1+0+r+u
x	Total QALYs Lost - Males	55,029	= n + p + t + v
	With an Adolescent Screening Program / Brief Intervention	-	
	Prevalence of female smokers at age 24, by smoking intensity		
y	Light	1,100	Table 14
Z	Moderate	664	Table 14
aa	Heavy	284	Table 14
ab	Total	2,048	= y + z + aa
	Prevalence of male smokers at age 24, by smoking intensity	1.150	
ac	Light	1,169	Table 14
ad	Moderate	592	Table 14
ae	Heavy	507	Table 14
af	Total	2,267	= ac + ad + ae
ag	Premature deaths in female cigarette smokers	1,184	Table 15
ah	Life years lost due to premature deaths	20,308	Table 15
ai	Premature deaths in male cigarette smokers	1,465	Table 15
aj	Life years lost due to premature deaths	23,931	Table 15
ak	QALYs lost due to cigarette smoking while alive (females)	5,148	Table 16
al	QALYs lost due to cigarette smoking while alive (males)	5,858	Table 16
am	Premature deaths in female e-cigarette users	521	Table 17
an	Life years lost due to premature deaths	8,015	Table 17
ao	Premature deaths in male e-cigarette users	616	Table 17
ар	Life years lost due to premature deaths	9,058	Table 17
aq	QALYs lost due to e-cigarette use while alive (females)	2,972	Table 17
ar	QALYs lost due to e-cigarette smoking while alive (males)	2,987	Table 17
as	Total QALYs Lost - Females	36,443	= ah + ak + an + aq
at	Total QALYs Lost - Males	41,834	= aj + al + ap + ar
L	QALYs Gained With Screening / Brief Intervention		
au	Total QALYs gained - Females (CPB)	9,740	= w - as
av	Total QALYs gained - Males (CPB)	13,195	= x - at
aw	Total QALYs gained (CPB)	22,935	= au + av

√ = Estimates from the literature

We also modified a number of major assumptions and recalculated the CPB as follows:

- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8% and the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: **CPB = 5,910**.
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27% and the effectiveness of interventions aimed at smoking cessation are increased from 34% to 69%: **CPB** = **41,077.**
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8%: CPB = 18,681.
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27%: CPB = 26,719.
- Assume the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: CPB = 10,377.
- Assume the effectiveness of interventions aimed smoking cessation are increased from 34% to 69%: CPB = 37,486.
- Assume the QoL reduction associated with light/moderate/heavy smoking is reduced from 0.031 / 0.033 / 0.062 to 0.018 / 0.019 / 0.042: CPB = 21,476.
- Assume the QoL reduction associated with light/moderate/heavy smoking is increased from 0.031 / 0.033 / 0.062 to 0.045 / 0.047 / 0.082: CPB = 24,452.
- Assume the harms attributable to e-cigarette use are reduced from being 37% as harmful as smoking conventional cigarettes to being 10% as harmful: CPB = 16,707.
- Assume the harms attributable to e-cigarette use are increased from being 37% as harmful as smoking conventional cigarettes to being 60% as harmful: CPB = 27,266.

Summary of CPB – Females Only

Based on these assumptions, the CPB associated with an intervention in which female screened children and youth ages 5 - 17 would receive a brief intervention re: cigarette smoking / e-cigarette use initiation and 45% of screened cigarette smokers and 67% of screened e-cigarette users receive a brief cessation intervention every two years is 9,740 QALYs (Table 18, row *au*). The CPB of 9,740 represents the gap between no coverage and the 'best in the world' coverage.

We also modified a number of major assumptions and recalculated the CPB as follows:

- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8% and the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: **CPB = 2,438**.
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27% and the effectiveness of interventions aimed at smoking cessation are increased from 34% to 69%: **CPB** = **17,995**.
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8%: CPB = 7,873.
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27%: CPB = 11,423.

- Assume the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: CPB = 4,311.
- Assume the effectiveness of interventions aimed smoking cessation are increased from 34% to 69%: CPB = 16,316.
- Assume the QoL reduction associated with light/moderate/heavy smoking is reduced from 0.031 / 0.033 / 0.062 to 0.018 / 0.019 / 0.042: CPB = 9,123.
- Assume the QoL reduction associated with light/moderate/heavy smoking is increased from 0.031 / 0.033 / 0.062 to 0.045 / 0.047 / 0.082: CPB = 10,381.
- Assume the harms attributable to e-cigarette use are reduced from being 37% as harmful as smoking conventional cigarettes to being 10% as harmful: CPB = 7,932.
- Assume the harms attributable to e-cigarette use are increased from being 37% as harmful as smoking conventional cigarettes to being 60% as harmful: CPB = 11,078.

Summary of CPB – Males Only

Based on these assumptions, the CPB associated with an intervention in which male screened children and youth ages 5 - 17 would receive a brief intervention re: cigarette smoking / e-cigarette use initiation and 45% of screened cigarette smokers and 67% of screened e-cigarette users receive a brief cessation intervention every two years is 13,195 QALYs (Table 18, row *av*). The CPB of 13,195 represents the gap between no coverage and the 'best in the world' coverage.

We also modified a number of major assumption and recalculated the CPB as follows:

- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8% and the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: **CPB = 3,473.**
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27% and the effectiveness of interventions aimed at smoking cessation are increased from 34% to 69%: **CPB** = **23,083.**
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8%: CPB = 10,808.
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27%: CPB = 15,297.
- Assume the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: CPB = 6,066.
- Assume the effectiveness of interventions aimed smoking cessation are increased from 34% to 69%: CPB = 21,171.
- Assume the QoL reduction associated with light/moderate/heavy smoking is reduced from 0.031 / 0.033 / 0.062 to 0.018 / 0.019 / 0.042: CPB = 12,353.
- Assume the QoL reduction associated with light/moderate/heavy smoking is increased from 0.031 / 0.033 / 0.062 to 0.045 / 0.047 / 0.082: CPB = 14,071.
- Assume the harms attributable to e-cigarette use are reduced from being 37% as harmful as smoking conventional cigarettes to being 10% as harmful: CPB = 8,774.
- Assume the harms attributable to e-cigarette use are increased from being 37% as harmful as smoking conventional cigarettes to being 60% as harmful: CPB = 16,188.

Modelling Cost-Effectiveness

In this section, we model CE associated with asking children and youth or their parents about tobacco use by the child or youth and offering brief information and advice, as appropriate, during primary care visits to prevent and/or treat tobacco smoking and e-cigarette use among children and youth.

In calculating CE, we made the following assumptions:

Screening and Brief Behavioural Interventions to Reduce the Initiation of Tobacco Smoking

- We assumed that screening for cigarette smoking / e-cigarette use in children / youth would take place annually in 92%⁴¹¹ and 89%⁴¹² of those with a primary health care visit in a given year. Furthermore, we have assumed that the screening would require 20% of a PCP office visit.
- The USPSTF reviewed 14 studies assessing the effectiveness of a brief intervention to **reduce the initiation of tobacco smoking**. Follow-up for these studies ranged from 6 to 36 months with the majority (57%) at 12 months.⁴¹³
- In the 14 studies, three interventions took place in primary care clinics, two in dental clinics, 10 in homes and one in a school. Eight trials targeted the youth to receive the intervention, two targeted the parent and four targeted both child and parent. Print materials were used most commonly to deliver part or all of the intervention followed by face-to-face encounters with a counselor, health educator, or primary care medical or dental provider. The duration of the interventions ranged from 7 weeks to 25 months with a mean number of six contacts (ranging from 3-15).⁴¹⁴
- We have assumed that an intervention to **reduce the initiation of tobacco smoking** would be required seven times between the ages of 5 and 17 for maximum effect, approximately once every two years. Furthermore, we have assumed that the intervention would require 50% of a PCP office visit for the first four interventions between the ages of 5 and 12 and then a full PCP office visit for the final three interventions between the ages of 13 and 17.
- The cost of an office visit to a General Practitioner (GP) in BC is estimated at \$35.97.⁴¹⁵

⁴¹¹ LeLaurin J, Theis R, Thompson L et al. Tobacco-related counselling and documentation in adolescent primary care practice: Challenges and opportunities. *Nicotine & Tobacco Research*. 2020; 22(6): 1023-9.

⁴¹² Matheus C, Hein N, Narahari P et al. Improving standardized screening for e-cigarette and vaping use among adolescents. *Paediatrics*. 2021; 147 (3-Meeting Abstract): 1002.

⁴¹³ Selph S, Patnode C, Bailey S et al. *Primary Care Interventions for Prevention and Cessation of Tobacco Use in Children and Adolescents: A Systematic Review for the U.S. Preventive Services Task Force*. Evidence Synthesis No. 185. AHRQ Publication No. 19-05254-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2020.

⁴¹⁴ Selph S, Patnode C, Bailey S et al. *Primary Care Interventions for Prevention and Cessation of Tobacco Use in Children and Adolescents: A Systematic Review for the U.S. Preventive Services Task Force*. Evidence Synthesis No. 185. AHRQ Publication No. 19-05254-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2020.

⁴¹⁵ Ministry of Health. *Medical Services Commission Payment Schedule*. 2021. Available at <u>https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/medical-services-plan/msc-payment-schedule-may-2021.pdf</u>. Accessed September 2022.

- Patient time costs resulting from receiving, as well as travelling to and from, a service are valued based on the average hourly wage rate in BC in 2022 (\$31.49⁴¹⁶) plus 18% benefits for an average cost per hour of \$37.16. In the absence of specific data on the amount of time required, we assume two hours per service.
- Based on these assumptions, the cost of asking children and youth between the ages of 5 and 17 (or their parents) about tobacco use by the child or youth and offering brief information and advice, as appropriate, during primary care visits to prevent tobacco smoking and e-cigarette use among children and youth in a BC cohort of 40,000 is \$21.4 million, \$11.2 million in females and \$10.2 million in males (see Table 19).

Table 19: Estimated Cost of Interventions to Reduce Initiation of Cigarette Smoking and E-Cigarette UseBetween the Ages of 5 and 17

	In a British Colu												mbia Bi	rth Coho	ort c	of 4(0,000									
						Fe	males												М	ales						
						# of													# of							
		See	Cig E-	Cig	# of	Interven	PCP			(Cost				See	Cig	E-Cig	# of	Interven	PCP			0	Cost		
Age	Pop.	PHP	Screen	ed	Screens	tions	Visits		РСР	Pa	tient		Total	Pop.	PHP	Scre	eened	Screens	tions	Visits		PCP	Pat	tient		Total
5	19,922	70%	92% 89	9%	12,830	12,830	8,981	\$	323,041	\$ 6	567,456	\$	990,497	19,911	68%	92%	6 89%	12,456	12,456	8,719	\$	313,635	\$ 6	548,021	\$	961,656
6	19,920	70%	92% 89	9%	12,829		2,566	\$	92,290	\$ 1	190,686	\$	282,976	19,909	68%	92%	6 89%	12,455		2,491	\$	89,604	\$ 1	L85,136	\$	274,739
7	19,919	70%	92% 89	9%	12,828	12,828	8,979	\$	322,992	\$ 6	667,355	\$	990,347	19,908	68%	92%	6 89%	12,454	12,454	8,718	\$	313,590	\$ 6	547,930	\$	961,521
8	19,918	70%	92% 89	9%	12,827		2,565	\$	92,278	\$ 1	190,661	\$	282,939	19,907	68%	92%	6 89%	12,454		2,491	\$	89,591	\$ 1	185,110	\$	274,701
9	19,917	70%	92% 89	9%	12,826	12,826	8,978	\$	322,953	\$ 6	667,275	\$	990,228	19,906	68%	92%	6 89%	12,453	12,453	8,717	\$	313,553	\$ 6	547,852	\$	961,405
10	19,915	70%	92% 89	9%	12,826		2,565	\$	92,267	\$ 1	190,638	\$	282,905	19,904	68%	92%	6 89%	12,452		2,490	\$	89,581	\$ 1	L85,089	\$	274,670
11	19,914	70%	92% 89	9%	12,825	12,825	8,977	\$	322,914	\$ 6	567,195	\$	990,109	19,903	68%	92%	6 89%	12,451	12,451	8,716	\$	313,515	\$ 6	547,774	\$	961,289
12	19,913	70%	92% 89	9%	12,824		2,565	\$	92,256	\$ 1	190,616	\$	282,871	19,902	68%	92%	6 89%	12,451		2,490	\$	89,570	\$ 1	L85,067	\$	274,637
13	19,911	70%	92% 89	9%	12,823	12,823	15,388	\$	553,489	\$1,1	L43,601	\$	1,697,091	19,900	68%	92%	6 89%	12,450	12,450	14,940	\$	537,378	\$1,1	10,313	\$	1,647,692
14	19,910	70%	92% 89	9%	12,822		2,564	\$	92,240	\$ 1	190,583	\$	282,823	19,898	68%	92%	6 89%	12,448		2,490	\$	89,554	\$ 1	L85,034	\$	274,588
15	19,907	79%	92% 89	9%	14,469	14,469	17,362	\$	624,527	\$1,2	290,376	\$	1,914,903	19,896	63%	92%	6 89%	11,531	11,531	13,838	\$	497,745	\$1,0	28,424	\$	1,526,170
16	19,904	79%	92% 89	9%	14,466		2,893	\$	104,070	\$ 2	215,026	\$	319,096	19,891	63%	92%	6 89%	11,529		2,306	\$	82,939	\$ 1	L71,366	\$	254,305
17	19,900	79%	92% 89	9%	14,463	14,463	17,356	\$	624,282	\$1,2	289,871	\$	1,914,153	19,885	63%	92%	6 89%	11,525	11,525	13,830	\$	497,475	\$1,0	27,866	\$	1,525,341
Total				-	171,657	93,063	101,740	\$3	,659,599	\$7,5	561,340	\$1	11,220,939	1			•	159,111	85,321	92,236	\$3	,317,730	\$6,8	354,983	\$1(),172,713

Screening and Brief Behavioural Interventions to Increase Tobacco Smoking Cessation

- For modelling purposes, we have assumed that 45%⁴¹⁷ and 67%⁴¹⁸ of those found positive for cigarette / e-cigarette use would receive counselling to quit.
- In the systematic review by the CTFPHC on the effectiveness of a brief intervention to **increase smoking cessation**, a significant effect was observed in 2 of the 3 RCTs included. In the study by Hollis et al, the interventions consisted of an individually tailored intervention based on the smoking status and stage of change of the individual. It included a 30-second clinician advice message, a 10-minute interactive computer program, a 5-minute motivational interview, and up to two 10-minute telephone or in person booster sessions.⁴¹⁹ In the study by Pbert and colleagues, the

⁴¹⁶ BC Stats. *Earning & Employment Trends – August 2022*. Available at

https://www2.gov.bc.ca/assets/gov/data/statistics/people-population-

 $community/income/earnings_and_employment_trends_data_tables.pdf.\ Accessed\ September\ 2022.$

⁴¹⁷ Merianos A, Mahabee-Gittens E. Screening, counselling, and health care utilization among a national sample of adolescent smokers. *Clinical Paediatrics*. 2020; 59(4-5): 467-75.

⁴¹⁸ Golden T, VanFrank B, Courtney-Long E. E-cigarette screening and clinical intervention behaviours among pediatric primary care providers, DocStyles 2021. *Paediatrics*. 2022; 149: 740.

⁴¹⁹ Hollis J, Polen M, Whitlock E et al. Teen Reach: Outcomes from a randomized, controlled trial of a tobacco reduction program for teens seen in primary medical care. *Pediatrics*. 2005; 115(4): 981-9.

intervention consisted of brief counselling by the paediatric provider followed by one visit and four telephone calls by older peer counsellors (aged 21 to 25 years).⁴²⁰

- In their model of the cost-effectiveness of brief clinician tobacco counselling for youth, Maciosek and colleagues estimated a cost of \$35 per person (in 2012 USD). We converted this to \$36 in 2022 CAD. These costs include 1 minute for a brief anti-tobacco message by a physician, 20 minutes with a health educator, parent time to accompany the youth and \$5 for print materials.⁴²¹
- In estimating the cost of the intervention, we have assumed the equivalent of two visits to a PCP (at a cost of 2*\$35.97 = \$71.94) plus four ten minute follow-up telephone calls by a nurse. The value of the nursing time is estimated based on the wage rate for a Level 3 RN with four years of experience (\$40.41 / hour).⁴²² The total nursing costs are based on the wage rate plus 18% for benefits and 40% for non-productive time (i.e. vacation, education leave, statutory holidays, coffee breaks, etc.) for 40 (0.67 of an hour) minutes of time ((\$40.41+\$7.27+\$16.16) * 0.67) or \$42.77). The total cost of the brief intervention would thus be **\$114.71** (\$71.94 + \$42.77).
- Patient time costs are based on receiving as well as travelling to and from the two visits, assuming two hours per visit plus the 40 minutes of interaction time with the nurse.
- Based on these assumptions, the cost of offering brief information and advice to increase tobacco smoking cessation and e-cigarette use among children and youth in a BC cohort of 40,000 is \$5.4 million, \$2.9 million in females and \$2.5 million in males (see Table 20).

Table 20: Estimated Cost of Interventions to Increase Cigarette Smoking and E-Cigarette Use CessationBetween the Ages of 5 and 17

	Females																		Male	es									
								# of				Cost											#of				Cost		
		Table7	See	Cig	E-Cig	Cig	E-Cig	Interven	In	terven						Та	ble 7	See	Cig	E-Cig	Cig	E-Cig	Interven	Ir	nterven				
Age	Pop.	Cig e-Cig	g PHP	Scree	ened	Interv	vention	tions	·	tions	Р	atient		Total	Pop.	Cig	e-Ci	g PHP	Scre	eened	Interv	ention	tions		tions	F	Patient		Total
5	19,922		70%	92%	89%	45%	67%								19,911			68%	92%	89%	45%	67%							
6	19,920		70%	92%	89%	45%	67%								19,909			68%	92%	89%	45%	67%							
7	19,919		70%	92%	89%	45%	67%								19,908			68%	92%	89%	45%	67%							
8	19,918	29	70%	92%	89%	45%	67%	8	\$	975	\$	1,471	\$	2,446	19,907	46		68%	92%	89%	45%	67%	13	\$	1,487	\$	2,245	\$	3,732
9	19,917	44	70%	92%	89%	45%	67%	13	\$	1,462	\$	2,207	\$	3,669	19,906	69		68%	92%	89%	45%	67%	19	\$	2,230	\$	3,367	\$	5,597
10	19,915	66	70%	92%	89%	45%	67%	19	\$	2,193	\$	3,311	\$	5,504	19,904	104		68%	92%	89%	45%	67%	29	\$	3,346	\$	5,050	\$	8,396
11	19,914	88	70%	92%	89%	45%	67%	25	\$	2,924	\$	4,414	\$	7,338	19,903	138		68%	92%	89%	45%	67%	39	\$	4,461	\$	6,734	\$	11,195
12	19,913	147	70%	92%	89%	45%	67%	42	\$	4,873	\$	7,357	\$	12,230	19,902	230		68%	92%	89%	45%	67%	65	\$	7,434	\$	11,223	\$	18,658
13	19,911	249 2,708	70%	92%	89%	45%	67%	1,203	\$	137,944	\$	208,240	\$	346,184	19,900	391	2,44	8 68%	92%	89%	45%	67%	1,103	\$	126,491	\$	190,950	\$	317,441
14	19,910	388 3,394	70%	92%	89%	45%	67%	1,529	\$	175,441	\$	264,845	\$	440,287	19,898	610	3,14	9 68%	92%	89%	45%	67%	1,448	\$	166,154	\$	250,825	\$	416,979
15	19,907	535 4,081	79%	92%	89%	45%	67%	2,097	\$	240,591	\$	363,195	\$	603,786	19,896	840	3,85	0 63%	92%	89%	45%	67%	1,665	\$	191,028	\$	288,374	\$	479,402
16	19,904	660 4,767	79%	92%	89%	45%	67%	2,462	\$	282,359	\$	426,248	\$	708,607	19,891	1,03	6 4,55	0 63%	92%	89%	45%	67%	1,980	\$	227,085	\$	342,807	\$	569,892
17	19,900	733 5,454	79%	92%	89%	45%	67%	2,809	\$	322,202	\$	486,395	\$	808,597	19,885	1,15	1 5,25	1 63%	92%	89%	45%	67%	2,273	\$	260,732	\$	393,600	\$	654,333
Total								10,208	\$1 ,	,170,965	\$1	,767,682	\$2	2,938,647									8,634	\$	990,448	\$1	,495,176	\$ 2	2,485,624

⁴²⁰ Pberrt L, Flint A, Fletcher K et al. Effect of a pediatric-based smoking prevention and cessation intervention for adolescents: A randomized, controlled trial. *Pediatrics*. 2008; 121(4): e738-47.

⁴²¹ Maciosek M, LaFrance A, Dehmer S et al. Health benefits and cost-effectiveness of brief clinician tobacco counseling for youth and adults. *Annals of Family Medicine*. 2017; 15(1): 37-47.

⁴²² 2019 - 2022 Provincial Collective Bargaining Agreement between the Health Employers Association of BC and the Nurses' Bargaining Association. Available online at <u>https://www.bcnu.org/Contracts-</u>

Bargaining/Documents/nba-pca_2019-2022.pdf. Accessed October 2022.

Costs Avoided Due to Reduced Tobacco Smoking

- Tobacco smoking is associated with excess *annual medical care costs* (e.g., hospitalization, physician, drug, etc.). Research in BC identified these costs average \$1,358 per year: \$893 per year for light tobacco smoking (less than 10 cigarettes per day), \$1,576 per year for moderate tobacco smoking (10 to 19 cigarettes per day) and \$2,332 per year for heavy tobacco smoking (20 or more cigarettes per day). The equivalent costs for females are \$1,199 / \$803 / \$1,367 / \$2,359 and for males are \$1,466 / \$956 / \$1,752 / \$2,321.⁴²³ All costs are in 2022 Canadian dollars.
- We multiplied these excess annual medical care costs by the number of male or female light, moderate or heavy smokers who were alive between the ages of 19 and 84 assuming no child/youth screening and brief intervention program. This total cost over the lifetime of the cohort was then redistributed by age and sex based on the fact that excess annual medical care costs increase substantially as a current smoker ages.⁴²⁴ As per Maciosek and colleagues, we also assumed that these excess costs would only start at age 35.⁴²⁵ This latter assumption is likely conservative as there is evidence that adolescent smokers use more health services than adolescent neversmokers. For example, Merianos et al suggest that adolescent current smokers are 80% more likely (aOR = 1.80, 95% CI = 1.47-2.22) and 2.95 times more likely (95% CI = 2.15-4.05) to have had an ED visit or an overnight hospital stay within the past 12 months than adolescent never smokers.⁴²⁶
- Wang and colleagues have estimated the annual excess medical care costs of exclusive e-cigarette use in adults ages 18 and older in the US to be \$1,796 (in 2018 USD). They compare this with the estimated annual excess medical care costs of \$5,602 (in 2018 USD) attributed to conventional cigarette smoking in the US.⁴²⁷ That is, in the US, annual medical care costs associated with exclusive e-cigarettes use are approximately one-third (32.1%) that associated with conventional cigarette use. For modelling purposes, we have assumed that annual medical care costs associated with exclusive e-cigarette use in BC would be 32.1% of the \$1,358 (see first bullet point above) attributable to conventional cigarette smoking, or \$436. These costs would begin at age 19.
- Based on these assumptions, lifetime total excess medical care costs attributable to conventional and e-cigarette use in a BC birth cohort of 40,000 *without* a child/youth screening and brief intervention program would be \$576.4 million, \$258.2 million in females and \$318.2 million in males (see Table 21).

 ⁴²³ H. Krueger & Associates Inc. *The Economic Burden of Risk Factors in British Columbia: Excess Weight, Tobacco Smoking, Alcohol Use, Physical Inactivity and Low Fruit and Vegetable Consumption.* 2017. Vancouver, B.C.: Provincial Health Services Authority, Population and Public Health Program.

⁴²⁴ Maciosek M, Xu X, Butani A et al. Smoking-attributable medical expenditures by age, sex, and smoking status estimated using a relative risk approach. *Preventive Medicine*. 2015; 77: 162-7.

⁴²⁵ Maciosek M, Xu X, Butani A et al. Smoking-attributable medical expenditures by age, sex, and smoking status estimated using a relative risk approach. *Preventive Medicine*. 2015; 77: 162-7.

⁴²⁶ Merianos A, Mahabee-Gittens E. Screening, counseling, and health care utilization among a national sample of adolescent smokers. *Clinical Pediatrics*. 2020; 59(4-5): 467 - 75.

⁴²⁷ Wang Y, Sung H, Lightwood J et al. Healthcare utilization and expenditures attributable to current e-cigarette use among US adults. *Tobacco Control*. 2022; doi:10.1136/tobaccocontrol-2021-057058.

Table 21: Estimated Excess Medical Care Costs

Attributable to Conventional and e-Cigarette Use

In a British Columbia Birth Cohort of 40,000

Without a Child / Youth Screening Program / Brief Intervention

			Females	5				Males		
	Annual Co	sts by Smokin	ng Intensity			Annual Co	sts by Smokin	g Intensity		
Age	Light	Mod	Heavy	E-CigUse	Total \$	Light	Mod	Heavy	E-CigUse	Total \$
19 - 34				\$25,506,905	\$25,506,905				\$29,140,035	\$29,140,035
35	\$317,933	\$310,222	\$275,260	\$1,095,408	\$1,998,823	\$359,008	\$300,702	\$349,098	\$1,384,276	\$2,393,084
36	\$317,933	\$310,222	\$275,260	\$1,094,653	\$1,998,068	\$359,008	\$300,702	\$349,098	\$1,382,001	\$2,390,810
37	\$317,933	\$310,222	\$275,260	\$1,093,865	\$1,997,280	\$359,008	\$300,702	\$349,098	\$1,379,656	\$2,388,464
38	\$317,933	\$310,222	\$275,260	\$1,093,032	\$1,996,448	\$359,008	\$300,702	\$349,098	\$1,377,225	\$2,386,033
39	\$317,933	\$310,222	\$275,260	\$1,092,166	\$1,995,582	\$359,008	\$300,702	\$349,098	\$1,374,708	\$2,383,516
40	\$317,933	\$310,222	\$275,260	\$1,091,256	\$1,994,671	\$359,008	\$300,702	\$349,098	\$1,372,106	\$2,380,915
41	\$317,933	\$310,222	\$275,260	\$1,090,279	\$1,993,695	\$359,008	\$300,702	\$349,098	\$1,369,391	\$2,378,199
42	\$317,933	\$310,222	\$275,260	\$1,089,247	\$1,992,662	\$359,008	\$300,702	\$349,098	\$1,366,562	\$2,375,370
43	\$317,933	\$310,222	\$275,260	\$1,088,148	\$1,991,563	\$359,008	\$300,702	\$349,098	\$1,363,619	\$2,372,427
44	\$317,933	\$310,222	\$275,260	\$1,086,971	\$1,990,387	\$359,008	\$300,702	\$349,098	\$1,360,548	\$2,369,356
45	\$317,933	\$310,222	\$275,260	\$1,085,717	\$1,989,132	\$359,008	\$300,702	\$349,098	\$1,357,307	\$2,366,115
46	\$317,933	\$310,222	\$275,260	\$1,084,374	\$1,987,789	\$359,008	\$300,702	\$349,098	\$1,353,909	\$2,362,717
47	\$317,933	\$310,222	\$275,260	\$1,082,942	\$1,986,357	\$359,008	\$300,702	\$349,098	\$1,350,341	\$2,359,149
48	\$317,933	\$310,222	\$275,260	\$1,081,410	\$1,984,825	\$359,008	\$300,702	\$349,098	\$1,346,545	\$2,355,353
49	\$317,933	\$310,222	\$275,260	\$1,079,767	\$1,983,182	\$359,008	\$300,702	\$349,098	\$1,342,536	\$2,351,344
50	\$317,933	\$310,222	\$275,260	\$1,078,002	\$1,981,417	\$359,008	\$300,702	\$349,098	\$1,338,285	\$2,347,093
51	\$317,933	\$310,222	\$275,260	\$1,076,115	\$1,979,530	\$359,008	\$300,702	\$349,098	\$1,333,750	\$2,342,558
52	\$317,933	\$310,222	\$275,260	\$1,074,083	\$1,977,499	\$359,008	\$300,702	\$349,098	\$1,328,902	\$2,337,710
53	\$317,933	\$310,222	\$275,260	\$1,071,897	\$1,975,312	\$359,008	\$300,702	\$349,098	\$1,323,741	\$2,332,549
54	\$317,933	\$310,222	\$275,260	\$1,069,532	\$1,972,947	\$359,008	\$300,702	\$349,098	\$1,318,225	\$2,327,033
55	\$906,408	\$884,424	\$784,751	\$1,066,990	\$3,642,573	\$1,214,334	\$1,017,118	\$1,180,816	\$1,312,311	\$4,724,577
56	\$906,408	\$884,424	\$784,751	\$1,064,248	\$3,639,831	\$1,214,334	\$1,017,118	\$1,180,816	\$1,305,984	\$4,718,251
57	\$906,408	\$884,424	\$784,751	\$1,061,284	\$3,636,868	\$1,214,334	\$1,017,118	\$1,180,816	\$1,299,203	\$4,711,469
58	\$906,408	\$884,424	\$784,751	\$1,058,065	\$3,633,648	\$1,214,334	\$1,017,118	\$1,180,816	\$1,291,938	\$4,704,204
59	\$906,408	\$884,424	\$784,751	\$1,054,579	\$3,630,163	\$1,214,334	\$1,017,118	\$1,180,816	\$1,284,133	\$4,696,399
60	\$906,408	\$884,424	\$784,751	\$1,050,794	\$3,626,377	\$1,214,334	\$1,017,118	\$1,180,816	\$1,275,745	\$4,688,012
61	\$906,408	\$884,424	\$784,751	\$1,046,676	\$3,622,259	\$1,214,334	\$1,017,118	\$1,180,816	\$1,266,732	\$4,678,998
62	\$906,408	\$884,424	\$784,751	\$1,042,202	\$3,617,785	\$1,214,334	\$1,017,118	\$1,180,816	\$1,257,036	\$4,669,302
63	\$906,408	\$884,424	\$784,751	\$1,037,318	\$3,612,901	\$1,214,334	\$1,017,118	\$1,180,816	\$1,246,586	\$4,658,853
64	\$906,408	\$884,424	\$784,751	\$1,032,001	\$3,607,584	\$1,214,334	\$1,017,118	\$1,180,816	\$1,235,341	\$4,647,607
65	\$1,889,193	\$1,843,374	\$1,635,629	\$1,026,195	\$6,394,390	\$2,449,642	\$2,051,803	\$2,382,027	\$1,223,214	\$8,106,686
66	\$1,889,193	\$1,843,374	\$1,635,629	\$1,019,856	\$6,388,052	\$2,449,642	\$2,051,803	\$2,382,027	\$1,210,134	\$8,093,606
67	\$1,889,193	\$1,843,374	\$1,635,629	\$1,012,918	\$6,381,114	\$2,449,642	\$2,051,803	\$2,382,027	\$1,196,046	\$8,079,517
68	\$1,889,193	\$1,843,374	\$1,635,629	\$1,005,325	\$6,373,521	\$2,449,642	\$2,051,803	\$2,382,027	\$1,180,834	\$8,064,305
69	\$1,889,193	\$1,843,374	\$1,635,629	\$997,011	\$6,365,206	\$2,449,642	\$2,051,803	\$2,382,027	\$1,164,413	\$8,047,885
70	\$1,889,193	\$1,843,374	\$1,635,629	\$987,897	\$6,356,093	\$2,449,642	\$2,051,803	\$2,382,027	\$1,146,699	\$8,030,171
71	\$1,889,193	\$1,843,374	\$1,635,629	\$977,896	\$6,346,091	\$2,449,642	\$2,051,803	\$2,382,027	\$1,127,592	\$8,011,063
72	\$1,889,193	\$1,843,374	\$1,635,629	\$966,928	\$6,335,124	\$2,449,642	\$2,051,803	\$2,382,027	\$1,106,977	\$7,990,449
73	\$1,889,193	\$1,843,374	\$1,635,629	\$954,884	\$6,323,079	\$2,449,642	\$2,051,803	\$2,382,027	\$1,084,742	\$7,968,214
74	\$1,889,193	\$1,843,374	\$1,635,629	\$941,663	\$6,309,858	\$2,449,642	\$2,051,803	\$2,382,027	\$1,060,787	\$7,944,259
75	\$3,649,326	\$3,560,818	\$3,159,520	\$927,154	\$11,296,819	\$4,041,031	\$3,384,740	\$3,929,490	\$1,034,998	\$12,390,259
76	\$3,649,326	\$3,560,818	\$3,159,520	\$911,214	\$11,280,878	\$4,041,031	\$3,384,740	\$3,929,490	\$1,007,261	\$12,362,522
77	\$3,649,326	\$3,560,818	\$3,159,520	\$893,730	\$11,263,394	\$4,041,031	\$3,384,740	\$3,929,490	\$977,462	\$12,332,723
78	\$3,649,326	\$3,560,818	\$3,159,520	\$874,548	\$11,244,212	\$4,041,031	\$3,384,740	\$3,929,490	\$945,503	\$12,300,764
79	\$3,649,326	\$3,560,818		\$853,523	\$8,063,667	\$4,041,031	\$3,384,740	\$3,929,490	\$911,297	\$12,266,558
80	\$3,649,326	\$3,560,818		\$830,511	\$8,040,656	\$4,041,031	\$3,384,740	\$3,929,490	\$874,774	\$12,230,035
81	\$3,649,326	\$3,560,818		\$805,368	\$8,015,512	\$4,041,031	\$3,384,740	\$3,929,490	\$835,891	\$12,191,152
82	\$3,649,326	\$3,560,818		\$777,938	\$7,988,083	\$4,041,031	\$3,384,740	\$3,929,490	\$794,634	\$12,149,895
83	\$3,649,326	\$3,560,818		\$748,089	\$7,958,233	\$4,041,031	\$3,384,740		\$751,017	\$8,176,788
84	\$3,649,326	\$3,560,818		\$715,708	\$7,925,852	\$4,041,031	\$3,384,740		\$705,111	\$8,130,882
Total	\$70.807.922	\$69,090,601	\$42.347.092	\$75,948,282	\$258,193,897	\$84.230.211	\$70.550.654	\$74.046.311	\$89.378.059	\$318.205.235

- We then used the same approach but this time multiplied the excess annual medical care costs by the number of male or female light, moderate or heavy smokers and e-cigarette users who were alive between the ages of 19 and 84 assuming a child/youth screening and brief intervention program was in place.
- Based on these assumptions, lifetime total excess medical care costs attributable to tobacco smoking in a BC birth cohort of 40,000 *with* a child/youth screening and brief intervention program would be \$457.8 million, \$200.2 million in females and \$257.6 million in males (see Table 22).
- Total costs avoided would therefore be \$118.6 million (\$576.4 \$457.8), \$58.0 million in females (\$258.2 \$200.2) and \$60.6 million (\$318.2 \$257.6) in males.

Table 22: Estimated Excess Medical Care Costs

Attributable to Conventional and e-Cigarette Use

In a British Columbia Birth Cohort of 40,000

With a Child / Youth Screening Program / Brief Intervention

			Females	;				Males		
	Annual Co	sts by Smokin	g Intensity			Annual Co	sts by Smokin	g Intensity		
Age	Light	Mod	Heavy	E-CigUse	Total \$	Light	Mod	Heavy	E-CigUse	Total \$
19 - 34				\$19,525,730	\$19,525,730				\$23,283,819	\$23,283,819
35	\$247,922	\$241,909	\$214,647	\$837,383	\$1,541,861	\$292,012	\$244,587	\$283,951	\$1,107,108	\$1,927,659
36	\$247,922	\$241,909	\$214,647	\$836,806	\$1,541,284	\$292,012	\$244,587	\$283,951	\$1,105,289	\$1,925,840
37	\$247,922	\$241,909	\$214,647	\$836,203	\$1,540,681	\$292,012	\$244,587	\$283,951	\$1,103,413	\$1,923,964
38	\$247,922	\$241,909	\$214,647	\$835,567	\$1,540,045	\$292,012	\$244,587	\$283,951	\$1,101,469	\$1,922,019
39	\$247,922	\$241,909	\$214,647	\$834,905	\$1,539,383	\$292,012	\$244,587	\$283,951	\$1,099,456	\$1,920,007
40	\$247,922	\$241,909	\$214,647	\$834,209	\$1,538,687	\$292,012	\$244,587	\$283,951	\$1,097,375	\$1,917,926
41	\$247,922	\$241,909	\$214,647	\$833,462	\$1,537,940	\$292,012	\$244,587	\$283,951	\$1,095,204	\$1,915,754
42	\$247,922	\$241,909	\$214,647	\$832,673	\$1,537,151	\$292,012	\$244,587	\$283,951	\$1,092,941	\$1,913,492
43	\$247,922	\$241,909	\$214,647	\$831,833	\$1,536,311	\$292,012	\$244,587	\$283,951	\$1,090,587	\$1,911,138
44	\$247,922	\$241,909	\$214,647	\$830,934	\$1,535,412	\$292,012	\$244,587	\$283,951	\$1,088,131	\$1,908,682
45	\$247,922	\$241,909	\$214,647	\$829,975	\$1,534,453	\$292,012	\$244,587	\$283,951	\$1,085,539	\$1,906,090
46	\$247,922	\$241,909	\$214,647	\$828,948	\$1,533,426	\$292,012	\$244,587	\$283,951	\$1,082,821	\$1,903,372
47	\$247,922	\$241,909	\$214,647	\$827,853	\$1,532,331	\$292,012	\$244,587	\$283,951	\$1,079,968	\$1,900,518
48	\$247,922	\$241,909	\$214,647	\$826,682	\$1,531,160	\$292,012	\$244,587	\$283,951	\$1,076,932	\$1,897,483
49	\$247,922	\$241,909	\$214,647	\$825,426	\$1,529,904	\$292,012	\$244,587	\$283,951	\$1,073,725	\$1,894,276
50	\$247,922	\$241,909	\$214,647	\$824,077	\$1,528,555	\$292,012	\$244,587	\$283,951	\$1,070,326	\$1,890,876
51	\$247,922	\$241,909	\$214,647	\$822,634	\$1,527,112	\$292,012	\$244,587	\$283,951	\$1,066,699	\$1,887,249
52	\$247,922	\$241,909	\$214,647	\$821,082	\$1,525,559	\$292,012	\$244,587	\$283,951	\$1,062,821	\$1,883,372
53	\$247,922	\$241,909	\$214,647	\$819,410	\$1,523,888	\$292,012	\$244,587	\$283,951	\$1,058,694	\$1,879,245
54	\$247,922	\$241,909	\$214,647	\$817,602	\$1,522,080	\$292,012	\$244,587	\$283,951	\$1,054,282	\$1,874,833
55	\$706,811	\$689,669	\$611,945	\$815,659	\$2,824,084	\$987,723	\$827,309	\$960,458	\$1,049,552	\$3,825,043
56	\$706,811	\$689,669	\$611,945	\$813,563	\$2,821,988	\$987,723	\$827,309	\$960,458	\$1,044,492	\$3,819,983
57	\$706,811	\$689,669	\$611,945	\$811,297	\$2,819,722	\$987,723	\$827,309	\$960,458	\$1,039,069	\$3,814,560
58	\$706,811	\$689,669	\$611,945	\$808,836	\$2,817,261	\$987,723	\$827,309	\$960,458	\$1,033,259	\$3,808,749
59	\$706,811	\$689,669	\$611,945	\$806,172	\$2,814,597	\$987,723	\$827,309	\$960,458	\$1,027,016	\$3,802,507
60	\$706,811	\$689,669	\$611,945	\$803,278	\$2,811,703	\$987,723	\$827,309	\$960,458	\$1,020,308	\$3,795,799
61	\$706,811	\$689,669	\$611,945	\$800,130	\$2,808,555	\$987,723	\$827,309	\$960,458	\$1,013,099	\$3,788,590
62	\$706,811	\$689,669	\$611,945	\$796,710	\$2,805,135	\$987,723	\$827,309	\$960,458	\$1,005,345	\$3,780,836
63	\$706,811	\$689,669	\$611,945	\$792,976	\$2,801,401	\$987,723	\$827,309	\$960,458	\$996,988	\$3,772,478
64	\$706,811	\$689,669	\$611,945	\$788,911	\$2,797,336	\$987,723	\$827,309	\$960,458	\$987,994	\$3,763,485
65	\$1,473,181	\$1,437,452	\$1,275,455	\$784,473	\$4,970,561	\$1,992,507	\$1,668,908	\$1,937,506	\$978,295	\$6,577,216
66	\$1,473,181	\$1,437,452	\$1,275,455	\$779,628	\$4,965,715	\$1,992,507	\$1,668,908	\$1,937,506	\$967,834	\$6,566,756
67	\$1,473,181	\$1,437,452	\$1,275,455	\$774,324	\$4,960,412	\$1,992,507	\$1,668,908	\$1,937,506	\$956,566	\$6,555,488
68	\$1,473,181	\$1,437,452	\$1,275,455	\$768,520	\$4,954,607	\$1,992,507	\$1,668,908	\$1,937,506	\$944,400	\$6,543,322
69	\$1,473,181	\$1,437,452	\$1,275,455	\$762,164	\$4,948,251	\$1,992,507	\$1,668,908	\$1,937,506	\$931,268	\$6,530,189
70	\$1,473,181	\$1,437,452	\$1,275,455	\$755,197	\$4,941,284	\$1,992,507	\$1,668,908	\$1,937,506	\$917,100	\$6,516,022
71	\$1,473,181	\$1,437,452	\$1,275,455	\$747,551	\$4,933,639	\$1,992,507	\$1,668,908	\$1,937,506	\$901,819	\$6,500,740
72	\$1,473,181	\$1,437,452	\$1,275,455	\$739,167	\$4,925,254	\$1,992,507	\$1,668,908	\$1,937,506	\$885,332	\$6,484,253
73	\$1,473,181	\$1,437,452	\$1,275,455	\$729,960	\$4,916,047	\$1,992,507	\$1,668,908	\$1,937,506	\$867,549	\$6,466,470
74	\$1,473,181	\$1,437,452	\$1,275,455	\$719,853	\$4,905,941	\$1,992,507	\$1,668,908	\$1,937,506	\$848,390	\$6,447,311
75	\$2,845,722	\$2,776,705	\$2,463,777	\$708,762	\$8,794,966	\$3,286,923	\$2,753,100	\$3,196,190	\$827,764	\$10,063,978
76	\$2,845,722	\$2,776,705	\$2,463,777	\$696,576	\$8,782,780	\$3,286,923	\$2,753,100	\$3,196,190	\$805,581	\$10,041,795
77	\$2,845,722	\$2,776,705	\$2,463,777	\$683,211	\$8,769,415	\$3,286,923	\$2,753,100	\$3,196,190	\$781,749	\$10,017,963
78	\$2,845,722	\$2,776,705	\$2,463,777	\$668,547	\$8,754,751	\$3,286,923	\$2,753,100	\$3,196,190	\$756,189	\$9,992,402
79	\$2,845,722	\$2,776,705	· · ·	\$652,475	\$6,274,901	\$3,286,923	\$2,753,100	\$3,196,190	\$728,832	\$9,965,046
80	\$2,845,722	\$2,776,705		\$634,883	\$6,257,310	\$3,286,923	\$2,753,100	\$3,196,190	\$699,622	\$9,935,836
81	\$2,845,722	\$2,776,705		\$615,663	\$6,238,089	\$3,286,923	\$2,753,100	\$3,196,190	\$668,524	\$9,904,738
82	\$2,845,722	\$2,776,705		\$594,694	\$6,217,121	\$3,286,923	\$2,753,100	\$3,196,190	\$635,528	\$9,871,742
83	\$2,845,722	\$2,776,705		\$571,875	\$6,194,302	\$3,286,923	\$2,753,100	. , -	\$600,644	\$6,640,667
84	\$2,845,722	\$2,776,705		\$547,122	\$6,169,549	\$3,286,923	\$2,753,100		\$563,929	\$6,603,953
Total	\$55,215 577	\$53,876 444	\$33,022 041	\$58,085 571	\$200,199,632	\$68,511 783	\$57.384 920	\$60,228 193	\$71,460 638	\$257,585 534
	+,,-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Summary of CE – Males and Females

- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with interventions to prevent and/or treat tobacco use among children and youth is cost-saving (Table 23, row *al*).

Table 23: CE of Interventions for Tobacco Use Prevention and Cessation in Childrenand Youth in a B.C. Birth Cohort of 40,000

Row Label Variable B	Base case	Data Source
Cost of Screening / Brief Intervention		
Reduce Initiation of Tobacco Smoking / E-cigarette Use		
a Primary care provider costs (in millions) - Females	\$3.66	Table 19
b Patient time costs (in millions) - Females	\$7.56	Table 19
c Primary care provider costs (in millions) - Males	\$3.32	Table 19
d Patient time costs (in millions) - Males	\$6.85	Table 19
Increase Cessation of Tobacco Smoking / E-cigarette Use		
e Primary care provider costs (in millions) - Females	\$1.17	Table 20
f Patient time costs (in millions) - Females	\$1.77	Table 20
g Primary care provider costs (in millions) - Males	\$0.99	Table 20
h Patient time costs (in millions) - Males	\$1.50	Table 20
Total Cost of Screening / Brief Intervention		
i Females	\$14.16	= a + b + e + f
j Males	\$12.66	= c + d + g + h
k Total Cost of Screening / Brief Intervention	\$26.82	= i + j
Treatment Costs Avoided with a Screening / Brief Intervention Program		
Excess Medical Care Costs Attributable to Tobacco Use Without a Child / Youth		
Screening Program / Brief Intervention		
I Females (in millions)	\$258.19	Table 21
m Males (in millions)	\$318.21	Table 21
n Total (in millions)	\$576.40	Table 21
Excess Medical Care Costs Attributable to Tobacco Use <i>With</i> a Child / Youth Screening		
Program / Brief Intervention		
o Females (in millions)	\$200.20	Table 22
p Males (in millions)	\$257.59	Table 22
q Total (in millions)	\$457.79	Table 22
Excess Medical Care Costs Attributable to Tobacco Use Avoided		
r Females (in millions)	\$57.99	= - 0
s Males (in millions)	\$60.62	= m - p
t Total (in millions)	\$118.61	= r + s
CE per QALY Gained		
u Net cost of screening and brief intervention (in millions) - Females	-\$43.83	= i - r
v Total QALYs gained - Females	9,740	Table 18
w CE (\$/QALY gained) - Females	-\$4,501	(u / v) * 1,000,000
x Net cost of screening and brief intervention (in millions) - Males	-\$47.96	= j - s
y Total QALYs gained - Males	13,195	Table 18
z CE (\$/QALY gained) - Males	-\$3,635	(x / y) * 1,000,000
aa Net cost of screening and brief intervention (in millions) - Total	-\$91.80	= k - t
ab Total QALYs gained - Total	22,935	Table 18
ac CE (\$/QALY gained) - Total	-\$4,002	(aa / ab) * 1,000,000
ad Net cost of screening and brief intervention (in millions, 1.5% discount) - Females	-\$19.80	Calculated
ae Total QALYs gained, 1.5% Discount - Females	4,223	Calculated
af CE (\$/QALY gained), 1.5% Discount - Females	-\$4,688	Calculated
ag Net cost of screening and brief intervention (in millions, 1.5% discount) - Males	-\$22.76	Calculated
ah Total QALYs gained, 1.5% Discount - Males	5,859	Calculated
ai CE (\$/QALY gained), 1.5% Discount - Males	-\$3,885	Calculated
aj Net cost of screening and brief intervention (in millions, 1.5% discount) - Total	-\$42.56	Calculated
ak Total QALYs gained, 1.5% Discount - Total	10,082	Calculated
al CE (\$/QALY gained), 1.5% Discount - Total	-\$4,221	Calculated

√ = Estimates from the literature

We also modified several major assumptions and recalculated the cost per QALY as follows:

- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8% and the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: **CE** = **\$2,835**
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27% and the effectiveness of interventions aimed at smoking cessation are increased from 34% to 69%: CE = Cost-saving
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8%: CE = Cost-saving
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27%: CE = Cost-saving
- Assume the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: CE = Cost-saving
- Assume the effectiveness of interventions aimed smoking cessation are increased from 34% to 69%: CE = Cost-saving
- Assume the QoL reduction associated with light/moderate/heavy smoking is reduced from 0.031 / 0.033 / 0.062 to 0.018 / 0.019 / 0.042: CE = Cost-saving
- Assume the QoL reduction associated with light/moderate/heavy smoking is increased from 0.031 / 0.033 / 0.062 to 0.045 / 0.047 / 0.082: CE = Cost-saving
- Assume the harms attributable to e-cigarette use are reduced from being 37% as harmful as smoking conventional cigarettes to being 10% as harmful: CE = Cost-saving
- Assume the harms attributable to e-cigarette use are increased from being 37% as harmful as smoking conventional cigarettes to being 60% as harmful: CE = Cost-saving

Summary of CE – Females Only

Based on these assumptions, the CE associated with interventions to prevent and/or treat tobacco smoking among female children and youth is cost-saving (Table 23, row *af*).

We also modified several major assumptions and recalculated the cost per QALY as follows:

- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8% and the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: **CE** = **\$4,290**
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27% and the effectiveness of interventions aimed at smoking cessation are increased from 34% to 69%: CE = Cost-saving
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8%: CE = Cost-saving
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27%: CE = Cost-saving
- Assume the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: CE = Cost-saving

- Assume the effectiveness of interventions aimed smoking cessation are increased from 34% to 69%: CE = Cost-saving
- Assume the QoL reduction associated with light/moderate/heavy smoking is reduced from 0.031 / 0.033 / 0.062 to 0.018 / 0.019 / 0.042: CE = Cost-saving
- Assume the QoL reduction associated with light/moderate/heavy smoking is increased from 0.031 / 0.033 / 0.062 to 0.045 / 0.047 / 0.082: CE = Cost-saving
- Assume the harms attributable to e-cigarette use are reduced from being 37% as harmful as smoking conventional cigarettes to being 10% as harmful: CE = Cost-saving
- Assume the harms attributable to e-cigarette use are increased from being 37% as harmful as smoking conventional cigarettes to being 60% as harmful: CE = Cost-saving

Summary of CE – Males Only

Based on these assumptions, the CE associated with interventions to prevent and/or treat tobacco smoking among male children and youth is cost-saving (Table 23, row *ai*).

We also modified several major assumptions and recalculated the cost per QALY as follows:

- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8% and the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: **CE** = **\$1,833**
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27% and the effectiveness of interventions aimed at smoking cessation are increased from 34% to 69%: CE = Cost-saving
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8%: CE = Cost-saving
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27%: CE = Cost-saving
- Assume the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: CE = Cost-saving
- Assume the effectiveness of interventions aimed smoking cessation are increased from 34% to 69%: CE = Cost-saving
- Assume the QoL reduction associated with light/moderate/heavy smoking is reduced from 0.031 / 0.033 / 0.062 to 0.018 / 0.019 / 0.042: CE = Cost-saving
- Assume the QoL reduction associated with light/moderate/heavy smoking is increased from 0.031 / 0.033 / 0.062 to 0.045 / 0.047 / 0.082: CE = Cost-saving
- Assume the harms attributable to e-cigarette use are reduced from being 37% as harmful as smoking conventional cigarettes to being 10% as harmful: CE = Cost-saving
- Assume the harms attributable to e-cigarette use are increased from being 37% as harmful as smoking conventional cigarettes to being 60% as harmful: CE = Cost-saving

Summary

Males and Females

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with interventions to prevent and/or treat tobacco smoking among children and youth ages 5 to 17 in a British Columbia birth cohort of 40,000 is estimated to be 10,082 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be cost-saving (see Table 24).

Table 24: Interventio	Table 24: Interventions for Tobacco Use Prevention and					
Cessation in Children and Youth						
In a B.C.	Birth Cohort	of 40,000				
	Summary					
	Base					
	Case	Rar	nge			
CPB (Potential QALYs Gaine	ed)					
1.5% Discount Rate	10,082	2,590	18,112			
3% Discount Rate	4,419	1,131	7,970			
0% Discount Rate	22,935	5,910	41,077			
CE (\$/QALY) including patie	nt time costs					
1.5% Discount Rate	Cost-saving	Cost-saving	\$2,835			
3% Discount Rate	Cost-saving	Cost-saving	\$10,538			
0% Discount Rate	Cost-saving	Cost-saving	Cost-saving			
CE (\$/QALY) excluding patie	ent time costs					
1.5% Discount Rate	Cost-saving	Cost-saving	Cost-saving			
3% Discount Rate	Cost-saving	Cost-saving	Cost-saving			
0% Discount Rate	Cost-saving	Cost-saving	Cost-saving			

Females Only

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with interventions to prevent and/or treat tobacco smoking among female children and youth ages 5 to 17 in a British Columbia birth cohort of 40,000 is estimated to be 4,223 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be cost-saving (see Table 25).

Table 25: Interventi	Table 25: Interventions for Tobacco Use Prevention and						
Cessation in Children and Youth							
In a B.O	C. Birth Cohort	of 40,000					
Sun	nmary - Female	es Only					
	Base						
	Case	Rar	nge				
CPB (Potential QALYs Gair	ned)						
1.5% Discount Rate	4,223	1,056	7,812				
3% Discount Rate	1,820	455	3,374				
0% Discount Rate	9,740	3,473	17,995				
CE (\$/QALY) including pat	ient time costs						
1.5% Discount Rate	Cost-saving	Cost-saving	\$4,290				
3% Discount Rate	Cost-saving	Cost-saving	\$14,625				
0% Discount Rate	Cost-saving	Cost-saving	Cost-saving				
CE (\$/QALY) excluding part	tient time costs						
1.5% Discount Rate	Cost-saving	Cost-saving	Cost-saving				
3% Discount Rate	Cost-saving	Cost-saving	Cost-saving				
0% Discount Rate	Cost-saving	Cost-saving	Cost-saving				

Males Only

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with interventions to prevent and/or treat tobacco smoking among male children and youth ages 5 to 17 in a British Columbia birth cohort of 40,000 is estimated to be 5,859 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be cost-saving (see Table 26).

Table 26: Interventions for Tobacco Use Prevention and							
Cessation in Children and Youth							
In a B.C.	Birth Cohort	of 40,000					
Sum	nmary - Males	5 Only					
	Base						
	Case	Rar	nge				
CPB (Potential QALYs Gaine	d)						
1.5% Discount Rate	5,859	1,534	10,300				
3% Discount Rate	2,598	676	4,596				
0% Discount Rate	13,195	3,473	23,083				
CE (\$/QALY) including patie	nt time costs						
1.5% Discount Rate	Cost-saving	Cost-saving	\$1,833				
3% Discount Rate	Cost-saving	Cost-saving	\$7,791				
0% Discount Rate	Cost-saving	Cost-saving	Cost-saving				
CE (\$/QALY) excluding patie	ent time costs						
1.5% Discount Rate	Cost-saving	Cost-saving	Cost-saving				
3% Discount Rate	Cost-saving	Cost-saving	Cost-saving				
0% Discount Rate	Cost-saving	Cost-saving	Cost-saving				

Preventive Medication / Devices

Fissure Sealants for Dental Health in Children

The Cochrane Oral Health Group (2017)

Resin-based sealants applied on occlusal surfaces of permanent molars are effective for preventing caries in children and adolescents. Our review found moderate-quality evidence that resin-based sealants reduced caries by between 11% and 51% compared to no sealant, when measured at 24 months.⁴²⁸

Dental Sealants - Modelling the Clinically Preventable Burden

While the focus of the USPSTF is on improving dental health in preschool children, there is also a body of evidence indicating that the use of dental sealants is effective in preventing decayed, missing and filled teeth in children six years of age and older with permanent teeth.⁴²⁹

In this section, we model the CPB associated with applying dental sealants for the prevention of dental caries in children and youth with permanent teeth.

In modelling CPB, we made the following assumptions:

- A study in Portugal based on a sample of 447 adolescents aged 12 to 18 found that 59% (Table 1, row *b*) had at least one fissure sealant applied.⁴³⁰
- Dental sealants would be placed on the 1st molars at age six, the 1st and 2nd bicuspids at age 10 and the 2nd molars at age 12.
- The effectiveness of dental sealants in reducing decayed, missing and filled teeth is 84% at year 1, decreasing to 55% at year 9. Effectiveness beyond nine years is unknown.⁴³¹
- An estimated 12.2% of Canadians avoid certain foods because of problems with their teeth or mouth, and 11.6% of Canadians sometimes or always have pain in their mouth.⁴³² Based on this information, we assumed that 12% of children/youth with caries would have significant enough pain to reduce their quality of life (Table 1, row *j*).
- The Global Burden of Disease Study found that symptomatic dental caries ("has a toothache, which causes some difficulty in eating") is associated with a disability weight of 0.01 (95% CI of 0.005 to 0.019) (Table 1, row *l*). Severe tooth loss ("has lost more than 20 teeth including front and back, and has great difficulty eating meat,

 ⁴²⁸ Cochrane Oral Health Group. *Pit and fissure sealants for preventing dental decay in permanent teeth*. The Cochrane Library. July 31, 2017. Available online at http://www.cochrane.org/CD001830/ORAL_sealants-preventing-tooth-decay-permanent-teeth. Accessed September 2017.
 ⁴²⁹ Cochrane Oral Health Group. *Pit and fissure sealants for preventing dental decay in permanent teeth*. The

⁴²⁹ Cochrane Oral Health Group. *Pit and fissure sealants for preventing dental decay in permanent teeth*. The Cochrane Library. July 31, 2017. Available online at <u>http://www.cochrane.org/CD001830/ORAL_sealants-preventing-tooth-decay-permanent-teeth</u>. Accessed September 2017.

⁴³⁰ Veiga N, Pereira C, Ferreira P et al. Prevalence of dental caries and fissure sealants in a Portuguese sample of adolescents. *PloS ONE*. 2015; 10(3): 1-12.

⁴³¹ Ahovuo-Saloranta A, Forss H, Walsh T et al. Sealants for preventing dental decay in the permanent teeth. *Cochrane Database of Systematic Reviews*. 2013.

⁴³² Canadian Dental Association. *Dental Health Services in Canada: Facts and Figures 2010*. 2010. Available at http://www.med.uottawa.ca/sim/data/Dental/Dental_Health_Services_in_Canada_June_2010.pdf. Accessed January 2014.

fruits and vegetables") is associated with a disability weight of 0.067 (95% CI of 0.045 to 0.095). $^{\rm 433}$

• Other assumptions used in assessing the clinically preventable burden are detailed in the Reference Document.

Based on these assumptions, the CPB associated with preventing decayed, missing and filled teeth in children with permanent teeth is 157 (Table 1, row m). The CPB of 157 represents the gap between no coverage and improving coverage to 59%.

Tab	Table 1: CPB of Preventing Dental Caries in Children with Permanent Teeth in a						
	Birth Cohort of 40,000 (B.C.)						
Row							
Label	Variable	Base Case	Data Source				
а	# of 6-year olds in a birth cohort of 40,000	39,829	V				
b	Adherence with intervention	59%	V				
с	Children 'accepting' intervention	23,499	=a*b				
d	Estimated new caries between ages 6-20 per child - untreated	7.69	Calculated				
е	Estimated new caries between ages 6-20 per child - treated	2.46	Calculated				
f	Estimated new caries without intervention	180,668	=c*d				
g	Estimated new caries with intervention	57,734	=c*e				
h	New caries avoided with intervention	122,934	=f-g				
i	Life-years lived without caries due to intervention	130,681	Calculated				
j	Proportion of children living with caries with significant pain	12%	V				
k	Life-years lived without caries or pain due to intervention	15,682	=i*j				
1	Change in QoL associated with improved oral health	0.01	V				
m	Potential QALYs gained, Intervention increasing from 0% to 59%	157	=k*l				
n	Potential QALYs gained, Intervention increasing from 30% to 59%	90	=d18/7*4				

v = Estimates from the literature

We also modified a major assumption and recalculated the CPB as follows:

- Assume the change in QoL associated with improved oral health is reduced from 0.01 to 0.005 (Table 1, row m): CPB = 78
- Assume the change in QoL associated with improved oral health is increased from 0.01 to 0.019 (Table 4, row *m*): CPB = 298

Dental Sealants - Modelling Cost-Effectiveness

In this section, we model the CE associated with applying dental sealants for the prevention of dental caries in children and youth with permanent teeth.

In modelling CE, we made the following assumptions:

- The cost of applying sealants is estimated at \$19.74 for the first tooth in a quadrant and \$10.83 for each additional tooth in the quadrant (see Reference Document). The costs of applying dental sealants on the 1st molars at age six would therefore be \$78.96, the 1st and 2nd bicuspids at age 10 would be \$122.32 and the 2nd molars at age 12 would be \$78.96 for a total cost of \$280.24 (Table 2, row *d*).
- For patient time and travel costs, we estimated two hours of patient time per dental visit.

⁴³³ Institute for Health Metrics and Evaluation. *GBD 2016 sequelae, health states, health state lay descriptions, and disability weights*. Available online at <u>http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights</u>. Accessed September 2023.

- An average of 1.84 fillings would be treated each time fillings are required (Table 2, row l).⁴³⁴
- An amalgam restoration costs between \$83.10 and \$102.40 depending on whether or not the restoration is bonded and to which teeth the restoration is applied.⁴³⁵ We used the mid-point (\$92.75, Table 2 row j) for the base case and the extremes in the sensitivity analysis.
- The cost per day surgery for dental cavities in BC is estimated at \$1,782 which includes \$1,515 for hospital and \$267 for anaesthesia costs in 2011⁴³⁶ or \$2,108 in 2022 dollars.
- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with preventing dental caries in children with permanent teeth by applying dental sealants is cost-saving (Table 2, row v).

Table 2: CE of Preventing Dental Caries in Children with Permanent Teeth in a Birth				
	Cohort of 40.000 (B.C.)			
Row				
Label	Variable	Base Case	Data Source	
а	Children eligible for intervention	39,829	= Table 1 row a	
b	Adherence with intervention	59%	= Table 1 row b	
с	Children 'accepting' intervention	23,499	= Table 1 row c	
	Costs of intervention			
d	Cost of dental sealant applications	\$280.24	V	
е	Value of patient time and travel for office visit	\$74.32	V	
f	# of sealant applications (at age 6, 10 and 12)	3	V	
g	Estimated cost of intervention over lifetime of birth cohort	\$8,713,514	Calculated	
h	Estimated cost of patient time over lifetime of birth cohort	\$5,239,388	Calculated	
	Cost avoided			
i	Dental caries avoided with intervention	122,934	Calculated	
j	Cost per filling	\$92.75	V	
k	Value of patient time and travel for office visit	\$74.32	V	
I	# of fillings per visit	1.84	V	
m	# of dental visits avoided	66,812	=i/l	
n	Filling costs avoided	-\$11,402,091	=i*j	
о	Patient costs avoided	-\$4,965,448	=m*k	
	CE calculation			
р	Cost of intervention over lifetime of birth cohort	\$13,952,902	= g+h	
q	Costs avoided	-\$16,367,539	= n+o	
r	QALYs saved	157	Table 1 row m	
S	Cost of intervention over lifetime of birth cohort (1.5% discount	\$13,276,048	Calculated	
t	Costs avoided (1.5% discount)	-\$14,593,381	Calculated	
u	QALYs saved (1.5% discount)	140	Calculated	
v	CE (\$/QALY saved)	-\$9,413	= (s-t) / u	

√ = Estimates from the literature

⁴³⁴ Dye B, Tan S, Smith V et al. Trends in oral health status: United States, 1988-1994 and 1999-2004. *National Center for Health Statistics*. 2007; 11(248): 1-104.

⁴³⁵ Ibid.

⁴³⁶ Canadian Institute for Health Information. *Treatment of Preventable Dental Cavities in Preschoolers: A Focus on Day Surgery Under General Anesthesia*. 2013. Available at

https://secure.cihi.ca/free_products/Dental_Caries_Report_en_web.pdf. Accessed January 2018.

We also modified several major assumptions and recalculated the cost per QALY as follows:

- Assume the change in QoL associated with improved oral health is reduced from 0.01 to 0.005 (Table 1, row *l*): CE = Cost-saving
- Assume the change in QoL associated with improved oral health is increased from 0.01 to 0.019 (Table 1, row *l*): CE = Cost-saving
- Assume that the cost per filling is reduced from \$92.75 to \$83.10 (Table 2, row *j*): CE = Cost-saving
- Assume that the cost per filling is increased from \$92.75 to \$102.40 (Table 2, row *j*): CE = Cost-saving

Dental Sealants - Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with applying dental sealants for the prevention of dental caries in children and youth with permanent teeth is estimated to be 140 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be cost-saving (see Table 3).

able 3: Dental Sealants for in a Birth C	r Children w Cohort of 40	vith Perma 9,000	anent Teet
Su	ummary		
	Base		
	Case	Rai	nge
CPB (Potential QALYs Gained)			
Assume No Current Service			
1.5% Discount Rate	140	70	266
3% Discount Rate	125	63	238
0% Discount Rate	157	78	298
CE (\$/QALY) including patient time	e costs		
1.5% Discount Rate	Cost-saving	Cost-saving	Cost-saving
3% Discount Rate	Cost-saving	Cost-saving	\$4,475
0% Discount Rate	Cost-saving	Cost-saving	Cost-saving
CE (\$/QALY) excluding patient time	e costs		
1.5% Discount Rate	Cost-saving	Cost-saving	Cost-saving
3% Discount Rate	Cost-saving	Cost-saving	Cost-saving
0% Discount Rate	Cost-saving	Cost-saving	Cost-saving

Clinical Prevention in Adults

Screening for Asymptomatic Disease or Risk Factors

Screening for Breast Cancer

Canadian Task Force on Preventive Health Care Recommendations (2011)

For women aged 40–49 we recommend not routinely screening with mammography. (*Weak recommendation; moderate quality evidence*)

For women aged 50–69 years we recommend routinely screening with mammography every 2 to 3 years. (Weak recommendation; moderate quality evidence)

*For women aged 70–74 we recommend routinely screening with mammography every 2 to 3 years. (Weak recommendation; low quality evidence)*⁴³⁷

United States Preventive Services Task Force Recommendations (2016)

*The USPSTF recommends biennial screening mammography for women aged 50 to 74 years. (B recommendation)*⁴³⁸

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with screening women ages 50 to 74 years of age for breast cancer every 2 to 3 years.

In modelling CPB, we made the following assumptions:

- Based on BC life tables for 2018 to 2020, a total of 4,459 deaths would be expected in females between the ages of 50-79 in a BC birth cohort of 40,000 (see Table 1). While routine screening occurs to age 74, we have assumed the protective effect of that routine screening would continue to age 79.
- Based on BC vital statistics data, there were 2,049 deaths in females between the ages of 45 and 64 in BC in 2015, with 215 (10.49%) of these deaths due to breast cancer (ICD-10 codes C50). There were also 4,087 deaths between the ages of 65 and 79 that year, with 258 (6.31%) of these deaths due to breast cancer.⁴³⁹ This suggests that 320 of the 4,459 (7.18%) of the female deaths in the BC birth cohort between the ages of 50 and 79 would be due to breast cancer (see Table 1).

⁴³⁷ Canadian Task Force on Preventive Health Care. *Screening for Breast Cancer*. 2011. Available at http://canadiantaskforce.ca/guidelines/2011-breast-cancer/. Accessed October 2013.

⁴³⁸ U.S. Preventive Services Task Force. Screening for breast cancer: U.S. Preventive Services Task Force recommendation statement. *Annals of Internal Medicine*. 2016; 164(4): 279-97.

⁴³⁹ British Columbia Vital Statistics Agency. *Selected Vital Statistics and Health Status Indicators: One Hundred and Forty-Fourth Annual Report 2015.* Apendix 2. 2015. British Columbia Ministry of Health. Available at https://alpha.gov.bc.ca/assets/gov/birth-adoption-death-marriage-and-divorce/statistics-reports/annualreports/2015/pdf/annual-report-2015.pdf. Accessed March 2023.

Table 1: Mortality Due to Breast Cancer Between the Ages of 50 and 79							
	in a Britisł	n Columbia	a Birth Co	ohort	of 40,00	0	
Deaths in Deaths due to Life Years Lost							
Age	Life Years	Birth	Breast Cancer		Per		
Group	Lived	Cohort	%	#	Death	Total	
50-54	96,645	198	10.49%	21	34.6	720	
55-59	95,436	292	10.49%	31	30.0	920	
60-64	93,628	443	10.49%	46	25.5	1,186	
65-69	90,843	690	6.31%	44	21.2	923	
70-74	86,461	1,095	6.31%	69	17.1	1,179	
75-79	79,488	1,741	6.31%	110	13.3	1,456	
		4,459	7.18%	320	19.9	6,384	

- Screening mammography in women ages 50-74 leads to a reduction in breast cancer mortality of 21% (RR 0.79, 95% CI of 0.68 0.90). This is based on 10 trials in which the attendance rates at first screening were approximately 85%.⁴⁴⁰
- For every death avoided, 204 women will have false positive results.⁴⁴¹ We have assumed a one-time QALY loss of 0.013 (4.7 days) after a false-positive mammography result.⁴⁴²
- For every death avoided, 26 women will have an unnecessary biopsy.⁴⁴³
- For every death avoided, 3 women will have an unnecessary lumpectomy or mastectomy (with a 3:1 ratio for lumpectomy vs. mastectomy).⁴⁴⁴
- Other assumptions used in assessing the clinically preventable burden are detailed in the Reference Document.

Based on these assumptions, the CPB associated with screening women ages 50 to 74 years of age for breast cancer every 2 to 3 years is 1,380 QALYs saved (Table 2, row *o*). The CPB of 1,380 represents the gap between no coverage and the 'best in the world' coverage estimated at 88%. The CPB of 565 QALYs saved (see Table 2, row *p*) represents the gap between the current coverage of 52% and the 'best in the world' coverage estimated at 88%.

 ⁴⁴⁰ Fitzpatrick-Lewis D, Hodgson N, Ciliska D et al. *Breast Cancer Screening*. 2011. Available at
 http://canadiantaskforce.ca/wp-content/uploads/2012/09/Systematic-review.pdf?0136ff. Accessed October 2013.
 ⁴⁴¹ Ibid.

⁴⁴² Schousboe JT, Kerlikowske K, Loh A et al. Personalizing mammography by breast density and other risk factors for breast cancer: analysis of health benefits and cost-effectiveness. *Annals of Internal Medicine*. 2011; 155(1): 10-20.

 ⁴⁴³ Fitzpatrick-Lewis D, Hodgson N, Ciliska D et al. *Breast Cancer Screening*. 2011. Available at http://canadiantaskforce.ca/wp-content/uploads/2012/09/Systematic-review.pdf?0136ff. Accessed October 2013.
 ⁴⁴⁴ Independent UK Panel on Breast Cancer Screening. The benefits and harms of breast cancer screening: an independent review. *The Lancet*. 2012; 380: 1778-86.

Table 2. Calculation of Clinically Preventable Burden of Breast Cancer Screening BeingOffered to a Birth Cohort of 40,000 Between the Ages of 50 to 74

Row	Variable	Base Case	Data Source
	Estimated Current Status		
а	Estimated deaths due to breast cancer in birth cohort between ages 50-79	320	Table 1
b	Effectiveness of mammography screening in preventing mortality (based on 85% adherence in clinical trials)	21.0%	v
с	Effectiveness of mammography screening in preventing mortality (assuming 100% adherence in clinical trials)	24.7%	=b*1.1764
d	Frequency of screening in last 30 months	52%	Ref Doc
е	Potential adherence	88%	Ref Doc
f	Predicted deaths in the absence of screening	368	= a / (1 - d * c)
	Benefits of Screening		
g	Deaths avoided - 100% adherence	91	= f * c
h	Deaths avoided - 88% adherence	80	= g * e
i	Deaths avoided - 52% adherence	47	= g * d
j	Life expectancy at average age of breast cancer death	19.9	Table 1
k	QALYs saved with 88% adherence to screening	1,592	= h * j
	Harms Associated with Screening		
I	False positive results per death avoided	204	V
m	Reduced QALYs per false positive	0.013	V
n	Reduced QALYs associated with false positives	-212	= h * l * m
	Summary of Benefits and Harms		
0	Potential QALYs saved - Utilization increasing from 0% to 88%	1,380	= k + n
р	Potential QALYs saved - Utilization increasing from 52% to 88%	565	= o * (e-d)/e

∨ = Estimates from the literature

We modified the following major assumptions and recalculated the CPB as follows:

- Assume the effectiveness of screening mammography in reducing deaths from breast cancer is reduced from 21% to 10% (Table 2, row *b*): **CPB = 610**.
- Assume the effectiveness of screening mammography in reducing deaths from breast cancer is increased from 21% to 32% (Table 2, row *b*): **CPB = 2,280.**

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with screening women ages 50 to 74 years of age for breast cancer every 2 to 3 years.

In estimating the CE of screening mammography, we made the following assumptions:

• **Costs of screening** - Information from the BC Cancer Agency Screening Mammography Program indicates a cost of \$79.35 per screen in 2015/16.⁴⁴⁵ or \$90.23 in 2022 CAD. There are a total of 463,013 life years lived in females ages 50-74 in a BC birth cohort of 40,000 (see Table 1). We assumed that, on average, women would participate in screening once every 30 months (i.e., every 2.5 years), resulting in 185,205 screens for the birth cohort assuming 100% adherence. At 88% adherence, the number of screens would be reduced to 162,981 (Table 3, row *a* & *b*).

⁴⁴⁵ BC Cancer Agency. *Screening Mammography Program: 2016 Annual Report.* 2016. Available at http://www.bccancer.bc.ca/screening/Documents/SMP_Report-AnnualReport2016.pdf. Accessed August 2017.

- **Costs associated with overtreatment** For every death avoided, 3 women will have an unnecessary lumpectomy or mastectomy (with a 75:25 ratio for lumpectomy vs. mastectomy) with a cost per lumpectomy of \$5,770 and a mastectomy of \$8,130 (see reference document) for a weighted cost of \$6,360 (Table 2, row *k*).
- **Patient time and travel costs** For patient time and travel costs, we assumed an estimated two hours of patient time required per screening visit of \$74.32, 7.5 for a biopsy and 37.5 hours for a lumpectomy or mastectomy.
- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with screening women ages 50 to 74 years of age for breast cancer every 2 to 3 years would be \$20,211 / QALY (Table 3, row *u*).

B.C. Birth Cohort of 40,000RowVariableBase CaseData SourceaScreening visits with 100% Adherence185,205VbScreening visits with 88% Adherence162,981= a * Table 2, row ecCost per screen\$90.23Ref DocdValue of patient time (per hour)\$37.16Ref DoceScreening costs\$14,705,750= b * cfPatient time costs\$12,112,727= (b * d) * 2gDeaths avoided80Table 2, row hhCosts avoided per death prevented-\$42,220,980= g * hiCosts avoided due to deaths prevented-\$4,220,980= g * hjUnnecessary lumpectomies / mastectomies for every death avoided3VkCosts associated with unnecessary lumpectomies / mastectomies\$1,524,702= g * j * kmUnnecessary biopsies per death avoided26VnCosts for unnecessary biopsies\$893,405= n * f * op Patient time and travel costs associated with unnecessary procedures\$913,119= ((g * j * 7.5) + (g * m * 37.5)) * dqNet costs (1.5% discount)\$21,544,954CalculatedtCPB (ndiscounted\$25,928,724= e + f + i + 1 + o + prCPB (ndiscounted\$21,544,954CalculatedtCPB (1.5% discount)\$20,211= s / t	1	Table 3. Summary of CE Estimate for Breast Cancer Screening				
RowVariableBase CaseData SourceaScreening visits with 100% Adherence185,205VbScreening visits with 88% Adherence162,981= a * Table 2, row ecCost per screen\$90.23Ref DocdValue of patient time (per hour)\$37.16Ref DoceScreening costs\$14,705,750= b * cfPatient time costs\$12,112,727= (b * d) * 2gDeaths avoided80Table 2, row hhCosts avoided per death prevented-\$52,821Ref DociCosts avoided due to deaths prevented-\$4,220,980= g * hjUnnecessary lumpectomies / mastectomies for every death avoided3VkCosts per lumpectomy / mastectomy\$6,360Ref DoclCosts associated with unnecessary lumpectomies / mastectomies\$11,524,702= g * j * kmUnnecessary biopsies per death avoided26VnCosts for unnecessary biopsies\$893,405= n * f * opPatient time and travel costs associated with unnecessary procedures\$913,119=((g * j * 7.5) + (g * m * 37.5)) * dqNet costs undiscounted\$25,928,724= e + f + i + I + 0 + prCPB (1.5% discount)\$21,544,954CalculatedtCPB (1.5% discount)\$20,211= s / t		B.C. Birth Cohort of 4	10,000			
aScreening visits with 100% Adherence185,205VbScreening visits with 88% Adherence162,981= a * Table 2, row ecCost per screen\$90.23Ref DocdValue of patient time (per hour)\$37.16Ref DoceScreening costs\$14,705,750= b * cfPatient time costs\$12,112,727= (b * d) * 2gDeaths avoided80Table 2, row hhCosts avoided per death prevented-\$52,821Ref DociCosts avoided due to deaths prevented-\$4,220,980= g * hjUnnecessary lumpectomies / mastectomies for every death avoided3VkCosts per lumpectomy / mastectomy\$6,360Ref DoclCosts associated with unnecessary lumpectomies / mastectomies\$1,524,702= g * j * kmUnnecessary biopsies per death avoided26VnCosts for unnecessary biopsies\$893,405= n * f * opPatient time and travel costs associated with unnecessary procedures\$913,119= ((g * j * 7.5)+(g * m * 37.5)) * dqNet costs (1.5% discount)\$21,544,954CalculatedtCPB (1.5% discount)\$21,544,954CalculateduCE (\$/QALY saved)\$20,211= s / t	Row	Variable	Base Case	Data Source		
bScreening visits with 88% Adherence162,981= a * Table 2, row ecCost per screen\$90.23Ref DocdValue of patient time (per hour)\$37.16Ref DoceScreening costs\$14,705,750= b * cfPatient time costs\$12,112,727= (b * d) * 2gDeaths avoided80Table 2, row hhCosts avoided per death prevented-\$52,821Ref DociCosts avoided due to deaths prevented-\$4,220,980= g * hjUnnecessary lumpectomies / mastectomies for every death avoided3VkCosts per lumpectomy / mastectomy\$6,360Ref DoclCosts associated with unnecessary lumpectomies / mastectomies\$1,524,702= g * j * kmUnnecessary biopsies per death avoided26VnCost for unnecessary biopsies\$893,405= n * f * opPatient time and travel costs associated with unnecessary procedures\$913,119= ((g * j * 7.5)+(g * m * 37.5)) * dqNet costs undiscounted\$25,928,724= e + f + i + I + o + prCPB undiscounted\$21,544,954CalculatedtCPB (1.5% discount)\$21,544,954CalculateduCE (\$/QALY saved)\$20,211= s / t	а	Screening visits with 100% Adherence	185,205	V		
cCost per screen\$90.23Ref DocdValue of patient time (per hour)\$37.16Ref DoceScreening costs\$14,705,750= b * cfPatient time costs\$12,112,727= (b * d) * 2gDeaths avoided80Table 2, row hhCosts avoided per death prevented-\$52,821Ref DociCosts avoided due to deaths prevented-\$4,220,980= g * hjUnnecessary lumpectomies / mastectomies for every death avoided3VkCosts per lumpectomy / mastectomy\$6,360Ref DoclCosts associated with unnecessary lumpectomies / mastectomies\$1,524,702= g * j * kmUnnecessary biopsies per death avoided26VnCost per unnecessary biopsies\$893,405= n * f * opPatient time and travel costs associated with unnecessary procedures\$913,119= ((g * j * 7.5)+(g * m * 37.5)) * dqNet costs undiscounted\$25,928,724= e + f + i + I + o + prCPB undiscounted\$21,544,954CalculatedtCPB (1.5% discount)\$21,544,954CalculateduCE (\$/QALY saved)\$20,211= s / t	b	Screening visits with 88% Adherence	162,981	= a * Table 2, row e		
dValue of patient time (per hour)\$37.16Ref DoceScreening costs\$14,705,750= b * cfPatient time costs\$12,112,727= (b * d) * 2gDeaths avoided80Table 2, row hhCosts avoided per death prevented-\$52,821Ref DociCosts avoided due to deaths prevented-\$4,220,980= g * hjUnnecessary lumpectomies / mastectomies for every death avoided3VkCosts per lumpectomy / mastectomy\$6,360Ref DoclCosts associated with unnecessary lumpectomies / mastectomies\$1,524,702= g * j * kmUnnecessary biopsies per death avoided26VnCost per unnecessary biopsies\$430Ref DocoCosts for unnecessary biopsies\$893,405= n * f * opPatient time and travel costs associated with unnecessary procedures\$913,119 37.5) * dqNet costs undiscounted\$25,928,724= e + f + i + l + o + prCPB undiscounted\$21,544,954CalculatedtCPB (1.5% discount)\$21,544,954CalculateduCE (\$/QALY saved)\$20,211= s / t	С	Cost per screen	\$90.23	Ref Doc		
eScreening costs\$14,705,750 $= b * c$ fPatient time costs\$12,112,727 $= (b * d) * 2$ gDeaths avoided80Table 2, row hhCosts avoided per death prevented $-$52,821$ Ref DociCosts avoided due to deaths prevented $-$4,220,980$ $= g * h$ jUnnecessary lumpectomies / mastectomies for every death avoided3 \vee kCosts per lumpectomy / mastectomy\$6,360Ref DoclCosts associated with unnecessary lumpectomies / mastectomies $$1,524,702$ $= g * j * k$ mUnnecessary biopsies per death avoided26 \vee nCost per unnecessary biopsies\$430Ref DocoCosts for unnecessary biopsies\$893,405 $= n * f * o$ pPatient time and travel costs associated with unnecessary procedures\$913,119 $= ((g * j * 7.5) + (g * m * 37.5)) * d$ qNet costs undiscounted\$25,928,724 $= e + f + i + l + o + p$ rCPB undiscounted\$21,544,954CalculatedtCPB (1.5% discount)\$21,544,954CalculateduCE (\$/QALY saved)\$20,211 $= s / t$	d	Value of patient time (per hour)	\$37.16	Ref Doc		
fPatient time costs\$12,112,727 $=(b * d) * 2$ gDeaths avoided80Table 2, row hhCosts avoided per death prevented $-$52,821$ Ref DociCosts avoided due to deaths prevented $-$4,220,980$ $=g * h$ jUnnecessary lumpectomies / mastectomies for every death avoided3 \vee kCosts per lumpectomy / mastectomy\$6,360Ref DoclCosts associated with unnecessary lumpectomies / mastectomies $$1,524,702$ $=g * j * k$ mUnnecessary biopsies per death avoided26 \vee nCost per unnecessary biopsy\$430Ref DocoCosts for unnecessary biopsies\$893,405 $=n * f * o$ pPatient time and travel costs associated with unnecessary procedures $$913,119$ $=((g * j * 7.5) + (g * m * a),53) * d$ qNet costs undiscounted\$25,928,724 $=e + f + i + l + o + p$ rCPB undiscounted\$21,544,954CalculatedtCPB (1.5% discount)\$21,544,954CalculateduCE (\$/QALY saved)\$20,211 $=s / t$	е	Screening costs	\$14,705,750	= b * c		
gDeaths avoided80Table 2, row hhCosts avoided per death prevented-\$52,821Ref DociCosts avoided due to deaths prevented-\$4,220,980=g*hjUnnecessary lumpectomies / mastectomies for every death avoided3VkCosts per lumpectomy / mastectomy\$6,360Ref DoclCosts associated with unnecessary lumpectomies / mastectomies\$1,524,702=g*j*kmUnnecessary biopsies per death avoided26VnCost per unnecessary biopsies\$893,405=n*f*opPatient time and travel costs associated with unnecessary procedures\$913,119=((g*j*7.5)+(g*m*) 37.5))*dqNet costs undiscounted\$25,928,724=e+f+i+l+o+prCPB undiscounted1,380Table 2, row osNet costs (1.5% discount)\$21,544,954CalculateduCE (\$/QALY saved)\$20,211=s / t	f	Patient time costs	\$12,112,727	= (b * d) * 2		
hCosts avoided per death prevented-\$52,821Ref DociCosts avoided due to deaths prevented-\$4,220,980=g*hjUnnecessary lumpectomies / mastectomies for every death avoided3VkCosts per lumpectomy / mastectomy\$6,360Ref DoclCosts associated with unnecessary lumpectomies / mastectomies\$1,524,702=g*j*kmUnnecessary biopsies per death avoided26VnCosts per unnecessary biopsy\$430Ref DocoCosts for unnecessary biopsies\$893,405=n*f*opPatient time and travel costs associated with unnecessary procedures\$913,119=((g*j*7.5)+(g*m* 37.5))*dqNet costs undiscounted\$25,928,724=e+f+i+l+o+prCPB undiscounted\$21,544,954CalculatedtCPB (1.5% discount)\$21,544,954CalculateduCE (\$/QALY saved)\$20,211=s/t	g	Deaths avoided	80	Table 2, row h		
iCosts avoided due to deaths prevented-\$4,220,980=g*hjUnnecessary lumpectomies / mastectomies for every death avoided3VkCosts per lumpectomy / mastectomy\$6,360Ref DoclCosts associated with unnecessary lumpectomies / mastectomies\$1,524,702=g*j*kmUnnecessary biopsies per death avoided26VnCost per unnecessary biopsy\$430Ref DocoCosts for unnecessary biopsies\$893,405=n*f*opPatient time and travel costs associated with unnecessary procedures\$913,119=((g*j*7.5)+(g*m* 37.5))*dqNet costs undiscounted\$25,928,724=e+f+i+l+o+prCPB undiscounted\$21,544,954CalculatedtCPB (1.5% discount)\$1,066CalculateduCE (\$/QALY saved)\$20,211=s/t	h	Costs avoided per death prevented	-\$52,821	Ref Doc		
jUnnecessary lumpectomies / mastectomies for every death avoided3VkCosts per lumpectomy / mastectomy\$6,360Ref DoclCosts associated with unnecessary lumpectomies / mastectomies\$1,524,702=g*j*kmUnnecessary biopsies per death avoided26VnCost per unnecessary biopsy\$430Ref DocoCosts for unnecessary biopsies\$893,405=n*f*opPatient time and travel costs associated with unnecessary procedures\$913,119=((g*j*7.5)+(g*m* 37.5))*dqNet costs undiscounted\$25,928,724=e+f+i+l+o+prCPB undiscounted\$21,544,954CalculatedtCPB (1.5% discount)\$1,066CalculateduCE (\$/QALY saved)\$20,211=s/t	i	Costs avoided due to deaths prevented	-\$4,220,980	= g * h		
Jevery death avoidedSVkCosts per lumpectomy / mastectomy\$6,360Ref DocICosts associated with unnecessary lumpectomies / mastectomies\$1,524,702=g*j*kmUnnecessary biopsies per death avoided26VnCost per unnecessary biopsy\$430Ref DocoCosts for unnecessary biopsies\$893,405=n*f*opPatient time and travel costs associated with unnecessary procedures\$913,119=((g*j*7.5)+(g*m* 37.5))*dqNet costs undiscounted\$25,928,724=e+f+i+l+o+prCPB undiscounted\$21,544,954CalculatedtCPB (1.5% discount)\$20,211=s/t	;	Unnecessary lumpectomies / mastectomies for	2	N		
kCosts per lumpectomy / mastectomy\$6,360Ref DocICosts associated with unnecessary lumpectomies / mastectomies\$1,524,702=g*j*kmUnnecessary biopsies per death avoided26VnCost per unnecessary biopsy\$430Ref DocoCosts for unnecessary biopsies\$893,405=n*f*opPatient time and travel costs associated with unnecessary procedures\$913,119=((g*j*7.5)+(g*m* 37.5))*dqNet costs undiscounted\$25,928,724=e+f+i+l+o+prCPB undiscounted\$21,544,954CalculatedtCPB (1.5% discount)\$21,544,954CalculateduCE (\$/QALY saved)\$20,211=s/t	J	every death avoided	5	V		
ICosts associated with unnecessary lumpectomies / mastectomies $\$1,524,702$ $=g*j*k$ mUnnecessary biopsies per death avoided26 \checkmark nCost per unnecessary biopsy $\$430$ Ref DocoCosts for unnecessary biopsies $\$893,405$ $=n*f*o$ pPatient time and travel costs associated with unnecessary procedures $\$913,119$ $=((g*j*7.5)+(g*m*)$	k	Costs per lumpectomy / mastectomy	\$6,360	Ref Doc		
mUnnecessary biopsies per death avoided26 \vee nCost per unnecessary biopsy\$430Ref DocoCosts for unnecessary biopsies\$893,405=n*f*opPatient time and travel costs associated with unnecessary procedures $\$913,119$ =((g*j*7.5)+(g*m* 37.5))*dqNet costs undiscounted\$25,928,724=e+f+i+l+o+prCPB undiscounted1,380Table 2, row osNet costs (1.5% discount)\$21,544,954CalculatedtCPB (1.5% discount)1,066Calculatedu CE (\$/QALY saved)\$20,211 =s/t	I	Costs associated with unnecessary lumpectomies / mastectomies	\$1,524,702	= g * j * k		
nCost per unnecessary biopsy\$430Ref DocoCosts for unnecessary biopsies\$893,405= n * f * opPatient time and travel costs associated with unnecessary procedures\$913,119= ((g * j * 7.5)+(g * m * 37.5)) * dqNet costs undiscounted\$25,928,724= e + f + i + l + o + prCPB undiscounted1,380Table 2, row osNet costs (1.5% discount)\$21,544,954CalculatedtCPB (1.5% discount)1,066CalculateduCE (\$/QALY saved)\$20,211= s / t	m	Unnecessary biopsies per death avoided	26	V		
oCosts for unnecessary biopsies\$893,405 $= n * f * o$ pPatient time and travel costs associated with unnecessary procedures $$913,119$ $=((g * j * 7.5)+(g * m * 37.5))*d$ qNet costs undiscounted\$25,928,724 $=e+f+i+l+o+p$ rCPB undiscounted1,380Table 2, row osNet costs (1.5% discount)\$21,544,954CalculatedtCPB (1.5% discount)1,066CalculateduCE (\$/QALY saved)\$20,211 $= s / t$	n	Cost per unnecessary biopsy	\$430	Ref Doc		
Patient time and travel costs associated with unnecessary procedures $\$913,119$ $=((g * j * 7.5)+(g * m * 37.5)) * d$ qNet costs undiscounted $\$25,928,724$ $=e + f + i + l + o + p$ rCPB undiscounted1,380Table 2, row osNet costs (1.5% discount) $\$21,544,954$ CalculatedtCPB (1.5% discount)1,066CalculateduCE (\$/QALY saved)\$20,211 $= s / t$	0	Costs for unnecessary biopsies	\$893,405	= n * f * o		
p unnecessary procedures \$913,119 37.5))*d q Net costs undiscounted \$25,928,724 =e+f+i+l+o+p r CPB undiscounted 1,380 Table 2, row o s Net costs (1.5% discount) \$21,544,954 Calculated t CPB (1.5% discount) 1,066 Calculated u CE (\$/QALY saved) \$20,211 =s / t		Patient time and travel costs associated with	¢012 110	= ((g * j * 7.5)+(g * m *		
q Net costs undiscounted \$25,928,724 =e+f+i+l+o+p r CPB undiscounted 1,380 Table 2, row o s Net costs (1.5% discount) \$21,544,954 Calculated t CPB (1.5% discount) 1,066 Calculated u CE (\$/QALY saved) \$20,211 = s / t	р	unnecessary procedures	\$913,119	37.5)) * d		
r CPB undiscounted 1,380 Table 2, row o s Net costs (1.5% discount) \$21,544,954 Calculated t CPB (1.5% discount) 1,066 Calculated u CE (\$/QALY saved) \$20,211 = s / t	q	Net costs undiscounted	\$25,928,724	= e + f + i + l + o + p		
s Net costs (1.5% discount) \$21,544,954 Calculated t CPB (1.5% discount) 1,066 Calculated u CE (\$/QALY saved) \$20,211 = s / t	r	CPB undiscounted	1,380	Table 2, row o		
t CPB (1.5% discount) 1,066 Calculated u CE (\$/QALY saved) \$20,211 = s / t	S	Net costs (1.5% discount)	\$21,544,954	Calculated		
u CE (\$/QALY saved) \$20,211 = s / t	t	CPB (1.5% discount)	1,066	Calculated		
	u	CE (\$/QALY saved)	\$20,211	= s / t		

∨ = Estimates from the literature

We also modified the major assumption and recalculated the cost per QALY as follows:

- Assume the effectiveness of screening mammography in reducing deaths from breast cancer is reduced from 21% to 10% (Table 2, row *b*): **CE** = **\$46,596**.
- Assume the effectiveness of screening mammography in reducing deaths from breast cancer is increased from 21% to 32% (Table 2, row *b*): **CE = \$11,966**.

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening women ages 50 to 74 years of age for breast cancer every 2 to 3 years is estimated to be 1,066 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$20,211 per QALY (see Table 4).

Table 4: Breast Cancer Sc	reening Bo	eing Offe	ered to a		
Birth Cohort of 40,000 Between the Ages of 50 to 74					
Sum	nmary				
	Base				
	Case	Rai	nge		
CPB (Potential QALYs Gained)					
Assume No Current Service					
1.5% Discount Rate	1,066	471	1,760		
3% Discount Rate	837	370	1,382		
0% Discount Rate	1,380	610	2,280		
Gap between B.C. Current (529	%) and 'Best in	the World' (a	88%)		
1.5% Discount Rate	436	193	720		
3% Discount Rate	342	151	565		
0% Discount Rate	565	250	933		
CE (\$/QALY) including patient time	e costs				
1.5% Discount Rate	\$20,211	\$11,966	\$46,596		
3% Discount Rate	\$21,573	\$12,772	\$49,735		
0% Discount Rate	\$18,783	\$11,120	\$43,303		
CE (\$/QALY) excluding patient time	e costs				
1.5% Discount Rate	\$10,058	\$5,536	\$24,526		
3% Discount Rate	\$10,735	\$5,909	\$26,178		
0% Discount Rate	\$9,347	\$5,145	\$22,793		

Screening for Cervical Cancer

Background

Current Recommendations

Canadian Task Force on Preventive Health Care Recommendations (2013)

The following recommendations refer to cytologic screening, using either conventional or liquid-based methods, whether manual or computer-assisted.

For women aged 20–24 years, we recommend not routinely screening for cervical cancer. (Weak recommendation; moderate-quality evidence)

For women aged 25–29 years, we recommend routine screening for cervical cancer every 3 years. (Weak recommendation; moderate-quality evidence)

For women aged 30–69 years, we recommend routine screening for cervical cancer every 3 years. (Strong recommendation; high-quality evidence)

For women aged 70 years and older who have undergone adequate screening (i.e., 3 successive negative Pap test results in the previous 10 years), we recommend that routine screening may end. For women aged 70 years and older who have not undergone adequate screening, we recommend continued screening until 3 negative test results have been obtained. (Weak recommendation; low-quality evidence)⁴⁴⁶

United States Preventive Services Task Force Recommendations (2018)

The USPSTF recommends screening for cervical cancer every 3 years with cervical cytology alone in women aged 21 to 29 years. (A recommendation)

*The USPSTF recommends screening every 3 years with cervical cytology alone, every 5 years with hrHPV testing alone, or every 5 years with hrHPV testing in combination with cytology (cotesting) in women aged 30 to 65 years. (A recommendation)*⁴⁴⁷

Both the CTFPHC and the USPSTF are in the process of updating their recommendations. The updated guideline by the CTFPHC is expected to be released in 2025.^{448,449} The USPSTF is in the process of reviewing the available evidence and developing a draft recommendation. An expected date of completion is not provided.⁴⁵⁰

 ⁴⁴⁸ Canadian Task Force on Preventive Health Care. *Cervical Cancer (Update)*. Available online at https://canadiantaskforce.ca/guidelines/upcoming-guidelines/cervical-cancer-update/. Accessed December 2023.
 ⁴⁴⁹ Gates A, Pillay J, Reynolds D et al. Screening for the prevention and early detection of cervical cancer: Protocol for systematic reviews to inform Canadian recommendations. *Systematic Reviews*. 2021; 10(2)
 ⁴⁵⁰ US Preventive Services Task Force. *Recommendations in Progress*. Available at

⁴⁴⁶ Canadian Task Force on Preventive Health Care. Recommendations on screening for cervical cancer. *Canadian Medical Association Journal*. 2013; 185(1): 35-45.

⁴⁴⁷ US Preventive Services Task Force. Screening for Cervical Cancer: US Preventive Services Task Force Recommendation Statement. *JAMA*. 2018; 320 (7): 674-86.

https://www.uspreventiveservicestaskforce.org/uspstf/recommendation-topics/recommendations-in-progress. Accessed December 2023.

Purpose

In February of 2023, the British Columbia Ministry of Health (BC MoH) released a 10-year cancer action plan.⁴⁵¹ An important focus of this plan is to support the World Health Organization global call to action by moving towards the elimination of cervical cancer in the province. Key components of achieving this goal are enhanced HPV vaccination rates, moving to an HPV-based screening system and encouraging the self-collection of samples for cervical cancer screening.

At the time, BC Cancer and the Provincial Health Services Authority (PHSA) were in the process of developing a business case to support these goals by moving BC to a more high-performance screening test through HPV testing and to offer a lower barrier collection method in order to further improve cervix screening rates in the province.

During this process, the BC MoH asked H. Krueger & Associates Inc. for support to further understand and assess several components of the proposed shifts in cervical cancer screening in the province. The purpose of the analysis was to use the modelling approach developed for the Lifetime Prevention Schedule (LPS) to assess the clinically preventable burden (CPB) and cost-effectiveness (CE) associated with a number of potential cervical cancer screening approaches.

To do so, we accessed the latest high-quality research evidence on the effectiveness of HPV vaccination and HPV-based screening. When possible, we also utilized real-world results from jurisdictions with the earliest implementation of HPV vaccination and HPV-based screening. Furthermore, we included research data indicating a higher baseline risk of premature birth in a subsequent pregnancy associated with treatment for cervical intraepithelial neoplasia (CIN).

In light of this new evidence, the fact that the work completed for the BC MoH was closely aligned with the modelling for the LPS and that the updated recommendations from the USPSTF and CTFPHC are not expected for at least a year or two, the LPS Expert Committee authorized a full update of the cervical cancer screening modelling work included in the LPS. The LPS Expert Committee will review the updated task force recommendations as soon as they become available.

The Progression from HPV Infection to Invasive Cervical Cancer

Persistent infection with the human papillomavirus (HPV) is necessary but not sufficient for the development of cervical cancer. Infection with high-risk HPV (hrHPV) is relatively common in sexually active individuals but approximately 90% of these infections will resolve on their own within two years. Regression of precancerous changes back to normal cervical cells is also fairly common. Nevertheless, some chronic HPV infections will result in severe pre-cancers and approximately 20-25% of these severe pre-cancers will become invasive cervical cancers (see Figure 1).⁴⁵² The progression from HPV infection, to persistent infection, to pre-cancerous cervical changes (cervical intraepithelial neoplasia or CIN), to invasive cervical cancer typically takes 10 – 15 years or more.⁴⁵³

⁴⁵¹ BC Ministry of Health. *Cancer Care You Can Count On: Multi-Year Policy Framework to Deliver Cancer Care in B.C.* February 2023. Available online at <u>https://news.gov.bc.ca/files/CancerPlan2023.pdf</u>. Accessed April 2023.

⁴⁵² Figure 1 is taken from Gates A, Pillay J, Reynolds D et al. Screening for the prevention and early detection of cervical cancer: Protocol for systematic reviews to inform Canadian recommendations. *Systematic Reviews*. 2021; 10(2)

⁴⁵³ Gates A, Pillay J, Reynolds D et al. Screening for the prevention and early detection of cervical cancer: Protocol for systematic reviews to inform Canadian recommendations. *Systematic Reviews*. 2021; 10(2)

The Point Prevalence of hrHPV Infection in BC

A number of BC-based studies have estimated the prevalence of HPV infection in BC females at a specific point in time. The study by Moore et al estimated the prevalence of any HPV infection in BC females ages 14 to 59 between March and July of 2004 (see Table 1).⁴⁵⁴ The study by Ogilvie et al estimated the prevalence of any hrHPV infection in BC females ages 25-60+ between December of 2007 and December of 2009.⁴⁵⁵ The second study by Ogilvie et al estimated the prevalence of any hrHPV infection in BC females ages 15 to 69 in June of 2010.⁴⁵⁶ For context, we have also included a study from the US⁴⁵⁷ and England⁴⁵⁸ in Table 1.

	Table 1: Point Prevalance of HPV in Females						
			Based on Cros	s-Secti	onal Studie	S	
Jurisdiction		US	BC	E	ngland	BC	BC
Date		2003/04	2004	Oct 200	7 to Jan 2009	Dec 2007 - Dec 2009	2010
Sample Size		1,921	4,980		4,719	6,150	4,330
Collection T	уре	Self-collected vaginal swab	Self-collected vaginal swab	Residual LBC samples		Office-based LBC collection for the FOCAL RCT	Routine office- based Pap screening
HPV Type		Any	Any	16, 18	Any HR type	Any HR type	Any HR type
Age Group							
	14-19	24.5%	27.5%				25.7%
-	20-24	44.8%	24.2%				33.2%
_	25-29	27.4%	18.5%	9.2%	28.8%	24.0%	21.9%
	30-39	27.5%	17.0%	6.2%	17.9%	11.1%	11.0%
-	40-49	25.2%	15.0%	2.8%	9.5%	5.4%	6.2%
	50-59	19.6%	11.2%	2.7%	9.3%	4.9%	3.1%

⁴⁵⁴ Moore R, Ogilvie G, Fornika D et al. Prevalence and type distribution of human papillomavirus in 5,000
British Columbia women – implications for vaccination. *Cancer Causes & Control*. 2009; 20: 1387-96.
⁴⁵⁵ Ogilvie G, van Niekerk D, Krajden M et al. A randomized controlled trial of human papillomavirus (HPV) testing for cervical cancer screening: Trial design and preliminary results (HPV FOCAL trial). *BMC Cancer*. 2010; 10: 111.

⁴⁵⁶ Ogilvie G, Cook D, Taylor D et al. Population-based evaluation of type-specific HPV prevalence among women in British Columbia, Canada. *Vaccine*. 2013; 31: 1129-33.

⁴⁵⁷ Dunne E, Unger E, Sternberg M et al. Prevalence of HPV infection among females in the United States. *JAMA*. 2007; 297(8): 813-19.

⁴⁵⁸ Howell-Jones R, Bailey A, Beddows S et al. Multi-site study of HPV type-specific prevalence in women with cervical cancer, intraepithelial neoplasia and normal cytology, in England. *British Journal of Cancer*. 2010; 103: 209-16.

Note that Table 1 provides information on the **point prevalence** of HPV infection. Chesson and colleagues have estimated the **lifetime probability** of acquiring HPV among sexually active females to be 85%, with more than 80% of those infections acquired prior to the age of 45.⁴⁵⁹ Markowitz et al have estimated that at least 42% of females in the US have been exposed to hrHPV types 6, 11, 16 & 18 by the age of 39. Their study detected antibodies to these hrHPV types but, because only an estimated 60% of exposed females develop antibodies, the actual proportion of females exposed to hrHPV types 6, 11, 16 & 18 by the age of 39 is likely closer to 70%.⁴⁶⁰

HPV Vaccination in BC

BC introduced its three dose⁴⁶¹ quadrivalent HPV vaccine program in September of 2008 for girls in grade 6 (11 years of age) and 9 (14 years of age) with an initial uptake rate of approximately 62%.⁴⁶² Between 2011 and 2020 vaccination rates have remained at between 65-70% with the notable exception of the rate in grade six girls in 2020 (see Figure 2). This decrease reflects the redirection of public health resources from routine immunization programs to the COVID-19 pandemic response in the latter part of the year.^{463,464}

⁴⁵⁹ Chesson H, Dunne E, Hariri S et al. The estimated lifetime probability of acquiring human papillomavirus in the United States. *Sexually Transmitted Diseases*. 2014; 41(11): 660-4.

⁴⁶⁰ Markowitz L, Sternberg M, Dunne E et al. Seroprevalence of human papillomavirus types 6, 11, 16, and 18 in the United States: National Health and Nutrition Examination Survey 2003-2004. *The Journal of Infectious Diseases*. 2009; 200: 1059-67.

⁴⁶¹ Adjusted to a two dose regimen in October of 2014. See BC Centre for Disease Control. *Human Papillomavirus (HPV) Vaccine 2 Dose Schedule Q&A Document – October 2014.* Available online at http://www.bccdc.ca/resource-

gallery/Documents/Guidelines%20and%20Forms/Guidelines%20and%20Manuals/Immunization/Vaccine%20Info/Archived_%202Dose_HPV_Program_QandA_Oct%202014.pdf. Accessed January 2023.

⁴⁶² Ogilvie G, Cook D, Taylor D et al. Population-based evaluation of type-specific HPV prevalence among women in British Columbia, Canada. *Vaccine*. 2013; 31: 1129-33.

⁴⁶³ BC Centre for Disease Control. *Immunization Coverage in Grade 6 Students: 2011-2020*. February 25, 2022. Available online at http://www.bccdc.ca/resource-

gallery/Documents/Statistics%20and%20Research/Statistics%20and%20Reports/Immunization/Coverage/Grade% 206%20Coverage%20Results.pdf. Accessed January 2023.

⁴⁶⁴ BC Centre for Disease Control. *Immunization Coverage in Grade 9 Students: 2011-2020*. May 13, 2021. Available online at http://www.bccdc.ca/resource-

gallery/Documents/Statistics%20and%20Research/Statistics%20and%20Reports/Immunization/Coverage/Grade% 209%20Coverage%20Results.pdf. Accessed January 2023.

The Effectiveness of HPV Vaccination

HPV vaccines have proven to be highly effective, particularly when vaccination takes place in early adolescence. All vaccine types target HPV 16 and HPV 18. The quadrivalent type also targets HPV 6 and HPV 11 while the nonavalent type also targets HPV 31, 33, 45, 52 and 58. The nonavalent vaccine targets the HPV types that cause approximately 90% of cervical cancers.

Evidence on the effectiveness of HPV vaccines in real-world settings summarized in a systematic review and meta-analysis by Drolet and co-authors⁴⁶⁵ indicates that, after 5-8 years of vaccination, the prevalence of HPV 16 and 18 decreased by 83% in girls ages 13-19 and by 66% in females ages 20-24. After 5-9 years of vaccination, the prevalence of CIN2+ decreased by 51% among screened girls ages 15-19 and by 31% among females ages 20-24.

Evidence from BC indicates that females who received a complete series of vaccine on schedule between age 9 and 14 years had an adjusted RR of 0.42 (95% CI of 0.31 to 0.57) for CIN2+ over 7 years of follow-up compared to unvaccinated females.⁴⁶⁶

Evidence from Sweden and Denmark indicates a significant reduction in cervical cancers associated with vaccination. Sweden began its HPV vaccination program in 2007 and since has observed an 88% reduction in the incidence of cervical cancers in those vaccinated before

⁴⁶⁵ Drolet M, Benard E, Perez N et al. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: Updated systematic review and meta-analysis. *Lancet*. 2019; 394(10197: 497-509.

⁴⁶⁶ Racey C, Albert A, Donken R et al. Cervical intraepithelial neoplasia rates in British Columbia women: A population-level linkage evaluation of the school-based HPV immunization program. *The Journal of Infectious Diseases*. 2020; 221: 81-90.

the age of 17.⁴⁶⁷ Denmark began its HPV vaccination program in 2008 and has since observed an 86% reduction in cervical cancers in those vaccinated before age 17 and a 68% reduction in those vaccinated between the ages of 17 and 19.⁴⁶⁸

Cervical Cancer Screening in BC

BC's cervical cancer screening program formally began in 1955 when all females over the age of 20 years were offered screening annually.⁴⁶⁹ Initially, a relatively small proportion of the eligible population was screened but this increased to approximately 45% by 1970 (see Table 2). While annual screening was recommended at the time, the actual average interval for rescreening was once every two years.⁴⁷⁰

Table 2: Cervical Cancer Screening in BC											
1955 to 1985											
	BC Females Number of Percent										
	Year	Age 20+	Screens	Screened							
	1955	422,900	11,707	2.8%							
	1960	486,400	59,844	12.3%							
	1965	543,200	161,556	29.7%							
	1970	664,400	297,407	44.8%							
	1975	805,500	355,917	44.2%							
	1980	926,200	433,329	46.8%							
	1985	1,063,100	465,676	43.8%							

In 1985, 24.8% of females ages 15-19 were screened. This increased to 59.1% for females ages 20-34 and 40.4% for females ages 35-59 before declining to 16.6% for females 60 year of age or older.⁴⁷¹

⁴⁶⁷ Lei J, Ploner A, Elfstrom K et al. HPV vaccination and the risk of invasive cervical cancer. *The New England Journal of Medicine*. 2020, 383(14): 1340-8.

⁴⁶⁸ Kjar S, Dehlendorff C, Belmonte F et al. Real-world effectiveness of human papillomavirus vaccination against cervical cancer. *Journal of the National Cancer Institute*. 2021; 113(10): 1329-35.

⁴⁶⁹ Anderson G, Boyes D, Benedict J et al. Organization and results of the cervical cytology screening programme in British Columbia, 1955-85. *British Medical Journal*. 1988; 296: 975-8.

⁴⁷⁰ Ibid.

⁴⁷¹ Ibid.

By 2012-14 screening was recommended to begin at age 21 (or approximately 3 years after first sexual contact, whichever comes first). At the time, it was recommended that screening should take place once a year until there were three consecutive normal results. At this point, it was recommended that females should be screened every two years until age 69. At age 69, females could discontinue screening if no significant abnormality has been detected in their screening history.⁴⁷² In 2012-14, 69.3% of eligible BC females had at least one screen (over the 3-year time period) (see Figure 3).⁴⁷³

 ⁴⁷² BC Cancer Agency, Cervical Cancer Screening Program. Cervical Cancer Screening Program 2015 Annual Report. Available online at <u>http://www.bccancer.bc.ca/screening/Documents/CCSP_Report-AnnualReport2015.pdf</u>. Accessed January 2023.
 ⁴⁷³ Ibid.

Screening in BC is currently recommended once every three years for females and individuals with a cervix, ages 25-69, who are or have been sexually active.^{474,475} BC is also in the process of transitioning from conventional cytology collection methods to liquid based cytology (LBC).⁴⁷⁶

Screening participation rates for ages 25 - 69 in 2018 (the most recent year with publicly available data) are 68% (see Figure 4).⁴⁷⁷

⁴⁷⁴ Krueger H, Kwon J, Sadownik L et al. What is the appropriate age to start screening women for cervical cancer? *BC Medical Journal*. 2013; 55(6): 282-6.

 ⁴⁷⁵ BC Cancer Cervix Screening. *BC Cancer Cervix Screening Program Overview*. March 2022. Available online at http://www.bccancer.bc.ca/screening/Documents/Cervix-Program-Overview.pdf. Accessed January 2023.
 ⁴⁷⁶ BC Cancer, Provincial Laboratory Medicine Services. *News Bulletin: A Rapid Transition to Liquid Based Cytology for Pap Tests is Underway*. October 2022. Available online at http://www.bccancer.bc.ca/lab-services-site/Documents/20221019%20LBC%20Transition%20info%20kit%20FINAL.docx.pdf. Accessed January 2023.

⁴⁷⁷ BC Cancer Cervix Screening. *BC Cancer Cervix Screening 2018 Program Results*. March 2020. Available online at <u>http://www.bccancer.bc.ca/screening/Documents/Cervix-Program-Results-2018.pdf</u>. Accessed January 2023.

Prevalence of Hysterectomy in BC

Based on self-reported data for 2008, 13.7% of BC females ages 40-49 had a hysterectomy. This increased to 19.3% for ages 50-59 and 31.4% for ages 60-69.⁴⁷⁸ In the US, hysterectomy rates in 2018 are 0.4 - 0.5% in females ages 20-29, 3.0 - 4.3% in females ages 30-39, 13.2 - 15.2% in females ages 40-49, 23.1 - 26.4% for females ages 50-59 and 28.9 - 34.3% in females ages 60-69.⁴⁷⁹ Based on this data we have estimated the prevalence of hysterectomy in BC females between the ages of 25 and 69 (see Figure 5).

⁴⁷⁸ Stankiewicz A, Pogany L, Popadiuk C. Prevalence of self-reported hysterectomy among Canadian women, 2000/01-2008. *Chronic Diseases and Injuries in Canada*. 2014; 34(1): 30-35.

⁴⁷⁹ Adam E, White M, Saraiya M. US hysterectomy prevalence by age, race and ethnicity from BRFSS and NHIS: Implications for analysis of cervical and uterine cancer rates. *Cancer Causes & Control*. 2022; 33(1): 161-6.

Cervical Cancers in BC

Incidence - 1955 to 2017

BC Female Population - 1955 to 2017

To begin the process of estimating the annual number and rate of invasive cervical cancers in British Columbia between 1955 (the year screening started, see Table 2) and 2017 we first estimated the female population by age (from 20 to 79 and \geq 80) for each year. Between 1986 and 2017 we used data from BC Stats.⁴⁸⁰ Population estimates from this source were available for each individual age. Between 1971 and 1985 we used data from Statistics Canada.⁴⁸¹ This data was available by 5-year age groups. We assumed an equal distribution for each year in the 5-year age group. Between 1955 and 1970 we began with the population numbers in the research study by Anderson et al.⁴⁸² This source provided data on the total BC female population ages 20 and older for 1955, 1958, 1960, 1965 and 1970. We first assumed an equal annual growth in this total for years with missing data. We then distributed these totals by age based on the actual distribution for 1986 (the earliest year for which we have estimates by individual age from BC Stats).

Incidence of Invasive Cervical Cancers in BC-1955 to 1985

Anderson et al. provide data on the number and incidence rate of invasive squamous carcinoma of the cervix in BC in 1955, 1958, 1960, 1965, 1970, 1975, 1980 and 1985.⁴⁸³ We assumed a linear distribution in incidence rate for each of the years of missing data between two data points and then applied that rate to the annual population of females ages 20 and older to generate the estimated number of squamous cell carcinomas in a given year.

There are two main histological types of cervical cancers, squamous cell carcinoma (SCC) and adenocarcinoma (AC), with a number of other rare histological types. Conventional cytology screening has largely been effective at preventing SCC but not the other types of cervical cancers.^{484,485,486} Indeed, research in Norway suggests that incidence of cervical cancers other than SCC fluctuated between 1.8 and 2.6 per 100,000 between 1956 and 2010. While the research in Norway observed a 74% reduction in the age-standardized incidence rate of SCC over that time period (associated with screening), the age-standardized incidence rate of AC **increased** by an average of 1.5% per year. Other rare cervical cancers decreased by an average of 0.9% per year.⁴⁸⁷

The study by Anderson et al only includes data on SCC.⁴⁸⁸ To estimate the number of other cervical cancers for each year between 1955 and 1985 we used the rate per 100,000 of 3.01

⁴⁸⁰ BC Stats. *Population Estimates & Projections for British Columbia*. Available online at <u>https://bcstats.shinyapps.io/popApp/</u>. Accessed January 2023.

⁴⁸¹ Statistics Canada. *Population Estimates on July 1st, by Age and Sex*. Table: 17-10-0005-01. Available online at https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1710000501. Accessed January 2023.

⁴⁸² Anderson G, Boyes D, Benedict J et al. Organization and results of the cervical cytology screening programme in British Columbia, 1955-85. *British Medical Journal*. 1988; 296: 975-8.

⁴⁸³ Ibid.

⁴⁸⁴ Mitchell H, Medley G, Gordon I et al. Cervical cytology reported as negative and risk of adenocarcinoma of the cervix. No strong evidence of benefit. *British Journal of Cancer*. 1995; 71: 894-7.

⁴⁸⁵ Zappa M, Visioli C, Ciatto S et al. Lower protection of cytological screening for adenocarcinomas and shorter protection for younger women: The results of a case-control study in Florence. *British Journal of Cancer*. 2004; 4(90): 1784-6.

 ⁴⁸⁶ Lonnberg S, Hansen B, Haldorsen T et al. Cervical cancer prevented by screening: Long-term incidence trends by morphology in Norway. *International Journal of Cancer*. 2015; 137: 1758-64.
 ⁴⁸⁷ Ibid.

⁴⁸⁸ Anderson G, Boyes D, Benedict J et al. Organization and results of the cervical cytology screening programme in British Columbia, 1955-85. *British Medical Journal*. 1988; 296: 975-8.

for these other cancers based on the number and average rate per 100,000 of these other cancers between 2002 and 2017 (see following section).

Incidence of Invasive Cervical Cancers in BC - 2002 to 2017

Data on the number of cervical cancers between 2002 and 2008 were taken from the study by Coldman et al.⁴⁸⁹ Based on that study, an estimated 68.4% of cervical cancers in BC each year were SCC.

Data on the annual number and rate per 100,000 of cervical cancers (by SCC and all other) between 2009 and 2013 were taken from the BC Cervical Cancer Screening Program 2015 Annual Report.⁴⁹⁰

Finally, data on the annual number and rate per 100,000 of cervical cancers (by SCC and all other) between 2014 and 2017 were taken from the BC Cancer Cervix Screening 2018 Program Results report.⁴⁹¹

Between 2002 and 2017 there were an estimated 2,702 cervical cancers in BC, of which 855 (31.6%) were not SCC (see Table 3). The average rate for these other cervical cancers between 2002 and 2017 was 3.01 per 100,000, with no discernable trend or change in the rate over the 16-year period (see Figure 6). As noted above, this rate per 100,000 for other cervical cancers was used in the estimation for the years from 1955 to 1985.

⁴⁸⁹ Coldman A, Niekerk D, Smith L et al. Cervical cancer incidence in British Columbia: Predicting effects of changes from Pap to human papillomavirus screening and changes in screening participation. *Journal of Medical Screening*. 2017; 24(4): 195-200.

⁴⁹⁰ BC Cancer Agency, Cervical Cancer Screening Program. Cervical Cancer Screening Program 2015 Annual Report. Table 7. Available online at <u>http://www.bccancer.bc.ca/screening/Documents/CCSP_Report-AnnualReport2015.pdf</u>. Accessed January 2023.

⁴⁹¹ BC Cancer Cervix Screening 2018 Program Results. Table 7. Available online at http://www.bccancer.bc.ca/screening/Documents/Cervix-Program-Results-2018.pdf. Accessed January 2023.

Table	3: Incide	nce of	Invasi	ve Carci	noma	of the Cerv	vix				
	In	British	Columb	ia, 1955	to 201	7					
	Ra	ate / 100	0.000 and	, Number o	of Cases	5					
Squamous Cell All Other Total											
Year P	op age ≥20	Rate	N	Rate	N	Rate N	1				
1955	422.900	28.40	120	3.01	13	31.41 13	3				
1956	439.600	26.83	118	3.01	13	29.84 13	1				
1957	456,300	25.27	115	3.01	14	28.27 12	9				
1958	473,000	23.70	112	3.01	14	26.71 12	6				
1959	479,700	21.70	104	3.01	14	24.71 11	9				
1960	486,400	19.70	96	3.01	15	22.71 11	0				
1961	497,760	18.70	93	3.01	15	21.71 10	8				
1962	509,120	17.70	90	3.01	15	20.71 10	5				
1963	520,480	16.70	87	3.01	16	19.71 10	3				
1964	531,840	15.70	83	3.01	16	18.71 99)				
1965	543,200	14.70	80	3.01	16	17.71 96	;				
1966	567,440	14.22	81	3.01	17	17.23 98	3				
1967	591,680	13.74	81	3.01	18	16.75 99)				
1968	615,920	13.26	82	3.01	19	16.27 10	0				
1969	640,160	12.78	82	3.01	19	15.79 10	1				
1970	664,400	12.30	82	3.01	20	15.31 10	2				
1971	692,620	11.58	80	3.01	21	14.59 10	1				
1972	720,840	10.86	78	3.01	22	13.87 10	0				
1973	749,060	10.14	76	3.01	23	13.15 98	3				
1974	777,280	9.42	73	3.01	23	12.43 97	7				
1975	805,500	8.70	70	3.01	24	11.71 94	ł				
1976	826,980	8.34	69	3.01	25	11.35 94	ŀ				
1977	848,460	7.98	68	3.01	26	10.99 93	}				
1978	869,940	7.62	66	3.01	26	10.63 92	2				
1979	891,420	7.26	65	3.01	27	10.27 92	2				
1980	912,900	6.90	63	3.01	27	9.91 90)				
1981	943,100	6.80	64	3.01	28	9.81 92	2				
1982	973,300	6.70	65	3.01	29	9.71 94	ŀ				
1983	1,003,500	6.60	66	3.01	30	9.61 96	;				
1984	1,033,700	6.50	67	3.01	31	9.51 98	}				
1985	1,063,900	6.40	68	3.01	32	9.41 10	0				
2002	1,584,502	6.99	111	3.23	51	10.22 16	2				
2003	1,602,904	6.91	111	3.19	51	10.11 16	2				
2004	1,624,216	6.49	105	3.00	49	9.48 15	4				
2005	1,647,322	6.39	105	2.95	49	9.35 15	4				
2006	1,672,182	6.38	107	2.95	49	9.33 15	6				
2007	1,695,741	6.29	107	2.91	49	9.20 15	6				
2008	1,723,573	6.98	120	3.23	56	10.21 17	6				
2009	1,753,374	6.96	122	2.85	50	9.81 17	2				
2010	1,781,051	6.79	121	2.98	53	9.77 17	4				
2011	1,799,632	7.06	127	2.72	49	9.78 17	6				
2012	1,834,487	6.32	116	2.34	43	8.67 15	9				
2013	1,869,280	6.37	119	3.16	59	9.52 17	8				
2014	1,908,657	6.76	129	3.30	63	10.06 19	2				
2015	1,942,863	6.38	124	2.83	55	9.21 17	9				
2016	1,980,652	5.65	112	2.83	56	8.48 16	8				
2017	2,012,354	5.53	111	3.63	73	9.16 18	4				

Incidence by Age

1955, 1958 and 1960

To estimate a base historic incidence of cervical cancers in BC in the absence of screening we started with the total number of SCC in 1955, 1958, and 1960 as provided by Anderson et al. (see Table 3). This source, however, only provides the total number and rate of SCC for each year. As noted above, we also included other cervical cancers at a rate of 3.01 per 100,000 (see Table 3). To distribute the annual total number of cervical cancers by age we used Canadian age-specific incidence rates from 1972-76 as provided by Dickenson and colleagues.⁴⁹² Age-specific incidence rates from 1972-76 were the earliest we could find and likely reflect rates prior to the implementation of organized screening programs across Canada. While opportunistic screening was available during the 1970s, most provinces did not implement organized screening programs until the late 1980s.⁴⁹³

We then further distributed the estimated number of cervical cancers within the 20-29 year old age group into individual years based on research published by Krueger and colleagues (see Table 4).⁴⁹⁴

Table 4: Cervical Cancer in British ColumbiaFemales Aged 20-29, 1985-2009Rate per 100,000 Population										
Age	1985-89	1990-94	1995-99	2000-2004	2005-09	Total				
20	0.90	1.74	1.62	0.73	0.70	1.11				
21	0.86	1.69	2.41	0.73	0.69	1.25				
22	-	2.48	1.58	1.48	-	1.08				
23	2.35	0.81	3.87	1.51	0.68	1.82				
24	2.26	1.60	2.25	1.52	1.36	1.79				
25	2.94	5.45	2.90	5.36	2.71	3.82				
26	4.37	3.75	6.35	6.13	5.47	5.22				
27	7.24	14.31	4.17	9.85	8.32	8.74				
28	6.47	10.95	9.60	5.24	4.23	7.36				
29	5.00	7.95	12.92	15.13	6.40	9.48				
Total	3.38	5.38	4.95	4.78	3.04	4.28				

⁴⁹² Dickenson J, Stankiewicz A, Popadiuk C et al. Reduced cervical cancer incidence and mortality in Canada: National data from 1932 to 2006. *BMC Public Health*. 2012; 12: 992.

⁴⁹³ Popadiuk C. Cervical cancer screening in Canada. *Journal of Obstetrics and Gynecology Canada*. 2019; 41(S2): S177-80.

⁴⁹⁴ Krueger H, Kwon J, Sadownik L et al. What is the appropriate age to start screening women for cervical cancer? *BC Medical Journal*. 2013; 55(6): 282-6.

The results for SCC, all other cervical cancers and total cervical cancers by age are shown in Figure 7. The age and morphology specific incidence rates in Figure 7 are our best estimate of historic patterns prior to the implementation of cervical cancer screening programs in BC.

2002 to 2017

Data on the number of cervical cancers between 2002 and 2008 were taken from the study by Coldman et al.⁴⁹⁵ This data source provides higher level data on the year of diagnosis, the age group at diagnosis and morphology (squamous and non-squamous).

Data on the annual number and rate per 100,000 of cervical cancers between 2009 and 2013 were taken from the BC Cervical Cancer Screening Program 2015 Annual Report.⁴⁹⁶ This data source provides annual information on the number and rate of cervical cancers by age group and morphology (squamous and all other).

Finally, data on the annual number and rate per 100,000 of cervical cancers (by SCC and all other) between 2014 and 2017 were taken from the BC Cancer Cervix Screening 2018

⁴⁹⁵ Coldman A, Niekerk D, Smith L et al. Cervical cancer incidence in British Columbia: Predicting effects of changes from Pap to human papillomavirus screening and changes in screening participation. *Journal of Medical Screening*. 2017; 24(4): 195-200.

⁴⁹⁶ BC Cancer Agency, Cervical Cancer Screening Program. Cervical Cancer Screening Program 2015 Annual Report. Table 7. Available online at <u>http://www.bccancer.bc.ca/screening/Documents/CCSP_Report-AnnualReport2015.pdf</u>. Accessed January 2023.

Program Results report.⁴⁹⁷ This data source also provides annual information on the number and rate of cervical cancers by age group and morphology (squamous and all other).

We then further distributed the estimated number of cervical cancers within the 20-29 year old age group into individual years (see Table 4).⁴⁹⁸

The results for SCC, all other cervical cancers and total cervical cancers by age are shown in Figure 8. The age and morphology specific incidence rates in Figure 8 are our best estimate of current patterns based on current cervical cancer screening patterns in BC. *We have maintained the y-axis values from Figure 7 in Figure 8 to visually show the full impact of cervical cancer screening in BC*.

 ⁴⁹⁷ BC Cancer Cervix Screening 2018 Program Results. Table 7. Available online at http://www.bccancer.bc.ca/screening/Documents/Cervix-Program-Results-2018.pdf. Accessed January 2023.
 ⁴⁹⁸ Krueger H, Kwon J, Sadownik L et al. What is the appropriate age to start screening women for cervical cancer? BC Medical Journal. 2013; 55(6): 282-6.

Incidence of Cervical Cancers in a BC Birth Cohort of 40,000 - Historic and Current

For modelling purposes the Lifetime Prevention Schedule analyses use a standard BC birth cohort of 40,000. Survival and life expectancy within the cohort by sex and age is based on BC life tables for 2018 to 2020.⁴⁹⁹ We then applied age and morphology specific incidence rates from Figures 7 and 8 to the 20,000 females within this cohort (see Table 5). Applying historic rates to the cohort suggests that 305 invasive cervical cancers would be observed within the cohort between the ages of 25 (the start of screening) and 74 (5 years after the end of screening at age 69, we assumed a 5-year protective effect in our modelling). Based on current screening patterns, the estimated number of invasive cervical cancers is decreased to 99 (a 67.6% reduction). As expected, the change is most substantial for SCC (from 270 to 67, a 75.1% reduction). The reduction for all other cervical cancers is from 34 to 31, a reduction of 8.3% (see Table 5).

By way of validating the results observed in Table 5, Lonneberg and colleagues observed an overall reduction in the total cervical cancer burden in Norway between 1956 and 2010 of 68% and a 74% reduction in SCC.⁵⁰⁰ These changes are virtually identical to those modelled in Table 5 based on BC data from 1955 to 2017 (67.6% and 75.1%, as noted above).

by morphology in Norway. International Journal of Cancer. 2015; 137: 1758-64.

 ⁴⁹⁹ Statistics Canada. Table 13-10-0114-01 Life expectancy and other elements of the complete life table, three-year estimates, Canada, all provinces except Prince Edward Island. Available online at http://www150.statcan.gc.ca/t1/tbl1/en/cv.action?pid=1310011401. Accessed January 2023.
 ⁵⁰⁰ Lonnberg S, Hansen B, Haldorsen T et al. Cervical cancer prevented by screening: Long-term incidence trends

Table 5: Past and Current Incidence of Invasive Cervical Cancer													
Between the Ages of 25 and 74													
in a British Columbia Birth Cohort of 20.000 Females													
	Females Historic Incidence of CC Current Incidence of CC												
	in Birth	Squa	Squamous Al		l Other Total		otal	Squamous		All (Other	To	otal
Age	Cohort	Rate*	#	Rate	#	Rate	#	Rate	#	Rate	#	Rate	#
25	19.843	5.5	1.1	0.7	0.1	6.2	1.2	2.3	0.4	0.9	0.2	3.2	0.6
26	19.834	7.5	1.5	1.0	0.2	8.5	1.7	3.1	0.6	1.2	0.2	4.3	0.9
27	19,825	12.6	2.5	1.6	0.3	14.2	2.8	5.2	1.0	2.1	0.4	7.2	1.4
28	19,816	10.6	2.1	1.3	0.3	11.9	2.4	4.3	0.9	1.7	0.3	6.1	1.2
29	19,806	13.7	2.7	1.7	0.3	15.4	3.0	5.6	1.1	2.3	0.4	7.9	1.6
30	19,796	20.2	4.0	2.6	0.5	22.7	4.5	8.5	1.7	3.9	0.8	12.5	2.5
31	19,785	20.2	4.0	2.6	0.5	22.7	4.5	8.5	1.7	3.9	0.8	12.5	2.5
32	19,773	20.2	4.0	2.6	0.5	22.7	4.5	8.5	1.7	3.9	0.8	12.5	2.5
33	19,761	20.2	4.0	2.6	0.5	22.7	4.5	8.5	1.7	3.9	0.8	12.5	2.5
34	19,749	20.2	4.0	2.6	0.5	22.7	4.5	8.5	1./	3.9	0.8	12.5	2.5
35	19,730	20.2	4.0	2.6	0.5	22.7	4.5	8.5 0 E	1.7	3.9	0.8	12.5 12 E	2.5
30 37	19,722	20.2	4.0	2.0	0.5	22.7	4.5	8.5 8.5	1.7	3.9	0.8	12.5	2.5
38	19,693	20.2	4.0	2.6	0.5	22.7	4.5	8.5	1.7	3.9	0.8	12.5	2.5
39	19.677	20.2	4.0	2.6	0.5	22.7	4.5	8.5	1.7	3.9	0.8	12.5	2.5
40	19,661	29.3	5.8	3.7	0.7	33.0	6.5	8.5	1.7	4.7	0.9	13.1	2.6
41	19,643	29.3	5.7	3.7	0.7	33.0	6.5	8.5	1.7	4.7	0.9	13.1	2.6
42	19,625	29.3	5.7	3.7	0.7	33.0	6.5	8.5	1.7	4.7	0.9	13.1	2.6
43	19,605	29.3	5.7	3.7	0.7	33.0	6.5	8.5	1.7	4.7	0.9	13.1	2.6
44	19,584	29.3	5.7	3.7	0.7	33.0	6.5	8.5	1.7	4.7	0.9	13.1	2.6
45	19,561	29.3	5.7	3.7	0.7	33.0	6.5	8.5	1.7	4.7	0.9	13.1	2.6
46	19,537	29.3	5.7	3.7	0.7	33.0	6.4	8.5	1.7	4.7	0.9	13.1	2.6
47	19,511	29.3	5.7	3.7	0.7	33.0	6.4	8.5	1.6	4.7	0.9	13.1	2.6
48	19,484	29.3	5.7	3.7	0.7	33.0	6.4	8.5	1.6	4.7	0.9	13.1	2.6
49	19,454	29.3	5.7	3.7	0.7	33.0	6.4 7.4	8.5	1.6	4.7	0.9	13.1	2.6
50	19,422	33.0 33.8	6.6	4.5	0.8	30.1 38 1	7.4	6.7	1.5	3.0	0.0	9.7	1.9
52	19,352	33.8	6.5	4.3	0.8	38.1	7.4	6.7	1.3	3.0	0.6	9.7	1.9
53	19.312	33.8	6.5	4.3	0.8	38.1	7.4	6.7	1.3	3.0	0.6	9.7	1.9
54	19,270	33.8	6.5	4.3	0.8	38.1	7.3	6.7	1.3	3.0	0.6	9.7	1.9
55	19,224	33.8	6.5	4.3	0.8	38.1	7.3	6.7	1.3	3.0	0.6	9.7	1.9
56	19,174	33.8	6.5	4.3	0.8	38.1	7.3	6.7	1.3	3.0	0.6	9.7	1.9
57	19,121	33.8	6.5	4.3	0.8	38.1	7.3	6.7	1.3	3.0	0.6	9.7	1.9
58	19,063	33.8	6.4	4.3	0.8	38.1	7.3	6.7	1.3	3.0	0.6	9.7	1.8
59	19,000	33.8	6.4	4.3	0.8	38.1	7.2	6.7	1.3	3.0	0.6	9.7	1.8
60	18,932	36.9	7.0	4.7	0.9	41.5	7.9	6.5	1.2	2.8	0.5	9.3	1.8
61	18,858	36.9	7.0	4.7	0.9	41.5	7.8	6.5	1.2	2.8	0.5	9.3	1.8
62	18,777	36.9	6.9	4.7	0.9	41.5	7.8	6.5	1.2	2.8	0.5	9.3	1.8
63	18,689	36.9	6.9	4.7	0.9	41.5 41 E	7.8	6.5 6 E	1.2	2.8	0.5	9.3	1.7
65	18,395	36.9	6.8	4.7	0.9	41.5 41.5	7.7	6.5	1.2	2.0 2.8	0.5	9.5	1.7
66	18 375	36.9	6.8	4.7	0.5	41.5	7.6	6.5	1.2	2.0	0.5	93	1.7
67	18.250	36.9	6.7	4.7	0.9	41.5	7.6	6.5	1.2	2.8	0.5	9.3	1.7
68	18,113	36.9	6.7	4.7	0.8	41.5	7.5	6.5	1.2	2.8	0.5	9.3	1.7
69	17,963	36.9	6.6	4.7	0.8	41.5	7.5	6.5	1.2	2.8	0.5	9.3	1.7
70	17,799	34.6	6.2	4.4	0.8	39.0	6.9	5.6	1.0	2.0	0.4	7.6	1.4
71	17,619	34.6	6.1	4.4	0.8	39.0	6.9	5.6	1.0	2.0	0.4	7.6	1.3
72	17,421	34.6	6.0	4.4	0.8	39.0	6.8	5.6	1.0	2.0	0.4	7.6	1.3
73	17,204	34.6	5.9	4.4	0.8	39.0	6.7	5.6	1.0	2.0	0.3	7.6	1.3
74	16,966	34.6	5.9	4.4	0.7	39.0	6.6	5.6	0.9	2.0	0.3	7.6	1.3
Total		-	270	_	34.3	-	305	•	67	-	31.4		99
* Rate is per 100,000 female population Reduction from Historic to Current 75.1% 8.3% 67.						67.6%							

Trend in Mortality Rate - 1958 to 2020

Mortality Due to Cervical Cancers in BC - 1958 to 1985

Anderson et al. provide data on the number of deaths and mortality rate due to SCC in BC in 1958, 1960, 1965, 1970, 1975, 1980 and 1985.⁵⁰¹ We assumed a linear distribution in mortality rate for each of the years of missing data between two data points and then applied that rate to the annual population of females ages 20 and older to generate the estimated number of deaths in a given year.

The study by Anderson et al. only includes data on SCC.⁵⁰² To estimate the number of deaths due to other cervical cancers for each year between 1958 and 1985, we turned to data from Miller and coauthors on mortality rates due to cervical cancers in BC in 1951, 1961 and 1971.⁵⁰³ This data source provides mortality rates for all cervical cancers but based on mortality only between the ages of 30-64.

To distribute the annual total number of deaths due to SCC from Andersen⁵⁰⁴ by age we used Canadian age-specific mortality rates from 1952-56 and 1972-76 as provided by Dickenson and colleagues.⁵⁰⁵ The age distribution from 1952-56 was used to distribute deaths due to SCC in 1958, 1960 and 1965 while the age distribution from 1972-76 was used to distribute deaths due to SCC in 1970, 1975, 1980 and 1985. We were then able to determine that deaths due to SCC contributed 76% of total cervical cancer deaths between the ages of 30-64. The deaths and mortality rate due to SCC in BC as noted by Anderson et al.⁵⁰⁶ were thus increased by a factor of 1.3157. That is, the mortality rate per 100,000 females ages 20+ due to SCC in 1958 was 11.42. We increased this to 15.02 (11.42 * 1.3157) to take into account deaths due to cervical cancers other than SCC.

Mortality Due to Cervical Cancers in BC - 2000 to 2020

The annual number of deaths due to cervical cancer in BC between 2000 and 2020 were generated from Statistics Canada Table 13-10-0800-01.⁵⁰⁷ We used this data to calculate a mortality rate per 100,000 females age \geq 20 for each year between 2000 and 2020.

 ⁵⁰¹ Anderson G, Boyes D, Benedict J et al. Organization and results of the cervical cytology screening programme in British Columbia, 1955-85. *British Medical Journal*. 1988; 296: 975-8.
 ⁵⁰² Ibid.

⁵⁰³ Miller A, Lindsay J, Hill G. Mortality from cancer of the uterus in Canada and its relationship to screening for cancer of the cervix. *International Journal of Cancer*. 1976; 17: 602-12.

⁵⁰⁴ Anderson G, Boyes D, Benedict J et al. Organization and results of the cervical cytology screening programme in British Columbia, 1955-85. *British Medical Journal*. 1988; 296: 975-8.

⁵⁰⁵ Dickenson J, Stankiewicz A, Popadiuk C et al. Reduced cervical cancer incidence and mortality in Canada: National data from 1932 to 2006. *BMC Public Health*. 2012; 12: 992.

⁵⁰⁶ Anderson G, Boyes D, Benedict J et al. Organization and results of the cervical cytology screening programme in British Columbia, 1955-85. *British Medical Journal*. 1988; 296: 975-8.

⁵⁰⁷ Statistics Canada. Table 13-10-0800-01. *Deaths and Mortality Rate, By Selected Grouped Causes*. Available online at <u>https://www150.statcan.gc.ca/t1/tbl1/en/cv.action?pid=1310080001</u>. Accessed January 2023.

Long-term Trends in Mortality

Between 1958 and 1985, the mortality rate due to cervical cancer per 100,000 females ages \geq 20 declined from 15.0 to 4.1 (see Figure 9). While we included long-term incidence trends by morphology in Figure 6 due to the differential impact of screening by morphology, when adjusted for age and stage, morphology does not appear to affect cervical cancer survival⁵⁰⁸ and is thus not differentiated in the long-term mortality trend (see Figure 9).

Between 2000 and 2020, the mortality rate due to cervical cancers essentially stabilized at an average rate of 2.70 / 100,000 (see Figure 9). Indeed, between 2000 and 2010 the average rate was 2.72 compared with 2.68 between 2011 and 2020.

⁵⁰⁸ Emmett M, Gildea C, NordinA et al. Cervical cancer – does the morphological subtype affect survival rates? *Journal of Obstetrics and Gynaecology*. 2018; 38(4): 548-55.

Mortality Rate by Age - Historic and Current

1958 & 1960

To estimate the mortality rate by age as screening was being implemented in BC, we began with the number of deaths due to SCC in 1958 and 1960 as provided by Anderson and colleagues⁵⁰⁹ and adjusted this to include an estimate of deaths due to cervical cancers other than SCC (see earlier section on *Mortality Due to Cervical Cancers in BC - 1958 to 1985*). These total deaths due to cervical cancers were then distributed by age based on Canadian age-specific mortality rates from 1952-56 as provided by Dickenson and colleagues.⁵¹⁰

The results are summarized in Figure 10.

2000 to 2020

To estimate the current mortality rate by age we began with Statistics Canada data on the annual number of deaths due to cervical cancer in BC between 2000 and 2020.⁵¹¹ These total deaths due to cervical cancers were then distributed by age based on Canadian age-specific mortality rates from 2002-06 as provided by Dickenson and colleagues.⁵¹²

The results are summarized in Figure 10.

⁵⁰⁹ Anderson G, Boyes D, Benedict J et al. Organization and results of the cervical cytology screening programme in British Columbia, 1955-85. *British Medical Journal*. 1988; 296: 975-8.

⁵¹⁰ Dickenson J, Stankiewicz A, Popadiuk C et al. Reduced cervical cancer incidence and mortality in Canada: National data from 1932 to 2006. *BMC Public Health*. 2012; 12: 992.

⁵¹¹ Statistics Canada. Table 13-10-0800-01. *Deaths and Mortality Rate, By Selected Grouped Causes*. Available online at <u>https://www150.statcan.gc.ca/t1/tbl1/en/cv.action?pid=1310080001</u>. Accessed January 2023.

⁵¹² Dickenson J, Stankiewicz A, Popadiuk C et al. Reduced cervical cancer incidence and mortality in Canada: National data from 1932 to 2006. *BMC Public Health*. 2012; 12: 992.

We then applied age specific mortality rates from Figure 10 to the 20,000 females within a BC birth cohort of 40,000 (see Table 6). Applying historic rates to the cohort suggests that 163 deaths (and 5,011 life years lost) due to cervical cancers would be observed within the cohort between the ages of 25 and 74. Based on current screening patterns, the estimated number of deaths and life years lost (LYL) would decrease to 25 and 783, a reduction of 85%.

	in a Bri	tish Coli	imbia	Birth Co	phort o	f 20,00	0 Fem	ales	
	Females								
	in Birth		Hist	oric			Curr	ent	
Age	Cohort	Rate*	#	LE	LYL	Rate*	#	LE	LYL
25	19,843	1.7	0.3	60.5	20	0.5	0.1	60.5	6
26	19,834	1.7	0.3	59.6	20	0.5	0.1	59.6	6
27	19,825	1.7	0.3	58.6	19	0.5	0.1	58.6	6
28	19,816	1.7	0.3	57.6	19	0.5	0.1	57.6	6
29	19,806	1.7	0.3	56.6	19	0.5	0.1	56.6	6
30	19,796	4.6	0.9	55.7	50	1.0	0.2	55.7	11
31	19,785	4.6	0.9	54.7	50	1.0	0.2	54.7	11
32	19,773	4.6	0.9	53.7	49	1.0	0.2	53.7	11
33	19,761	4.6	0.9	52.8	48	1.0	0.2	52.8	11
34 25	19,749	4.6 0.1	1.6	51.8	47	1.0	0.2	51.8	11
35	19,730	8.1 0.1	1.0	50.8 40.0	81	1.5	0.3	50.8 40.0	10
37	19,722	0.1 8 1	1.0	49.9 /8 Q	00 78	1.5	0.5	49.9 18 Q	14
38	19,693	81	1.6	47.9	76	1.5	0.3	47 9	14
39	19.677	8.1	1.6	47.0	75	1.5	0.3	47.0	14
40	19,661	13.9	2.7	46.0	126	2.2	0.4	46.0	20
41	19,643	13.9	2.7	45.1	123	2.2	0.4	45.1	19
42	19,625	13.9	2.7	44.1	121	2.2	0.4	44.1	19
43	19,605	13.9	2.7	43.1	118	2.2	0.4	43.1	18
44	19,584	13.9	2.7	42.2	115	2.2	0.4	42.2	18
45	19,561	20.5	4.0	41.2	165	2.7	0.5	41.2	22
46	19,537	20.5	4.0	40.3	161	2.7	0.5	40.3	21
47	19,511	20.5	4.0	39.3	157	2.7	0.5	39.3	21
48	19,484	20.5	4.0	38.4	153	2.7	0.5	38.4	20
49	19,454	20.5	4.0	37.4	149	2.7	0.5	37.4	19
50	19,422	20.5	4.0	36.5	145	3.3	0.7	36.5	24
51	19,388	20.5	4.0	35.6	141	3.3	0.6	35.6	23
52	19,352	20.5	4.0	34.6	137	3.3	0.6	34.6	22
53	19,312	20.5	4.0	33.7	133	3.3	0.6	33.7	22
54	19,270	20.5	3.9 1 1	32.8 21.0	129	3.3	0.6	32.8	21
55	19,224	21.5	4.1 // 1	30.0	121	3.2	0.0	30.9	10
57	19,174	21.5	4.1 4 1	30.0	127	3.2	0.0	30.0	19
58	19,063	21.3	4.1	29.1	118	3.2	0.6	29.1	18
59	19.000	21.3	4.1	28.2	114	3.2	0.6	28.2	17
60	18,932	27.5	5.2	27.3	142	3.3	0.6	27.3	17
61	18,858	27.5	5.2	26.4	137	3.3	0.6	26.4	17
62	18,777	27.5	5.2	25.5	132	3.3	0.6	25.5	16
63	18,689	27.5	5.1	24.6	127	3.3	0.6	24.6	15
64	18,593	27.5	5.1	23.8	121	3.3	0.6	23.8	15
65	18,489	27.8	5.1	22.9	118	3.9	0.7	22.9	17
66	18,375	27.8	5.1	22.0	112	3.9	0.7	22.0	16
67	18,250	27.8	5.1	21.2	107	3.9	0.7	21.2	15
68	18,113	27.8	5.0	20.3	102	3.9	0.7	20.3	14
69	17,963	27.8	5.0	19.5	97	3.9	0.7	19.5	14
70	17,799	27.0	4.8	18.7	90	4.6	0.8	18.7	15
71	17,619	27.0	4.8	17.9	85	4.6	0.8	17.9	15
72	17,421	27.0	4.7	17.1	80	4.6	0.8	17.1	14
73	17,204	27.0	4.6	16.3	76	4.6	0.8	16.3	13
74	16,966	27.0	4.6	15.5	71	4.6	0.8	15.5	12

Quality-Adjusted Life Years Lost - Historic and Current

- The diagnosis and treatment phase for cervical cancer lasts an average of 4.8 months⁵¹³ and is associated with a utility loss of 0.288 (95% CI of 0.193 to 0.399).⁵¹⁴
- The ongoing, controlled phase (remission) for cervical cancer is associated with a utility loss of 0.049 (95% CI of 0.031 to 0.072).⁵¹⁵
- The metastatic phase for cervical cancer lasts an average of 9.2 months⁵¹⁶ and is associated with a utility loss of 0.451 (95% CI of 0.307 to 0.600).⁵¹⁷

Applying the above changes in quality of life (QoL) related with the various phases of cervical cancer treatment suggests that, in a BC birth cohort of 20,000 females, if historic rates (with no screening) of invasive cervical cancers and deaths due to cervical cancers were currently maintained, we would expect 305 incident invasive cervical cancers (see Table 5) and 163 deaths (see Table 6) between the ages of 25 and 74 in a BC birth cohort of 20,000 females. These cancers and deaths are associated with 5,386 QALYs lost (see Table 7).

Given current screening patterns, we would expect to see 99 incident invasive cervical cancers (see Table 5) and 25 deaths (see Table 6) between the ages of 25 and 74 in a BC birth cohort of 20,000 females. These cancers and deaths are associated with 978 QALYs lost (see Table 7).

That is, current screening is associated with 4,409 (5,386 - 978) QALYs gained in a BC birth cohort of 20,000 females.

⁵¹³ Fitzmaurice C, Allen C, Barber R et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. *Journal of American Medical Association Oncology*. 2017; 3(4): 524-48.

⁵¹⁴ Institute for Health Metrics and Evaluation. *GBD 2016 sequelae, health states, health state lay descriptions, and disability weights*. Available online at <u>http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights</u>. Accessed October 2017.

⁵¹⁵ Fitzmaurice C, Allen C, Barber R et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. *Journal of American Medical Association Oncology*. 2017; 3(4): 524-48.

⁵¹⁶ Ibid.

⁵¹⁷ Institute for Health Metrics and Evaluation. *GBD 2016 sequelae, health states, health state lay descriptions, and disability weights*. Available online at <u>http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights</u>. Accessed October 2017.

	Table 7: Past and Current QALYs Lost Due to Invasive Cervical Cancer Delege (25 and 74)																
					Be	etwee	en t	he /	Ages o	f 25 a	nd 7	4					
			i	in a B	British	Colur	nbia	a Bir	th Coho	ort of 2	0,00) Fen	nales				
					Histo	oric							Curi	rent			
	Females	Incident	D&T	RP	MP				Total	Incident	D&T	RP	MP				Total
Age	in Birth Cohort	Cervical	QALYs	QALYs Lost	QALYs Lost	Deaths	LE	LYL	QALYs Lost	Cervical	QALYs	QALYs	QALYs Lost	Deaths	LE	LYL	QALYs Lost
	40.042	4.2	0.2	2.7	0.1	0.2	<u> </u>	20			0.1	4.7	0.0	0.1			
25 26	19,843 19 834	1.2	0.2	2.7	0.1	0.3	59.6	20 20	23	0.6	0.1	1.7	0.0	0.1	59.5	6	8 9
27	19,825	2.8	0.4	7.1	0.1	0.3	58.6	19	27	1.4	0.2	4.2	0.0	0.1	58.6	6	10
28	19,816	2.4	0.3	5.8	0.1	0.3	57.6	19	25	1.2	0.2	3.4	0.0	0.1	57.6	6	9
29	19,806	3.0	0.4	7.5	0.1	0.3	56.6	19	27	1.6	0.2	4.4	0.0	0.1	56.6	6	10
30	19,796	4.5	0.6	9.8	0.4	0.9	55.7	50	61	2.5	0.3	7.0	0.1	0.2	55.7	11	19
31	19,785	4.5	0.6	9.6 g /	0.4	0.9	54.7	50 10	60 59	2.5	0.3	6.8 6.7	0.1	0.2	54.7 53.7	11	18 19
33	19,773	4.5	0.6	9.4 9.3	0.4	0.9	52.8	49 48	58	2.5	0.3	6.6	0.1	0.2	52.8	11	18
34	19,749	4.5	0.6	9.1	0.4	0.9	51.8	47	57	2.5	0.3	6.5	0.1	0.2	51.8	11	17
35	19,736	4.5	0.6	7.2	0.6	1.6	50.8	81	89	2.5	0.3	6.1	0.1	0.3	50.8	15	21
36	19,722	4.5	0.6	7.0	0.6	1.6	49.9	80	88	2.5	0.3	6.0	0.1	0.3	49.9	14	21
37	19,708	4.5	0.6	6.9	0.6	1.6	48.9	78	86	2.5	0.3	5.8	0.1	0.3	48.9	14	20
38	19,693	4.5	0.6	6.8 6.6	0.6	1.6	47.9	/6 75	84	2.5	0.3	5.7	0.1	0.3	47.9	14	20
59 40	19,677	4.5	0.0	0.0 8.4	0.6	2.7	47.0	126	05 136	2.5	0.5	5.0 5.7	0.1	0.5	47.0 46.0	14 20	20
41	19,643	6.5	0.9	8.3	1.1	2.7	45.1	123	134	2.6	0.3	5.6	0.2	0.4	45.1	19	25
42	19,625	6.5	0.9	8.1	1.1	2.7	44.1	121	131	2.6	0.3	5.4	0.2	0.4	44.1	19	25
43	19,605	6.5	0.9	7.9	1.1	2.7	43.1	118	128	2.6	0.3	5.3	0.2	0.4	43.1	18	24
44	19,584	6.5	0.9	7.7	1.1	2.7	42.2	115	125	2.6	0.3	5.2	0.2	0.4	42.2	18	24
45	19,561	6.5	0.9	4.9	1.6	4.0	41.2	165	172	2.6	0.3	4.8	0.2	0.5	41.2	22	27
46	19,537	6.4 6.4	0.9	4.8	1.6	4.0	40.3	161	168	2.6	0.3	4.7	0.2	0.5	40.3	21	26
47 48	19,511	6.4 6.4	0.9	4.7	1.6	4.0	39.3 38.4	157	164	2.0	0.3	4.0 4.5	0.2	0.5	39.3 38.4	21	20 25
49	19,454	6.4	0.9	4.5	1.6	4.0	37.4	149	156	2.6	0.3	4.4	0.2	0.5	37.4	19	24
50	19,422	7.4	1.0	6.1	1.7	4.0	36.5	145	154	1.9	0.3	2.7	0.3	0.7	36.5	24	27
51	19,388	7.4	1.0	6.0	1.7	4.0	35.6	141	150	1.9	0.3	2.6	0.3	0.6	35.6	23	26
52	19,352	7.4	1.0	5.8	1.7	4.0	34.6	137	146	1.9	0.3	2.5	0.3	0.6	34.6	22	26
53	19,312	7.4	1.0	5.6	1.7	4.0	33.7	133	141	1.9	0.3	2.5	0.3	0.6	33.7	22	25
54	19,270	7.3	1.0	5.5	1.7	3.9	32.8	129	137	1.9	0.3	2.4	0.3	0.6	32.8	21	24
55	19,224	7.3 7.2	1.0	5.0 4 0	1.7	4.1	31.9	131	138	1.9	0.3	2.4	0.3	0.6	31.9	20 10	23
57	19,174	7.3	1.0	4.5	1.7	4.1	30.9	127	134	1.9	0.3	2.3	0.3	0.6	30.9	19	22
58	19,063	7.3	1.0	4.6	1.7	4.1	29.1	118	126	1.8	0.3	2.1	0.3	0.6	29.1	18	21
59	19,000	7.2	1.0	4.4	1.7	4.1	28.2	114	121	1.8	0.3	2.1	0.3	0.6	28.2	17	20
60	18,932	7.9	1.1	3.6	2.3	5.2	27.3	142	149	1.8	0.3	1.9	0.3	0.6	27.3	17	20
61	18,858	7.8	1.1	3.4	2.3	5.2	26.4	137	144	1.8	0.3	1.8	0.3	0.6	26.4	17	19
62	18,777	7.8	1.1	3.3	2.2	5.2	25.5	132	138	1.8	0.3	1.8	0.3	0.6	25.5	16	18
63 64	18 203 18 203	7.8 77	1.1 1 1	3.2 3.0	2.2 2.2	5.1 5 1	24.6 22.9	127 121	133	1./	0.3	1./ 1.6	0.3 0.2	0.6	24.6 23.9	15 15	18 17
65	18,489	7.7	1.1	2.9	2.2 2.2	5.1	22.9	118	120	1.7	0.3	1.4	0.3	0.0	22.9	15 17	19
66	18,375	7.6	1.1	2.7	2.2	5.1	22.0	112	118	1.7	0.2	1.3	0.3	0.7	22.0	_/ 16	18
67	18,250	7.6	1.1	2.6	2.2	5.1	21.2	107	113	1.7	0.2	1.3	0.3	0.7	21.2	15	17
68	18,113	7.5	1.1	2.5	2.2	5.0	20.3	102	108	1.7	0.2	1.2	0.3	0.7	20.3	14	16
69	17,963	7.5	1.1	2.4	2.2	5.0	19.5	97	103	1.7	0.2	1.2	0.3	0.7	19.5	14	15
70	17,799	6.9	1.1	2.0	2.2	4.8	18.7	90	95	1.4	0.2	0.6	0.4	0.8	18.7	15	17
71	17,619	6.9	1.0	1.8	2.2	4.8	17.9	85	90 95	1.3	0.2	0.6	0.4	0.8	17.9	15	16
72	17,421	0.8 6.7	1.0	1.7 1.6	2.2 2.1	4.7 4.6	16 3	80 76	80 80	1.3	0.2	0.5	0.4	0.8	16.3	14 13	15
74	16,966	6.6	1.0	1.5	2.1	4.6	15.5	71	76	1.3	0.2	0.5	0.4	0.8	15.5	12	13
Total		305	42	264	69	163	30.8	5.011	5.386	99	13	171	11	25	31.5	783	978
Note: ($\Delta I V_{S} = O u $	ality-adjust	ed life v	iears: D	RT - Diao	inosis and	troat	mont	hase: RD -	 Remission	nhase N	1D - Mo	- tastatic r		l ifo ov	noctano	

Life years lost

Current Cytology-Based Screening for Cervical Cancers

Clinically Preventable Burden – Cytology-Based Screening

Current Screening Program Results

To inform our model assessing the clinically preventable burden (CPB) and costeffectiveness (CE) of BC's current cytology-based cervical cancer screening program in a BC birth cohort of 20,000 females, we have generated the information in Table 8 based on actual results in 2018 in BC.⁵¹⁸

The total BC female population ages 25-69 in 2018 is 1,559,008. Screening is up-to-date (have been screened at least once in the past 36 months) for 930,304 females, of whom 302,525 were screened in 2018.

A total of 3,910 (1.3%) screens had to be redone due to unsatisfactory quality.

A total of 9,210 (3.04%) females received a test result of atypical squamous cells of undetermined significance (ASCUS) or low-grade squamous intraepithelial lesion (LSIL). Of these females, 7,875 (86%) returned for a repeat screen in 6 months and 1,170 (12.7%) went on to receive a colposcopy.

A total of 3,935 (1.30%) females received a test result of atypical glandular cells (AGC), atypical squamous cells - cannot exclude high-grade squamous intraepithelial lesions (ASC-H) or high-grade squamous intraepithelial lesions / adenocarcinoma in situ /invasive carcinoma (HSIL+). Of these females, 3,510 (89.2%) went on to receive a colposcopy. In future sections of this report we have truncated the ACG/ASC-H/HSIL+ label to HSIL+.

Of the 4,680 females who received a colposcopy, 85% had a biopsy performed during the colposcopy.

Of the 4,680 females who received a colposcopy, 2,240 or 47.9% received a confirmed diagnosis of cervical intraepithelial neoplasia (CIN) 2 or 3 or adenocarcinoma in situ (AIS). By comparison, the study by Wentzensen et al. in Oklahoma, found that of patients who receive a colposcopy following a screening result of ASCUS+, 40.2% are histologically confirmed to have CIN2+.⁵¹⁹

Patients with a diagnosis of CIN2+ are considered to have precancerous lesions and this diagnosis tends to be followed by treatment due to the higher risk of these lesions turning into cancer. Available treatments include cryotherapy, large loop excision of the transformation zone (LEEP/LLETZ), and cold knife conisation (CKC).

In BC, the standard treatment for CIN2+ is LEEP with the occasional use of laser conisation.⁵²⁰ In 2021, for example, 98.9% of procedures were LEEP, with the remaining 1.1% being laser conisation.⁵²¹

⁵¹⁸ BC Cancer Cervix Screening. *BC Cancer Cervix Screening 2018 Program Results*. March 2020. Available online at <u>http://www.bccancer.bc.ca/screening/Documents/Cervix-Program-Results-2018.pdf</u>. Accessed January 2023.

⁵¹⁹ Wentzensen N, Walker J, Gold M et al. Multiple biopsies and detection of cervical cancer precursors at colposcopy. *Journal of Clinical Oncology*. 2015; 33(1): 83-9.

⁵²⁰Ogilvie G, van Niekerk D, Krajden M et al. A randomized controlled trial of human papillomavirus (HPV) testing for cervical cancer screening: Trial design and preliminary results (HPV FOCAL trial). *BMC Cancer*. 2010; 10: 111.

⁵²¹ Dr. Lily Proctor, Medical Director, Cervix Screening Program, BC Cancer. Personal Communication. April 2023.

The 2017 meta-analysis by Arbyn et al found an overall recurrence rate of 6.6% (95% CI of 4.9% to 8.4%), 2.1% (95% CI of 0.4% to 4.9%) with laser conisation, 2.2% (95% CI of 1.8% to 2.6%) with cold-knife conisation and 6.7% (95% CI of 4.6% to 9.3%) with LEEP.⁵²²

Finally, a total of 168 females ages 25-69 were diagnosed with invasive cervical cancer.

Table 8	8: BC Ca	ncer C	ervix So	creenir	Ig								
2018	Program	n Results	s by Age	Group									
		A	ge Group										
_	25-29	30-39	40-49	50-59	60-69	25-69							
_													
Female Population	172,170	347,578	332,835	373,096	333,329	1,559,008							
Screening Rate*	57%	69%	65%	57%	49%	60%							
Total Screened Population	98,137	239,829	216,343	212,665	163,331	930,304							
# of Patients Screened in 2018	34,465	77,775	70,290	69,115	50,880	302,525							
% Screened	35%	32%	32%	32%	31%	33%							
	Unsatisfactory Screens												
#	551	1,244	914	691	509	3,910							
%	1.6%	1.6%	1.3%	1.0%	1.0%	1.3%							
	S	creen Resu	lts										
Screen Results # ASCUS / LSIL 1,945 2,710 2,260 1,600 695													
% ASCUS / LSIL	5.64%	3.48%	3.22%	2.31%	1.37%	3.04%							
# AGC/ASC-H/HSIL+	790	1,300	845	675	325	3,935							
% AGC/ASC-H/HSIL+	2.29%	1.67%	1.20%	0.98%	0.64%	1.30%							
	Repeat Se	creens for A	ASCUS/LSIL										
#	1,655	2,290	1,930	1,385	615	7,875							
% of ACSUS / LSIL	85.1%	84.5%	85.4%	86.6%	88.5%	85.5%							
% of Pts. Screened	4.8%	2.9%	2.7%	2.0%	1.2%	2.6%							
		Colposcop	у										
# ASCUS / LSIL	265	385	275	185	60	1,170							
% ASCUS / LSIL	13.6%	14.2%	12.2%	11.6%	8.6%	12.7%							
# AGC/ASC-H/HSIL+	775	1,280	755	480	220	3,510							
% AGC/ASC-H/HSIL+	98.1%	98.5%	89.3%	71.1%	67.7%	89.2%							
Histol	ogically Con	firmed Pre	-Cancerous	Lesions									
Rate/1,000 Screened	18.1	12.0	6.0	2.3	2.0	7.4							
# with CIN2+	624	933	422	159	102	2,240							
% of all Colposcopies	60.0%	56.1%	40.9%	23.9%	36.3%	47.9%							
His	tologically (Confirmed	nvasive Ca	ncers									
Rate/100,000 Females	5.81	12.37	12.32	9.11	12.00	10.78							
# with Invasive Cancer	10	43	41	34	40	168							
* Uncorr	ected for hy	sterectomy	/										

⁵²² Arbyn M, Redman C, Verdoodt F et al. Incomplete excision of cervical precancer as a predictor of treatment failure: A systematic review and meta-analysis. *Lancet Oncology*. 2017; 18: 1665-79.

BC Birth Cohort of 40,000

We then applied the results from Table 8 and the research evidence in the previous section to the 20,000 females in the BC birth cohort of 40,000 between the ages of 25 and 69 for screening (see Table 9). Within this cohort, we would expect 164,780 screens with an additional 2,138 repeat screens due to unsatisfactory samples and 4,312 repeat screens to follow-up patients with an original screening result of ASCUS / LSIL. Of the 5,044 patients with a screening result of ASCUS/LSIL, 641 (12.7%) would go on to receive a colposcopy. Of the 2,155 patients with a screening result of HSIL+, 1,928 (89.5%) would go on to receive a colposcopy.

Of those receiving a colposcopy, 1,238 (48.2%) would be histologically confirmed to have CIN2+, thus requiring treatment. Recurrent treatment within the next years is estimated at 6.7% or 83 of the 1,238.

	Table 9: Screening for Cervical Cancer																					
		Current Screening Model																				
						in a	British	Colur	mbia	Birth	ו Coh	ort of	20,0	000 F	emale	es						
	Females						Screenin	ng				Sa	creenin	g Result	ts		Colpo	oscopies				Treatment
	in Birth	Hystered	ctomies	Potential		# Up To	Annual	Unsatis	factory	Rep	eat	ASCUS	i / LSIL	HS	ilL+	ASCUS	/ LSIL	. HS	IL+	CIN	2+	Recurrence
Age	Cohort	%	#	Cohort	Rate	Date	Screens	%	#	%	#	%	#	%	#	%	#	%	#	%	#	6.7%
25	19,843	0.5%	89	19,754	57%	11,260	3,954	1.6%	63	4.8%	190	5.6%	223	2.3%	91	13.6%	30	98.1%	89	60.0%	71.6	4.8
26	19,834	0.5%	104	19,730	57%	11,246	3,950	1.6%	63	4.8%	190	5.6%	223	2.3%	91	13.6%	30	98.1%	89	60.0%	71.5	4.8
2/	19,825	0.6%	119	19,706	57%	11,233	3,945	1.6%	63	4.8%	189	5.6%	223	2.3%	90	13.6%	30	98.1%	89	60.0%	71.4	4.8
20	19,810	0.7%	134	19,082	57%	11,219	3,540	1.0%	63	4.8%	189	5.6%	222	2.3%	90	13.6%	30	98.1%	88	60.0%	71.3	4.8
30	19,796	1.0%	202	19,594	69%	13,520	4,384	1.6%	70	2.9%	129	3.5%	153	1.7%	73	14.2%	22	98.5%	72	56.1%	52.6	3.5
31	19,785	1.5%	306	19,479	69%	13,440	4,359	1.6%	70	2.9%	128	3.5%	152	1.7%	73	14.2%	22	98.5%	72	56.1%	52.3	3.5
32	19,773	2.1%	410	19,364	69%	13,361	4,333	1.6%	69	2.9%	128	3.5%	151	1.7%	72	14.2%	21	98.5%	71	56.1%	52.0	3.5
33	19,761	2.6%	513	19,248	69%	13,281	4,307	1.6%	69	2.9%	127	3.5%	150	1.7%	72	14.2%	21	98.5%	71	56.1%	51.7	3.5
34	19,749	3.1%	617	19,132	69%	13,201	4,281	1.6%	68	2.9%	126	3.5%	149	1.7%	72	14.2%	21	98.5%	70	56.1%	51.4	3.4
35	19,736	3.7%	720	19,015	69%	13,121	4,255	1.6%	68	2.9%	125	3.5%	148	1.7%	71	14.2%	21	98.5%	70	56.1%	51.1	3.4
30	19,722	4.2%	824 927	18,899	69%	13,040	4,229	1.6%	67	2.9%	125	3.5%	147	1.7%	71	14.2%	21	98.5%	70 69	56.1%	50.7	3.4
38	19,708	4.7% 5.2%	1 030	18,781	69%	12,939	4,203	1.0%	67	2.9%	124	3.5%	140	1.7%	70	14.2%	21	98.5%	69	56.1%	50.4	3.4
39	19.677	5.8%	1.132	18,545	69%	12,796	4.150	1.6%	66	2.9%	122	3.5%	145	1.7%	69	14.2%	21	98.5%	68	56.1%	49.8	3.3
40	19,661	7.1%	1,392	18,269	69%	12,606	4,096	1.3%	53	2.7%	112	3.2%	132	1.2%	49	12.2%	16	89.3%	44	40.9%	24.6	1.6
41	19,643	8.4%	1,651	17,993	69%	12,415	4,034	1.3%	52	2.7%	111	3.2%	130	1.2%	48	12.2%	16	89.3%	43	40.9%	24.2	1.6
42	19,625	9.7%	1,909	17,716	69%	12,224	3,971	1.3%	52	2.7%	109	3.2%	128	1.2%	48	12.2%	16	89.3%	43	40.9%	23.8	1.6
43	19,605	11.1%	2,167	17,438	69%	12,032	3,909	1.3%	51	2.7%	107	3.2%	126	1.2%	47	12.2%	15	89.3%	42	40.9%	23.5	1.6
44	19,584	12.4%	2,424	17,160	69%	11,840	3,847	1.3%	50	2.7%	106	3.2%	124	1.2%	46	12.2%	15	89.3%	41	40.9%	23.1	1.5
45	19,561	13.7%	2,681	16,881	69%	11,648	3,784	1.3%	49	2.7%	104	3.2%	122	1.2%	45	12.2%	15	89.3%	41	40.9%	22.7	1.5
40	19,537	14.3%	2,787	16,750	69%	11,558	3,755	1.3%	49	2.7%	103	3.2%	121	1.2%	45	12.2%	15	89.3%	40	40.9%	22.5	1.5
48	19 484	15.4%	2,052	16 486	69%	11,407	3,720	1.3%	48	2.7%	102	3.2%	119	1.2%	43	12.2%	14	89.3%	40	40.9%	22.4	1.5
49	19,454	15.9%	3.102	16.352	69%	11.283	3,666	1.3%	48	2.7%	101	3.2%	118	1.2%	44	12.2%	14	89.3%	39	40.9%	22.0	1.5
50	19,422	16.5%	3,205	16,217	70%	11,352	3,689	1.0%	37	2.0%	74	2.3%	85	1.0%	36	11.6%	10	71.1%	26	23.9%	8.5	0.6
51	19,388	17.1%	3,308	16,080	70%	11,256	3,658	1.0%	37	2.0%	73	2.3%	85	1.0%	36	11.6%	10	71.1%	25	23.9%	8.4	0.6
52	19,352	17.6%	3,411	15,941	70%	11,159	3,627	1.0%	36	2.0%	73	2.3%	84	1.0%	35	11.6%	10	71.1%	25	23.9%	8.3	0.6
53	19,312	18.2%	3,512	15,800	70%	11,060	3,595	1.0%	36	2.0%	72	2.3%	83	1.0%	35	11.6%	10	71.1%	25	23.9%	8.3	0.6
54	19,270	18.7%	3,612	15,658	70%	10,960	3,562	1.0%	36	2.0%	71	2.3%	82	1.0%	35	11.6%	10	71.1%	25	23.9%	8.2	0.5
55	19,224	19.3%	3,711	15,513	70%	10,859	3,529	1.0%	35	2.0%	71	2.3%	82	1.0%	34	11.6%	9	71.1%	25	23.9%	8.1	0.5
50	19,174	20.5%	3,933 1 151	13,241	70%	10,669	3,467	1.0%	35 3/	2.0% 2.0%	69 68	2.3%	80 70	1.0%	34 22	11.6%	9	71.1% 71.1%	24	23.9%	8.0 7 9	0.5
58	19,063	22.9%	4,372	14,507	70%	10,477	3,340	1.0%	34	2.0%	67	2.3%	79	1.0%	33	11.6%	9	71.1%	24	23.9%	7.0	0.5
59	19,000	24.1%	4,587	14,413	70%	10,089	3,279	1.0%	33	2.0%	66	2.3%	76	1.0%	32	11.6%	9	71.1%	23	23.9%	7.5	0.5
60	18,932	25.4%	4,800	14,132	72%	10,175	3,170	1.0%	32	1.2%	38	1.4%	43	0.6%	20	8.6%	4	67.7%	14	36.3%	6.3	0.4
61	18,858	26.6%	5,009	13,848	72%	9,971	3,106	1.0%	31	1.2%	38	1.4%	42	0.6%	20	8.6%	4	67.7%	13	36.3%	6.2	0.4
62	18,777	27.8%	5,215	13,562	72%	9,765	3,042	1.0%	30	1.2%	37	1.4%	42	0.6%	19	8.6%	4	67.7%	13	36.3%	6.1	0.4
63	18,689	29.0%	5,417	13,272	72%	9,556	2,977	1.0%	30	1.2%	36	1.4%	41	0.6%	19	8.6%	4	67.7%	13	36.3%	6.0	0.4
64	18,593	30.2%	5,614	12,979	72%	9,345	2,911	1.0%	29	1.2%	35	1.4%	40	0.6%	19	8.6%	3	67.7%	13	36.3%	5.8	0.4
65	18,489	31.4%	5,806	12,683	/2%	9,131	2,845	1.0%	28	1.2%	34	1.4%	39	0.6%	18	8.6%	3	67.7%	12	36.3%	5.7	0.4
67	18,375	32.6%	5,993 6 173	12,382	72%	8,915 8 605	2,777	1.0%	28 27	1.2% 1.2%	34	1.4%	38 27	0.6%	18	8.6%	3 ว	67.7%	12	36.3%	5.6	0.4
68	18 113	35.0%	0,175 6 346	11 767	72%	8 472	2,709	1.0%	27	1.2%	33 32	1.4%	36	0.6%	17	8.6%	כ 2	67.7%	12	36.3%	5.4 5.3	0.4
69	17,963	36.2%	6,511	11,452	72%	8,246	2,569	1.0%	26	1.2%	31	1.4%	35	0.6%	16	8.6%	3	67.7%	11	36.3%	5.1	0.3
Total	-						164,780	1.30%	2.138	2.62%	4.312	3.06%	5.044	1.31%	2.155	12.7%	641	89.5%	1.928	48.2%	1.238	83
10101							10-1,700	1.00/0	_,100	-102/0	.,	5.0070	3,044	1.91/0	_,133	12.770	140	55.570	-,523		-,	

Potential Harms - Reduction in Quality of Life Associated with a Diagnosis

- Cytology screening with a low grade abnormality diagnosis is associated with a utility loss of 0.0231 for a period of 12 months.⁵²³
- Diagnosis and treatment for CIN2+ is associated with a utility loss of 0.066 for a period of 20 months.⁵²⁴

	Table 10: Screening for Cervical Cancer													
		Current Sci	eening M	odel - Har	ms									
	in a Brit	ish Columbia	a Birth Coh	ort of 20,00	0 Females									
		# with		# with		Total								
	Females in	Diagnosed		Diagnosed		QALYs								
Age	Birth Cohort	ASCUS / LSIL	QALYs Lost	CIN2+	QALYs Lost	Lost								
25	19 843	242	5.1	72	72	12 3								
26	19,834	242	5.1	71	7.2	12.3								
27	19.825	242	5.1	71	7.2	12.3								
28	19,816	241	5.1	71	7.2	12.3								
29	19,806	241	5.1	71	7.2	12.3								
30	19,796	173	3.6	53	5.2	8.7								
31	19,785	172	3.5	52	5.1	8.7								
32	19,773	171	3.5	52	5.1	8.6								
33	19,761	170	3.5	52	5.1	8.6								
34	19,749	169	3.5	51	5.0	8.5								
35	19,736	168	3.5	51	5.0	8.5								
36	19,722	167	3.4	51	5.0	8.4								
37	19,708	166	3.4	50	4.9	8.4								
38	19,693	165	3.4	50	4.9	8.3								
39	19,677	164	3.4	50	4.9	8.3								
40	19,661	156	3.1	25	2.3	5.4								
41	19,643	154	3.0	24	2.3	5.3								
42	19,625	152	3.0	24	2.2	5.2								
43	19,605	149	2.9	23	2.2	5.2								
44	19,584	147	2.9	23	2.2	5.1								
45	19,561	144	2.8	23	2.1	5.0								
46	19,537	143	2.8	23	2.1	4.9								
47	19,511	142	2.8	22	2.1	4.9								
48	19,484	141	2.8	22	2.1	4.9								
49	19,454	140	2.8	22	2.1	4.8								
50	19,422	113	2.1	8	0.8	2.9								
51	19,388	112	2.1	8	0.8	2.9								
52	19,352	111	2.1	8	0.8	2.9								
53	19,312	110	2.1	8	0.7	2.8								
54	19,270	109	2.1	8	0.7	2.8								
55	19,224	108	2.0	8	0.7	2.8								
50	19,174	106	2.0	٥ ٥	0.7	2.7								
57	19,121	104	2.0	0	0.7	2.7								
50	19,003	102	1.9	8	0.7	2.0								
60	19,000	57	1.5	6	0.7	1.6								
61	18,552	56	1.1	6	0.0	1.0								
62	18,000	55	1.0	6	0.5	1.5								
63	18 689	54	1.0	6	0.5	1.5								
64	18,593	53	1.0	6	0.5	1.5								
65	18,489	51	0.9	6	0.5	1.4								
66	18,375	50	0.9	6	0.5	1.4								
67	18,250	49	0.9	5	0.5	1.4								
68	18,113	48	0.9	5	0.5	1.3								
69	17,963	46	0.9	5	0.5	1.3								
Total		5,960	119	1,238	120	239								

⁵²³ Simonella L, Howard K, Canfell K. A survey of population-based utility scores for cervical cancer prevention. *BMC Research Notes*. 2014; 7: 899

⁵²⁴ Insinga R, Glass A, Myers E et al. Abnormal outcomes following cervical cancer screening: event duration and health utility loss. *Medical Decision Making*. 2007; 27(4): 414-22.

Potential Harms - Premature Births

Females with CIN have a higher baseline risk of a premature birth in a subsequent pregnancy. Excisional and ablative treatment for CIN further increases that risk. Research by Kyrgiou and colleagues is summarized in Table 11.^{525,526} Treatment for CIN increases the risk of prematurity substantially, from 5.43% to 10.73%. The risk of prematurity increases with multiple treatments and cone depth and varies by the treatment modality (see Table 11).

Table 11 - Risk of Preterm Bi	rth Associa	ted with	Treatment for CIN
	Untreated	Treated	RR (95% CI)
< 37 Weeks gestation	5.43%	10.73%	1.78 (1.60-1.98)
<32-34 Weeks gestation	1.43%	3.47%	2.40 (1.92-2.99)
<28-30 Weeks gestation	0.33%	1.03%	2.54 (1.77-3.63)
< 37 Weeks gestation by single vs	s. repeat teatr	nent	
Single treatment	4.17%	7.48%	1.75 (1.49-2.06)
Repeat treatment	4.11%	13.25%	3.78 (2.65-5.39)
< 37 Weeks gestation by cone de	pth		
Cone depth ≤10-12mm	3.42%	7.14%	1.54 (1.09-2.18)
Cone depth ≥10-12mm	3.42%	9.77%	1.93 (1.62-2.31)
Cone depth ≥15-17mm	3.40%	10.05%	2.77 (1.95-3.93)
Cone depth ≥20mm	3.40%	10.22%	4.91 (2.06-11.68)
< 37 Weeks gestation by treatme	nt modality		
Laser ablation	6.68%	7.25%	1.27 (0.67-2.40)
Loop electrosurgical excision procedure (LEEP)	4.66%	7.59%	1.69 (1.46-1.97)
Laser conisation	7.12%	14.17%	2.39 (1.24-4.61)
Cold knife conisation	6.12%	15.90%	3.28 (2.44-4.42)

⁵²⁵ Kyrgiou M, Athanasiou A, Paraskevaidi M et al. Adverse obstetric outcomes after local treatment for cervical preinvasive and early invasive disease according to cone depth: Systematic review and meta-analysis. *BMJ*. 2016; 354: i3633.

⁵²⁶ Kyrgiou M, Athanasiou A, Kalliala I et al. Obstetric outcomes after conservative treatment for cervical intraepithelial lesions and early invasive disease. *Cochrane Database of Systematic Reviews*. 2017.

Table 12 - Absolute Risks of CIN Treatment Failures													
and	l Preterm B	Birth											
	Any Treatment Failure	High-Grade Treatment Failure	Preterm Birth										
Cold coagulation	11.0%	4.8%	5.5%										
Cryotherapy	17.3%	9.6%	8.0%										
Laser ablation	16.2%	11.2%	8.3%										
Loop electrosurgical excision procedure (LEEP)	10.2%	5.3%	10.5%										
Laser conisation	6.3%	4.6%	13.2%										
Radical diathermy	16.7%	11.2%	13.9%										
Cold knife conisation	6.6%	3.5%	16.3%										

More aggressive local CIN treatments are associated with a reduced risk of treatment failure but an increased risk of pre-term birth in subsequent pregnancies, as indicated in Table 12.⁵²⁷

As noted previously, standard treatment for CIN2+ in BC tends to be with LEEP.⁵²⁸ The data specifically for LEEP (used in our modelling) is as follows: ⁵²⁹

	Untreated	Treated	RR (95% CI)
< 37 Weeks gestation	4.68%	8.09%	1.56 (1.36 – 1.79)
<32-34 Weeks gestation	1.22%	2.05%	2.13 (1.66 – 2.75)
<28-30 Weeks gestation	0.25%	0.66%	2.57 (1.97 - 3.35)

⁵²⁷ Athanasiou A, Veroniki A, Efthimiou O et al. Comparative effectiveness and risk of preterm birth of local treatments for cervical intraepithelial neoplasia and stage IA1 cervical cancer: A systematic review and network meta-analysis. *The Lancet*. 2022; 23: 1097-108.

⁵²⁸ Ogilvie G, van Niekerk D, Krajden M et al. A randomized controlled trial of human papillomavirus (HPV) testing for cervical cancer screening: Trial design and preliminary results (HPV FOCAL trial). *BMC Cancer*. 2010; 10: 111.

⁵²⁹ Kyrgiou M, Athanasiou A, Paraskevaidi M et al. Adverse obstetric outcomes after local treatment for cervical preinvasive and early invasive disease according to cone depth: Systematic review and meta-analysis. *BMJ*. 2016; 354: i3633.

To estimate the effect of local CIN2+ treatments on preterm births in a BC birth cohort of 40,000, we first calculated the fertility rate per 1,000 females based on data from BC Vital Statistics for the three years from 2013 to 2015 (see Table 13).⁵³⁰

			Num	ber of Wo	men*			
Year	15-19	20-24	25-29	30-34	35-39	40-44	45-49	Total
2013	131,378	152,798	159,870	158,541	150,258	165,004	173,233	1,091,082
2014	130,517	153,991	162,005	163,346	152,477	163,392	172,241	1,097,969
2015	130,179	152,108	163,734	166,612	155,270	161,338	173,302	1,102,543
Mean	130,691	152,966	161,870	162,833	152,668	163,245	172,925	1,097,198
			Fertilit	y Rate pe	r 1,000			
2013	7.6	30.8	73.5	98.6	56.7	11.9	0.8	10.3
2014	6.8	29.6	72.2	100.0	57.2	11.7	0.8	11.1
2015	6.2	28.8	69.3	100.0	57.3	12.3	0.8	10.9
Mean	6.8	29.7	71.6	99.5	57.1	12.0	0.8	40.1
			Annua	l # of Live	Births			
2013**	993	4,711	11,747	15,628	8,515	1,966	130	43,690
2014***	889	4,553	11,702	16,336	8,725	1,915	141	44,261
2015****	802	4,385	11,339	16,654	8,894	1,984	137	44,195
Mean	895	4,550	11,596	16,206	8,711	1,955	136	44,049

*BC Stats. Population Estimates 2019. Available at https://bcstats.shinyapps.io/popApp/. Accessed February 2023. ** BC Vital Statistics Agency. *Annual Report 2013* - Table 3. Available online at https://www2.gov.bc.ca/assets/gov/birth-adoptiondeath-marriage-and-divorce/statistics-reports/annual-reports/2013/pdf/annual-report-2013.pdf. Accessed February 2023. *** BC Vital Statistics Agency. *Annual Report 2014* - Table 3. Available online at https://www2.gov.bc.ca/assets/gov/birthadoption-death-marriage-and-divorce/statistics-reports/annual-reports/2014/pdf/annual-report-2014.pdf. Accessed February **** BC Vital Statistics Agency. *Annual Report 2015* - Table 3. Available online at https://www2.gov.bc.ca/assets/gov/birthadoption-death-marriage-and-divorce/statistics-reports/annual-reports/2014/pdf/annual-report-2014.pdf. Accessed February **** BC Vital Statistics Agency. *Annual Report 2015* - Table 3. Available online at https://www2.gov.bc.ca/assets/gov/birthadoption-death-marriage-and-divorce/statistics-reports/annual-reports/2015/pdf/annual-report-2015.pdf. Accessed February

The age-specific fertility rate was then applied to the BC birth cohort, indicating that approximately 23,815 live births could be expected in the cohort between the ages of 25 and 49 (see Table 14). In the birth cohort, 1,100 females between the ages of 25 and 49 would receive treatment for CIN2+, as calculated in Table 9. Based on the differences in the rate of preterm births with or without LEEP treatment for CIN2+, we would expect an additional 37.5 babies to be preterm attributable to treatment (see Table 14). Of these 37.5 babies, 4.5 would be expected to be extremely preterm (gestational age < 28 completed weeks), 4.6 (9.1 – 4.5) would be expected to be very preterm (gestational age < 32 completed weeks) and 28.4 (37.5 – 4.6 – 4.5) would be expected to be late preterm (gestational age < 37 completed weeks) (see Table 14).

⁵³⁰ BC Vital Statistics Annual Reports. Available online at <u>https://www2.gov.bc.ca/gov/content/life-events/statistics-reports/vital-statistics-annual-reports</u>. Accessed February 2023. These three years were chosen as the 2015 annual report is the most recent one available online.

				th	ne Risk	k of	Preterm	Birth					
	Females	Fertility	# of	Tmt for				# of Pre	term F	Births (PTB)			
	in Birth	Rate per	Live	CIN2+		< 37 w	eeks	<	32-34 v	weeks	<	28-30 n	/eeks
Age	Cohort	1,000	Births	(Table 9)	No Tmt	TMT	Due to Tmt	No Tmt	: TMT	Due to Tmt	No Tmt	TMT	Due to Tmt
25	19,843	71.6	1,422	71.6	3.3	5.8	2.4	0.9	1.5	0.6	0.2	0.5	0.3
26	19,834	71.6	1,421	71.5	3.3	5.8	2.4	0.9	1.5	0.6	0.2	0.5	0.3
27	19,825	71.6	1,420	71.4	3.3	5.8	2.4	0.9	1.5	0.6	0.2	0.5	0.3
28	19,816	71.6	1,420	71.3	3.3	5.8	2.4	0.9	1.5	0.6	0.2	0.5	0.3
29	19,806	71.6	1,419	71.2	3.3	5.8	2.4	0.9	1.5	0.6	0.2	0.5	0.3
30	19,796	99.5	1,970	52.6	2.5	4.3	1.8	0.6	1.1	0.4	0.1	0.3	0.2
31	19,785	99.5	1,969	52.3	2.4	4.2	1.8	0.6	1.1	0.4	0.1	0.3	0.2
32	19,773	99.5	1,968	52.0	2.4	4.2	1.8	0.6	1.1	0.4	0.1	0.3	0.2
33	19,761	99.5	1,967	51.7	2.4	4.2	1.8	0.6	1.1	0.4	0.1	0.3	0.2
34	19,749	99.5	1,966	51.4	2.4	4.2	1.8	0.6	1.1	0.4	0.1	0.3	0.2
35	19,736	57.1	1,126	51.1	2.4	4.1	1.7	0.6	1.0	0.4	0.1	0.3	0.2
36	19,722	57.1	1,125	50.7	2.4	4.1	1.7	0.6	1.0	0.4	0.1	0.3	0.2
37	19,708	57.1	1,125	50.4	2.4	4.1	1.7	0.6	1.0	0.4	0.1	0.3	0.2
38	19,693	57.1	1,124	50.1	2.3	4.1	1.7	0.6	1.0	0.4	0.1	0.3	0.2
39	19,677	57.1	1,123	49.8	2.3	4.0	1.7	0.6	1.0	0.4	0.1	0.3	0.2
40	19,661	12.0	235	24.6	1.2	2.0	0.8	0.3	0.5	0.2	0.1	0.2	0.1
41	19,643	12.0	235	24.2	1.1	2.0	0.8	0.3	0.5	0.2	0.1	0.2	0.1
42	19,625	12.0	235	23.8	1.1	1.9	0.8	0.3	0.5	0.2	0.1	0.2	0.1
43	19,605	12.0	235	23.5	1.1	1.9	0.8	0.3	0.5	0.2	0.1	0.2	0.1
44	19,584	12.0	235	23.1	1.1	1.9	0.8	0.3	0.5	0.2	0.1	0.2	0.1
45	19,561	0.8	15	22.7	1.1	1.8	0.8	0.3	0.5	0.2	0.1	0.1	0.1
46	19,537	0.8	15	22.5	1.1	1.8	0.8	0.3	0.5	0.2	0.1	0.1	0.1
47	19,511	0.8	15	22.4	1.0	1.8	0.8	0.3	0.5	0.2	0.1	0.1	0.1
48	19,484	0.8	15	22.2	1.0	1.8	0.8	0.3	0.5	0.2	0.1	0.1	0.1
49	19,454	0.8	15	22.0	1.0	1.8	0.8	0.3	0.5	0.2	0.1	0.1	0.1
Total			23,815	1,100	51.5	89.0	37.5	13.4	22.6	9.1	2.8	7.3	4.5

Preterm birth is associated with substantial morbidity and mortality. In their review of the literature, Crump notes that "evidence has consistently shown that adult survivors of preterm birth have increased risks of chronic disorders involving various organ systems, including cardiovascular, endocrine/metabolic, respiratory, renal, neurodevelopmental, and psychiatric disorders, which either persist from childhood into adulthood or sometimes first manifest in adulthood."⁵³¹ Furthermore, these risks increase with increasing levels of prematurity.

Increase in Premature Mortality

Is a preterm birth associated with premature mortality? Crump notes that the disorders associated with preterm birth lead to "moderately (30% to 50%) increased mortality risks during early to mid-adulthood among persons born preterm compared with full-term, and even higher risks among those born at the earliest gestational ages."⁵³²

The 2021 systematic review by Crump found 8 studies that examined gestational age at birth in relation to mortality in adulthood.⁵³³ The largest of these studies included 4,296,814

⁵³¹ Crump C. An overview of adult health outcomes after preterm birth. *Early Human Development*. 2020; 150: 105187.

⁵³² Ibid.

⁵³³ Crump C. Preterm birth and mortality in adulthood: A systematic review. *Journal of Perinatology*. 2020; 40(6): 833-43.

Table 15: Adjusted Death Rate and Hazard Ratio For All Course Montality by Contational Area												
For All-Cause Mortal	ity by Gest	tational A	lge									
Sweden, 1	973 - 2017											
	Mai Data *	es	Femal	es								
Atalned Age Gestational Age at Birth	Rate*	HK	Rate*	HK								
0<1 year	170	- (
Full term	1/6	Ref	150	Ref								
Early term (37-38 weeks)	337	1.30	281	1.39								
Late preterm (34-36 weeks)	1,155	2.35	1,074	3.13								
Very preterm (28-33 weeks)	5,639	7.67	4,729	10.70								
Extremely preterm (Less than 28 weeks)	37,585	60.68	30,831	76.36								
1-9 years Full term 17 Ref 13 R												
Full term	17	Ref	13	Ref								
Early term	19	1.14	16	1.27								
Late preterm	31	1.78	27	2.06								
Very preterm	51	2.99	48	3.67								
Extremely preterm	67	4.52	54	4.52								
10-19 years												
Full term	23	Ref	13	Ref								
Early term	26	1.12	16	1.27								
Late preterm	32	1.35	27	2.06								
Very preterm	41	1.74	48	3.67								
Extremely preterm	36	1.68	54	4.52								
20-29 years												
Full term	68	Ref	26	Ref								
Early term	79	1.15	30	1.16								
Late preterm	91	1.30	39	1.50								
Very preterm	99	1.40	39	1.50								
Extremely preterm	101	1.45	103	4.00								
30-45 years												
Full term	76	Ref	40	Ref								
Early term	90	1.15	47	1.18								
Late preterm	94	1.17	55	1.35								
Very preterm	95	1.15	94	2.31								
Extremely preterm	127	1.53	130	3.11								
* Death rate / 100,000 person years. HR = haza	rd ratio											

singleton births in Sweden during 1973 to 2015, with a maximum age of 45 attained at December 31, 2017.⁵³⁴ This large population-based Swedish study clearly indicated that the risk of premature all-cause mortality increases with increasing levels of prematurity (see Table 15).

⁵³⁴ Crump C, Sundquist J, Winkleby M et al. Gestational age at birth and mortality from infancy into midadulthood: A national cohort study. *Lancet Child and Adolescent Health*. 2019; 3(6): 408-17.

To estimate the effect of premature birth on mortality in the children born to a BC birth cohort of 20,000 females we first assumed that half of the 38 premature births would be male and half female. We then calculated the number of expected deaths by age if the births had been full term. The next step involved calculating the expected number of deaths by level of prematurity, sex and age based on the hazard ratios in Table 15. We assumed that the hazard ratio indicated for ages 30-45 years would remain constant through to age 85. Excess deaths due to prematurity were calculated by subtracting the number of expected deaths if full term from the number of expected of deaths if born premature. The life expectancy by sex and age was applied to these excess deaths to calculate life years lost.

The estimated excess deaths due to prematurity are associated with 111.7 life years lost, 41.8 in males (see Table 16) and 69.8 in females (see Table 17).

		Table 16: Excess Preter Due to Loca					eter	m Births, Deaths and Life I Treatment for CIN in Their N						Years Lost in Males Nothers						
	Males in				Du	eto	LOCA	IIIea	aume	int to	Ex	pected	# of	Excess	# of Dea	ths Due	Life	Years	Lost Du	ie to
Age	Birth Cohort	Deaths	% 5 Dying	LE	Nun 35-37	nber Al 32-34	ive <28-30	Exp Death	pected is if Ful	# of Term	Death 35-37	s if Pre 32-34	mature <28-30	to Pr 35-37	emature 32-34	e Birth <28-30	А 35-37	remat 32-34	ure Birt <28-30	t h Total
0	20,000			79.9	14.19	2.31	2.26													
1	19,921	79	0.39%	79.3	14.06	2.29	2.19	0.06	0.01	0.01	0.13	0.02	0.07	0.08	0.01	0.06	5.99	0.98	4.70	11.67
3	19,918	3	0.02%	78.3	14.05	2.29	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.03	0.06	0.24
4	19,913	2	0.01%	76.3	14.05	2.29	2.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.02	0.04	0.14
6	19,911 19,909	2	0.01%	75.3 74.3	14.05 14.04	2.29	2.18 2.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.01	0.03	0.13
7	19,908	1	0.01%	73.3	14.04	2.29	2.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.01	0.02	0.09
8	19,907 19.906	1	0.01%	72.3 71.3	14.04 14.04	2.29 2.29	2.18 2.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06 0.04	0.01 0.01	0.02	0.09
10	19,904	1	0.01%	70.3	14.04	2.29	2.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.01	0.03
11 12	19,903 19,902	1	0.01%	69.3 68.3	14.04 14.04	2.29	2.18 2.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.01	0.03
13	19,900	2	0.01%	67.3	14.03	2.28	2.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.01	0.04
14	19,898 19,896	2	0.01%	66.3 65.3	14.03 14.03	2.28	2.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.01	0.01	0.05
16	19,891	4	0.01%	64.4	14.03	2.28	2.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.01	0.01	0.10
17	19,885	6	0.03%	63.4	14.02	2.28	2.18	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.10	0.02	0.03	0.15
10	19,876	11	0.05%	62.4 61.4	14.01	2.28	2.18	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.14	0.02	0.05	0.21
20	19,851	14	0.07%	60.5	13.99	2.28	2.17	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.17	0.03	0.04	0.24
21 22	19,835 19,817	16 18	0.08%	59.5 58.6	13.97 13.96	2.27	2.17 2.17	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.20	0.03 0.04	0.04	0.28 0.31
23	19,796	20	0.10%	57.7	13.94	2.27	2.16	0.01	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.25	0.04	0.05	0.34
24 25	19,775 19.751	22 23	0.11%	56.7 55.8	13.92 13.90	2.27 2.26	2.16 2.16	0.02	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.26 0.28	0.04 0.04	0.05 0.06	0.36 0.38
26	19,727	24	0.12%	54.8	13.87	2.26	2.15	0.02	0.00	0.00	0.02	0.00	0.00	0.01	0.00	0.00	0.28	0.05	0.06	0.38
27	19,702 19,676	25 26	0.13%	53.9 53.0	13.85 13.83	2.25	2.15 2.14	0.02	0.00	0.00	0.02	0.00	0.00	0.01	0.00	0.00	0.29	0.05	0.06	0.39
29	19,649	27	0.14%	52.1	13.80	2.25	2.14	0.02	0.00	0.00	0.02	0.00	0.00	0.01	0.00	0.00	0.29	0.05	0.06	0.40
30 31	19,621	28 28	0.14%	51.1 50.2	13.78 13.76	2.24	2.14	0.02	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.17	0.03	0.02	0.22
32	19,564	29	0.14%	49.3	13.73	2.24	2.13	0.02	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.17	0.03	0.02	0.22
33	19,535	29 30	0.15%	48.4	13.71 13.68	2.23	2.13	0.02	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.17	0.03	0.02	0.22
35	19,474	31	0.15%	46.5	13.66	2.22	2.12	0.02	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.17	0.03	0.02	0.22
36	19,442	32	0.16%	45.6	13.63	2.22	2.11	0.02	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.17	0.03	0.02	0.23
38	19,409	34	0.17%	44.7	13.58	2.21	2.11	0.02	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.18	0.03	0.02	0.23
39	19,339	35	0.18%	42.8	13.55	2.21	2.10	0.02	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.18	0.03	0.02	0.24
40	19,505	38	0.19%	41.9	13.49	2.20	2.10	0.03	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.18	0.03	0.03	0.24
42	19,225	40	0.21%	40.1	13.45	2.19	2.09	0.03	0.00	0.00	0.03	0.01	0.00	0.00	0.00	0.00	0.19	0.03	0.03	0.25
45	19,185	41	0.22%	38.2	13.38	2.18	2.08	0.03	0.00	0.00	0.03	0.01	0.01	0.00	0.00	0.00	0.19	0.03	0.03	0.25
45	19,094	46	0.24%	37.3	13.35	2.17	2.07	0.03	0.01	0.00	0.04	0.01	0.01	0.01	0.00	0.00	0.20	0.03	0.03	0.26
46	19,047	48 50	0.25%	36.4	13.31	2.17	2.07	0.03	0.01	0.01	0.04	0.01	0.01	0.01	0.00	0.00	0.21	0.03	0.03	0.27
48	18,943	53	0.28%	34.6	13.22	2.15	2.05	0.04	0.01	0.01	0.04	0.01	0.01	0.01	0.00	0.00	0.22	0.04	0.03	0.29
49 50	18,887 18,827	56 60	0.30%	33.7 32.8	13.18 13.13	2.14 2.14	2.05 2.04	0.04 0.04	0.01	0.01	0.05	0.01	0.01	0.01	0.00	0.00	0.23	0.04 0.04	0.03	0.29
51	18,763	64	0.34%	31.9	13.08	2.13	2.03	0.04	0.01	0.01	0.05	0.01	0.01	0.01	0.00	0.00	0.24	0.04	0.03	0.31
52	18,695 18,622	68 73	0.36%	31.0 30.2	13.02 12.96	2.12	2.02	0.05	0.01	0.01	0.06	0.01	0.01	0.01	0.00	0.00	0.25	0.04 0.04	0.03 0.04	0.33 0.34
54	18,545	78	0.42%	29.3	12.90	2.10	2.00	0.05	0.01	0.01	0.06	0.01	0.01	0.01	0.00	0.00	0.27	0.04	0.04	0.35
55 56	18,461 18.372	83 89	0.45%	28.4 27.5	12.83 12.76	2.09 2.08	1.99 1.98	0.06 0.06	0.01 0.01	0.01 0.01	0.07 0.07	0.01 0.01	0.01 0.01	0.01 0.01	0.00	0.00	0.28 0.29	0.05 0.05	0.04 0.04	0.36 0.38
57	18,277	95	0.52%	26.7	12.68	2.06	1.97	0.07	0.01	0.01	0.08	0.01	0.01	0.01	0.00	0.00	0.30	0.05	0.04	0.39
58 59	18,175 18.065	102 110	0.56%	25.8 25.0	12.59 12.50	2.05	1.96 1.94	0.07	0.01	0.01	0.08	0.01	0.01	0.01	0.00	0.00	0.31	0.05	0.04	0.41 0.42
60	17,947	118	0.66%	24.1	12.41	2.02	1.93	0.08	0.01	0.01	0.10	0.02	0.01	0.01	0.00	0.00	0.34	0.05	0.05	0.44
61 62	17,820 17 684	127 136	0.71%	23.3	12.31 12.19	2.00	1.91 1.90	0.09	0.01	0.01	0.10	0.02	0.02	0.02	0.00	0.00	0.35	0.06	0.05	0.45
63	17,537	147	0.84%	21.7	12.07	1.97	1.88	0.10	0.02	0.02	0.12	0.02	0.02	0.02	0.00	0.00	0.38	0.06	0.05	0.49
64 65	17,379	158 171	0.91%	20.9	11.95 11.81	1.94	1.86	0.11	0.02	0.02	0.13	0.02	0.02	0.02	0.00	0.00	0.39	0.06	0.05	0.51
66	17,024	184	1.08%	19.3	11.66	1.92	1.84	0.12	0.02	0.02	0.14	0.02	0.02	0.02	0.00	0.00	0.40	0.07	0.06	0.53
67	16,826	198	1.18%	18.5	11.50	1.87	1.79	0.14	0.02	0.02	0.16	0.03	0.02	0.02	0.00	0.00	0.43	0.07	0.06	0.56
69	16,381	214	1.29%	17.0	11.52	1.84	1.78	0.15	0.02	0.02	0.17	0.03	0.03	0.03	0.00	0.00	0.45	0.07	0.06	0.58
70	16,132	249	1.54%	16.2	10.94	1.78	1.70	0.17	0.03	0.03	0.20	0.03	0.03	0.03	0.00	0.00	0.47	0.08	0.07	0.62
71	15,573	269 290	1.86%	15.5 14.8	10.72	1.75 1.71	1.67 1.63	0.19	0.03	0.03	0.22	0.04	0.03	0.03	0.01	0.00	0.49	0.08	0.07	0.65
73	15,260	313	2.05%	14.1	10.23	1.67	1.60	0.21	0.03	0.03	0.25	0.04	0.04	0.04	0.01	0.01	0.51	0.08	0.07	0.67
74 75	14,923 14,560	337 363	2.26% 2.49%	13.4 12.7	9.96 9.67	1.62 1.57	1.55 1.51	0.23 0.25	0.04 0.04	0.04	0.27 0.29	0.04 0.05	0.04 0.04	0.04 0.04	0.01 0.01	0.01	0.53 0.54	0.09 0.09	0.07 0.07	0.68
76	14,170	390	2.75%	12.0	9.36	1.52	1.46	0.27	0.04	0.04	0.31	0.05	0.05	0.05	0.01	0.01	0.54	0.09	0.08	0.71
77 78	13,751 13,301	419 450	3.05% 3.38%	11.4 10.8	9.03 8.67	1.47 1.41	1.41 1.36	0.29 0.31	0.05 0.05	0.04 0.05	0.33 0.36	0.05 0.06	0.05 0.05	0.05 0.05	0.01 0.01	0.01 0.01	0.55 0.56	0.09 0.09	0.08 0.08	0.72 0.73
79	12,820	481	3.75%	10.1	8.29	1.35	1.30	0.33	0.05	0.05	0.38	0.06	0.06	0.06	0.01	0.01	0.56	0.09	0.08	0.73
80 81	12,306 11.759	514 547	4.18% 4.65%	9.5 9.0	7.89 7.46	1.28 1.21	1.23 1.17	0.35 0.37	0.06 0.06	0.05 0.06	0.40 0.43	0.07 0.07	0.06 0.07	0.06 0.06	0.01 0.01	0.01 0.01	0.56 0.56	0.09 0.09	0.08 0.08	0.73 0.73
82	11,179	580	5.19%	8.4	7.00	1.14	1.10	0.39	0.06	0.06	0.45	0.07	0.07	0.07	0.01	0.01	0.55	0.09	0.08	0.72
83 84	10,565 9 919	614 646	5.81% 6.51%	7.9 7 २	6.53 6.03	1.06 0.98	1.03	0.41	0.07	0.06	0.48	0.08	0.07 0.08	0.07	0.01	0.01	0.54	0.09	0.08	0.71 0.69
85	9,244	676	7.31%	6.8	5.51	0.90	0.87	0.44	0.07	0.07	0.52	0.08	0.08	0.07	0.01	0.01	0.51	0.08	0.07	0.67
Total								7.33	1.19	1.14	8.68	1.41	1.39	1.34	0.22	0.24	28.8	4.7	8.3	41.8

					Du	ie to	Loca	Trea	atme	ent fo	or CIN	in T	heir I	Nothe	rs					
	Females in Birth		%		Nur	nber Al	ive	Fxr	ected	# of	Exp Deaths	ected i if Pren	‡of nature	Excess to Pr	# of Dea emature	ths Due Birth	Life #	Years Premat	Lost Du ure Birt	eto hr
Age	Cohort	Deaths	Dying	LE	35-37	32-34	<28-30	Death	s if Ful	l Term	35-37	32-34	<28-30	35-37	32-34	<28-30	35-37	32-34	<28-30	Total
0	20,000			84.9	14.19	2.31	2.26													
1	19,933	67	0.34%	84.2	14.04	2.29	2.17	0.05	0.01	0.01	0.15	0.02	0.08	0.10	0.02	0.07	8.58	1.40	6.21	16.19
2	19,929	4	0.02%	83.2	14.03	2.28	2.17	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.24	0.04	0.09	0.37
4	19,924	2	0.01%	81.3	14.03	2.28	2.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.15	0.02	0.06	0.23
5	19,922	2	0.01%	80.3 79.3	14.02	2.28	2.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.11	0.02	0.04	0.17
7	19,920	1	0.01%	78.3	14.02	2.28	2.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.02	0.04	0.13
8	19,918	1	0.01%	77.3	14.02	2.28	2.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.01	0.03	0.11
9	19,917 19 915	1	0.01%	76.3	14.02 14.02	2.28	2.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.01	0.03	0.11
11	19,914	1	0.01%	74.3	14.01	2.28	2.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.01	0.03	0.10
12	19,913	1	0.01%	73.3	14.01	2.28	2.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.01	0.03	0.10
13	19,911 19,910	2	0.01%	72.3	14.01 14.01	2.28	2.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.01	0.03	0.13
15	19,907	2	0.01%	70.3	14.00	2.28	2.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.02	0.04	0.18
16	19,904	3	0.02%	69.3	14.00	2.28	2.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.18	0.03	0.07	0.27
17	19,900	6	0.02%	67.4	13.99	2.28	2.16	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.22	0.04	0.09	0.35
19	19,888	6	0.03%	66.4	13.98	2.28	2.16	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.31	0.05	0.12	0.48
20	19,881	7	0.03%	65.4 64.4	13.97 13.96	2.27	2.15	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.15	0.02	0.02	0.20
22	19,867	7	0.03%	63.5	13.95	2.27	2.15	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.15	0.03	0.02	0.22
23	19,859	8	0.04%	62.5	13.95	2.27	2.15	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.17	0.03	0.03	0.23
24 25	19,851 19.843	8 8	0.04%	61.5 60.5	13.94 13.93	2.27 2.27	2.15 2.15	0.01 0.01	0.00 0.00	0.00	0.01 0.01	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.17 0.17	0.03 0.03	0.03 0.03	0.23 0.23
26	19,834	9	0.04%	59.6	13.92	2.27	2.15	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.18	0.03	0.03	0.24
27	19,825	9	0.05%	58.6	13.91	2.26	2.15	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.19	0.03	0.03	0.24
28	19,816	9 10	0.05%	57.6	13.90	2.26	2.14	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.19	0.03	0.03	0.25
30	19,796	10	0.05%	55.7	13.88	2.26	2.14	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.14	0.02	0.08	0.24
31	19,785 19,773	11 11	0.06%	54.7	13.87 13.86	2.26	2.14	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.15	0.02	0.09	0.26
33	19,761	12	0.06%	52.8	13.80	2.20	2.13	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.15	0.02	0.09	0.20
34	19,749	13	0.06%	51.8	13.83	2.25	2.13	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.16	0.03	0.09	0.28
35	19,736 19,722	13 14	0.07%	50.8 49.9	13.82	2.25	2.12	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.16	0.03	0.09	0.28
37	19,708	14	0.07%	48.9	13.80	2.25	2.12	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.17	0.03	0.10	0.30
38	19,693	15	0.08%	47.9	13.78	2.24	2.11	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.18	0.03	0.10	0.31
39 40	19,677 19,661	16 16	0.08%	47.0 46.0	13.77	2.24	2.11 2.11	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.18	0.03	0.10	0.31
41	19,643	18	0.09%	45.1	13.74	2.24	2.10	0.01	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.19	0.03	0.11	0.34
42	19,625	19 20	0.09%	44.1	13.72	2.23	2.10	0.01	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.20	0.03	0.12	0.35
45	19,605	20	0.10%	45.1	13.68	2.25	2.09	0.01	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.21	0.03	0.12	0.38
45	19,561	23	0.12%	41.2	13.66	2.22	2.08	0.02	0.00	0.00	0.02	0.00	0.01	0.01	0.00	0.00	0.23	0.04	0.13	0.40
46 47	19,537 19 511	24 26	0.12%	40.3 39 3	13.63 13.61	2.22	2.08	0.02	0.00	0.00	0.02	0.00	0.01	0.01	0.00	0.00	0.24	0.04	0.14	0.41
48	19,484	28	0.14%	38.4	13.58	2.21	2.06	0.02	0.00	0.00	0.03	0.00	0.01	0.01	0.00	0.00	0.26	0.04	0.15	0.45
49	19,454	30	0.15%	37.4	13.56	2.21	2.06	0.02	0.00	0.00	0.03	0.00	0.01	0.01	0.00	0.00	0.27	0.04	0.15	0.47
50	19,422 19.388	32 34	0.16%	36.5	13.53 13.49	2.20	2.05	0.02	0.00	0.00	0.03	0.00	0.01	0.01	0.00	0.00	0.28	0.05	0.16	0.49
52	19,352	37	0.19%	34.6	13.46	2.19	2.03	0.03	0.00	0.00	0.03	0.01	0.01	0.01	0.00	0.01	0.31	0.05	0.17	0.53
53	19,312	39	0.20%	33.7	13.42	2.19	2.02	0.03	0.00	0.00	0.04	0.01	0.01	0.01	0.00	0.01	0.32	0.05	0.18	0.56
54	19,270	43 46	0.22%	32.8 31.9	13.38	2.18	2.01	0.03	0.00	0.00	0.04	0.01	0.01	0.01	0.00	0.01	0.34	0.06	0.19	0.59
56	19,174	49	0.26%	30.9	13.29	2.16	1.99	0.03	0.01	0.01	0.05	0.01	0.01	0.01	0.00	0.01	0.37	0.06	0.21	0.64
57	19,121	53 58	0.28%	30.0 29.1	13.24	2.16	1.97	0.04	0.01	0.01	0.05	0.01	0.01	0.01	0.00	0.01	0.39	0.06	0.22	0.67
59	19,000	63	0.30%	28.2	13.13	2.15	1.95	0.04	0.01	0.01	0.05	0.01	0.01	0.01	0.00	0.01	0.41	0.07	0.23	0.74
60	18,932	68	0.36%	27.3	13.07	2.13	1.93	0.05	0.01	0.01	0.06	0.01	0.02	0.02	0.00	0.01	0.45	0.07	0.25	0.78
61 62	18,858 18,777	74 81	0.39%	26.4	13.00	2.12	1.91	0.05	0.01	0.01	0.07	0.01	0.02	0.02	0.00	0.01	0.48	0.08	0.26	0.82
63	18,689	88	0.47%	24.6	12.84	2.09	1.87	0.06	0.01	0.01	0.08	0.01	0.02	0.02	0.00	0.01	0.52	0.09	0.29	0.90
64	18,593	96	0.52%	23.8	12.75	2.08	1.85	0.07	0.01	0.01	0.09	0.01	0.02	0.02	0.00	0.01	0.55	0.09	0.30	0.94
65 66	18,489 18,375	105 114	0.57%	22.9	12.65	2.06	1.83 1.80	0.07	0.01	0.01	0.10	0.02	0.02	0.03	0.00	0.01	0.58	0.09	0.31	0.99 1.03
67	18,250	125	0.68%	21.2	12.43	2.02	1.77	0.09	0.01	0.01	0.12	0.02	0.03	0.03	0.00	0.02	0.64	0.10	0.34	1.08
68	18,113	137	0.76%	20.3	12.30	2.00	1.74	0.09	0.02	0.01	0.13	0.02	0.03	0.03	0.01	0.02	0.67	0.11	0.36	1.13
70	17,905	164	0.85%	19.5	12.17	1.98	1.67	0.10	0.02	0.01	0.14	0.02	0.03	0.04	0.01	0.02	0.70	0.11	0.37	1.19
71	17,619	180	1.02%	17.9	11.85	1.93	1.63	0.12	0.02	0.02	0.17	0.03	0.04	0.04	0.01	0.02	0.77	0.13	0.40	1.29
72	17,421	198 217	1.13%	17.1 16 ?	11.67 11.47	1.90	1.59 1.54	0.13	0.02	0.02	0.18	0.03	0.04	0.05	0.01	0.02	0.80	0.13	0.41	1.35 1.40
74	16,966	238	1.40%	15.5	11.47	1.83	1.49	0.15	0.02	0.02	0.20	0.04	0.05	0.06	0.01	0.03	0.84	0.14	0.44	1.45
75	16,704	261	1.56%	14.7	11.01	1.79	1.44	0.18	0.03	0.02	0.24	0.04	0.05	0.06	0.01	0.03	0.91	0.15	0.45	1.51
76 77	16,417 16 102	287	1.75%	14.0	10.75	1.75	1.38	0.19	0.03	0.03	0.26	0.04	0.06	0.07	0.01	0.03	0.94	0.15	0.46	1.56
78	15,757	346	2.19%	12.5	10.47	1.65	1.25	0.21	0.03	0.03	0.28	0.05	0.08	0.08	0.01	0.04	1.01	0.16	0.47	1.64
79	15,378	379	2.46%	11.8	9.82	1.60	1.18	0.25	0.04	0.03	0.34	0.05	0.07	0.09	0.01	0.04	1.03	0.17	0.48	1.68
80 81	14,963 14 510	415 452	2.77%	11.1 10 5	9.45 9.06	1.54 1 47	1.10 1.07	0.27	0.04	0.03	0.37	0.06	0.08 0.08	0.10	0.02	0.04	1.06	0.17	0.48 0.47	1.71
82	14,016	494	3.53%	9.8	8.62	1.40	0.94	0.32	0.05	0.04	0.43	0.07	0.08	0.11	0.02	0.05	1.10	0.18	0.46	1.74
83	13,478	538	3.99%	9.2	8.16	1.33	0.85	0.34	0.06	0.04	0.46	0.08	0.09	0.12	0.02	0.05	1.11	0.18	0.45	1.74
84 85	12,895 12,264	583 631	4.52% 5.14%	8.6 8.0	7.66 7.13	1.25 1.16	0.77 0.67	0.37 0.39	0.06 0.06	0.04	0.50 0.53	0.08 0.09	0.09 0.09	0.13 0.14	0.02	0.05	1.11 1.10	0.18 0.18	0.43 0.41	1.72 1.69
Total	,== /							E 14	0.94	0.66	7.06	1.15	1 59	1.07	0.21	0.02	41.2	67	21.0	

_ . . . _ . _ _

Reduced Quality of Life

Is a preterm birth associated with a reduced QoL in adulthood? The research in this area has tended to focus on individuals born very preterm (gestational age < 32 completed weeks) or with very low birth weight (VLBW <1,500 grams⁵³⁵).

A systematic review in 2008 assessed the available literature on differences in QoL of formerly VLBW infants from preschool age to adulthood. QoL tended to be lower for these children than normal birth weight peers but this difference tended to decrease with increasing age. The authors note that this decrease in the gap with age may reflect adaptation of individuals over time. In addition, the QoL gap was greater if input came from the parents rather than the individuals.⁵³⁶

The 2020 systematic review by van der Pal and colleagues found "no conclusive evidence" that differences in QoL persisted into early adulthood.⁵³⁷ They did note, however, that a number of longitudinal studies have found ongoing differences in QoL, including a Canadian study. The Canadian study has followed and assessed QoL in 153 extremely low birth weight (ELBW <1,000 grams⁵³⁸) individuals born between 1977 and 1982 (who were between 29-36 years of age at the time of the latest publication).⁵³⁹ They have found a consistently lower QoL in the ELBW group when compared with normal birth weight peers, especially if the ELBW survivors also had neurosensory impairments.

More recently, the meta-analysis by Bolbocean et al., which included over 2,100 adult VLBW survivors ages 18-29 found a significantly lower QoL (a decrement of 0.06 with a 95% CI of 0.04 to 0.08) in this group when compared with normal birth weight peers.⁵⁴⁰

In calculating the effect of premature birth on QoL in a BC birth cohort of 40,000, we assumed an annual decrement of 0.06 but only in the cohort of babies born <28-30 weeks premature (VLBW). Based on this assumption, we would expect 23.4 QALYs lost associated with babies born VLBW, 11.8 QALYs lost in males and 11.6 QALYs lost in females (see Table 18).

⁵³⁵ Or 3.3 pounds.

⁵³⁶ Zwicker J, Harris S. Quality of life of formerly preterm and very low birth weight infants from preschool age to adulthood: A systematic review. *Pediatrics*. 2008; 121(2): e366-76.

⁵³⁷ van der Pal S, Steinhof M, Grevinga M et al. Quality of life of adults born very preterm or very low birth weight: A systematic review. *Acta Paediatrica*. 2020; 109: 1974-88.

⁵³⁸ Or 2.2 pounds.

⁵³⁹ Saigal S, Ferro M, van Lieshout R et al. Health-related quality of life trajectories of extremely low birth weight survivors into adulthood. *The Journal of Pediatrics*. 2016; 179: 68-73.

⁵⁴⁰ Bolbocean C, van der Pal S, van Buuren S et al. Health-related quality-of-life outcomes of very preterm or very low birth weight adults: Evidence from an individual participant meta-analysis. *Pharmacoeconomics*. 2023; 41: 93-105.

		10 1000	neatmen			i wiouiers	
		Males Very Low E	irth Weight		Females Very Low E	Birth Weight	Total
Age	LE	# Alive	QALYs Lost	LE	# Alive	QALYs Lost	QALYs Los
0 1	79.9 79.3	2.26	0.15	84.9 84.2	2.26	0.15	0.30
2	79.5	2.19	0.14	83.2	2.17	0.14	0.29
4 3	70.5 77 2	2.19	0.14	03.2 97.7	2.1/	0.14	0.29
3	76.0	2.10	0.14	02.2	2.1/	0.14	0.29
4 5	/0.3 75.2	2.18	0.14	81.3	2.1/	0.14	0.29
5	75.5	2.18	0.14	aU.3	2.1/	0.14	0.29
6	74.3	2.18	0.14	79.3	2.17	0.14	0.29
/	/3.3	2.18	0.14	/8.3	2.17	0.14	0.29
8	72.3	2.18	0.14	77.3	2.17	0.14	0.29
9	71.3	2.18	0.14	76.3	2.17	0.14	0.29
10	70.3	2.18	0.14	75.3	2.17	0.14	0.29
11	69.3	2.18	0.14	74.3	2.17	0.14	0.29
12	68.3	2.18	0.14	73.3	2.17	0.14	0.29
13	67.3	2.18	0.14	72.3	2.17	0.14	0.29
14	66.3	2.18	0.14	71.3	2.16	0.14	0.29
15	65.3	2.18	0.14	/0.3	2.16	0.14	0.29
16	64.4	2.18	U.14	69.3	2.16	0.14	0.28
17	63.4	2.18	0.14	68.3	2.16	0.14	0.28
18	62.4	2.18	0.14	67.4	2.16	0.14	0.28
19	61.4	2.17	0.14	66.4	2.16	0.14	0.28
20	60.5	2.17	0.14	65.4	2.15	0.14	0.28
21	59.5	2.17	0.14	64.4	2.15	0.14	0.28
22	58.6	2.17	0.14	63.5	2.15	0.14	0.28
23	57.7	2.16	0.14	62.5	2.15	0.14	0.28
24	56.7	2.16	0.14	61.5	2.15	0.14	0.28
25	55.8	2.16	0.14	60.5	2.15	0.14	0.28
26	54.8	2.15	0.14	59.6	2.15	0.14	0.28
27	53.9	2.15	0.14	58.6	2.15	0.14	0.28
28	53.0	2.14	U.14	57.6	2.14	0.14	0.28
29	52.1	2.14	0.14	56.6	2.14	0.14	0.28
30	51.1	2.14	U.14	55.7	2.14	0.14	0.29
31 22	50.2	2.13	U.14	54.7	2.14	0.14	0.29
32	49.3	2.13	0.14	53.7	2.13	0.14	0.29
33	48.4	2.13	0.14	52.8	2.13	0.14	0.29
34	47.4	2.12	0.14	51.8	2.13	0.14	0.29
35	46.5	2.12	0.14	50.8	2.12	0.14	0.29
36	45.6	2.11	0.14	49.9	2.12	0.14	0.29
3/	44.7	2.11	0.14	48.9	2.12	0.14	0.29
38	43.7	2.11	0.14	47.9	2.11	0.14	0.28
39	42.8	2.10	0.14	47.0	2.11	0.14	0.28
40	41.9	2.10	0.15	46.0	2.11	0.15	0.30
41	41.0	2.09	0.15	45.1	2.10	0.15	0.29
42	40.1	2.09	0.15	44.1	2.10	0.15	0.29
43	39.1	2.08	0.15	43.1	2.09	0.15	0.29
44 45	38.2	2.08	0.15	42.2	2.09	0.15	0.29
45	3/.3	2.07	0.15	41.2	2.08	0.15	0.29
40 47	36.4	2.07	0.15	40.3	2.08	0.15	0.29
4/	35.5	2.06	0.14	39.3	2.07	0.15	0.29
48	34.0	2.05	0.14	38.4	2.06	0.14	0.29
49	33.7	2.05	0.14	37.4	2.00	0.14	0.29
50	32.0	2.04	0.15	20.5	2.05	0.15	0.30
51	21.9	2.05	0.15	33.0	2.04	0.15	0.50
52	30 J	2.02	0.15	34.0 32.7	2.03	0.15	0.30
53	20.2	2.01	0.15	33.7	2.02	0.15	0.30
54	29.5 79.4	1 00	0.15	32.0	2.01	0.15	0.29
56	20.4	1.55	0.15	30.0	1 99	0.15	0.25
57	26.7	1 97	0.14	30.0	1 97	0.14	0.20
58	20.7	1.96	0.14	29.1	1.96	0.14	0.25
59	25.0	1 9/	0.14	28.2	1 95	0.14	0.25
60	23.0	1.93	0.14	27.3	1.93	0.14	0.29
61	23.3	1 91	0.14	26.4	1.91	0.14	0.29
62	22.5	1.90	0.14	25.5	1,89	0.14	0.28
63	21.7	1.88	0.14	24.6	1,87	0.14	0.28
64	20.9	1.86	0.14	23.8	1.85	0.14	0.28
65	20.5	1.84	0.14	22.9	1.83	0.14	0.28
66	19 3	1.81	0.14	22.0	1.80	0.14	0.27
67	18 5	1 79	0.13	21.0	1 77	0.13	0.27
68	17 7	1.75	0.13	21.2	1 74	0.13	0.27
69	17.0	1 72	0.13	19.5	1 71	0.13	0.26
70	16.2	1 70	0.13	19.5	1.71	0.13	0.20
71	10.2	1.70	0.13	17.0	1.07	0.13	0.27
72	1/1 0	1.07	0.13	17.9	1.05	0.13	0.20
72	1/1 1	1.00	0.13	16.2	1.55	0.10	0.20
74	12 /	1.00	0.13	10.5	1.04	0.12	0.25
75	12.4	1.55	0.12	1/1 7	1.49	0.12	0.24
76	12.7	1.31	0.12	14.7	1 20	0.11	0.25
ט/ דד	11.0	1.46	0.12	12.0	1.38	0.11	0.23
70	11.4	1.41	0.11	13.2	1.32	0.10	0.22
/8 70	10.8	1.30	0.11	12.5	1.25	0.10	0.21
19	10.1	1.30	0.10	11.8	1.18	0.09	0.20
8U 01	9.5	1.23	0.11	11.1	1.10	0.10	0.20
81 02	9.0	1.17	0.10	10.5	1.02	0.09	0.19
82	8.4	1.10	0.09	9.8	0.94	0.08	0.18
83	7.9	1.03	0.09	9.2	0.85	0.07	0.16
84 or	7.3	0.95	0.08	8.6	0.77	0.07	0.15
85	6.8	0.87	U.07	8.0	0.67	0.06	0.13
							-

There is also a substantial **economic burden attributable to prematurity**, which will be discussed in more detail when we consider costs and potential costs avoided in calculating cost-effectiveness.⁵⁴¹

Summary of CPB

Based on the assumptions above, the CPB associated with BC's current cytology-based cervical cancer screening program in a BC birth cohort of 20,000 females is 4,034 (see Table 19).

Table 19: Calculation of Clinically Preventable Burden for Cervical Cancer													
	Without and With Cytology-Based Screening												
	In a BC Birth Cohort of 40,000												
Row	Variable	Base Case	Data Source										
	Without Cytology-Based Screening												
а	Estimated number of cervical cancers	305	Table 5										
b	QALYs lost due to cervical cancers	375	Table 7										
с	Estimated number of deaths due to cervical cancers	163	Table 6										
d	Life-years lost per death from cervical cancers	30.8	= e / c										
е	Total life-years lost due to deaths from cervical cancers	5,011	Table 7										
f	Total QALYs Lost	5,386	= b + e										
	With Cytology-Based Screening												
g	Estimated number of cervical cancers	99	Table 5										
h	QALYs lost due to cervical cancers	195	Table 7										
i	Estimated number of deaths due to cervical cancers	25	Table 6										
j	Life-years lost per death from cervical cancers	31.5	= k / i										
k	Total life-years lost due to deaths from cervical cancers	783	Table 7										
1	Total QALYs Lost	978	= h + k										
	Harms Associated with Screening & Treatment												
m	Reduction in quality of life associated with a CIN diagnosis	239	Table 10										
n	Premature births associated with treatment	38	Table 14										
0	Reduction in life years lived due to premature birth	112	Tables 16 & 17										
р	Reduction in QALYs due to premature birth	23	Table 18										
q	Total QALYs lost due to harms	374	= m + o + p										
	Clinically Preventable Burden												
r	CPB associated with cytology-based screening	4,034	= f - l - q										

∨ = Estimates from the literature

We also modified a key assumption and recalculated the CPB as follows:

- Assume the disutility associated with the diagnosis and treatment phase for cervical cancer of 0.288 is reduced to 0.193, the disutility associated with the ongoing, controlled phase (remission) for cervical cancer is reduced from 0.049 to 0.031 and the disutility associated with the metastatic phase for cervical cancer is reduced from 0.451 to 0.307: **CPB = 3,972**.
- Assume the disutility associated with the diagnosis and treatment phase for cervical cancer of 0.288 is increased to 0.399, the disutility associated with the ongoing, controlled phase (remission) for cervical cancer is increased from 0.049 to 0.072 and

⁵⁴¹ Johnston K, Gooch K, Korol E et al. The economic burden of prematurity in Canada. *BMC Paediatrics*. 2014; 14(93).

the disutility associated with the metastatic phase for cervical cancer is increased from 0.451 to 0.600: **CPB = 4,108**.

Cost-Effectiveness - Cytology-Based Screening

Unit Costs

- Three Canadian studies estimated the *cost of a conventional cytology screen* to be \$28⁵⁴², \$57⁵⁴³ and \$92⁵⁴⁴ in 2005 or 2006 CAD. We updated these estimates to 2022 CAD and then used the average for the base case estimate and the extremes in the sensitivity analysis (\$79 with a range from \$37 to \$124, in 2022 CAD). ^{545,546}
- Three Canadian studies estimated the *cost of a colposcopy with biopsy* to be \$148⁵⁴⁷, \$151⁵⁴⁸ and \$337⁵⁴⁹ in 2005 or 2006 CAD. We updated these estimates to 2022 CAD and then used the average for the base case estimate and the extremes in the sensitivity analysis (\$283 with a range from \$200 to \$444, in 2022 CAD).
- Three Canadian studies estimated the *cost per treatment for a precancerous lesion* to be \$965⁵⁵⁰, \$1,032⁵⁵¹ and \$1,071⁵⁵² in 2005 or 2006 CAD. We updated these estimates to 2022 CAD and then used the average for the base case estimate and the extremes in the sensitivity analysis (\$1,371 with a range from \$1,271 to \$1,447, in 2022 CAD).
- Based on data from Ontario, the cost estimates for the *acute phase* of a fatal cervical cancer are \$41,536 (95% CI of \$38,642 to \$44,429) in 2009 CAD.⁵⁵³ We converted this to \$50,961 (95% CI of \$47,410 to \$54,510) in 2022 CAD.

⁵⁴² Kulasingam S, Rajan R, St Pierre Y et al. Human papillomavirus testing with Pap triage for cervical cancer prevention in Canada: a cost-effectiveness analysis. *BioMed Central Medicine*. 2009; 7(1): 69.

⁵⁴³ Brisson M, Van de Velde N, De Wals P et al. The potential cost-effectiveness of prophylactic human papillomavirus vaccines in Canada. *Vaccine*. 2007; 25(29): 5399-408.

⁵⁴⁴ Krahn M, McLauchlin M, Pham B et al. *Liquid-Based Techniques for Cervical Cancer Screening: Systematic Review and Cost-Effectiveness Analysis.* 2008. Available at https://www.cadth.ca/sites/default/files/pdf/333_LBC-Cervical-Cancer-Screenin_tr_e.pdf. Accessed August 2017.

⁵⁴⁵ Shemilt I, Thomas J and Morciano M. A web-based tool for adjusting costs to a specific target currency and price year. *Evidence & Policy: A Journal of Research, Debate and Practice.* 2010; 6(1): 51-9.

⁵⁴⁶ The Campbell and Cochrane Economics Methods Group and Evidence for Policy and Practice Information and Coordinating Centre. *CCEMG - EPPI-Centre Cost Converter*. 2019. Available at

https://eppi.ioe.ac.uk/costconversion/ https://eppi.ioe.ac.uk/costconversion/. Accessed May 2023.

 ⁵⁴⁷ Brisson M, Van de Velde N, De Wals P et al. The potential cost-effectiveness of prophylactic human papillomavirus vaccines in Canada. *Vaccine*. 2007; 25(29): 5399-408.
 ⁵⁴⁸ Krahn M, McLauchlin M, Pham B et al. *Liquid-Based Techniques for Cervical Cancer Screening: Systematic*

⁵⁴⁸ Krahn M, McLauchlin M, Pham B et al. *Liquid-Based Techniques for Cervical Cancer Screening: Systematic Review and Cost-Effectiveness Analysis.* 2008. Available at https://www.cadth.ca/sites/default/files/pdf/333_LBC-Cervical-Cancer-Screenin_tr_e.pdf. Accessed August 2017.

⁵⁴⁹ Kulasingam S, Rajan R, St Pierre Y et al. Human papillomavirus testing with Pap triage for cervical cancer prevention in Canada: a cost-effectiveness analysis. *BioMed Central Medicine*. 2009; 7(1): 69.
⁵⁵⁰ Ibid.

⁵⁵¹ Krahn M, McLauchlin M, Pham B et al. *Liquid-Based Techniques for Cervical Cancer Screening: Systematic Review and Cost-Effectiveness Analysis.* 2008. Available at https://www.cadth.ca/sites/default/files/pdf/333_LBC-Cervical-Cancer-Screenin_tr_e.pdf. Accessed August 2017.

⁵⁵² Brisson M, Van de Velde N, De Wals P et al. The potential cost-effectiveness of prophylactic human papillomavirus vaccines in Canada. *Vaccine*. 2007; 25(29): 5399-408.

⁵⁵³ de Oliveira C, Bremner K, Pataky R et al. Understanding the costs of cancer care before and after diagnosis for the 21 most common cancers in Ontario: a population-based descriptive study. *Canadian Medical Association Journal Open*. 2013; 1(1): E1-E8.

- Based on data from Ontario, the estimated *first year costs* associated with a cervical cancer survivor are \$18,055 (95% CI of \$17,305 to \$18,804) in 2009 CAD.⁵⁵⁴ We converted this to \$22,676 (95% CI of \$21,734 to \$23,617) in 2022 CAD.
- Based on data from Ontario, the *ongoing annual costs* associated with a cervical cancer survivor after the first year are estimated at between \$633 and \$1,174 in 2022 CAD.⁵⁵⁵ We used the midpoint of this range (\$904) in our base case estimate and the extremes in the sensitivity analysis.
- Cervical cancers in BC occur at the mean age of 49.1 years.⁵⁵⁶ A BC female 49.1 years of age has a life expectancy of 37.4 years.⁵⁵⁷ Cervical cancer is associated with approximately 17 years of life lost.^{558,559,560} Therefore, we estimated that the average female in BC with cervical cancer would survive for 20.4 years (37.4 17).
- We assumed that the costs avoided per cervical cancer avoided would be \$41,118 (\$22,676 + \$904 * 20.4).
- Patient time costs resulting from receiving, as well as travelling to and from, a service are valued based on the average hourly wage rate in BC in 2022 (\$31.49⁵⁶¹) plus 18% benefits for an average cost per hour of \$37.16. Patient time costs are truncated at \$278.70 per day (7.5 hours times \$37.16). If, for example, we are valuing a patient's time costs while in hospital, each day would be assessed a value of \$278.70 (rather than 24 hours times \$37.16 or \$891.84).
- For patient time and travel costs, we estimated two hours of patient time would be required per screening visit and 7.5 hours per colposcopy or treatment for a precancerous lesion.
- Johnston and colleagues estimated the economic burden attributable to prematurity during the first 10 years of life to be \$67,467 for early preterm infants (<28 weeks gestational age), \$52,796 for moderate preterm infants (28-32 weeks) and \$10,010 for late preterm infants (33-36 weeks), in 2012 CAD.⁵⁶² In our modelling we have assumed a distribution of 12.0% early, 12.3% moderate and 75.7% late preterm births. The weighted cost per pre-term birth would thus be \$22,188 in 2012 CAD

⁵⁵⁴ de Oliveira C, Bremner K, Pataky R et al. Understanding the costs of cancer care before and after diagnosis for the 21 most common cancers in Ontario: a population-based descriptive study. *Canadian Medical Association Journal Open*. 2013; 1(1): E1-E8.

⁵⁵⁵ Sander B, Wong W, Yeung M et al. The cost-utility of integrated cervical cancer prevention strategies in the Ontario setting–Can we do better? *Vaccine*. 2016; 34(16): 1936-44.

⁵⁵⁶ Dickinson J, Stankiewicz A, Popadiuk C et al. Reduced cervical cancer incidence and mortality in Canada: national data from 1932 to 2006. *BioMed Central Public Health*. 2012; 12(1): 992.

⁵⁵⁷ Statistics Canada. Table 13-10-0114-01 Life expectancy and other elements of the complete life table, threeyear estimates, Canada, all provinces except Prince Edward Island. Available online at

http:https://www150.statcan.gc.ca/t1/tbl1/en/cv.action?pid=1310011401. Accessed September 2022.

⁵⁵⁸ Liu P, Wang J and Keating N. Expected years of life lost for six potentially preventable cancers in the United States. *Preventive Medicine*. 2013; 56(5): 309-13.

⁵⁵⁹ Burnet N, Jefferies S, Benson R et al. Years of life lost (YLL) from cancer is an important measure of population burden–and should be considered when allocating research funds. *British Journal of Cancer*. 2005; 92(2): 241-5.

⁵⁶⁰ Brustugun O, Møller B and Helland Å. Years of life lost as a measure of cancer burden on a national level. *British Journal of Cancer*. 2014; 111(5): 1014-20.

⁵⁶¹ BC Stats. *Earning & Employment Trends – August 2022*. Available at

https://www2.gov.bc.ca/assets/gov/data/statistics/people-population-

community/income/earnings_and_employment_trends_data_tables.pdf. Accessed September 2022.

⁵⁶² Johnston K, Gooch K, Korol E et al. The economic burden of prematurity in Canada. *BMC Pediatrics*. 2014; 14(93):

(12.0% * \$67,467 + 12.3% * \$52,796 + 75.7% * \$10,010), adjusted to \$25,931 in 2022 CAD.

- Other costs and assumptions used in in assessing cost-effectiveness are detailed in the Reference Document.
- Discount Rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Costs Associated with Cytology-Based Screening for Cervical Cancer

Cytology-based screening between the ages of 25 and 69 in a BC birth cohort of 20,000 females would be associated with 171,230 screens. These screens would be associated with \$13.5 million in healthcare costs and \$12.7 million in patient time costs (see Table 20). The estimated 2,569 colposcopies would be associated with \$0.7 million in healthcare costs and \$0.7 million in patient time costs. The estimated 1,321 treatments for CIN 2+ would be associated with \$1.8 million in healthcare costs and \$0.4 million in patient time costs. Finally, the estimated 38 premature births attributable to treatment for CIN2+ would be associated \$1.0 million in healthcare costs (see Table 20).

Table 20: Costs Associated with Screening for Cervical Cancer Current Screening Model

	Females											
	in Birth	# of	Cost of S	creening		Colposcopi	es	Т	reatment for	CIN2+	Pre	term Births
Age	Cohort	Screens	HC System	Patient	#	HC System \$	Patient \$	#	HC System \$	Patient \$	#	HC System \$
25	19,843	4,207	\$332,389	\$312,698	119	\$33,768	\$33,255	76	\$104,701	\$21,284	2.4	\$63,288
26	19,834	4,202	\$331,991	\$312,324	119	\$33,728	\$33,216	76	\$104,575	\$21,258	2.4	\$63,212
27	19,825	4,197	\$331,590	\$311,947	119	\$33,687	\$33,175	76	\$104,449	\$21,233	2.4	\$63,136
28	19,816	4,192	\$331,183	\$311,563	119	\$33,646	\$33,135	76	\$104,321	\$21,207	2.4	\$63,058
29	19,806	4,187	\$330,769	\$311,174	119	\$33,604	\$33,093	76	\$104,191	\$21,180	2.4	\$62,980
30	19,796	4,584	\$362,106	\$340,655	94	\$26,562	\$26,159	56	\$76,965	\$15,646	1.8	\$46,523
31	19,785	4,557	\$359,982	\$338,656	93	\$26,407	\$26,005	56	\$76,513	\$15,554	1.8	\$46,250
32	19,773	4,530	\$357,852	\$336,653	93	\$26,250	\$25,852	55	\$76,060	\$15,462	1.8	\$45,976
33	19,761	4,503	\$355,714	\$334,641	92	\$26,094	\$25,697	55	\$75,606	\$15,369	1.8	\$45,701
34	19,749	4,476	\$353,568	\$332,622	92	\$25,936	\$25,542	55	\$75,150	\$15,277	1.8	\$45,425
35	19,736	4,448	\$351,416	\$330,598	91	\$25,778	\$25,387	54	\$74,693	\$15,184	1.7	\$45,149
36	19,722	4,421	\$349,257	\$328,567	91	\$25,620	\$25,231	54	\$74,234	\$15,090	1.7	\$44,872
37	19.708	4.394	\$347.090	\$326.528	90	\$25.461	\$25.074	54	\$73.773	\$14.997	1.7	\$44.593
38	19.693	4.366	\$344.911	\$324,479	89	\$25.301	\$24.917	53	\$73.310	\$14.903	1.7	\$44.313
39	19.677	4.338	\$342.725	\$322.422	89	\$25.141	\$24,759	53	\$72.845	\$14.808	1.7	\$44.032
40	19.661	4.261	\$336.644	\$316.701	60	\$16.984	\$16.726	26	\$35.948	\$7.308	0.8	\$21.729
41	19.643	4,197	\$331.547	\$311,906	59	\$16,727	\$16,473	26	\$35,404	\$7,197	0.8	\$21,400
42	19.625	4.132	\$326,441	\$307,103	58	\$16,470	\$16,219	25	\$34,858	\$7.086	0.8	\$21.071
43	19.605	4.067	\$321.325	\$302,290	57	\$16,212	\$15,965	25	\$34,312	\$6.975	0.8	\$20,740
44	19 584	4 002	\$316 196	\$297 465	56	\$15,953	\$15,505 \$15,710	25	\$33 764	\$6 864	0.8	\$20,409
45	19 561	3 937	\$311.056	\$292 628	55	\$15,693	\$15,455	23	\$33,215	\$6,351	0.8	\$20,078
46	19 537	3 907	\$308 655	\$290 370	55	\$15 572	\$15 336	24	\$32,959	\$6,700	0.8	\$19 923
40	19 511	3,507	\$306,000	\$288.092	55	\$15,372 \$15,450	\$15,330 \$15,215	24	\$32,555	\$6,700 \$6,647	0.0	\$19,525
	19/18/	3,870	\$303,234	\$285,052	54	\$15, 4 50 \$15,227	\$15,213 \$15,094	24	\$32,701	\$6,047 \$6,597	0.0	\$19,609
40	10/5/	2 91/	\$201 221	\$283,793	54	\$15,327 \$15,202	\$1 <i>3</i> ,034 \$1 <i>1</i> 071	24	\$32,440	\$6,594 \$6,541	0.8	\$19,009
49 50	10/22	3 800	\$300,321	\$203,471	25	\$10,202 \$10,046	¢0 803	25	\$12,170	\$0,541 \$2,522	0.8	Ş19,449
50	10 200	2,000	\$300,200	\$202,422 \$200 027	25	\$10,040 \$0.061	\$9,893 ¢0,900	9	\$12,413	\$2,525 \$3 503		
51	10 252	2 725	\$297,071	\$200,037 \$277 621	25	\$9,901 ¢0.075	\$9,009 \$0,725	9	\$12,300	\$2,302 \$2,490		
52	10 212	3,733 2,702	\$293,103	\$277,021	35	29,075 0 700	\$9,723 \$0,620	9	\$12,202	\$2,400		
53	19,312	3,703	\$292,500 \$290,957	\$275,172	35	29,788 60,600	\$9,039 ¢0,552	9	\$12,094 \$11,085	\$2,459 \$2,420		
54	19,270	3,009	\$289,857 \$287,457	\$272,080	34	29,099 60,610	39,352 60.464	9	\$11,985	\$2,430 ¢2,414		
55	19,224	3,035	\$287,175	\$270,103	34	\$9,010 \$9,010	\$9,404 ¢0,200	9	\$11,874	\$2,414 ¢2,274		
50	19,174	3,5/1	\$282,142 \$277,072	\$265,428	33	\$9,441 ¢0.271	\$9,298 ¢0.121	9	\$11,666	\$2,371 ¢2,220		
57	19,121	3,507	\$277,073	\$260,659 ¢255,852	33	\$9,271 ¢0.100	\$9,131 \$9,000	8	\$11,450	\$2,329 ¢2,200		
58	19,063	3,443	\$271,963	\$255,852	32	\$9,100 ¢9,000	\$8,962 ćo 702	8	\$11,245	\$2,286 ¢2,242		
59	19,000	3,377	\$200,811	\$251,005	32	\$8,928 ¢4.026	\$8,79Z	8 7	\$11,032	\$2,243		
60	18,932	3,240	\$255,934	\$240,773	17	\$4,936	\$4,861	/	\$9,274	\$1,885		
61	18,858	3,175	\$250,799	\$235,941	17	\$4,837	\$4,764 ¢4.665	/	\$9,087	\$1,847		
62	18,///	3,109	\$245,612	\$231,062	1/	\$4,737	\$4,665	6	\$8,900	\$1,809		
63	18,689	3,043	\$240,366	\$226,126	16	\$4,636	\$4,566	6	\$8,709	\$1,770		
64	18,593	2,975	\$235,059	\$221,134	16	\$4,534	\$4,465	6	\$8,517 ¢0.222	\$1,731		
65	18,489	2,907	\$229,685	\$216,079	16	\$4,430	\$4,363	6	\$8,322	\$1,692		
66	18,375	2,838	\$224,240	\$210,956	15	Ş4,325	\$4,259	6	\$8,125	\$1,652		
67	18,250	2,769	\$218,715	\$205,759	15	Ş4,219	\$4,154	6	\$7,925	\$1,611		
68	18,113	2,698	Ş213,107	\$200,482	15	\$4,110	\$4,048	6	\$7,722	\$1,570		
69	17,963	2,625	\$207,408	\$195,121	14	\$4,000	\$3,940	5	Ş7,515	\$1,528		
Total		171,230	\$13,527,180	\$12,725,823	2,569	\$727,059	\$716,012	1,321	\$1,811,533	\$368,253	38	\$972,683

in a British Columbia Birth Cohort of 20,000 Females

Costs Avoided with Cytology-Based Screening for Cervical Cancer

Cytology-based screening between the ages of 25 and 69 in a BC birth cohort of 20,000 females is associated with an estimated reduction of 206 incident cervical cancers (see Table 5) and 138 deaths attributable to cervical cancers (see Table 6). Each incident cervical cancer is associated with \$41,118 in healthcare costs while each death attributable to cervical cancer is associated with \$50,961 in health care costs. The avoidance of the incident cancers is associated with \$8.5 million in healthcare costs avoided while the avoidance of the deaths due to cervical cancer is associated with \$7.0 million in healthcare costs avoided (see Table 21).

Table 21: Costs Avoided with Screening for Cervical Cancer Current Screening Model

	Females								
	in Birth	Inc	cident Cervi	cal Cance	rs	Deat	hs Due to C	ervical Ca	ncer
Age	Cohort	No Screening	Screening	Avoided	HC System \$	No Screening	Screening	Avoided	HC System \$
25	19,843	1.2	0.6	0.6	\$24,760	0.3	0.1	0.2	\$11,529
26	19,834	1.7	0.9	0.8	\$33,823	0.3	0.1	0.2	\$11,524
27	19.825	2.8	1.4	1.4	\$56.597	0.3	0.1	0.2	\$11.519
28	19,816	2.4	1.2	1.2	\$47,618	0.3	0.1	0.2	\$11,514
29	19.806	3.0	1.6	1.5	\$61.327	0.3	0.1	0.2	\$11.508
30	19.796	4.5	2.5	2.0	\$83.147	0.9	0.2	0.7	\$35.730
31	19.785	4.5	2.5	2.0	\$83.101	0.9	0.2	0.7	\$35.710
32	19.773	4.5	2.5	2.0	\$83.053	0.9	0.2	0.7	\$35.690
33	19.761	4.5	2.5	2.0	\$83.003	0.9	0.2	0.7	\$35.668
34	19.749	4.5	2.5	2.0	\$82.950	0.9	0.2	0.7	\$35.645
- 35	19.736	4.5	2.5	2.0	\$82.895	1.6	0.3	1.3	\$66.497
36	19.722	4.5	2.5	2.0	\$82.838	1.6	0.3	1.3	\$66.451
37	19.708	4.5	2.5	2.0	\$82.778	1.6	0.3	1.3	\$66.403
38	19.693	4.5	2.5	2.0	\$82.715	1.6	0.3	1.3	\$66.353
39	19.677	4.5	2.5	2.0	\$82.650	1.6	0.3	1.3	\$66.300
40	19.661	6.5	2.6	3.9	\$160.367	2.7	0.4	2.3	\$117,869
41	19,643	6.5	2.6	3.9	\$160.223	2.7	0.4	2.3	\$117,764
42	19.625	6.5	2.6	3.9	\$160.071	2.7	0.4	2.3	\$117,652
43	19.605	6.5	2.6	3.9	\$159,910	2.7	0.4	2.3	\$117,533
44	19 584	6.5	2.0	3.9	\$159 737	2.7	0.4	2.3	\$117 406
45	19 561	6.5	2.0	3.5 2 Q	¢159 553	4.0	0.4	2.5	¢177 305
46	19 537	6.4	2.0	3.5	\$159 355	4.0	0.5	3.5	\$177 086
47	19 511	6.4	2.0	3.5 2 Q	\$159,335 \$159 1 <u>4</u> 5	4.0	0.5	3.5	\$176 852
48	19,311	6.4	2.0	3.5 2 Q	¢158 920	4.0	0.5	3.5	\$176 602
19	10 454	6.4	2.0	3.5	\$158,520	4.0	0.5	25	\$176 333
49 50	10 /22	7/	2.0 1 Q	5.9	\$130,070 \$776 971	4.0	0.5	2.2	\$170,333 \$170,333
50	10 288	7. 4 7.4	1.5	5.5	\$220,321 \$776 571	4.0	0.7	5.5 2 2	\$160 057
52	10 357	7.4	1.5	5.5	2220,327	4.0	0.0	2.2	\$169,057 \$169,738
52	10 212	7.4	1.J 1 Q	5.5	\$220,000 \$775 636	4.0	0.0	2.2	\$168,730 \$168,730
57	10 270	7.7	1.J 1 Q	5.5	\$223,030 \$775 138	3.0	0.0	22	\$169 D23
55	10 22/	7.5	1.5	5.5	\$223,130 \$224 603	5.5 4 1	0.0	5.5 25	\$100,023 \$177 103
55	19,224	7.5 7.2	1.5	5.5	3224,003	4.1 4.1	0.0	5.5 2 E	\$1//,133 6176 727
50	19,17 4 10 121	7.5 7.2	1.5	5.4 E /	>∠∠4,∪∠∪ ¢ววว 102	4.1 4.1	0.0	5.5 9 E	\$170,737 \$176 245
57 50	10 063	7.5 7.2	1.7	5.4 ⊑ /	३८८३,40८ ¢२२२ ७२४	4.1 4.1	0.0	5.5 2 A	\$1/0,243 ¢175 711
20 50	10,000	7.5 7.2	1.0	5.4 F 4	>∠∠∠,/∠4	4.1 4.1	0.0	5.4 7 4	\$1/3,/11 \$175 122
59	19,000	7.2	1.0	5.4 6 1	\$221,990	4.1 5.0	0.0	3.4 1 C	\$1/5,152 \$222 072
6U	10,932	7.9 7 0	1.0	0.1 C 1	\$250,724	5.2	0.0	4.0	\$232,372
67 61	10,000 10,777	7.0 7.0	1.0 1.0	6.I	249,134	5.2	0.0	4.0	\$232,033
62 62	10,777	7.0	1.0	6.0 6.0	\$248,000	5.2	0.0	4.5 4 E	\$231,007
60 64	10 503	7.0 7.7	1.7	6.U	\$247,501	5.1	0.0	4.5 4 E	2229,304
64 CE	18,593	1.1	1.7	6.0	\$246,232	5.1	0.0	4.5	\$228,8U5
65	18,489	1.1	1.7	6.U	\$244,847	5.1	0.7	4.4	\$224,554
00	18,375	7.0	1./	5.9	\$243,333	5.1	0.7	4.4	\$223,107
67	18,250	7.o	1.7	5.9	\$241,079	5.1	0.7	4.3	\$221,049
68	18,113	7.5	1.7	5.8	\$239,868	5.0	0.7	4.3	\$219,987
69 70	17,963	7.5	1.7	5.8	\$237,884	5.0	0.7	4.3	\$218,168
70	17,799	6.9	1.4	5.6	\$229,470	4.8	0.8	4.0	\$202,648
/1	17,619	6.9	1.3	5.5	\$227,147	4.8	0.8	3.9	\$200,597
72	17,421	6.8	1.3	5.5	\$224,599	4./	0.8	3.9	\$198,347
73	17,204	6.7	1.3	5.4	\$221,802	4.6	0.8	3.8	\$195,876
74	16,966	6.6	1.3	5.3	\$218,/31	4.6	0.8	3.8	\$193,164
Total		305	99	206	\$8,468,487	163	25	138	\$7,018,072

in a British Columbia Birth Cohort of 20,000 Females

Summary of CE

Based on these assumptions, the CE associated with cytology-based screening of females ages 25 to 69 years of age for cervical cancer as currently performed in BC would be 5,077 / QALY (Table 22, row w).

	Table 22: Summary of CE Estimate for Cervical Ca With Cytology-Based Screening In a BC Birth Cohort of 40,000	ancer Scre	ening
Row	Variable	Base Case	Data Source
	Cost of Screening and Treatment		
а	Estimated number of screens	171,230	Table 20
b	Cost of Screening - Healthcare	\$13,527,180	Table 20
с	Cost of Screening - Patient time	\$12,725,823	Table 20
d	Estimated number of colposcopies	2,569	Table 20
e	Cost of colposcopies - Healthcare	\$727,059	Table 20
f	Cost of colposcopies - Patient time	\$716,012	Table 20
g	Estimated number of treatments for CIN2+	1,321	Table 20
h	Cost of treatments for CIN2+ - Healthcare	\$1,811,533	Table 20
i	Cost of treatments for CIN2+ - Patient time	\$368,253	Table 20
j	Estimated number of premature births attributable to treatment for CIN2+	38	Table 20
k	Costs attributable to preterm births	\$972,683	Table 20
Ι	Total cost of screening and treatment	\$30,848,543	= b + c + e + f + h + i + k
	Costs Avoided		
m	Deaths prevented	138	Table 21
n	Costs avoided due to deaths prevented	-\$7,018,072	Table 21
0	# of cervical cancers avoided	206	Table 21
р	Costs avoided due to cervical cancers prevented	-\$8,468,487	Table 21
q	Total costs avoided	-\$15,486,558	= n + p
	Calculating CE		
r	Net costs	\$15,361,984	= l + q
S	CPB undiscounted	4,034	Table 19
t	CE undiscounted	\$3,808	= r / s
u	Net Costs (1.5% discount)	\$13,706,925	Calculated
v	CPB (1.5% discount)	2,700	Calculated
w	CE (\$/QALY Saved)	\$5,077	= u / v

∨ = Estimates from the literature

We also modified a number of key assumptions and recalculated the CE as follows:

- Assume the disutility associated with the diagnosis and treatment phase for cervical cancer of 0.288 is reduced to 0.193, the disutility associated with the ongoing, controlled phase (remission) for cervical cancer is reduced from 0.049 to 0.031 and the disutility associated with the metastatic phase for cervical cancer is reduced from 0.451 to 0.307: CE = \$5,160.
- Assume the disutility associated with the diagnosis and treatment phase for cervical cancer of 0.288 is increased to 0.399, the disutility associated with the ongoing, controlled phase (remission) for cervical cancer is increased from 0.049 to 0.072 and the disutility associated with the metastatic phase for cervical cancer is increased from 0.451 to 0.600: CE = \$4,982.

- Assume that unit costs are at the lower end of the 95% CI. The cost per conventional cytology screen is reduced from \$79 to \$37, the cost per colposcopy is reduced from \$283 to \$200, the cost per treatment for CIN2+ is reduced from \$1,371 to \$1,271, the cost per cervical cancer avoided is reduced from \$41,118 to \$39,410 and the cost per death due to cervical cancer avoided is reduced from \$50,961 to \$47,410: CE = \$3,154.
- Assume that unit costs are at the higher end of the 95% CI. The cost per conventional cytology screen is increased from \$79 to \$124 the cost per colposcopy is increased from \$283 to \$444, the cost per treatment for CIN2+ is increased from \$1,371 to \$1,447, the cost per cervical cancer avoided is increased from \$41,118 to \$42,824 and the cost per death due to cervical cancer avoided is increased from \$50,961 to \$54,510: **CE** = **\$7,196**.

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with cytology-based cervical cancer screening is estimated to be 2,700 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$5,077 per QALY (see Table 23).

Table 23: Cytology-Based S	creening f	or Cervical	Cancer i
a Birth Col	hort of 40,	000	
Sui	mmary		
	Base		
	Case	Rang	je
CPB (Potential QALYs Gained)			
Gap between 0% and Current E	BC Screening Ro	ite (69%)	
1.5% Discount Rate	2,700	2,656	2,751
3% Discount Rate	1,827	1,796	1,864
0% Discount Rate	4,034	3,972	4,108
CE (\$/QALY) including patient time	costs		
1.5% Discount Rate	\$5,077	\$3,154	\$7,196
3% Discount Rate	\$6,648	\$4,394	\$9,131
0% Discount Rate	\$3,808	\$2,148	\$5,637
CE (\$/QALY) excluding patient time	e costs		
1.5% Discount Rate	\$1,172	Cost-saving	\$3,290
3% Discount Rate	\$2,130	Cost-saving	\$4,613
0% Discount Rate	\$385	Cost-saving	\$2,214

May 2024

HrHPV-Based Screening for Cervical Cancers

Moving from Conventional to Liquid-Based Cytology Collection

Despite the significant effect on cervical cancer incidence and mortality associated with systematic screening using conventional cytology, some challenges remain. These include the limited accuracy of the test resulting in a high level of false-negative and false-positive results and limitations in sampling and slide preparation which can result in a high proportion of unsatisfactory samples. In an attempt to address some of these challenges associated with conventional cytology collection, manufacturers developed liquid-based cytology (LBC) collection.

The ThinPrep® Pap test (Hologic, Inc.) was the first LBC to be approved by the US Food and Drug Administration (FDA) in 1996.⁵⁶³ Based on early research evidence, the US Food and Drug Administration allowed the makers of the LBC ThinPrep® 2000 System to claim that their system "is significantly more effective than the conventional Pap smear for the detection of Low Grade Squamous Intraepithelial (LSIL) and more severe lesions in a variety of patient populations. Specimen quality with the ThinPrep® 2000 System is significantly improved over that of conventional Pap smear preparation in a variety of patient populations."⁵⁶⁴

Despite the initial excitement about the effectiveness of LBC, significant controversy remained. In 2006, Davey and colleagues published a systematic review in which they combined the available literature to determine whether the use of LBC (compared with conventional cytology) increases test sensitivity and reduces the proportion of slides that are satisfactory for assessment.⁵⁶⁵ While they included 56 primary studies, only 5 were considered to be of high quality. Results varied significantly based on the quality of the study. They conclude; "we saw no evidence that liquid-based cytology reduced the proportion of unsatisfactory slides, or detected more high-grade lesions in high-quality studies, than conventional cytology."

In 2008, Arbyn and co-authors found 8 studies in which all subjects "were submitted to gold standard verification, based on colposcopy and histology of colposcopy-targeted biopsies."⁵⁶⁶ Based on a meta-analysis of these high quality study results, they found that LBC is "neither more sensitive nor more specific for detection of high-grade cervical intraepithelial neoplasia compared with the conventional Pap test."

The 2011 systematic review for the USPSTF included just two fair quality observational studies^{567,568} and two RCT studies, one fair (NTCC)⁵⁶⁹ and one good quality

⁵⁶³ Gibb R, Martens M. The impact of liquid-based cytology in decreasing the incidence of cervical cancer. *Reviews in Obstetrics & Gynecology*. 2011; 4(1): S2-11.

⁵⁶⁴ Gutman S. Labeling liquid-based systems: FDA clarification. Acta Cytologica. 2000; 44(6): 1120.

⁵⁶⁵ Davey E, Barratt A, Irwig L et al. Effect of study design and quality on unsatisfactory rates, cytology classifications, and accuracy in liquid-based versus conventional cervical cytology: A systematic review. *The Lancet.* 2006; 367: 122-32.

⁵⁶⁶ Arbyn M, Bergeron C. Klinkhamer P et al. Liquid compared with conventional cervical cytology: A systematic review and meta-analysis. *Obstetrics & Gynecology*. 2008; 111(1): 167-77.

⁵⁶⁷ Coste J, Cochand-Priollet B, de Cremoux P et al. Cross sectional study of conventional cervical smear, monolayer cytology, and human papillomavirus DNA testing for cervical cancer screening. *British Medical Journal*. 2003; 326: 733.

⁵⁶⁸ Taylor S, Kuhn L, Dupree W et al. Direct comparison of liquid-based and conventional cytology in a South African screening trial. *International Journal of Cancer*. 2006; 118: 957-62.

 ⁵⁶⁹ Ronco G, Cuzick J, Pierottti P et al. Accuracy of liquid based versus conventional cytology: Overall results of new technologies for cervical cancer screening randomised controlled trial. *British Medical Journal*. 2007; 335: 28.

(NETHCON).^{570,571} The two RCTs were completed and published in response to the call from Davey et al in 2006 for additional high quality studies, in particular large RCTs.⁵⁷² The NTCC included 45,174 females while the NETHCON included 89,784 females. Based on these four studies, the reviewers for the USPSTF concluded that "LBC and conventional cytology did not differ substantially in relative detection or absolute sensitivity or specificity for detection of CIN2+ / CIN3+ at any cytologic threshold."⁵⁷³ However, "most of the evidence indicated a lower proportion of unsatisfactory slides for LBC than conventional cytology (0.33% vs. 1.11% in NETHCON; 2.6% vs. 4.1% in NTCC)."⁵⁷⁴

The benefits of LBC in reducing the proportion of unsatisfactory slides may be of particular importance in jurisdictions such as England and Scotland where the proportion of unsatisfactory slides using conventional cytology was approximately 7.5%.^{575,576} As noted earlier, the proportion of unsatisfactory samples in BC in 2018 using conventional cytology collection was 1.3%.⁵⁷⁷

Besides the potential benefits in reducing the proportion of unsatisfactory slides, other benefits associated with LBC might include greater reproducibility, *the capacity for HPV DNA testing* and improved productivity.⁵⁷⁸ To enable a shift to HPV-based screening, BC began the process of transitioning from conventional cytology collection methods to LBC in 2022.⁵⁷⁹

Moving from Liquid-Based Cytology to HPV-Based Screening

False-Positive and False-Negative Results

We noted in the previous section that conventional and liquid-based cytology are essentially equivalent tests in terms of sensitivity and specificity.⁵⁸⁰ How might the transition to HPV-based testing change the ratio of true / false positive results (sensitivity) and true / false negative results (specificity)?

To illustrate this we generated a sensitivity of 0.561 and a specificity of 0.968 for conventional / liquid based cytology for the detection of CIN2+ based on data from Arbyn et

⁵⁷⁰ Siebers A, Klinkhamer P, Arbyn M et al. Cytologic detection of cervical abnormalities using liquid-based compared with conventional cytology: A randomized controlled trial. *Obstetrics & Gynaecology*. 2008; 112(6): 1327-34.

 ⁵⁷¹ Siebers A, Klinkhamer P, Grefte J et al. Comparison of liquid-based cytology with conventional cytology for detection of cervical cancer precursors: A randomized controlled trial. *JAMA*. 2009; 302(16): 1757-64.
 ⁵⁷² Davey E, Barratt A, Irwig L et al. Effect of study design and quality on unsatisfactory rates, cytology

classifications, and accuracy in liquid-based versus conventional cervical cytology: A systematic review. *Lancet*. 2006; 367: 122-32.

⁵⁷³ Whitlock E, Vesco K, Eder M et al. Liquid-based cytology and human papillomavirus testing to screen for cervical cancer: A systematic review for the U.S. Preventive Services Task Force. *Annals of Internal Medicine*. 2011; 155(10): 687-98.

⁵⁷⁴ Ibid.

⁵⁷⁵ Sasieni P, Fielder H, Rose B. Liquid-based versus conventional cervical cytology. *The Lancet*. 2006; 367: 1481.

 ⁵⁷⁶ Imrie J, Colquhoun C. Liquid-based versus conventional cervical cytology. *The Lancet*. 2006; 367: 1481.
 ⁵⁷⁷ BC Cancer Cervix Screening. *BC Cancer Cervix Screening 2018 Program Results*. March 2020. Available online at http://www.bccancer.bc.ca/screening/Documents/Cervix-Program-Results. March 2020. Available online at http://www.bccancer.bc.ca/screening/Documents/Cervix-Program-Results. March 2020. Available online at http://www.bccancer.bc.ca/screening/Documents/Cervix-Program-Results. Accessed January 2023.

⁵⁷⁸ Sass M. Use of a liquid-based, thin-layer Pap test in a community hospital: Impact on cytology performance and productivity. *Acta Cytologica*. 2004; 48(1): 17-22.

 ⁵⁷⁹ BC Cancer, Provincial Laboratory Medicine Services. *News Bulletin: A Rapid Transition to Liquid Based Cytology for Pap Tests is Underway*. October 2022. Available online at <u>http://www.bccancer.bc.ca/lab-services-site/Documents/20221019%20LBC%20Transition%20info%20kit%20FINAL.docx.pdf</u>. Accessed January 2023.
 ⁵⁸⁰ Arbyn M, Bergeron C. Klinkhamer P et al. Liquid compared with conventional cervical cytology: A systematic review and meta-analysis. *Obstetrics & Gynecology*. 2008; 111(1): 167-77.

al. ⁵⁸¹ We then generated a sensitivity of 0.899 and a specificity of 0.899 for hrHPV-based testing for the detection of CIN2+ using data from Koliopoulos et al.⁵⁸² These results were applied in an environment in which 0.62% (or 62 out of 10,000) females would be diagnosed with CIN2+.⁵⁸³

In this example, 27 of the 62 females with CIN2+ would receive a negative result (a false negative) with cytology-based or LBC screening while just 6 would receive a false negative result with HPV-based screening (see Table 24). On the other hand, 313 of the females who did not have CIN2+ would receive a positive result (a false positive) with cytology-based / LBC screening but this would increase to 1,006 females with HPV-based screening. The ability of HPV-based testing to reduce the false-negative rate (from 27 to 6 in our example) is clearly a benefit. The higher false-positive rate (1,006 with HPV vs 313 with conventional / LBC screening), however, is a challenge as these false-positive results will likely lead to unnecessary follow-up testing and treatment.

Tab	Table 24: Comparison of Screening Tests in Detecting CIN2+													
Conventional / Liquid-Based Cytology														
Disease Disease NOT														
Test ResultPresentPresentTotalSensitivity =0.561														
Positive	35	313	348	Specificity =	0.968									
Negative	27	9,625	9,652											
Total 62 9,938 10,000														
		HPV-Based	Screening											
	Disease	Disease NOT												
Test Result	Present	Present	Total	Sensitivity =	0.899									
Positive	56	1,006	1,062	Specificity =	0.899									
Negative	6	8,932	8,938											
Total	62	9,938	10,000											

Effectiveness of HPV-Based Screening

The HPV FOCAL RCT in BC assessed the relative effectiveness of primary HPV testing versus LBC. A total of 19,009 females were randomized to either the intervention group (primary HPV testing, N=9,552) or the control group (LBC, N=9,457). At 48 months follow-up, the incidence rate of CIN3+ was 2.3 / 1,000 in the intervention group versus 5.5 / 1,000 in the control group. That is, the use of primary HPV testing compared with LBC resulted in a significantly lower likelihood of CIN3+ at 48 months.⁵⁸⁴

The benefits of HPV-based screening are also clearly indicated in the study by Ronco and colleagues.⁵⁸⁵ Based on a median follow-up of 6.5 years of four European randomised controlled trials comparing cytology-based with HPV-based screening for cervical cancers,

⁵⁸¹ Arbyn M, Bergeron C. Klinkhamer P et al. Liquid compared with conventional cervical cytology: A systematic review and meta-analysis. *Obstetrics & Gynecology*. 2008; 111(1): 167-77.

⁵⁸² Koliopoulos G, Nyaga V, Santesso N et al. Cytology versus HPV testing for cervical cancer screening in the general population. *Cochrane Database of Systematic Reviews*. 2017; Issue 8(8): CD008587.

⁵⁸³ Siebers A, Klinkhamer P, Grefte J et al. Comparison of liquid-based cytology with conventional cytology for detection of cervical cancer precursors: A randomized controlled trial. *JAMA*. 2009; 302(16): 1757-64.

⁵⁸⁴ Ogilvie G, van Niekerk D, Krajden M et al. Effect of screening with primary cervical HPV testing vs cytology on high-grade cervical intraepithelial neoplasia at 48 months: The HPV FOCAL randomized clinical trial. *JAMA*. 2018; 320(1): 43-52.

⁵⁸⁵ Ronco G, Dillner J, Elfstrom K et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: Follow-up of four European randomised controlled trials. *The Lancet*. 2014; 383: 524-32.

they found that HPV-based screening provides significantly greater protection against invasive cervical cancers compared with cytology-based screening. At 6.5 years follow-up, 44 invasive cervical cancers were identified in the group receiving HPV-based screening and 63 in the cytology-based screening, a comparative rate of 6.7 and 11.2 per 100,000 personyears (see Table 25). That is, more precursors were identified and treated in the HPV-based screening group leading to fewer invasive cancers. This is particularly noticeable for adenocarcinomas (AC), with a comparative rate of 1.4 and 4.5 per 100,000 person-years, indicating that HPV-based screening does identify the precursors for AC much more often than cytology-based screening. The benefits of HPV-based screening occur at all ages but are most pronounced between 30-34 years of age, with a comparative rate of 4.3 and 14.6 per 100,000 person-years (see Table 25).

Table 2	Table 25: Cases of Invasive Cervical Cancers by Screening Methodology														
	6.5 Years of Follow-up														
Screening	Cancer	Age at Enrollment (Years)													
Methodology	SCC	AC	Total	≤2.5 Yrs	≥2.5 Yrs	Total	_	<30	30-34	35-49	≥50	Total			
HPV-Based	35	9	44	25	19	44		3	5	25	11	44			
Cytology-Based	38	25	63	27	36	63	_	2	15	32	14	63			
Total	73	34	107	52	55	107	_	5	20	57	25	107			
					per 100),000 pers	so	n-years							
	SCC	AC	Total	≤2.5 Yrs	≥2.5 Yrs	Total		<30	30-34	35-49	≥50	Total			
HPV-Based	5.4	1.4	6.7	10.7	4.5	6.7		5.5	4.3	7.8	6.8	6.7			
Cytology-Based	6.8	4.5	11.2	13.3	10.0	11.2		5.7	14.6	11.4	9.9	11.2			
Total	6.0	2.8	8.8	11.9	7.1	8.8		5.6	9.1	9.5	8.2	8.8			

Does HPV-Based Screening Increase the Rate of Colposcopies?

Early results from Australia suggest that the colposcopy rate increased from 0.8% with cytology-based screening to 2.55% with HPV-based screening.⁵⁸⁶ In the Netherlands the rate increased from 0.9% with cytology-based screening to 2.9% with HPV-based screening⁵⁸⁷ and 2.1% to 6.6% in a region of Southern Denmark.⁵⁸⁸

These results suggest that the initial round of HPV-based screening increases the colposcopy referral rate by a factor of 2-3, likely due to the increased ability (sensitivity) of HPV-based screening to detect both incident and prevalent CIN2+ when compared to cytology-based screening. A key question is whether these higher colposcopy rates would continue in future rounds of HPV-based screening. Because of the 5-year period between screening intervals, few jurisdictions have real-world experience with colposcopy referral rates during a second or subsequent round of HPV-based screening. Australia, for example, adopted HPV-based screening in December of 2017 so they would now be in their sixth year post implementation (see following section).

An additional complexity in addressing this question is the role of vaccination. In jurisdictions with early adoption of vaccination, such as BC and Australia, females who have been vaccinated are now entering the 25-29 year old screening cohort. Vaccination has led to

⁵⁸⁶ Machalek D, Garland S, Brotherton J et al. Very low prevalence of vaccine human papillomavirus types among 18- to 35-year old Australian women 9 years following implementation of vaccination. *Journal of Infectious Diseases*. 2018; 217: 1590-1600.

⁵⁸⁷ Mayer P, Poljak M. Primary HPV-based cervical cancer screening in Europe: Implementation status, challenges, and future plans. *Clinical Microbiology and Infection*. 2020; 26: 579-83.

⁵⁸⁸ Thomsen L, Kjar S, Munk C et al. Benefits and potential harms of human papillomavirus (HPV)-based cervical cancer screening: A real-world comparison of HPV testing versus cytology. *Acta Obstetricia et Gynecologica Scandinavica*. 2021; 100: 394-402.

a dramatic decrease in the incidence of infection with HPV 16 & 18. When HPV 16 and/or 18 are detected in an HPV-based screening program, the females are generally referred directly to colposcopy. Lower rates of HPV 16 & 18 infection lead to a lower number of referrals to colposcopy in the vaccinated cohort.

A number of modelling studies have attempted to determine whether HPV-based screening would increase the rate of colposcopies over the longer term. Work in BC, using early FOCAL study data, suggested that when compared with LBC, HPV-based screening would only increase long-term colposcopy rates in the 25-29 year old cohort. This early modelling study did not incorporate the effect of vaccination.⁵⁸⁹

In Australia, modellers have suggested that colposcopy volumes will increase by 46% by the 3rd round of HPV-screening when vaccination is *not* taken into account. When including vaccination in their model, they anticipated an initial increase of 23% during the 1st round but a steady state by the 3rd round.⁵⁹⁰

Modellers in Wales have assessed the longer-term demand for colposcopy after the introduction of HPV-based screening in the context of HPV vaccination. Their results suggest that the number of colposcopies will increase by about 1/3 during the 1st round of HPV-based screening. During subsequent rounds, the number of colposcopies are expected to decrease by about 1/3 from current rates, at least partially due to the role of vaccination. ⁵⁹¹

These models may be underestimating the effects of the transition from cytology-based to HPV-based screening, particularly since real world evidence suggests that colposcopy rates have increased by a factor of 2-3 with the implementation of HPV-based screening. It is also possible that jurisdictions that are early adopters of HPV-based screening have taken a more cautious approach in detecting and diagnosing CIN2+, thus increasing colposcopy rates.

In the BC based FOCAL trial, the intervention cohort received an HPV screen at both study entrance and exit (after 48 months). Longer term follow-up results with this cohort suggest that, after an initial increase in colposcopy referral rates associated with HPV-based screening, these rates will decrease significantly and then will level out over time, leading to cumulative referral rates similar to cytology-based screening programs. The authors note that the initial higher volume of colposcopies can be managed by thoughtful implementation of an HPV-based screening program, including the introduction of screening to cohorts by birth year, so that healthcare systems are not overwhelmed.⁵⁹²

In the Netherlands, HPV-based screening was implemented on January 1, 2017, Colposcopy referral rates were 2.9% that year, increasing to 3.1% in 2018 before declining modestly to 3.0% in 2019 and 2020 and 2.7% in 2021, the fifth year following implementation of HPV-based screening.⁵⁹³

⁵⁸⁹ Coldman A, Phillips N, van Niekerk D et al. Projected impact of HPV and LBC primary testing on rates of referral for colposcopy in a Canadian cervical cancer screening program. *Journal of Obstetrics and Gynaecology Canada*. 2015; 37(5): 412-20.

⁵⁹⁰ Smith M, Gertig D, Hall M et al. Transitioning from cytology-based screening to HPV-based screening at longer intervals: Implications for resource use. *BJOG: An International Journal of Obstetrics and Gynaecology*. 2016; 16: 147

⁵⁹¹ Pesola F, Rebolj M, Leeson S et al. Introducing human papillomavirus (HPV) primary testing in the age of HPV vaccination: Projected impact on colposcopy services in Wales. *BJOG: An International Journal of Obstetrics and Gynaecology*. 2021; 128: 1226-35.

⁵⁹² Gottschlich A, Gondara L, Smith L et al. Evidence for a decrease in colposcopy referral post-introduction of primary screening with human papillomavirus testing in British Columbia. *Article in preparation*.

⁵⁹³ Netherlands Comprehensive Cancer Organization. *National Monitoring of the Cervical Cancer Screening Programme in the Netherlands 2021*. Available online at <u>https://www.rivm.nl/en/documenten/monitor-national-</u> cervical-cancer-screening-programme-2021. Accessed April 2023.

Early Results from the Primary HPV Screening Program in Australia

In December of 2017, Australia's National Cervical Screening Program shifted from cytology-based screening to HPV-based screening. For context, Australia commenced its HPV vaccination program in 2007, with coverage of approximately 70% of the eligible population.⁵⁹⁴ As noted earlier, BC commenced its vaccination program in September of 2008 and has also achieved vaccination coverage of 65-70%. In addition, the screening coverage rate for females ages 25-69 from 2018-2021 in Australia was 71.6%⁵⁹⁵ compared with 68% in BC in 2018 (see Figure 4, both rates are adjusted for hysterectomies).

Based on the first six months of experience with primary HPV screening at a large community-based general pathology laboratory in Sydney, Australia, 7.91% of samples tested positive for an oncogenic HPV (see Table 26).⁵⁹⁶ A total of 3,397 (2.17%) tested positive for HPV16 or 18. Of these 3,397, 63.6% (2,161) had no cervical abnormality based on reflex LBC, 21.0% (715) had a low grade cervical abnormality and 521 (15.3%) had a high grade cervical abnormality. A total of 8,990 (5.74%) tested positive for hrHPV other than HPV16 or 18. Of these 8,990, 64.8% (5825) had no cervical abnormality, 28.9% (2,600) had a low grade cervical abnormality and 565 (6.3%) had a high grade cervical abnormality (see Table 26).

Table 26: Age-Specific Prevalance of Oncogenic HPV and Cervical AbnormalityBased on Primary HPV Screening Tests and Reflex LBC

						Aus	tralia	, Dece	ember	r 2017 to May 2018									
				4	Abnorm	ality A	fter HP	V16/18	8+			Ab	onorma	lity Aft	er Othe	er hrHP\	/+		
Age	Screening	HPV1	6/18+	No	one	Low G	irade*	High (Grade#	Other	Other hrHPV+		one	Low Grade*		High G	rade#	e# Total HPV+	
Group	Tests	#	%	#	%	#	%	#	%	#	%	#	%	#	%	#	%	#	%
25-29	16,368	306	1.87%	153	50.0%	88	28.8%	65	21.2%	2,655	16.22%	1,603	60.4%	881	33.2%	171	6.4%	2,961	18.09%
30-34	20,216	562	2.78%	302	53.7%	138	24.6%	122	21.7%	1,811	8.96%	1,117	61.7%	551	30.4%	143	7.9%	2,373	11.74%
35-39	19,446	466	2.40%	268	57.5%	107	23.0%	91	19.5%	1,112	5.72%	699	62.9%	334	30.0%	79	7.1%	1,578	8.11%
40-44	18,246	455	2.49%	279	61.3%	97	21.3%	79	17.4%	826	4.53%	520	63.0%	246	29.8%	60	7.3%	1,281	7.02%
45-49	18,739	388	2.07%	240	61.9%	101	26.0%	47	12.1%	678	3.62%	430	63.4%	214	31.6%	34	5.0%	1,066	5.69%
50-54	16,576	340	2.05%	231	67.9%	68	20.0%	41	12.1%	575	3.47%	390	67.8%	151	26.3%	34	5.9%	915	5.52%
55-59	16,745	336	2.01%	257	76.5%	56	16.7%	23	6.8%	524	3.13%	414	79.0%	95	18.1%	15	2.9%	860	5.14%
60-64	14,576	260	1.78%	206	79.2%	30	11.5%	24	9.2%	409	2.81%	335	81.9%	61	14.9%	13	3.2%	669	4.59%
65-69	11,924	207	1.74%	164	79.2%	26	12.6%	17	8.2%	300	2.52%	234	78.0%	55	18.3%	11	3.7%	507	4.25%
70-74	3,847	77	2.00%	61	79.2%	4	5.2%	12	15.6%	100	2.60%	83	83.0%	12	12.0%	5	5.0%	177	4.60%
Total	156,683	3,397	2.17%	2,161	63.6%	715	21.0%	521	15.3%	8,990	5.74%	5,825	64.8%	2,600	28.9%	565	6.3%	12,387	7.91%

* Low grade sqaumous intraepithelial lesion (LSIL) or possible LSIL # High grade sqaumous intraepithelial lesion (HSIL), possible HSIL, adenacarcinoma in situ or cancer.

Based on the results in Table 26, individuals were grouped into low, intermediate and high risk (see Table 27). Low risk indicates that no oncogenic HPV was detected. The recommendation for these individuals is to re-test in 5 years. Intermediate risk indicates that an oncogenic HPV has been detected other than HPV16 or 18 and the reflex LBC result is negative or low grade abnormality. The recommendation for these individuals is to re-test in 12 months. Higher risk indicates that HPV16 or 18 has been detected or other hrHPV has

⁵⁹⁶ The samples were tested for HPV types 16/18/31/33/35/39/45/51/52/56/58/59/66/68.

⁵⁹⁴ Machalek D, Garland S, Brotherton J et al. Very low prevalence of vaccine human papillomavirus types among 18- to 35-year old Australian women 9 years following implementation of vaccination. *Journal of Infectious Diseases*. 2018; 217: 1590-1600.

⁵⁹⁵ Australian Institute of Health and Welfare. *National Cervical Screening Program Monitoring Report* 2022, catalogue number CAN 149, AIHW, Australian Government. Available online at <u>https://www.aihw.gov.au/getmedia/5c42bc77-589b-42ef-9bbd-fd91890e4920/aihw-can-149-NCSP-</u>

^{2022.}pdf.aspx?inline=true. Accessed March 2023.

	Table 27: Age-Specific Risk Classification Based on Primary HPV Screening Tests and Reflex LBC													
	Australia, December 2017 to May 2018													
Age	Age Screening Low Risk Intermediate Risk High Risk Unsatisfactory													
Group	Tests	#	%	#	%	#	%	#	%					
25-29	16,389	13,402 8	1.77%	2,484	15.16%	478	2.92%	25	0.15%					
30-34	20,239	17,830 <i>8</i> 8	8.10%	1,668	8.24%	710	3.51%	31	0.15%					
35-39	19,469	17,858 9	1.73%	1,033	5.31%	552	2.84%	26	0.13%					
40-44	18,260	16,962 92	2.89%	766	4.19%	516	2.83%	16	0.09%					
45-49	18,760	17,665 <i>9</i> 4	4.16%	644	3.43%	428	2.28%	23	0.12%					
50-54	16,588	15,653 <i>9</i> 4	4.36%	541	3.26%	378	2.28%	16	0.10%					
55-59	16,753	15,871 <i>9</i> 4	4.74%	509	3.04%	358	2.14%	15	0.09%					
60-64	14,590	13,893 <i>9</i>	5.22%	396	2.71%	280	1.92%	21	0.14%					
65-69	11,942	11,405 9	5.50%	289	2.42%	222	1.86%	26	0.22%					
70-74	3,850	3,663 9	5.14%	95	2.47%	84	2.18%	6	0.16%					
Total	156,840	144,202 9	1.94%	8,425	5.37%	4,006	2.55%	205	0.13%					

been detected and the reflex LBC result is high grade abnormality. The recommendation for these individuals is immediate referral to colposcopy.⁵⁹⁷

Based on the results in Table 27, repeat testing after 12 months was recommended for 5.37% and immediate referral to colposcopy was recommended for 2.55%.

Results similar to those in Table 27 are shown for all of Australia in 2021 in Table 28.598

	Table 28: Age-Specific Risk Classification														
	Based on Primary HPV Screening Tests and Reflex LBC														
	Australia, 2021														
Age	ge Screening Low Risk Intermediate Risk High Risk Unsatisfactory														
Group	Tests	#	%	#	%	#	%	#	%						
25-29	111,351	89,925	80.8%	18,550	16.66%	2,552	2.29%	324	0.29%						
30-34	77,145	66,988	86.8%	7,427	9.63%	2,495	3.23%	235	0.30%						
35-39	67,954	61,393	90.3%	4,362	6.42%	1,974	2.90%	225	0.33%						
40-44	53,586	48,809	91.1%	2,898	5.41%	1,719	3.21%	160	0.30%						
45-49	49,224	45,426	92.3%	2,297	4.67%	1,356	2.75%	145	0.29%						
50-54	41,487	38,446	92.7%	1,762	4.25%	1,129	2.72%	150	0.36%						
55-59	33,604	31,195	92.8%	1,322	3.93%	907	2.70%	180	0.54%						
60-64	28,386	26,362	92.9%	1,057	3.72%	805	2.84%	162	0.57%						
65-69	20,898	19,457	93.1%	738	3.53%	583	2.79%	120	0.57%						
70-74	18,523	17,431	94.1%	516	2.79%	470	2.54%	106	0.57%						
Total	502,158	445,432	88.7%	40,929	8.15%	13,990	2.79%	1,807	0.36%						

⁵⁹⁸ Australian Institute of Health and Welfare. *National Cervical Screening Program Monitoring Report* 2022, catalogue number CAN 149, AIHW, Australian Government. Available online at https://www.aihw.gov.au/getmedia/5c42bc77-589b-42ef-9bbd-fd91890e4920/aihw-can-149-NCSP-

2022.pdf.aspx?inline=true. Accessed March 2023.

⁵⁹⁷ Farnsworth A, Roberts J, Garland S et al. Detection of high-grade cervical disease among women referred directly to colposcopy after a positive HPV screening test varies with age and cytology findings. *International Journal of Cancer*. 2020; 147: 3068-74.

Clinically Preventable Burden – HPV-Based Screening

BC Birth Cohort of 40,000

HPV Model Assumptions

In modelling the CPB of moving to HPV-based screening in a BC birth cohort of 40,000 (20,000 females), we made the following assumptions:

- The age-specific screening rate would remain the same as the cytology-based screening model except that screening would now take place once every 5 years rather than once every 3 years.
- The age-specific proportion of unsatisfactory screens would be the same as observed in Australia in 2021 (see Table 28).
- The age-specific risk classification (intermediate- and high-risk) would be the same as in Australia in 2021 (see Table 28).
- Of those at intermediate risk, the following proportion would receive a second screen within 12 months, based on results from BC in 2018 (see Table 8):⁵⁹⁹
 - Ages 25-29 85.1%
 - Ages 30-39 84.5%
 - Ages 40-49 85.4%
 - Ages 50-59 86.6%
 - Ages 60-69 88.5%
- Of those at intermediate risk with a second screen, the following proportion would receive a colposcopy within one year, based on results from BC in 2018 (see Table 8):⁶⁰⁰
 - Ages 25-29 13.6%
 - Ages 30-39 14.2%
 - Ages 40-49 12.2%
 - o Ages 50-59 11.6%
 - Ages 60-69 8.6%
- Of those at high risk based on the initial screen, the following proportion would receive a colposcopy within one year, based on results from BC in 2018 (see Table 8):⁶⁰¹
 - Ages 25-29 98.1%
 - Ages 30-39 98.5%
 - Ages 40-49 89.3%
 - Ages 50-59 71.1%
 - o Ages 60-69 67.7%
- The age-specific proportion of screens resulting in a high grade abnormality (CIN2+) requiring treatment is as follows, based on results from Australia in 2021:⁶⁰²
 Ages 25-29 2.00%

⁵⁹⁹ BC Cancer Cervix Screening. *BC Cancer Cervix Screening 2018 Program Results*. March 2020. Available online at <u>http://www.bccancer.bc.ca/screening/Documents/Cervix-Program-Results-2018.pdf</u>. Accessed April 2023.

⁶⁰⁰ Ibid.

⁶⁰¹ Ibid.

⁶⁰² Australian Institute of Health and Welfare. *National Cervical Screening Program Monitoring Report* 2022 catalogue number CAN 149, AIHW, Australian Government. Table A11.1. Available online at <u>https://www.aihw.gov.au/getmedia/5c42bc77-589b-42ef-9bbd-fd91890e4920/aihw-can-149-NCSP-</u> 2022.pdf.aspx?inline=true. Accessed April 2023.

- Ages 30-34 2.47%
- Ages 35-39 2.12%
- Ages 40-44 1.88%
- Ages 45-49 1.26%
- Ages 50-54 0.88%
- Ages 55-59 0.82%
- Ages 60-64 0.79%
- Ages 65-59 0.66%
- A treatment recurrence rate of 6.7%.⁶⁰³
- HPV-based screening would result in an overall reduction in the incidence of SCC of 20.9% and of all other cancers of 69.1%, compared with conventional cytology (see Table 25). These reductions would vary by age, with no change between the ages of 25-29, a 70.9% reduction between ages 30-34, a 30.9% reduction between ages 35-49 and a 31.6% reduction after age 50 (see Table 25).
- The proportion of individuals with cervical cancer who die would remain the same as in the cytology-based screening model.

HPV Model Results

The above assumptions were used in the HPV model in a BC birth cohort of 20,000 females between the ages of 25 and 69 for screening, and to age 74 for cervical cancer incidence and mortality (see Table 29).

Within this cohort, we would expect 101,328 initial screens with an additional 389 repeat screens due to unsatisfactory samples and 5,764 follow-up screens within a year following an intermediate risk classification (see Table 29). The total number of screens (107,481) is 37.2% (63,749) lower than the 171,230 screens with cytology-based screening (see Table 9).

A total of 6,742 females would receive an intermediate risk screening result and 5,764 would return in approximately a year for a follow-up (repeat) screen. Of these 5,764 females, 735 (12.8%) would go on to receive a colposcopy. A total of 2,880 females would receive an original high risk screening result. Of these, 2,450 (85.1%) would receive a colposcopy (see Table 29). The total number of colposcopies (3,185) is 24.0% (616) higher than the 2,569 colposcopies with cytology-based screening (see Table 9).

A total of 1,523 females would ultimately be diagnosed with CIN2+ and would receive treatment. 102 (6.7%) of these females would have follow-up treatment due to the failure of their original treatment (see Table 29). The total number of treatments for CIN2+ (1,625) is 23.0% (304) higher than the 1,321 colposcopies with cytology-based screening (see Table 9).

Of the 1,523 females with a diagnosis of CIN2+, 64.6 would ultimately be diagnosed with an invasive cervical cancer (see Table 29). This number is 34.5% lower (34.0) than the 98.6 invasive cervical cancer expected with cytology-based screening (see Table 5).

Of the 64.6 females diagnosed with cancer, 16.8 will die from their cervical cancer, losing an average of 31.3 life years (see Table 29). This number is 32.8% lower (8.0) than the 24.8 deaths due to cervical cancer expected with cytology-based screening (see Table 6).

⁶⁰³ Arbyn M, Redman C, Verdoodt F et al. Incomplete excision of cervical precancer as a predictor of treatment failure: A systematic review and meta-analysis. *Lancet Oncology*. 2017; 18: 1665-79.
			Tab	ole 29:	Scr	eeni	ng fo	r Cer	vica	l Car	ncer				
				Prima	arv	hrHP'	V-Bas	ed Sc	reer	ning					
		i	n a Br	ritish Co	lum	hia Ri	rth Col	horto	f 20 (lome	n			
	Females		na Di		Turri	Scree	nina		120,	Scree	nina Re	sults by	Risk	12-M	lonth
	in Birth	Hystered	tomies	Potential		# Up To	Annual	Unsatisf	actory	Interm	ediate	Hi	gh	Follo	w-up
Age	Cohort	%	#	Cohort	Rate	Date	Screens	%	#	%	#	%	#	%	#
25	10 8/13	0.5%	80	10 75/	57%	11 260	2 252	0.20%	7	16.7%	375	2 3%	52	85 1%	310
25	19,843	0.5%	104	19,734	57%	11,200	2,232	0.29%	7	16.7%	375	2.3%	52	85.1%	319
27	19.825	0.6%	119	19,706	57%	11.233	2.247	0.29%	7	16.7%	374	2.3%	51	85.1%	318
28	19,816	0.7%	134	19,682	57%	11,219	, 2,244	0.29%	7	16.7%	374	2.3%	51	85.1%	318
29	19,806	0.8%	149	19,657	57%	11,205	2,241	0.29%	7	16.7%	373	2.3%	51	85.1%	318
30	19,796	1.0%	202	19,594	69%	13,520	2,704	0.30%	8	9.6%	260	3.2%	87	84.5%	220
31	19,785	1.5%	306	19,479	69%	13,440	2,688	0.30%	8	9.6%	259	3.2%	87	84.5%	219
32	19,773	2.1%	410	19,364	69%	13,361	2,672	0.30%	8	9.6%	257	3.2%	86	84.5%	217
33	19,761	2.6%	513	19,248	69%	13,281	2,656	0.30%	8	9.6%	256	3.2%	86	84.5%	216
34	19,749	3.1%	617	19,132	69%	13,201	2,640	0.30%	8	9.6%	254	3.2%	85	84.5%	215
35	19,736	3.7%	720	19,015	69%	13,121	2,624	0.33%	9	6.4%	168	2.9%	76	84.5%	142
36	19,722	4.2%	824	18,899	69%	13,040	2,608	0.33%	9	6.4%	167	2.9%	76	84.5%	141
37	19,708	4.7%	927	18,781	69%	12,959	2,592	0.33%	9	6.4%	166	2.9%	75	84.5%	141
38	19,693	5.2%	1,030	18,663	69%	12,878	2,576	0.33%	9	6.4%	165	2.9%	/5	84.5%	140
39	19,677	5.8%	1,132	18,545	69%	12,796	2,559	0.33%	8	6.4%	164	2.9%	/4	84.5%	139
40	19,661	7.1%	1,392	18,269	69%	12,606	2,521	0.30%	8 7	5.4%	130	3.2%	81	85.4%	115
41	19,045	0.4%	1,001	17,995	60%	12,415	2,405	0.30%	7	5.4%	122	5.2% 2.7%	00 70	05.4%	115
42	19,025	9.7%	1,909	17,/10	69%	12,224	2,445	0.30%	7	5.4%	130	3.2%	70 77	05.4% 85.4%	115
43	19,003	11.1%	2,107	17,450	60%	11 8/0	2,400	0.30%	7	5.4%	120	3.2%	76	85.4%	100
44	19,564	13.7%	2,424	16 881	69%	11,648	2,300	0.30%	7	3.4%	109	2.2%	64	85.4%	93
46	19 537	14.3%	2,001	16 750	69%	11 558	2,330	0.29%	, 7	4.7%	105	2.8%	64	85.4%	92
47	19,557	14.8%	2,892	16,619	69%	11,467	2,293	0.29%	, 7	4.7%	107	2.8%	63	85.4%	91
48	19,484	15.4%	2,997	16,486	69%	11.376	2,275	0.29%	7	4.7%	106	2.8%	63	85.4%	91
49	19,454	15.9%	3,102	16,352	69%	11,283	2,257	0.29%	7	4.7%	105	2.8%	62	85.4%	90
50	19,422	16.5%	3,205	16,217	70%	11,352	2,270	0.36%	8	4.2%	96	2.7%	62	86.6%	83
51	19,388	17.1%	3,308	16,080	70%	11,256	2,251	0.36%	8	4.2%	96	2.7%	61	86.6%	83
52	19,352	17.6%	3,411	15,941	70%	11,159	2,232	0.36%	8	4.2%	95	2.7%	61	86.6%	82
53	19,312	18.2%	3,512	15,800	70%	11,060	2,212	0.36%	8	4.2%	94	2.7%	60	86.6%	81
54	19,270	18.7%	3,612	15,658	70%	10,960	2,192	0.36%	8	4.2%	93	2.7%	60	86.6%	81
55	19,224	19.3%	3,711	15,513	70%	10,859	2,172	0.54%	12	3.9%	85	2.7%	59	86.6%	74
56	19,174	20.5%	3,933	15,241	70%	10,669	2,134	0.54%	11	3.9%	84	2.7%	58	86.6%	73
57	19,121	21.7%	4,154	14,967	70%	10,477	2,095	0.54%	11	3.9%	82	2.7%	57	86.6%	71
58	19,063	22.9%	4,372	14,691	70%	10,284	2,057	0.54%	11	3.9%	81	2.7%	56	86.6%	70
59	19,000	24.1%	4,587	14,413	70%	10,089	2,018	0.54%	11	3.9%	79	2.7%	54	86.6%	69
60	18,932	25.4%	4,800	14,132	72%	10,175	2,035	0.57%	12	3.7%	76	2.8%	58	88.5%	67
61	18,858	26.6%	5,009	13,848	72%	9,971	1,994	0.57%	11	3.7%	74	2.8%	57	88.5%	66
62	18,777	27.8%	5,215	13,562	72%	9,765	1,953	0.57%	11	3.7%	73	2.8%	55	88.5%	64
63	18,689	29.0%	5,417	13,272	72%	9,556	1,911	0.57%	11	3.7%	71	2.8%	54	88.5%	63
64	18,593	30.2%	5,614	12,979	72%	9,345	1,869	0.57%	11	3.7%	70	2.8%	53	88.5%	62
60	10,409	51.4%	5,600	12,005	72%	9,151	1,020	0.57%	10	3.3%	04 62	2.0%	21	00.J%	57
67	18,575	32.0%	5,995 6 173	12,302	72%	8,915	1,705	0.57%	10	3.5%	61 61	2.8%	0C ۱۵	00.3% 88 5%	50
68	18 113	35.0%	6346	11 767	72/0	8 172	1,735	0.57%	10	3.5%	60	2.0%	45	88.5%	52
69	17 963	36.2%	6 511	11,707	72%	8 246	1,034	0.57%	9	3.5%	58	2.8%	47	88.5%	52
70	17 799	36.2%	6 451	11,452	12/0	0,240	1,045	0.5770	5	3.370	50	2.0/0	40	00.570	52
71	17.619	36.2%	6.386												
72	17.421	36.2%	6.314												
73	17,204	36.2%	6,235												
74	16,966	36.2%	6,149												
Total							101,328	0.38%	389	6.65%	6,742	2.84%	2,880	85.5%	5,764

	Tak	ole 29): S(cree	ning	for Ce	ervio	cal Can	cer (cor	ntinue	d)	
			Pri	imar	y hr⊦	IPV-Ba	sed	Screen	ing			
	i	n a Bri	tish	Colu	mbia	Birth C	ohor	t of 20,0	00 Won	nen		
	Females	Colp	oscop	ies by R	isk			Treatment		Mortal	lity Due	to CC
Age	in Birth Cohort	Interme %	ediate #	Hi %	gh #	CIN2- %	+ F #	Recurrence 6.7%	Incidence of CC	#	LE	LYL
25	19,843	13.6%	43	98.1%	51	2.00%	45	3.0	0.6	0.1	60.5	6.2
26	19,834	13.6%	43	98.1%	51	2.00%	45	3.0	0.9	0.1	59.6	6.1
27	19,825	13.6%	43	98.1%	51	2.00%	45	3.0	1.4	0.1	58.6	6.0
28	19,816	13.6%	43	98.1%	50	2.00%	45	3.0	1.2	0.1	57.6	5.9
29	19,806	13.6%	43	98.1%	50	2.00%	45	3.0	1.6	0.1	56.6	5.8
30	19,796	14.2%	31	98.5%	86	2.47%	67	4.5	0.7	0.1	55.7	3.3
31	19,785	14.2%	31	98.5%	86	2.47%	67	4.5	0.7	0.1	54.7	3.3
32	19,773	14.2%	31	98.5%	85	2.47%	66	4.4	0.7	0.1	53.7	3.2
33	19,761	14.2%	31 21	98.5%	85	2.47%	60 65	4.4	0.7	0.1	52.8 E1 0	3.Z
24 25	19,749	14.2%	20	90.5% Q8 5%	04 75	2.47%	56	4.4	0.7	0.1	50.8	5.1 10.2
36	19,730	14.276	20	98.5%	75	2.12/0	55	3.7	1.7	0.2	70.8 VD 0	10.2
37	19,722	14.2%	20	98.5%	74	2.12/0	55	3.7	1.7	0.2	48.9	9.8
38	19.693	14.2%	20	98.5%	74	2.12%	55	3.7	1.7	0.2	47.9	9.6
39	19.677	14.2%	20	98.5%	73	2.12%	54	3.6	1.7	0.2	47.0	9.4
40	19,661	12.2%	14	89.3%	72	1.88%	47	3.2	1.8	0.3	46.0	13.5
41	19,643	12.2%	14	89.3%	71	1.88%	47	3.1	1.8	0.3	45.1	13.2
42	19,625	12.2%	14	89.3%	70	1.88%	46	3.1	1.8	0.3	44.1	12.9
43	19,605	12.2%	14	89.3%	69	1.88%	45	3.0	1.8	0.3	43.1	12.7
44	19,584	12.2%	13	89.3%	68	1.88%	45	3.0	1.8	0.3	42.2	12.4
45	19,561	12.2%	11	89.3%	57	1.26%	29	2.0	1.8	0.4	41.2	14.9
46	19,537	12.2%	11	89.3%	57	1.26%	29	1.9	1.8	0.4	40.3	14.5
47	19,511	12.2%	11	89.3%	56	1.26%	29	1.9	1.8	0.4	39.3	14.2
48	19,484	12.2%	11	89.3%	56	1.26%	29	1.9	1.8	0.4	38.4	13.8
49	19,454	12.2%	11	89.3%	56	1.26%	28	1.9	1.8	0.4	37.4	13.4
50	19,422	11.6%	10	71.1%	44	0.88%	20	1.3	1.3	0.4	36.5	16.2
51	19,388	11.6%	10	71.1%	44	0.88%	20	1.3	1.3	0.4	35.6	15.8
52	19,352	11.6%	9	71.1%	43	0.88%	20	1.3	1.3	0.4	34.0 22.7	15.4
55	19,512	11.0%	9	71.1%	45	0.00%	20 10	1.5	1.5	0.4	22.7	14.9
55	19,270	11.0%	9	71.1%	42	0.88%	19	1.3	1.3	0.4	32.0	14.5
56	19,174	11.6%	8	71.1%	41	0.82%	17	1.2	1.3	0.4	30.9	13.2
57	19.121	11.6%	8	71.1%	40	0.82%	17	1.1	1.3	0.4	30.0	12.8
58	19,063	11.6%	8	71.1%	39	0.82%	17	1.1	1.3	0.4	29.1	12.3
59	19,000	11.6%	8	71.1%	39	0.82%	16	1.1	1.3	0.4	28.2	11.9
60	18,932	8.6%	6	67.7%	39	0.79%	16	1.1	1.2	0.4	27.3	11.8
61	18,858	8.6%	6	67.7%	38	0.79%	16	1.1	1.2	0.4	26.4	11.3
62	18,777	8.6%	6	67.7%	37	0.79%	15	1.0	1.2	0.4	25.5	10.9
63	18,689	8.6%	5	67.7%	37	0.79%	15	1.0	1.2	0.4	24.6	10.5
64	18,593	8.6%	5	67.7%	36	0.79%	15	1.0	1.2	0.4	23.8	10.1
65	18,489	8.6%	5	67.7%	34	0.66%	12	0.8	1.2	0.5	22.9	11.4
66	18,375	8.6%	5	67.7%	34	0.66%	12	0.8	1.2	0.5	22.0	10.9
67	18,250	8.6%	5	67.7%	33	0.66%	11	0.8	1.2	0.5	21.2	10.4
68	18,113	8.6%	5	67.7%	32	0.66%	11	0.7	1.2	0.5	20.3	9.9
69	17,963	8.6%	4	67.7%	31	0.66%	11	0.7	1.1	0.5	19.5	9.4
70	17,799								0.9	0.6	18.7	10.6
/1	17,619								0.9	0.6	17.9	10.0
/2 72	17 204								0.9	U.D	16.2	9.4
73 7/	16 966								0.9	0.5	10.3 15 5	0.9 8 4
Total	10,000	12.8%	735	85.1%	2,450	1.50%	1,523	102	64.6	16.8	31.3	525

Quality-Adjusted Life Years Lost with HPV-Based Screening

- The diagnosis and treatment phase for cervical cancer lasts an average of 4.8 months⁶⁰⁴ and is associated with a utility loss of 0.288 (95% CI of 0.193 to 0.399).⁶⁰⁵
- The ongoing, controlled phase (remission) for cervical cancer is associated with a utility loss of 0.049 (95% CI of 0.031 to 0.072).⁶⁰⁶
- The metastatic phase for cervical cancer lasts an average of 9.2 months⁶⁰⁷ and is associated with a utility loss of 0.451 (95% CI of 0.307 to 0.600).⁶⁰⁸

In a BC birth cohort of 20,000 females, HPV-based screening would be associated with 64.6 incident cervical cancers and 16.8 deaths (see Table 29).

Applying the above changes in quality of life (QoL) related with the various phases of cervical cancer treatment suggests that the incident cervical cancers are associated with 125 QALYs lost while the 16.8 deaths are associated with 525 QALYs lost (see Table 30).

The total 650 QALYs lost with an HPV-based screening program compare to 978 QALYS lost (195 associated with incident cervical cancers and 783 with deaths) with a cytology-based screening program (see Table 19).

⁶⁰⁴ Fitzmaurice C, Allen C, Barber R et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. *Journal of American Medical Association Oncology*. 2017; 3(4): 524-48.

⁶⁰⁵ Institute for Health Metrics and Evaluation. *GBD 2016 sequelae, health states, health state lay descriptions, and disability weights*. Available online at <u>http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights</u>. Accessed October 2017.

⁶⁰⁶ Fitzmaurice C, Allen C, Barber R et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. *Journal of American Medical Association Oncology*. 2017; 3(4): 524-48.

⁶⁰⁷ Ibid.

⁶⁰⁸ Institute for Health Metrics and Evaluation. *GBD 2016 sequelae, health states, health state lay descriptions, and disability weights*. Available online at <u>http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights</u>. Accessed October 2017.

	Table 30: Screening for Cervical Cancer hrHPV Model - QALYs Lost											
		hrl	HPV	Мос	el -	QALY	's Losi	t				
	n a Brit	tish Co	lumb	ia Bir	rth Co	ohort	of 20,0)00 V	Vome	en		
	Females	Incident	D&T	RP	MP		,			Total		
A.g.o	in Birth	Cervical	QALYs	QALYs	QALYs	QALYs	Deaths	IF	IVI	QALYs		
Age	Conort	Cancers	LOST	LOST	LOST	LOST	Deatins	LL		LOST		
25	19,843	0.6	0.1	1.7	0.0	1.8	0.1	60.5	6.2	8.0		
26 27	19,834 19,825	0.9	0.1	2.4 4.2	0.0	2.6 4.4	0.1	59.6 58.6	6.1 6.0	8.7 10.4		
28	19,825	1.4	0.2	3.4	0.0	3.6	0.1	57.6	5.9	9.5		
29	19,806	1.6	0.2	4.4	0.0	4.6	0.1	56.6	5.8	10.4		
30	19,796	0.7	0.1	2.0	0.0	2.1	0.1	55.7	3.3	5.5		
31	19,785	0.7	0.1	2.0	0.0	2.1	0.1	54.7	3.3	5.4		
32	19,773	0.7	0.1	2.0	0.0	2.1	0.1	53.7	3.2	5.3		
33	19,761 10,740	0.7	0.1	1.9	0.0	2.0	0.1	52.8 51.9	3.2	5.2		
34	19,749	17	0.1	4.2	0.0	2.0 4.5	0.1	50.8	10.2	14.7		
36	19,722	1.7	0.2	4.1	0.1	4.4	0.2	49.9	10.2	14.4		
37	19,708	1.7	0.2	4.0	0.1	4.3	0.2	48.9	9.8	14.1		
38	19,693	1.7	0.2	4.0	0.1	4.3	0.2	47.9	9.6	13.9		
39	19,677	1.7	0.2	3.9	0.1	4.2	0.2	47.0	9.4	13.6		
40	19,661	1.8	0.2	3.9	0.1	4.3	0.3	46.0	13.5	17.8		
41	19,643	1.8	0.2	3.8	0.1	4.2	0.3	45.1	13.2	17.5		
42	19,625	1.8	0.2	3.8	0.1	4.1	0.3	44.1	12.9	17.1		
43 11	19,005	1.8	0.2	3.7	0.1	4.0 3 Q	0.3	43.1 42.2	12.7	16.7		
44	19,561	1.8	0.2	3.3	0.1	3.7	0.4	41.2	14.9	18.6		
46	19,537	1.8	0.2	3.3	0.1	3.6	0.4	40.3	14.5	18.2		
47	19,511	1.8	0.2	3.2	0.1	3.6	0.4	39.3	14.2	17.7		
48	19,484	1.8	0.2	3.1	0.1	3.5	0.4	38.4	13.8	17.3		
49	19,454	1.8	0.2	3.0	0.1	3.4	0.4	37.4	13.4	16.8		
50	19,422	1.3	0.2	1.8	0.2	2.2	0.4	36.5	16.2	18.5		
51	19,388	1.3	0.2	1.8	0.2	2.2	0.4	35.6	15.8	18.0		
52	19,352	1.3	0.2	1.7	0.2	2.1	0.4	34.0 22.7	15.4	17.5		
54	19,312	1.3	0.2	1.7	0.2	2.1	0.4	32.8	14.5	16.5		
55	19,224	1.3	0.2	1.6	0.2	2.0	0.4	31.9	13.6	15.6		
56	19,174	1.3	0.2	1.6	0.2	1.9	0.4	30.9	13.2	15.1		
57	19,121	1.3	0.2	1.5	0.2	1.9	0.4	30.0	12.8	14.6		
58	19,063	1.3	0.2	1.5	0.2	1.8	0.4	29.1	12.3	14.2		
59	19,000	1.3	0.2	1.4	0.2	1.8	0.4	28.2	11.9	13.7		
60	18,932	1.2	0.2	1.3	0.2	1.7	0.4	27.3	11.8	13.4		
61 62	18,858	1.2	0.2	1.3	0.2	1.6 1.6	0.4	26.4 25 5	11.3 10.0	13.0 12 E		
63	18,689	1.2	0.2	1.2 1.2	0.2	1.5	0.4	23.5 24 6	10.9	12.5		
64	18,593	1.2	0.2	1.1	0.2	1.5	0.4	23.8	10.5	11.5		
65	18,489	1.2	0.2	1.0	0.2	1.3	0.5	22.9	11.4	12.7		
66	18,375	1.2	0.2	0.9	0.2	1.3	0.5	22.0	10.9	12.2		
67	18,250	1.2	0.2	0.9	0.2	1.3	0.5	21.2	10.4	11.7		
68	18,113	1.2	0.2	0.8	0.2	1.2	0.5	20.3	9.9	11.1		
69	17,963	1.1	0.2	0.8	0.2	1.2	0.5	19.5	9.4	10.6		
/U 71	17,799	0.9	0.1	0.4	0.3	0.8	0.6	18.7	10.6	11.4		
71 72	17 <u>4</u> 21	0.9	0.1	0.4	0.3	0.8 0.8	0.0	17.9 17.1	0 V 10.0	10.8 10.2		
73	17,204	0.9	0.1	0.4	0.3	0.8	0.5	16.3	8.9	9.7		
74	16,966	0.9	0.1	0.3	0.2	0.7	0.5	15.5	8.4	9.1		
Total		64.6	8.9	109	7.1	125	16.8	31.3	525	650		
Note: C	ALYs = Qua	lity-adjust	ed life vi	ears: D&	T = Diaa	nosis and	d treatmer	nt phase	e; RP = Re	emission		
phase;	MP = Meta	static phas	e; LE = L	ife expe	tancv: L	.YL = Life	vears lost	,				

Potential Harms - Reduction in Quality of Life Associated with a Diagnosis

- Screening with a low grade abnormality diagnosis is associated with a utility loss of 0.0231 for a period of 12 months.⁶⁰⁹
- Diagnosis and treatment for CIN2+ is associated with a utility loss of 0.066 for a period of 20 months.⁶¹⁰

Tab	ole 31:	Screer	ning f	or Cervi	cal Ca	ncer
		hrHPV	Mode	- Harm	s	
in a Br	eitich Co	lumbia	Pirth C	abort of 2		Tomalos
III a Di	Females	# with		# with	0,0001	Total
	in Birth	ASCUS /	QALYs	Diagnosed	QALYs	QALYs
Age	Cohort	LSIL	Lost	CIN2+	Lost	Lost
25	10 843	375	95	45	5.4	14.9
25	19,834	375	9.5	45	5.4	14.5
27	19.825	374	9.5	45	5.4	14.9
28	19 816	374	9.4	45	5.4	14.9
29	19.806	373	9.4	45	5.4	14.9
30	19,796	260	6.8	67	8.3	15.0
31	19.785	259	6.7	67	8.2	15.0
32	19.773	257	6.7	66	8.2	14.9
33	19.761	256	6.6	66	8.1	14.8
34	19 749	254	6.6	65	81	14.7
35	19,736	168	4.4	56	6.9	11.3
36	19 722	167	4.3	55	6.8	11.2
37	19 708	166	4.3	55	6.8	11.1
38	19 693	165	4.3	55	6.8	11.0
39	19 677	164	4.3	54	6.7	11.0
40	19 661	136	3.7	47	6.1	9.8
41	19 643	134	3.6	47	6.0	9.7
42	19 625	137	3.6	46	59	9.5
43	19 605	130	3.5	45	5.8	9.4
44	19 584	128	3.5	45	5.0	9.7
45	19 561	109	2.9		3.7	6.7
46	19 537	103	2.5	20	3.7	67
47	19 511	107	2.5	29	3.7	6.6
48	10 484	106	2.5	20	3.7	6.6
49	19 454	105	2.5	23	3.7	6.5
50	10 422	96	2.0	20	3., 27	5.4
50	19 388	96	2.7	20	2.7	5.4
52	19,300	95	2.7	20	2.7	53
52	10 312	9/	2.7	20	2.0	5.5
53	19,312	93	2.0	19	2.0	5.5
55	10 22/	85	2.0	12	2.0	1.2
56	19,224	84	2. 4 7.4	17	2.4	4.0
57	10 121	82	2.7	17	2.5	4.7
57	10 063	02 81	2.5	17	2.5	4.0
50	10,000	70	2.5	16	2.5	4.5
55	10 020	75	2.2	16	2.2	4.5
61	10,552	70	2.2	16	2.2	4.4
62	10,000	72	2.1	10	2.2	4.5
62	10,777	75	2.1	15	2.1	4.Z
64	10 502	70	2.1	15	2.1	4.1
65	10 100	64	1.0	15	2.0	4.1 2 5
60	10,409	62	1.9	12	1.7	3.5
67	10,3/3	03 61	1.0	12	1.0	5.4 2.2
C0/	10,200	60 01	1.0	11	1.0	3.3 2.2
69	17,963	58	1.7	11	1.5	3.5 3.2
Tatal	17,505		170	4 522		
Total		6,742	179	1,523	194	373

⁶⁰⁹ Simonella L, Howard K, Canfell K. A survey of population-based utility scores for cervical cancer prevention. *BMC Research Notes.* 2014; 7: 899

⁶¹⁰ Insinga R, Glass A, Myers E et al. Abnormal outcomes following cervical cancer screening: event duration and health utility loss. *Medical Decision Making*. 2007; 27(4): 414-22.

The diagnosis and treatment of cervical cancer precursors in a BC birth cohort of 20,000 females based on HPV-based screening is associated with a loss of 373 QALYs (see Table 31). This compares with a loss of 239 QALYs associated with cytology-based screening (see Table 19).

Potential Harms - Premature Births

As noted previously, excisional and ablative treatment for CIN increases the risk of a subsequent premature birth. In calculating this risk and the QALYs lost associated with it, we have used the same approach for the HPV-based screening model as for the cytology-based screening model.

As noted previously, we would expect 23,815 live births in a BC birth cohort of 20,000 females. In the birth cohort, 1,204 females between the ages of 25 and 49 would receive treatment for CIN2+ with an HPV-based screening program (see Table 32). Based on the differences in the rate of preterm births with or without LEEP treatment for CIN2+, we would expect an additional 41.1 babies to be preterm attributable to treatment (see Table 32). Of these 41.1 babies, 4.9 would be expected to be extremely preterm (gestational age < 28 completed weeks), 5.1 (10.0 – 4.9) would be expected to be very preterm (gestational age < 32 completed weeks) and 31.1 (41.1 - 4.9 - 5.1) would be expected to be late preterm (gestational age < 37 completed weeks) (see Table 32).

Table 32: Treatment for CIN and													
				th	e Risk	of	Preterm	Birth					
	Females	Fertility	# of	Tmt for				# of Pre	term E	Births (PTB)			
	in Birth	Rate per	Live	CIN2+		< 37 w	eeks	<.	32-34 I	weeks	<	28-30 v	veeks
Age	Cohort	1,000	Births	(Table 29)	No Tmt	TMT	Due to Tmt	No Tmt	TMT	Due to Tmt	No Tmt	TMT	Due to Tmt
25	19,843	71.6	1,422	45.1	2.1	3.7	1.5	0.6	0.9	0.4	0.1	0.3	0.2
26	19,834	71.6	1,421	45.1	2.1	3.6	1.5	0.6	0.9	0.4	0.1	0.3	0.2
27	19,825	71.6	1,420	45.0	2.1	3.6	1.5	0.5	0.9	0.4	0.1	0.3	0.2
28	19,816	71.6	1,420	45.0	2.1	3.6	1.5	0.5	0.9	0.4	0.1	0.3	0.2
29	19,806	71.6	1,419	44.9	2.1	3.6	1.5	0.5	0.9	0.4	0.1	0.3	0.2
30	19,796	99.5	1,970	66.9	3.1	5.4	2.3	0.8	1.4	0.6	0.2	0.4	0.3
31	19,785	99.5	1,969	66.5	3.1	5.4	2.3	0.8	1.4	0.6	0.2	0.4	0.3
32	19,773	99.5	1,968	66.1	3.1	5.3	2.3	0.8	1.4	0.5	0.2	0.4	0.3
33	19,761	99.5	1,967	65.7	3.1	5.3	2.2	0.8	1.3	0.5	0.2	0.4	0.3
34	19,749	99.5	1,966	65.3	3.1	5.3	2.2	0.8	1.3	0.5	0.2	0.4	0.3
35	19,736	57.1	1,126	55.6	2.6	4.5	1.9	0.7	1.1	0.5	0.1	0.4	0.2
36	19,722	57.1	1,125	55.2	2.6	4.5	1.9	0.7	1.1	0.5	0.1	0.4	0.2
37	19,708	57.1	1,125	54.9	2.6	4.4	1.9	0.7	1.1	0.5	0.1	0.4	0.2
38	19,693	57.1	1,124	54.5	2.6	4.4	1.9	0.7	1.1	0.5	0.1	0.4	0.2
39	19,677	57.1	1,123	54.2	2.5	4.4	1.8	0.7	1.1	0.4	0.1	0.4	0.2
40	19,661	12.0	235	47.4	2.2	3.8	1.6	0.6	1.0	0.4	0.1	0.3	0.2
41	19,643	12.0	235	46.7	2.2	3.8	1.6	0.6	1.0	0.4	0.1	0.3	0.2
42	19,625	12.0	235	46.0	2.2	3.7	1.6	0.6	0.9	0.4	0.1	0.3	0.2
43	19,605	12.0	235	45.3	2.1	3.7	1.5	0.6	0.9	0.4	0.1	0.3	0.2
44	19,584	12.0	235	44.5	2.1	3.6	1.5	0.5	0.9	0.4	0.1	0.3	0.2
45	19,561	0.8	15	29.2	1.4	2.4	1.0	0.4	0.6	0.2	0.1	0.2	0.1
46	19,537	0.8	15	29.0	1.4	2.3	1.0	0.4	0.6	0.2	0.1	0.2	0.1
47	19,511	0.8	15	28.8	1.3	2.3	1.0	0.4	0.6	0.2	0.1	0.2	0.1
48	19,484	0.8	15	28.6	1.3	2.3	1.0	0.3	0.6	0.2	0.1	0.2	0.1
49	19,454	0.8	15	28.3	1.3	2.3	1.0	0.3	0.6	0.2	0.1	0.2	0.1
Total			23,815	1,204	56.4	97.4	41.1	14.7	24.7	10.0	3.0	7.9	4.9

To estimate the effect of premature birth on mortality in the children born to a BC birth cohort of 20,000 females we first assumed that half of the 38 premature births would be male and half female. We then calculated the number of expected deaths by age if the births had been full term. The next step involved calculating the expected number of deaths by level of prematurity, sex and age based on the hazard ratios in Table 15. We assumed that the hazard ratio indicated for ages 30-45 years would remain constant through to age 85. Excess deaths due to prematurity were calculated by subtracting the number of expected deaths if full term from the number of expected of deaths if born premature. The life expectancy by sex and age was applied to these excess deaths to calculate life years lost.

The estimated number of excess deaths due to prematurity are associated with 122.2 life years lost, 45.8 in males (see Table 33) and 76.4 in females (see Table 34).

In addition, we would expect 25.6 QALYs lost associated with babies born VLBW, 12.9 QALYs lost in males and 12.7 QALYs lost in females (see Table 35).

			able	33	Exces	ss Pr	eter	т ві	rtns	, De	atns	ana	Life	rears	LOS	t in iv	lales			
- 	Malos in				Du	ie to	Local	Trea	atme	ent fo	or CIN	In T	heir I	Viothe	rs # of Dea	ths Due	Life	Voars	Lost Du	e to
	Birth		%		Nur	nber Al	ive	Exp	bected	# of	Death	s if Pre	mature	to Pn	emature	Birth	Line I	Premat	ure Birt	h
Age	Cohort	Deaths	s Dying	LE	35-37	32-34	<28-30	Death	s if Ful	l Term	35-37	32-34	<28-30	35-37	32-34	<28-30	35-37	32-34	<28-30	Total
0	20,000			79.9	15.53	2.53	2.47													
1	19,921	79	0.39%	79.3	15.39	2.51	2.39	0.06	0.01	0.01	0.14	0.02	0.07	0.08	0.01	0.06	6.56	1.07	5.15	12.77
3	19,918	3	0.02%	77.3	15.38	2.50	2.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.05	0.07	0.20
4	19,913	2	0.01%	76.3	15.38	2.50	2.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.02	0.04	0.16
5	19,911	2	0.01%	75.3	15.38	2.50	2.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.01	0.04	0.14
6	19,909	1	0.01%	74.3	15.37	2.50	2.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.01	0.02	0.10
8	19,907	1	0.01%	72.3	15.37	2.50	2.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.01	0.02	0.10
9	19,906	1	0.01%	71.3	15.37	2.50	2.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.01	0.02	0.07
10	19,904	1	0.01%	70.3	15.37	2.50	2.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.01	0.03
12	19,903	1	0.01%	68.3	15.37	2.50	2.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.01	0.03
13	19,900	2	0.01%	67.3	15.36	2.50	2.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.01	0.04
14	19,898	2	0.01%	66.3	15.36	2.50	2.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.01	0.01	0.05
15	19,896	3	0.01%	65.3 64.4	15.36	2.50	2.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.01	0.02	0.07
17	19,885	6	0.03%	63.4	15.35	2.50	2.38	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.11	0.02	0.04	0.16
18	19,876	9	0.05%	62.4	15.34	2.50	2.38	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.15	0.02	0.05	0.23
19	19,864	11	0.06%	61.4	15.33	2.49	2.38	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.19	0.03	0.06	0.28
20	19,831	14	0.07%	59.5	15.31	2.49	2.38	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.15	0.03	0.04	0.20
22	19,817	18	0.09%	58.6	15.28	2.49	2.37	0.01	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.24	0.04	0.05	0.33
23	19,796	20	0.10%	57.7	15.26	2.48	2.37	0.02	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.27	0.04	0.06	0.37
24	19,775	22	0.11%	56.7 55.8	15.24 15.21	2.48	2.36	0.02	0.00	0.00	0.02	0.00	0.00	0.01	0.00	0.00	0.29	0.05	0.06	0.39
26	19,727	24	0.12%	54.8	15.19	2.40	2.36	0.02	0.00	0.00	0.02	0.00	0.00	0.01	0.00	0.00	0.30	0.05	0.06	0.42
27	19,702	25	0.13%	53.9	15.16	2.47	2.35	0.02	0.00	0.00	0.03	0.00	0.00	0.01	0.00	0.00	0.31	0.05	0.06	0.43
28	19,676	26	0.13%	53.0	15.14	2.46	2.35	0.02	0.00	0.00	0.03	0.00	0.00	0.01	0.00	0.00	0.32	0.05	0.07	0.44
30	19,649	27	0.14%	52.1	15.11	2.40	2.34	0.02	0.00	0.00	0.03	0.00	0.00	0.01	0.00	0.00	0.52	0.03	0.07	0.44
31	19,593	28	0.14%	50.2	15.06	2.45	2.34	0.02	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.19	0.03	0.03	0.24
32	19,564	29	0.15%	49.3	15.03	2.45	2.33	0.02	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.19	0.03	0.03	0.24
33	19,535	29	0.15%	48.4 47.4	15.01 14.98	2.44	2.33	0.02	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.19	0.03	0.03	0.24
35	19,474	31	0.16%	46.5	14.95	2.43	2.32	0.02	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.19	0.03	0.03	0.25
36	19,442	32	0.16%	45.6	14.92	2.43	2.32	0.02	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.19	0.03	0.03	0.25
37	19,409	33	0.17%	44.7	14.89	2.42	2.31	0.03	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.19	0.03	0.03	0.25
38	19,375	34 35	0.18%	43.7	14.86	2.42	2.31	0.03	0.00	0.00	0.03	0.01	0.00	0.00	0.00	0.00	0.20	0.03	0.03	0.25
40	19,303	37	0.19%	41.9	14.80	2.41	2.30	0.03	0.00	0.00	0.03	0.01	0.01	0.00	0.00	0.00	0.20	0.03	0.03	0.26
41	19,264	38	0.20%	41.0	14.76	2.40	2.29	0.03	0.00	0.00	0.03	0.01	0.01	0.00	0.00	0.00	0.20	0.03	0.03	0.27
42	19,225	40	0.21%	40.1 20.1	14.73	2.40	2.29	0.03	0.00	0.00	0.04	0.01	0.01	0.01	0.00	0.00	0.21	0.03	0.03	0.27
43	19,183	43	0.22%	38.2	14.05	2.39	2.28	0.03	0.01	0.00	0.04	0.01	0.01	0.01	0.00	0.00	0.21	0.03	0.03	0.27
45	19,094	46	0.24%	37.3	14.61	2.38	2.27	0.03	0.01	0.01	0.04	0.01	0.01	0.01	0.00	0.00	0.22	0.04	0.03	0.29
46	19,047	48	0.25%	36.4	14.57	2.37	2.26	0.04	0.01	0.01	0.04	0.01	0.01	0.01	0.00	0.00	0.23	0.04	0.03	0.29
47	18,996	50	0.26%	35.5 34.6	14.52	2.36	2.25	0.04	0.01	0.01	0.05	0.01	0.01	0.01	0.00	0.00	0.23	0.04	0.03	0.30
49	18,887	56	0.30%	33.7	14.42	2.35	2.24	0.04	0.01	0.01	0.05	0.01	0.01	0.01	0.00	0.00	0.25	0.04	0.03	0.32
50	18,827	60	0.32%	32.8	14.37	2.34	2.23	0.05	0.01	0.01	0.05	0.01	0.01	0.01	0.00	0.00	0.26	0.04	0.04	0.33
51	18,763	64 69	0.34%	31.9	14.31	2.33	2.22	0.05	0.01	0.01	0.06	0.01	0.01	0.01	0.00	0.00	0.27	0.04	0.04	0.34
53	18,633	73	0.30%	30.2	14.25	2.32	2.21	0.05	0.01	0.01	0.00	0.01	0.01	0.01	0.00	0.00	0.28	0.04	0.04	0.30
54	18,545	78	0.42%	29.3	14.12	2.30	2.19	0.06	0.01	0.01	0.07	0.01	0.01	0.01	0.00	0.00	0.30	0.05	0.04	0.38
55	18,461	83	0.45%	28.4	14.04	2.29	2.18	0.06	0.01	0.01	0.07	0.01	0.01	0.01	0.00	0.00	0.31	0.05	0.04	0.40
50	18,372	89 95	0.48%	27.5	13.96	2.27	2.17	0.07	0.01	0.01	0.08	0.01	0.01	0.01	0.00	0.00	0.32	0.05	0.04	0.41
58	18,175	102	0.56%	25.8	13.79	2.24	2.14	0.08	0.01	0.01	0.09	0.01	0.01	0.01	0.00	0.00	0.34	0.06	0.05	0.45
59	18,065	110	0.61%	25.0	13.69	2.23	2.13	0.08	0.01	0.01	0.10	0.02	0.01	0.01	0.00	0.00	0.36	0.06	0.05	0.46
60 61	17,947	118	0.66%	24.1	13.58	2.21	2.11	0.09	0.01	0.01	0.11	0.02	0.02	0.02	0.00	0.00	0.37	0.06	0.05	0.48
62	17,684	136	0.71%	23.3 22.5	13.35	2.19	2.09	0.10	0.02	0.02	0.11	0.02	0.02	0.02	0.00	0.00	0.36	0.06	0.05	0.50
63	17,537	147	0.84%	21.7	13.22	2.15	2.05	0.11	0.02	0.02	0.13	0.02	0.02	0.02	0.00	0.00	0.41	0.07	0.06	0.54
64	17,379	158	0.91%	20.9	13.08	2.13	2.03	0.12	0.02	0.02	0.14	0.02	0.02	0.02	0.00	0.00	0.43	0.07	0.06	0.55
65 66	17,208	171 184	0.99%	20.1 19 २	12.93 12.76	2.10	2.01	0.13	0.02	0.02	0.15	0.02	0.02	0.02	0.00	0.00	0.44	0.07	0.06	0.58
67	16,826	198	1.18%	18.5	12.59	2.05	1.96	0.15	0.02	0.02	0.10	0.03	0.02	0.02	0.00	0.00	0.47	0.08	0.06	0.61
68	16,612	214	1.29%	17.7	12.40	2.02	1.93	0.16	0.03	0.03	0.19	0.03	0.03	0.03	0.00	0.00	0.49	0.08	0.07	0.64
69	16,381	231	1.41%	17.0	12.19	1.98	1.90	0.17	0.03	0.03	0.20	0.03	0.03	0.03	0.00	0.00	0.50	0.08	0.07	0.66
70	15,863	249 269	1.69%	10.2	11.97	1.95	1.85	0.19	0.03	0.03	0.22	0.04	0.03	0.03	0.01	0.00	0.52	0.08	0.07	0.68
72	15,573	290	1.86%	14.8	11.48	1.87	1.79	0.22	0.04	0.03	0.26	0.04	0.04	0.04	0.01	0.01	0.55	0.09	0.08	0.71
73	15,260	313	2.05%	14.1	11.20	1.82	1.75	0.24	0.04	0.04	0.28	0.04	0.04	0.04	0.01	0.01	0.56	0.09	0.08	0.73
74	14,923	337	2.26%	13.4	10.91	1.78	1.70	0.25	0.04	0.04	0.30	0.05	0.05	0.04	0.01	0.01	0.58	0.09	0.08	0.75
75	14,170 14,170	390	2.49% 2.75%	12.0	10.59	1.67	1.60	0.27	0.04	0.04	0.32	0.05	0.05	0.05	0.01	0.01	0.59	0.10	0.08	0.78
77	13,751	419	3.05%	11.4	9.88	1.61	1.54	0.31	0.05	0.05	0.37	0.06	0.06	0.05	0.01	0.01	0.60	0.10	0.08	0.79
78	13,301	450	3.38%	10.8	9.49	1.55	1.48	0.33	0.05	0.05	0.39	0.06	0.06	0.06	0.01	0.01	0.61	0.10	0.08	0.79
79 90	12,820	481 514	3.75% 4 1%	10.1 o =	9.08 8 60	1.48 1.41	1.42	0.36 0.20	0.06	0.06 0.04	0.42	0.07 0.07	0.06 0.07	0.06	0.01	0.01	0.61	U.10	0.08 0.09	0.80
81	11,759	547	4.65%	9.0	8.16	1.33	1.35	0.38	0.00	0.06	0.44	0.08	0.07	0.00	0.01	0.01	0.61	0.10	0.08	0.80
82	11,179	580	5.19%	8.4	7.67	1.25	1.20	0.42	0.07	0.07	0.50	0.08	0.08	0.07	0.01	0.01	0.60	0.10	0.08	0.79
83	10,565	614	5.81%	7.9	7.15	1.16	1.12	0.45	0.07	0.07	0.52	0.08	0.08	0.08	0.01	0.01	0.59	0.10	0.08	0.77
84 85	9,919 9.244	ь46 676	o.51% 7.31%	7.3 6.8	6.60 6.04	1.U7 0.98	1.04 0.95	0.47 0.48	0.08 0.08	0.07	0.54	0.09 0.09	0.08 0.09	0.08	0.01 0.01	0.01	0.58	0.09 0.09	0.08 0.08	0.75 0.73
Total	.,							8 02	1 31	1 25	0.50	1 55	1 52	1 47	0.24	0.26	31.6	5.1	9.1	45.8

		Та	ble 3	34:	Excess	s Pre	etern	n Bir	ths,	Dea	ths a	ndL	lite Y	ears	Lost	in Fei	male	S		
	Females				Du	ie to	Loca	l Irea	atme	int fo	Dr CIN	In I	neir I # of	VIOTHE Excess	ITS # of Dea	ths Due	Life	Years	Lost Du	e to
	in Birth		%		Nur	nber Al	ive	Exp	pected	# of	Deaths	s if Pre r	nature	to Pr	emature	Birth	F	remat	ure Birt	h
Age	Cohort	Deaths	. Dying	LE	35-37	32-34	<28-30	Death	s if Ful	l Term	35-37	32-34	<28-30	35-37	32-34	<28-30	35-37	32-34	<28-30	Total
0	20,000 19,933	67	0.34%	84.9 84.2	15.53 15.37	2.53 2.50	2.47	0.05	0.01	0.01	0.16	0.03	0.09	0.11	0.02	0.08	9.39	1.53	6.80	17.72
2	19,929	4	0.02%	83.2	15.36	2.50	2.38	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.26	0.04	0.10	0.40
3	19,926 19 924	3	0.01%	82.2	15.36 15.36	2.50	2.38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.19	0.03	0.07	0.29
5	19,922	2	0.01%	80.3	15.35	2.50	2.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.02	0.05	0.18
6	19,920	2	0.01%	79.3	15.35	2.50	2.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.02	0.04	0.16
8	19,918	1	0.01%	77.3	15.35	2.50	2.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.01	0.03	0.14
9	19,917	1	0.01%	76.3	15.34	2.50	2.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.01	0.03	0.12
10	19,915	1	0.01%	74.3	15.34	2.50	2.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.01	0.03	0.11
12	19,913	1	0.01%	73.3	15.34	2.50	2.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.01	0.03	0.11
13	19,911	2	0.01%	72.3	15.34	2.50	2.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.02	0.04	0.15
15	19,907	2	0.01%	70.3	15.33	2.50	2.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.13	0.02	0.05	0.20
16	19,904 19,900	3 4	0.02%	68.3	15.32	2.49 2.49	2.37	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.19	0.03	0.07	0.30
18	19,894	6	0.03%	67.4	15.31	2.49	2.36	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.31	0.05	0.12	0.48
19 20	19,888 19,881	6 7	0.03%	66.4 65.4	15.30 15.29	2.49	2.36	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.34	0.05	0.13	0.52
21	19,874	7	0.03%	64.4	15.28	2.49	2.36	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.17	0.03	0.03	0.22
22	19,867	7	0.04%	63.5	15.27	2.49	2.36	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.18	0.03	0.03	0.24
23	19,855	8	0.04%	61.5	15.26	2.49	2.35	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.19	0.03	0.03	0.25
25	19,843	8	0.04%	60.5	15.25	2.48	2.35	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.19	0.03	0.03	0.25
26	19,834 19,825	9	0.04%	59.6	15.24	2.48	2.35	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.20	0.03	0.03	0.27
28	19,816	9	0.05%	57.6	15.22	2.48	2.35	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.21	0.03	0.03	0.27
29 30	19,806 19,796	10 10	0.05%	56.6 55.7	15.20 15.19	2.48 2.47	2.35 2.34	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.21	0.03	0.03	0.28 0.27
31	19,785	11	0.06%	54.7	15.18	2.47	2.34	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.16	0.03	0.09	0.28
32	19,773 19 761	11 12	0.06%	53.7	15.17 15.16	2.47	2.34	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.16	0.03	0.09	0.29
34	19,749	13	0.06%	51.8	15.14	2.47	2.33	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.18	0.03	0.10	0.30
35	19,736	13	0.07%	50.8	15.13	2.46	2.33	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.18	0.03	0.10	0.31
37	19,722	14	0.07%	48.9	15.12	2.40	2.32	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.18	0.03	0.10	0.32
38	19,693	15	0.08%	47.9	15.09	2.46	2.31	0.01	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.19	0.03	0.11	0.34
39 40	19,677	16	0.08%	47.0	15.07	2.45	2.31	0.01	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.20	0.03	0.11	0.34
41	19,643	18	0.09%	45.1	15.04	2.45	2.30	0.01	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.21	0.03	0.12	0.37
42	19,625 19.605	19 20	0.09%	44.1	15.02	2.44	2.30	0.01	0.00	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.22	0.04	0.13	0.38
44	19,584	21	0.11%	42.2	14.97	2.44	2.28	0.02	0.00	0.00	0.02	0.00	0.01	0.01	0.00	0.00	0.24	0.04	0.14	0.42
45 46	19,561 19.537	23 24	0.12%	41.2	14.95 14.93	2.43 2.43	2.28	0.02	0.00	0.00	0.02	0.00	0.01	0.01	0.00	0.00	0.25	0.04	0.14 0.15	0.43 0.45
47	19,511	26	0.13%	39.3	14.90	2.43	2.27	0.02	0.00	0.00	0.03	0.00	0.01	0.01	0.00	0.00	0.27	0.04	0.15	0.47
48 49	19,484 19 454	28 30	0.14%	38.4	14.87 14.84	2.42	2.26	0.02	0.00	0.00	0.03	0.00	0.01	0.01	0.00	0.00	0.28	0.05	0.16	0.49
50	19,422	32	0.16%	36.5	14.81	2.41	2.24	0.02	0.00	0.00	0.03	0.01	0.01	0.01	0.00	0.00	0.31	0.05	0.18	0.54
51	19,388	34	0.18%	35.6	14.77	2.40	2.23	0.03	0.00	0.00	0.04	0.01	0.01	0.01	0.00	0.01	0.32	0.05	0.18	0.56
53	19,332	39	0.19%	33.7	14.73	2.40	2.22	0.03	0.00	0.00	0.04	0.01	0.01	0.01	0.00	0.01	0.34	0.00	0.19	0.61
54	19,270	43	0.22%	32.8	14.65	2.38	2.20	0.03	0.01	0.00	0.04	0.01	0.01	0.01	0.00	0.01	0.37	0.06	0.21	0.64
55	19,224	40 49	0.24%	30.9	14.60	2.30	2.19	0.03	0.01	0.01	0.05	0.01	0.01	0.01	0.00	0.01	0.39	0.08	0.22	0.87
57	19,121	53	0.28%	30.0	14.50	2.36	2.16	0.04	0.01	0.01	0.05	0.01	0.01	0.01	0.00	0.01	0.43	0.07	0.24	0.74
58	19,063	58 63	0.30%	29.1	14.44 14.37	2.35	2.15	0.04	0.01	0.01	0.06	0.01	0.02	0.02	0.00	0.01	0.45	0.07	0.25	0.77
60	18,932	68	0.36%	27.3	14.30	2.33	2.11	0.05	0.01	0.01	0.07	0.01	0.02	0.02	0.00	0.01	0.49	0.08	0.27	0.85
61 62	18,858 18 777	74 81	0.39%	26.4	14.23 14.15	2.32	2.09	0.06	0.01	0.01	0.08	0.01	0.02	0.02	0.00	0.01	0.52	0.08	0.29	0.89
63	18,689	88	0.47%	24.6	14.06	2.29	2.05	0.07	0.01	0.01	0.09	0.01	0.02	0.02	0.00	0.01	0.57	0.09	0.31	0.98
64	18,593	96 105	0.52%	23.8	13.96	2.27	2.03	0.07	0.01	0.01	0.10	0.02	0.02	0.03	0.00	0.01	0.60	0.10	0.33	1.03
66	18,375	114	0.62%	22.0	13.73	2.23	1.97	0.09	0.01	0.01	0.12	0.02	0.03	0.03	0.00	0.02	0.66	0.10	0.34	1.13
67	18,250	125	0.68%	21.2	13.61	2.22	1.94	0.09	0.02	0.01	0.13	0.02	0.03	0.03	0.01	0.02	0.70	0.11	0.37	1.19
69	17,963	150	0.76%	19.5	13.47	2.19	1.91	0.10	0.02	0.01	0.14	0.02	0.03	0.04	0.01	0.02	0.75	0.12	0.39	1.24
70	17,799	164	0.92%	18.7	13.15	2.14	1.83	0.12	0.02	0.02	0.17	0.03	0.04	0.04	0.01	0.02	0.80	0.13	0.42	1.36
71	17,619	180 198	1.02%	17.9	12.97	2.11 2.08	1.79 1.74	0.13	0.02	0.02	0.18	0.03	0.04	0.05	0.01	0.02	0.84	0.14	0.44	1.42 1.47
73	17,204	217	1.26%	16.3	12.55	2.04	1.69	0.16	0.03	0.02	0.22	0.04	0.05	0.06	0.01	0.03	0.92	0.15	0.47	1.53
74 75	16,966 16.704	238 261	1.40%	15.5 14 7	12.32 12.06	2.00 1.96	1.63 1.57	0.18	0.03 0.03	0.02	0.24	0.04	0.05	0.06	0.01	0.03	0.96 0.99	0.16 0.16	0.48 0.49	1.59 1.65
76	16,417	287	1.75%	14.0	11.77	1.92	1.51	0.21	0.03	0.03	0.28	0.05	0.06	0.07	0.01	0.04	1.03	0.17	0.50	1.70
77 70	16,102	315	1.96%	13.2	11.46	1.87 1 81	1.44	0.23	0.04	0.03	0.31	0.05	0.07	0.08	0.01	0.04	1.07	0.17	0.51	1.75
79	15,378	379	2.46%	11.8	10.75	1.75	1.29	0.27	0.04	0.03	0.34	0.06	0.08	0.10	0.02	0.04	1.13	0.18	0.52	1.84
80	14,963	415	2.77%	11.1	10.35	1.68	1.21	0.30	0.05	0.04	0.40	0.07	0.08	0.10	0.02	0.05	1.16	0.19	0.52	1.87
82	14,016	494	3.53%	9.8	9.91 9.44	1.54	1.12	0.32	0.05	0.04	0.44	0.07	0.09	0.11	0.02	0.05	1.10	0.19	0.52	1.90
83	13,478	538	3.99%	9.2	8.93	1.45	0.94	0.38	0.06	0.04	0.51	0.08	0.09	0.13	0.02	0.05	1.21	0.20	0.49	1.90
84 85	12,895	583 631	4.52% 5.14%	а.ъ 8.0	8.39 7.80	1.37	0.84	0.40	0.07	0.04	0.55	0.09	0.10	0.14	0.02	0.06	1.21	0.20	0.48	1.85
Total								5.63	0.92	0.72	7.73	1.26	1.73	2.10	0.34	1.01	45.2	7.4	23.9	76.4

		to Local	Treatmen	t tor CI	N in Thei	r Mothers	
		Males			Females		
Age	LE	Very Low E # Alive	Birth Weight QALYs Lost	LE	Very Low E # Alive	Birth Weight QALYs Lost	Total QALYs Lo
0	79.9	2.47	0.16	84.9	2.47	0.16	0.32
1	79.3	2.39	0.16	84.2	2.38	0.16	0.31
2	78.3	2.39	0.16	83.2	2.38	0.16	0.31
3	77.3	2.39	0.16	82.2	2.38	0.16	0.31
4	76.3	2.39	0.16	81.3	2.38	0.16	0.31
5	75.3	2.39	0.16	80.3	2.37	0.16	0.31
6	74.3	2.39	0.16	79.3	2.37	0.16	0.31
7	73.3	2.39	0.16	78.3	2.37	0.16	0.31
8	72.3	2.39	0.16	77.3	2.37	0.16	0.31
9	71.3	2.39	0.16	76.3	2.37	0.16	0.31
10	70.3	2.39	0.16	75.3	2.37	0.16	0.31
11	69.3	2.39	0.16	74.3	2.37	0.16	0.31
12	67.2	2.59	0.16	75.5	2.57	0.16	0.31
1.5	66.3	2.35	0.10	72.3	2.37	0.10	0.31
15	65.3	2.39	0.16	70.3	2.37	0.16	0.31
16	64.4	2.39	0.16	69.3	2.37	0.16	0.31
17	63.4	2.38	0.16	68.3	2.36	0.16	0.31
18	62.4	2.38	0.16	67.4	2.36	0.16	0.31
19	61.4	2.38	0.16	66.4	2.36	0.15	0.31
20	60.5	2.38	0.16	65.4	2.36	0.15	0.31
21	59.5	2.37	0.16	64.4	2.36	0.15	0.31
22	58.6	2.37	0.16	63.5	2.36	0.15	0.31
23	57.7	2.37	0.16	62.5	2.35	0.15	0.31
24	56.7	2.36	0.16	61.5	2.35	0.15	0.31
25	55.8	2.36	0.15	60.5	2.35	0.15	0.31
26	54.8	2.36	0.15	59.6	2.35	0.15	0.31
27	53.9	2.35	0.15	58.6	2.35	0.15	0.31
28	53.0	2.35	0.15	57.6	2.35	0.15	0.31
29 20	52.1	2.34	0.15	56.6	2.35	0.15	0.31
3U 21	51.1	2.34	0.10	55.7	2.34	0.10	0.32
32 32	50.2 40.2	2.34	0.16	54.7 52.7	2.34	0.16	0.32
32	49.3	2.33	0.10	52.8	2.34	0.10	0.31
34	40.4	2.33	0.16	51.8	2.35	0.16	0.31
35	46.5	2.32	0.16	50.8	2.33	0.16	0.31
36	45.6	2,32	0.16	49.9	2.32	0.16	0.31
37	44.7	2.31	0.16	48.9	2.32	0.16	0.31
38	43.7	2.31	0.16	47.9	2.31	0.16	0.31
39	42.8	2.30	0.16	47.0	2.31	0.16	0.31
40	41.9	2.30	0.16	46.0	2.31	0.16	0.32
41	41.0	2.29	0.16	45.1	2.30	0.16	0.32
42	40.1	2.29	0.16	44.1	2.30	0.16	0.32
43	39.1	2.28	0.16	43.1	2.29	0.16	0.32
44	38.2	2.27	0.16	42.2	2.28	0.16	0.32
45	37.3	2.27	0.16	41.2	2.28	0.16	0.32
46	36.4	2.26	0.16	40.3	2.27	0.16	0.32
4/	35.5	2.25	0.16	39.3	2.27	0.16	0.32
48 40	34.6	2.25	0.16	38.4	2.26	0.16	0.32
49 50	33./ 33.0	2.24	0.10	37.4	2.25	0.16	0.32
50 51	32.0	2.23	0.10	30.5	2.24	0.10	0.55
52	31.9	2.22	0.16	34.6	2.23	0.16	0.55
53	30.2	2.20	0.16	33.7	2.21	0.16	0.32
54	29.3	2.19	0.16	32.8	2.20	0.16	0.32
55	28.4	2.18	0.16	31.9	2.19	0.16	0.32
56	27.5	2.17	0.16	30.9	2.18	0.16	0.32
57	26.7	2.16	0.16	30.0	2.16	0.16	0.32
58	25.8	2.14	0.16	29.1	2.15	0.16	0.31
59	25.0	2.13	0.16	28.2	2.13	0.16	0.31
60	24.1	2.11	0.16	27.3	2.11	0.16	0.32
61	23.3	2.09	0.16	26.4	2.09	0.16	0.31
62 C2	22.5	2.07	0.16	25.5	2.07	0.16	0.31
50	21.7	2.05	0.15	24.6	2.05	0.15	0.31
04 CF	20.9	2.03	0.15	23.8	2.03	0.15	0.30
00 66	20.1	2.01	0.15	22.9	2.00	0.15	05.U 0 20
50 67	18 5	1.99	0.15	22.0	1.97	0.15	0.50
58 58	17.7	1 92	0.14	21.2	1 01	0.14	0.29
59	17.0	1.90	0.14	19 5	1.91	0.14	0.29
70	16.2	1,86	0.15	18.7	1.83	0.14	0.20
71	15.5	1,83	0.14	17.9	1.79	0.14	0.29
72	14.8	1.79	0.14	17.1	1.74	0.14	0.28
73	14.1	1.75	0.14	16.3	1.69	0.13	0.27
74	13.4	1.70	0.13	15.5	1.63	0.13	0.26
75	12.7	1.65	0.13	14.7	1.57	0.12	0.26
76	12.0	1.60	0.13	14.0	1.51	0.12	0.25
77	11.4	1.54	0.12	13.2	1.44	0.11	0.24
78	10.8	1.48	0.12	12.5	1.37	0.11	0.23
79	10.1	1.42	0.11	11.8	1.29	0.10	0.21
80	9.5	1.35	0.12	11.1	1.21	0.10	0.22
81	9.0	1.28	0.11	10.5	1.12	0.10	0.21
82	8.4	1.20	0.10	9.8	1.03	0.09	0.19
83	7.9	1.12	0.10	9.2	0.94	0.08	0.18
	73	1.04	0.09	8.6	0.84	0.07	0.16
84	7.5						

Summary of CPB

Based on the assumptions above, the CPB associated with an HPV-based cervical cancer screening program in a BC birth cohort of 20,000 females is 4,215 (see Table 36).

With hrHPV-Based Screening In a BC Birth Cohort of 40,000RowVariableBase CaseData SourceWithout Cytology-Based Screening00aEstimated number of cervical cancers305Table 5bQALYS lost due to cervical cancers375Table 7cEstimated number of deaths due to cervical cancers163Table 6dLife-years lost per death from cervical cancers30.8= e / ceTotal life-years lost due to deaths from cervical cancers5,011Table 7fTotal QALYS Lost5,386= b + eWith hrHPV-Based Screening00gEstimated number of cervical cancers16.8Table 29hQALYs lost due to cervical cancers16.8Table 29hQALYs lost due to cervical cancers16.8Table 29jLife-years lost per death from cervical cancers31.3= k / ijLife-years lost per death from cervical cancers31.3= k / ijLife-years lost ger death from cervical cancers31.3= k / ijLife-years lost per death from cervical cancers525Table 30iTotal QALYs Lost650= h + kHarms Associated with Screening & TreatmentmmmReduction in guality of life associated with a CIN diagnosis373Table 31													
In a BC Birth Cohort of 40,000RowVariableBase CaseData SourceWithout Cytology-Based Screening													
RowVariableBase CaseData SourceWithout Cytology-Based Screening													
RowVariableBase CaseData SourceWithout Cytology-Based Screening													
Without Cytology-Based Screening305aEstimated number of cervical cancers305Table 5bQALYs lost due to cervical cancers375Table 7cEstimated number of deaths due to cervical cancers163Table 6dLife-years lost per death from cervical cancers30.8= e / ceTotal life-years lost due to deaths from cervical cancers5,011Table 7fTotal QALYs Lost5,386= b + eWith hrHPV-Based Screening													
aEstimated number of cervical cancers305Table 5bQALYs lost due to cervical cancers375Table 7cEstimated number of deaths due to cervical cancers163Table 6dLife-years lost per death from cervical cancers30.8= e / ceTotal life-years lost due to deaths from cervical cancers5,011Table 7fTotal QALYs Lost5,386= b + eWith hrHPV-Based Screening													
bQALYs lost due to cervical cancers375Table 7cEstimated number of deaths due to cervical cancers163Table 6dLife-years lost per death from cervical cancers30.8= e / ceTotal life-years lost due to deaths from cervical cancers5,011Table 7fTotal QALYs Lost5,386= b + eWith hrHPV-Based Screening													
cEstimated number of deaths due to cervical cancers163Table 6dLife-years lost per death from cervical cancers30.8= e / ceTotal life-years lost due to deaths from cervical cancers5,011Table 7fTotal QALYs Lost5,386= b + eWith hrHPV-Based Screening													
dLife-years lost per death from cervical cancers30.8= e / ceTotal life-years lost due to deaths from cervical cancers5,011Table 7fTotal QALYs Lost5,386= b + eWith hrHPV-Based Screening	cEstimated number of deaths due to cervical cancers163Table 6dLife-years lost per death from cervical cancers30.8= e / c												
eTotal life-years lost due to deaths from cervical cancers5,011Table 7fTotal QALYs Lost5,386= b + eWith hrHPV-Based ScreeninggEstimated number of cervical cancers64.6Table 29hQALYs lost due to cervical cancers125Table 30iEstimated number of deaths due to cervical cancers16.8Table 29jLife-years lost per death from cervical cancers31.3= k / ikTotal life-years lost due to deaths from cervical cancers525Table 30lTotal QALYs Lost650= h + kHarms Associated with Screening & TreatmentmBeduction in quality of life associated with a CIN diagnosis373Table 31	d Life-years lost per death from cervical cancers 30.8 = e / c												
fTotal QALYs Lost5,386= b + eWith hrHPV-Based Screening64.6Table 29gEstimated number of cervical cancers64.6Table 29hQALYs lost due to cervical cancers125Table 30iEstimated number of deaths due to cervical cancers16.8Table 29jLife-years lost per death from cervical cancers31.3= k / ikTotal life-years lost due to deaths from cervical cancers525Table 30lTotal QALYs Lost650= h + kHarms Associated with Screening & Treatmentm8eduction in quality of life associated with a CIN diagnosis373Table 31	e Total life-years lost due to deaths from cervical cancers 5,011 Table 7												
With hrHPV-Based ScreeningImage: Stimated number of cervical cancers64.6Table 29hQALYs lost due to cervical cancers125Table 30iEstimated number of deaths due to cervical cancers16.8Table 29jLife-years lost per death from cervical cancers31.3= k / ikTotal life-years lost due to deaths from cervical cancers525Table 30lTotal QALYs Lost650= h + kHarms Associated with Screening & Treatment1010mBeduction in quality of life associated with a CIN diagnosis373Table 31													
gEstimated number of cervical cancers64.6Table 29hQALYs lost due to cervical cancers125Table 30iEstimated number of deaths due to cervical cancers16.8Table 29jLife-years lost per death from cervical cancers31.3= k / ikTotal life-years lost due to deaths from cervical cancers525Table 30lTotal QALYs Lost650= h + kHarms Associated with Screening & Treatment1010mBeduction in quality of life associated with a CIN diagnosis373Table 31	Total QALYS Lost 5,386 = b + e With hrHPV-Based Screening												
hQALYs lost due to cervical cancers125Table 30iEstimated number of deaths due to cervical cancers16.8Table 29jLife-years lost per death from cervical cancers31.3= k / ikTotal life-years lost due to deaths from cervical cancers525Table 30lTotal QALYs Lost650= h + kHarms Associated with Screening & Treatment73Table 31	With hrHPV-Based ScreeningEstimated number of cervical cancers64.6Table 29												
iEstimated number of deaths due to cervical cancers16.8Table 29jLife-years lost per death from cervical cancers31.3= k / ikTotal life-years lost due to deaths from cervical cancers525Table 30lTotal QALYs Lost650= h + kHarms Associated with Screening & Treatment	With the V-based ScreeningEstimated number of cervical cancersQALYs lost due to cervical cancers125Table 30												
jLife-years lost per death from cervical cancers31.3= k / ikTotal life-years lost due to deaths from cervical cancers525Table 30lTotal QALYs Lost650= h + kHarms Associated with Screening & Treatment73Table 31													
k Total life-years lost due to deaths from cervical cancers 525 Table 30 l Total QALYs Lost 650 = h + k Harms Associated with Screening & Treatment 525 Table 31 m Beduction in quality of life associated with a CIN diagnosis 373 Table 31													
I Total QALYs Lost 650 = h + k Harms Associated with Screening & Treatment													
Harms Associated with Screening & Treatment Treatment m Beduction in quality of life associated with a CIN diagnosis 373 Table 31													
m Reduction in quality of life associated with a CIN diagnosis 373 Table 31													
in include of the associated with a circulagnosis													
n Premature births associated with treatment 41.1 Table 32													
o Reduction in life years lived due to premature birth 122 Tables 33 &	o Reduction in life years lived due to premature birth 122 Tables 33 & 34												
p Reduction in QALYs due to premature birth 26 Table 35	p Reduction in QALYs due to premature birth 26 Table 35												
q Total QALYs lost due to harms 520 = m + o + p													
Clinically Preventable Burden													
r CPB associated with cytology-based screening 4,215 = f - I - q													

∨ = Estimates from the literature

We also modified a key assumption and recalculated the CPB as follows:

- Assume the disutility associated with the diagnosis and treatment phase for cervical cancer of 0.288 is reduced to 0.193, the disutility associated with the ongoing, controlled phase (remission) for cervical cancer is reduced from 0.049 to 0.031 and the disutility associated with the metastatic phase for cervical cancer is reduced from 0.451 to 0.307: **CPB = 4,261**.
- Assume the disutility associated with the diagnosis and treatment phase for cervical cancer of 0.288 is increased to 0.399, the disutility associated with the ongoing, controlled phase (remission) for cervical cancer is increased from 0.049 to 0.072 and the disutility associated with the metastatic phase for cervical cancer is increased from 0.451 to 0.600: **CPB = 4,158**.

Cost-Effectiveness – HPV-Based Screening

Unit Costs

In calculating the cost-effectiveness of HPV-based screening, we used the same unit costs as for the cytology-based screening model with the exception of the cost estimate for HPV testing.

• Cost estimates for HPV testing are based on Popadiuk et al. who estimated costs (in 2008 CAD) to be \$87.70 per test, which included consultation, tray, and kit with lab interpretation fees, costing \$33.70, \$10.99, and \$43.10 respectively.⁶¹¹ We updated this estimate to \$108 in 2022 CAD.

Costs Associated with HPV-Based Screening for Cervical Cancer

HPV-based screening between the ages of 25 and 69 in a BC birth cohort of 20,000 females would be associated with 101,717 screens. These screens would be associated with \$11.0 million in healthcare costs and \$7.6 million in patient time costs (see Table 37). The estimated 3,185 colposcopies would be associated with \$0.9 million in healthcare costs and \$1.0 million in patient time costs. The estimated 1,625 treatments for CIN 2+ would be associated with \$2.2 million in healthcare costs and \$0.5 million in patient time costs. Finally, the estimated 41 premature births attributable to treatment for CIN2+ would be associated \$1.1 million in healthcare costs (see Table 37).

⁶¹¹ Popadiuk C, Gauvreau C, Bhavsar M et al. Using the Cancer Risk Management Model to evaluate the health and economic impacts of cytology compared with human papillomavirus DNA testing for primary cervical cancer screening in Canada. *Current Oncology*. 2016; 23(Supp.1): S56-S63.

		Table	37: Cost	s Associ	ated	with Scr	eening	for C	ervical C	Cancer		
				hrHP\	/-Base	d Screen	ing Mod	el				
			i	n a British Co	olumbia	Birth Cohor	t of 20.000	Female	5			
	Females											
	in Birth	# of	Cost of S	creening		Colposcopi	ies	Tr	eatment for	CIN2+	Pre	-term Births
Age	Cohort	Screens	HC System	Patient	#	HC System \$	Patient\$	#	HC System \$	Patient \$	#	HC System \$
25	19 843	2 258	\$243 915	\$167 850	94	\$26 637	\$26 232	48	\$66.039	\$13 425	15	\$39 919
26	19.834	2.256	\$243.623	\$167,649	94	\$26,605	\$26,201	48	\$65,960	\$13,409	1.5	\$39.871
27	19.825	2.253	\$243.329	\$167.447	94	\$26.573	\$26.169	48	\$65.881	\$13.392	1.5	\$39.823
28	19.816	2.250	\$243.030	\$167.241	94	\$26,540	\$26.137	48	\$65.800	\$13.376	1.5	\$39.774
29	19,806	2,247	\$242,727	\$167,032	94	\$26,507	\$26,104	48	\$65,718	\$13,359	1.5	\$39,724
30	19,796	2,712	\$292,917	\$201,570	117	\$33,212	\$32,707	71	\$97,886	\$19,898	2.3	\$59,169
31	19,785	2,696	\$291,198	\$200,388	117	\$33,017	\$32,515	71	\$97,311	\$19,782	2.3	\$58,821
32	19,773	2,680	\$289,476	\$199,202	116	\$32,822	\$32,323	71	\$96,736	\$19,665	2.3	\$58,473
33	19,761	2,664	\$287,746	\$198,012	115	\$32,625	\$32,130	70	\$96,158	\$19,547	2.2	\$58,124
34	19,749	2,648	\$286,010	\$196,817	115	\$32,429	\$31,936	70	\$95,577	\$19,429	2.2	\$57,773
35	19,736	2,633	\$284,345	\$195,671	95	\$26,963	\$26,554	59	\$81,300	\$16,527	1.9	\$49,143
36	19,722	2,617	\$282,597	\$194,469	95	\$26,798	\$26,391	59	\$80,800	\$16,425	1.9	\$48,841
37	19,708	2,600	\$280,844	\$193,262	94	\$26,632	\$26,227	59	\$80,299	\$16,323	1.9	\$48,538
38	19,693	2,584	\$279,081	\$192,049	94	\$26,464	\$26,062	58	\$79,795	\$16,221	1.9	\$48,233
39	19,677	2,568	\$277,312	\$190,832	93	\$26,297	\$25,897	58	\$79,289	\$16,118	1.8	\$47,927
40	19,661	2,529	\$273,097	\$187,931	86	\$24,460	\$24,088	51	\$69,384	\$14,104	1.6	\$41,940
41	19,643	2,490	\$268,962	\$185,086	85	\$24,090	\$23,724	50	\$68,333	\$13,891	1.6	\$41,305
42	19,625	2,452	\$264,820	\$182,236	84	\$23,719	\$23,358	49	\$67,281	\$13,677	1.6	\$40,669
43	19,605	2,414	\$260,670	\$179,380	82	\$23,347	\$22,992	48	\$66,226	\$13,463	1.5	\$40,032
44	19,584	2,375	\$256,509	\$176,516	81	\$22,974	\$22,625	48	\$65,169	\$13,248	1.5	\$39,393
45	19,561	2,336	\$252,329	\$173,639	69	\$19,423	\$19,128	31	\$42,786	\$8,698	1.0	\$25,862
46	19,537	2,318	\$250,381	\$172,299	68	\$19,273	\$18,980	31	\$42,455	\$8,630	1.0	\$25,663
47	19,511	2,300	\$248,417	\$170,948	68	\$19,122	\$18,832	31	\$42,122	\$8,563	1.0	\$25,462
48	19,484	2,282	\$246,435	\$169,584	67	\$18,970	\$18,681	30	\$41,786	\$8,494	1.0	\$25,258
49	19,454	2,263	\$244,432	\$168,205	66	\$18,815	\$18,530	30	\$41,447	\$8,425	1.0	\$25,053
50	19,422	2,279	\$246,084	\$169,342	54	\$15,165	\$14,934	21	\$29,332	\$5,963		
51	19,388	2,259	\$244,006	\$167,912	53	\$15,037	\$14,808	21	\$29,084	\$5,912		
52	19,352	2,240	\$241,901	\$166,463	53	\$14,907	\$14,681	21	\$28,833	\$5,861		
53	19,312	2,220	\$239,767	\$164,995	52	\$14,776	\$14,551	21	\$28,579	\$5,810		
54	19,270	2,200	\$237,600	\$163,504	52	\$14,642	\$14,420	21	\$28,321	\$5,757		
55	19,224	2,183	\$235,810	\$162,273	50	\$14,217	\$14,001	19	\$25,956	\$5,276		
56	19,174	2,145	\$231,678	\$159,429	49	\$13,968	\$13,755	19	\$25,501	\$5,184		
57	19,121	2,107	\$227,516	\$156,564	48	\$13,717	\$13,508	18	\$25,043	\$5,091		
58	19,063	2,068	\$223,319	\$153,677	48	\$13,464	\$13,259	18	\$24,581	\$4,997		
59	19,000	2,029	\$219,089	\$150,765	47	\$13,209	\$13,008	18	\$24,115	\$4,902		
60	18,932	2,047	\$221,035	\$152,105	45	\$12,694	\$12,501	17	\$23,598	\$4,797		
61	18,858	2,006	\$216,600	\$149,053	44	\$12,439	\$12,250	17	\$23,124	\$4,701		
62	18,777	1,964	\$212,120	\$145,970	43	\$12,182	\$11,997	17	\$22,646	\$4,604		
63	18,689	1,922	\$207,589	\$142,852	42	\$11,922	\$11,741	16	\$22,162	\$4,505		
64	18,593	1,880	\$203,006	\$139,698	41	\$11,658	\$11,481	16	\$21,673	\$4,406		
65	18,489	1,837	\$198,372	\$136,509	39	\$11,155	\$10,985	13	\$17,505	\$3,559		
66	18,375	1,793	\$193,669	\$133,273	38	\$10,890	\$10,725	12	\$17,090	\$3,474		
67	18,250	1,749	\$188,898	\$129,990	38	\$10,622	\$10,460	12	\$16,669	\$3,389		
68	18,113	1,704	\$184,054	\$126,656	37	\$10,349	\$10,192	12	\$16,242	\$3,302		
69	17,963	1,659	\$179,132	\$123,269	36	\$10,073	\$9,920	12	\$15,808	\$3,213		
Total		101,717	\$10,985,446	\$7,559,614	3,185	\$901,395	\$887,699	1,625	\$2,227,400	\$452,791	41	\$1,064,789

Costs Avoided with HPV-Based Screening for Cervical Cancer

HPV-based screening between the ages of 25 and 69 in a BC birth cohort of 20,000 females is associated with an estimated reduction of 240 incident cervical cancers and 146 deaths attributable to cervical cancers, compared with no screening (see Table 38). Each incident cervical cancer is associated with \$41,118 in healthcare costs while each death attributable to cervical cancer is associated with \$50,961 in health care costs. The avoidance of the incident cancers is associated with \$9.9 million in healthcare costs avoided while the avoidance of the deaths due to cervical cancer is associated with \$7.4 million in healthcare costs avoided (see Table 38).

Table 38: Costs Avoided with Screening for Cervical Cancer hrHPV-Based Screening Model

a British Columbia Birth Cohort of 20.000 Females	ir	
British Columbia Birth Cohort of 20.000 Females	۱a	
Columbia Birth Cohort of 20.000 Females	British	
Birth Cohort of 20.000 Females	Columbia	
Cohort of 20.000 Females	Birth	
of 20.000 Females	Cohort	
0.000 Females	of 20	
Females	0.000	
	Females	

	Females								
	in Birth	Inc	ident Cervi	cal Cance	rs	Deat	hs Due to Co	ervical Ca	ncer
Age	Cohort	No Screening	Screening	Avoided	HC System \$	No Screening	Screening	Avoided	HC System \$
25	19,843	1.2	0.6	0.6	\$24,760	0.3	0.1	0.2	\$11,529
26	19,834	1.7	0.9	0.8	\$33,823	0.3	0.1	0.2	\$11,524
27	19,825	2.8	1.4	1.4	\$56,597	0.3	0.1	0.2	\$11,519
28	19,816	2.4	1.2	1.2	\$47,618	0.3	0.1	0.2	\$11,514
29	19,806	3.0	1.6	1.5	\$61,327	0.3	0.1	0.2	\$11,508
30	19,796	4.5	0.7	3.8	\$155,221	0.9	0.1	0.8	\$43,143
31	19,785	4.5	0.7	3.8	\$155,135	0.9	0.1	0.8	\$43,119
32	19,773	4.5	0.7	3.8	\$155,045	0.9	0.1	0.8	\$43,094
33	19,761	4.5	0.7	3.8	\$154,951	0.9	0.1	0.8	\$43,068
34	19,749	4.5	0.7	3.8	\$154,853	0.9	0.1	0.8	\$43,040
35	19,736	4.5	1.7	2.8	\$114,274	1.6	0.2	1.4	\$71,085
36	19,722	4.5	1.7	2.8	\$114,196	1.6	0.2	1.4	\$71,036
37	19,708	4.5	1.7	2.8	\$114,113	1.6	0.2	1.4	\$70,985
38	19,693	4.5	1.7	2.8	\$114,026	1.6	0.2	1.4	\$70,931
39	19,677	4.5	1.7	2.8	\$113,936	1.6	0.2	1.4	\$70,875
40	19,661	6.5	1.8	4.7	\$193,232	2.7	0.3	2.4	\$124,588
41	19,643	6.5	1.8	4.7	\$193,059	2.7	0.3	2.4	\$124,476
42	19,625	6.5	1.8	4.7	\$192,876	2.7	0.3	2.4	\$124,359
43	19,605	6.5	1.8	4.7	\$192,682	2.7	0.3	2.4	\$124,233
44	19,584	6.5	1.8	4.7	\$192,473	2.7	0.3	2.4	\$124,099
45	19,561	6.5	1.8	4.7	\$192,251	4.0	0.4	3.6	\$185,547
46	19,537	6.4	1.8	4.7	\$192,013	4.0	0.4	3.6	\$185,318
47	19,511	6.4	1.8	4.7	\$191,760	4.0	0.4	3.6	\$185,073
48	19,484	6.4	1.8	4.7	\$191,489	4.0	0.4	3.6	\$184,811
49	19,454	6.4	1.8	4.6	\$191,198	4.0	0.4	3.6	\$184,530
50	19,422	7.4	1.3	6.1	\$251,346	4.0	0.4	3.5	\$179,813
51	19,388	7.4	1.3	6.1	\$250,906	4.0	0.4	3.5	\$179,499
52	19,352	7.4	1.3	6.1	\$250,433	4.0	0.4	3.5	\$179,160
53	19,312	7.4	1.3	6.1	\$249,923	4.0	0.4	3.5	\$178,795
54	19,270	7.3	1.3	6.1	\$249,372	3.9	0.4	3.5	\$178,401
55	19,224	7.3	1.3	6.1	\$248,779	4.1	0.4	3.7	\$187,236
56	19,174	7.3	1.3	6.0	\$248,140	4.1	0.4	3.7	\$186,755
57	19,121	7.3	1.3	6.0	\$247,448	4.1	0.4	3.7	\$186,235
58	19,063	7.3	1.3	6.0	\$246,698	4.1	0.4	3.6	\$185,670
59	19,000	7.2	1.3	6.0	\$245,885	4.1	0.4	3.6	\$185,058
60	18,932	7.9	1.2	6.7	\$273,652	5.2	0.4	4.8	\$243,098
61	18,858	7.8	1.2	6.6	\$272,580	5.2	0.4	4.8	\$242,146
62	18,777	7.8	1.2	6.6	\$271,415	5.2	0.4	4.7	\$241,111
63	18,689	7.8	1.2	6.6	\$270,143	5.1	0.4	4.7	\$239,981
64	18,593	7.7	1.2	6.5	\$268,758	5.1	0.4	4.7	\$238,751
65	18,489	7.7	1.2	6.5	\$267,246	5.1	0.5	4.6	\$236,248
66	18,375	7.6	1.2	6.5	\$265,595	5.1	0.5	4.6	\$234,789
67	18,250	7.6	1.2	6.4	\$263,789	5.1	0.5	4.6	\$233,192
68	18,113	7.5	1.2	6.4	\$261,811	5.0	0.5	4.5	\$231,444
69	17,963	7.5	1.1	6.3	\$259,646	5.0	0.5	4.5	\$229,529
70	17,799	6.9	0.9	6.0	\$247,034	4.8	0.6	4.2	\$215,944
71	17,619	6.9	0.9	5.9	\$244,533	4.8	0.6	4.2	\$213,758
72	17,421	6.8	0.9	5.9	\$241,791	4.7	0.6	4.1	\$211,360
73	17,204	6.7	0.9	5.8	\$238,779	4.6	0.5	4.1	\$208,727
74	16,966	6.6	0.9	5.7	\$235,473	4.6	0.5	4.0	\$205,837
Total		305	65	240	\$9,864,083	163	16.8	146	\$7,427,540

Summary of CE

Based on these assumptions, the CE associated with HPV-based screening of females ages 25 to 69 years of age for cervical cancer as currently performed in BC would be \$2,502 / QALY (Table 39, row w).

Table 39: Summary of CE Estimate for Cervical Cancer Screening									
With hrHPV-Based Screening									
In a PC Pirth Cohort of 40,000									
Variable	Base Case	Data Source							
Cost of Screening and Treatment									
Estimated number of screens	101,717	Table 37							
Cost of Screening - Healthcare	\$10,985,446	Table 37							
Cost of Screening - Patient time	\$7,559,614	Table 37							
Estimated number of colposcopies	3,185	Table 37							
Cost of colposcopies - Healthcare	\$901,395	Table 37							
Cost of colposcopies - Patient time	\$887,699	Table 37							
Estimated number of treatments for CIN2+	1,625	Table 37							
Cost of treatments for CIN2+ - Healthcare	\$2,227,400	Table 37							
Cost of treatments for CIN2+ - Patient time	\$452,791	Table 37							
Estimated number of premature births attributable to treatment for CIN2+	41	Table 37							
Costs attributable to preterm births	\$1,064,789	Table 37							
Total cost of screening and treatment	\$24,079,134	= b + c + e + f + h + i + k							
Costs Avoided									
Deaths prevented	146	Table 38							
Costs avoided due to deaths prevented	-\$7,427,540	Table 38							
# of cervical cancers avoided	240	Table 38							
Costs avoided due to cervical cancers prevented	-\$9,864,083	Table 38							
Total costs avoided	-\$17,291,623	= n + p							
Calculating CE									
Net costs	\$6,787,511	= l + q							
CPB undiscounted	4,215	Table 36							
CE undiscounted	\$1,610	= r / s							
Net Costs (1.5% discount)	\$7,063,044	Calculated							
CPB (1.5% discount)	2,823	Calculated							
CE (\$/QALY Saved)	\$2,502	= u / v							
	Table 39: Summary of CE Estimate for Cervical Ca With hrHPV-Based Screening In a BC Birth Cohort of 40,000 Variable Cost of Screening and Treatment Estimated number of screens Cost of Screening - Healthcare Cost of Screening - Healthcare Cost of Screening - Patient time Estimated number of colposcopies Cost of colposcopies - Healthcare Cost of colposcopies - Patient time Estimated number of treatments for CIN2+ Cost of treatments for CIN2+ - Healthcare Cost of treatments for CIN2+ Cost of treatments for CIN2+ - Patient time Estimated number of premature births attributable to treatment for CIN2+ Cost of screening and treatment Costs attributable to preterm births Total cost of screening and treatment Costs avoided Costs avoided due to deaths prevented # of cervical cancers avoided Costs avoided due to cervical cancers prevented Total costs avoided Costs avoided due to cervical cancers prevented Total costs (1.5% discount) CPB (1.5% discount) CE (\$/QALY Saved)	Table 39: Summary of CE Estimate for Cervical Cancer Scree With hrHPV-Based Screening In a BC Birth Cohort of 40,000VariableBase CaseCost of Screening and Treatment101,717Estimated number of screens101,717Cost of Screening - Healthcare\$10,985,446Cost of Screening - Patient time\$7,559,614Estimated number of colposcopies3,185Cost of Colposcopies - Healthcare\$901,395Cost of colposcopies - Patient time\$887,699Estimated number of treatments for CIN2+1,625Cost of treatments for CIN2+ - Healthcare\$2,227,400Cost of treatments for CIN2+ - Patient time\$452,791Estimated number of premature births attributable to treatment for CIN2+41Costs of screening and treatment\$24,079,134Costs Avoided240Deaths prevented-\$7,427,540# of cervical cancers avoided240Costs avoided due to deaths prevented-\$7,427,540# of cervical cancers prevented-\$9,864,083Total costs avoided due to cervical cancers prevented-\$17,291,623Calculating CENet costs\$6,787,511CPB undiscounted\$1,610\$1,610Net costs (1.5% discount)\$2,823CE (\$/QALY Saved)\$2,502							

∨ = Estimates from the literature

We also modified a number of key assumptions and recalculated the CE as follows:

- Assume the disutility associated with the diagnosis and treatment phase for cervical cancer of 0.288 is reduced to 0.193, the disutility associated with the ongoing, controlled phase (remission) for cervical cancer is reduced from 0.049 to 0.031 and the disutility associated with the metastatic phase for cervical cancer is reduced from 0.451 to 0.307: CE = \$2,472.
- Assume the disutility associated with the diagnosis and treatment phase for cervical cancer of 0.288 is increased to 0.399, the disutility associated with the ongoing, controlled phase (remission) for cervical cancer is increased from 0.049 to 0.072 and the disutility associated with the metastatic phase for cervical cancer is increased from 0.451 to 0.600: CE = \$2,542.

- Assume that unit costs are at the lower end of the 95% CI. The cost per HPV screen is reduced from \$108 to \$81, the cost per colposcopy is reduced from \$283 to \$200, the cost per treatment for CIN2+ is reduced from \$1,371 to \$1,271, the cost per cervical cancer avoided is reduced from \$41,118 to \$39,410 and the cost per death due to cervical cancer avoided is reduced from \$50,961 to \$47,410: **CE = \$1,865**.
- Assume that unit costs are at the higher end of the 95% CI. The cost per HPV screen is increased from \$108 to \$135, the cost per colposcopy is increased from \$283 to \$444, the cost per treatment for CIN2+ is increased from \$1,371 to \$1,447, the cost per cervical cancer avoided is increased from \$41,118 to \$42,824 and the cost per death due to cervical cancer avoided is increased from \$50,961 to \$54,510: CE = \$3,198.

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with cytology-based cervical cancer screening is estimated to be 2,823 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$2,502 per QALY (see Table 40).

Table 40: HPV-Based Screening for Cervical Cancer in aBirth Cohort of 40,000									
Summary									
	Base								
	Case	Rang	je						
CPB (Potential QALYs Gained)									
Gap between 0% and Current	BC Screening Rat	te (69%)							
1.5% Discount Rate	2,823	2,779	2,858						
3% Discount Rate	1,912	1,877	1,939						
0% Discount Rate	4,215	4,158	4,261						
CE (\$/QALY) including patient tim	e costs								
1.5% Discount Rate	\$2,502	\$1,865	\$3,198						
3% Discount Rate	\$3,583	\$2,816	\$4,419						
0% Discount Rate	\$1,610	\$1,077	\$2,193						
CE (\$/QALY) excluding patient time costs									
1.5% Discount Rate	\$109	Cost-saving	\$805						
3% Discount Rate	\$835	\$68	\$1,671						
0% Discount Rate	Cost-saving	Cost-saving	\$81						

Comparison of No Screening, Cytology-Based Screening and HPV-Based Screening

Table 41 provides an overview of interventions, potential harms, costs and QALYs lost/gained associated with moving from no screening to cytology-based screening and then to HPV-based screening in a BC birth cohort of 20,000 females ages 25 to 69 years of age.

Moving from no screening to cytology-based screening is associated with 2,700 QALYs gained at a net cost of \$13.7 million for a cost per QALY gained of \$5,077.⁶¹²

Moving from no screening to HPV-based screening is associated with 2,823 QALYs gained at a net cost of \$7.1 million for a cost per QALY gained of \$2,502.⁶¹³

Thus HPV-based screening is both more effective (higher CPB - number of QALYs gained) and less costly (lower CE - cost per QALY gained) than cytology-based screening.

Table 41: Screening for Cervical Cancers									
Comparison of No Screening, Cytology-Based Screening and HPV-Based Screening									
In a BC Birth Cohort of 40 000 (20 000 Females)									
Cytology- No to Cytology-Based No to HPV-Based Cytology- to HPV-									
	No	Based	Scre	ening	HPV-Based	Scre	ening	Based S	creening
	Screening	Screening	Change	% Change	Screening	Change	% Change	Change	% Change
Incident Convical Cancers	205	00	206	69%	65	240	70%	24	2/10/
Deaths due to Cervical Cancer	163	25	-200	-85%	17	-146	-90%	-34	-34%
	5 386	978	-4 409	-82%	650	-4 736	-88%	-327	-33%
Interventions	3,300	570	1,105	02/0		-1,750			33/0
# of Screens		171,230			101,717			-69,513	-41%
# of Colposcopies		2,569			3,185			616	24%
# of Treatments for CIN2+		1,321			1,625			303	23%
Cost of Interventions (in \$millions)									
Screening		\$26.25			\$18.55			-\$7.71	-29%
Colposcopies		\$1.44			\$1.79			\$0.35	24%
Treatments for CIN2+		\$2.18			\$2.68	~~~~~~		\$0.50	23%
Harms									
Abnormality Diagnoses		5,044			6,742			1,698	34%
Treatment for CIN2+		1,321			1,625			303	23%
Pre-term births		38			41			4	9%
QALYs Lost Due to Harms									
Abnormality Diagnoses		119			179			60	50%
Treatment for CIN2+		120			194			73	61%
Pre-term births		135			148			13	9%
Cost Associated with Harms (in \$millions)									
Pre-term births		\$0.97			\$1.06			\$0.09	9%
Cervical Cancers Avoided									
Incident Cervical Cancers		206			240			34	16%
Deaths due to Cervical Cancer		138			146				6%
Costs Avoided (in \$millions)									
Incident Cervical Cancers		-\$8.47			-\$9.86			-\$1.40	16%
Deaths due to Cervical Cancer		-\$7.02			-\$7.43			-\$0.41	6%
Net Costs (in \$millions - 0% discount rate)		\$15.36			\$6.79			-\$8.57	-56%
CPB (Net QALYs Gained - 0% discount rate)		4,034			4,215			181	4%
CE (\$ / QALY Saved - 0% discount rate)		\$3,808			\$1,610			-\$2,198	-58%
Net Costs (in Śmillions - 1.5% discount rate)		\$13.71			\$7.06			-\$6.64	-48%
CPB (Net OALYs Gained - 1.5% discount rate)		2.700			2.823			123	5%
CE (\$ / OALY Saved - 1.5% discount rate)		\$5.077			\$2.502			-\$2.575	-51%
		<i>~~,~.</i>			+-,			+=,=.0	

⁶¹² Based on a discount rate of 1.5%.

Screening for Colorectal Cancer

United States Preventive Services Task Force Recommendations (2021)

The USPSTF recommends screening for colorectal cancer in all adults aged 50 to 75 years. (A recommendation)

The USPSTF recommends screening for colorectal cancer in adults aged 45 to 49 years. (B recommendation)

The USPSTF recommends that clinicians selectively offer screening for colorectal cancer in adults aged 76 to 85 years. Evidence indicates that the net benefit of screening all persons in this age group is small. In determining whether this service is appropriate in individual cases, patients and clinicians should consider the patient's overall health, prior screening history, and preferences. (C recommendation)⁶¹⁴

Canadian Task Force on Preventive Health Care (2016)

The CTFPHC recommends screening adults aged 60 to 74 years for colorectal cancer with FOBT (gFOBT or FIT) every two years or flexible sigmoidoscopy every 10 years. (Strong recommendation; moderate-quality evidence)

The CTFPHC recommends screening adults aged 50 to 59 years for colorectal cancer with FOBT (gFOBT or FIT) every two years or flexible sigmoidoscopy every 10 years. (Weak recommendation; moderate-quality evidence)

The CTFPHC recommends not screening adults aged 75 years and older for colorectal cancer. (Weak recommendation; low-quality evidence)

*The CTFPHC recommends not using colonoscopy as a screening tool for colorectal cancer. (Weak recommendation; low-quality evidence)*⁶¹⁵

Best in the World

- In 2012, colorectal cancer (CRC) screening rates in Canada for the population ages 50-74 averaged 55.2%, ranging from a low of 49.6% in BC to a high of 64.1% in Ontario. A further 21.5% of those ages 45-49 received CRC screening.⁶¹⁶
- In the US, screening in adults ages 50-75 who have health insurance has increased from 50.4% in 2011 to 69.7% in 2019.⁶¹⁷
- In the US in 2018, 68.8% of adults ages 50-75 were up to date with CRC screening test use, ranging from a low of 57.8% in Wyoming to a high of 76.5% in Massachusetts. The percentage up to date was 63.3% among those aged 50–64 years and 79.2% among respondents aged 65–75 years.⁶¹⁸

⁶¹⁴ US Preventive Services Task Force. Screening for colorectal cancer: US Preventive Services Task Force Recommendation statement. *JAMA*. 2021; 325(19): 1965-1977.

⁶¹⁵ Canadian Task Force on Preventive Health Care. Recommendations on screening for colorectal cancer. *Canadian Medical Association Journal*. 2016; 188(5): 340-8.

⁶¹⁶ Singh H, Bernstein C, Samadder J et al. Screening rates for colorectal cancer in Canada: A cross-sectional study. *CMAJ Open*. 2016; 3(2): E149-E157.

⁶¹⁷ Fisher D, Princic N, Miller-Wilson L et al. Utilization of a colorectal cancer screening test among individuals with average risk. *JAMA Network Open*. 2021; 4(9):e2122269.

⁶¹⁸ Joseph D, King J, Dowling N et al. Vital signs: Colorectal cancer screening test use — United States, 2018. *Morbidity and Mortality Weekly Report*. 2020; 69(10): 253-9.

- Guo et al. report a CRC screening rate of 77.1% in 2008-10 in a German population ages 50 to 75.⁶¹⁹
- For modelling purposes, we assume that the *best in the world* screening rate is 77%.

Current Screening Rates in BC

- The BC Colon Cancer Screening Program started in 2013. In 2019, 34.5% of the BC age eligible (50-74) population had received a fecal immunochemical test (FIT) within the past 30 months.⁶²⁰ The 34.5% does not account for those screened outside of the program so the actual rate is likely higher. In 2012, for example, 49.6% of British Columbians ages 50-74 self-reported being up-to-date on their CRC screening.⁶²¹
- For modelling purposes, we assume that the current BC screening rate is 50%, and reduced this to 35% in the sensitivity analysis.

Modelling the Clinically Preventable Burden

In this section, we will calculate the Clinically Preventable Burden (CPB) associated with screening for colorectal cancer in adults ages 45-75 in a British Columbia birth cohort of 40,000, based on current recommendations by the USPSTF.⁶²²

In estimating CPB, we made the following assumptions:

Defining and Estimating the Population at Risk

Incidence of Colorectal Cancer in BC

In 2018, 2,945 new cases of CRC (an incidence rate of 58.9 / 100,000) and 1,115 deaths attributable to CRC (a mortality rate of 22.3 / 100,000) were observed in BC (Table 1).⁶²³

 ⁶¹⁹ Guo F, Chen, C, Schottker B et al. Changes in colorectal cancer screening use after introduction of alternative screening offer in Germany: Prospective cohort study. *International Journal of Cancer*. 2020; 146: 2423-32.
 ⁶²⁰ BC Cancer Colon Screening. 2019 Program Results. March 202. Available online at

http://www.bccancer.bc.ca/screening/Documents/Colon-Program-Results-2019.pdf. Accessed November 2021. ⁶²¹ Singh H, Bernstein C, Samadder J et al. Screening rates for colorectal cancer in Canada: A cross-sectional

study. CMAJ Open. 2016; 3(2): E149-E157.

⁶²² US Preventive Services Task Force. Screening for colorectal cancer: US Preventive Services Task Force Recommendation statement. *JAMA*. 2021; 325(19): 1965-1977.

⁶²³ BC Cancer. Statistics by Cancer Type – Colorectal. Available online at <u>http://www.bccancer.bc.ca/statistics-and-reports-site/Documents/Cancer_Type_Colorectal_2018_20210305.pdf</u>. Accessed November 2021.

Table 1: Colorectal Cancer in British ColumbiaIncidence and Mortality in 2018												
Age	New Cases			Incidence Rate / 100,000				Deaths		Mortality Rate / 100,000		
Group	Male	Female	Total	Male	Female	Total	Male	Female	Total	Male	Female	Total
0-19	5	0	0	0.2	0.2	0.2	0	0	0	0.0	0.0	0.0
20-39	50	40	85	6.7	5.6	6.2	5	5	10	0.4	0.7	0.6
40-59	295	280	575	43.8	39.8	41.8	95	50	145	13.7	7.7	10.6
60-79	860	645	1,505	172.2	120.2	145.3	310	185	500	62.4	34.7	48.1
80+	370	405	775	391.2	314.7	347.0	220	245	460	230.0	191.5	207.8
Total	1,575	1,370	2,945	63.6	54.2	58.9	625	490	1,115	25.2	19.5	22.3
Source BC	Source BC Cancer. Statitics by Cancer Type - Colorectal											

In Canada, the age-standardized incidence rate (ASIR) of CRC has decreased by 3.6% per year between 2013 and 2017 (3.4% in females and 4.3% in males) (Figure 1). "The recent decline in colorectal cancer rates is likely due in part to increased screening for the disease.... Between 2007 and 2016, Yukon and every province in Canada (except Quebec) implemented organized colorectal cancer screening programs."⁶²⁴

⁶²⁴ Canadian Cancer Statistics Advisory Committee in collaboration with the Canadian Cancer Society, Statistics Canada and the Public Health Agency of Canada. *Canadian Cancer Statistics 2021*. Toronto, ON: Canadian Cancer Society; 2021.

- The observed decline in incidence, however, is not seen in younger individuals. In the US, the incidence of CRC has increased annually by 0.5% to 1.3% in the 45 to 54 year age cohort.⁶²⁵
- In Canada, Brenner et al have observed that the incidence of colon cancer has generally been decreasing in those over the age of 50 since the mid-1980s. In those ages 40-49, however, there has been an annual percent change (APC) of +1.66% between 2003 and 2012. While overall incidence rates are lower in even younger cohorts, they observed a +6.24% APC in those ages 20-29 and +2.11% in those ages 30-39. The authors suggest that this increase in colon cancer incidence in younger cohorts is likely due to a combination of poor diet, sedentary behavior, physical inactivity, and consequential excess bodyweight.⁶²⁶
- In BC, Howren et al. found a significant increase in the APC of CRC between 1986 and 2016 in 40-49 year-old men of 1.86% (95% CI of 1.19 to 2.53%). Much of this increase was driven by increasing rates of rectal cancer. The more modest APC in women ages 40-49 of 0.12% was not statistically significant (95% CI of -0.54 to 0.79%).⁶²⁷
- The Canadian Association of Gastroenterology and the Canadian Digestive Health Foundation published a guideline for colorectal cancer screening in 2004,⁶²⁸ in which a recommendation was made for colonoscopy among Canadians aged 50 and above. Brenner et al found that the post-guideline slope changes were significant for colon cancer (-1.85 per 100,000, p < 0.001) and rectal cancer (-0.66 per 100,000, p = 0.004) in those over the age of 50 but not in those under 50 years of age.⁶²⁹
- In BC, the Colon Screening Program was launched in November of 2013. The incidence rate of CRC in the province increased between 2010 and 2014, before decreasing through 2018 (Figure 2).⁶³⁰
- For modelling purposes, we first want to estimate the incidence of CRC in the absence of a co-ordinated CRC screening program and then model how this would change in the presence of a fully mature CRC screening program. We have assumed that using 2014 incidence rates (the high point in Figure 2) would approximate the number of new cases in the absence of a co-ordinated CRC screening program.

⁶²⁵ Siegel R, Fedewa S, Anderson W et al. Colorectal cancer incidence patterns in the United States, 1974 – 2013. *Journal of the National Cancer Institute*. 2017; 108(8).

⁶²⁶ Brenner D, Ruan Y, Shaw E et al. Increasing colorectal cancer incidence trends among younger adults in Canada. *Preventive Medicine*. 2017; 105: 345-9.

⁶²⁷ Howren A, Sayre E, Loree J et al. Trends in the incidence of young-onset colorectal cancer with a focus on years approaching screening age: A population-based longitudinal study. *Journal of the National Cancer Institute*. 2021; 113(7): 863-8.

⁶²⁸ Leddin D, Hunt R, Champion M et al. Canadian Association of Gastroenterology and the Canadian Digestive Health Foundation: Guidelines on colon cancer screening. *Canadian Journal of Gastroenterology*. 2004; 18 (2): 93-99.

⁶²⁹ Brenner D, Ruan Y, Shaw E et al. Increasing colorectal cancer incidence trends among younger adults in Canada. *Preventive Medicine*. 2017; 105: 345-9.

⁶³⁰ Statistics Canada. Table 13-10-0111-01. Number and rates of new cases of primary cancer, by cancer type, age group and sex. Available online at <u>https://www150.statcan.gc.ca/t1/tbl1/en/cv.action?pid=1310011101</u>. Accessed November 2021.

- For modelling purposes, we used the age- and sex-specific incidence rates from 2014 to estimate the number of new CRC cases in a BC birth cohort of 40,000 between the ages of 45 (the onset of proposed CRC screening) and age 79 (**approximately 4 years after the cessation of proposed CRC screening**). As noted in Table 2, there would be an estimated 1,804 new CRC cases BC birth cohort of 40,000 between the ages of 45 and age 79 (756 in females and 1,048 in males).
- While screening would occur between the ages of 45 and 75, using age 79 as the end point in the model assumes that screening to age 75 will be protective to age 79. That is, the benefits of screening will continue for a further 4 years after the cessation of screening at age 75.

	Table 2: Estimated New Cases of Colorectal Cancer											
			Betwee	en the Ag	tes of 4	5 and 79						
		l r	n a British (olumhia f	, Rirth Col	nort of 40	000					
	In the Absence of a Co-ordinated Screening Program											
		Female	the Absence		Male		Tot	al Popula	tion			
		Incidence	_		Incidence		700	Incidence				
	Total Life	Rate /	Estimated	Total Life	Rate /	Estimated	Total Life	Rate /	Estimated			
Age	Years	100,000	New CRC	Years	100,000	New CRC	Years	100,000	New CRC			
45	19.561	17.4	3.4	19.094	42.1	8.0	38.656	29.6	11.4			
46	19.537	17.4	3.4	19.047	42.1	8.0	38,584	29.6	11.4			
47	19,511	17.4	3.4	18,996	42.1	8.0	38,508	29.6	11.4			
48	19,484	17.4	3.4	18,943	42.1	8.0	38,427	29.6	11.4			
49	19,454	17.4	3.4	18,887	42.1	8.0	38,341	29.6	11.3			
50	19,422	50.1	9.7	18,827	57.1	10.8	38,249	53.5	20.5			
51	19,388	50.1	9.7	18,763	57.1	10.7	38,151	53.5	20.4			
52	19,352	50.1	9.7	18,695	57.1	10.7	38,046	53.5	20.4			
53	19,312	50.1	9.7	18,622	57.1	10.6	37,934	53.5	20.3			
54	19,270	50.1	9.7	18,545	57.1	10.6	37,814	53.5	20.2			
55	19,224	61.5	11.8	18,461	104.5	19.3	37,685	82.6	31.1			
56	19,174	61.5	11.8	18,372	104.5	19.2	37,547	82.5	31.0			
57	19,121	61.5	11.8	18,277	104.5	19.1	37,398	82.5	30.9			
58	19,063	61.5	11.7	18,175	104.5	19.0	37,238	82.5	30.7			
59	19,000	61.5	11.7	18,065	104.5	18.9	37,065	82.5	30.6			
60	18,932	102.4	19.4	17,947	171.5	30.8	36,879	136.0	50.2			
61	18,858	102.4	19.3	17,820	171.5	30.6	36,678	136.0	49.9			
62	18,777	102.4	19.2	17,684	171.5	30.3	36,461	135.9	49.6			
63	18,689	102.4	19.1	17,537	171.5	30.1	36,226	135.9	49.2			
64	18,593	102.4	19.0	17,379	171.5	29.8	35,972	135.8	48.8			
65	18,489	141.0	26.1	17,208	205.0	35.3	35,697	171.9	61.3			
66	18,375	141.0	25.9	17,024	205.0	34.9	35,399	171.8	60.8			
67	18,250	141.0	25.7	16,826	205.0	34.5	35,075	171.7	60.2			
68	18,113	141.0	25.5	16,612	205.0	34.1	34,725	171.6	59.6			
69	17,963	141.0	25.3	16,381	205.0	33.6	34,344	171.5	58.9			
70	17,799	211.6	37.7	16,132	328.6	53.0	33,930	267.2	90.7			
71	17,619	211.6	37.3	15,863	328.6	52.1	33,481	267.0	89.4			
72	17,421	211.6	36.9	15,573	328.6	51.2	32,994	266.8	88.0			
73	17,204	211.6	36.4	15,260	328.6	50.1	32,464	266.6	86.5			
74	16,966	211.6	35.9	14,923	328.6	49.0	31,889	266.4	84.9			
75	16,704	277.7	46.4	14,560	408.3	59.4	31,265	338.5	105.8			
76	16,417	277.7	45.6	14,170	408.3	57.9	30,587	338.2	103.4			
77	16,102	277.7	44.7	13,751	408.3	56.1	29,853	337.9	100.9			
78	15,757	277.7	43.8	13,301	408.3	54.3	29,058	337.5	98.1			
79	15,378	277.7	42.7	12,820	408.3	52.3	28,198	337.1	95.0			
Total	642,278	118	756	598,538	175	1,048	1,240,816	145	1,804			

Colorectal Cancer Diagnosis by Stage

• A variety of staging systems for CRC have been used over time and between jurisdictions. The International Cancer Benchmarking Partnership (ICBP) spent significant time and effort developing an algorithm to convert disparate staging systems into a staging system using localised / regional / distant categories.⁶³¹ Data on CRC diagnosis by stage from Alberta and Manitoba between 2004 and 2007 produced by the ICBP is summarized on Table 3 using the localised / regional / distant categories as well as Dukes' Stage (a system more familiar to CRC clinicians).⁶³²

	Table 3: Colorectal Cancer Diagnosis by Stage										
Alberta and Manitoba, 2004 - 2007											
	Can	cer of the C	olon	Cano	er of the Re	ectum	Col	orectal Can	cer		
Stage	Ν	Mean Age	%	N	Mean Age	%	N	Mean Age	%		
Localised	2,305	71.3	42.5%	1,983	68.4	41.6%	4,288	70.0	42.1%		
Regional	1,707	70.2	31.5%	1,678	65.9	35.2%	3,385	68.1	33.2%		
Distant	1,408	68.9	26.0%	1,111	65.6	23.3%	2,519	67.4	24.7%		
Total	5,420	70.3	100.0%	4,772	66.9	100.0%	10,192	68.7	100.0%		
Dukes' Sta	ge										
А	951	70.8	17.5%	1,050	68.3	22.0%	2,001	69.5	19.6%		
В	1,654	71.4	30.5%	1,108	68.4	23.2%	2,762	70.2	27.1%		
С	1,407	70.2	26.0%	1,503	65.7	31.5%	2,910	67.9	28.6%		
D	1,408	68.9	26.0%	1,111	65.6	23.3%	2,519	67.4	24.7%		
Total	5,420	70.3	100.0%	4,772	66.9	100.0%	10,192	68.7	100.0%		

- The original Dukes' stages were based on rectal cancers with 'A' meaning growth confined to the rectum with no extra-rectal spread or lymphatic metastasis, 'B' meaning spread by direct continuity into extra-rectal tissues with no lymphatic metastasis, 'C1' meaning only the regional lymph nodes contained metastasis and 'C2' meaning more extensive lymphatic spread.⁶³³ Over time, 'C2' began to be designated as 'D' or 'Distant Spread'.
- While not provided in the data available from the ICBP, the CRC stage at diagnosis appears to be similar for males and females, regardless of the staging system used, as indicated in the following two bullet points.
- The following CRC diagnosis by stage and sex is based on 188,868 patients diagnosed with CRC in the US between 1992 and 2001:⁶³⁴

 ⁶³¹ Walters S, Maringe C, Butler J et al. Comparability of stage data in cancer registries in six countries: Lessons from the International Cancer Benchmarking Partnership. *International Journal of Cancer*. 2013; 132: 676-85.
 ⁶³² Maringe C, Walters S, Rachet B et al. Stage at diagnosis and colorectal cancer survival in six high-income

countries: A population based study of patients diagnosed during 2000-2007. *Acta Oncologica*. 2013; 52(5): 919-32.

⁶³³ Dukes C, Bussey H. The spread of rectal cancer and its effect on prognosis. *British Journal of Cancer*. 1958; 12(3): 309-20.

⁶³⁴ Cress R, Morris C, Ellison G et al. Secular changes in colorectal cancer incidence by subsite, stage at diagnosis, and race/ethnicity, 1992 – 2001. *Cancer*. 2006; 107(5): 1142-52.

Stage at Diagnosis ⁶³⁵		Male	<u>Female</u>
In situ	3.4%	2.9%	
Invasive	48.3%	48.6%	
Localized	20.4%	19.7%	
Regional/distant	27.9%	28.8%	

• The following CRC diagnosis by stage and sex is based on 34,011 patients diagnosed with CRC in England in 2012.⁶³⁶

Stage at Diagnosis ⁶³⁷	Male	<u>Female</u>
Ι	18.2%	16.3%
II	27.1%	28.7%
III	30.9%	30.2%
IV	23.9%	24.8%

• In Denmark between 1985 and 1995, 456 CRCs were detected in the **unscreened population** by stage as follows:⁶³⁸

Dukes' A – 54 (11.8%)

Dukes' B – 177 (38.8%)

Dukes' C - 111 (24.3%)

Distant Spread – 114 (25.0%)

• In a chart review of 700 **unscreened patients** in the Ottawa hospital system with a diagnosis of CRC during 1991/92, the stage at diagnosis was as follows:⁶³⁹

Dukes' A – 91 (13.0%) Dukes' B – 231 (33.0%) Dukes' C – 189 (27.0%) Distant Spread – 189 (27.0%)

⁶³⁵ "**In situ** tumors were defined as non-invasive tumors that had not penetrated the basement membrane; **localized** tumors were those confined entirely to the organ of origin; **regional** tumors were those that extended into surrounding organs and tissues (or regional lymph nodes); and **distant** tumors were those that had spread to remote organs or lymph nodes. Regional and distant stages were subsequently combined into a single group to represent cases with a "late-stage" diagnosis."

 ⁶³⁶ White A, Ironmonger L, Steele R et al. A review of sex-related differences in colorectal cancer incidence, screening uptake, routes to diagnosis, cancer stage and survival in the UK. *BMC Cancer*. 2018; 18: 906.
 ⁶³⁷ Based on the Tumor Node Metastasis (TNM) staging classification system.

⁶³⁸ Kronborg O, Fenger C, Olsen J et al. Randomised study of screening for colorectal cancer with faecal-occultblood test. *The Lancet.* 1996; 348: 1467-71.

⁶³⁹ Flanagan W, Petit C, Berthelot J et al. Potential impact of population-based colorectal cancer screening in Canada. *Chronic Diseases in Canada*. 2003; 24(4): 81-8.

• We combined the results in the **control groups** (**unscreened population**) from three early RCTs assessing the effectiveness of screening with FOBT.^{640,641,642} For the 1,634 CRCs in the three control groups, the stage at diagnosis was as follows:

Dukes' A – 237 (14.5%) Dukes' B – 582 (35.3%) Dukes' C – 457 (28.0%) Distant Spread – 358 (21.9%)

• Applying the proportions above to the new CRC cases from Table 2, Table 4 estimates the stage of new CRC cases in a BC birth cohort of 40,000 diagnosed between the ages of 45 and age 79, by sex and stage. Of the 1,804 new CRCs, 262 would be Dukes' stage A, 643 would be Dukes stage B, 505 would be Dukes' stage C and 395 would have distant spread. The stage of the CRC at diagnosis has a significant effect on subsequent patient mortality.

⁶⁴⁰ Mandel J, Bond J, Church T et al. Reducing mortality from colorectal cancer by screening for fecal occult blood. *New England Journal of Medicine*. 1993; 328: 1365-71.

⁶⁴¹ Kronborg O, Fender C, Olsen J et al. Randomised study of screening for colorectal cancer with faecal-occultblood test. *The Lancet.* 1996; 348(9040): 1467-71.

⁶⁴² Hardcastle J, Chamberlain J, Robinson M et al. Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. *The Lancet.* 1996; 348(9040): 1472-77.

Table 4: Estimated New Cases of Colorectal Cancer by Dukes' Stage

Between the Ages of 45 and 79

In a British Columbia Birth Cohort of 40,000

|--|

	Female				Male				Total Population					
	Estimated	Nev	w CRC	oy Stage	Estimated	Ν	lew Cl	RC by	Stage	Estimated	N	ew CF	C by S	Stage
Age	New CRC	А	B (Distant	 New CRC	А	В	С	Distant	New CRC	А	В	С	Distant
45	3.4	0.5 1	.2 1	0 0.7	8.0	1.2	2.9	2.2	1.8	11.4	1.7	4.1	3.2	2.5
46	3.4	0.5 1	.2 1	0 0.7	8.0	1.2	2.9	2.2	1.8	11.4	1.7	4.1	3.2	2.5
47	3.4	0.5 1	.2 0	9 0.7	8.0	1.2	2.8	2.2	1.8	11.4	1.7	4.1	3.2	2.5
48	3.4	0.5 1	.2 0	9 0.7	8.0	1.2	2.8	2.2	1.7	11.4	1.6	4.0	3.2	2.5
49	3.4	0.5 1	.2 0	9 0.7	8.0	1.2	2.8	2.2	1.7	11.3	1.6	4.0	3.2	2.5
50	9.7	1.4 3	8.5 2.	7 2.1	10.8	1.6	3.8	3.0	2.4	20.5	3.0	7.3	5.7	4.5
51	9.7	1.4 3	8.5 2.	7 2.1	10.7	1.6	3.8	3.0	2.3	20.4	3.0	7.3	5.7	4.5
52	9.7	1.4 3	8.5 2.	7 2.1	10.7	1.5	3.8	3.0	2.3	20.4	3.0	7.3	5.7	4.5
53	9.7	1.4 3	8.4 2	7 2.1	10.6	1.5	3.8	3.0	2.3	20.3	2.9	7.2	5.7	4.4
54	9.7	1.4 3	8.4 2	7 2.1	10.6	1.5	3.8	3.0	2.3	20.2	2.9	7.2	5.7	4.4
55	11.8	1.7 4	l.2 3	3 2.6	19.3	2.8	6.9	5.4	4.2	31.1	4.5	11.1	8.7	6.8
56	11.8	1.7 4	1.2 3.	3 2.6	19.2	2.8	6.8	5.4	4.2	31.0	4.5	11.0	8.7	6.8
57	11.8	1.7 4	l.2 3	3 2.6	19.1	2.8	6.8	5.3	4.2	30.9	4.5	11.0	8.6	6.8
58	11.7	1.7 4	l.2 3	3 2.6	19.0	2.8	6.8	5.3	4.2	30.7	4.5	10.9	8.6	6.7
59	11.7	1.7 4	1.2 3.	3 2.6	18.9	2.7	6.7	5.3	4.1	30.6	4.4	10.9	8.5	6.7
60	19.4	2.8 6	5.9 5.	4 4.2	30.8	4.5	11.0	8.6	6.7	50.2	7.3	17.9	14.0	11.0
61	19.3	2.8 6	5.9 5.	4 4.2	30.6	4.4	10.9	8.5	6.7	49.9	7.2	17.8	13.9	10.9
62	19.2	2.8 6	5.8 5.	4 4.2	30.3	4.4	10.8	8.5	6.6	49.6	7.2	17.7	13.9	10.9
63	19.1	2.8 6	5.8 5.	4 4.2	30.1	4.4	10.7	8.4	6.6	49.2	7.1	17.5	13.8	10.8
64	19.0	2.8 6	5.8 5	3 4.2	29.8	4.3	10.6	8.3	6.5	48.8	7.1	17.4	13.7	10.7
65	26.1	3.8 9	9.3 7.	3 5.7	35.3	5.1	12.6	9.9	7.7	61.3	8.9	21.9	17.2	13.4
66	25.9	3.8 9	9.2 7.	2 5.7	34.9	5.1	12.4	9.8	7.6	60.8	8.8	21.7	17.0	13.3
67	25.7	3.7 9).2 7	2 5.6	34.5	5.0	12.3	9.6	7.6	60.2	8.7	21.5	16.8	13.2
68	25.5	3.7 9	9.1 7.	1 5.6	34.1	4.9	12.1	9.5	7.5	59.6	8.6	21.2	16.7	13.1
69	25.3	3.7 9	9.0 7.	1 5.5	33.6	4.9	12.0	9.4	7.4	58.9	8.5	21.0	16.5	12.9
70	37.7	5.5 13	3.4 10	.5 8.3	53.0	7.7	18.9	14.8	11.6	90.7	13.2	32.3	25.4	19.9
71	37.3	5.4 13	3.3 10	.4 8.2	52.1	7.6	18.6	14.6	11.4	89.4	13.0	31.8	25.0	19.6
72	36.9	5.3 13	3.1 10	.3 8.1	51.2	7.4	18.2	14.3	11.2	88.0	12.8	31.4	24.6	19.3
73	36.4	5.3 13	3.0 10	.2 8.0	50.1	7.3	17.9	14.0	11.0	86.5	12.6	30.8	24.2	19.0
74	35.9	5.2 12	2.8 10	.0 7.9	49.0	7.1	17.5	13.7	10.7	84.9	12.3	30.3	23.8	18.6
75	46.4	6.7 16	6.5 13	.0 10.2	59.4	8.6	21.2	16.6	13.0	105.8	15.4	37.7	29.6	23.2
76	45.6	6.6 16	6.2 12	.8 10.0	57.9	8.4	20.6	16.2	12.7	103.4	15.0	36.8	28.9	22.7
77	44.7	6.5 1	5.9 12	.5 9.8	56.1	8.1	20.0	15.7	12.3	100.9	14.6	35.9	28.2	22.1
78	43.8	6.3 1	5.6 12	.2 9.6	54.3	7.9	19.3	15.2	11.9	98.1	14.2	34.9	27.4	21.5
79	42.7	6.2 1	5.2 11	.9 9.4	52.3	7.6	18.6	14.6	11.5	95.0	13.8	33.9	26.6	20.8
Total	756	110 2	269 2	l1 166	1,048	152	373	293	230	1,804	262	643	505	395

Trend in Mortality Rate Due to Colorectal Cancer in Canada

• In Canada, the mortality rates for CRC in males have declined -1.0% per year between 1984 and 2004, and then further declining by -2.3% per year between 2005 and 2019. In females, the rate initially declined -1.7% per year, but since 2014 the rate of decline has nearly doubled, lowering mortality -3.4% per year. "Part of this decline may be driven by the decrease in incidence and improvements in treatment.

Given the strong connection between stage at diagnosis and survival for colorectal cancer, participation in colorectal cancer screening programs may be an additional factor contributing to the more rapid rate of decline observed in colorectal cancer mortality in recent years."⁶⁴³

⁶⁴³ Canadian Cancer Statistics Advisory Committee in collaboration with the Canadian Cancer Society, Statistics Canada and the Public Health Agency of Canada. *Canadian Cancer Statistics 2021*. Toronto, ON: Canadian Cancer Society; 2021.

Survival Following a Diagnosis of Colorectal Cancer

• In 2017, the observed 1-, 3-, and 5-year survival rate in BC following a diagnosis of CRC by stage is summarized in Table 5.⁶⁴⁴

Table 5: Survival Rates Following CRC in BC									
By Stage in 2017									
1-Year	3-Year	5-Year							
96.3%	90.8%	84.0%							
91.9%	82.1%	72.5%							
89.8%	73.5%	62.7%							
49.3%	19.9%	11.9%							
	rvival Rate By Stage 1-Year 96.3% 91.9% 89.8% 49.3%	Prival Rates Followin By Stage in 2017 1-Year 3-Year 96.3% 90.8% 91.9% 82.1% 89.8% 73.5% 49.3% 19.9%							

• Based on data from ICBP for Alberta and Manitoba between 2004 and 2007, 1- and 3-year net survival **by stage and age** is summarized on Table 6.⁶⁴⁵

·		Table 6:	Colore	ctal Cance	Table 6: Colorectal Cancer Survival										
	By Age and Stage														
	Alberta and Manitoba, 2004 - 2007														
	Age	Cancer of th	e Colon	Cancer of th	e Rectum	Colorecta	Cancer								
Stage	Group	1 Yr	3 Yr	1 Yr	3 Yr	1 Yr	3 Yr								
A															
	15-49	99.0%	96.7%	99.4%	97.5%	99.2%	97.1%								
	50-69	98.2%	96.1%	98.4%	95.5%	98.3%	95.8%								
	70-99	93.2%	92.4%	95.6%	91.9%	94.5%	92.1%								
	All Ages	95.4%	94.0%	97.1%	94.0%	96.3%	94.0%								
В															
	15-49	97.7%	91.7%	99.3%	96.1%	98.3%	93.5%								
	50-69	96.1%	90.1%	97.4%	91.2%	96.6%	90.5%								
	70-99	90.7%	85.3%	90.5%	80.7%	90.6%	83.5%								
	All Ages	92.7%	87.3%	94.3%	86.6%	93.3%	87.0%								
C															
	15-49	95.3%	81.8%	97.4%	87.1%	96.4%	84.5%								
	50-69	94.0%	81.0%	95.7%	83.0%	94.9%	82.0%								
	70-99	82.1%	62.2%	89.3%	75.2%	85.8%	68.9%								
	All Ages	87.4%	70.5%	93.3%	80.3%	90.4%	75.6%								
Distan	t														
	15-49	63.5%	26.3%	69.9%	30.6%	66.3%	28.2%								
	50-69	52.2%	18.4%	66.0%	29.2%	58.3%	23.2%								
	70-99	28.5%	6.4%	46.4%	16.4%	36.4%	10.8%								
	All Ages	41.0%	12.9%	58.9%	24.4%	48.9%	18.0%								
All Pa	tients														
	15-49	85.6%	70.0%	91.6%	79.4%	88.4%	74.4%								
	50-69	83.0%	67.9%	89.2%	76.6%	85.9%	72.0%								
	70-99	72.0%	58.6%	79.2%	65.8%	75.4%	62.0%								
	All Ages	76.9%	62.8%	84.8%	71.9%	80.6%	67.1%								

⁶⁴⁴ BC Cancer. *Cancer Survival Rates*. Available online at http://www.bccancer.bc.ca/health-info/disease-system-statistics/cancer-survival-rates. Accessed December 2021.

⁶⁴⁵ Maringe C, Walters S, Rachet B et al. Stage at diagnosis and colorectal cancer survival in six high-income countries: A population based study of patients diagnosed during 2000-2007. *Acta Oncologica*. 2013; 52(5): 919-32.

- Table 7 provides the estimated 1-, 3- and 5-year survival following a CRC by age and stage. To produce this information we first calculated the average annual number of new CRC cases in BC between 2014 and 2018 in the 15-49 (N=205), 50-69 (N=1,271) and 70-99 (N=1,559) year age groups.⁶⁴⁶ These cases were then distributed to each stage based on the data in Table 3. The overall 1-, 3- and 5-year survival rate was then taken from Table 5. Finally, survival was calculated for each age group based on the data in Table 6.
- Overall 1-year survival following a diagnosis of CRC in BC is estimated at 81.6%, decreasing to 66.0% at year 3 and 57.0% at year 5 (see Table 7).

Table 7: Estimated CRC Survival													
By Age and Stage													
	In British Columbia												
	Colorectal Cancer												
	Age 1 Year 3 Year 5 Year												
Stage	Group	Ν	%	Ν	%	Ν	%	Ν					
А													
	15-49	40	99.2%	40	93.8%	38	86.8%	35					
	50-69	250	98.3%	245	92.5%	231	85.6%	214					
	70-99	306	94.5%	289	89.0%	272	82.3%	252					
	All Ages	596	96.3%	574	90.8%	541	84.0%	501					
В													
	15-49	56	96.8%	54	88.2%	49	77.9%	43					
	50-69	344	95.1%	327	85.4%	294	75.4%	260					
	70-99	422	89.2%	376	78.7%	332	69.5%	293					
	All Ages	822	91.9%	756	82.1%	675	72.5%	596					
C													
	15-49	59	95.7%	56	82.2%	48	70.1%	41					
	50-69	363	94.2%	342	79.8%	290	68.1%	247					
	70-99	445	85.2%	380	67.0%	299	57.2%	255					
	All Ages	867	89.8%	778	73.5%	637	62.7%	543					
Distan	t												
	15-49	51	66.9%	35	31.2%	17	18.7%	10					
	50-69	314	58.8%	190	25.6%	84	15.3%	50					
	70-99	385	36.7%	145	12.0%	48	7.2%	29					
	All Ages	750	49.3%	370	19.9%	149	11.9%	89					
All Pa	tients												
	15-49	205	90.0%	184	73.9%	151	63.0%	129					
	50-69	1,271	86.8%	1,104	70.7%	899	60.7%	771					
	70-99	1,559	76.3%	1,190	61.1%	952	53.2%	829					
	All Ages	3,035	81.6%	2,478	66.0%	2,002	57.0%	1,729					

• We then applied the 1-, 3- and 5-year survival rates by age and stage from Table 7 to the estimated number of new CRC by age and stage from Table 4. The estimated number of CRC deaths between the ages of 45 and 79 in a BC birth cohort of 40,000 in the absence of a co-ordinated screening program is 710, with 297 in females and 413 in males (see Table 8).

⁶⁴⁶ Statistics Canada. Table 13-10-0111-01. Number and rates of new cases of primary cancer, by cancer type, age group and sex. Available online at <u>https://www150.statcan.gc.ca/t1/tbl1/en/cv.action?pid=1310011101</u>. Accessed November 2021.

Table 8: Estimated Colorectal Cancer Deaths by Dukes' Stage

Between the Ages of 45 and 79

In a British Columbia Birth Cohort of 40,000

|--|

	Females					Males					Total Population				
		Dukes	s' Stage	•			Duke	s' Stage				Dukes	' Stage		
Age	А	В	С	Distant	Total	Α	В	С	Distant	Total	Α	В	С	Distant	Total
45	0.0	0.0	0.0	0.2	0.3	0.0	0.1	0.1	0.6	0.8	0.0	0.1	0.1	0.8	1.1
46	0.0	0.1	0.1	0.4	0.6	0.0	0.2	0.2	0.9	1.4	0.1	0.3	0.4	1.3	2.0
47	0.0	0.1	0.2	0.5	0.9	0.1	0.3	0.4	1.2	2.0	0.1	0.5	0.6	1.7	2.9
48	0.0	0.2	0.2	0.6	1.0	0.1	0.5	0.5	1.3	2.4	0.2	0.7	0.8	1.9	3.5
49	0.1	0.3	0.3	0.6	1.2	0.2	0.6	0.7	1.4	2.9	0.2	0.9	1.0	2.0	4.1
50	0.1	0.4	0.4	1.2	2.1	0.2	0.7	0.7	1.8	3.5	0.3	1.1	1.1	3.1	5.6
51	0.1	0.5	0.5	1.5	2.6	0.2	0.8	0.8	1.9	3.7	0.3	1.3	1.3	3.3	6.3
52	0.1	0.6	0.7	1.7	3.1	0.2	0.8	0.9	2.0	3.9	0.3	1.5	1.5	3.6	7.0
53	0.2	0.7	0.8	1.7	3.4	0.2	0.9	0.9	2.0	4.0	0.4	1.6	1.7	3.7	7.4
54	0.2	0.8	0.9	1.8	3.7	0.2	0.9	1.0	2.0	4.1	0.4	1.8	1.8	3.8	7.8
55	0.2	0.9	0.9	2.0	4.0	0.2	1.1	1.1	2.8	5.2	0.5	2.0	2.0	4.7	9.2
56	0.2	0.9	0.9	2.1	4.1	0.3	1.2	1.3	3.1	5.8	0.5	2.1	2.2	5.1	10.0
57	0.2	1.0	1.0	2.1	4.3	0.3	1.4	1.4	3.4	6.5	0.5	2.3	2.4	5.5	10.8
58	0.2	1.0	1.0	2.2	4.4	0.4	1.5	1.6	3.4	6.9	0.6	2.5	2.6	5.6	11.3
59	0.2	1.0	1.0	2.2	4.5	0.4	1.7	1.7	3.5	7.3	0.6	2.7	2.8	5.7	11.8
60	0.3	1.2	1.2	2.9	5.5	0.4	1.9	1.9	4.6	8.8	0.7	3.0	3.1	7.5	14.2
61	0.3	1.3	1.3	3.1	6.0	0.5	2.1	2.1	5.0	9.7	0.8	3.4	3.4	8.1	15.7
62	0.3	1.4	1.5	3.4	6.6	0.5	2.3	2.3	5.4	10.5	0.8	3.7	3.8	8.8	17.2
63	0.4	1.6	1.6	3.5	7.0	0.6	2.5	2.5	5.5	11.1	0.9	4.0	4.1	9.0	18.0
64	0.4	1.7	1.7	3.5	7.3	0.6	2.7	2.7	5.6	11.6	1.0	4.3	4.4	9.1	18.9
65	0.4	1.8	1.8	4.2	8.2	0.6	2.7	2.8	6.0	12.2	1.1	4.5	4.6	10.2	20.4
66	0.4	1.9	2.0	4.4	8.7	0.7	2.8	2.9	6.2	12.5	1.1	4.7	4.8	10.6	21.3
67	0.5	2.0	2.1	4.6	9.2	0.7	2.9	3.0	6.3	12.8	1.2	4.9	5.0	11.0	22.1
68	0.5	2.1	2.2	4.7	9.5	0.7	2.9	3.0	6.3	13.0	1.2	5.1	5.2	11.0	22.5
69	0.5	2.3	2.3	4.7	9.8	0.7	3.0	3.1	6.3	13.1	1.3	5.3	5.4	11.0	22.9
70	0.8	3.2	3.4	7.7	15.1	1.1	4.4	4.7	10.6	20.8	1.8	7.7	8.1	18.2	35.9
71	0.8	3.5	3.9	7.7	15.8	1.1	4.8	5.3	10.7	21.9	1.9	8.3	9.2	18.3	37.7
72	0.8	3.7	4.3	7.7	16.5	1.2	5.1	5.9	10.7	22.9	2.0	8.9	10.2	18.4	39.5
73	0.9	3.9	4.3	7.5	16.6	1.2	5.3	6.0	10.4	22.9	2.1	9.2	10.3	18.0	39.6
74	0.9	4.0	4.4	7.4	16.7	1.3	5.5	6.1	10.1	23.0	2.2	9.5	10.4	17.5	39.6
75	1.0	4.3	4.8	8.8	18.9	1.4	5.8	6.4	11.5	25.1	2.4	10.2	11.2	20.3	44.0
76	1.0	4.5	5.0	8.9	19.5	1.4	5.9	6.5	11.5	25.3	2.4	10.4	11.5	20.4	44.8
77	1.1	4.6	5.2	9.1	20.0	1.4	6.0	6.7	11.5	25.5	2.5	10.6	11.9	20.6	45.5
78	1.1	4.7	5.2	8.9	20.0	1.4	6.0	6.6	11.2	25.2	2.5	10.7	11.9	20.1	45.2
79	1.1	4.8	5.3	8.8	20.0	1.4	6.0	6.6	10.9	24.9	2.6	10.8	11.9	19.7	44.9
Total	15.7	67.1	72.3	142.3	297.4	21.9	93.4	100.4	197.4	413.0	37.6	160.5	172.7	339.7	710.5

Calculating Life Years and Quality-Adjusted Life Years Lost

- Whenever feasible, we use disability weights developed for the Global Burden of Disease (GBD) study in calculating changes in QoL associated with a given health state.^{647,648} See pages 60-62 of the Reference document for a detailed discussion of how QoL adjustments are calculated and utilized in the LPS modelling.⁶⁴⁹
- Based on data from the GBD, the diagnosis and treatment phase for colorectal cancer lasts an average of 4 months⁶⁵⁰ and is associated with a utility loss of -0.288 (95% CI of -0.193 to -0.399).⁶⁵¹ The 95% confidence intervals are used in the sensitivity analysis.
- Based on data from the GBD, the ongoing, controlled phase (remission) for colorectal cancer is associated with a utility loss of -0.049 (95% CI of -0.031 to 0.072).⁶⁵² The 95% confidence intervals are used in the sensitivity analysis.
- The metastatic phase for colorectal cancer lasts an average of 2.5 years (30 months)⁶⁵³ and is associated with a utility loss of -0.451 (95% CI of -0.307 to 0.600).⁶⁵⁴ The 95% confidence intervals are used in the sensitivity analysis.
- We assumed everyone diagnosed with cancer is treated during the year of diagnosis and has a reduction in QALYs of 0.96 (0.96 = 0.288 /12 months * 4 months). We assumed that each CRC survivor has an annual QALY reduction of 0.049, including in the first year of treatment. We assumed a reduction in QALYs of 1.128 for individuals in the metastatic phase in the years prior to death (1.128 = 0.451 / 12 months * 30 months). Living with CRC (including the treatment and metastatic phases) between the ages of 45 and 79 in a BC birth cohort of 40,000 in the absence of a co-ordinated screening program is associated with 2,150 QALYs lost, with 899 in females and 1,251 in males (see Table 9).
- To calculate life years lost, we multiplied the number of deaths by age and sex (Table 8) by the remaining life expectancy for that age and sex. The estimated number of life years lost due to CRC deaths between the ages of 45 and 79 in a BC

⁶⁴⁷ Salomon JA, Haagsma JA, Davis A et al. Disability weights for the Global Burden of Diseases 2013 study. *The Lancet Global Health*. 2015; 3: e712-e723.

⁶⁴⁸ Institute for Health Metrics and Evaluation. *GBD 2016 sequelae, health states, health state lay descriptions, and disability weights*. Available online at <u>http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights</u>. Accessed October 2017.

⁶⁴⁹ BC Lifetime Prevention Schedule. *Establishing Priorities among Effective Clinical Prevention Services in British Columbia. Reference Document and Key Assumptions. March 2021 Update.* Available online at https://www2.gov.bc.ca/assets/gov/health/about-bc-s-health-care-system/health-priorites/lifetime-prevention-schedule/2021-reference-document.pdf. Accessed February 2022.

⁶⁵⁰ Fitzmaurice C, Allen C, Barber R et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. *Journal of American Medical Association Oncology*. 2017; 3(4): 524-48.

⁶⁵¹ Institute for Health Metrics and Evaluation. *GBD 2016 sequelae, health states, health state lay descriptions, and disability weights*. Available online at <u>http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights</u>. Accessed October 2017.

⁶⁵² Fitzmaurice C, Allen C, Barber R et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. *Journal of American Medical Association Oncology*. 2017; 3(4): 524-48.

⁶⁵³ Dr. Jonathan Loree, Medical Oncologist at BC Cancer. Personal Communication. February 2022.

⁶⁵⁴ Institute for Health Metrics and Evaluation. *GBD 2016 sequelae, health states, health state lay descriptions, and disability weights*. Available online at <u>http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights</u>. Accessed October 2017.

birth cohort of 40,000 in the absence of a co-ordinated screening program is 12,805, with 5,743 in females and 7,062 in males (see Table 9).

• On average, each CRC death is associated with 18.2 life years lost (12,950 / 710), with 19.4 life years lost per death for females (5,773 / 297) and 17.4 life years lost per death for males (7,177 / 413) (see Tables 8 & 9).

Table 9: Estimated Colorectal Cancer QALYs and Life Years Lost

Between the Ages of 45 and 79															
In a British Columbia Birth Cohort of 40,000															
In the Absence of a Co-ordinated Screening Program															
	Treatment QALYs Living in Remission						Metas	tatic Q	ALYs	Total	ΟΔΙΥς	lost	Life	Years I	ost
		Lost		QA	LYs Los	st		Lost		rotai	Q. 1210		、		
Age	Female	Male	Total	Female	Male	Total	Female	Male	Total	Female	Male	Total	Female	Male	Total
45	0.3	0.8	1.2	0.2	0.4	0.6	0.4	1.0	1.5	1	2	3	14	29	43
46	0.3	0.8	1.2	0.3	0.8	1.1	0.8	1.8	2.6	1	3	5	24	51	75
47	0.3	0.8	1.2	0.5	1.1	1.6	1.1	2.7	3.8	2	5	7	34	72	105
48	0.3	0.8	1.2	0.6	1.5	2.1	1.4	3.2	4.6	2	5	8	40	85	124
49	0.3	0.8	1.2	0.7	1.7	2.5	1.6	3.8	5.4	3	6	9	46	97	143
50	1.0	1.1	2.1	1.2	2.3	3.5	2.9	4.7	7.7	5	8	13	77	113	191
51	1.0	1.1	2.1	1.7	2.7	4.3	3.6	5.0	8.6	6	9	15	93	117	210
52	1.0	1.1	2.1	2.0	3.1	5.1	4.3	5.3	9.6	7	10	17	108	120	228
53	1.0	1.1	2.1	2.4	3.5	5.9	4.7	5.5	10.2	8	10	18	115	120	235
54	1.0	1.1	2.1	2.8	3.9	6.6	5.1	5.6	10.7	9	11	19	122	119	241
55	1.2	2.0	3.2	3.2	4.7	8.0	5.5	7.1	12.6	10	14	24	127	147	274
56	1.2	2.0	3.2	3.7	5.5	9.2	5.7	8.0	13.7	11	15	26	128	161	289
57	1.2	2.0	3.2	4.1	6.3	10.4	5.9	8.9	14.8	11	17	28	129	173	302
58	1.2	1.9	3.1	4.6	7.0	11.6	6.1	9.5	15.5	12	18	30	128	178	306
59	1.2	1.9	3.1	5.0	7.7	12.7	6.2	10.0	16.2	12	20	32	127	182	309
60	2.0	3.2	5.3	6.0	9.2	15.2	7.7	12.4	20.1	16	25	41	149	212	361
61	2.0	3.2	5.2	6.8	10.5	17.3	8.5	13.6	22.2	17	27	45	160	225	385
62	2.0	3.2	5.2	7.6	11.7	19.3	9.4	14.9	24.2	19	30	49	169	237	406
63	2.0	3.2	5.2	8.3	12.9	21.2	9.9	15.6	25.5	20	32	52	172	239	412
64	2.0	3.1	5.1	9.0	14.0	23.1	10.4	16.3	26.7	21	33	55	175	241	416
65	2.7	3.7	6.4	10.1	15.4	25.6	11.6	17.2	28.8	24	36	61	188	245	433
66	2.7	3.7	6.4	11.2	16.8	28.0	12.3	17.7	30.0	26	38	64	192	242	434
67	2.7	3.6	6.3	12.2	18.1	30.3	13.0	18.1	31.2	28	40	68	195	238	433
68	2.7	3.6	6.3	13.2	19.4	32.6	13.4	18.3	31.8	29	41	71	194	230	424
69	2.7	3.5	6.2	14.1	20.7	34.8	13.9	18.5	32.4	31	43	73	191	223	414
70	3.7	5.2	8.9	16.4	23.9	40.3	22.5	31.0	53.4	43	60	103	282	337	619
71	3.7	5.1	8.8	17.8	25.9	43.6	23.6	32.6	56.2	45	64	109	283	339	622
72	3.6	5.0	8.6	19.1	27.7	46.8	24.6	34.1	58.8	47	67	114	282	338	621
73	3.6	4.9	8.5	20.4	29.5	49.8	24.7	34.2	58.9	49	69	117	270	323	593
74	3.5	4.8	8.3	21.6	31.1	52.8	24.8	34.2	59.0	50	70	120	258	307	565
75	4.6	5.8	10.4	23.4	33.4	56.8	28.2	37.4	65.5	56	77	133	279	318	597
76	4.5	5.7	10.1	25.1	35.5	60.6	29.0	37.7	66.7	59	79	137	272	305	577
77	4.4	5.5	9.9	26.7	37.5	64.1	29.7	38.0	67.7	61	81	142	264	290	555
78	4.3	5.3	9.6	28.2	39.3	67.6	29.8	37.6	67.4	62	82	145	251	271	522
79	4.2	5.1	9.3	29.7	41.1	70.8	29.8	37.1	66.9	64	83	147	236	252	489
	76	106	182	360	526	886	432	599	1,031	868	1,230	2,099	5,773	7,177	12,950

Effectiveness of the Intervention

- The BC Cancer Colon Screening program recommends screening the asymptomatic population ages 50-74 at average risk for CRC with the fecal immunochemical test (FIT) every two years. If the test results are abnormal, proceed to a colonoscopy. If the colonoscopy results are normal, return to screening with the FIT after 10 years. If the individual is age 50-74 but at higher-than-average risk for CRC, screen using colonoscopy every 10 years.⁶⁵⁵
- CRC screening can save lives in two important ways:
 - Screening can prevent colon cancer by finding and removing polyps before they turn into cancer.
 - Screening can find cancers early. Early detection means more treatment options and better outcomes (see Table 7).
- Using the threshold recommended by the manufacturer (20 μg hemoglobin per gram of stool), the pooled sensitivity of FIT for detection of colorectal cancer was 0.74 (95% CI, 0.64-0.83; 9 studies; n = 34 352) and pooled specificity was 0.94 (95% CI, 0.93-0.96; 9 studies; n = 34 352).⁶⁵⁶
- The sensitivity for detection of adenomas measuring 10 mm or larger using colonoscopy ranged from 0.89 (95% CI, 0.78-0.96) to 0.95 (95% CI, 0.74-0.99) in 4 studies reviewed by the USPSTF; specificity was reported in a single study as 0.89 (95% CI, 0.86-0.91).⁶⁵⁷
- The BC Colon Screening Program was launched in November of 2013. An analysis of FIT cut-off values completed in June of 2015 for the BC FIT Review Working Group investigated the results of 7,349 individuals in the BC Colon Screening Program who tested positive with FIT (≥50ng/ml) and for whom colonoscopy results were available.⁶⁵⁸ A total of 3,680 positive results (any neoplasia) were identified by colonoscopy, yielding a positive predictive value (PPV) of 50.1%. In other words, for every 2 positive FIT results, one true positive result was identified by colonoscopy. The 3,680 positive results included 114 patients with cancer, 1,492 patients with high-risk polyps, 330 patients with multiple low-risk polyps and 1,744 with ≤2 low-risk polyps.
- The PPV would be increased to 54.3% at a cut-off of >75ng/mL and to 56.8% at a cut-off of ≥100 ng/ml. Shifting the cut-off from ≥50 to >75ng/ml, however, would have missed 8% (9) of cancers, 22% (405) of high-risk polyps and 28% (1,040) of all neoplasia. Shifting the cut-off from ≥50 to >100 ng/ml would have missed 13% (15) of cancers, 35% (629) of high-risk polyps and 42% (1,545) of all neoplasia. The FIT Review Working Group recommended leaving the FIT cut-off at ≥50 ng/ml.⁶⁵⁹

⁶⁵⁵ BC Cancer Colon Screening. 2019 Program Results. March 2021. Available online at

http://www.bccancer.bc.ca/screening/Documents/Colon-Program-Results-2019.pdf. Accessed November 2021. 656 US Preventive Services Task Force. Screening for colorectal cancer: US Preventive Services Task Force Recommendation statement. *JAMA*. 2021; 325(19): 1965-1977.

⁶⁵⁷ US Preventive Services Task Force. Screening for colorectal cancer: US Preventive Services Task Force Recommendation statement. *JAMA*. 2021; 325(19): 1965-1977.

⁶⁵⁸ H. Krueger & Associates Inc. for the BC FIT Review Working Group. *Technical Analysis of Fecal Immunochemical Test (FIT) Cut-off Values*. June 17, 2015.

⁶⁵⁹ H. Krueger & Associates Inc. for the BC FIT Review Working Group. *Technical Analysis of Fecal Immunochemical Test (FIT) Cut-off Values*. June 17, 2015.

- As of 2018, BC continues to use a FIT cut-off value of ≥50ng/ml (using the FIT produced by Alfresa Pharma Corporation) while other provinces and territories use cut-off values of between >75 and >175.⁶⁶⁰
- In BC, eligible patients can pick up FIT kits from any public or private lab across the province with a referral from their health care provider. Samples are to be stored in the refrigerator and returned to the lab within 7 days. The results are forwarded to the health care provider who discusses them with the patient. Abnormal results trigger a referral for a colonoscopy.⁶⁶¹
- For modelling purposes, we have assumed that FIT every two years (as used in BC) is associated with a PPV of 50%.
- Screening for CRC is associated with a 22% (incidence risk ratio [IRR] 0.78, 95% CI 0.74 to 0.83) reduction in CRC incidence.⁶⁶²
- Based on the combined results from three early RCTs assessing the effectiveness of screening with FOBT,^{663,664,665} the proportion of cases detected early (Dukes' Stage A) more than doubled with screening while the proportion detected late (Distant) was reduced by almost half (see Table10).

Table 10: Shift in CRC Stage Associated with Screening											
	Control	Group	Screenee	%							
Dukes' Stage	#	%	#	%	Change						
А	237	14.5%	420	30.2%	108.2%						
В	582	35.6%	432	31.1%	-12.8%						
С	457	28.0%	356	25.6%	-8.5%						
Distant	358	21.9%	183	13.2%	-40.0%						
Total	1,634	100.0%	1,391	100.0%							

Change in Incidence and Stage at Diagnosis

• For modelling purposes, we reduced the incidence of CRCs by 22% in the 77% of individuals who would be screened. Within the cohort of 40,000, we then assumed that those who were not screened and were diagnosed with CRC would be proportionally allocated to Dukes' Stage based on the control group data in Table 10 while those who were screened and diagnosed with CRC would be proportionally allocated to Dukes' stage based on the screened group data in Table 10.

⁶⁶² Knudsen A, Rutter C, Peterse E et al. *Colorectal Cancer Screening: An Updated Decision Analysis for the U.S. Preventive Services Task Force*. Technical Report. Available online at https://www.ncbi.nlm.nih.gov/books/NBK570833/. Accessed January 2022.

⁶⁶⁰ Canadian Partnership against Cancer. *Colorectal Cancer Screening in Canada: Environmental Scan*. March 2019. Available online at <u>https://www.partnershipagainstcancer.ca/wp-content/uploads/2019/04/Colorectal-Cancer-Screening-Environmental-Scan EN 2018 final.pdf</u>. Accessed November 2021.

⁶⁶¹ *BC Cancer Screening – Colon.* Available online at <u>http://www.bccancer.bc.ca/screening/health-professionals/colon/refer</u>. Accessed November 2021.

⁶⁶³ Mandel J, Bond J, Church T et al. Reducing mortality from colorectal cancer by screening for fecal occult blood. *New England Journal of Medicine*. 1993; 328: 1365-71.

⁶⁶⁴ Kronborg O, Fender C, Olsen J et al. Randomised study of screening for colorectal cancer with faecal-occultblood test. *The Lancet.* 1996; 348(9040): 1467-71.

⁶⁶⁵ Hardcastle J, Chamberlain J, Robinson M et al. Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. *The Lancet.* 1996; 348(9040): 1472-77.
• Based on these assumptions, a co-ordinated CRC screening program that achieved a 77% screening rate in a BC birth cohort of 40,000 would reduce the number of new cases of CRC from 1,804 (see Table 4) to 1,499 (see Table 11), a reduction of 306 (16.9%) in new cases. In addition, the number of cases diagnosed in Dukes' Stage A would increase by 45% (from 262 [Table 4] to 379 [Table 11]), those in Stage B would decrease by 25% (from 643 [Table 4] to 483 [Table 11]), those in Stage C by 24% (from 505 [Table 4] to 385 [Table 11]) and those with distant spread by 36% (from 395 [Table 4] to 251 [Table 11]).

	Table 1	1: E	stim	nate	ed New	v Cases c	of Co	olor	ecta	l Canc	er by Du	kes	' Sta	ige	
					Betv	veen the A	Ages	of 4	5 an	d 79					
				L	n a Britis	h Columbia	a Birt	h Col	nort	of 40.00	0				
					With	a Co-ordinat	ted Scr	eenir	g Pro	gram					
		Fer	nale				M	lale	0	0	Тс	otal Po	opula	tion	
	Estimated	N	ew CR	Cby	Stage	Estimated	N	ew CF	C by S	Stage	Estimated	N	ew CF	C by S	Stage
Age	New CRC	А	В	С	Distant	New CRC	А	В	С	Distant	New CRC	А	В	С	Distant
45	2.8	0.7	0.9	0.7	0.5	6.7	1.7	2.2	1.7	1.1	9.5	2.4	3.1	2.4	1.6
46	2.8	0.7	0.9	0.7	0.5	6.7	1.7	2.1	1.7	1.1	9.5	2.4	3.1	2.4	1.6
47	2.8	0.7	0.9	0.7	0.5	6.6	1.7	2.1	1.7	1.1	9.5	2.4	3.0	2.4	1.6
48	2.8	0.7	0.9	0.7	0.5	6.6	1.7	2.1	1.7	1.1	9.4	2.4	3.0	2.4	1.6
49	2.8	0.7	0.9	0.7	0.5	6.6	1.7	2.1	1.7	1.1	9.4	2.4	3.0	2.4	1.6
50	8.1	2.0	2.6	2.1	1.4	8.9	2.3	2.9	2.3	1.5	17.0	4.3	5.5	4.4	2.9
51	8.1	2.0	2.6	2.1	1.4	8.9	2.3	2.9	2.3	1.5	17.0	4.3	5.5	4.4	2.8
52	8.1	2.0	2.6	2.1	1.4	8.9	2.2	2.9	2.3	1.5	16.9	4.3	5.5	4.3	2.8
53	8.0	2.0	2.6	2.1	1.3	8.8	2.2	2.8	2.3	1.5	16.9	4.3	5.4	4.3	2.8
54	8.0	2.0	2.6	2.1	1.3	8.8	2.2	2.8	2.3	1.5	16.8	4.3	5.4	4.3	2.8
55	9.8	2.5	3.2	2.5	1.6	16.0	4.1	5.2	4.1	2.7	25.8	6.5	8.3	6.6	4.3
56	9.8	2.5	3.2	2.5	1.6	15.9	4.0	5.1	4.1	2.7	25.7	6.5	8.3	6.6	4.3
57	9.8	2.5	3.1	2.5	1.6	15.9	4.0	5.1	4.1	2.7	25.6	6.5	8.3	6.6	4.3
58	9.7	2.5	3.1	2.5	1.6	15.8	4.0	5.1	4.1	2.6	25.5	6.5	8.2	6.6	4.3
59	9.7	2.5	3.1	2.5	1.6	15.7	4.0	5.1	4.0	2.6	25.4	6.4	8.2	6.5	4.3
60	16.1	4.1	5.2	4.1	2.7	25.6	6.5	8.2	6.6	4.3	41.7	10.5	13.4	10.7	7.0
61	16.0	4.1	5.2	4.1	2.7	25.4	6.4	8.2	6.5	4.3	41.4	10.5	13.4	10.6	6.9
62	16.0	4.0	5.1	4.1	2.7	25.2	6.4	8.1	6.5	4.2	41.2	10.4	13.3	10.6	6.9
63	15.9	4.0	5.1	4.1	2.7	25.0	6.3	8.1	6.4	4.2	40.9	10.3	13.2	10.5	6.9
64	15.8	4.0	5.1	4.1	2.7	24.8	6.3	8.0	6.4	4.2	40.6	10.3	13.1	10.4	6.8
65	21.7	5.5	7.0	5.6	3.6	29.3	7.4	9.4	7.5	4.9	51.0	12.9	16.4	13.1	8.5
66	21.5	5.4	6.9	5.5	3.6	29.0	7.3	9.3	7.5	4.9	50.5	12.8	16.3	13.0	8.5
67	21.4	5.4	6.9	5.5	3.6	28.6	7.2	9.2	7.4	4.8	50.0	12.7	16.1	12.9	8.4
68	21.2	5.4	6.8	5.5	3.6	28.3	7.2	9.1	7.3	4.7	49.5	12.5	16.0	12.7	8.3
69	21.0	5.3	6.8	5.4	3.5	27.9	7.1	9.0	7.2	4.7	48.9	12.4	15.8	12.6	8.2
/0	31.3	7.9	10.1	8.0	5.2	44.0	11.1	14.2	11.3	7.4	/5.3	19.0	24.3	19.4	12.6
/1	31.0	7.8	10.0	8.0	5.2	43.3	11.0	14.0	11.1	7.3	74.3	18.8	23.9	19.1	12.5
/2	30.6	7.7	9.9	7.9	5.1	42.5	10.8	13.7	10.9	7.1	73.1	18.5	23.6	18.8	12.3
73	30.2	7.6	9.7	7.8	5.1	41.6	10.5	13.4	10.7	7.0	71.9	18.2	23.2	18.5	12.1
	29.8 20 F	7.5 0.7	9.0 12.4	1.1	5.0	40.7	10.3	15.1	10.5	0.8 0.2	/0.5	1/.8	22.7	19.1	14.7
75	38.5 27.0	9.7	12.4	9.9	0.5	49.4	12.5	15.9	12.7	8.3 0.1	87.9	22.2	28.3	22.0	14.7
	57.9 27 1	9.0 0 4	12.Z	9.7 0 E	0.3	40.1 16.6	11.Z	15.0	12.4	0.1 7 0	02.9	21./ 21.2	27.7	∠∠.⊥ 21 ⊑	14.4
70	37.1	9.4 0.2	12.U	9.5 0 2	0.Z	40.0 //⊑ 1	11.8 11 /	17.0 17 E	12.0	7.8 7.6	ŏ3.ŏ 91 ⊑	21.2 20 <i>6</i>	27.0	21.5	14.U 12 7
70	30.5	9.2 9.0	11 4	9.5 9.1	0.1 5 Q	43.1	11.4 11.0	14.5 14 0	11.0	7.0 7.3	78.9	20.0 20.0	20.3 25 <i>4</i>	20.9 20.3	13.7
			11.4	J.1	J.5			14.0	11.2	,.5	10.9	20.0	20.4	20.5	13.2
Total	628	159	202	161	105	871	220	281	224	146	1,499	379	483	385	251

Change in Number of Deaths

• We then recalculated the number of deaths based on the number of new cases and the stage at diagnosis associated with the implementation of a co-ordinated CRC screening program that achieved a 77% screening rate in a BC birth cohort of 40,000. The number of deaths would be reduced by 188 or 26.4% (from 710 [Table 8] to 523 [Table 12]).

	Т	able	12:	Estim	ated	Ċ	olor	ecta	l Car	ncer D	eaths	s by D	ukes	' Sta	ge	
					Bet	w	veen	the A	ges o	f 45 ar	nd 79					
				lr	n a Briti	sł	n Colu	umbia	Birth	Cohort	of 40,0	000				
					Wit	h a	a Co-c	ordinate	d Scre	ening Pro	ogram ,					
			Femal	es					Male	s			Tota	I Popul	lation	
		Dukes	s' Stage	9				Dukes	' Stage				Dukes	s' Stage		
Age	A	В	С	Distant	Total	-	A	В	С	Distant	Total	A	В	С	Distant	Total
45	0.0	0.0	0.0	0.2	0.2		0.0	0.1	0.1	0.4	0.5	0.0	0.1	0.1	0.5	0.7
46	0.0	0.1	0.1	0.2	0.4		0.1	0.2	0.2	0.6	1.0	0.1	0.2	0.3	0.8	1.4
4/	0.0	0.1	0.1	0.3	0.6		0.1	0.3	0.3	0.8	1.4	0.1	0.4	0.4	1.1	2.0
48	0.1	0.2	0.2	0.4	0.8		0.2	0.4	0.4	0.8	1.8	0.2	0.5	0.6	1.2	2.5
49 50	0.1	0.2	0.2	0.4	0.9		0.2	0.5	0.5	0.9	2.1	0.3	0.7	0.7	1.3	3.0
50	0.1	0.5	0.5	0.8	1.5		0.2	0.5	0.0	1.2	2.5	0.4	0.8	1.0	1.9 2.1	4.0
52	0.2	0.4	0.4	0.9	2.5		0.3	0.0	0.0	1.2	2.7	0.4	1.0	1.0	2.1	4.0 5 1
52	0.2	0.5	0.5	1.1	2.2		0.3	0.0	0.7	1.2	2.0	0.5	1.1	1 3	2.5	5.4
54	0.3	0.6	0.7	1.1	2.7		0.3	0.7	0.7	1.3	3.0	0.6	1.3	1.4	2.4	5.7
55	0.3	0.7	0.7	1.3	2.9		0.4	0.8	0.8	1.8	3.8	0.7	1.5	1.5	3.0	6.7
56	0.3	0.7	0.7	1.3	3.0		0.4	0.9	1.0	1.9	4.2	0.7	1.6	1.7	3.3	7.3
57	0.3	0.7	0.8	1.4	3.2		0.5	1.0	1.1	2.1	4.7	0.8	1.8	1.8	3.5	7.9
58	0.3	0.7	0.8	1.4	3.2		0.5	1.1	1.2	2.2	5.0	0.9	1.9	2.0	3.6	8.3
59	0.4	0.8	0.8	1.4	3.3		0.6	1.3	1.3	2.2	5.4	0.9	2.0	2.1	3.6	8.7
60	0.4	0.9	0.9	1.8	4.0		0.6	1.4	1.4	2.9	6.4	1.0	2.3	2.3	4.7	10.4
61	0.4	1.0	1.0	2.0	4.4		0.7	1.6	1.6	3.2	7.0	1.1	2.5	2.6	5.2	11.4
62	0.5	1.1	1.1	2.2	4.8		0.8	1.7	1.8	3.4	7.7	1.2	2.8	2.9	5.6	12.5
63	0.5	1.2	1.2	2.2	5.1		0.8	1.8	1.9	3.5	8.1	1.4	3.0	3.1	5.7	13.2
64	0.6	1.3	1.3	2.3	5.4		0.9	2.0	2.1	3.5	8.5	1.5	3.3	3.4	5.8	13.9
65	0.6	1.4	1.4	2.7	6.0		0.9	2.1	2.1	3.8	8.9	1.5	3.4	3.5	6.5	15.0
66	0.6	1.4	1.5	2.8	6.4		1.0	2.1	2.2	3.9	9.2	1.6	3.5	3.7	6.7	15.6
67	0.7	1.5	1.6	3.0	6.8		1.0	2.2	2.3	4.0	9.4	1.7	3.7	3.9	7.0	16.2
68	0.7	1.6	1.7	3.0	7.0		1.0	2.2	2.3	4.0	9.6	1.7	3.8	4.0	7.0	16.6
69	0.8	1.7	1.8	3.0	7.2		1.0	2.3	2.3	4.0	9.7	1.8	4.0	4.1	7.0	16.9
70	1.1	2.4	2.6	4.9	11.0		1.5	3.3	3.6	6.7	15.2	2.7	5.8	6.2	11.6	26.2
/1	1.2	2.6	2.9	4.9	11.6		1.6	3.6	4.0	6.8	16.0	2.8	6.2	7.0	11./	27.7
/2	1.2	2.8	3.3	4.9	12.2		1.7	3.9	4.5	6.8	16.9	2.9	6.7	7.8	11./	29.0
/3	1.3	2.9	3.3	4.8	12.3		1.8	4.0	4.6	6.6	17.0	3.1	6.9 7 1	7.9	11.4	29.3
/4 75	1.4 1 c	3.U 2.2	3.3 2 C	4./ ⊑ C	14.0		1.9 2.0	4.⊥ ∕\/	4.6 4.0	0.4 סיס	1/.1 19 E	3.3 ว เ	7.1 7.6	8.U 0 г	11.1 12.0	29.4 22 E
75	1.5	5.5 2 /	3.0 2.0	5.0 5.7	14.U		2.U 2.0	4.4 1 1	4.9 5 0	7.5 7.2	10.3 12 2	5.5 2 E	7.0 7.0	0.5 0 0	12.9	32.3 22 1
70	1.5	3.4 2 5	3.0 ∕1 ∩	5.7 5.2	1/1 Q		2.0 2 0	4.4 4 5	5.U 5.1	7.5 7 2	10.0 18 Q	3.5	7.0 2.0	0.0 0 N	12 1	33.1 32 7
78	1.0	3.5 २.5	4.0 4.0	5.0	14.0		2.0 2 0	4.5 4.5	5.1	7.5 7.1	18.5	3.0	8.0 8.0	9.0 Q 1	17 R	33.7
79	1.6	3.6	4.0	5.6	14.9		2.0	4.5	5.0	6.9	18.5	3.7	8.1	9.1	12.5	33.4
Total	22.7	50.4	55.2	90.5	218.8	-	31.7	70.2	76.6	125.5	304.0	54.4	120.6	131.8	216.0	522.8

Change in Life Years and Quality-Adjusted Life Years Lost

• We then recalculated the number of life years and QALYs lost based on the number of new cases and the stage at diagnosis associated with the implementation of a co-ordinated CRC screening program that achieved a 77% screening rate in a BC birth cohort of 40,000. The number of life years lost would be reduced by 3,442 or 26.6% (from 12,950 [Table 9] to 9,508 [Table 13]) while the QALYs lost would be reduced by 400 or 19.0% (from 2,099 [Table 9] to 1,699 [Table 13]).

	Та	able	13: E	İstima	ted	Colo	rectal	Cano	er Q	ALYs a	and L	ife Ye	ears Lo	st	
					Be	twee	n the A	ges c	of 45 a	and 79					
				Ir	n a Bri	tish C	olumbia	Birth	Coho	rt of 40,	000				
					W	ith a C	o-ordinate	ed Scre	ening F	Program					
	Treatm	nent Q/	ALYs	Living in	n Remi	ssion +	Metas	tatic Q	ALYs	Total	QALYs	Lost	Life	e Years L	ost
Δσρ	Female	Male	Total	Female	Male	Total	Female	Male	Total	Female	Male	Total	Female	Male	Total
45	0.3	0.7	1.0	0.1	0.4	0.5	0.3	0.7	1.0	1	2	2	9	20	29
46	0.3	0.7	1.0	0.3	0.7	1.0	0.5	1.3	1.8	1	3	4	17	36	52
47	0.3	0.7	1.0	0.4	1.0	1.4	0.8	1.9	2.7	2	4	5	24	51	75
48	0.3	0.7	1.0	0.5	1.3	1.8	1.0	2.3	3.3	2	4	6	29	61	90
49	0.3	0.7	1.0	0.6	1.5	2.2	1.2	2.8	4.0	2	5	7	34	71	105
50	0.8	0.9	1.8	1.1	2.0	3.0	2.1	3.5	5.5	4	6	10	55	82	138
51	0.8	0.9	1.8	1.4	2.3	3.8	2.6	3.7	6.3	5	7	12	67	85	152
52	0.8	0.9	1.8	1.8	2.7	4.5	3.1	3.9	7.0	6	8	13	78	88	166
53	0.8	0.9	1.8	2.1	3.0	5.2	3.4	4.0	7.4	6	8	14	84	88	172
54	0.8	0.9	1.8	2.4	3.4	5.8	3.8	4.1	7.9	7	8	15	90	88	178
55	1.0	1.7	2.7	2.8	4.1	7.0	4.0	5.2	9.2	8	11	19	93	107	199
56	1.0	1.7	2.7	3.2	4.8	8.1	4.2	5.8	10.0	8	12	21	94	117	211
57	1.0	1.7	2.7	3.6	5.5	9.1	4.3	6.5	10.8	9	14	23	95	126	221
58	1.0	1.7	2.7	4.0	6.1	10.2	4.4	6.9	11.4	9	15	24	94	130	225
59	1.0	1.6	2.7	4.4	6.7	11.2	4.6	7.4	11.9	10	16	26	93	134	228
60	1.7	2.8	4.5	5.3	8.1	13.4	5.6	9.0	14.6	13	20	32	108	154	262
61	1.7	2.7	4.5	6.0	9.2	15.2	6.2	9.9	16.1	14	22	36	116	164	280
62	1.7	2.7	4.4	6.7	10.3	17.0	6.8	10.8	17.6	15	24	39	123	173	296
63	1.7	2.7	4.4	7.3	11.3	18.7	7.2	11.4	18.7	16	25	42	126	176	302
64	1.7	2.7	4.4	8.0	12.3	20.3	7.6	12.0	19.7	17	27	44	129	178	306
65	2.3	3.2	5.5	8.9	13.6	22.5	8.5	12.6	21.1	20	29	49	137	180	317
66	2.3	3.1	5.4	9.9	14.8	24.6	9.0	13.0	22.0	21	31	52	141	177	318
67	2.3	3.1	5.4	10.7	16.0	26.7	9.5	13.3	22.8	23	32	55	143	174	318
68	2.3	3.0	5.3	11.6	1/.1	28.7	9.9	13.5	23.4	24	34	57	142	169	312
69	2.3	3.0	5.3	12.5	18.2	30.7	10.2	13.7	23.9	25	35	60 92	141	164	305
70	3.2	4.5	7.7	14.5	21.1	35.0	10.4	22.0	39.1 41 2	34	48	82	206	240	453
	5.Z	4.4	7.0	15.7	22.9	30.0 41 E	10.1	25.9	41.Z	20	51	07 02	208	240	450
72	3.1 2.1	4.4 1 2	7.5 7.4	10.9	24.5	41.5	10.1	25.1	43.5 12 G	30 20	54	92	208	249	457
75	5.1 2.1	4.5 1 2	7.4	10.1	20.1	44.Z	10.5 10 /	25.5	45.0	59 41	50	95	102	259	459
74	2.1	4.Z	0.0	19.2	27.7	40.9 50 5	20.9	25.4	45.0 10 1	41	57	90 109	206	220	420
75	3.5	7.T	9.0 8 Q	20.0 77 2	29.7	52 0	20.8 21 /	27.0 27.0	40.4 10 2	40 ∕IQ	6/	112	200	233	441 176
70	3.5	4.9	0.0 8.6	22.3 73 8	33 /	57.5	21.4 22 0	27.3		-+0 50	66	116	105	220	410
79	3.0	4.0 1.6	0.0 g g	23.0	25.4	60 2	22.0 22.1	20.2 27 0	50.1	50	68	110	195	213	282
79	3.6	4.4	8.1	26.5	36.7	63.2	22.1	27.9	49.7	52	69	121	176	188	363
	66	91	156	319	465	784	318	441	759	702	997	1,699	4,239	5,269	9,508

Potential Harms Associated with the Intervention(s)

- Complication rates following screening colonoscopy occur at a rate of 0.84 minor bleeds, 1.08 major bleeds (requiring hospitalization), 0.53 perforations and 0.02 deaths per 1,000 colonoscopies.⁶⁶⁶
- To estimate the number of colonoscopies required in a BC birth cohort, we first assumed that 77% of the population ages 45 to 75 would receive a FIT every two years. Furthermore, 12.4% of FIT would return an abnormal result that required a follow-up colonoscopy.⁶⁶⁷ Of those referred to a follow-up colonoscopy, 77.4% would receive the colonoscopy.⁶⁶⁸ Half (50%) of colonoscopies would find low or high risk polyps or CRC while the other half would return a negative result. Individuals with a negative colonoscopy (i.e., they had a false positive FIT) would not need to be screened by FIT for the next 10 years. Based on these assumptions, 30,843 colonoscopies would be required in the BC birth cohort (see Table 14).
- We then multiplied the volume of colonoscopies by the complication rates noted above to estimate that there would be 26 minor bleeds, 33 major bleeds, 16 perforations and 0.61 death (see Table 14).

⁶⁶⁶ Fitzpatrick-Lewis D. Usman A, Ciliska D et al. *Screening for Colorectal Cancer*. Ottawa: Canadian Task Force on Preventive Health Care. 2015. Available online at <u>https://canadiantaskforce.ca/wp-</u>content/uploads/2016/03/crc-screeningfinal031216.pdf. Accessed November 2021.

 ⁶⁶⁷ BC Cancer Colon Screening. 2019 Program Results. March 2021. Available online at http://www.bccancer.bc.ca/screening/Documents/Colon-Program-Results-2019.pdf. Accessed January 2022.
 ⁶⁶⁸ Ibid.

				Tab	le 14:	Num	ber d	of FIT	I, Colon	osco	oies a	and 0	Comp	licati	onsl	Due t	o Col	onosco	λd					
									Betw	een th	e Age	s of 2	t5 anc	175										
									n a British	n Colum	bia Bir	th Co	hort o	f 40,00	00									
				Female	0)					CO-OLAI	lated S	creen	Nale Male	gram						rotal Po	pulatior			
	Total					Comp	lications								Comp	lications	Γ			Colono		Complic	ations	
	Life	FIT	Colon	oscopy	Mino	ir Majoi	· Perfor		Total Life	ΕŢ	ö	olonosce	Vqc	Minor	Major	Perfor		Total Life	FIT	scopy	Minor	Major F	erfor	
Age	Years	#	#	os Neg	Bleet	d Bleed	l ation	Death	Years	#	#	Pos	Neg	Bleed	Bleed	ation	Death	Years	#	#	Bleed	Bleed	ation	Death
45	19,661	7,569 72	26 3	63 363	0.6	0.8	0.4	0.01	19,094	7,351	706	353	353	0.6	0.8	0.4	0.01	38,755	14,921	1,432	1.2	1.5	0.8	0.03
46	19,643	7,199 69	91 3.	45 345	0.6	0.7	0.4	0.01	19,047	6,980	670	335	335	0.6	0.7	0.4	0.01	38,690	14,180	1,361	1.1	1.5	0.7	0.03
47	19,625	6,847 65	57 3.	29 329	0.6	0.7	0.3	0.01	18,996	6,626	636	318	318	0.5	0.7	0.3	0.01	38,621	13,473	1,293	1.1	1.4	0.7	0.03
48	19,605	6,511 62	25 3.	12 312	0.5	0.7	0.3	0.01	18,943	6,287	603	302	302	0.5	0.7	0.3	0.01	38,548	12,798	1,228	1.0	1.3	0.7	0.02
49	19,584	6,190 55	94 2	97 297	0.5	0.6	0.3	0.01	18,887	5,964	572	286	286	0.5	0.6	0.3	0.01	38,470	12,154	1,166	1.0	1.3	0.6	0.02
50	19,561	5,884 56	55 2.	82 282	0.5	0.6	0.3	0.01	18,827	5,655	543	271	271	0.5	0.6	0.3	0.01	38,388	11,539	1,107	0.9	1.2	0.6	0.02
51	19,537	5,593 53	37 2	68 268	0.5	0.6	0.3	0.01	18, 763	5,359	514	257	257	0.4	0.6	0.3	0.01	38,300	10,951	1,051	0.9	1.1	0.6	0.02
52	19,511	5,314 51	10 2	55 255	0.4	0.6	0.3	0.01	18,695	5,075	487	244	244	0.4	0.5	0.3	0.01	38,206	10,390	667	0.8	1.1	0.5	0.02
23	19,484	5,049 48	85 2 [.]	42 242	0.4	0.5	0.3	0.01	18,622	4,804	461	231	231	0.4	0.5	0.2	0.01	38,106	9,852	946	0.8	1.0	0.5	0.02
54	19,454	4,795 46	50 2.	30 230	0.4	0.5	0.2	0.01	18,545	4,543	436	218	218	0.4	0.5	0.2	0.01	37,999	9,338	896	0.8	1.0	0.5	0.02
55	19,422	4,916 47	72 2	36 236	0.4	0.5	0.3	0.01	18,461	4,646	446	223	223	0.4	0.5	0.2	0.01	37,884	9,562	918	0.8	1.0	0.5	0.02
56	19,388	5,012 48	81 2.	41 241	0.4	0.5	0.3	0.01	18,372	4,724	453	227	227	0.4	0.5	0.2	0.01	37,761	9,736	934	0.8	1.0	0.5	0.02
57	19,352	5,086 48	38 2.	44 244	0.4	0.5	0.3	0.01	18,277	4,778	459	229	229	0.4	0.5	0.2	0.01	37,629	9,865	947	0.8	1.0	0.5	0.02
58	19,312	5,139 49	93 2.	47 247	0.4	0.5	0.3	0.01	18,175	4,812	462	231	231	0.4	0.5	0.2	0.01	37,487	9,951	955	0.8	1.0	0.5	0.02
59	19,270	5,173 49	97 2.	48 248	0.4	0.5	0.3	0.01	18,065	4,825	463	232	232	0.4	0.5	0.2	0.01	37,335	9,998	960	0.8	1.0	0.5	0.02
60	19,224	5,190 49	98 2.	49 249	0.4	0.5	0.3	0.01	17,947	4,819	463	231	231	0.4	0.5	0.2	0.01	37,171	10,009	961	0.8	1.0	0.5	0.02
61	19,174	5,190 45	98 2.	49 249	0.4	0.5	0.3	0.01	17,820	4,796	460	230	230	0.4	0.5	0.2	0.01	36,995	9,986	958	0.8	1.0	0.5	0.02
62	19,121	5,176 49	97 2.	48 248	0.4	0.5	0.3	0.01	17,684	4,757	457	228	228	0.4	0.5	0.2	0.01	36,805	9,933	953	0.8	1.0	0.5	0.02
63	19,063	5,147 49	94 2.	47 247	0.4	0.5	0.3	0.01	17,537	4,703	451	226	226	0.4	0.5	0.2	0.01	36,600	9,850	945	0.8	1.0	0.5	0.02
64	19,000	5,106 49	90 2.	45 245	0.4	0.5	0.3	0.01	17,379	4,634	445	222	222	0.4	0.5	0.2	0.01	36,379	9,740	935	0.8	1.0	0.5	0.02
65	18,932	5,071 48	87 2.	43 243	0.4	0.5	0.3	0.01	17,208	4,569	439	219	219	0.4	0.5	0.2	0.01	36,140	9,640	925	0.8	1.0	0.5	0.02
99	18,858	5,039 48	84 2	42 242	0.4	0.5	0.3	0.01	17,024	4,506	432	216	216	0.4	0.5	0.2	0.01	35,882	9,545	916	0.8	1.0	0.5	0.02
67	18,777	5,011 48	81 2	40 240	0.4	0.5	0.3	0.01	16,826	4,442	426	213	213	0.4	0.5	0.2	0.01	35,603	9,453	907	0.8	1.0	0.5	0.02
88	18,689	4,983 47	78 2	39 239	0.4	0.5	0.3	0.01	16,612	4,378	420	210	210	0.4	0.5	0.2	0.01	35,301	9,361	868	0.8	1.0	0.5	0.02
69	18,593	4,955 47	76 2.	38 238	0.4	0.5	0.3	0.01	16,381	4,310	414	207	207	0.3	0.4	0.2	0.01	34,974	9,265	889	0.7	1.0	0.5	0.02
2	18,489	4,926 47	73 2	36 236	0.4	0.5	0.3	0.01	16,132	4,239	407	203	203	0.3	0.4	0.2	0.01	34,620	9,165	880	0.7	0.9	0.5	0.02
71	18,375	4,895 47	70 2	35 235	0.4	0.5	0.2	0.01	15,863	4,162	399	200	200	0.3	0.4	0.2	0.01	34,237	9,057	869	0.7	0.9	0.5	0.02
22	18,250	4,860 46	56 2	33 233	0.4	0.5	0.2	0.01	15,573	4,079	391	196	196	0.3	0.4	0.2	0.01	33,822	8,939	858	0.7	0.9	0.5	0.02
73	18,113	4,821 46	63 2	31 231	0.4	0.5	0.2	0.01	15,260	3,988	383	191	191	0.3	0.4	0.2	0.01	33,373	8,810	846	0.7	0.9	0.4	0.02
74	17,963	4,777 45	59 2	29 229	0.4	0.5	0.2	0.01	14,923	3,890	373	187	187	0.3	0.4	0.2	0.01	32,886	8,667	832	0.7	0.9	0.4	0.02
75	17,799	4,728 45	54 2	27 227	0.4	0.5	0.2	0.01	14,560	3,782	363	182	182	0.3	0.4	0.2	0.01	32,359	8,511	817	0.7	0.9	0.4	0.02
Total		166, 155 15,	947 7,	973 7,97	3 13.4	17.2	8.5	0.32		152,482	14,635	7,317	7,317	12.3	15.8	7.8	0.29		318,637	30,582	26	33	16	0.61

- We assumed a utility loss equivalent to 2 days per colonoscopy performed (0.0055 QALYs per colonoscopy).⁶⁶⁹
- We assumed a utility loss equivalent to 2 days per minor bleeding event (0.0055 per bleeding event).⁶⁷⁰
- We assumed a utility loss equivalent to 2 weeks for non-lethal major complications (i.e., major bleed requiring hospitalization or perforation) associated with colonoscopy (0.0384 QALYs per major complication).⁶⁷¹
- The colonoscopies and associated minor/major complications are associated with an estimated 208 QALYs lost while the 0.61 death attributable to colonoscopy is associated with 16.5 life years lost (see Table 15).

Tab	le 15:	Estir	mate	d QAL	Ys an	nd Lif	e Year	s Los	t Due	e to Co	lono	scop	y Comp	olicati	ions
					Be	twee	n the A	ges o	f 45 a	nd 79					
				Ir	a Bri	tish Co	olumbia	Birth	Cohor	t of 40,0	000				
					Wi	th a Co	o-ordinate	d Scree	ening P	rogram					
	Colo	onosco	ру	Minor (Complie	ation	Major	Comlica	ation	Total	QALYs	Lost	Life	Years L	ost
Age	Female	Male	Total	Female	Male	Total	Female	Male	Total	Female	Male	Total	Female	Male	Total
45	4.7	4.5	9.2	0.00	0.00	0.01	0.01	0.01	0.01	4.7	4.6	9.2	0.6	0.5	1.1
46	4.5	4.3	8.8	0.00	0.00	0.01	0.01	0.01	0.01	4.5	4.3	8.8	0.6	0.5	1.0
47	4.2	4.1	8.3	0.00	0.00	0.01	0.01	0.01	0.01	4.2	4.1	8.3	0.5	0.5	1.0
48	4.0	3.9	7.9	0.00	0.00	0.01	0.01	0.01	0.01	4.0	3.9	7.9	0.5	0.4	0.9
49	3.8	3.7	7.5	0.00	0.00	0.01	0.01	0.01	0.01	3.8	3.7	7.5	0.4	0.4	0.8
50	3.8	3.6	7.4	0.00	0.00	0.01	0.01	0.01	0.01	3.8	3.6	7.4	0.4	0.4	0.8
51	3.6	3.4	7.0	0.00	0.00	0.01	0.01	0.01	0.01	3.6	3.5	7.1	0.4	0.3	0.7
52	3.4	3.3	6.7	0.00	0.00	0.01	0.01	0.01	0.01	3.4	3.3	6.7	0.4	0.3	0.7
53	3.3	3.1	6.3	0.00	0.00	0.01	0.01	0.00	0.01	3.3	3.1	6.4	0.3	0.3	0.6
54	3.1	2.9	6.0	0.00	0.00	0.01	0.00	0.00	0.01	3.1	2.9	6.0	0.3	0.3	0.6
55	3.2	3.0	6.2	0.00	0.00	0.01	0.01	0.00	0.01	3.2	3.0	6.2	0.3	0.3	0.6
56	3.2	3.0	6.3	0.00	0.00	0.01	0.01	0.00	0.01	3.2	3.0	6.3	0.3	0.2	0.5
57	3.3	3.1	6.4	0.00	0.00	0.01	0.01	0.00	0.01	3.3	3.1	6.4	0.3	0.2	0.5
58	3.3	3.1	6.4	0.00	0.00	0.01	0.01	0.00	0.01	3.3	3.1	6.4	0.3	0.2	0.5
59	3.3	3.1	6.4	0.00	0.00	0.01	0.01	0.01	0.01	3.3	3.1	6.5	0.3	0.2	0.5
60	3.4	3.2	6.6	0.00	0.00	0.01	0.01	0.01	0.01	3.4	3.2	6.6	0.3	0.2	0.5
61	3.4	3.2	6.6	0.00	0.00	0.01	0.01	0.01	0.01	3.4	3.2	6.6	0.3	0.2	0.5
62	3.4	3.1	6.6	0.00	0.00	0.01	0.01	0.01	0.01	3.4	3.2	6.6	0.3	0.2	0.5
63	3.4	3.1	6.5	0.00	0.00	0.01	0.01	0.01	0.01	3.4	3.1	6.5	0.2	0.2	0.4
64	3.4	3.1	6.4	0.00	0.00	0.01	0.01	0.00	0.01	3.4	3.1	6.5	0.2	0.2	0.4
65	3.4	3.0	6.4	0.00	0.00	0.01	0.01	0.00	0.01	3.4	3.0	6.4	0.2	0.2	0.4
66	3.3	3.0	6.3	0.00	0.00	0.01	0.01	0.00	0.01	3.3	3.0	6.3	0.2	0.2	0.4
67	3.3	2.9	6.2	0.00	0.00	0.01	0.01	0.00	0.01	3.3	2.9	6.3	0.2	0.2	0.4
68	3.3	2.9	6.2	0.00	0.00	0.01	0.01	0.00	0.01	3.3	2.9	6.2	0.2	0.1	0.3
69	3.3	2.8	6.1	0.00	0.00	0.01	0.01	0.00	0.01	3.3	2.9	6.1	0.2	0.1	0.3
70	3.4	3.0	6.4	0.00	0.00	0.01	0.01	0.00	0.01	3.4	3.0	6.4	0.2	0.1	0.3
71	3.4	2.9	6.3	0.00	0.00	0.01	0.01	0.00	0.01	3.4	2.9	6.3	0.2	0.1	0.3
72	3.4	2.8	6.2	0.00	0.00	0.01	0.01	0.00	0.01	3.4	2.9	6.2	0.2	0.1	0.3
73	3.4	2.8	6.1	0.00	0.00	0.01	0.01	0.00	0.01	3.4	2.8	6.2	0.2	0.1	0.3
74	3.3	2.7	6.0	0.00	0.00	0.01	0.01	0.00	0.01	3.3	2.7	6.1	0.1	0.1	0.2
75	3.3	2.6	5.9	0.00	0.00	0.00	0.01	0.00	0.01	3.3	2.6	5.9	0.1	0.1	0.2
	108.5	99.4	207.9	0.09	0.08	0.17	0.17	0.16	0.33	108.8	99.6	208.4	9.0	7.5	16.5

 ⁶⁶⁹ Goede S, Rabeneck L, van Ballegooijen M et al. Harms, benefits and costs of fecal immunochemical testing versus guaiac fecal occult blood testing for colorectal cancer screening. *PLOS One.* 2017; 12(3): e0172864.
 ⁶⁷⁰ Knudsen A, Rutter C, Peterse E et al. *Colorectal Cancer Screening: An Updated Decision Analysis for the U.S. Preventive Services Task Force.* Agency for Healthcare Research and Quality. May, 2021.
 ⁶⁷¹ Goede S, Rabeneck L, van Ballegooijen M et al. Harms, benefits and costs of fecal immunochemical testing

^{6/1} Goede S, Rabeneck L, van Ballegooijen M et al. Harms, benefits and costs of fecal immunochemical testing versus guaiac fecal occult blood testing for colorectal cancer screening. *PLOS One*. 2017; 12(3): e0172864.

Summary of CPB – Males and Females

• Other assumptions used in assessing CPB are detailed in the Reference Document.

Based on these assumptions, the CPB associated with screening for colorectal cancer in adults ages 45-75 in a British Columbia birth cohort of 40,000 is 3,617 QALYs (Table 16, row *am*). The CPB of 3,617 represents the gap between no coverage and the 'best in the world' screening coverage estimated at 77%.

	Table 16: CPB of Screening and Treatment for Co	orectal Ca	ancer
	- Ages 45 - 75		
	In a BC Birth Cohort of 40.000		
Row Label	Variable	Base case	Data Source
а	Age to start screening	45	V
b	Age to stop screening	75	V
с	Years of 'protection' after stopping screening	4	Assumed
d	Life years lived between the ages of 45 and 79	1,240,816	Table 2
	Total Burden (QALYs) in Birth Cohort Without Screening		
e	Incidence of CRC per 100,000 life years	145	Table 2
	# of new CRC cases by Dukes' Stage		
f	A	262	Table 4
g	В	643	Table 4
h	С	505	Table 4
i	Distant	395	Table 4
i	Total new CRC case in birth cohort	1,804	Table 4
	# of CRC deaths by Dukes' Stage		
k	A	38	Table 8
1	В	161	Table 8
m	С	173	Table 8
n	Distant	340	Table 8
0	Total new CRC deaths in birth cohort	710	Table 8
р	Life years lost due to CRC deaths	12,950	Table 9
q	Life years lost per CRC death	18.2	= p / o
r	QALYs lost due to living with CRC	2,099	Table 9
s	Total QALYs lost without screening	15,049	= p + r
	Total Burden (QALYs) in Birth Cohort With Screening		
t	% of eligible cohort screened	77%	V
u	Incidence of CRC per 100,000 life years	121	=(z / d) * 100,000
	# of new CRC cases by Dukes' Stage		
v	Α	379	Table 11
w	В	483	Table 11
x	C	385	Table 11
у	Distant	251	Table 11
z	Total new CRC case in birth cohort	1,499	Table 11
	# of CRC deaths by Dukes' Stage		
аа	A	54	Table 12
ab	В	121	Table 12
ас	C	132	Table 12
ad	Distant	216	Table 12
ae	Total new CRC deaths in birth cohort	523	Table 12
af	Life years lost due to CRC deaths	9,508	Table 13
ag	Life years lost per CRC death	18.2	= af / ae
ah	QALYs lost due to living with CRC	1,699	Table 13
	Harms Due to Colonoscopies		
ai	Life years lost due to colonoscopies	17	Table 15
aj	QALYs lost due to colonoscopies	208	Table 15
	Net QALYs Gained With Screening		
ak	Net life years gained	3,426	= p - af - ai
al	Net QALYs gained	191	= r - ah - aj
am	Total QALYs gained (CPB) - No screening to 77%	3,617	= ak + al
an	Total QALYs gained (CPB) - Screening rate improves from 50% to 77%	1,268	= (1-50/77) * am
ao	Total QALYs gained (CPB) - Screening rate improves from 35% to 77%	1,973	= (1-35/77) * am

√ = Estimates from the literature

Sensitivity Analysis – Males and Females

We also modified several major assumptions and recalculated the CPB as follows:

- Assume that the effectiveness of screening in reducing the incidence of CRC is reduced from 22% to 17%: CPB = 3,134
- Assume that the effectiveness of screening in reducing the incidence of CRC is increased from 22% to 26%: CPB = 4,003
- Reduced QoL impact. Use the lower limit of the disutility weights associated with the diagnosis and treatment (-0.288 to -0.193), remission (-0.049 to -0.031) and metastatic (-0.451 to -0.307) phases of living with CRC: CPB = 3,484
- Increased QoL impact. Use the upper limit of the disutility weights associated with the diagnosis and treatment (-0.288 to -0.399), remission (-0.049 to -0.072) and metastatic (-0.451 to -0.600) phases of living with CRC: CPB = 3,765
- Screening rate reduced from 77% to 50% (Table 16, row *t*): **CPB = 2,022**

Summary of CPB – Females Only

Based on these assumptions, the CPB associated with screening for colorectal cancer in females ages 45-75 in a British Columbia birth cohort of 40,000 is 1,583 QALYs (Table 17, row *am*). The CPB of 1,583 represents the gap between no coverage and the 'best in the world' screening coverage estimated at 77%.

	Table 17: CPB of Screening and Treatment for Co	lorectal C	ancer
	- Ages 45 - 75		
	Formales in a BC Birth Cohort of 40,000		
Dow Lobal	Veriable	Dece core	Data Course
ROW Label	Variable	Dase case	Data Source
d	Age to start screening	45	V
0	Age to stop screening	/5	V A source d
C	Vears of protection after stopping screening	4	Assumed
u	Total Burden (CALVa) in Birth Cohort Without Screening	042,278	Table 2
	Insidence of CBC per 100,000 life years	110	Table 2
e	thef new CBC seese by Dukes' Stage	118	Table 2
£	# OF NEW CRC Cases by Dukes Stage	110	Table 4
	A	260	
<u>8</u>	B	209	
n :	C Distant	211	
	Distant Tatal your CDC and in high ash art	166	Table 4
J	Hotal new CRC case in birth conort	/56	Table 4
	# of CRC deaths by Dukes Stage	10	Table 0
К	A	16	Table 8
1	B	70	
m	Distant	142	
n	Disidili Total now CDC dooths in hitth cohort	142	
0	Life years last due to CPC deaths	297	
p a	Life years lost due to CRC death	5,775	
<u>q</u>	CALVe lest due to living with CPC	19.4	
	CALLYS TOST due to Inving with CKC	6 642	
3	Total Burden (OALVs) in Birth Cohort With Screening	0,042	- p + i
+	% of eligible cohort screened	77%	<u>ار</u>
 	Incidence of CBC per 100 000 life years	98	=(z / d) * 100 000
u	# of new CRC cases by Dukes' Stage	50	-(27 07 100,000
v		159	Table 11
w	В	202	Table 11
x	- C	161	Table 11
v	Distant	105	Table 11
7	Total new CBC case in birth cohort	628	Table 11
	# of CBC deaths by Dukes' Stage	020	
аа	A	23	Table 12
ab	В	50	Table 12
ac	C	55	Table 12
ad	Distant	90	Table 12
ae	Total new CRC deaths in birth cohort	219	Table 12
af	Life years lost due to CBC deaths	4,239	Table 13
ая	Life years lost per CRC death	19.4	= af / ae
ah	OALYS lost due to living with CBC	702	Table 13
	Harms Due to Colonoscopies		
ai	Life years lost due to colonoscopies	9	Table 15
ai	OALYs lost due to colonoscopies	109	Table 15
•,	Net OALYs Gained With Screening		
ak	Net life years gained	1,526	= p - af - ai
al	Net QALYs gained	57	= r - ah - ai
am	Total QALYs gained (CPB) - No screening to 77%	1,583	= ak + al
an	Total QALYs gained (CPB) - Screening rate improves from 50% to 77%	555	= (1-50/77) * am
ao	Total QALYs gained (CPB) - Screening rate improves from 35% to 77%	863	= (1-35/77) * am

√ = Estimates from the literature

Sensitivity Analysis – Females Only

We also modified several major assumptions and recalculated the CPB for females as follows:

- Assume that the effectiveness of screening in reducing the incidence of CRC is reduced from 22% to 17%: CPB = 1,370
- Assume that the effectiveness of screening in reducing the incidence of CRC is increased from 22% to 26%: CPB = 1,753
- Reduced QoL impact. Use the lower limit of the disutility weights associated with the diagnosis and treatment (-0.288 to -0.193), remission (-0.049 to -0.031) and metastatic (-0.451 to -0.307) phases of living with CRC: CPB = 1,528
- Increased QoL impact. Use the upper limit of the disutility weights associated with the diagnosis and treatment (-0.288 to -0.399), remission (-0.049 to -0.072) and metastatic (-0.451 to -0.600) phases of living with CRC: CPB = 1,644
- Screening rate reduced from 77% to 50% (Table 17, row *t*): **CPB = 883**

Summary of CPB – Males Only

Based on these assumptions, the CPB associated with screening for colorectal cancer in males ages 45-75 in a British Columbia birth cohort of 40,000 is 2,034 QALYs (Table 18, row *am*). The CPB of 2,034 represents the gap between no coverage and the 'best in the world' screening coverage estimated at 77%.

	Table 18: CPB of Screening and Treatment for Co	lorectal Ca	ancer
	- Ages 45 - 75		
	Males in a DC Birth Cohort of 40,000		
Devi Jahal		Dava serve	Data Caura
Row Label	Variable	Base case	Data Source
a		45	V s/
d	Age to stop screening	/5	V
C	life up and lived between the appendix of an and 20	4	Assumed
d	Life years lived between the ages of 45 and 79	598,538	Table 2
	Insidence of CDC per 100 000 life years	175	Table 2
e	the finance of CRC per 100,000 file years	1/5	Table 2
f	A OF NEW CRC Cases by Dukes Stage	150	Table 4
T	A	152	Table 4
g	B	3/3	Table 4
n ·		293	Table 4
	Distant	230	Table 4
J	I otal new CRC case in birth cohort	1,048	Table 4
<u> </u>	# of CRC deaths by Dukes' Stage		
k	A	22	Table 8
	В	93	Table 8
m	C	100	Table 8
n	Distant	197	Table 8
0	Total new CRC deaths in birth cohort	413	Table 8
р	Life years lost due to CRC deaths	7,177	Table 9
q	Life years lost per CRC death	17.4	= p / o
r	QALYs lost due to living with CRC	1,230	Table 9
S	Total QALYs lost without screening	8,407	= p + r
	Total Burden (QALYs) in Birth Cohort With Screening		
t	% of eligible cohort screened	77%	V
u	Incidence of CRC per 100,000 life years	145	=(z / d) * 100,000
	# of new CRC cases by Dukes' Stage		
v	A	220	Table 11
w	В	281	Table 11
х	С	224	Table 11
У	Distant	146	Table 11
Z	Total new CRC case in birth cohort	871	Table 11
	# of CRC deaths by Dukes' Stage		
aa	A	32	Table 12
ab	В	70	Table 12
ас	C	77	Table 12
ad	Distant	125	Table 12
ae	Total new CRC deaths in birth cohort	304	Table 12
af	Life years lost due to CRC deaths	5,269	Table 13
ag	Life years lost per CRC death	17.3	= af / ae
ah	QALYs lost due to living with CRC	997	Table 13
	Harms Due to Colonoscopies		
ai	Life years lost due to colonoscopies	7	Table 15
aj	QALYs lost due to colonoscopies	100	Table 15
	Net QALYs Gained With Screening		
ak	Net life years gained	1,900	= p - af - ai
al	Net QALYs gained	134	= r - ah - aj
am	Total QALYs gained (CPB) - No screening to 77%	2,034	= ak + al
an	Total QALYs gained (CPB) - Screening rate improves from 50% to 77%	713	= (1-50/77) * am
ao	Total QALYs gained (CPB) - Screening rate improves from 35% to 77%	1,109	= (1-35/77) * am

√ = Estimates from the literature

Sensitivity Analysis - Males Only

We also modified several major assumptions and recalculated the CPB for males as follows:

- Assume that the effectiveness of screening in reducing the incidence of CRC is reduced from 22% to 17%: CPB = 1,764
- Assume that the effectiveness of screening in reducing the incidence of CRC is increased from 22% to 26%: **CPB = 2,250**
- Reduced QoL impact. Use the lower limit of the disutility weights associated with the diagnosis and treatment (-0.288 to -0.193), remission (-0.049 to -0.031) and metastatic (-0.451 to -0.307) phases of living with CRC: CPB = 1,956
- Increased QoL impact. Use the upper limit of the disutility weights associated with the diagnosis and treatment (-0.288 to -0.399), remission (-0.049 to -0.072) and metastatic (-0.451 to -0.600) phases of living with CRC: CPB = 2,120
- Screening rate reduced from 77% to 50% (Table 18, row *t*): **CPB = 1,140**

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with screening for colorectal cancer in adults ages 45-75 in a British Columbia birth cohort of 40,000.

In estimating CE, we made the following assumptions:

Cost of Screening and Interventions

- Fixed screening program (ColonCancerCheck) costs in Ontario averaged \$11.31 million (in 2013\$ or \$14.22 million in 2022\$) per year. The fixed costs include costs for the screening registry, program infrastructure, communications and advertising, and sending activity reports to primary care physicians.⁶⁷²
- In 2010 and 2011, 29.8% of 2,612,382 eligible persons ages 50-74 completed an FOBT in the 2-year period through Ontario's ColonCancerCheck or an estimated 389,245 screens per year.⁶⁷³ If we divide the annual fixed program cost by the number of annual screens we calculate an average fixed program cost of \$36.53 per screen (\$14.22 million / 389,245).
- Based on data from Ontario, the cost of the FIT kit and processing is \$31.11 (in 2013\$ or \$39.11 in 2022\$).⁶⁷⁴
- We have assumed that half of a physician office visit would be required to get a referral for a FIT kit. Results would be given to the patient at a second physician office visit. A negative result would require half of a physician office visit while a positive result and referral to colonoscopy would require an entire physician office visit.
- The cost of an office visit to a General Practitioner (GP) in BC is estimated at \$35.97.

 ⁶⁷² Goede S, Rabeneck L, van Ballegooijen M et al. Harms, benefits and costs of fecal immunochemical testing versus guaiac fecal occult blood testing for colorectal cancer screening. *PLOS One*. 2017; 12(3): e0172864.
 ⁶⁷³ Rabeneck L, Tinmouth J, Paszat L et al. Ontario's ColonCancerCheck: Results from Canada's first province-wide colorectal cancer screening program. *Cancer Epidemiology, Biomarkers & Prevention*. 2014; 23(3): 508 – 15.

⁶⁷⁴ Goede S, Rabeneck L, van Ballegooijen M et al. Harms, benefits and costs of fecal immunochemical testing versus guaiac fecal occult blood testing for colorectal cancer screening. *PLOS One*. 2017; 12(3): e0172864.

- Based on data from Ontario, the cost of a colonoscopy (no polypectomy) is \$872 (in 2013\$ or \$1,096 in 2022\$).⁶⁷⁵
- Based on data from Ontario, the cost of a colonoscopy (with polypectomy) is \$1,097 (in 2013\$ or \$1,379 in 2022\$).⁶⁷⁶
- Based on a PPV of 50%, we have estimated that half of colonoscopies would be with and half without polypectomy.
- Patient time costs resulting from receiving, as well as travelling to and from, a service are valued based on the average hourly wage rate in BC in 2022 (\$37.16 / hour). In the absence of specific data on the amount of time required, we assume two hours per service.
- Patient time costs are truncated at \$278.70 per day (7.5 hours times \$37.16). If, for example, we are valuing a patient's time costs while in hospital, each day would be assessed a value of \$278.70 (rather than 24 hours times \$37.16 or \$891.84).
- We have assumed two days of patient time lost per colonoscopy, including the time for bowel preparation, the procedure and recovery time.⁶⁷⁷
- Over the lifetime of the BC birth cohort, total colorectal screening costs (excluding patient time costs) would be \$79.69 million, consisting of \$11.64 million in fixed program costs, \$17.74 million in physician visit costs, \$12.46 million for the cost of the FIT kit and processing and \$37.84 million for colonoscopies (see Table 19).
- Over the lifetime of the BC birth cohort, patient time costs would be \$53.70 million, consisting of \$36.66 for time spent visiting their physician and \$17.05 million for time spent for bowel preparation, the procedure and recovery time for colonoscopies (see Table 20).

⁶⁷⁵ Goede S, Rabeneck L, van Ballegooijen M et al. Harms, benefits and costs of fecal immunochemical testing versus guaiac fecal occult blood testing for colorectal cancer screening. *PLOS One*. 2017; 12(3): e0172864.
⁶⁷⁶ Goede S, Rabeneck L, van Ballegooijen M et al. Harms, benefits and costs of fecal immunochemical testing versus guaiac fecal occult blood testing for colorectal cancer screening. *PLOS One*. 2017; 12(3): e0172864.
⁶⁷⁷ Jonas D, Russell L, Sandler R et al. Patient time requirements for screening colonoscopy. *American Journal of Gastroenterology*. 2007; 102(11), 2401 - 10.

							1014	\$3.73	τς τ ς τς τ ς	\$3.20 \$3.20	\$3.04	\$2.89	\$2.74	\$2.60	\$2.46	\$2.34	\$2.39	\$2.43	\$2.47	\$2.49	\$2.50	\$2.50	\$2.50	\$2.48	\$2.46	\$2.44	\$2.41	\$2.39	\$2.36	\$2.34	\$2.32	\$2.29	\$2.27	\$2.24	\$2.20	\$2.17	\$2.13	\$79.69
				ation		Colonos	copies	\$1.77	\$1.68 61.50	\$1.52 \$1.52	\$1.44	\$1.37	\$1.30	\$1.23	\$1.17	\$1.11	\$1.14	\$1.16	\$1.17	\$1.18	\$1.19	\$1.19	\$1.19	\$1.18	\$1.17	\$1.16	\$1.14	\$1.13	\$1.12	\$1.11	\$1.10	\$1.09	\$1.08	\$1.06	\$1.05	\$1.03	\$1.01	\$37.84
				l Popule				\$0.58	دد.0۶ در ۵۵	\$0.50 \$0.50	\$0.48	\$0.45	\$0.43	\$0.41	\$0.39	\$0.37	\$0.37	\$0.38	\$0.39	\$0.39	\$0.39	\$0.39	\$0.39	\$0.39	\$0.39	\$0.38	\$0.38	\$0.37	\$0.37	\$0.37	\$0.36	\$0.36	\$0.35	\$0.35	\$0.34	\$0.34	\$0.33	\$12.46
				Tota		Dhurioinn	Liiysidali	\$0.83	50.79	د/.0¢ \$0.71	\$0.68	\$0.64	\$0.61	\$0.58	\$0.55	\$0.52	\$0.53	\$0.54	\$0.55	\$0.55	\$0.56	\$0.56	\$0.56	\$0.55	\$0.55	\$0.54	\$0.54	\$0.53	\$0.53	\$0.52	\$0.52	\$0.51	\$0.50	\$0.50	\$0.49	\$0.48	\$0.47	\$17.74
						Fixed	ri uğı alı	\$0.55	\$0.52 22.05	\$0.49 \$0.47	\$0.44	\$0.42	\$0.40	\$0.38	\$0.36	\$0.34	\$0.35	\$0.36	\$0.36	\$0.36	\$0.37	\$0.37	\$0.36	\$0.36	\$0.36	\$0.36	\$0.35	\$0.35	\$0.35	\$0.34	\$0.34	\$0.33	\$0.33	\$0.33	\$0.32	\$0.32	\$0.31	\$11.64
				I	Cost of	Colonos	copies	\$0.87	50.83	۶0.75 \$0.75	\$0.71	\$0.67	\$0.64	\$0.60	\$0.57	\$0.54	\$0.55	\$0.56	\$0.57	\$0.57	\$0.57	\$0.57	\$0.57	\$0.56	\$0.56	\$0.55	\$0.54	\$0.54	\$0.53	\$0.52	\$0.51	\$0.50	\$0.49	\$0.48	\$0.47	\$0.46	\$0.45	\$18.11
					ost of FIT	Kit &	ocessing	\$0.29	\$0.27	\$0.25 \$0.25	\$0.23	\$0.22	\$0.21	\$0.20	\$0.19	\$0.18	\$0.18	\$0.18	\$0.19	\$0.19	\$0.19	\$0.19	\$0.19	\$0.19	\$0.18	\$0.18	\$0.18	\$0.18	\$0.17	\$0.17	\$0.17	\$0.17	\$0.16	\$0.16	\$0.16	\$0.15	\$0.15	\$5.96
S					ŭ	visits د مرقی م	5.00	50.41 20	90.39 EC 03	50.35	50.33	\$0.31	<u>50.30</u>	\$0.28	\$0.2 7	0.25	\$0.26	\$0.26	\$0.27	\$0.27	\$0.27	\$0.27	\$0.27	\$0.26	\$0.26	\$0.26	\$0.25	\$0.25	30.25	\$0.2 4	\$0.24	\$0.24	\$0.23	\$0.23	0.22	\$0.22	50.21	8.49
Cost		00	lions)			י ysician * ַנ	5	1,380	CU8(0)	9,733 9,733	9,232 \$	3,753	3,295	7,857	7,436	7,033	7,192	7,313 \$	7,397	7,448	7,468	7,460	7,424	7,364	7,280	7,173 \$	7,073	5,975	5,877	5,777 \$	5,672	5,561	5,443	5,314	5,174 \$	5,021	5,855	36,041 \$
ening	id 75	of 40,0	(\$ in mil	Male	ixed	ogram Pł	-0313	\$0.27 1		50.23 I	\$0.22	\$0.21 8	\$0.20 ⁸	\$0.19	\$0.18	\$0.17	\$0.17	\$0.17	\$0.17	\$0.18	\$0.18	\$0.18	\$0.18	\$0.17	\$0.17	\$0.17	\$0.17	\$0.16 (\$0.16 (\$0.16 (\$0.16 (\$0.15 (\$0.15 (\$0.15 (\$0.15 (\$0.14 (\$0.14 \$	5.57 2
Scree	45 ar	ohort	ogram		-	Pr	20	323		302	286	271	257	244	231	218	223	227	229	231	232	231	230	228	226	222	219	216	213	210	207	203	200	196	191	187	182	,317
CRC :	es of	irth C	ng Pro			loscop	ŝ	353		318	286	271	257	244	231	218	223	227	229	231	232	231	230	228	226	222	219	216	213	210	207	203	200	196	191	187	182	7,317 7
ted (e Ag(bia Bi	creeni			t Color	ŧ	706	6/0	635 603	572	543	514	487	461	436	446	453	459	462	463	463	460	457	451	445	439	432	426	420	414	407	399	391	383	373	363	4,635
stima	een th	ո Colum	linated S			1 o f CIT		7,351	6,980 6 535	6,287	5,964	5,655	5,359	5,075	4,804	4,543	4,646	4,724	4,778	4,812	4,825	4,819	4,796	4,757	4,703	4,634	4,569	4,506	4,442	4,378	4,310	4,239	4,162	4,079	3,988	3,890	3,782	152,482 1
19: E	Betw	British	Co-oro	ł	of	so	* ;;	0	ο,		4	0	9	ŝ	0	7	8	0	0	ц	ц	2	2	1	1	7	0	0	0	6	6	6	8	∞	7	7	9	2
ble 1		ln a	Nith a		T Cost	Colon	g copie	\$0.5	\$0.8 50.5	\$0.7 \$0.7	\$0.7	\$0.7	\$0.6	\$0.6	\$0.6	\$0.5	\$0.5	\$0.6	\$0.6	\$0.6	\$0.6	\$0.6	\$0.6	\$0.6	\$0.6	\$0.6	\$0.6	\$0.6	\$0.6	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	\$19.7
Та					Cost of FI	Kit &	Processin	\$0.30	\$0.28	\$0.25 \$0.25	\$0.24	\$0.23	\$0.22	\$0.21	\$0.20	\$0.19	\$0.19	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.19	\$0.19	\$0.19	\$0.19	\$0.19	\$0.19	\$0.19	\$0.18	\$6.50
						Visits د در	D c	\$0.42	\$0.40	\$0.38 \$0.36	\$0.34	\$0.33	\$0.31	\$0.30	\$0.28	\$0.27	\$0.27	\$0.28	\$0.28	\$0.29	\$0.29	\$0.29	\$0.29	\$0.29	\$0.29	\$0.28	\$0.28	\$0.28	\$0.28	\$0.28	\$0.28	\$0.27	\$0.27	\$0.27	\$0.27	\$0.27	\$0.26	\$9.25
				e		Physician	5	11,717	11,145	10,078 10,078	9,582	9,109	8,657	8,226	7,815	7,423	7,610	7,759	7,874	7,956	8,009	8,034	8,034	8,012	7,968	7,904	7,849	7,801	7,756	7,714	7,671	7,626	7,577	7,524	7,463	7,395	7,319	257,206
				Fema	Fixed	Program	COStS	\$0.28	\$0.26 \$0.25	\$0.24 \$0.24	\$0.23	\$0.21	\$0.20	\$0.19	\$0.18	\$0.18	\$0.18	\$0.18	\$0.19	\$0.19	\$0.19	\$0.19	\$0.19	\$0.19	\$0.19	\$0.19	\$0.19	\$0.18	\$0.18	\$0.18	\$0.18	\$0.18	\$0.18	\$0.18	\$0.18	\$0.17	\$0.17	\$6.07
						py Moz	20	363	345	329 312	297	282	268	255	242	230	236	241	244	247	248	249	249	248	247	245	243	242	240	239	238	236	235	233	231	229	227	7,973
						onosco	2	363	345	329 312	297	282	268	255	242	230	236	241	244	247	248	249	249	248	247	245	243	242	240	239	238	236	235	233	231	229	227	7,973
						<u></u> 3	ŧ	726	199	625 625	594	565	537	510	485	460	472	481	488	493	497	498	498	497	494	490	487	484	481	478	476	473	470	466	463	459	454	15,947
						# ~f CIT	5	7,569	/,199 2,2,17	6,847 6,511	6,190	5,884	5,593	5,314	5,049	4,795	4,916	5,012	5,086	5,139	5,173	5,190	5,190	5,176	5,147	5,106	5,071	5,039	5,011	4,983	4,955	4,926	4,895	4,860	4,821	4,777	4,728	166,155
							284	45	も (47	49	50	51	52	23	23	55	56	57	58	59	09	61	62	83	29	65	99	67	88	69	8	71	22	53	74	75	Total

			Tab	ole 2	0: Esti	mated	Pati	ent Ti	me	Costs			
				Be	etweer	n the Ag	tes of	45 ano	d 75				
				n a Br	itish Co	lumhia F	Rirth Co	ohort o	f 40 0	00			
			\^/;	th a Co	ordinat	ad Scroor		aram (llions)			
			Formalo	lli a Cu	-orumat	eu Screer	ing Pro			lions)	Tota	d Donulat	ion
		Colono	remule		Cost of	_	Colono	wue		Cost of	1011	n Populat	On
		scopy	Physiciar	n Visits	Colonos		scopy	Physicia	n Visits	Colonos	Physician	Colonos	
Age	# of FIT	#	# of	\$ of	copies	# of FIT	#	# of	\$ of	copies	Visits	copies	Total
45	7 5 60	720	11 717	ć0 07	ćo 40	7 251	700	11 200	ćο οr	ćo 20	ć1 70	ć0 90	ć2 г1
45	7,509	720 601	11,717	\$0.87 \$0.82	\$0.40 \$0.30	6 980	706 670	10 805	20.85 \$0.80	\$0.39 \$0.37	\$1.72 \$1.63	\$0.80 \$0.76	\$2.51 \$2.20
40	6 847	657	10 500	\$0.85 \$0.70	\$0.39 \$0.37	6,500	636	10,803	\$0.80 \$0.76	\$0.37 \$0.35	\$1.05 \$1.55	\$0.70 \$0.72	\$2.59 \$2.77
47	6 511	625	10,555	\$0.75 \$0.75	\$0.37 \$0.35	6 287	603	9 733	\$0.70 \$0.72	\$0.33 \$0.34	\$1.55 \$1.47	\$0.72 \$0.68	\$2.27
40	6 190	594	9 582	\$0.75 \$0.71	\$0.33	5 964	572	9 232	\$0.72	\$0.34	\$1.47	\$0.00 \$0.65	\$2.10
50	5.884	565	9,109	\$0.68	\$0.31	5,655	543	8,753	\$0.65	\$0.30	\$1.33	\$0.62	\$1.94
51	5.593	537	8.657	\$0.64	\$0.30	5.359	514	8.295	\$0.62	\$0.29	\$1.26	\$0.59	\$1.85
52	5,314	510	8,226	\$0.61	\$0.28	5,075	487	7,857	\$0.58	\$0.27	\$1.20	\$0.56	\$1.75
53	5,049	485	, 7,815	\$0.58	\$0.27	4,804	461	, 7,436	\$0.55	\$0.26	\$1.13	\$0.53	\$1.66
54	4,795	460	7,423	\$0.55	\$0.26	4,543	436	7,033	\$0.52	\$0.24	\$1.07	\$0.50	\$1.57
55	4,916	472	7,610	\$0.57	\$0.26	4,646	446	7,192	\$0.53	\$0.25	\$1.10	\$0.51	\$1.61
56	5,012	481	7,759	\$0.58	\$0.27	4,724	453	7,313	\$0.54	\$0.25	\$1.12	\$0.52	\$1.64
57	5,086	488	7,874	\$0.59	\$0.27	4,778	459	7,397	\$0.55	\$0.26	\$1.13	\$0.53	\$1.66
58	5,139	493	7,956	\$0.59	\$0.27	4,812	462	7,448	\$0.55	\$0.26	\$1.14	\$0.53	\$1.68
59	5,173	497	8,009	\$0.60	\$0.28	4,825	463	7,468	\$0.56	\$0.26	\$1.15	\$0.53	\$1.69
60	5,190	498	8,034	\$0.60	\$0.28	4,819	463	7,460	\$0.55	\$0.26	\$1.15	\$0.54	\$1.69
61	5,190	498	8,034	\$0.60	\$0.28	4,796	460	7,424	\$0.55	\$0.26	\$1.15	\$0.53	\$1.68
62	5,176	497	8,012	\$0.60	\$0.28	4,757	457	7,364	\$0.55	\$0.25	\$1.14	\$0.53	\$1.67
63	5,147	494	7,968	\$0.59	\$0.28	4,703	451	7,280	\$0.54	\$0.25	\$1.13	\$0.53	\$1.66
64	5,106	490	7,904	\$0.59	\$0.27	4,634	445	7,173	\$0.53	\$0.25	\$1.12	\$0.52	\$1.64
65	5,071	487	7,849	\$0.58	\$0.27	4,569	439	7,073	\$0.53	\$0.24	\$1.11	\$0.52	\$1.62
66	5,039	484	7,801	\$0.58	\$0.27	4,506	432	6,975	\$0.52	\$0.24	\$1.10	\$0.51	\$1.61
67	5,011	481	7,756	\$0.58	\$0.27	4,442	426	6,877	\$0.51	\$0.24	\$1.09	\$0.51	\$1.59
68	4,983	478	7,714	\$0.57	\$0.27	4,378	420	6,777	\$0.50	\$0.23	\$1.08	\$0.50	\$1.58
69	4,955	476	7,671	\$0.57	\$0.27	4,310	414	6,672	\$0.50	\$0.23	\$1.07	\$0.50	\$1.56
70	4,926	473	7,626	\$0.57	\$0.26	4,239	407	6,561	\$0.49	\$0.23	\$1.05	\$0.49	\$1.54
71	4,895	470	7,577	\$0.56	\$0.26	4,162	399	6,443	\$0.48	\$0.22	\$1.04	\$0.48	\$1.53
72	4,860	466	7,524	\$0.56	\$0.26	4,079	391	6,314	\$0.47	\$0.22	\$1.03	\$0.48	\$1.51
73	4,821	463	7,463	\$0.55	\$0.26	3,988	383	6,174	\$0.46	\$0.21	\$1.01	\$0.47	\$1.48
74	4,777	459	7,395	\$0.55	\$0.26	3,890	373	6,021	\$0.45	\$0.21	\$1.00	\$0.46	\$1.46
75	4,728	454	7,319	Ş0.54	\$0.25	3,782	363	5,855	Ş0.44	Ş0.20	\$0.98	Ş0.46	Ş1.43
Total	166,155	15,947	257,206	\$19.12	\$8.89	152,482	14,635	236,041	\$17.54	\$8.16	\$36.66	\$17.05	\$53.70

Cost of Harms

- Based on data from Ontario, the cost of a bleeding complication following a colonoscopy is \$3,521 (in 2013\$ or \$4,426 in 2022\$).⁶⁷⁸
- Based on data from Ontario, the cost of a perforation complication following a colonoscopy is \$34,412 (in 2013\$ or \$43,261 in 2022\$).⁶⁷⁹
- Over the lifetime of the BC birth cohort, the healthcare costs associated with treating bleeding and perforations resulting from colonoscopies is estimated at \$961,063 (see Table 21).

	Та	able 2:	1: C	ost of	Com	plicat	ion	s Due	t	o Colo	noscopy	
				Betw	een t	he Age	s of	45 and	F	75		
			In	a British	Colu	mbia Bir	th (ohort of	f 4	40.000		
				With a		rdinated 9	cree	ning Prog	ra	m		
		Fem	ale			Ma	ile	1115 T 95	G	T	otal Populatio	on
	Ble	eeding	Per	forations	BI	eeding	Per	forations		Cost fo	or Treating	
Age	#	\$	#	\$	#	\$	#	\$		Bleeds	Perforations	Total
45	1.4	\$6,174	0.4	\$16,657	1.4	\$5,996	0.4	\$16,177		\$12,169	\$32,834	\$45.004
46	1.3	\$5.872	0.4	\$15.843	1.3	\$5.693	0.4	\$15,360		\$11.565	\$31.203	\$42.768
47	1.3	\$5,584	0.3	\$15,067	1.2	\$5,404	0.3	\$14,581		\$10,988	\$29,648	\$40,636
48	1.2	\$5,310	0.3	\$14,327	1.2	\$5,128	0.3	\$13,836		\$10,438	\$28,163	\$38,601
49	1.1	\$5,049	0.3	\$13,622	1.1	\$4,864	0.3	\$13,124		\$9,913	\$26,746	\$36,658
50	1.1	\$4,799	0.3	\$12,949	1.0	\$4,612	0.3	\$12,444		\$9,411	\$25,392	\$34,803
51	1.0	\$4,561	0.3	\$12,307	1.0	\$4,371	0.3	\$11,792		\$8,932	\$24,099	\$33,031
52	1.0	\$4,334	0.3	\$11,694	0.9	\$4,139	0.3	\$11,169		\$8,474	\$22,863	\$31,337
53	0.9	\$4,118	0.3	\$11,110	0.9	\$3,918	0.2	\$10,571		\$8,036	\$21,681	\$29,717
54	0.9	\$3,911	0.2	\$10,552	0.8	\$3,706	0.2	\$9,998		\$7,616	\$20,550	\$28,166
55	0.9	\$4,009	0.3	\$10,818	0.9	\$3,789	0.2	\$10,224		\$7,799	\$21,042	\$28,841
56	0.9	\$4,088	0.3	\$11,030	0.9	\$3,853	0.2	\$10,395		\$7,941	\$21,425	\$29,366
57	0.9	\$4,148	0.3	\$11,193	0.9	\$3,897	0.2	\$10,515		\$8,046	\$21,708	\$29,754
58	0.9	\$4,192	0.3	\$11,310	0.9	\$3,924	0.2	\$10,588		\$8,116	\$21,898	\$30,014
59	1.0	\$4,219	0.3	\$11,385	0.9	\$3,935	0.2	\$10,617		\$8,154	\$22,001	\$30,156
60	1.0	\$4,233	0.3	\$11,421	0.9	\$3,930	0.2	\$10,604		\$8,163	\$22,025	\$30,189
61	1.0	\$4,233	0.3	\$11,422	0.9	\$3,912	0.2	\$10,554		\$8,145	\$21,976	\$30,120
62	1.0	\$4,221	0.3	\$11,389	0.9	\$3,880	0.2	\$10,468		\$8,101	\$21,857	\$29,958
63	0.9	\$4,198	0.3	\$11,327	0.9	\$3,835	0.2	\$10,348		\$8,033	\$21,675	\$29,709
64	0.9	\$4,165	0.3	\$11,236	0.9	\$3,780	0.2	\$10,198		\$7,944	\$21,434	\$29,378
65	0.9	\$4,136	0.3	\$11,159	0.8	\$3,726	0.2	\$10,054		\$7,862	\$21,213	\$29,075
66	0.9	\$4,110	0.3	\$11,090	0.8	\$3,675	0.2	\$9,915		\$7,785	\$21,004	\$28,789
67	0.9	\$4,087	0.3	\$11,026	0.8	\$3,623	0.2	\$9,776		\$7,710	\$20,802	\$28,512
68	0.9	\$4,064	0.3	\$10,965	0.8	\$3,570	0.2	\$9,633		\$7,634	\$20,599	\$28,233
69	0.9	\$4,041	0.3	\$10,904	0.8	\$3,515	0.2	\$9,485		\$7,557	\$20,389	\$27,946
70	0.9	\$4,018	0.3	\$10,840	0.8	\$3,457	0.2	\$9,327		\$7,475	\$20,168	\$27,643
71	0.9	\$3,992	0.2	\$10,772	0.8	\$3,394	0.2	\$9,159		\$7,387	\$19,930	\$27,317
72	0.9	\$3,964	0.2	\$10,695	0.8	\$3,327	0.2	\$8,976		\$7,291	\$19,671	\$26,962
73	0.9	\$3,932	0.2	\$10,610	0.7	\$3,253	0.2	\$8,777		\$7,185	\$19,386	\$26,571
74	0.9	\$3,896	0.2	\$10,513	0.7	\$3,172	0.2	\$8,559		\$7,069	\$19,072	\$26,141
75	0.9	\$3,856	0.2	\$10,405	0.7	\$3,085	0.2	\$8,324		\$6,941	\$18,728	\$25,670
Total	30.6	\$135,515	8.5	\$365,636	28.1	\$124,364	7.8	\$335,548		\$259,879	\$701,183	\$961,063

 ⁶⁷⁸ Goede S, Rabeneck L, van Ballegooijen M et al. Harms, benefits and costs of fecal immunochemical testing versus guaiac fecal occult blood testing for colorectal cancer screening. *PLOS One*. 2017; 12(3): e0172864.
 ⁶⁷⁹ Ibid.

Costs Avoided Due to a Reduction in CRC

- Based on data from Ontario, the estimated net healthcare costs associated with a CRC by sex and phase are as follows:⁶⁸⁰
 - Females
 - Initial 6 months \$24,765 (in 2009\$, \$34,039 in 2022\$)
 - Continuing care (annual) \$5,349 (\$7,352)
 - Terminal care (12 months) \$31,120 (\$42,774)
 - o Males
 - Initial 6 months \$25,138 (\$34,552)
 - Continuing care (annual) \$5,446 (\$7,486)
 - Terminal care (12 months) \$32,408 (\$44,545)
- Based on data from Ontario, *first year* healthcare costs associated with a CRC survivor are \$47,823 (in 2017\$ or \$65,733 in 2022\$). The mean costs for females / males in 2022\$ are \$62,177 and \$68,220, respectively. The costs by stage in 2022\$ are \$34,562 for Stage I, \$56,956 for Stage II, \$87,106 for Stage III and \$114,276 for Stage IV.⁶⁸¹
- Based on the data in the two previous bullet points, we assumed no difference in treatment costs between males and females.
- Based on data from Ontario, the estimated *first year* healthcare costs associated with a CRC survivor by stage was as follows:⁶⁸²
 - Stage I \$28,981 (in 2013 \$, \$36,434 in 2022\$)
 - Stage II \$43,348 (\$54,495)
 - Stage III \$62,259 (\$78,270)
 - o Stage IV \$83,440 (\$104,897)
- To calculate first year healthcare costs avoided due to a lower number of new CRCs associated with a screening program, we determined the number of new CRCs avoided (Table 4 minus Table 11) by sex and stage and multiplied this by the first-year healthcare costs noted above. In doing so, we excluded new CRCs that died within the year following their diagnosis. The costs associated with these early deaths are included on Table 24. The estimated 209 new CRC cases avoided (306 new CRCs minus 97 that died in Year 1) are associated with costs avoided of \$19.43 million during the first year following diagnosis (see Table 22).

⁶⁸⁰ de Oliveira C, Pataky R, Bremner K et al. Phase-specific and lifetime costs of cáncer care in Ontario, Canada. *BMC Cancer*. 2016; 16: 809.

⁶⁸¹ Paszat L, Sutradhar R, Luo J et al. Overall health care cost during the year following diagnosis of colorectal cancer stratified by history of colorectal evaluative procedures. *Journal of the Canadian Association of Gastroenterology*. 2021. 4(6): 274-83.

⁶⁸² Goede S, Rabeneck L, van Ballegooijen M et al. Harms, benefits and costs of fecal immunochemical testing versus guaiac fecal occult blood testing for colorectal cancer screening. *PLOS One*. 2017; 12(3): e0172864.

Table 22: Estimated New CRCs and Costs Avoided by Dukes' Stage

Between the Ages of 45 and 79

In a British Columbia Birth Cohort of 40,000

With a Ca ardinated	Corooning Drogram	(CIN Millione)
with a co-ordinated	Screening Program	

		Females						Males					Total Population					
		Duke	s' Sta	ge	Total Ave	oided	Dukes' Stage Total Avoided				oided		Dukes	s' Stage	e	Total Av	oided	
Age	А	В	С	Distant	New CRC	Costs	А	В	С	Distant	New CRC	Costs	Α	В	С	Distant	New CRC	Costs
45	-0.2	0.3	0.2	0.2	0.5	\$0.04	-0.5	0.7	0.5	0.4	1.1	\$0.10	-0.7	1.0	0.7	0.6	1.6	\$0.15
46	-0.2	0.3	0.2	0.2	0.5	\$0.04	-0.5	0.7	0.5	0.4	1.1	\$0.10	-0.7	1.0	0.7	0.6	1.6	\$0.15
47	-0.2	0.3	0.2	0.2	0.5	\$0.04	-0.5	0.7	0.5	0.4	1.1	\$0.10	-0.7	1.0	0.7	0.6	1.6	\$0.15
48	-0.2	0.3	0.2	0.2	0.5	\$0.04	-0.5	0.7	0.5	0.4	1.1	\$0.10	-0.7	1.0	0.7	0.6	1.6	\$0.15
49	-0.2	0.3	0.2	0.2	0.5	\$0.04	-0.5	0.7	0.5	0.4	1.1	\$0.10	-0.7	1.0	0.7	0.6	1.6	\$0.15
50	-0.6	0.8	0.6	0.5	1.3	\$0.12	-0.7	0.9	0.7	0.5	1.4	\$0.13	-1.3	1.7	1.3	1.0	2.7	\$0.25
51	-0.6	0.8	0.6	0.5	1.3	\$0.12	-0.7	0.9	0.7	0.5	1.4	\$0.13	-1.3	1.7	1.3	1.0	2.6	\$0.25
52	-0.6	0.8	0.6	0.5	1.3	\$0.12	-0.7	0.9	0.7	0.5	1.4	\$0.13	-1.3	1.7	1.3	1.0	2.6	\$0.25
53	-0.6	0.8	0.6	0.5	1.3	\$0.12	-0.7	0.9	0.7	0.5	1.4	\$0.13	-1.3	1.7	1.3	1.0	2.6	\$0.24
54	-0.6	0.8	0.6	0.5	1.2	\$0.12	-0.7	0.9	0.7	0.5	1.4	\$0.13	-1.3	1.7	1.3	0.9	2.6	\$0.24
55	-0.8	1.0	0.7	0.6	1.5	\$0.14	-1.2	1.6	1.2	0.9	2.5	\$0.23	-2.0	2.6	1.9	1.5	4.0	\$0.38
56	-0.8	1.0	0.7	0.6	1.5	\$0.14	-1.2	1.6	1.2	0.9	2.5	\$0.23	-2.0	2.6	1.9	1.5	4.0	\$0.37
57	-0.8	1.0	0.7	0.6	1.5	\$0.14	-1.2	1.6	1.2	0.9	2.5	\$0.23	-2.0	2.6	1.9	1.4	4.0	\$0.37
58	-0.7	1.0	0.7	0.5	1.5	\$0.14	-1.2	1.6	1.2	0.9	2.5	\$0.23	-2.0	2.6	1.9	1.4	4.0	\$0.37
59	-0.7	1.0	0.7	0.5	1.5	\$0.14	-1.2	1.6	1.2	0.9	2.4	\$0.23	-2.0	2.6	1.9	1.4	4.0	\$0.37
60	-1.2	1.6	1.2	0.9	2.5	\$0.23	-2.0	2.6	1.9	1.4	4.0	\$0.37	-3.2	4.2	3.1	2.4	6.5	\$0.60
61	-1.2	1.6	1.2	0.9	2.5	\$0.23	-2.0	2.6	1.9	1.4	4.0	\$0.37	-3.2	4.2	3.1	2.3	6.5	\$0.60
62	-1.2	1.6	1.2	0.9	2.5	\$0.23	-1.9	2.6	1.9	1.4	3.9	\$0.37	-3.2	4.2	3.1	2.3	6.4	\$0.60
63	-1.2	1.6	1.2	0.9	2.5	\$0.23	-1.9	2.5	1.9	1.4	3.9	\$0.36	-3.1	4.1	3.1	2.3	6.4	\$0.59
64	-1.2	1.6	1.2	0.9	2.5	\$0.23	-1.9	2.5	1.9	1.4	3.9	\$0.36	-3.1	4.1	3.0	2.3	6.3	\$0.59
65	-1.7	2.2	1.6	1.2	3.4	\$0.31	-2.3	3.0	2.2	1.7	4.6	\$0.43	-3.9	5.2	3.8	2.9	7.9	\$0.74
66	-1.7	2.2	1.6	1.2	3.4	\$0.31	-2.2	2.9	2.2	1.6	4.5	\$0.42	-3.9	5.1	3.8	2.9	7.9	\$0.73
67	-1.6	2.2	1.6	1.2	3.3	\$0.31	-2.2	2.9	2.1	1.6	4.5	\$0.42	-3.9	5.1	3.8	2.8	7.8	\$0.73
68	-1.6	2.1	1.6	1.2	3.3	\$0.31	-2.2	2.9	2.1	1.6	4.4	\$0.41	-3.8	5.0	3.7	2.8	7.7	\$0.72
69	-1.6	2.1	1.6	1.2	3.3	\$0.31	-2.1	2.8	2.1	1.6	4.3	\$0.40	-3.8	5.0	3.7	2.8	7.6	\$0.71
70	-2.3	3.0	2.1	1.1	3.9	\$0.36	-3.3	4.2	3.0	1.6	5.5	\$0.51	-5.6	7.2	5.1	2.7	9.4	\$0.87
71	-2.3	2.9	2.1	1.1	3.8	\$0.36	-3.2	4.1	2.9	1.5	5.4	\$0.50	-5.5	7.1	5.0	2.6	9.2	\$0.85
72	-2.3	2.9	2.1	1.1	3.8	\$0.35	-3.1	4.0	2.9	1.5	5.3	\$0.49	-5.4	6.9	5.0	2.6	9.1	\$0.84
73	-2.2	2.9	2.1	1.1	3.8	\$0.35	-3.1	4.0	2.8	1.5	5.2	\$0.48	-5.3	6.8	4.9	2.5	8.9	\$0.83
74	-2.2	2.8	2.0	1.1	3.7	\$0.34	-3.0	3.9	2.8	1.4	5.1	\$0.47	-5.2	6.7	4.8	2.5	8.8	\$0.81
75	-2.9	3.7	2.6	1.4	4.8	\$0.44	-3.7	4.7	3.4	1.7	6.1	\$0.57	-6.5	8.4	6.0	3.1	10.9	\$1.01
76	-2.8	3.6	2.6	1.3	4.7	\$0.44	-3.6	4.6	3.3	1.7	6.0	\$0.55	-6.4	8.2	5.8	3.0	10.7	\$0.99
77	-2.7	3.5	2.5	1.3	4.6	\$0.43	-3.5	4.4	3.2	1.6	5.8	\$0.54	-6.2	8.0	5.7	3.0	10.4	\$0.96
78	-2.7	3.5	2.5	1.3	4.5	\$0.42	-3.3	4.3	3.1	1.6	5.6	\$0.52	-6.0	7.7	5.5	2.9	10.1	\$0.94
79	-2.6	3.4	2.4	1.3	4.4	\$0.41	-3.2	4.1	3.0	1.5	5.4	\$0.50	-5.8	7.5	5.4	2.8	9.8	\$0.91
Total	-47.4	61.5	44.7	28.4	87.3	\$8.11	-65.7	85.5	62.2	40.0	121.9	\$11.33	-113.1	l 147.0	106.9	68.4	209.2	\$19.43

- Based on data from Ontario, the *ongoing annual* healthcare costs associated with a CRC survivor by stage was as follows:⁶⁸³
 - Stage I \$7,442 (in 2013 \$, \$9,356 in 2022\$)
 - Stage II \$10,435 (\$13,118)
 - o Stage III \$13,344 (\$16,776)
 - Stage IV \$42,551 (\$53,493)
- To calculate ongoing healthcare costs avoided due to a lower number of new CRCs and deaths associated with a screening program, we determined the number of years of survivors avoided by sex and stage and multiplied this by the ongoing annual healthcare costs noted above. The reduction in the number of years living with CRC (survivors) are associated with costs avoided of \$43.10 million (see Table 23).

		Та	ble	23: E	stimat	ed Co	ost o	f Liv	ving	, with	CRC A	voide	d by	/ Dul	kes'	Stag	е	
						В	etwee	en th	ne A	ges of	45 and	79						
						In a Br	itish C	olun	nbia	Birth (Cohort of	f 40,000)					
					V	Vith a C	o-ordin	ated	Scree	ening Pro	ogram (\$ I	n Million	s)					
			Fer	nales					М	ales				Tot	al Po	pulatior	1	
		Duke	s' Sta	ige	Total Ave	oided		Duke	s' Sta	ge	Total Av	oided		Dukes	' Stag	e	Total Av	oided
Age	A	В	С	Distant	Survivors	Costs	A	В	С	Distant	Survivors	Costs	A	В	С	Distant	Survivors	Costs
45	-0.2	0.3	0.2	0.2	0.5	\$0.02	-0.5	0.7	0.5	0.4	1.1	\$0.04	-0.7	1.0	0.7	0.6	1.6	\$0.05
46	-0.4	0.6	0.4	0.3	0.9	\$0.03	-1.0	1.3	1.0	0.7	2.0	\$0.06	-1.5	1.9	1.4	1.1	2.9	\$0.09
47	-0.6	0.8	0.6	0.4	1.2	\$0.04	-1.5	2.0	1.4	0.9	2.8	\$0.09	-2.2	2.8	2.0	1.3	4.0	\$0.12
48	-0.8	1.1	0.8	0.5	1.5	\$0.04	-2.0	2.6	1.8	1.1	3.5	\$0.10	-2.8	3.6	2.6	1.6	5.0	\$0.15
49	-1.0	1.3	0.9	0.5	1.7	\$0.05	-2.4	3.1	2.2	1.2	4.1	\$0.12	-3.5	4.4	3.1	1.7	5.8	\$0.17 ¢0.22
50	-1.0	2.1	1.5	0.8	2.8	\$0.08	-3.0	3.9	2.7	1.4	5.0	\$0.14	-4.7	5.9	4.Z	2.3	7.7	\$0.23 ¢0.27
51	-2.2	2.0	2.0	1.1	5.7	\$0.11 ¢0.12	-5.7	4.0 E /	5.Z	1.0	5.0 6 F	\$0.17	-5.9	7.4	5.Z	2.7	9.5	\$0.27 \$0.21
52	-2.0	5.5 1 2	2.5	1.5	4.5	\$0.15 \$0.15	-4.5	5.4 6 1	5.7 1 2	1.7	0.5	\$0.10 \$0.20	-7.0	0.9 10 2	0.2	5.U 2 0	12.5	\$0.51 \$0.25
53	-5.5	4.Z	2.5	1.4	5.2	\$0.15 \$0.16	-4.9	6.9	4.2	1.0	7.5 0.0	\$0.20 \$0.22	-0.2	11.5	7.Z	2.2	12.5	\$0.33 \$0.20
55	-4.5	4.0 5.7	3.4	1.5	5.8	\$0.10 \$0.19	-5.5	8.2	4.7 5.7	2.0	9.0	\$0.22 \$0.28	- 11 1	13.0	9.1	4.2	15.0	\$0.35 \$0.47
56	-5.2	65	45	1.7	77	\$0.13	-7.7	9.6	6.7	2.5	11 5	\$0.20	-12 0	16.1	11 2	4.2	10.0	\$0.47 \$0.54
57	-5.9	73	5.0	2.1	85	\$0.21	-8.8	11.0	7.6	3.2	13.0	\$0.32	-14 7	18.2	12.2	53	21.5	\$0.54 \$0.60
58	-6.5	81	5.6	2.1	93	\$0.24	-9.9	12.3	85	3.5	14.4	\$0.30	-16.4	20.2	14 1	5.5	23.7	\$0.66
59	-7.2	8.8	6.1	2.4	10.1	\$0.28	-11.0	13.5	9.3	3.7	15.6	\$0.43	-18.1	20.5	15.5	6.1	25.8	\$0.71
60	-8.3	10.3	7.1	2.9	11.9	\$0.33	-12.8	15.8	10.9	4.5	18.5	\$0.51	-21.1	26.0	18.0	7.4	30.4	\$0.84
61	-9.4	11.7	8.1	3.3	13.6	\$0.37	-14.5	18.0	12.5	5.1	21.0	\$0.58	-24.0	29.6	20.5	8.4	34.6	\$0.96
62	-10.6	13.0	9.0	3.6	15.0	\$0.41	-16.3	20.1	13.9	5.6	23.3	\$0.64	-26.8	33.1	22.9	9.1	38.3	\$1.06
63	-11.6	14.3	9.9	3.8	16.4	\$0.45	-18.0	22.1	15.3	6.0	25.4	\$0.70	-29.6	36.4	25.2	9.8	41.8	\$1.15
64	-12.7	15.6	10.7	4.1	17.7	\$0.48	-19.6	24.1	16.6	6.3	27.4	\$0.75	-32.3	39.7	27.4	10.4	45.1	\$1.23
65	-14.2	17.4	12.0	4.6	19.9	\$0.54	-21.6	26.6	18.3	6.9	30.2	\$0.82	-35.8	44.0	30.3	11.5	50.1	\$1.37
66	-15.7	19.3	13.3	5.1	21.9	\$0.60	-23.6	28.9	19.9	7.5	32.7	\$0.89	-39.3	48.2	33.2	12.5	54.7	\$1.49
67	-17.1	21.0	14.5	5.4	23.8	\$0.65	-25.5	31.3	21.5	7.9	35.2	\$0.96	-42.7	52.3	36.0	13.3	59.0	\$1.60
68	-18.6	22.8	15.7	5.8	25.6	\$0.70	-27.4	33.6	23.1	8.3	37.5	\$1.02	-46.0	56.3	38.7	14.1	63.1	\$1.71
69	-20.0	24.4	16.8	6.1	27.3	\$0.74	-29.3	35.8	24.6	8.7	39.7	\$1.07	-49.3	60.2	41.4	14.8	67.0	\$1.81
70	-22.1	27.0	18.5	6.3	29.6	\$0.79	-32.3	39.4	27.0	9.1	43.1	\$1.15	-54.4	66.3	45.4	15.4	72.8	\$1.95
71	-24.2	29.4	20.0	6.5	31.7	\$0.84	-35.2	42.8	29.1	9.4	46.1	\$1.22	-59.3	72.2	49.2	15.8	77.9	\$2.06
72	-26.2	31.7	21.5	6.6	33.6	\$0.88	-38.0	46.0	31.1	9.5	48.7	\$1.28	-64.1	77.8	52.6	16.1	82.4	\$2.17
73	-28.1	34.0	22.8	6.7	35.5	\$0.93	-40.7	49.2	33.0	9.7	51.3	\$1.34	-68.8	83.2	55.9	16.5	86.7	\$2.27
74	-30.0	36.2	24.2	6.9	37.3	\$0.97	-43.3	52.1	34.9	10.0	53.7	\$1.40	-73.3	88.3	59.0	16.9	90.9	\$2.37
75	-32.6	39.2	26.1	7.4	40.2	\$1.05	-46.5	55.9	37.3	10.5	57.2	\$1.49	-79.2	95.2	63.4	18.0	97.4	\$2.53
76	-35.1	42.1	28.0	7.8	42.8	\$1.11	-49.7	59.6	39.6	11.0	60.4	\$1.57	-84.8	101.7	67.5	18.8	103.2	\$2.68
77	-37.5	44.9	29.7	8.1	45.2	\$1.17	-52.7	63.1	41.7	11.3	63.3	\$1.64	-90.2	108.0	71.4	19.3	108.5	\$2.81
78	-39.9	47.6	31.4	8.3	47.4	\$1.22	-55.6	66.4	43.7	11.5	66.0	\$1.70	-95.5	114.0	75.1	19.8	113.4	\$2.92
79	-42.2	50.2	32.9	8.5	49.5	\$1.27	-58.4	69.5	45.6	11.7	68.5	\$1.76	-100.5	5 119.8	78.5	20.3	118.0	\$3.03
Total						\$17.49						\$25.61						\$43.10

⁶⁸³ Goede S, Rabeneck L, van Ballegooijen M et al. Harms, benefits and costs of fecal immunochemical testing versus guaiac fecal occult blood testing for colorectal cancer screening. *PLOS One.* 2017; 12(3): e0172864.

- Based on data from Ontario, the *final year* healthcare costs associated with a death due to CRC by stage was as follows:⁶⁸⁴
 - Stage I \$302,484 (in 2013 \$, \$380,271 in 2022\$)
 - o Stage II \$202,540 (\$254,625)
 - o Stage III \$134,354 (\$168,905)
 - Stage IV \$117,128 (\$147,249)
- To calculate ongoing healthcare costs avoided due to a lower number of CRC deaths associated with a screening program, we determined the number of CRC deaths avoided by sex and stage and multiplied this by the final year healthcare costs noted above. The reduction in the number of deaths (711 with no screening program [Table 8] minus 523 with a coordinated screening program [Table 12], or a reduction of 188 deaths) are associated with costs avoided of \$26.38 million (see Table 24).

			Tab	le 24	: Estima	ted C	RC D)eat	ths	and C	Costs Av	oidec	l by∣	Duk	ces'	Stage	e	
						В	etwee	en ti	he A	lges of	f 45 and 7	79						
						InaBr	itish (<u>ماں</u>	mhia	Birth (Cohort of	10 000						
					١	Nith a C	o_ordir		Scro	oning Dr	rogram (\$ in	Millions	1					
				Fema	les	with a C	.0-orun	lateu	JUIE	ening Fi Male	ogrann (9 nn s	WIIIIONS			To	tal Popu	lation	
	Dukes' Stage Total Avoided Dukes' Stage To									τotal Δνο	Avoided Dukes' Stage Total Avoided							
Age	А	В	C	Distant	CRC Deaths	Costs	А	В	C	Distant	CRC Deaths	Costs	А	В	C	Distant	CRC Deaths	Costs
45	0.0	0.0	0.0	0.1	0.1	\$0.02	0.0	0.0	0.0	0.2	0.3	\$0.04	0.0	0.0	0.0	0.3	0.4	\$0.05
46	0.0	0.0	0.0	0.1	0.2	\$0.03	0.0	0.1	0.1	0.3	0.4	\$0.06	0.0	0.1	0.1	0.5	0.6	\$0.08
47	0.0	0.0	0.0	0.2	0.2	\$0.03	0.0	0.1	0.1	0.4	0.6	\$0.08	0.0	0.1	0.1	0.6	0.8	\$0.12
48	0.0	0.1	0.1	0.2	0.3	\$0.04	-0.1	0.1	0.1	0.5	0.7	\$0.09	-0.1	0.2	0.2	0.7	1.0	\$0.13
49	0.0	0.1	0.1	0.2	0.3	\$0.05	-0.1	0.2	0.2	0.5	0.8	\$0.11	-0.1	0.2	0.2	0.7	1.1	\$0.15
50	0.0	0.1	0.1	0.5	0.6	\$0.08	-0.1	0.2	0.2	0.7	0.9	\$0.13	-0.1	0.3	0.3	1.1	1.5	\$0.22
51	-0.1	0.1	0.1	0.5	0.7	\$0.10	-0.1	0.2	0.2	0.7	1.0	\$0.14	-0.1	0.3	0.3	1.2	1.7	\$0.24
52	-0.1	0.2	0.2	0.6	0.9	\$0.12	-0.1	0.2	0.2	0.7	1.0	\$0.15	-0.2	0.4	0.4	1.3	1.9	\$0.27
53	-0.1	0.2	0.2	0.6	0.9	\$0.13	-0.1	0.2	0.2	0.7	1.1	\$0.15	-0.2	0.4	0.4	1.3	2.0	\$0.28
54	-0.1	0.2	0.2	0.7	1.0	\$0.14	-0.1	0.2	0.2	0.7	1.1	\$0.15	-0.2	0.4	0.4	1.4	2.1	\$0.29
55	-0.1	0.2	0.2	0.7	1.1	\$0.15	-0.1	0.3	0.3	1.0	1.4	\$0.20	-0.2	0.5	0.5	1.7	2.5	\$0.35
56	-0.1	0.2	0.2	0.8	1.1	\$0.15	-0.1	0.3	0.3	1.1	1.6	\$0.22	-0.2	0.5	0.5	1.9	2.7	\$0.38
57	-0.1	0.2	0.2	0.8	1.1	\$0.16	-0.1	0.3	0.3	1.2	1.8	\$0.25	-0.2	0.6	0.6	2.0	2.9	\$0.41
58	-0.1	0.2	0.2	0.8	1.2	\$0.16	-0.2	0.4	0.4	1.3	1.8	\$0.26	-0.3	0.6	0.6	2.0	3.0	\$0.42
59	-0.1	0.3	0.2	0.8	1.2	\$0.17	-0.2	0.4	0.4	1.3	1.9	\$0.27	-0.3	0.7	0.7	2.1	3.1	\$0.44
60	-0.1	0.3	0.3	1.0	1.5	\$0.21	-0.2	0.5	0.4	1.7	2.4	\$0.34	-0.3	0.8	0.7	2.7	3.9	\$0.54
61	-0.1	0.3	0.3	1.1	1.6	\$0.23	-0.2	0.5	0.5	1.8	2.6	\$0.37	-0.3	0.8	0.8	3.0	4.3	\$0.60
62	-0.1	0.4	0.3	1.2	1.8	\$0.25	-0.2	0.6	0.6	2.0	2.8	\$0.40	-0.4	0.9	0.9	3.2	4.6	\$0.65
63	-0.2	0.4	0.4	1.3	1.9	\$0.26	-0.3	0.6	0.6	2.0	2.9	\$0.41	-0.4	1.0	1.0	3.3	4.8	\$0.67
64	-0.2	0.4	0.4	1.3	1.9	\$0.27	-0.3	0.7	0.6	2.0	3.0	\$0.43	-0.5	1.1	1.0	3.3	5.0	\$0.70
65	-0.2	0.4	0.4	1.5	2.2	\$0.31	-0.3	0.7	0.7	2.2	3.2	\$0.46	-0.5	1.1	1.1	3.7	5.5	\$0.77
66	-0.2	0.5	0.5	1.6	2.3	\$0.33	-0.3	0.7	0.7	2.3	3.3	\$0.47	-0.5	1.2	1.1	3.9	5.7	\$0.80
67	-0.2	0.5	0.5	1.7	2.5	\$0.35	-0.3	0.7	0.7	2.3	3.4	\$0.48	-0.5	1.2	1.2	4.0	5.9	\$0.83
68	-0.2	0.5	0.5	1.7	2.5	\$0.35	-0.3	0.7	0.7	2.3	3.4	\$0.48	-0.5	1.3	1.2	4.0	6.0	\$0.84
69	-0.2	0.6	0.5	1.7	2.6	\$0.36	-0.3	0.7	0.7	2.3	3.5	\$0.48	-0.6	1.3	1.3	4.0	6.0	\$0.85
70	-0.3	0.8	0.8	2.8	4.1	\$0.57	-0.5	1.1	1.1	3.9	5.6	\$0.78	-0.8	1.9	1.9	6.6	9.7	\$1.35
/1	-0.4	0.9	0.9	2.8	4.2	\$0.59	-0.5	1.2	1.3	3.9	5.8	\$0.82	-0.9	2.1	2.2	6.7	10.0	\$1.41
72	-0.4	0.9	1.0	2.8	4.4	\$0.62	-0.5	1.3	1.4	3.9	6.0	\$0.85	-0.9	2.2	2.4	6.7	10.4	\$1.47
/3	-0.4	1.0	1.0	2.7	4.3	\$0.61	-0.6	1.3	1.4	3.8	6.0	\$0.84	-1.0	2.3	2.4	6.5	10.3	\$1.45
74	-0.4	1.0	1.0	2.7	4.3	\$0.60	-0.6	1.4	1.4	3.7	5.9	\$0.83	-1.0	2.4	2.5	5.4	10.2	\$1.43
75	-0.5	1.1	1.1	3.2	5.0	\$0.70	-0.6	1.4	1.5	4.2	0.5	\$0.92	-1.1	2.5	2.0	7.4	11.5	\$1.6Z
ט/ דד	-0.5	1.1 1 1	1.2	3.3 วา	5.1	ο.72	-0.0	1.5	1.5 1.6	4.2	0.0	\$0.93 \$0.02	-1.1	2.0 2.6	2./	7.4	11.7	\$1.04 \$1.67
// סד	-0.5	1.1 1.2	1.2	3.3 2.2	5.2	>0.73 ¢0.72	-0.6	1.5	1.0 1.6	4.2	0.0	\$0.93 \$0.02	-1.1	2.0 2.7	2.ð	7.5	11.ð	\$1.0/ \$1.6F
70 70	-0.5	1.Z	1.Z	ວ.ວ ຊາ	5.Z		-0.0	1.5 1 ⊑	1.0	4.1	0.5	\$0.92 \$0.00	-1.1	2.7	2.0	7.5 7.2	11./ 11 ⊑	ς1 ε2
	-0.5	1.2	1.2	3.2	J.1	JU.12	-0.0	1.5	1.0	4.0	0.4	JU.50	-1.1	2.7	2.0	1.2	11.5	±.02
Total	-7.0	16.7	17.1	51.8	78.6	\$11.05	-9.8	23.2	23.7	71.9	109.0	\$ 15.33	-16.9	39.9	40.9	123.8	187.6	Ş26.38

⁶⁸⁴ Goede S, Rabeneck L, van Ballegooijen M et al. Harms, benefits and costs of fecal immunochemical testing versus guaiac fecal occult blood testing for colorectal cancer screening. *PLOS One.* 2017; 12(3): e0172864.

Summary of CE – Males and Females

- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with screening for colorectal cancer in adults ages 45-75 in a British Columbia birth cohort of 40,000 is \$18,064 (Table 25, row v).

Table 25: CE of Screening and Treatment for Colorectal Cancer											
	Ages 45 - 75										
	In a BC Birth Cohort of 40,000										
Row Label	Variable	Base case	Data Source								
	Cost of Screening Program										
а	Fixed program costs (in millions)	\$11.64	Table 19								
b	Physician visit costs (in millions)	\$17.74	Table 19								
с	Cost of FIT kit & processing (in millions)	\$12.46	Table 19								
d	Cost of colonoscopies (in millions)	\$37.84	Table 19								
e	Subtotal Program Costs (in millions)	\$79.69	= a + b + c + d								
f	Patient time costs for physician visits (in millions)	\$36.66	Table 20								
g	Patient time costs for colonoscopies (in millions)	\$17.05	Table 20								
h	Subtotal Patient Time Costs (in millions)	\$53.70	=f+g								
i	Cost of complications due to colonoscopy - Bleeding (in millions)	\$0.26	Table 21								
j	Cost of complications due to colonoscopy - Perforations (in millions)	\$0.70	Table 21								
k	Subtotal Cost of Harms (in millions)	\$0.96	= i + j								
<u> </u>	Total Cost of Screening Program	\$134.35	= e + h + k								
	Treatment Costs Avoided with a Screening Program										
m	Cost of treating new CRCs avoided (in millions)	\$19.43	Table 22								
n	Cost of treating those living with CRC avoided (in millions)	\$43.10	Table 23								
0	Cost of treating those who die due to CRC avoided (in millions)	\$26.38	Table 24								
р	Total Treatment Costs Avoided	\$88.92	= m + n + o								
	CE per QALY Gained										
q	Net cost of screening and treatment (in millions)	\$45.44	= l - p								
r	Total QALYs gained	3,617	Table 16								
S	CE (\$/QALY gained)	\$12,562	=(q/r)*1,000,000								
t	Net cost of screening and treatment (in millions, 1.5% discount)	\$47.50	Calculated								
u	Total QALYs gained, 1.5% Discount	2,629	Calculated								
v	CE (\$/QALY gained), 1.5% Discount	\$18,064	=(t/u)*1,000,000								

√ = *Estimates from the literature*

Sensitivity Analysis – Males and Females

We also modified several major assumptions and recalculated the CE as follows:

- Assume that the effectiveness of screening in reducing the incidence of CRC is reduced from 22% to 17%: **CE** = **\$25,839**
- Assume that the effectiveness of screening in reducing the incidence of CRC is increased from 22% to 26%: CE = \$13,194
- Reduced QoL impact. Use the lower limit of the disutility weights associated with the diagnosis and treatment (-0.288 to -0.193), remission (-0.049 to -0.031) and metastatic (-0.451 to -0.307) phases of living with CRC: CE = \$18,727
- Increased QoL impact. Use the upper limit of the disutility weights associated with the diagnosis and treatment (-0.288 to -0.399), remission (-0.049 to -0.072) and metastatic (-0.451 to -0.600) phases of living with CRC: CE = \$17,380
- Screening rate reduced from 77% to 50% (Table 16, row *t*): CE = \$21,974

Summary of CE – Females Only

Based on these assumptions, the CE associated with screening for colorectal cancer in females ages 45-75 in a British Columbia birth cohort of 40,000 is 27,633 (Table 26, row *v*).

	Table 26: CE of Screening and Treatment for Colorectal Cancer										
	Females Ages 45 - 75										
	In a BC Birth Cohort of 40,000										
Row Label	Variable	Base case	Data Source								
	Cost of Screening Program										
а	Fixed program costs (in millions)	\$6.07	Table 19								
b	Physician visit costs (in millions)	\$9.25	Table 19								
с	Cost of FIT kit & processing (in millions)	\$6.50	Table 19								
d	Cost of colonoscopies (in millions)	\$19.73	Table 19								
e	Subtotal Program Costs (in millions)	\$41.55	=a+b+c+d								
f	Patient time costs for physician visits (in millions)	\$19.12	Table 20								
g	Patient time costs for colonoscopies (in millions)	\$8.89	Table 20								
h	Subtotal Patient Time Costs (in millions)	\$28.00	=f+g								
i	Cost of complications due to colonoscopy - Bleeding (in millions)	\$0.14	Table 21								
j	Cost of complications due to colonoscopy - Perforations (in millions)	\$0.37	Table 21								
k	Subtotal Cost of Harms (in millions)	\$0.50	= i + j								
I	Total Cost of Screening Program	\$70.06	= e + h + k								
	Treatment Costs Avoided with a Screening Program										
m	Cost of treating new CRCs avoided (in millions)	\$8.11	Table 22								
n	Cost of treating those living with CRC avoided (in millions)	\$17.49	Table 23								
0	Cost of treating those who die due to CRC avoided (in millions)	\$11.05	Table 24								
р	Total Treatment Costs Avoided	\$36.65	= m + n + o								
	CE per QALY Gained										
q	Net cost of screening and treatment (in millions)	\$33.41	= I - p								
r	Total QALYs gained	1,583	Table 17								
S	CE (\$/QALY gained)	\$21,105	=(q/r)*1,000,000								
t	Net cost of screening and treatment (in millions, 1.5% discount)	\$31.56	Calculated								
u	Total QALYs gained, 1.5% Discount	1,142	Calculated								
v	CE (\$/QALY gained), 1.5% Discount	\$27,633	=(t/u)*1,000,000								

Sensitivity Analysis – Females Only

We also modified several major assumptions and recalculated the CE for females follows:

- Assume that the effectiveness of screening in reducing the incidence of CRC is reduced from 22% to 17%: CE = \$36,657
- Assume that the effectiveness of screening in reducing the incidence of CRC is increased from 22% to 26%: **CE = \$21,994**
- Reduced QoL impact. Use the lower limit of the disutility weights associated with the diagnosis and treatment (-0.288 to -0.193), remission (-0.049 to -0.031) and metastatic (-0.451 to -0.307) phases of living with CRC: CE = \$28,598
- Increased QoL impact. Use the upper limit of the disutility weights associated with the diagnosis and treatment (-0.288 to -0.399), remission (-0.049 to -0.072) and metastatic (-0.451 to -0.600) phases of living with CRC: CE = \$26,636
- Screening rate reduced from 77% to 50% (Table 17, row *t*): CE = \$33,178

Summary of CE – Males Only

Based on these assumptions, the CE associated with screening for colorectal cancer in males ages 45-75 in a British Columbia birth cohort of 40,000 is 10,717 (Table 27, row v).

Table 27: CE of Screening and Treatment for Colorectal Cancer											
	Males Ages 45 - 75										
	In a BC Birth Cohort of 40,000										
Row Label	Variable	Base case	Data Source								
	Cost of Screening Program										
а	Fixed program costs (in millions)	\$5.57	Table 19								
b	Physician visit costs (in millions)	\$8.49	Table 19								
с	Cost of FIT kit & processing (in millions)	\$5.96	Table 19								
d	Cost of colonoscopies (in millions)	\$18.11	Table 19								
e	Subtotal Program Costs (in millions)	\$38.13	= a + b + c + d								
f	Patient time costs for physician visits (in millions)	\$17.54	Table 20								
g	Patient time costs for colonoscopies (in millions)	\$8.16	Table 20								
h	Subtotal Patient Time Costs (in millions)	\$25.70	=f+g								
i	Cost of complications due to colonoscopy - Bleeding (in millions)	\$0.12	Table 21								
j	Cost of complications due to colonoscopy - Perforations (in millions)	\$0.34	Table 21								
k	Subtotal Cost of Harms (in millions)	\$0.46	= i + j								
I	Total Cost of Screening Program	\$64.29	= e + h + k								
	Treatment Costs Avoided with a Screening Program										
m	Cost of treating new CRCs avoided (in millions)	\$11.33	Table 22								
n	Cost of treating those living with CRC avoided (in millions)	\$25.61	Table 23								
0	Cost of treating those who die due to CRC avoided (in millions)	\$15.33	Table 24								
р	Total Treatment Costs Avoided	\$52.27	= m + n + o								
	CE per QALY Gained										
q	Net cost of screening and treatment (in millions)	\$12.03	= I - p								
r	Total QALYs gained	2,034	Table 18								
S	CE (\$/QALY gained)	\$5,913	=(q/r)*1,000,000								
t	Net cost of screening and treatment (in millions, 1.5% discount)	\$15.94	Calculated								
u	Total QALYs gained, 1.5% Discount	1,487	Calculated								
v	CE (\$/QALY gained), 1.5% Discount	\$10,717	=(t/u)*1,000,000								

Sensitivity Analysis – Males Only

We also modified several major assumptions and recalculated the CE in males as follows:

- Assume that the effectiveness of screening in reducing the incidence of CRC is reduced from 22% to 17%: CE = \$17,553
- Assume that the effectiveness of screening in reducing the incidence of CRC is increased from 22% to 26%: CE = \$6,427
- Reduced QoL impact. Use the lower limit of the disutility weights associated with the diagnosis and treatment (-0.288 to -0.193), remission (-0.049 to -0.031) and metastatic (-0.451 to -0.307) phases of living with CRC: CE = \$11,125
- Increased QoL impact. Use the upper limit of the disutility weights associated with the diagnosis and treatment (-0.288 to -0.399), remission (-0.049 to -0.072) and metastatic (-0.451 to -0.600) phases of living with CRC: CE = \$10,297
- Screening rate reduced from 77% to 50% (Table 18, row *t*): CE = \$13,417.

Summary – Males and Females

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for colorectal cancer in adults ages 45-75 in a British Columbia birth cohort of 40,000 is estimated to be 2,629 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$18,064 per QALY (see Table 28).

Table 28: Screening a	nd Treatme	nt for Colore	ectal Cancer
	Ages 45-75		
in a BC	Birth Cohort	of 40,000	
	Summary		
	Base		
	Case	Ran	ge
CPB (Potential QALYs Gaine	d)		
As	sume No Curren	t Service	
1.5% Discount Rate	2,629	1,465	2,910
3% Discount Rate	1,952	1,083	2,161
0% Discount Rate	3,617	2,022	4,003
As	sume 50% Currei	nt Service	
1.5% Discount Rate	922	514	1,020
3% Discount Rate	684	380	758
0% Discount Rate	1,268	709	1,403
CE (\$/QALY) including patie	nt time costs		
1.5% Discount Rate	\$18,064	\$13,194	\$25,839
3% Discount Rate	\$24,148	\$18,805	\$32,680
0% Discount Rate	\$12,562	\$8,109	\$19,672
CE (\$/QALY) excluding patie	ent time costs		
1.5% Discount Rate	\$1,295	Cost Saving	\$6,488
3% Discount Rate	\$5,227	\$1,709	\$10,843
0% Discount Rate	Cost Saving	Cost Saving	\$2,538

Summary – Females Only

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for colorectal cancer in females ages 45-75 in a British Columbia birth cohort of 40,000 is estimated to be 1,142 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$27,633 per QALY (see Table 29).

Table 29: Screening a	nd Treatme	nt for Color	ectal Cancer							
Fe	Females Ages 45-75									
in a BC	Birth Cohort	of 40,000								
	Summary									
	Base									
	Case	Rar	nge							
CPB (Potential QALYs Gaine	ed)									
A.	ssume No Curren	t Service								
1.5% Discount Rate	1,142	634	1,265							
3% Discount Rate	841	465	932							
0% Discount Rate	1,583	883	1,753							
As	sume 50% Currer	nt Service								
1.5% Discount Rate	400	222	444							
3% Discount Rate	295	163	327							
0% Discount Rate	555	310	615							
CE (\$/QALY) including patie	ent time costs									
1.5% Discount Rate	\$27,633	\$21,994	\$36,657							
3% Discount Rate	\$34,965	\$28,701	\$44,995							
0% Discount Rate	\$21,105	\$16,008	\$29,258							
CE (\$/QALY) excluding pation	ent time costs									
1.5% Discount Rate	\$7,564	\$3,876	\$13,466							
3% Discount Rate	\$12,196	\$8,151	\$18,673							
0% Discount Rate	\$3,415	\$34	\$8,822							

Summary – Males Only

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for colorectal cancer in males ages 45-75 in a British Columbia birth cohort of 40,000 is estimated to be 1,487 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$10,717 per QALY (see Table 30).

Table 30: Screening	and Treatmen	nt for Color	ectal Cancer
	Males Ages 45	-75	
in a B	C Birth Cohort o	of 40,000	
	Summary		
	Base		
	Case	Rai	nge
CPB (Potential QALYs Gai	ned)		
	Assume No Curren	t Service	
1.5% Discount Rate	1,487	830	1,645
3% Discount Rate	1,112	618	1,229
0% Discount Rate	2,034	1,140	2,250
	Assume 50% Currer	nt Service	
1.5% Discount Rate	521	291	577
3% Discount Rate	390	217	431
0% Discount Rate	713	400	789
CE (\$/QALY) including par	tient time costs		
1.5% Discount Rate	\$10,717	\$6,427	\$17,553
3% Discount Rate	\$15,966	\$11,304	\$23,392
0% Discount Rate	\$5,913	\$1,954	\$12,226
CE (\$/QALY) excluding pa	tient time costs		
1.5% Discount Rate	Cost Saving	Cost Saving	\$1,144
3% Discount Rate	Cost Saving	Cost Saving	\$4,939
0% Discount Rate	Cost Saving	Cost Saving	Cost Saving

Screening for Lung Cancer

Canadian Task Force on Preventive Health Care (2016)

We recommend screening for lung cancer among adults 55 to 74 years of age with at least a 30 pack-year smoking history, who smoke or quit smoking less than 15 years ago, with low-dose computed tomography (CT) every year up to three consecutive years. Screening should only be done in health care settings with access to expertise in early diagnosis and treatment of lung cancer. (Weak recommendation, low-quality evidence.)

We recommend not screening all other adults, regardless of age, smoking history or other risk factors, for lung cancer with low-dose CT. (Strong recommendation, very low quality evidence.)

We recommend that chest radiography, with or without sputum cytology, not be used to screen for lung cancer. (Strong recommendation, low-quality evidence.)⁶⁸⁵

United States Preventive Services Task Force Recommendations (2014)

The USPSTF recommends annual screening for lung cancer with low-dose computed tomography in adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years. Screening should be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to have curative lung surgery. (Grade B recommendation)⁶⁸⁶

The relevant BC population includes all adults aged 55 to 74 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years. To estimate the relevant BC population, we used data from the 2012 Canadian Community Health Survey (CCHS) to determine the proportion of the population by age group who were current daily smokers, former daily (now occasional) smokers and former daily (now non-) smokers (variable SMKDSTY, type of smoker).⁶⁸⁷ This information was combined with data on the number of years smoked (variable SMKDYCS), years since stopped smoking daily (variable SMK_G09C), number of cigarettes smoked/day for daily smokers (variable SMK_204) and number of smokers or former smokers who meet the criteria of a 30 pack-year smoking history and currently smoke or have quit within the past 15 years.

The data suggest that approximately 90,900 individuals between the ages of 55 to 74 meet the criteria for lung cancer screening in BC, or 8.7% of this population (see Table 1).

⁶⁸⁵ Canadian Task Force on Preventive Health Care. Recommendations on screening for lung cancer. *Canadian Medical Association Journal*. 2016: 1-8.

⁶⁸⁶ Moyer VA. Screening for lung cancer: US Preventive Services Task Force recommendation statement. *Annals of Internal Medicine*. 2014; 160(5): 330-8.

⁶⁸⁷ Statistics Canada. Canadian Community Health Survey (CCHS), 2012 Public Use Microdata file (Catalogue number 82M0013X2013001). 2013: All computations, use and interpretation of these data are entirely that of H. Krueger & Associates Inc.

British Columbia, 2	013	g canc		Scieei	iiiig
by Age Group, Based on CCHS	55 to 59	Age Groι 60 to 64	ip (years) 65 to 69	70 to 74	55 to 74
BC Population 2013	335,332	293,907	244,139	175,627	1,049,005
Current Daily Smokers Proportion of the Population in BC who are CD Smokers Proportion of CD Smokers who Meet Criteria	14.44% 48.64%	10.04% 48.96%	6.84% 54.80%	5.78% 48.34%	
Number of CD Smokers Eligible for LC Screening	23,560	14,452	9,154	4,910	52,076
Former Daily (Now Occasional) Smokers Proportion of the Population in BC who are FD(NO) Smokers Proportion of FD(NO) Smokers who Meet Criteria	0.43% 53.10%	0.33% 89.86%	0.38% 18.40%	0.00% 0.00%	
Number of FD(NO) Smokers Eligible for LC Screening	760	859	172	0	1,791
Former Daily (Now Non-) Smokers Proportion of the Population in BC who are FD(NN) Smokers Proportion of FD(NN) Smokers who Meet Criteria	6.44% 50.9%	5.00% 67.7%	6.00% 81.5%	3.57% 66.0%	
Number of FD(NN) Smokers Eligible for LC Screening	11,002	9,957	11,939	4,140	37,038
BC Population Eligible for LC Screening, by Age Group Proportion of the BC Population Eligible for LC Screening, by Age Group	35,323 10.5%	25,268 8.6%	21,264 8.7%	9,050 5.2%	90,905 8.7%
CD=current daily; FD(NO) = former (now occasional); FD(NN) = former daily (now non-)					

Table 1: Properties of Population Eligible for Lung Cancer (IC) Scree

Note that this estimate is lower than the Canadian average based on the Cancer Risk Management Model (CRMM). In a cost-effectiveness analysis using the CRMM, Goffin and colleagues estimated that 32% of 55-59 year-olds would be eligible for screening, decreasing to 30% for 60-64, 23% for 65-69 and 15% for 70-74.⁶⁸⁸

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with screening for lung cancer in adults aged 55 to 74 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years, in a BC birth cohort of 40,000.

In modelling CPB, we made the following assumptions:

- Based on BC life tables for 2018 to 2020, a total of 10,459 deaths would be expected between the ages of 55-79 in a BC birth cohort of 40,000 (see Table 2). Routine screening occurs to age 74, but we have assumed the protective effect of routine screening continues to age 79.
- Based on BC vital statistics data, there were 5,324 deaths between the ages of 45 and 64 in BC in 2015, with 479 (9.00%) of these deaths due to lung cancer (ICD-10 codes C34). There were also 9,636 deaths between the ages of 65 and 79 that year, with

⁶⁸⁸ Goffin JR, Flanagan WM, Miller AB et al. Cost-effectiveness of lung cancer screening in Canada. *JAMA Oncology*. 2015; 1(6): 807-13.

1,187 (12.32%) of these deaths due to lung cancer.⁶⁸⁹ This suggests that 1,222 of the 10,459 (11.69%) of the deaths in the BC birth cohort between the ages of 55 and 79 would be due to lung cancer (see Table 2).

	Table 2: Mortality Due to Lung Cancer											
		Betv	ween ti	ne Ages o	of 55 ar	nd 79						
	in a British Columbia Birth Cohort of 40,000											
Life Years Lived in Birth Deaths in Deaths due to Life Years Lost												
Age		Cohort		Birth	Lung C	ancer	Per					
Group	Males	Females	Total	Cohort	%	#	Death	Total				
55-59	91,094	95,436	186,530	807	9.00%	73	28.4	2,060				
60-64	87,997	93,628	181,625	1,185	9.00%	107	24.0	2,563				
65-69	83,512	90,843	174,356	1,774	12.32%	219	19.9	4,346				
70-74	76,965	86,461	163,426	2,679	12.32%	330	16.0	5,273				
75-79	67,475	79,488	146,963	4,014	12.32%	495	12.4	6,127				
				10,459	11.69%	1,222	16.7	20,368				

• In the National Lung Cancer Screening Trial (NLST), 53,454 persons at high risk of lung cancer were randomly assigned to undergo three annual screenings (see Table 4, row *j*) with low-dose computed tomography (LDCT group) or single-view posteroanterior chest radiography (X-ray group). Mortality from lung cancer was reduced by 19.6% (RR of 0.804, 95% CI of 0.700 to 0.923) in the CT group (see Table 4, row *w*) compared to the X-ray group. Mortality from any cause was reduced by 6.1% (RR of 0.939, 95% CI of 0.884 to 0.998). Based on a nodule cut-off size of 4mm (to be identified as a positive screen), 24.2% of all screens in the CT group were positive (see Table 4, row *m*). Of these positive screens, 96.4% were false positives (see Table 4, row *o*).⁶⁹⁰

- Three smaller, low quality RCTs have found no significant reduction in either lung cancer or all-cause mortality associated with screening with LDCT versus usual care (RR of 1.42, 95% CI of 0.91 to 2.22).⁶⁹¹
- Compared with usual care, screening with LDCT detects lung cancers at an earlier stage. With LDCT, 66% of lung cancers at detected at Stage I or II, versus 40% with usual care (see Table 3).^{692,693}

⁶⁸⁹ British Columbia Vital Statistics Agency. *Selected Vital Statistics and Health Status Indicators: One Hundred and Forty-Fourth Annual Report.* Apendix 2. 2015. British Colubmia Ministry of Health. Available at https://www2.gov.bc.ca/assets/gov/birth-adoption-death-marriage-and-divorce/statistics-reports/annual-reports/2015/pdf/annual-report-2015.pdf. Accessed March 2017.

⁶⁹⁰ National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. *New England Journal of Medicine*. 2011; 365(5): 395-409.

⁶⁹¹ Canadian Task Force on Preventive Health Care. *Screening for Lung Cancer: Systematic Review and Metaanalysis.* 2015. Available at http://canadiantaskforce.ca/files/lung-cancer-screening-systematic-reviewfinal-2.pdf. Accessed March 2016.

⁶⁹² Ibid.

⁶⁹³ Field J, Duffy S, Baldwin D et al. UK Lung Cancer RCT Pilot Screening Trial: baseline findings from the screening arm provide evidence for the potential implementation of lung cancer screening. *Thorax*. 2016; 71: 161-70.

Ta	ble 3: Stag	ge of Lun v:	ig Cancers: s. Usual Cai	Screeniı re	ng with LDCT
		Usual C	are Group	LDCT	Group
	Stage	#	%	#	%
	l or ll	21	40.4%	83	65.9%
	III or IV	31	59.6%	43	34.1%
	Total	52	100.0%	126	100.0%
Sour Can	ce: Canadian T cer: Systematic	Task Force o Review anc	n Preventive He Meta-analysis	alth Care. So . 2015.	creening for Lung

- To date, the uptake of lung cancer screening has been less than optimal, with just 6.0% of the eligible US population being screened in 2015 (see *Reference Document* for more details).⁶⁹⁴ For modelling purposes we have assumed that screening rates of 60% (see Table 4, row *k*) would eventually be achieved, with sensitivity analysis using a range from 50-70%. The 60% is approximately half-way between current screening rates in BC for breast cancer (52%) and cervical cancer (69%) (see *Reference Document*).
- Screening with LDCT is also associated with a number of harms, including deaths following invasive follow-up testing, over diagnosis, major complications, false positive results and invasive procedures as a consequence of the false positive results.⁶⁹⁵
- **Death from follow-up testing** refers to "mortality that is the direct consequence of an invasive follow-up procedure (e.g., video-assisted thoracoscopic surgery, fine-needle aspiration biopsy or fine-needle aspiration cytology, thoracotomy, bronchoscopy, mediastinoscopy, surgical resection) initiated as a result of screening."⁶⁹⁶ Based upon a review of seven studies, the CTFPHC found that 20 of 1,502 (1.33%) patients died as a result of follow-up testing after screening with LDCT (see Table 4, row *s*).
- "Over diagnosis refers to the detection of a lung cancer that will not otherwise cause symptoms throughout the person's lifetime or result in death."⁶⁹⁷ Based upon a review of four studies, the CTFPHC found an over diagnosis rate of between 11.0% and 25.8%. The rate in the NLST was 11.0% (95% CI of 3.2% to 18.2%).
- **Major complications** are defined as "requiring hospitalization or medical intervention (e.g., hemothorax and pneumothorax requiring tube placement, lung collapse, severe pain, cardiac arrhythmias and thromboembolic complications) that are the direct result of an invasive procedure (e.g., video-assisted thoracoscopic surgery, fine-needle aspiration biopsy or fine-needle aspiration cytology, thoracotomy, bronchoscopy, mediastinoscopy, surgical resection)

⁶⁹⁴ Huo J, Shen C, Volk R et al. Use of CT and chest radiography for lung cancer screening before and after publication of screening guidelines: intended and unintended uptake. *Journal of American Medical Association Internal Medicine*. 2017; 177(3): 439-41.

⁶⁹⁵ Canadian Task Force on Preventive Health Care. *Screening for Lung Cancer: Systematic Review and Metaanalysis.* 2015. Available at http://canadiantaskforce.ca/files/lung-cancer-screening-systematic-reviewfinal-2.pdf. Accessed March 2016.

⁶⁹⁶ Ibid.

⁶⁹⁷ Ibid.

initiated as a result of screening.³⁶⁹⁸ Based upon a review of four studies, the CTFPHC found that 92 of 1,336 (1.33%) patients had major complications as a result of follow-up testing after screening with LDCT.

- "A **false positive** refers to a screening test result that indicates the presence of lung cancer, when in fact no lung malignancy exists."⁶⁹⁹ Based upon a review of seven studies, the CTFPHC found that 8,290 of 42,774 (19.4%) individuals who underwent screening with LDCT received at least one false positive result.
- Minor (e.g., fine-needle aspiration biopsy or fine-needle aspiration cytology, thoracic or lymph node biopsy, bronchoscopy) and major (e.g., video-assisted thoracoscopic surgery, thoracotomy, surgical resection) **invasive procedures initiated as a result of false positive screening tests**. Based on a review of seven studies, the CTFPHC found that 0.72% (95% CI of 0.33% to 1.11%) of individuals with benign conditions underwent minor invasive procedures. Based on a further review of 17 studies, the CTFPHC found that 0.50% (95% CI of 0.37% to 0.63%) of individuals with benign conditions underwent major invasive procedures. ⁷⁰⁰
- We have assumed a disutility of 0.05 associated with a false positive screen (see Table 4, row q).^{701,702}
- Note that the NLTS (which the CTFPHC and our model follow) used a nodule cut-off size of 4mm (to be identified as a positive screen). Significant analysis has since been completed to assess the pros and cons of moving to a larger nodule cut-off size as well as developing more advanced algorithms to fine-tune screening frequency.
- Gierada and colleagues re-examined the NLST results based on results associated with different size nodules.⁷⁰³ Moving the nodule cut-off size from 4mm to 5mm resulted in a 1.0% increase in missed or delayed lung cancer diagnosis but a 15.8% reduction in false positive results. With a cut-off of 8mm, there would have been a 10.5% increase in missed or delayed lung cancer diagnosis but a 65.8% reduction in false positive results.
- Henschke et al. tested the effect of moving the nodule cut-off size to between 6mm and 9mm on false positive results and potential delays in detecting lung cancers.⁷⁰⁴ When alternative cut-offs of 6, 7, 8 and 9mm were used, the overall proportion of positive results declined to 10.2%, 7.1%, 5.1% and 4.8%. The use of these alternative cut-offs would have reduced the work-up load by 36%, 56%, 68% and 75% respectively. Concomitantly, a lung cancer diagnosis would have been delayed by at most 9 months in 0%, 5.0%, 5.9%, and 6.7% of cases of cancer.

⁷⁰² Gareen IF, Duan F, Greco EM, et al. Impact of lung cancer screening results on participant health-related quality of life and state anxiety in the National Lung Screening Trial. *Cancer*. 2014; November 1: 3401-09.
 ⁷⁰³ Gierada DS, Pinsky P, Nath H et al. Projected outcomes using different nodule sizes to define a positive CT lung cancer screening examination. *Journal of the National Cancer Institute*. 2014; 106(11): dju284.

⁶⁹⁸ Ibid.

⁶⁹⁹ Ibid.

⁷⁰⁰ Canadian Task Force on Preventive Health Care. *Screening for Lung Cancer: Systematic Review and Metaanalysis.* 2015. Available at http://canadiantaskforce.ca/files/lung-cancer-screening-systematic-reviewfinal-2.pdf. Accessed March 2016.

⁷⁰¹ Black WC, Gareen IF, Soneji SS et al. Cost-effectiveness of CT screening in the National Lung Screening Trial. *New England Journal of Medicine*. 2014; 371(19): 1793-802.

⁷⁰⁴ Henschke CI, Yip R, Yankelevitz DF et al. Definition of a positive test result in computed tomography screening for lung cancer: a cohort study. *Annals of Internal Medicine*. 2013; 158(4): 246-52.

- The Pan-Canadian Early Detection of Lung Cancer Study (PAN-CAN) developed a more sophisticated approach to ascertaining the probability of lung cancer in pulmonary nodules detected on first screening CT, based on a combination of nodule size, age, sex, family history of lung cancer, emphysema location, type and count of the nodule and spiculation.⁷⁰⁵ Based on this approach, 80% of first screens placed patients in Category I (<1.5% lung cancer risk over the next 5.5 years), 12% in Category II (1.5% <6% risk), 6% in Category 3 (6% <30% risk) and 2% in Category IV (≥ 30% risk).⁷⁰⁶
- The PAN-CAN lung cancer risk model has been validated in at least two studies.^{707,708} The results suggest that nodule size is still the most important predictor of lung cancer risk, with nodule spiculation, age and family history of lung cancer also being important predictive variables.
- The developers of the PAN-CAN lung cancer risk model suggest that patients in Category I require biennial screening, those in Category II require annual screening, those in Category III require rescreening in three months with annual screening thereafter if no growth in nodule size and those in Category IV should be referred for a definitive diagnosis.⁷⁰⁹
- A recent retrospective analysis of the NLST data suggests that annual screening might not be needed in individuals who have no abnormality identified on their initial screen and that a screening interval of at least two years could be considered on these individuals.^{710,711}

Based on the above assumptions drawn from the NLST and the CTFPHC, the CPB is 2,060 quality-adjusted life years saved (see Table 4, row *z*). The CPB of 2,060 represents the gap between the existing coverage (no coverage) and 60%.

⁷⁰⁵ McWilliams A, Tammemagi MC, Mayo JR et al. Probability of cancer in pulmonary nodules detected on first screening CT. *New England Journal of Medicine*. 2013; 369(10): 910-9.

⁷⁰⁶ Tammemagi MC and Lam S. Screening for lung cancer using low dose computed tomography. *BMJ* 2014; 348: g2253-63.

⁷⁰⁷ Winkler Wille MM, van Riel SJ, Saghir Z et al. Predictive Accuracy of the PanCan Lung Cancer Risk Prediction Model-External Validation based on CT from the Danish Lung Cancer Screening Trial. *European Radiology*. 2015; 25(10): 3093-9.

⁷⁰⁸ Al-Ameri A, Malhotra P, Thygesen H et al. Risk of malignancy in pulmonary nodules: a validation study of four prediction models. *Lung Cancer*. 2015; 89(1): 27-30.

⁷⁰⁹ Tammemagi MC and Lam S. Screening for lung cancer using low dose computed tomography. *BMJ* 2014; 348: g2253-63.

⁷¹⁰ Patz EF, Greco E, Gatsonis C et al. Lung cancer incidence and mortality in National Lung Screening Trial participants who underwent low-dose CT prevalence screening: a retrospective cohort analysis of a randomised, multicentre, diagnostic screening trial. *The Lancet Oncology*. 2016: Published online March 18, 2016.

⁷¹¹ Field JK and Duffy SW. Lung cancer CT screening: is annual screening necessary? *The Lancet Oncology*. 2016: Published online March 18, 2016.

	Cancer Screening in a Birth Cohort Of	+0,000	
Row			
Label	Variable	Base Case	Data Source
а	Age 55-59: # of individuals alive in cohort	37,306	Table 2
b	Age 55-59: % of individuals eligible for screening	10.5%	Table 1
с	Age 60-64: # of individuals alive in cohort	36,325	Table 2
d	Age 60-64: % of individuals eligible for screening	8.6%	Table 1
е	Age 65-69: # of individuals alive in cohort	34,871	Table 2
f	Age 65-69: % of individuals eligible for screening	8.7%	Table 1
g	Age 70-74: # of individuals alive in cohort	32,685	Table 2
h	Age 70-74: % of individuals eligible for screening	5.2%	Table 1
i	# of individuals eligible for screening	2,944	= ((a * b)+ (c * d) +
			(e * f) + (g * h))/4
j	Average # of screens per eligible individual	3	V
k	Adherence with offers to receive screening	60.0%	V
I	Total # of screens in cohort	5,298	= i * j * k
m	Proportion of screens positive	24.2%	V
n	# of positive screens	1,282	= l * m
0	Proportion of screens false positive	96.4%	V
р	# of false positive screens	1,236	= n * o
q	QALYs lost per false positive test	0.05	V
r	QALYs lost due to false positive test	62	= p * q
S	Rate of death due to follow-up testing after screening	1.33%	V
t	'Unnecessary' deaths due to follow-up testing after screening	16	= p * s
u	Lung cancer deaths ages 55-79	1,222	Table 2
v	Remaining life expectancy at death from lung cancer (in years)	16.66	Table 2
w	Effectiveness of screening in reducing LC deaths	19.6%	V
х	LC deaths avoided due to LC screening	144	= u * w * k
у	Net deaths avoided due to LC screening	127	= x - t
z	Potential QALYs saved (CPB) - Utilization increasing from 0% to 60%	2,060	= (y * v)- r

Table 4. Calculation of Clinically Preventable Burden (CPB) Estimate for LungCancer Screening in a Birth Cohort of 40,000

√ = Estimates from the literature

We also modified a number of major assumptions and recalculated the CPB as follows:

- Assume the estimated effectiveness of lung cancer screening in reducing deaths due to lung cancers is reduced from 19.6% to 7.7% (Table 4, row *w*): **CPB = 605**.
- Assume the estimated effectiveness of lung cancer screening in reducing deaths due to lung cancers is increased from 19.6% to 30.0% (Table 4, row *w*): **CPB = 3,331**.
- Assume the adherence rate is reduced from 60% to 50% (Table 4, row k): CPB = 1,716.
- Assume the adherence rate is increased from 60% to 70% (Table 4, row *k*): CPB = 2,403.

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with screening for lung cancer in adults aged 55 to 74 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years, in a BC birth cohort of 40,000.

In modelling CE, we made the following assumptions:

- Assessment of patient risk There are an expected 37,306 individuals in a BC birth cohort of 40,000 who are expected to survive to age 55 (see Table 2). Each of the 37,306 survivors would undergo a one-time screen by their primary care practitioner to determine if they were eligible for lung cancer screening. We assumed that 85% of individuals would agree to this screening and varied this in the sensitivity analysis from 75% to 95% (see Table 6, row *c*).
- **Costs of screening** We assumed an annual LDCT screening exam would cost \$193 (2013 CAD or \$222 in 2022 CAD) (see Table 6, row *i*).⁷¹²
- **Physician visits** LDCT screening results in an additional 14 physician visits per 100 persons screened (see Table 6, row j).⁷¹³
- Positive findings on the screening CT result in the **ensuing follow-up procedures** (Table 5 rows *c* to *k*):⁷¹⁴
 - \circ Follow-up chest CT 49.8%
 - \circ Follow-up chest radiograph 14.4%
 - \circ Follow-up PET/CT scan 8.3%
 - Percutaneous biopsy 1.8%
 - \circ Bronchoscopy without biopsy 1.8%
 - \circ Bronchoscopy with biopsy 1.8%
 - \circ Mediastinoscopy 0.7%
 - \circ Thoracoscopy 1.3%
 - \circ Thoracotomy 2.9%

By including all ensuing procedures following a positive screening CT result, we also include those procedures attributable to all identified harms, including deaths following invasive follow-up testing, over diagnosis, major complications, false positive results and invasive procedures as a consequence of the false positive results.

- The **unit cost** of the ensuing follow-up procedures is as follows (Table 5, rows *u* to ac):⁷¹⁵
 - Follow-up chest radiograph \$65 in 2013 CAD (\$75 in 2022 CAD)
 - \circ Follow-up chest CT \$160 (\$184)
 - Follow-up PET/CT scan \$1,361 (\$1,563)
 - Percutaneous biopsy CT-guided = \$1,054 (\$1,211), US-guided = \$664 (\$763)
 - \circ Bronchoscopy without biopsy \$747 (\$858)
 - Bronchoscopy with biopsy \$782 (\$898)
 - \circ Mediastinoscopy \$950 (\$1,091)

 ⁷¹² Cressman S, Lam S, Tammemagi MC et al. Resource Utilization and Costs during the Initial Years of Lung Cancer Screening with Computed Tomography in Canada. *Journal of Thoracic Oncology*. 2014; 9(10): 1449-58.
 ⁷¹³ Ibid.

⁷¹⁴ Goulart BH, Bensink ME, Mummy DG et al. Lung cancer screening with low-dose computed tomography: costs, national expenditures, and cost-effectiveness. *Journal of the National Comprehensive Cancer Network*. 2012; 10(2): 267-75.

⁷¹⁵ Cressman S, Lam S, Tammemagi MC et al. Resource Utilization and Costs during the Initial Years of Lung Cancer Screening with Computed Tomography in Canada. *Journal of Thoracic Oncology*. 2014; 9(10): 1449-58. See Supplementary Table S1 *Unit Costs*.

- o Thoracoscopy \$16,361 (\$18,795)
- o Thoracotomy \$18,186 (\$20,891)
- **Patient time and travel costs for follow-up procedures** We assumed 2 hours of patient time for a follow-up chest radiograph or chest CT, and 7.5 hours of patient time for a PET/CT scan, percutaneous biopsy or bronchoscopy. For a mediastinoscopy or a thoracoscopy we assumed a hospital stay of 3 days plus 4 weeks recovery (see Table 5, rows *ae* to *am*).

Та	ble 5. Calculation of Costs Associated with	Follow-up	Procedures
Row Label	Variable	Base Case	Data Source
а	Number of positive screens	1,282	Table 4, row n
b	Number of false positive screens	1,236	Table 4, row p
	Proportion of positive screens undergoing investigation		
с	Follow-up chest radiograph	14.4%	V
d	Follow-up chest CT	49.8%	√
е	Follow-up PET/CT scan	8.3%	V
f	Percutaneous biopsy	1.8%	V
g	Bronchoscopy without biopsy	1.8%	V
h	Bronchoscopy with biopsy	1.8%	V
i	Mediastinoscopy	0.7%	V
i	Thoracoscopy	1.3%	V
k	Thoracotomy	2.9%	V
	Number of procedures following a positive screen		
1	Follow-up chest CT	185	= a * c
m	Follow-up chest radiograph	639	= a * d
n	Follow-up PET/CT scan	106	= a * e
0	Percutaneous biopsy	22	= a * f
р	Bronchoscopy without biopsy	22	= a * g
q	Bronchoscopy with biopsy	22	= a * h
r	Mediastinoscopy	9	= a * i
s	Thoracoscopy	16	= a * j
t	Thoracotomy	36	= a * k
	Unit cost of procedures following a positive screen		
u	Follow-up chest radiograph	\$75	V
v	Follow-up chest CT	\$184	V
w	Follow-up PET/CT scan	\$1,563	V
x	Percutaneous biopsy	\$987	V
v	Bronchoscopy without biopsy	\$858	٧
z	Bronchoscopy with biopsy	\$898	V
аа	Mediastinoscopy	\$1,091	V
ab	Thoracoscopy	\$18,795	V
ас	Thoracotomy	\$20,891	V
			= l*u + m*v + n*w + o*x
ad	Follow-up costs of positive screens	\$1,419,002	+ p*y + q*z + r*aa +
			s*ab + t*ac
	Estimated patient time (in hours) per follow-up procedure		
ae	Follow-up chest CT	2.0	Assumed
af	Follow-up chest radiograph	2.0	Assumed
ag	Follow-up PET/CT scan	7.5	Assumed
ah	Percutaneous biopsy	7.5	Assumed
ai	Bronchoscopy without biopsy	7.5	Assumed
aj	Bronchoscopy with biopsy	7.5	Assumed
ak	Mediastinoscopy	7.5	Assumed
al	Thoracoscopy	172.5	Assumed
am	Thoracotomy	172.5	Assumed
			= I*ae + m*af + n*ag +
an	Hours of patient time associated with positive screens	11,965	o*ah + p*ai + q*aj +
		-	r*ak + s*al + t*am
ао	Value of patient time per hour	\$37.16	V
ар	Total cost of patient time for follow-up procedures	\$444,626	= ao * ap
aq	Cost of follow-up procedures	\$1,863,628	= ad + ap
- Costs avoided due to early detection of lung cancers As noted in Table 3, screening with LDCT results in the earlier detection of lung cancers, thus potentially reducing the cost of treatment. Research by Cressman et al. suggests that the mean per person cost of treating stage I & II lung cancer is \$33,244 (95% CI of \$31,553 \$34,935).⁷¹⁶ This increases to \$47,796 (95% CI of \$43,258 \$52,265) for stage III & IV lung cancers. These costs include the diagnostic work-up, treatment and 2 years of follow-up. Based on the stage distribution noted in Table 3, the weighted cost would be \$41,919 for the usual care group and \$36,205 for the CT group, resulting in costs avoided of \$5,715 in 2013 CAD or \$6,565 in 2022 CAD) per lung cancer associated with LDCT screening (see Table 6, row *n*).
- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the estimated cost per QALY would be \$2,122 (see Table 6, row u).

Row Label	Variable	Base Case	Data Source
	Assessment of patient risk		
а	Proportion of cohort alive at age 55	94.3%	V
b	Total number of primary care provider screens (100% adherence)	37,737	= a * 40,000
С	Adherence with screening	85%	Assumed
d	Cost of 10-minute office visit	\$35.97	Ref Doc
е	Value of patient time and travel for office visit	\$74.32	Ref Doc
f	Portion of 10-minute office visit for screen	50%	Assumed
g	Cost of primary care provider screening	\$1,768,865	=(b*c) * ((d+e) * f)
	Screening for Lung Cancer		
h	Potential screens with 60% adherence	5,298	=Table 4, row l
i	Cost per screen	\$222	V
j	Additional physician visits per screening exam	0.14	V
k	Cost of screening	\$1,258,050	=(i*h) + ((h*j) * (d+e))
Ι	Costs Asspociated with Follow-up Procedures	\$1,863,628	=Table 5, row aq
m	Total Costs of Screening and Follow-up	\$4,890,543	= g + k + l
	Costs Avoided		
n	Treatment costs avoided with earlier detection, per cancer	-\$6,565	V
0	Number of incident lung cancers detected earlier	127	= Table 4, row y
р	Treatment costs avoided with earlier detection	-\$835,862	= n * o
q	Net screening and patient costs (undiscounted)	\$4,054,681	= m + p
r	QALYs saved (undiscounted)	2,060	Table 4, row z
S	Net screening and patient costs (1.5% discount)	\$3,510,945	Calculated
t	QALYs saved (1.5% discount)	1,655	Calculated
u	CE (\$/QALY saved)	\$2,122	= s / t

Table 6. Summary of Cost Effectiveness (CE) Estimate for Lung Cancer Screening

∨ = *Estimates from the literature*

⁷¹⁶ Cressman S, Lam S, Tammemagi MC et al. Resource Utilization and Costs during the Initial Years of Lung Cancer Screening with Computed Tomography in Canada. *Journal of Thoracic Oncology*. 2014; 9(10): 1449-58.

We also modified a number of major assumptions and recalculated the cost per QALY as follows:

- Assume the estimated effectiveness of lung cancer screening in reducing deaths due to lung cancers is reduced from 19.6% to 7.7% (Table 4, row *w*): CE =**\$8,199.**
- Assume the estimated effectiveness of lung cancer screening in reducing deaths due to lung cancers is increased from 19.6% to 30.0% (Table 4, row *w*): **CE** = **\$1,157**.
- Assume the adherence rate is reduced from 60% to 50% (Table 4, row k): CE =\$2,306.
- Assume the adherence rate is increased from 60% to 70% (Table 4, row *k*): CE =\$1,991.
- Assume the adherence rate with the assessment of patient risk is reduced from 85% to 75% (Table 6, row *c*): CE = \$2,014.
- Assume the adherence rate with the assessment of patient risk is increased from 85% to 95% (Table 6, row *c*): CE = \$2,230.
- Assume that the portion of a 10-minute office visit for the assessment of patient risk is reduced from 50% to 33% (Table 6, row *f*): CE = \$1,809.
- Assume that the portion of a 10-minute office visit for the assessment of patient risk is increased from 50% to 67% (Table 6, row *f*): CE = \$2,434.

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for lung cancer in adults aged 55 to 74 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years is estimated to be 1,655 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$2,122 per QALY (see Table 7).

Table 7: Lung Cancer Screening Being Offered to a BirthCohort of 40,000 Between the Ages of 55 and 74												
Su	ummary											
	Base											
	Case	Rar	nge									
CPB (Potential QALYs Gained)												
Gap between B.C. Current (0%)	and 'Best in the	World' (60%)										
1.5% Discount Rate	1,655	486	2,676									
3% Discount Rate	1,538	452	2,486									
0% Discount Rate	2,060	605	3,331									
CE (\$/QALY) including patient time	costs											
1.5% Discount Rate	\$2,122	\$1,157	\$8,199									
3% Discount Rate	\$2,176	\$1,188	\$8,394									
0% Discount Rate	\$1,969	\$1,067	\$7,645									
CE (\$/QALY) excluding patient time	e costs											
1.5% Discount Rate	\$1,243	\$613	\$5,207									
3% Discount Rate	\$1,276	\$632	\$5,333									
0% Discount Rate	\$1,147	\$559	\$4,851									

Hypertension Screening and Treatment

United States Preventive Services Task Force Recommendations (2021)

The USPSTF recommends screening for hypertension in adults 18 years or older with office blood pressure measurement (OBPM). The USPSTF recommends obtaining blood pressure measurements outside of the clinical setting for diagnostic confirmation before starting treatment. (A recommendation)⁷¹⁷

Canadian Task Force on Preventive Health Care (2013)

The CTFPHC recommends blood pressure measurement at all appropriate primary care visits for adults aged 18 years and older without previously diagnosed hypertension. (Strong recommendation, moderate quality evidence)

*The CTFPHC recommends that blood pressure be measured according to the current techniques described in the CHEP*⁷¹⁸ *recommendations for office and out-of-office blood pressure measurement. (Strong recommendation, moderate quality evidence)*

The CRFPHC recommends, for people who are found to have an elevated blood pressure measurement during screening, that the CHEP criteria for assessment and diagnosis of hypertension should be applied to determine whether the patient meets diagnostic criteria for hypertension. (Strong recommendation, moderate quality evidence)⁷¹⁹

Definition of Hypertension

- The USPSTF notes that the threshold to define hypertension ranges from 130/80 mm Hg or greater to 140/90 mm Hg or greater and included all thresholds in this range in their evidence review. Hypertension is diagnosed "when a person has repeatedly high blood pressure measurements over time and in various settings."⁷²⁰
- The 2018 Hypertension Canada Guidelines suggest that the manner in which blood pressure is measured is important in determining whether blood pressure is high. A mean result of ≥130/80mm Hg is required if ambulatory blood pressure monitoring over a period of 24 hours. A result of ≥135/85mm Hg is required with ambulatory blood pressure monitoring while the individual is awake, using automated equipment in an office setting or home blood pressure measurement. If non-automated equipment is used in an office setting then a result of ≥140/90mm Hg is required.⁷²¹

Best in the World

• Canada has become a world leader in the identification and management of hypertension.^{722,723} Based on data from the Canadian Primary Care Sentinel

⁷¹⁷ US Preventive Services Task Force. Screening for hypertension in adults: US Preventive Services Task Force Recommendation statement. *JAMA*. 2021; 325(16): 1650-6.

⁷¹⁸ Canadian Hypertension Education Program

⁷¹⁹ Lindsay P, Gorber S, Joffres M et al. Recommendations on screening for high blood pressure in Canadian adults. *Canadian Family Physician*. 2013; 59: 927-33.

⁷²⁰ US Preventive Services Task Force. Screening for hypertension in adults: US Preventive Services Task Force Recommendation statement. *JAMA*. 2021; 325(16): 1650-6.

⁷²¹ Nerenberg K, Zarnke K, Leung A et al. Hypertension Canada's 2018 guidelines for diagnosis, risk assessment, prevention, and treatment of hypertension in adults and children. *Canadian Journal of Cardiology*. 2018; 34: 506-25.

⁷²² Schiffrin E, Campbell N, Feldman R et al. Hypertension in Canada: past, present, and future. *Annals of Global Health*. 2016; 82(2): 288-99.

⁷²³ Padwal R and Campbell N. Blood pressure control in Canada: through the looking-glass into a glass half empty? *American Journal of Hypertension*. 2017; 30(3): 223-5.

Surveillance Network (CPCSSN) for 2011 and 2012, 79% of Canadian adults are screened for blood pressure at least once every two years by their family practitioner.⁷²⁴

• Based on data from the 2015/16 Canadian Community Health Survey, 88.1% of residents of Alberta, Nova Scotia, P.E.I. and Newfoundland & Labrador had their blood pressure checked within the last two years (see Table 1, 78.0% within the last year, data not shown).⁷²⁵

Table 1: Proportion of Canadian Adults													
Who Had Their Bloc	d Pressure	Checked witl	hin the Last Two Y	'ears									
	By Age and	d Sex, 2015/1	6										
Age	Male	Female	Total										
18 - 19	64.9%	77.6%	71.5%										
20 - 24	70.7%	81.4%	75.9%										
25 - 29	74.4%	89.3%	81.5%										
30 - 34	76.4%	87.8%	82.1%										
35 - 39	81.4%	86.9%	84.1%										
40 - 44	87.6%	90.8%	89.1%										
45 - 49	89.1%	92.5%	90.9%										
50 - 54	90.5%	92.3%	91.4%										
55 - 59	90.5%	95.7%	93.0%										
60 - 64	95.8%	96.0%	95.9%										
65 - 69	95.8%	96.4%	96.1%										
70 - 74	97.6%	96.3%	96.9%										
75 - 79	98.7%	98.4%	98.6%										
80+	95.0%	95.0%	95.0%										
Total 18+	85.1%	91.0%	88.1%										

• For modelling purposes, we assume that the *best in the world* blood pressure screening rate is 88.1%.

Current Screening Rates in BC

- As noted in footnote #9, BC-specific data on blood pressure screening rates is not included in the 2015/16 CCHS. We are not aware of any other information which indicates the proportion of individuals in BC who routinely have their blood pressure checked.
- For modelling purposes, however, we assume that the current BC blood pressure screening rate is equivalent to the Canadian average identified in Table 1, or 88.1%.

⁷²⁴ Godwin M, Williamson T, Khan S et al. Prevalence and management of hypertension in primary care practices with electronic medical records: a report from the Canadian Primary Care Sentinel Surveillance Network. *Canadian Medical Association Journal Open*. 2015; 3(1): E76-E82.

⁷²⁵ The 2015/16 CCHS is the most recent survey where a significant amount of the represented Canadian population (16%) were asked about their blood pressure. In the 2017/18 survey, by comparison, only 0.1% were asked the question. We took everyone who was included in the blood pressure questions (22,914) in the survey and determined the proportion having had their blood pressure checked within the last year and the last two years, broken down by age and sex. Only four provinces (Alberta, Nova Scotia, P.E.I., and Newfoundland & Labrador) were represented by the data. Residents of other provinces were not asked the question. Therefore BC-specific data is not available.

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with screening for and treatment of hypertension in adults 18 years and older in a British Columbia birth cohort of 40,000.

In estimating CPB, we made the following assumptions:

Defining and Estimating the Population at Risk

Prevalence of Hypertension in BC

• Table 2 provides information on the crude prevalence of diagnosed hypertension based on medical records⁷²⁶ in BC by age and sex.⁷²⁷ One-quarter (25.0%) of British Columbians ages 20 and older had diagnosed hypertension in 2017/18. As expected, the prevalence of hypertension increases dramatically with increasing age.

Table 2: Diagnosed Hypertension in BC AdultsPrevalence by Age and Sex, 2017/18												
	P	revalence,	%									
Age Group	Male	Female	Total									
20-34	1.4%	1.0%	1.2%									
35-49	9.9%	7.9%	8.9%									
50-64	30.6%	26.9%	28.8%									
65-79	58.3%	55.8%	57.2%									
80+	77.5%	80.5%	79.5%									
20 and Older	25.3%	24.7%	25.0%									
Source: Canadian	Chronic Dise	ease Surveilla	nce System									

⁷²⁶ Based on linked health data indicating one or more hospital separation records, or two or more physician claims within two years with ICD-10 codes I10, I11, I12, I13, I15.

⁷²⁷ Public Health Agency of Canada. *Canadian Chronic Disease Surveillance System (CCDSS)*. Available at <u>https://health-infobase.canada.ca/ccdss/data-tool/Index</u>. Accessed January 2022.

• The age-standardized⁷²⁸ prevalence of hypertension in BC has increased from 16.9% in 2000 to 23.1% in 2011 before declining to 22.3% in 2017 (see Figure 1).⁷²⁹

Changes in Prevalence, Awareness, Treatment and Control of Hypertension in Canada

• The prevalence of measured hypertension (140/90 mm Hg or greater) in Canadians ages 20-79 has remained relatively stable over time, with rates of 21.6% in 1992,⁷³⁰ 19.7% in 2009⁷³¹ and 23.2% in 2015.⁷³² The awareness, treatment and control of hypertension, however, has improved dramatically between 1992 and 2009 and then remained stable until at least 2015 (see Table 3). In 1992, 56.9% of Canadians were aware of their hypertension with this increasing to 82.6% in 2009. In 1992, just 34.6% of Canadians with hypertension were being treated for their hypertension with this increasing to 79.1% in 2009. In 1992 just 13.2% of Canadians with hypertension had their hypertension under control, with this increasing to 64.6% in 2009.

⁷²⁸ Rates are age-standardized to the 2011 Canadian population

⁷²⁹ Public Health Agency of Canada. *Canadian Chronic Disease Surveillance System (CCDSS)*. Available at <u>https://health-infobase.canada.ca/ccdss/data-tool/Index</u>. Accessed February 2022.

⁷³⁰ McAlister F, Wilkins K, Joffres M et al. Changes in rates of awareness, treatment and control of hypertension in Canada over the past two decades. *Canadian Medical Journal*. 2011; 183(9): 1007-13.

⁷³¹ McAlister F, Wilkins K, Joffres M et al. Changes in rates of awareness, treatment and control of hypertension in Canada over the past two decades. *Canadian Medical Journal*. 2011; 183(9): 1007-13.

⁷³² DeGuire J, Clarke J, Rouleau K et al. Blood pressure and hypertension. *Health Reports*. 2019; 30(2): 14-21.

Table 3: Hypertension in CanadaPrevalence, Awareness, Treatment and Control1992, 2009 and 2015													
1992	2009	2015											
1.6%	19.7%	23.2%											
6.9%	82.6%	85.4%											
4.6%	79.1%	81.4%											
.3.2%	64.6%	67.6%											
	Treatmo and 2019 1992 1.6% 6.9% 4.6% 3.2%	Treatment and 0 and 2015 1992 2009 1.6% 19.7% 6.9% 82.6% 4.6% 79.1% 3.2% 64.6%											

- A key reason for these significant improvements in awareness, treatment and control of hypertension in Canada is the establishment of the Canadian Hypertension Education Program (CHEP) in 1999.^{733,734} The goal of CHEP was to act "as a vehicle to more effectively develop, disseminate, and implement optimal management approaches for the treatment of patients with hypertension" in Canada.⁷³⁵
- Based on measurements made for the Canadian Health Measures Survey between 2012 and 2015, 23.2% of Canadians ages 20-79 had hypertension (blood pressure ≥ 140/90 mm Hg). Of these individuals, 85.4% were aware of their condition, 81.4% were treated for their condition and 67.6% had controlled hypertension (blood pressure < 140/90 mm Hg) (as noted in Table 3). Table 4 provides additional details on the rates of prevalence, awareness, treatment and control by sex and age group.⁷³⁶

⁷³⁶ DeGuire J, Clarke J, Rouleau K et al. Blood pressure and hypertension. *Health Reports*. 2019; 30(2): 14-21.

⁷³³ Campbell N, Tu K, Brant R et al. The impact of the Canadian Hypertension Education Program on antihypertensive prescribing trends. *Hypertension*. 2006; 47: 22-8.

⁷³⁴ McAlister F, Feldman R, Wyard K et al. The impact of the Canadian Hypertension Education Program in its first decade. *European Heart Journal*. 2009; 30: 1434-9.

⁷³⁵ McAlister F, Feldman R, Wyard K et al. The impact of the Canadian Hypertension Education Program in its first decade. *European Heart Journal*. 2009; 30: 1434-9.

Table 4: Hypertension Prevalence, Awareness,												
	Tre	eatment	and Cont	rol								
	С	anada, 20	12 to 201	5								
		By Sex and	Age Group									
	Average Blood		Ma	les								
Age Group	Pressure	Prevalence	Awareness	Treatment	Control							
20-39	109/71	4.4%	61.8%	47.5%	44.7%							
40-59	116/77	18.4%	81.0%	70.5%	55.3%							
60-69	120/75	43.3%	88.1%	86.2%	76.7%							
70-79	123/70	63.9%	91.7%	91.1%	75.9%							
20-79	115/74	23.8%	85.6%	81.0%	68.9%							
		Fem	ales									
		Prevalence	Awareness	Treatment	Control							
20-39	103/68	3.4%	68.1%	65.2%	59.1%							
40-59	112/71	14.8%	78.2%	74.8%	64.3%							
60-69	120/71	42.6%	89.6%	83.8%	70.8%							
70-79	128/70	61.6%	87.6%	86.4%	63.4%							
20-79	112/70	22.6%	85.3%	81.8%	66.2%							
		Total Po	pulation									
		Prevalence	Awareness	Treatment	Control							
20-39	106/70	3.9%	64.6%	55.2%	51.0%							
40-59	114/74	16.6%	79.8%	72.4%	59.3%							
60-69	120/73	42.9%	88.8%	85.1%	73.9%							
70-79	126/70	62.6%	89.4%	88.5%	68.9%							
20-79	113/72	23.2%	85.4%	81.4%	67.6%							

Adherence to antihypertensive medications is suboptimal and may vary by ethnicity. Over a 10-year period, as few as 40% of patients continuously take their antihypertensive medication while a further 22% temporarily discontinue and then restart treatment.⁷³⁷ Liu and co-authors found that optimal adherence to antihypertensive medication in British Columbia is 66.2% in the white population, 56.0% in the Chinese population and 40.3% in the South Asian population.⁷³⁸ Adherence also varies by drug class, with better adherence to angiotensin II receptor blockers and angiotensin-converting enzyme inhibitors and the lowest adherence to diuretics and β-blockers. Adherence, however, is suboptimal regardless of drug class.⁷³⁹ This suboptimal adherence is likely an important reason for the gap between the proportions of individuals who are aware of their hypertension (85.4%) vs. those with controlled hypertension (67.6%) in Table 4 above.

⁷³⁷ Van Wijk B, Klugel O, Heerdink E et al. Rate and determinants of 10-year persistence with antihypertensive drugs. *Journal of Hypertension*. 2005; 23(11): 2101-07.

⁷³⁸ Liu Q, Quan H, Chen G et al. Antihypertensive medication adherence and mortality according to ethnicity: A cohort study. *Canadian Journal of Cardiology*. 2014; 30: 925-31.

⁷³⁹ Kronish I, Woodward M, Sergie Z et al. Impact of drug class on adherence to antihypertensives. *Circulation*. 2011; 123: 1611-21.

• Based on research by Leung and colleagues, 5.3% (95% CI of 4.5% to 6.2%) of Canadian adults with hypertension have treatment-resistant hypertension. Treatment-resistant hypertension is defined as "uncontrolled blood pressure despite 3 or more antihypertensive medications of different drug classes (and at least 1 agent being a diuretic), or treatment with 4 or more agents regardless of blood pressure".⁷⁴⁰ This may be another partial explanation for the gap between the proportions of individuals with treated hypertension (81.4%) vs. controlled hypertension (67.6%) in Table 4 above.

Effectiveness of Screening

Estimated Awareness, Treatment and Control of Hypertension in BC in the Absence/Presence of Screening

- To estimate rates of awareness, treatment and control in a BC birth cohort of 40,000 in the absence of a screening program, we used the age and sex-specific data in Table 4 for prevalence, treatment and control, but adjusted the age and sex-specific awareness downwards to match the rates of awareness in 1992. For ages 20-79 this was 56.9% (see Table 3). Note that the overall rates of prevalence and awareness in Table 5 are somewhat higher than in Table 4 because we include individuals ages 80-84 in Table 5 with their generally higher rates of prevalence and awareness. Using this approach, there would be an estimated 589,334 life years lived with hypertension in a BC birth cohort of 40,000. Of these 589,334 life years lived with hypertension, 348,355 (59.1%) would be years in which the individual was aware of their hypertension, individuals within the cohort would be on treatment for hypertension for 333,972 (56.7%) life years and hypertension would be under control during 272,949 life years, or just under half (46.3%) of the 589,334 life years lived with hypertension (see Table 5).
- To estimate rates of awareness, treatment and control in a BC birth cohort of 40,000 with a screening program, we again used the age and sex-specific data in Table 4 for prevalence, treatment and control but this time used the 85.4% rate of awareness from Table 4 in those ages 20-79 (see Table 6). Using this approach, there would still be an estimated 589,334 life years lived with hypertension in a BC birth cohort of 40,000. Of these 589,334 life years lived with hypertension, however, 505,742 (85.8%) would be years in which the individual was aware of their hypertension. Using the same rates of treatment and control as in Table 5, but with a much higher base being aware of their hypertension, would mean that individuals within the cohort would be under control during 396,270 life years, or 67.2% of the 589,334 life years lived with hypertension (see Table 6).
- Table 7 provides a summary of the changes we would expect in a BC birth cohort of 40,000 without and with a screening program for hypertension. The key difference with the addition of a screening program is that a further 123,321 life years lived would be ones in which the individual's hypertension was under control.

⁷⁴⁰ Leung A, Williams J, Tran K et al. Epidemiology of resistant hypertension in Canada. *Canadian Journal of Cardiology*. 2022; 38: 681-7.

Table 5: Estimated Hypertension Prevalence, Awareness, Treatment and Control

Between the Ages of 18 and 84 In a British Columbia Birth Cohort of 40,000

- - -

Mi+b

	Female						Male								Total Population								
	Total Life	Preva	alence	Awa	reness	Trea	tment	Co	ntrol	Total Life	Preva	alence	Awa	reness	Treat	tment	Co	ntrol	Total Life		_		
Age 18	10 80/	3 /1%	#	% 16.9%	# 320	% // 0%	306	% 10.7%	778	10 876	% 1.1%	#	% 12.6%	# 370	% 22.7%	#	30.8%	768	Years	1 551	Awareness	501	545
19	19,888	3.4%	682	46.9%	320	44.9%	306	40.7%	278	19,864	4.4%	868	42.6%	370	32.7%	284	30.8%	267	39,752	1,551	690	591	545
20	19,881	3.4%	682	46.9%	320	44.9%	306	40.7%	278	19,851	4.4%	868	42.6%	369	32.7%	284	30.8%	267	39,732	1,550	689	590	545
21	19,874	3.4%	682	46.9%	320	44.9%	306	40.7%	278	19,835	4.4%	867	42.6%	369	32.7%	284	30.8%	267	39,709	1,549	689	590	545
22	19,867	3.4%	681	46.9%	320	44.9%	306	40.7%	277	19,817	4.4%	866	42.6%	369	32.7%	283	30.8%	267	39,684	1,548	688	590	544
25 24	19,859	3.4%	681	46.9%	319	44.9% 44.9%	306	40.7%	277	19,790	4.4% 4.4%	864	42.0%	368	32.7%	283	30.8%	266	39,050	1,547	687	589	544 543
25	19,843	3.4%	681	46.9%	319	44.9%	306	40.7%	277	19,751	4.4%	863	42.6%	368	32.7%	283	30.8%	266	39,594	1,544	687	588	543
26	19,834	3.4%	680	46.9%	319	44.9%	306	40.7%	277	19,727	4.4%	862	42.6%	367	32.7%	282	30.8%	266	39,561	1,543	686	588	542
27	19,825	3.4%	680	46.9%	319	44.9%	305	40.7%	277	19,702	4.4%	861	42.6%	367	32.7%	282	30.8%	265	39,527	1,541	686	587	542
28	19,816	3.4%	680 670	46.9%	319	44.9%	305	40.7%	277	19,676	4.4%	860 850	42.6%	366	32.7%	281	30.8%	265	39,492	1,540	685	587	542
30	19,800	3.4%	679	40.9%	319	44.9%	305	40.7%	277	19,049	4.4%	858	42.0%	365	32.7%	281	30.8%	264	39,433	1,550	684	586	541
31	19,785	3.4%	679	46.9%	318	44.9%	305	40.7%	276	19,593	4.4%	857	42.6%	365	32.7%	280	30.8%	264	39,378	1,535	683	585	540
32	19,773	3.4%	678	46.9%	318	44.9%	305	40.7%	276	19,564	4.4%	855	42.6%	364	32.7%	280	30.8%	263	39,338	1,533	682	584	539
33	19,761	3.4%	678	46.9%	318	44.9%	304	40.7%	276	19,535	4.4%	854	42.6%	364	32.7%	279	30.8%	263	39,296	1,532	682	584	539
34	19,749	3.4%	677	46.9%	318	44.9%	304	40.7%	276	19,505	4.4%	853	42.6%	363	32.7%	279	30.8%	263	39,254	1,530	681	583	538
36	19,730	3.4%	676	40.9%	317	44.9%	304	40.7%	275	19,474	4.4%	850	42.6%	362	32.7%	279	30.8%	262	39,164	1,526	679	582	537
37	19,708	3.4%	676	46.9%	317	44.9%	304	40.7%	275	19,409	4.4%	848	42.6%	361	32.7%	278	30.8%	261	39,117	1,524	678	581	536
38	19,693	3.4%	675	46.9%	317	44.9%	303	40.7%	275	19,375	4.4%	847	42.6%	361	32.7%	277	30.8%	261	39,068	1,522	677	580	536
39	19,677	3.4%	675	46.9%	317	44.9%	303	40.7%	275	19,339	4.4%	845	42.6%	360	32.7%	277	30.8%	260	39,017	1,520	677	580	535
40	19,661	14.8%	2,911	53.9%	1,568	51.5%	1,500	44.3%	1,290	19,303	18.4%	3,557	55.8%	1,985	48.6%	1,727	38.1%	1,355	38,964	6,468	3,553	3,227	2,644
41	19,645	14.8%	2,909	53.9%	1,565	51.5%	1,495	44.3%	1,280	19,204	18.4%	3,550	55.8%	1,901	48.6%	1,724	38.1%	1,332	38,849	6.448	3,540	3,223	2,637
43	19,605	14.8%	2,903	53.9%	1,564	51.5%	1,496	44.3%	1,286	19,183	18.4%	3,535	55.8%	1,972	48.6%	1,717	38.1%	1,347	38,788	6,438	3,536	3,213	2,632
44	19,584	14.8%	2,900	53.9%	1,562	51.5%	1,494	44.3%	1,285	19,140	18.4%	3,527	55.8%	1,968	48.6%	1,713	38.1%	1,343	38,724	6,427	3,530	3,207	2,628
45	19,561	14.8%	2,897	53.9%	1,560	51.5%	1,493	44.3%	1,283	19,094	18.4%	3,518	55.8%	1,963	48.6%	1,709	38.1%	1,340	38,656	6,415	3,524	3,201	2,623
46	19,537	14.8%	2,893	53.9%	1,558	51.5%	1,491	44.3%	1,281	19,047	18.4%	3,510	55.8%	1,958	48.6%	1,704	38.1%	1,337	38,584	6,403	3,517	3,195	2,618
47	19,311	14.8%	2,009	53.9%	1,550	51.5%	1,465	44.3%	1,280	18,990	18.4%	3 491	55.8%	1,935	48.0%	1,700	38.1%	1,333	38,308	6 376	3,509	3,109	2,013
49	19,454	14.8%	2,881	53.9%	1,552	51.5%	1,484	44.3%	1,276	18,887	18.4%	3,480	55.8%	1,942	48.6%	1,690	38.1%	1,326	38,341	6,361	3,494	3,174	2,602
50	19,422	14.8%	2,876	53.9%	1,549	51.5%	1,482	44.3%	1,274	18,827	18.4%	3,469	55.8%	1,936	48.6%	1,685	38.1%	1,322	38,249	6,345	3,485	3,167	2,595
51	19,388	14.8%	2,871	53.9%	1,547	51.5%	1,479	44.3%	1,272	18,763	18.4%	3,457	55.8%	1,929	48.6%	1,679	38.1%	1,317	38,151	6,328	3,476	3,158	2,589
52	19,352	14.8%	2,866	53.9%	1,544	51.5%	1,477	44.3%	1,269	18,695	18.4%	3,445	55.8%	1,922	48.6%	1,673	38.1%	1,312	38,046	6,310	3,466	3,149	2,582
54	19,312	14.8%	2,800	53.9%	1,541	51.5%	1,474	44.3%	1,267	18,545	18.4%	3,431	55.8%	1,915	48.6%	1,659	38.1%	1,307	37,934	6.271	3,433	3,140	2,574
55	19,224	14.8%	2,847	53.9%	1,533	51.5%	1,467	44.3%	1,261	18,461	18.4%	3,402	55.8%	1,898	48.6%	1,652	38.1%	1,296	37,685	6,248	3,432	3,119	2,557
56	19,174	14.8%	2,839	53.9%	1,530	51.5%	1,463	44.3%	1,258	18,372	18.4%	3,385	55.8%	1,889	48.6%	1,644	38.1%	1,290	37,547	6,225	3,418	3,107	2,547
57	19,121	14.8%	2,831	53.9%	1,525	51.5%	1,459	44.3%	1,254	18,277	18.4%	3,368	55.8%	1,879	48.6%	1,636	38.1%	1,283	37,398	6,199	3,404	3,094	2,537
58	19,063	14.8%	2,823	53.9%	1,521	51.5%	1,455	44.3%	1,250	18,175	18.4%	3,349	55.8%	1,869	48.6%	1,626	38.1%	1,276	37,238	6,172	3,389	3,081	2,526
59 60	19,000	42.6%	2,814	55.9% 61.7%	4,977	51.5% 57.7%	4.655	44.3% 48.8%	3,933	18,065	43.3%	3,329 7.765	55.8% 60.7%	4,712	48.0% 59.4%	4.611	52.8%	4,103	36,879	6,142 15.829	3,373 9.689	3,066 9,266	2,514 8.035
61	18,858	42.6%	8,032	61.7%	4,958	57.7%	4,637	48.8%	3,917	17,820	43.3%	7,710	60.7%	4,679	59.4%	4,578	52.8%	4,074	36,678	15,742	9,637	9,215	7,991
62	18,777	42.6%	7,998	61.7%	4,937	57.7%	4,617	48.8%	3,901	17,684	43.3%	7,651	60.7%	4,643	59.4%	4,543	52.8%	4,042	36,461	15,649	9,580	9,160	7,943
63	18,689	42.6%	7,960	61.7%	4,913	57.7%	4,595	48.8%	3,882	17,537	43.3%	7,587	60.7%	4,605	59.4%	4,505	52.8%	4,009	36,226	15,548	9,518	9,101	7,891
64 65	18,593	42.6%	7,920	61.7% 61.7%	4,888	57.7% 57.7%	4,572	48.8%	3,863	17,379	43.3%	7,519	60.7%	4,563	59.4%	4,465	52.8%	3,973	35,972	15,438	9,451	9,036	7,835
66	18,485	42.6%	7.826	61.7%	4.831	57.7%	4,540	48.8%	3.817	17,200	43.3%	7,365	60.7%	4.470	59.4%	4.374	52.8%	3,892	35,399	15,320	9.301	8,891	7,709
67	18,250	42.6%	7,773	61.7%	4,798	57.7%	4,487	48.8%	3,791	16,826	43.3%	7,280	60.7%	4,418	59.4%	4,323	52.8%	3,846	35,075	15,053	9,216	8,810	7,637
68	18,113	42.6%	7,715	61.7%	4,762	57.7%	4,454	48.8%	3,763	16,612	43.3%	7,187	60.7%	4,362	59.4%	4,268	52.8%	3,797	34,725	14,902	9,124	8,721	7,560
69	17,963	42.6%	7,651	61.7%	4,722	57.7%	4,417	48.8%	3,732	16,381	43.3%	7,087	60.7%	4,301	59.4%	4,208	52.8%	3,744	34,344	14,738	9,023	8,625	7,476
70	17,799	61.6%	10,968	60.3%	6,619	59.5%	6,528	43.7%	4,790	16,132	63.9%	10,312	63.1%	6,512	62.7%	6,469	52.3%	5,390	33,930	21,281	13,130	12,997	10,180
72	17,019	61.6%	10,837	60.3%	6.478	59.5%	6.390	43.7%	4,742	15,803	63.9%	9,955	63.1%	6,286	62.7%	6.245	52.3%	5,203	32,994	20,998	12,955	12,625	9,892
73	17,204	61.6%	10,602	60.3%	6,398	59.5%	6,310	43.7%	4,630	15,260	63.9%	9,755	63.1%	6,160	62.7%	6,119	52.3%	5,098	32,464	20,357	12,557	12,429	9,729
74	16,966	61.6%	10,455	60.3%	6,309	59.5%	6,223	43.7%	4,566	14,923	63.9%	9,540	63.1%	6,024	62.7%	5,984	52.3%	4,986	31,889	19,995	12,333	12,207	9,552
75	16,704	61.6%	10,294	60.3%	6,212	59.5%	6,127	43.7%	4,496	14,560	63.9%	9,308	63.1%	5,877	62.7%	5,839	52.3%	4,865	31,265	19,602	12,089	11,966	9,360
76 77	16,417	61.6%	10,117	60.3%	6,105 5 000	59.5%	6,021 5,000	43.7%	4,418	14,170	63.9%	9,058	63.1%	5,720	62.7%	5,682	52.3%	4,734	30,587	19,175	11,825	11,704	9,153
78	15,757	61.6%	9,923 9,710	60.3%	5,859	59.5%	5,900	43.7%	4,241	13,751	63.9%	8,503	63,1%	5,369	62.7%	5,334	52.3%	4,394	29,058	18,213	11,228	11,420	0,920 8,685
79	15,378	61.6%	9,476	60.3%	5,719	59.5%	5,640	43.7%	4,139	12,820	63.9%	8,195	63.1%	5,175	62.7%	5,141	52.3%	4,283	28,198	17,672	10,893	10,781	8,422
80	14,963	61.6%	9,221	60.3%	5,564	59.5%	5,488	43.7%	4,027	12,306	63.9%	7,867	63.1%	4,967	62.7%	4,935	52.3%	4,112	27,269	17,088	10,532	10,423	8,139
81	14,510	61.6%	8,942	60.3%	5,396	59.5%	5,322	43.7%	3,905	11,759	63.9%	7,517	63.1%	4,747	62.7%	4,716	52.3%	3,929	26,269	16,459	10,143	10,038	7,834
82 82	14,016	61.6%	8,637	60.3%	5,212	59.5%	5,141	43.7%	3,772	11,179	63.9%	7,146 6 754	63.1%	4,512	62.7%	4,483	52.3%	3,735	25,195	15,783	9,725 9,725	9,624	7,507
ەت 84	12,895	61.6%	8,300 7,946	60.3%	3,012 4,795	59.5%	4,943	43.7%	3,027	9,919	63.9%	6,754 6,341	63.1%	4,205	62.7%	4,237 3,978	52.3%	3,330	24,045	14,287	9,277 8,799	9,180 8,707	6,785
Total	1 2/15 000	22.00/	207 402	58 00/	17/ 032	56 00/	160 077	15 00/	122 010	1 197 557	2/ 70/	201 022	50 10/	172 522	56 60/	165 151	17 70/	120 121	2 A20 AEF	580 224	249 255	222 072	272 040
10101	1,273,030	-3.3/0	201,402	30.0/0	177,023	30.0/0	100,022	40.070	133,010	1,102,337		-31,332	33.4/0	-13,332	30.070	100,101	-+/.//0	133,131	2,720,733	202,224	340,333	333,372	-12,343

Table 6: Estimated Hypertension Prevalence, Awareness, Treatment and Control

Between the Ages of 18 and 84 In a British Columbia Birth Cohort of 40,000

	Female							Male								Total Population							
	Total Life	Prev	alence	Awa	reness	Trea	tment	Cor	ntrol	Total Life	Preva	alence	Awa	eness	Treat	tment	Cor	ntrol	Total Life		•		
Age	Years	%	#	%	#	%	#	%	#	Years	%	#	%	#	%	#	%	#	Years	Prevalence	Awareness	Treatment	Control
18	19,894	3.4%	682	68.1%	465	65.2%	445	59.1%	403	19,876	4.4%	869	61.8%	537	47.5%	413	44.7%	388	39,770	1,551	1,002	858	792
20	19,888	3.4%	682	68.1%	405	65.2%	445 445	59.1% 59.1%	403	19,804	4.4% 4.4%	868	61.8%	536	47.5% 47.5%	412	44.7% 44.7%	388	39,752	1,550	1,001	857	791
20	19,874	3.4%	682	68.1%	464	65.2%	444	59.1%	403	19,835	4.4%	867	61.8%	536	47.5%	412	44.7%	388	39,709	1,530	1,000	856	790
22	19,867	3.4%	681	68.1%	464	65.2%	444	59.1%	403	19,817	4.4%	866	61.8%	535	47.5%	411	44.7%	387	39,684	1,548	999	856	790
23	19,859	3.4%	681	68.1%	464	65.2%	444	59.1%	403	19,796	4.4%	865	61.8%	535	47.5%	411	44.7%	387	39,656	1,547	999	855	789
24	19,851	3.4%	681	68.1%	464	65.2%	444	59.1%	402	19,775	4.4%	864	61.8%	534	47.5%	411	44.7%	386	39,626	1,545	998	855	789
25	19,843	3.4%	681	68.1%	463	65.2%	444	59.1%	402	19,751	4.4%	863	61.8%	534	47.5%	410	44.7%	386	39,594	1,544	997	854	788
26	19,834	3.4%	680	68.1%	463	65.2%	444	59.1%	402	19,727	4.4%	862	61.8%	533	47.5%	410	44.7%	385	39,561	1,543	996	853	788
27	19,825	3.4%	680	68.1%	463	65.2%	443	59.1% 50.1%	402	19,702	4.4%	860	61.8%	532	47.5%	409	44.7%	385	39,527	1,541	995	852	787
20	19,810	3.4%	679	68.1%	463	65.2%	443	59.1%	402	19,649	4.4%	859	61.8%	531	47.5%	403	44.7%	384	39,455	1,540	993	851	785
30	19,796	3.4%	679	68.1%	462	65.2%	443	59.1%	401	19,621	4.4%	858	61.8%	530	47.5%	407	44.7%	383	39,417	1,537	992	850	785
31	19,785	3.4%	679	68.1%	462	65.2%	442	59.1%	401	19,593	4.4%	857	61.8%	529	47.5%	407	44.7%	383	39,378	1,535	991	849	784
32	19,773	3.4%	678	68.1%	462	65.2%	442	59.1%	401	19,564	4.4%	855	61.8%	529	47.5%	406	44.7%	382	39,338	1,533	990	848	783
33	19,761	3.4%	678	68.1%	462	65.2%	442	59.1%	401	19,535	4.4%	854	61.8%	528	47.5%	406	44.7%	382	39,296	1,532	989	848	782
34	19,749	3.4%	677	68.1%	461	65.2%	442	59.1%	400	19,505	4.4%	853	61.8%	527	47.5%	405	44.7%	381	39,254	1,530	988	847	781
35	19,736	3.4%	677	68.1%	461	65.2%	441	59.1%	400	19,474	4.4%	851	61.8%	526	47.5%	404	44.7%	381	39,210	1,528	987	846	781
37	19 708	3.4%	676	68.1%	460	65.2%	441	59.1%	399	19 409	4.4%	848	61.8%	523	47.5%	404	44.7%	379	39 117	1,520	985	844	779
38	19,693	3.4%	675	68.1%	460	65.2%	440	59.1%	399	19,375	4.4%	847	61.8%	523	47.5%	402	44.7%	379	39,068	1,522	983	843	778
39	19,677	3.4%	675	68.1%	460	65.2%	440	59.1%	399	19,339	4.4%	845	61.8%	522	47.5%	402	44.7%	378	39,017	1,520	982	842	777
40	19,661	14.8%	2,911	78.2%	2,277	74.8%	2,178	64.3%	1,872	19,303	18.4%	3,557	81.0%	2,881	70.5%	2,508	55.3%	1,967	38,964	6,468	5,158	4,685	3,839
41	19,643	14.8%	2,909	78.2%	2,275	74.8%	2,176	64.3%	1,870	19,264	18.4%	3,550	81.0%	2,875	70.5%	2,503	55.3%	1,963	38,908	6,459	5,150	4,678	3,833
42	19,625	14.8%	2,906	78.2%	2,273	74.8%	2,174	64.3%	1,869	19,225	18.4%	3,542	81.0%	2,869	70.5%	2,497	55.3%	1,959	38,849	6,448	5,142	4,671	3,828
43	19,605	14.8%	2,903	78.2%	2,270	74.8%	2,172	64.3%	1,867	19,183	18.4%	3,535	81.0%	2,863	70.5%	2,492	55.3%	1,955	38,788	6,438	5,133	4,664	3,821
44	19,584	14.8%	2,900	78.2%	2,208	74.8%	2,169	64.3%	1,865	19,140	18.4%	3,527	81.0%	2,857	70.5%	2,480	55.3%	1,950	38,724	6,427	5,124	4,656	3,815
46	19,501	14.8%	2,893	78.2%	2,205	74.8%	2,107	64.3%	1,860	19,034	18.4%	3,510	81.0%	2,830	70.5%	2,400	55.3%	1,940	38,584	6,403	5,115	4,638	3,803
47	19,511	14.8%	2,889	78.2%	2,259	74.8%	2,161	64.3%	1,858	18,996	18.4%	3,500	81.0%	2,835	70.5%	2,468	55.3%	1,936	38,508	6,390	5,095	4,629	3,793
48	19,484	14.8%	2,885	78.2%	2,256	74.8%	2,158	64.3%	1,855	18,943	18.4%	3,491	81.0%	2,827	70.5%	2,461	55.3%	1,930	38,427	6,376	5,083	4,619	3,785
49	19,454	14.8%	2,881	78.2%	2,253	74.8%	2,155	64.3%	1,852	18,887	18.4%	3,480	81.0%	2,819	70.5%	2,453	55.3%	1,925	38,341	6,361	5,072	4,608	3,777
50	19,422	14.8%	2,876	78.2%	2,249	74.8%	2,151	64.3%	1,849	18,827	18.4%	3,469	81.0%	2,810	70.5%	2,446	55.3%	1,918	38,249	6,345	5,059	4,597	3,768
51	19,388	14.8%	2,871	78.2%	2,245	74.8%	2,148	64.3%	1,846	18,763	18.4%	3,457	81.0%	2,800	70.5%	2,437	55.3%	1,912	38,151	6,328	5,046	4,585	3,758
52	19,352	14.8%	2,866	78.2%	2,241	74.8%	2,143	64.3%	1,843	18,695	18.4%	3,445	81.0%	2,790	70.5%	2,429	55.3%	1,905	38,046	6,310	5,031	4,572	3,748
53	19,312	14.8%	2,800	78.2%	2,230	74.8%	2,139	64.3%	1,839	18,022	18.4%	3,431	81.0%	2,779	70.5%	2,419	55.3%	1,898	37,934	6 271	2,010 4 999	4,558	3,730
55	19,224	14.8%	2,833	78.2%	2,231	74.8%	2,134	64.3%	1.830	18,461	18.4%	3,402	81.0%	2,755	70.5%	2,398	55.3%	1,881	37,685	6.248	4,982	4,528	3,712
56	19,174	14.8%	2,839	78.2%	2,220	74.8%	2,124	64.3%	1,826	18,372	18.4%	3,385	81.0%	2,742	70.5%	2,387	55.3%	1,872	37,547	6,225	4,963	4,511	3,698
57	19,121	14.8%	2,831	78.2%	2,214	74.8%	2,118	64.3%	1,821	18,277	18.4%	3,368	81.0%	2,728	70.5%	2,374	55.3%	1,862	37,398	6,199	4,942	4,492	3,683
58	19,063	14.8%	2,823	78.2%	2,207	74.8%	2,111	64.3%	1,815	18,175	18.4%	3,349	81.0%	2,713	70.5%	2,361	55.3%	1,852	37,238	6,172	4,920	4,473	3,667
59	19,000	14.8%	2,814	78.2%	2,200	74.8%	2,105	64.3%	1,809	18,065	18.4%	3,329	81.0%	2,696	70.5%	2,347	55.3%	1,841	37,065	6,142	4,896	4,451	3,650
60	18,932	42.6%	8,064	89.6%	7,225	83.8%	6,758	70.8%	5,709	17,947	43.3%	7,765	88.1%	6,841	86.2%	6,693	76.7%	5,956	36,879	15,829	14,066	13,451	11,665
62	18,858	42.6%	8,032	89.6% 89.6%	7,197	83.8%	6,731	70.8%	5,687	17,820	43.3%	7,710	88.1% 88.1%	6,792	86.2%	6,646	76.7%	5,913	36,678	15,742	13,989	13,377	11,600
63	18,689	42.6%	7,960	89.6%	7,133	83.8%	6.671	70.8%	5,636	17,537	43.3%	7,587	88.1%	6.684	86.2%	6.540	76.7%	5,808	36,226	15,548	13,307	13,237	11,351
64	18,593	42.6%	7,920	89.6%	7,096	83.8%	6,637	70.8%	5,607	17,379	43.3%	7,519	88.1%	6,624	86.2%	6,481	76.7%	5,767	35,972	15,438	13,720	13,118	11,374
65	18,489	42.6%	7,875	89.6%	7,056	83.8%	6,599	70.8%	5,576	17,208	43.3%	7,445	88.1%	6,559	86.2%	6,418	76.7%	5,710	35,697	15,320	13,615	13,017	11,286
66	18,375	42.6%	7,826	89.6%	7,013	83.8%	6,559	70.8%	5,541	17,024	43.3%	7,365	88.1%	6,489	86.2%	6,349	76.7%	5,649	35,399	15,192	13,501	12,908	11,190
67	18,250	42.6%	7,773	89.6%	6,965	83.8%	6,514	70.8%	5,503	16,826	43.3%	7,280	88.1%	6,413	86.2%	6,275	76.7%	5,583	35,075	15,053	13,378	12,789	11,087
68	18,113	42.6%	7,715	89.6%	6,913	83.8%	6,465	70.8%	5,462	16,612	43.3%	7,187	88.1%	6,332	86.2%	6,195	76.7%	5,512	34,725	14,902	13,244	12,660	10,975
69 70	17,963	42.6%	7,651	89.6%	6,855	83.8%	6,412	/0.8%	5,417	16,381	43.3%	7,087	88.1%	6,244	86.2%	6,109	76.7%	5,436	34,344	14,738	13,099	12,521	10,853
70	17,799	61.6%	10,968	87.0% 87.6%	9,008	86.4%	9,477	63.4%	6,954 6,884	15,152	63.9%	10,312	91.7%	9,450	91.1% 91 1%	9,394	75.9%	7,827	33,930	21,281	19,005	18,619	14,781
72	17,421	61.6%	10,736	87.6%	9,404	86.4%	9,276	63.4%	6,806	15,573	63.9%	9,955	91.7%	9,129	91.1%	9,069	75.9%	7,556	32,994	20,691	18,533	18,345	14,362
73	, 17,204	61.6%	10,602	87.6%	9,287	86.4%	9,160	63.4%	6,722	15,260	63.9%	9,755	91.7%	8,945	91.1%	8,887	75.9%	7,404	32,464	20,357	18,233	18,047	14,126
74	16,966	61.6%	10,455	87.6%	9,159	86.4%	9,033	63.4%	6,629	14,923	63.9%	9,540	91.7%	8,748	91.1%	8,691	75.9%	7,241	31,889	19,995	17,907	17,724	13,869
75	16,704	61.6%	10,294	87.6%	9,018	86.4%	8,894	63.4%	6,526	14,560	63.9%	9,308	91.7%	8,535	91.1%	8,479	75.9%	7,065	31,265	19,602	17,553	17,373	13,591
76	16,417	61.6%	10,117	87.6%	8,863	86.4%	8,741	63.4%	6,414	14,170	63.9%	9,058	91.7%	8,306	91.1%	8,252	75.9%	6,875	30,587	19,175	17,169	16,993	13,289
77	16,102	61.6%	9,923	87.6%	8,692	86.4%	8,573	63.4%	6,291	13,751	63.9%	8,790	91.7%	8,061	91.1%	8,008	75.9%	6,672	29,853	18,713	16,753	16,581	12,963
/8 70	15,757	01.6% 61.6%	9,/10 9,/10	87.6% 87.6%	8,506 8 201	86.4%	8,389 8,199	63.4%	6,156	13,301	03.9% 63.0%	8,503 8 105	91.7% 91.7%	7 515	91.1% 91.1%	7,746	75.9% 75.0%	6,454	29,058	18,213	15,303	15,136	12,010 12,220
80	14,963	61.6%	9,221	87,6%	8,078	86,4%	7,967	63.4%	5,846	12,820	63.9%	7,867	91.7%	7,214	91.1%	7,167	75.9%	5,971	27,269	17,072	15,291	15,034	11.817
81	14,510	61.6%	8,942	87.6%	7,833	86.4%	7,726	63.4%	5,669	11,759	63.9%	7,517	91.7%	6,893	91.1%	6,848	75.9%	5,706	26,269	16,459	14,726	14,574	11,375
82	14,016	61.6%	8,637	87.6%	7,566	86.4%	7,463	63.4%	5,476	11,179	63.9%	7,146	91.7%	6,553	91.1%	6,510	75.9%	5,424	25,195	15,783	14,119	13,973	10,900
83	13,478	61.6%	8,306	87.6%	7,276	86.4%	7,176	63.4%	5,266	10,565	63.9%	6,754	91.7%	6,193	91.1%	6,153	75.9%	5,126	24,043	15,060	13,469	13,329	10,392
84	12,895	61.6%	7,946	87.6%	6,961	86.4%	6,866	63.4%	5,038	9,919	63.9%	6,341	91.7%	5,815	91.1%	5,777	75.9%	4,813	22,814	14,287	12,776	12,642	9,851
Total	1,245,898	23.9%	297,402	<i>85.3%</i>	253,786	82.4%	245,074	65. <i>3%</i>	194,260	1,182,557	24.7%	291,932	86.3%	251,956	82.1%	239, 789	69.2%	202,010	2,428,455	589,334	505,742	484,863	396,270

Table 7: Life Years Lived with, Aware of, Treatment for and **Control of Hypertension** In a BC Cohort of 40,000 Before and After the Implementation of Screening Screening Hypertension Awareness Treatment Control Females Before 297,402 174,823 168,822 133,818 After 253.786 297.402 245.074 194.260 Difference 0 78.963 76,252 60,442 Males 165,151 Before 291,932 173,532 139,131 After 291,932 251,956 239,789 202,010 Difference 0 78.424 74,639 62,879 **Total Population** 272,949 Before 589,334 348,355 333,972 After 505,742 589,334 484,863 396,270 Difference 0 157,387 150,891 123,321

Effectiveness of the Intervention

• To this point we have estimated that the implementation of a program achieving screening rates of 88.1% in a BC birth cohort of 40,000 would result in an additional 123,321 life years lived with hypertension under control. We now want to determine what beneficial effect this will have with respect to morbidity and mortality in the birth cohort.

Lifestyle Interventions

- Proposed lifestyle interventions for hypertension include diet, exercise, relaxation, restriction of alcohol and/or sodium intake, and supplementation with calcium, magnesium, potassium or fish oil, or some combination of the above. It is difficult, however, to ascertain which specific factors have clinically important influences on blood pressure, as lifestyle factors are often inter-related. Furthermore, patients may not follow advice or regimens designed to change lifestyles.⁷⁴¹
- The review by Dickinson et al indicated that a combination of lifestyle interventions results in a net reduction in systolic blood pressure of 5.5 mmHg and in diastolic blood pressure of 4.5 mmHg over a period of 6 months but the net reduction declined when assessed at 12 months.⁷⁴² By comparison, antihypertensive medications result in a mean reduction in systolic blood pressure of 15.0 mmHg and in diastolic blood pressure of 7.6 mmHg, as indicated in Table 8 below.^{743,744}

⁷⁴¹ Dickenson H, Mason J, Nicolson D et al. Lifestyle interventions to reduce raised blood pressure: A systematic review of randomized controlled trials. *Journal of Hypertension*. 2006; 24: 215-33.

⁷⁴² Dickenson H, Mason J, Nicolson D et al. Lifestyle interventions to reduce raised blood pressure: A systematic review of randomized controlled trials. *Journal of Hypertension*. 2006; 24: 215-33.

⁷⁴³ Musini V, Gueyffier F, Puil L et al. Pharmacotherapy for hypertension in adults aged 18 to 59 years. *Cochrane Database of Systematic Reviews*. 2017; 8.

⁷⁴⁴ Musini V, Tejani A, Bassett K et al. Pharmacotherapy for hypertension in adults 60 years or older. *Cochrane Database of Systematic Reviews*. 2020; 6.

• The 2021 Cochrane Review assessing the long-term effects of weight-reducing diets in people with hypertension concluded that "in people with primary hypertension, weight-loss diets reduced body weight and blood pressure, but the magnitude of the effects are uncertain due to the small number of participants and studies included in the analyses. Whether weight loss reduces mortality and morbidity is unknown."⁷⁴⁵

Antihypertensive Drugs

- Two Cochrane Systematic Reviews have assessed the effectiveness of antihypertensive drugs used to treat primarily healthy adults with mild to moderate hypertension, based on randomized controlled clinical trials.^{746,747} The reviews divided key outcomes into **cerebrovascular mortality and morbidity** (includes fatal and non-fatal stroke), **coronary heart disease mortality and morbidity** (includes fatal and non-fatal myocardial infarcts and sudden or rapid cardiac death), **total cardiovascular mortality and morbidity** (includes cerebrovascular and coronary heart disease as well as congestive heart failure and other significant vascular deaths such as ruptured aneurysm) and all-cause mortality.
- Table 8 provides a summary of the results from the two Cochrane Systematic Reviews. The primary effectiveness of antihypertensive drugs is in the **prevention of cerebrovascular mortality and morbidity**, in individuals ages 18-59 (RR 0.46 with a 95% CI of 0.34 to 0.64), ages 60-79 (RR 0.66 with a 95% CI of 0.58 to 0.76) and age 80 and older (RR 0.66 with a 95% CI of 0.52 to 0.83). The effectiveness of antihypertensive drugs in the **prevention of coronary heart disease mortality and morbidity** is less clear, with significant improvements in those ages 60-79 (RR 0.79 with a 95% CI of 0.69 to 0.90) **but not in those ages 18-59** (RR 0.99 with a 95% CI of 0.82 to 1.19) **or 80 years of age and older** (RR 0.82 with a 95% CI of 0.56 to 1.20).

⁷⁴⁵ Semlitsch T, Krenn C, Jeitler K et al. Long-term effects of weight-reducing diets in people with hypertension. *Cochrane Database of Systematic Reviews*. 2021; 2.

⁷⁴⁶ Musini V, Gueyffier F, Puil L et al. Pharmacotherapy for hypertension in adults aged 18 to 59 years. *Cochrane Database of Systematic Reviews*. 2017; 8.

⁷⁴⁷ Musini V, Tejani A, Bassett K et al. Pharmacotherapy for hypertension in adults 60 years or older. *Cochrane Database of Systematic Reviews*. 2020; 6.

Table 8: Effectiveness of Antihypertensive Drug Treatment Versus Placebo or No Treatment In Adults by Age Group **Number of Cardiovascular Events** Antihypertensive Drug **RR (95% Confidence** Outcomes Control Interval) Therapy Adults Ages 18 - 59 Decrease in Diastolic Blood Pressure (DBP) 7.62 (4.69 to 10.55) Decrease in Systolic Blood Pressure (SBP) 14.98 (9.52 to 20.44) Cerebrovascular Mortality + Morbidity 13 per 1000* 6 per 1000 (5 to 9) RR 0.46 (0.34 to 0.64) Coronary Heart Disease Mortality + Morbidity 26 per 1000 26 per 1000 (21 to 31) RR 0.99 (0.82 to 1.19) Total Cardiovascular Mortality + Morbidity 41 per 1000 32 per 1000 (27 to 37) RR 0.78 (0.67 to 0.91) All-cause Mortality 24 per 1000 23 per 1000 (19 to 28) RR 0.94 (0.77 to 1.13) Adults Ages 60 and Older Cerebrovascular Mortality + Morbidity 52 per 1000* 34 per 1000 (31 to 39) RR 0.66 (0.59 to 0.74) Coronary Heart Disease Mortality + Morbidity 48 per 1000 37 per 1000 (33 to 42) RR 0.78 (0.69 to 0.88) Total Cardiovascular Mortality + Morbidity 136 per 1000 98 per 1000 (92 to 104) RR 0.72 (0.68 to 0.77) All-cause Mortality 110 per 1000 100 per 1000 (93 to 106) RR 0.91 (0.85 to 0.97) Adults Ages 60 - 79 Cerebrovascular Mortality + Morbidity RR 0.66 (0.58 to 0.76) Coronary Heart Disease Mortality + Morbidity RR 0.79 (0.69 to 0.90) Total Cardiovascular Mortality + Morbidity RR 0.71 (0.65 to 0.77) All-cause Mortality RR 0.86 (0.79 to 0.95) Adults Ages 80 and Older Cerebrovascular Mortality + Morbidity RR 0.66 (0.52 to 0.83) Coronary Heart Disease Mortality + Morbidity RR 0.82 (0.56 to 1.20) Total Cardiovascular Mortality + Morbidity RR 0.75 (0.65 to 0.87) RR 0.97 (0.87 to 1.10) All-cause Mortality

Note: * The rate / 1000 is based on 5 years of follow-up for those ages 18-59 and 3.8 years for those ages 60 and older.

Table 9 provides an overview of fatal and non-fatal cardiovascular events in a UK population of 24,014 without diabetes or a history of vascular disease followed for a period of 10 years.⁷⁴⁸ In this study, cardiovascular events include ischaemic heart disease (ICD codes I20 – I25), cardiac failure (ICD codes I11, I13, I50), cerebrovascular disease (ICD codes I60 – I69), peripheral artery disease (ICD codes I70 - I79) and aortic aneurysm (ICD code I71). Data on the ratio of non-fatal to fatal cardiovascular disease by age and sex is used in the next phase of our modelling.

⁷⁴⁸ Jorstad H, Colkesen E, Boekholdt S et al. Estimated 10-year cardiovascular mortality seriously underestimates overall cardiovascular risk. *Heart.* 2016; 102: 63-8.

Т	Table 9: Cumulative 10-Year Fatal and Non-Fatal												
		Carc	liovascula	ar Dise	ease								
			By Age an	nd Sex									
					% of	Ratio of	% of Study						
Age	Study	Fatal	Non-Fatal	Total	Total	Non-Fatal	Pop. with						
Group	Population	CVD	CVD	CVD	CVD	to Fatal	CVD						
			Male	s									
39-49	2,219	15	166	181	7.1%	11.1	8.16%						
50-54	1,780	26	234	260	10.2%	9.0	14.61%						
55-59	1,637	34	286	320	12.6%	8.4	19.55%						
60-64	1,633	67	395	462	18.2%	5.9	28.29%						
65-69	1,622	127	438	565	22.2%	3.4	34.83%						
70-74	1,290	209	377	586	23.1%	1.8	45.43%						
75-79	328	65	102	167	6.6%	1.6	50.91%						
Subtotal	10,509	543	1,998	2,541	100%	3.7	24.18%						
			Femal	es									
39-49	3,061	5	168	173	7.1%	33.6	5.65%						
50-54	2,333	11	214	225	9.2%	19.5	9.64%						
55-59	2,129	17	282	299	12.3%	16.6	14.04%						
60-64	2,014	43	352	395	16.2%	8.2	19.61%						
65-69	1,995	86	470	556	22.8%	5.5	27.87%						
70-74	1,607	145	479	624	25.6%	3.3	38.83%						
75-79	366	50	115	165	6.8%	2.3	45.08%						
Subtotal	13,505	357	2,080	2,437	100%	5.8	18.05%						
			Total Popu	lation									
39-49	5,280	20	334	354	7.1%	16.7	6.70%						
50-54	4,113	37	448	485	9.7%	12.1	11.79%						
55-59	3,766	51	568	619	12.4%	11.1	16.44%						
60-64	3,647	110	747	857	17.2%	6.8	23.50%						
65-69	3,617	213	908	1,121	22.5%	4.3	30.99%						
70-74	2,897	354	856	1,210	24.3%	2.4	41.77%						
75-79	694	115	217	332	6.7%	1.9	47.84%						
Total	24,014	900	4,078	4,978	100%	4.5	20.73%						

- The incidence of stroke in 2015 in a US population is 26 (95% CI 19 to 32) / 100,000 in women ages 20-44 years of age, increasing to 142 (95% CI 125 158) in women ages 45 to 64 years of age. In men, the equivalent rates are 31 (95% CI 24 to 38) and 201 (95% CI 181 222).⁷⁴⁹ The difference in the incidence of stroke in 20-44 and 45-64 year-old females and males is used in the next phase of our modelling.
- Table 10 is based on rates of cerebrovascular morbidity and mortality in the age 18-59 and 60+ **control group** and coronary heart disease morbidity and mortality in the age 60+ **control group** from Table 8. Table 11 is based on the same data but for **those on antihypertensive drug therapy** from Table 8. The ratio of non-fatal to fatal events by age and sex is based on the data in Table 9.
- Without any treatment for hypertension in a BC birth cohort of 40,000, we would expect 5,476 fatal and 19,630 non-fatal cardiovascular events (Table 10). With 100% antihypertensive drug therapy, we would expect 3,826 fatal and 12,971 non-fatal cardiovascular events (Table 11).

⁷⁴⁹ Madsen T, Khoury J, Leppert M et al. Temporal trends in stroke incidence over time by sex and age in the GCNKSS. *Stroke*. 2020; 51: 1070-76.

	Between the Ages of 18 and 84														
	In a British Columbia Birth Cohort of 40,000														
						Without	Treatme	ent for H	lyperte	nsion					
	#in	# of	Female	S CVD Fv	onts	#in	# of	Males		onte	#in	# of	Total		nte
Age	Cohort	Deaths	Total	Fatal	Non-Fatal	Cohort	Deaths	Total	Fatal	Non-Fatal	Cohort	Deaths	Total	Fatal	Non-Fatal
18	19,894		10.5			19,876					39,770				
19 20	19,888 19,881	6 7	19.5 19.5	0.6	18.9 18.9	19,864	11 14	16.9 16.9	1.4 1.4	15.5 15.5	39,752	18 20	36.4 36.4	2.0	34.4 34.4
21	19,874	7	19.5	0.6	18.9	19,835	16	16.9	1.4	15.5	39,709	23	36.3	2.0	34.4
22	19,867	7	19.5	0.6	18.9	19,817	18	16.8	1.4	15.4	39,684	25	36.3	2.0	34.3
23 24	19,859 19,851	8	19.5 19.4	0.6	18.9 18.9	19,796	20 22	16.8 16.8	1.4 1.4	15.4 15.4	39,656	28 30	36.3	2.0	34.3
25	19,843	8	19.4	0.6	18.9	19,751	23	16.8	1.4	15.4	39,594	32	36.2	2.0	34.3
26	19,834	9	19.4	0.6	18.9	19,727	24	16.8	1.4	15.4	39,561	33	36.2	2.0	34.2
27 28	19,825 19,816	9	19.4 19.4	0.6	18.9 18.9	19,702	25 26	16.8 16.7	1.4 1.4	15.4 15.3	39,527	34 35	36.2 36.1	2.0	34.2
29	19,806	10	19.4	0.6	18.8	19,649	20	16.7	1.4	15.3	39,455	37	36.1	2.0	34.2
30	19,796	10	19.4	0.6	18.8	19,621	28	16.7	1.4	15.3	39,417	38	36.1	2.0	34.1
31 32	19,785 19,773	11 11	19.4 19.4	0.6	18.8 18.8	19,593	28 29	16.7 16.6	1.4 1.4	15.3 15.2	39,378	39 40	36.0 36.0	2.0	34.1 34.1
33	19,761	12	19.4	0.6	18.8	19,535	29	16.6	1.4	15.2	39,296	40	36.0	2.0	34.0
34	19,749	13	19.3	0.6	18.8	19,505	30	16.6	1.4	15.2	39,254	43	35.9	1.9	34.0
35 36	19,736	13 14	19.3 19.3	0.6	18.8	19,474	31	16.6 16.5	1.4	15.2	39,210	44 46	35.9 35.9	1.9	33.9
37	19,708	14	19.3	0.6	18.7	19,409	33	16.5	1.4	15.1	39,117	40	35.8	1.9	33.9
38	19,693	15	19.3	0.6	18.7	19,375	34	16.5	1.4	15.1	39,068	49	35.8	1.9	33.8
39 40	19,677	16 16	19.3	0.6	18.7	19,339	35	16.4	1.4	15.1	39,017	51 52	35.7	1.9	33.8
40	19,643	18	19.3	0.6	18.7	19,303	38	16.4	1.4	15.0	38,908	56	35.6	1.9	33.7
42	19,625	19	19.2	0.6	18.7	19,225	40	16.3	1.4	15.0	38,849	58	35.6	1.9	33.6
43	19,605	20	19.2	0.6	18.7	19,183	41	16.3	1.4	14.9	38,788	61	35.5	1.9	33.6
44 45	19,584	21	19.2	0.6 3.1	18.6	19,140	43 46	16.3	1.4 9	14.9	38,724	68	35.5 217	1.9	205
46	19,537	24	107	3.1	104	19,047	48	110	9	101	38,584	72	217	12	205
47	19,511	26	107	3.1	104	18,996	50	110	9	101	38,508	76	217	12	204
48 49	19,484 19,454	28 30	107	3.1 3.1	104	18,943	53 56	109 109	9	100	38,427	81 86	216	12	204
50	19,422	32	106	5.2	101	18,827	60	109	11	98	38,249	92	215	16	199
51	19,388	34	106	5.2	101	18,763	64	108	11	98	38,151	98	215	16	198
52 53	19,352	37	106	5.2 5.2	101	18,695	73	108	11	97 97	38,046	105	214	16	198
54	19,270	43	105	5.2	100	18,545	78	107	11	96	37,814	120	213	16	197
55	19,224	46	105	6.0	99	18,461	83	107	11	95	37,685	129	212	17	194
56 57	19,174	49 53	105	6.0 6.0	99	18,372	89 95	106	11	95 94	37,547	138 149	211 210	17	194 193
58	19,063	58	104	5.9	98	18,175	102	105	11	94	37,238	160	209	17	192
59	19,000	63	104	5.9	98	18,065	110	104	11	93	37,065	173	208	17	191
60 61	18,932	68 74	498 496	54 54	444	17,947	118	472 469	70 69	402	36,879	201	971 965	124	846 842
62	18,777	81	494	54	440	17,684	136	465	69	397	36,461	217	960	123	837
63	18,689	88	492	54	438	17,537	147	461	68	393	36,226	235	953	122	832
64 65	18,593 18,489	96 105	489 487	53 75	436 411	17,379	158 171	457 453	68 104	390 349	35,972	254 275	947 939	121 179	826 760
66	18,375	114	484	75	409	17,024	184	448	103	345	35,399	298	932	177	754
67	18,250	125	480	74	406	16,826	198	443	102	341	35,075	323	923	176	747
68 69	18,113 17.963	137 150	477	73 73	403	16,612	214 231	437 431	100 99	337	34,725	351 381	914 904	1/4 172	740 732
70	17,799	164	468	108	360	16,132	249	425	154	270	33,930	413	893	262	631
71	17,619	180	464	107	357	15,863	269	417	151	266	33,481	449	881	258	623
72 73	17,421 17 204	198 217	458 453	106 104	353	15,573	290 313	410 402	149 145	261 256	32,994	488 530	868 854	254 250	614 605
74	16,966	238	446	102	344	14,923	337	393	142	251	31,889	575	839	245	595
75	16,704	261	440	131	308	14,560	363	383	151	232	31,265	624	823	282	540
76 77	16,417 16 102	287 315	432 424	129 126	303 298	14,170	390 419	373 362	147 142	226 220	30,587	677 734	805 786	275 268	530 518
78	15,757	346	415	123	292	13,301	450	350	137	213	29,055	795	765	260	505
79	15,378	379	405	120	285	12,820	481	337	132	206	28,198	860	742	251	491
80 81	14,963 14 510	415 452	394 382	116 112	278	12,306	514 547	324 300	126 120	198 190	27,269	928 1 000	718 601	242 232	476 460
82	14,016	494	369	108	261	11,179	580	294	113	181	25,195	1,000	663	232	442
83	13,478	538	355	103	252	10,565	614	278	106	172	24,043	1,151	633	210	423
84	12,895	583	339	98	241	9,919	646	261	99	162	22,814	1,229	600	197	403
Total		6,999	13,202	2,418	10,784		9,956	11,904	3,058	8,846		16,956	26,042	5,476	19,630

		Tak	ole 11	: Cardi	ovasci	lar I	Morta	ality and	Morb	idity		
				Betw	veen th	e Age	s of 1	8 and 84				
				In a Britis	h Colum	ibia Bii	rth Col	hort of 40,	000			
				W	ith Treat	ment fo	r Hyper	tension				
	#1	Fer	nales		41 in	N	lales		# 1.4	То	tal	
Age	# In Cohort	Total	Fatal	Non-Fatal	# In Cohort	Total	Fatal	Non-Fatal	# In Cohort	Total	Fatal	Non-Fatal
18	19,894				19,876				39,770			
19	19,888	9.0	0.3	8.7	19,864	7.8	0.6	7.1	39,752	16.8	0.9	15.9
20	19,881	9.0	0.3	8.7	19,851	7.8	0.6	7.1	39,732	16.8	0.9	15.9
21	19,874 19,867	9.0 9.0	0.3	8.7	19,835	7.8 7.8	0.6	7.1	39,709 39,684	16.8 16.8	0.9	15.9 15.9
23	19,859	9.0	0.3	8.7	19,796	7.8	0.6	7.1	39,656	16.7	0.9	15.8
24	19,851	9.0	0.3	8.7	19,775	7.8	0.6	7.1	39,626	16.7	0.9	15.8
25	19,843	9.0	0.3	8.7	19,751	7.8	0.6	7.1	39,594	16.7	0.9	15.8
26	19,834	9.0	0.3	8.7	19,727	/./ 77	0.6	7.1 7.1	39,561	16.7 16.7	0.9	15.8 15.8
27	19,825	9.0	0.3	8.7	19,702	7.7	0.6	7.1	39,492	16.7	0.9	15.8
29	19,806	9.0	0.3	8.7	19,649	7.7	0.6	7.1	39,455	16.7	0.9	15.8
30	19,796	9.0	0.3	8.7	19,621	7.7	0.6	7.1	39,417	16.7	0.9	15.8
31	19,785	8.9	0.3	8.7	19,593	7.7	0.6	7.1	39,378	16.6	0.9	15.7
32	19,773	8.9	0.3	8.7	19,564	7.7	0.6	7.0	39,338	16.6 16.6	0.9	15.7
33	19,701	8.9	0.3	8.7	19,535	7.7	0.6	7.0	39,250	16.6	0.9	15.7
35	19,736	8.9	0.3	8.7	19,474	7.6	0.6	7.0	39,210	16.6	0.9	15.7
36	19,722	8.9	0.3	8.7	19,442	7.6	0.6	7.0	39,164	16.5	0.9	15.7
37	19,708	8.9	0.3	8.7	19,409	7.6	0.6	7.0	39,117	16.5	0.9	15.6
38	19,693	8.9 8 9	0.3	8.6	19,375	7.6	0.6	7.0	39,068	16.5 16.5	0.9	15.6 15.6
40	19,661	8.9	0.3	8.6	19,303	7.6	0.6	6.9	38,964	16.5	0.9	15.6
41	19,643	8.9	0.3	8.6	19,264	7.6	0.6	6.9	38,908	16.4	0.9	15.6
42	19,625	8.9	0.3	8.6	19,225	7.5	0.6	6.9	38,849	16.4	0.9	15.5
43	19,605	8.9	0.3	8.6	19,183	7.5	0.6	6.9	38,788	16.4	0.9	15.5
44	19,584	8.9 19	0.3	8.6	19,140	7.5 51	0.6 4 2	6.9 47	38,724	16.4 100	0.9	15.5
46	19,501	49	1.4	48	19.047	51	4.2	47	38,584	100	5.6	95
47	19,511	49	1.4	48	18,996	51	4.2	46	38,508	100	5.6	94
48	19,484	49	1.4	48	18,943	51	4.2	46	38,427	100	5.6	94
49	19,454	49	1.4	48	18,887	50	4.2	46	38,341	100	5.6	94
50 51	19,422	49 49	2.4	47	18,827	50	5.0	45 45	38,249	99	7.4	92 92
52	19,352	49	2.4	46	18,695	50	5.0	45	38,046	99	7.4	91
53	19,312	49	2.4	46	18,622	50	5.0	45	37,934	98	7.4	91
54	19,270	49	2.4	46	18,545	49	4.9	45	37,814	98	7.3	91
55	19,224	49	2.8	46	18,461	49	5.2	44	37,685	98	8.0	90 80
57	19,174	48 48	2.8	46	18,372	49 49	5.2 5.2	44 44	37,547	97	8.0 7 9	89 89
58	19,063	48	2.7	45	18,175	48	5.2	43	37,238	97	7.9	89
59	19,000	48	2.7	45	18,065	48	5.1	43	37,065	96	7.8	88
60	18,932	354	39	315	17,947	335	49	287	36,879	689	87	602
61	18,858	352	38	314	17,820	333	48	285	36,678	685	87 96	599
63	18,689	349	38	315	17,664	328	40 48	282	36,226	677	86	595 591
64	18,593	347	38	310	17,379	325	47	278	35,972	672	85	587
65	18,489	345	53	292	17,208	322	72	249	35,697	667	126	541
66	18,375	343	53	290	17,024	318	72	247	35,399	661	125	537
67	18,250	341	53	288	16,826	314	71	244	35,075	655	123	532
69	17,963	336	52	284	16,812	306	69	241	34,725	649	122	527
70	17,799	333	77	255	16,132	301	108	194	33,930	634	185	449
71	17,619	329	77	253	15,863	296	106	191	33,481	626	182	443
72	17,421	325	76	250	15,573	291	104	187	32,994	616	179	437
/3 7/	17,204	321 217	/5 7/	247	15,260	285 270	102 90	183 170	32,464	607 506	176 172	430 ⊿22
74	16,704	312	95	245 218	14,923	279 272	99 106	166	31,089	584	173 201	425 384
76	16,417	307	93	214	14,170	265	103	162	30,587	571	196	375
77	16,102	301	91	210	13,751	257	100	157	29,853	558	191	367
78	15,757	294	89	205	13,301	249	97	152	29,058	543	186	357
79	15,378	287	87 05	200	12,820	240	93	146	28,198	527	180	347 >>=
81	14,510	200 271	82	189	11,759	230 220	90 86	134	26,269	491	168	323
82	14,016	262	79	183	11,179	209	81	128	25,195	471	161	310
83	13,478	252	76	176	10,565	197	77	121	24,043	449	153	296
84	12,895	241	73	168	9,919	185	72	113	22,814	426	145	281
Total		8.854	1.723	7.132		6.997	2.103	5.840		16.797	3.826	12.971

- Tables 10 and 11 suggest the possibility of a reduction of 1,650 fatal (5,476 from Table 10 minus 3,826 from Table 11) and 6,659 non-fatal (19,630 from Table 10 minus 12,971 from Table 11) cardiovascular events in a BC birth cohort between the ages of 18 and 84 if all individuals with hypertension were on antihypertensive drug therapy.
- What we are trying to determine, however, is the benefits of screening adults aged 18 years and older without previously diagnosed hypertension. As noted in Table 3, an estimated 56.9% of individuals with hypertension are aware of their hypertension even in the absence of a comprehensive screening program. This proportion is estimated to increase to 85.4% with a comprehensive screening program (Table 3). This improved awareness associated with a comprehensive screening program is expected to increase controlled hypertension in the BC birth cohort from 46.3% (Table 5) to 67.2% (Table 6).
- In Tables 10 and 11 we assessed the benefits of going from 0% to 100% adherence to antihypertensive medication. In Tables 12 and 13 we assess the benefits of controlled hypertension improving, on average, from 46.3% to 67.3% in the cohort. For females, this improved control of hypertension is expected to result in a reduction of 890 cardiovascular events (141 fatal and 748 non-fatal) (Table 12). For males, this improved control of hypertension is expected to result in a reduction of 890 cardiovascular events (141 fatal and 748 non-fatal) (Table 12). For males, this improved control of hypertension is expected to result in a reduction of 862 cardiovascular events (219 fatal and 643 non-fatal) (Table 13).

	Table 12: Cardiovascular Events Avoided Females Between the Arms of 18 and 84													
				F	emale	s Bet	ween 1	the Ag	ges of 18	and 8	4			
				I	n a Brit	ish Co	olumbia	Birth	Cohort of	40,000)			
						Wit	h a Scre	ening F	Program					
				Hyper Conti	tension ol (No	Contro	ol (With			Cardiova	Ascular Events Moving	from % Control	without	
	Total Life	Preva	alence	Scre	ening)	Scree	ening)		100% Contro	I	Screening to	o % Control with	Screening	
Age	Years	%	#	%	#	% 50.1%	#	Fatal	Non-Fatal	Total	Fatal	Non-Fatal	Total	
19	19,894	3.4%	682	40.7%	278	59.1%	403	0.3	10.2	10.5	0.1	1.9	1.9	
20	19,881	3.4%	682	40.7%	278	59.1%	403	0.3	10.2	10.5	0.1	1.9	1.9	
21	19,874 19,867	3.4%	682 681	40.7%	2/8	59.1% 59.1%	403 403	0.3	10.2	10.5	0.1	1.9	1.9	
23	19,859	3.4%	681	40.7%	277	59.1%	403	0.3	10.2	10.5	0.1	1.9	1.9	
24	19,851	3.4%	681	40.7%	277	59.1%	402	0.3	10.2	10.5	0.1	1.9	1.9	
25 26	19,843 19 834	3.4% 3.4%	681 680	40.7%	277	59.1% 59.1%	402 402	0.3	10.2 10.2	10.5 10.5	0.1	1.9	1.9 1.9	
27	19,825	3.4%	680	40.7%	277	59.1%	402	0.3	10.2	10.5	0.1	1.9	1.9	
28	19,816	3.4%	680	40.7%	277	59.1%	402	0.3	10.2	10.5	0.1	1.9	1.9	
29 30	19,806 19,796	3.4% 3.4%	679 679	40.7%	277	59.1% 59.1%	401 401	0.3	10.1 10.1	10.4 10.4	0.1	1.9	1.9 1.9	
31	19,785	3.4%	679	40.7%	276	59.1%	401	0.3	10.1	10.4	0.1	1.9	1.9	
32	19,773	3.4%	678	40.7%	276	59.1%	401	0.3	10.1	10.4	0.1	1.9	1.9	
33 34	19,761	3.4%	678 677	40.7%	276	59.1%	401	0.3	10.1	10.4	0.1	1.9	1.9	
35	19,736	3.4%	677	40.7%	276	59.1%	400	0.3	10.1	10.4	0.1	1.9	1.9	
36	19,722	3.4%	676	40.7%	275	59.1%	400	0.3	10.1	10.4	0.1	1.9	1.9	
37	19,708	3.4%	676 675	40.7%	275	59.1%	399	0.3	10.1	10.4	0.1	1.9	1.9	
39	19,633	3.4%	675	40.7%	275	59.1%	399	0.3	10.1	10.4	0.1	1.9	1.9	
40	19,661	14.8%	2,911	44.3%	1,290	64.3%	1,872	0.3	10.1	10.4	0.1	2.0	2.1	
41	19,643	14.8%	2,909	44.3%	1,288	64.3%	1,870	0.3	10.1	10.4	0.1	2.0	2.1	
42	19,625	14.8%	2,908	44.3% 44.3%	1,287	64.3%	1,869	0.3	10.1	10.4	0.1	2.0	2.1	
44	19,584	14.8%	2,900	44.3%	1,285	64.3%	1,865	0.3	10.0	10.3	0.1	2.0	2.1	
45	19,561	14.8%	2,897	44.3%	1,283	64.3%	1,863	2	56	58	0.3	11	12	
46 47	19,537	14.8% 14.8%	2,893	44.3% 44.3%	1,281	64.3% 64.3%	1,860	2	56	58 57	0.3	11	12	
48	19,484	14.8%	2,885	44.3%	1,278	64.3%	1,855	2	56	57	0.3	11	11	
49	19,454	14.8%	2,881	44.3%	1,276	64.3%	1,852	2	56	57	0.3	11	11	
50 51	19,422 19.388	14.8% 14.8%	2,876	44.3% 44.3%	1,274	64.3% 64.3%	1,849 1.846	3	54 54	57 57	0.6	11 11	11 11	
52	19,352	14.8%	2,866	44.3%	1,269	64.3%	1,843	3	54	57	0.6	11	11	
53	19,312	14.8%	2,860	44.3%	1,267	64.3%	1,839	3	54	57	0.6	11	11	
54 55	19,270 19,224	14.8% 14.8%	2,853	44.3% 44.3%	1,264 1.261	64.3% 64.3%	1,835 1.830	3	54 53	57 57	0.6	11 11	11 11	
56	19,174	14.8%	2,839	44.3%	1,258	64.3%	1,826	3	53	56	0.6	11	11	
57	19,121	14.8%	2,831	44.3%	1,254	64.3%	1,821	3	53	56	0.6	11	11	
58 59	19,063 19,000	14.8% 14.8%	2,823 2 814	44.3% 44.3%	1,250 1,246	64.3% 64.3%	1,815 1 809	3	53	56 56	0.6	11 11	11 11	
60	18,932	42.6%	8,064	48.8%	3,933	70.8%	5,709	16	129	144	3	28	32	
61	18,858	42.6%	8,032	48.8%	3,917	70.8%	5,687	16	128	144	3	28	32	
62 63	18,777 18 689	42.6%	7,998	48.8% 48.8%	3,901 3,882	70.8%	5,663 5,636	16 15	128 127	143 143	3	28 28	32 31	
64	18,593	42.6%	7,920	48.8%	3,863	70.8%	5,607	15	127	142	3	28	31	
65	18,489	42.6%	7,875	48.8%	3,841	70.8%	5,576	22	119	141	5	26	31	
66 67	18,375 18,250	42.6%	7,826 7 773	48.8%	3,817	70.8%	5,541	22	119 118	140	5	26 26	31 31	
68	18,113	42.6%	7,715	48.8%	3,763	70.8%	5,462	21	113	133	5	26	30	
69	17,963	42.6%	7,651	48.8%	3,732	70.8%	5,417	21	116	137	5	26	30	
70 71	17,799	61.6%	10,968	43.7%	4,790	63.4%	6,954	31	105	136	6	21	27	
72	17,019	61.6%	10,837	43.7%	4,742	63.4%	6,806	30	104	134	6	20	26	
73	17,204	61.6%	10,602	43.7%	4,630	63.4%	6,722	29	102	131	6	20	26	
74	16,966	61.6%	10,455	43.7%	4,566	63.4%	6,629	29	101	129	6	20	26 25	
75 76	16,704 16,417	от.6% 61.6%	10,294 10,117	43.7% 43.7%	4,496 4,418	63.4%	0,520 6,414	37 36	90	127	7	18	∠5 25	
77	16,102	61.6%	9,923	43.7%	4,334	63.4%	6,291	35	88	123	7	17	24	
78	15,757	61.6%	9,710	43.7%	4,241	63.4%	6,156	34	87	120	7	17	24	
79 80	15,378 14,963	ь1.6% 61.6%	9,476 9,221	43.7% 43.7%	4,139 4,027	оз.4% 63.4%	ь,008 5.846	33 31	85 83	11/	6 6	17 16	23 23	
81	14,510	61.6%	8,942	43.7%	3,905	63.4%	5,669	30	81	111	6	16	22	
82	14,016	61.6%	8,637	43.7%	3,772	63.4%	5,476	28	79	107	6	15	21	
83 84	13,478 12.895	61.6% 61.6%	8,306 7,946	43.7% 43.7%	3,627 3,470	ьз.4% 63.4%	5,266 5,038	27 25	76 73	103 98	5	15 14	20 19	
Total	1,245,898	23.9%	297,402	45.0%	133,818	65.3%	194,260	695	3,653	4,348	141	748	890	

	Table 13: Cardiovascular Events Avoided												
				ſ	Males	Betv	veen tl	ne Age	es of 18 a	and 84	ļ		
				l	n a Bri	tish Co	olumbia	a Birth (Cohort of	40,000)		
				Hyper	tension	Wi	th a Scre	ening P	rogram	Cardiov	ascular Events	Avoided	
				Contr	rol (No	Contro	ol (With			Carulov	Moving	from % Control	without
A.g.o	Total Life	Prev	alence	Scree	ening)	Scree	ening)	Fatal	100% Contro	Total	Screening t	o % Control with	Screening
18	19,876	4.4%	# 869	% 30.8%	# 268	% 44.7%	# 388	Fatal	Non-Fatal	Total	Fatal	Non-Fatai	Total
19	19,864	4.4%	868	30.8%	267	44.7%	388	0.8	8.3	9.1	0.1	1.2	1.3
20 21	19,851 19,835	4.4% 4.4%	868 867	30.8%	267 267	44.7% 44.7%	388 388	0.8	8.3 8.3	9.1 9.1	0.1	1.2	1.3
22	19,817	4.4%	866	30.8%	267	44.7%	387	0.8	8.3	9.1	0.1	1.2	1.3
23	19,796	4.4%	865	30.8%	266	44.7%	387	0.8	8.3	9.1	0.1	1.2	1.3
24 25	19,775 19 751	4.4% 4.4%	864 863	30.8%	266 266	44.7% 44.7%	386 386	0.8	8.3 8.3	9.1 9.0	0.1	1.2	1.3
26	19,727	4.4%	862	30.8%	266	44.7%	385	0.8	8.3	9.0	0.1	1.2	1.3
27	19,702	4.4%	861	30.8%	265	44.7%	385	0.8	8.3	9.0	0.1	1.1	1.3
28	19,676 19,679	4.4%	860 859	30.8%	265	44.7%	384 384	0.8	8.3 8.2	9.0 9.0	0.1	1.1	1.3
30	19,621	4.4%	858	30.8%	264	44.7%	383	0.8	8.2	9.0	0.1	1.1	1.2
31	19,593	4.4%	857	30.8%	264	44.7%	383	0.8	8.2	9.0	0.1	1.1	1.2
32	19,564	4.4%	855	30.8%	263	44.7%	382	0.8	8.2	9.0	0.1	1.1	1.2
33 34	19,535 19,505	4.4% 4.4%	854 853	30.8% 30.8%	263	44.7% 44.7%	382 381	0.8	8.2 8.2	8.9 8.9	0.1	1.1 1.1	1.2
35	19,474	4.4%	851	30.8%	262	44.7%	381	0.8	8.2	8.9	0.1	1.1	1.2
36	19,442	4.4%	850	30.8%	262	44.7%	380	0.8	8.1	8.9	0.1	1.1	1.2
37	19,409 19 375	4.4% 4.4%	848 847	30.8%	261 261	44.7% 44.7%	379	0.8	8.1 8.1	8.9 8.9	0.1	1.1 1 1	1.2
39	19,339	4.4%	845	30.8%	260	44.7%	378	0.8	8.1	8.9	0.1	1.1	1.2
40	19,303	18.4%	3,557	38.1%	1,355	55.3%	1,967	0.8	8.1	8.8	0.1	1.4	1.5
41 42	19,264 19 225	18.4% 18.4%	3,550 3 542	38.1% 38.1%	1,352 1 349	55.3% 55.3%	1,963 1 959	0.8	8.1 8.1	8.8 8.8	0.1	1.4 1.4	1.5 1.5
43	19,183	18.4%	3,535	38.1%	1,345	55.3%	1,955	0.7	8.0	8.8	0.1	1.4	1.5
44	19,140	18.4%	3,527	38.1%	1,343	55.3%	1,950	0.7	8.0	8.8	0.1	1.4	1.5
45	19,094	18.4%	3,518	38.1%	1,340	55.3%	1,946	5	54	59	0.9	9	10
40	19,047	18.4%	3,500	38.1%	1,333	55.3%	1,941	5	54 54	59 59	0.9	9	10
48	18,943	18.4%	3,491	38.1%	1,330	55.3%	1,930	5	54	59	0.9	9	10
49	18,887	18.4%	3,480	38.1%	1,326	55.3%	1,925	5	54	59	0.9	9	10
50 51	18,827	18.4% 18.4%	3,469 3,457	38.1% 38.1%	1,322	55.3% 55.3%	1,918	6	53 52	59 58	1.0	9	10
52	18,695	18.4%	3,445	38.1%	1,312	55.3%	1,905	6	52	58	1.0	9	10
53	18,622	18.4%	3,431	38.1%	1,307	55.3%	1,898	6	52	58	1.0	9	10
54 55	18,545 18 461	18.4% 18.4%	3,417 3 402	38.1% 38.1%	1,302 1,296	55.3% 55.3%	1,890 1 881	6 6	52 51	58 57	1.0 1 1	9	10 10
56	18,372	18.4%	3,385	38.1%	1,290	55.3%	1,872	6	51	57	1.1	9	10
57	18,277	18.4%	3,368	38.1%	1,283	55.3%	1,862	6	51	57	1.1	9	10
58 59	18,175	18.4% 18.4%	3,349	38.1% 38.1%	1,276	55.3%	1,852	6	50 50	57 56	1.1	9	10 10
60	17,947	43.3%	7,765	52.8%	4,103	76.7%	5,956	21	116	137	5	28	33
61	17,820	43.3%	7,710	52.8%	4,074	76.7%	5,913	21	115	136	5	27	32
62	17,684	43.3%	7,651	52.8%	4,042	76.7%	5,868	21	114	135	5	27	32
64	17,537	43.3%	7,587	52.8% 52.8%	4,009 3.973	76.7%	5,819	21	113	134	5	27	32
65	17,208	43.3%	7,445	52.8%	3,934	76.7%	5,710	32	100	131	8	24	31
66	17,024	43.3%	7,365	52.8%	3,892	76.7%	5,649	31	99	130	7	24	31
67 68	16,826 16.612	43.3%	7,280	52.8% 52.8%	3,846 3.797	76.7%	5,583 5.512	31 30	98 96	128	7	23	31 30
69	16,381	43.3%	7,087	52.8%	3,744	76.7%	5,436	30	95	125	7	23	30
70	16,132	63.9%	10,312	52.3%	5,390	75.9%	7,827	47	76	123	11	18	29
/1 72	15,863 15,573	63.9% 63.9%	10,140 9.955	52.3% 52.3%	5,300 5,203	75.9% 75.9%	7,697	46 45	75 74	121 119	11 11	18 18	29 28
73	15,260	63.9%	9,755	52.3%	5,098	75.9%	7,404	44	73	116	10	17	28
74	14,923	63.9%	9,540	52.3%	4,986	75.9%	7,241	43	71	114	10	17	27
75 76	14,560 14,170	63.9%	9,308 9.0⊑≎	52.3%	4,865 4 724	75.9%	7,065 6 875	45	66 65	111 109	11	16 15	26 26
77	13,751	63.9%	8,790	52.3%	4,594	75.9%	6,672	44	63	105	10	15	25
78	13,301	63.9%	8,503	52.3%	4,444	75.9%	6,454	40	61	102	9	14	24
79	12,820	63.9%	8,195	52.3%	4,283	75.9%	6,220	38	60	98	9	14	23
80 81	12,306 11,759	63.9%	7,867 7,517	52.3% 52.3%	4,112 3,929	75.9% 75.9%	5,971 5,706	зь 34	58 56	94 90	9 8	14	22
82	11,179	63.9%	7,146	52.3%	3,735	75.9%	5,424	32	53	85	8	13	20
83	10,565	63.9%	6,754	52.3%	3,530	75.9%	5,126	30	51	81	7	12	19
84 T atad	9,919	03.9%	0,341	52.3%	3,314	/5.9%	4,813	2/	49	70	6	11	10

Change in Number of Deaths and Life Years Lost

- Based on the information in Tables 12 and 13, screening for and treatment of hypertension in adults 18 years and older in a British Columbia birth cohort of 40,000 would result in 1,752 fewer cardiovascular events (360 of which would be fatal and 1,391 would not immediately be fatal). In calculating life years lost we need to account for fatal events as well as the reduced life-expectancy associated with a non-fatal event.
- For example, based on available international studies, the life expectancy (compared with the general population) for a stroke survivor by sex, age and modified Rankin Scale (mRS) score is summarized in Table 14.⁷⁵⁰

Age	G	eneral		Modi	fied Ran	kin Scale	Score		
Group	Ро	pulation	0	1	2	3	4	5	
Males									
50	Life Expectancy	30	28	27	22	17	13	9	
	% of Life Years Lost		6.7%	10.0%	26.7%	43.3%	56.7%	70.0%	
60	Life Expectancy	22	20	19	16	13	9	7	
	% of Life Years Lost		9.1%	13.6%	27.3%	40.9%	59.1%	68.2%	
70	Life Expectancy	14	13	13	11	8	6	5	
	% of Life Years Lost		7.1%	7.1%	21.4%	42.9%	57.1%	64.3%	
80	Life Expectancy	8	7	7	6	5	4	3	
	% of Life Years Lost		12.5%	12.5%	25.0%	37.5%	50.0%	62.5%	
			Fema	les					
50	Life Expectancy	33	32	30	25	19	14	9	
	% of Life Years Lost		3.0%	9.1%	24.2%	42.4%	57.6%	72.7%	
60	Life Expectancy	25	24	22	18	14	10	7	
	% of Life Years Lost		4.0%	12.0%	28.0%	44.0%	60.0%	72.0%	
70	Life Expectancy	17	16	15	12	9	7	5	
	% of Life Years Lost		5.9%	11.8%	29.4%	47.1%	58.8%	70.6%	
80	Life Expectancy	10	9	9	7	6	4	3	
	% of Life Years Lost		10.0%	10.0%	30.0%	40 0%	60.0%	70 0%	

- mRS grade descriptions are as follows:
 - \triangleright 0 No symptoms or disabilities due to stroke.
 - 1 No significant disability following stroke, despite symptoms: Able to carry out all usual duties and activities.
 - 2 Slight disability: Unable to carry out all previous activities but able to look after own affairs without assistance.
 - 3 Moderate disability: Requiring some help with daily activities, but is able to walk without assistance.
 - 4 Moderately severe disability: Unable to walk without assistance, and unable to attend to own bodily needs.

⁷⁵⁰ Shavelle R, Brooks J, Strauss D et al. Life expectancy after stroke based on age, sex, and Rankin grade of disability: A synthesis. *Journal of Stroke and Cerebrovascular Diseases*. 2019; 28(12): 104450.

- 5 Severe disability: Bedridden, incontinent, and requires constant nursing care and attention.
- For modelling purposes, we estimated that 25.5% of stroke survivors in BC have a modified Rankin Scale (mRS) score of 0, 21.5% a 1, 11.3% a 2, 18.5% a 3, 18.6% a 4 and 4.6% a 5.⁷⁵¹
- Research from the US suggests that the life expectancy of an acute myocardial infarction (AMI) survivor is approximately 34% shorter than that of the general population of the same age and sex, although this varies by age, sex and race (see Table 15).⁷⁵²

lar	Table 15: Life Expectancy for an Acute wyocardial infarction Survivor											
	By Age, Sex and Race in the US (in years)											
	General Population						AMI Survivor					
Age		W	/hite	В	lack	w	hite	Black				
Group	I	Males	Females	Males	Females	Males	Males Females		Males Females			
65	Life Expectancy	17.6	21.7	14.2	18.8	12.5	11.7	9.1	8.6			
	% of Life Years Lost					29.1%	46.1%	36.3%	54.4%			
70	Life Expectancy	13.2	16.5	11.3	14.9	9.0	8.8	6.9	6.9			
	% of Life Years Lost					32.2%	46.9%	39.0%	53.9%			
75	Life Expectancy	9.8	12.3	9.0	11.7	6.2	6.4	5.1	5.4			
	% of Life Years Lost					36.6%	47.8%	42.8%	53.6%			
80	Life Expectancy	7.2	8.9	7.1	9.1	4.1	4.5	3.7	4.2			
	% of Life Years Lost					42.5%	49.4%	47.4%	53.9%			

- To estimate the number of life years gained associated with screening for and treatment of hypertension in adults 18 years and older in a British Columbia birth cohort of 40,000, we first combined information on the number of fatal cardiovascular events avoided (Tables 12 & 13) with age- and sex-specific life expectancy. To calculate life years lost associated with non-fatal stroke events, we distributed the events by mRS score as noted above and then applied an age-, sex- and mRS score specific reduction in life expectancy starting at age 50 as indicated in Table 14. To calculate life years lost associated with non-fatal AMI events we applied an age- and sex-specific reduction in white AMI survivors starting at age 65 as indicated on Table 15.
- Based on this approach, a total of 6,449 life years would be gained associated with screening for and treatment of hypertension in females (Table 16) and 6,160 in males (Table 17).

⁷⁵¹ Krueger H, Lindsay P, Cote R et al. Cost avoidance associated with optimal stroke care in Canada. *Stroke*. 2012; 43(8): 2198-206.

⁷⁵² Bucholz E, Normand S, Wang Y et al. Life expectancy and years of potential life lost after acute myocardial infarction by sex and race: a cohort-based study of Medicare beneficiaries. *Journal of the American College of Cardiology*. 2015; 66(6): 645-55.

Table 16: Life Years Gained

Females Between the Ages of 18 and 84 In a British Columbia Birth Cohort of 40,000

	Fetal C	V E	اممام:مد	vv		New 5	g FTOgrann		-	
	Fatal C	v Even	its Avoided			# of	Stroke	# of		Total
Age	Total	LE	LYs Gained		Total	# 01 Stroke	LYs Gained	AMI	LYs Gained	LYs Gained
18				• •						
19	0.06	66	3.7		1.9	1.9				3.7
20	0.06	65	3.6		1.9	1.9				3.6
21	0.06	64	3.6		1.9	1.9				3.6
22	0.06	63	3.5		1.9	1.9				3.5
23	0.06	62	3.5		1.9	1.9				3.5
24	0.06	62	3.4		1.9	1.9				3.4
25	0.06	61	3.4		1.9	1.9				3.4
26	0.06	60	3.3		1.9	1.9				3.3
27	0.06	59	3.3		1.9	1.9				3.3
28	0.06	58	3.2		1.9	1.9				3.2
29	0.06	5/	3.2		1.9	1.9				3.2
21	0.06	50	2.0		1.9	1.9				3.1
32	0.00	54	3.0		1.9	1.9				3.0
33	0.06	53	2.9		1.9	1.9				2.9
34	0.06	52	2.9		1.9	1.9				2.9
35	0.06	51	2.8		1.9	1.9				2.8
36	0.06	50	2.8		1.9	1.9				2.8
37	0.06	49	2.7		1.9	1.9				2.7
38	0.06	48	2.7		1.9	1.9				2.7
39	0.06	47	2.6		1.9	1.9				2.6
40	0.06	46	2.8		2.0	2.0				2.8
41	0.06	45	2.7		2.0	2.0				2.7
42	0.06	44	2.7		2.0	2.0				2.7
43	0.06	43	2.6		2.0	2.0				2.6
44	0.06	42	2.5		2.0	2.0				2.5
45	0.33	41	14		11	11				14
40	0.33	20	13		11	11				13
47	0.55	38	13		11	11				13
40	0.33	37	12		11	11				13
50	0.56	37	21		11	11	109			129
51	0.56	36	20		11	11	106			126
52	0.56	35	19		11	11	103			122
53	0.56	34	19		11	11	100			119
54	0.56	33	18		11	11	97			115
55	0.65	32	21		11	11	93			114
56	0.64	31	20		11	11	90			110
57	0.64	30	19		11	11	87			107
58	0.64	29	19		11	11	84			103
59	0.64	28	18		11	11	82	45		100
60	3.47	27	95		28	14	109	15		204
62	3.45	20	91		20	14	105	15		190
63	3.45	25	84		28	13	97	15		181
64	3.39	24	81		28	13	93	15		174
65	4.78	23	109		26	13	85	14	145	339
66	4.74	22	104		26	13	81	14	138	324
67	4.69	21	99		26	12	77	14	132	309
68	4.64	20	94		26	12	74	13	126	294
69	4.59	20	89		26	12	70	13	120	280
70	6.09	19	114		21	10	56	11	95	264
71	6.00	18	107		21	10	53	11	90	250
72	5.90	17	101		20	10	50	11	85	236
/3	5.80	16	94		20	10	47	10	80	222
74	5.68	15	88 107		20 19	10	45	10	/5 66	208
75	7.24	1/	107		10 10	9	38 36	9	00 61	211
70	6.86	14 12	91		10 17	0 8	32	9 Q	57	187
78	6.65	13	83		17	8	31	9	53	167
79	6.42	12	76		17	8	29	9	49	154
80	6.17	11	69		16	8	26	9	47	142
81	5.90	10	62		16	8	24	8	43	129
82	5.61	10	55		15	7	22	8	39	116
83	5.30	9	49		15	7	20	8	35	104
84	4.97	9	43		14	7	18	8	32	92
Total	141	17.7	2,509		748	469	2,370	279	1,569	6,449

Table 17: Life Years Gained

Males Between the Ages of 18 and 84 In a British Columbia Birth Cohort of 40,000

	With a Screening Program									
	Fatal C	V Even	ts Avoided		Non-	Fatal CV Even	ts Avoid	led	Tetal	
Age	Total	LE	LYs Gained	Total	# or Stroke	LYs Gained	# OT AMI	LYs Gained	LYs Gained	
18										
19	0.11	61	6.5	1.2	1.2				6.5	
20	0.11	60	6.4	1.2	1.2				6.4	
21	0.11	60	6.3	1.2	1.2				6.3	
22	0.11	59	6.2	1.2	1.2				6.2	
23	0.11	58	6.1	1.2	1.2				6.1	
24	0.11	56	5.9	1.2	1.2				5.9	
26	0.11	55	5.8	1.2	1.2				5.8	
27	0.11	54	5.7	1.1	1.1				5.7	
28	0.11	53	5.6	1.1	1.1				5.6	
29	0.11	52	5.5	1.1	1.1				5.5	
30	0.11	51	5.4	1.1	1.1				5.4	
31	0.11	50	5.3	1.1	1.1				5.3	
32	0.10	49 48	5.2	1.1	1.1				5.2	
34	0.10	47	5.0	1.1	1.1				5.0	
35	0.10	46	4.9	1.1	1.1				4.9	
36	0.10	46	4.8	1.1	1.1				4.8	
37	0.10	45	4.7	1.1	1.1				4.7	
38	0.10	44	4.6	1.1	1.1				4.6	
39	0.10	43	4.5	1.1	1.1				4.5	
40	0.13	42	5.4	1.4	1.4				5.4	
41	0.13	41	5.3	1.4	1.4				5.3	
42	0.13	40 30	5.2	1.4	1.4				5.2	
43	0.13	38	4.9	1.4	1.4				4.9	
45	0.86	37	32	9	9				32	
46	0.86	36	31	9	9				31	
47	0.85	36	30	9	9				30	
48	0.85	35	29	9	9				29	
49	0.85	34	29	9	9				29	
50	1.02	33	34	9	9	85			119	
51	1.02	32	33	9	9	83			115	
52	1.02	30	32	9	9	6U 77			108	
54	1.02	29	30	9	9	75			103	
55	1.07	28	30	9	9	72			102	
56	1.07	28	29	9	9	69			99	
57	1.06	27	28	9	9	67			95	
58	1.06	26	27	9	9	64			91	
59	1.05	25	26	9	9	62			88	
60 61	5.06	24	122	28	13	96	14		218	
62	5.05	25	117	27	13	92	14		209	
63	4.96	22	107	27	13	84	14		191	
64	4.91	21	102	27	13	80	14		183	
65	7.54	20	151	24	11	69	12	72	292	
66	7.45	19	144	24	11	65	12	69	278	
67	7.36	19	136	23	11	62	12	65	263	
68	7.26	18	129	23	11	59 	12	62	249	
69 70	7.15	1/	121	23	11	55	12	58	235	
70	10.82	10	168	18	9	36	9	49	267	
72	10.52	15	156	18	8	34	9	43	234	
73	10.34	14	145	17	8	32	9	41	218	
74	10.06	13	135	17	8	29	9	38	202	
75	10.65	13	135	16	7	26	8	38	199	
76	10.29	12	124	15	7	24	8	35	183	
77	9.91	11	113	15	7	22	8	32	167	
78	9.50	11	102	14	7	20	8	30	152	
79 80	9.05 g E0	10	92	14	7	19	7	2/	138	
81	8,07	9	72	13	, 6	16	7	26	120	
82	7.54	8	63	13	6	14	7	23	101	
83	6.98	8	55	12	6	13	6	21	88	
84	6.40	7	47	11	6	11	6	19	77	
Total	219	16.0	3,502	643	395	1,834	249	824	6,160	

Change in Quality-Adjusted Life Years Gained

- Research suggests that a survivor's QoL is affected following a cardiovascular event. Avoiding the event through screening and treatment for hypertension would thus result in QALYs gained associated with the implementation of the screening / treatment program.
- The GBD study groups the long term consequences following a stroke into five levels of severity.⁷⁵³ Level 1 ("has some difficulty in moving around and some weakness in one hand, but is able to walk without help") is associated with a utility of -0.019 (95% CI of -0.010 to -0.032). Level 2 ("has some difficulty in moving around, and in using the hands for lifting and holding things, dressing and grooming") is associated with a utility of -0.070 (95% CI of -0.046 to -0.099). Level 3 ("has some difficulty in moving around, in using the hands for lifting and holding things, dressing and grooming, and in speaking. The person is often forgetful and confused") is associated with a utility of -0.316 (95% CI of -0.206 to -0.437). Level 4 ("is confined to a bed or a wheelchair, has difficulty speaking and depends on others for feeding, toileting and dressing") is associated with a utility of -0.552 (95% CI of -0.377 to -0.707). Level 5 ("is confined to a bed or a wheelchair, depends on others for feeding, toileting and dressing, and has difficulty speaking, thinking clearly and remembering things") is associated with a utility of -0.588 (95% CI of -0.411 to -0.744).
- We have assumed that the five severity levels identified by the GBD are approximately comparable to mRS scores of 1 through 5. Furthermore, an estimated 25.5% of stroke survivors have a mRS score of 0, 21.5% a 1, 11.3% a 2, 18.5% a 3, 18.6% a 4 and 4.6% a 5.⁷⁵⁴ The average utility associated with a stroke would therefore be -0.200 (95% CI of -0.134 to -0.265) ((0.255*0) + (0.215*-0.019) + (0.113*-0.070) + (0.185*-0.316) + (0.186*-0.552) + (0.046*-0.588)).
- The GBD study estimated a disutility of -0.432 (95% CI of -0.288 to -0.579) during days 1 and 2 following an AMI and a disutility of -0.074 (95% CI of -0.049 to -0.105) during days 3 to 28.⁷⁵⁵ This results in a combined disutility of -0.098 (95% CI of -0.065 to -0.137) for a period of one month or a total disutility of -0.008 (95% CI of -0.005 to -0.011) over a year.
- In calculating QALYs gained with AMIs avoided, we applied a one-time benefit of 0.008 (95% CI of 0.005 to 0.011) adjusted to reflect the QoL in the general population (see Reference document re: details on calculating changes in QoL).
- In calculating QALYs gained with strokes avoided, we applied an annual benefit of 0.200 (95% CI of 0.134 to 0.265) adjusted to reflect the QoL in the general population. The number of expected life years for stroke survivors were adjusted to reflect a shorter life expectancy as indicated in Table 14.

⁷⁵³ Institute for Health Metrics and Evaluation. *GBD 2016 sequelae, health states, health state lay descriptions, and disability weights*. Available online at <u>http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights</u>. Accessed February 2022.

⁷⁵⁴ Krueger H, Lindsay P, Cote R et al. Cost avoidance associated with optimal stroke care in Canada. *Stroke*. 2012; 43(8): 2198-206.

⁷⁵⁵ Institute for Health Metrics and Evaluation. *GBD 2016 sequelae, health states, health state lay descriptions, and disability weights*. Available online at <u>http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights</u>. Accessed February 2022.

• Based on this approach, a total of 2,593 QALYs would be gained associated with screening for and treatment of hypertension in females and 1,865 QALYs in males (Table 18).

	Table 18: Estimated QALYs Gained										
			Bet	wee	en the Ages	5 of 18	3 and 84				
		l.	n a Briti	sh C	Columbia Birt	h Coh	ort of 40,000				
	Females Males										
		Non-Fatal	Events A	voide	ed		Non-Fata	Events A	void	ed	
Age 18	# AMI	QALYs Gained	# Stroke	e LE	QALYs Gained	#AMI	QALYs Gained	# Stroke	e LE	QALYs Gained	
19			2	66	27			1	61	16	
20			2	65	27			1	60	15	
21			2	64 62	26			1	60 50	15	
23			2	62	26			1	58	15	
24			2	62	25			1	57	14	
25			2	61	25			1	56	14	
26			2	60 59	24			1	55 54	14 14	
28			2	58	24			1	53	13	
29			2	57	23			1	52	13	
30			2	56	23			1	51	13	
31			2	55 54	23			1	50 70	13	
33			2	53	22			1	48	12	
34			2	52	22			1	47	12	
35			2	51	21			1	46	12	
36			2	50 40	21			1	46	12	
37			2	49 48	20			1	45	11	
39			2	47	20			1	43	11	
40			2	46	22			1	42	14	
41			2	45	21			1	41	13	
42			2	44 43	21			1	40 39	13	
44			2	42	20			1	38	12	
45			11	41	108			9	37	82	
46			11	40	105			9	36	80	
47			11	39 38	103			9	30	77	
49			11	37	98			9	34	73	
50			11	37	70			9	33	52	
51			11	36	68			9	32	50	
52			11	35 34	67			9	30	49 47	
54			11	33	63			9	29	45	
55			11	32	60			9	28	44	
56			11	31	58			9	28	42	
57			11	30 29	55			9	27	41 39	
59			11	28	53			9	25	37	
60	15	0.15	14	27	66	14	0.15	13	24	56	
61	15	0.15	14	26	63	14	0.15	13	23	54	
63	15	0.15	13	20 25	58	14	0.14	13	22	51 49	
64	15	0.15	13	24	56	14	0.14	13	21	47	
65	14	0.14	13	23	51	12	0.13	11	20	40	
66	14	0.14	13	22	49	12	0.13	11	19	38	
68	14	0.14	12	20	47	12	0.12	11	19	34	
69	13	0.14	12	20	42	12	0.12	11	17	32	
70	11	0.12	10	19	34	9	0.10	9	16	27	
71	11	0.12	10	18	32	9	0.10	9	15	25	
72	10	0.11	10	16	31 29	9	0.10	8 8	15	24	
74	10	0.11	10	15	27	9	0.09	8	13	21	
75	9	0.10	9	15	23	8	0.09	7	13	18	
76 77	9	0.10	8	14	22	8	0.09	7	12	17	
78	ð	0.10	8 8	13 13	20 19	8 8	0.08	7	11	16 14	
79	9	0.09	8	12	17	7	0.08	7	10	13	
80	9	0.10	8	11	18	7	0.08	7	10	13	
81	8	0.10	8	10	16 15	7	0.08	6	9	12	
82 83	8 8	0.09	7	0 TÜ	15	6	0.08	6 6	8	11 9	
84	8	0.09	, 7	9	12	6	0.07	6	7	8	
	279	3.0	469		2,590	249	2.6	395	_	1,863	

Potential Harms Associated with the Intervention(s)

- The disutility of taking pills for preventing adverse health outcomes is estimated at 0.24% (95% confidence interval [CI] of 0.17% to 0.33%).^{756, 757, 758} The studies by Hutchins and colleagues also found that a significant proportion of respondents (9.5% using the willingness-to-pay approach, 57.5% using the standard gamble approach and 87% using the time trade-off approach) identified no disutility associated with taking one pill daily. In the sensitivity analysis, we therefore ranged the disutility from 0% to 0.33%.
- In the Systolic Blood Pressure Intervention Trial (SPRINT), the following serious adverse events were observed in patients in the standard treatment intervention (in which medications were adjusted to target a systolic blood pressure of 135 to 139 mm Hg). In total, the probability of an adverse event was 0.00264 per month⁷⁵⁹ or 2.88 per 100 person-years of treatment.⁷⁶⁰
 - Hypotension (decreased blood pressure below accepted values) in 1.41% of patients
 - \circ Syncope (fainting or passing out) 1.71%
 - \circ Electrolyte abnormality 2.28%
 - \circ Acute kidney injury or acute renal failure 2.50%
- Richman et al estimated a disutility of -0.5 for one week associated with the serious adverse events identified in the SPRINT study.⁷⁶¹
- In modelling potential harms associated with screening and treatment, we first calculated the additional years of treatment associated with a screening program (Table 6 minus Table 5). Serious adverse events (SAEs) were estimated to occur at a rate of 2.88 per 100 person-years of treatment.⁷⁶² Each SAE was associated with a disutility of 0.0096 (0.5 / 52 weeks⁷⁶³). Each year on treatment was associated with a disutility of 0.0024 associated with taking preventative medication. Based on these assumptions, the harms associated with screening and treatment resulted in 263 QALYs lost in females and 257 in males (see Table 19).

⁷⁵⁶ Thompson A, Guthrie B and Payne K. Do pills have no ills? capturing the impact of direct treatment disutility. *PharmacoEconomics*. 2016; 34(4): 333-6.

⁷⁵⁷ Hutchins R, Pignone M, Sheridan S et al. Quantifying the utility of taking pills for preventing adverse health outcomes: a cross-sectional survey. *British Medical Journal Open*. 2015; 5(e006505): 1-9.

⁷⁵⁸ Hutchins R, Viera AJ, Sheridan SL et al. Quantifying the utility of taking pills for cardiovascular prevention. *Circulation: Cardiovascular Quality and Outcomes*. 2015; 8(2): 155-63.

⁷⁵⁹ The SPRINT Research Group. A randomized trial of intensive versus standard blood-pressure control. *New England Journal of Medicine*. 2015; 373(22): 2103-16.

⁷⁶⁰ Bress A, Bellows B, King J et al. Cost-effectiveness of intensive versus standard blood-pressure control. *New England Journal of Medicine*. 2017; 377(8): 745-55.

⁷⁶¹ Richman I, Fairley M, Jorgensen M et al. Cost-effectiveness of intensive blood pressure management. *JAMA Cardiology*. 2016; 8: 872-9.

⁷⁶² Bress A, Bellows B, King J et al. Cost-effectiveness of intensive versus standard blood-pressure control. *New England Journal of Medicine*. 2017; 377(8): 745-55.

⁷⁶³ Richman I, Fairley M, Jorgensen M et al. Cost-effectiveness of intensive blood pressure management. *JAMA Cardiology*. 2016; 8: 872-9.

	Table 19: Estimated QALYs Lost								
		Betw	een ti	ne Ages	s of 18 and	84			
	In	a Britisl	h Colur	nbia Birt	th Cohort of	f 40,000	C		
		With	a Co-orc	linated Sc	reening Prog	ram			
		Fema	les			Male	s		
A.g.o	Additional	#SVE	QALY	's Lost Mode	Additional	# SVE	QALY	's Lost Mode	
18	138	# 3AL 4	0.04	0.4	128	# 3AL 4	0.04	0.3	
19	138	4	0.04	0.4	128	4	0.04	0.3	
20	138	4	0.04	0.4	128	4	0.04	0.3	
21	138	4	0.04	0.4	128	4	0.04	0.3	
23	138	4	0.04	0.4	128	4	0.04	0.3	
24	138	4	0.04	0.4	128	4	0.04	0.3	
25	138	4	0.04	0.4	128	4	0.04	0.3	
26	138	4	0.04	0.4	127 127	4	0.04	0.3	
28	138	4	0.04	0.4	127	4	0.04	0.3	
29	138	4	0.04	0.4	127	4	0.04	0.3	
30	138	4	0.04	0.4	127	4	0.04	0.3	
31	138	4	0.04	0.4	127	4	0.04	0.3	
33	138	4	0.04	0.4	120	4	0.04	0.3	
34	137	4	0.04	0.4	126	4	0.04	0.3	
35	137	4	0.04	0.4	126	4	0.04	0.3	
36	137	4	0.04	0.4	126	4	0.04	0.3	
38	137	4	0.04	0.4	125	4	0.04	0.3	
39	137	4	0.04	0.4	125	4	0.04	0.3	
40	678	20	0.22	1.9	780	22	0.25	2.2	
41	677 676	19 10	0.22	1.9	779 777	22	0.25	2.2	
43	676	19	0.22	1.9	775	22	0.25	2.2	
44	675	19	0.22	1.9	774	22	0.25	2.2	
45	674	19	0.22	1.9	772	22	0.25	2.2	
46	673	19 10	0.22	1.9	770	22	0.25	2.2	
47	671	19	0.22	1.9	766	22	0.25	2.2	
49	670	19	0.22	1.9	763	22	0.25	2.1	
50	669	19	0.23	2.0	761	22	0.26	2.2	
51	668	19 10	0.23	2.0	758	22	0.26	2.2	
53	666	19	0.23	2.0 1.9	750	22	0.26	2.2	
54	664	19	0.22	1.9	750	22	0.25	2.2	
55	663	19	0.22	1.9	746	21	0.25	2.2	
56	661	19 10	0.22	1.9	743	21	0.25	2.2	
58	657	19	0.22	1.9	735	21	0.25	2.2	
59	655	19	0.22	1.9	730	21	0.25	2.1	
60	2,103	61	0.73	6.3	2,083	60	0.72	6.3	
61 62	2,094	60 60	0.73 0.72	6.3	2,068	60 50	0.72	6.2 6.2	
63	2,085	60	0.72	6.2	2,032	59	0.71	6.1	
64	2,065	59	0.72	6.2	2,017	58	0.70	6.1	
65	2,053	59	0.71	6.2	1,997	58	0.69	6.0	
60 67	2,041	59 58	U./1 0.70	6.1 6.1	1,9/5 1 952	57 56	0.68 0.68	5.9 5 9	
68	2,012	58	0.70	6.0	1,928	56	0.67	5.8	
69	1,995	57	0.69	6.0	1,901	55	0.66	5.7	
70	2,949	85	1.08	9.3	2,925	84	1.07	9.3	
71	2,919	84 83	1.07	9.3 9.1	2,877 2,874	83 81	1.05	9.1	
73	2,850	82	1.04	9.0	2,767	80	1.01	8.8	
74	2,811	81	1.03	8.9	2,706	78	0.99	8.6	
75	2,767	80	1.01	8.8	2,640	76	0.97	8.4	
/6 77	2,720	78 77	0.99 0.98	8.6 8.5	2,570 2 494	74 72	0.94 0.91	8.1 79	
78	2,610	75	0.95	8.3	2,412	69	0.88	7.6	
79	2,548	73	0.93	8.1	2,325	67	0.85	7.4	
80	2,479	71	0.98	8.5	2,232	64	0.89	7.7	
81	2,404 2 322	69 67	0.96 0.92	8.3 8.0	2,133 2 027	61 58	0.85 0.81	7.3 7.0	
83	2,233	64	0.89	7.7	1,916	55	0.76	6.6	
84	2,136	62	0.85	7.4	1,799	52	0.71	6.2	
	76,252	2,196	27	236	74,639	2,150	27	230	

Summary of CPB – Males and Females

• Other assumptions used in assessing CPB are detailed in the Reference Document.

Based on these assumptions, the CPB associated with screening for and treatment of hypertension in adults 18 years and older in a British Columbia birth cohort of 40,000 is 16,548 QALYs (Table 20, row ab). The CPB of 16,548 represents the gap between no coverage and the 'best in the world' screening coverage estimated at 88.1%.

Table 20: CPB of Screening and Treatment for Hypertension							
	Ages 18 - 84						
	In a BC Birth Cohort of 40,000						
Row Label	Variable	Base case	Data Source				
а	Age to start screening	18	V				
b	Age to stop screening	84	V				
с	Prevalence of hypertension	24.3%	= e/d				
d	Life years lived in cohort	2,428,455	Table 5				
e	Life years lived with hypertension	589,334	Table 5				
	Without a Screening Program						
f	Life years lived aware of hypertension	348,355	Table 5				
g	% of life years lived with hypertension and aware of the hypertension	59.1%	= f/e				
h	Life years lived on treatment for hypertension	333,972	Table 5				
i	% of life years lived with hypertension and on treatment for hypertension	56.7%	= h/e				
j	Life years lived with hypertension under control	272,949	Table 5				
k	% of life years lived with hypertension and hypertension controlled	46.3%	= j/e				
	With a Screening Program						
I	Life years lived aware of hypertension	505,742	Table 6				
m	% of life years lived with hypertension and aware of the hypertension	85.8%	= I/e				
n	Life years lived on treatment for hypertension	484,863	Table 6				
0	% of life years lived with hypertension and on treatment for hypertension	82.3%	= n/e				
р	Life years lived with hypertension under control	396,270	Table 6				
q	% of life years lived with hypertension and hypertension controlled	67.2%	= p/e				
r	Life years gained - avoid fatal CV events (females)	2,509	Table 16				
S	QALYs gained - avoid non-fatal AMI (females)	1,572	Tables 16 & 18				
t	QALYs gained - avoid non-fatal stroke (females)	4,960	Tables 16 & 18				
u	Total QALYs gained - Females	9,042	= r + s + t				
v	Life years gained - avoid fatal CV (males)	3,502	Table 17				
w	QALYs gained - avoid non-fatal AMI (males)	826	Tables 17 & 18				
х	QALYs gained - avoid non-fatal stroke (males)	3,697	Tables 17 & 18				
У	Total QALYs gained - Males	8,026	= v + w + x				
	Harms						
Z	QALYs lost due to harms - Females	263	Table 19				
аа	QALYs lost due to harms - Males	257	Table 19				
	Net QALYs Gained With Screening						
ab	Net QALYs gained (CPB) - No screening to 88.1%	16,548	= u + y - z - aa				

√ = Estimates from the literature

Sensitivity Analysis – Males and Females

We also modified several major assumptions and recalculated the CPB as follows:

- The rate of cerebrovascular mortality and morbidity in those ages 18-59 on treatment for hypertension decreases from 6 to 5 per 1,000 over a 5-year period and from 34 to 31 per 1,000 over a 3.8-year period for those ages 60 and older; the rate of coronary heart disease mortality and morbidity in those ages 60 and older decreases from 37 to 33 per 1,000 over a 3.8-year period (see Table 8). **CPB = 20,142**
- The rate of cerebrovascular mortality and morbidity in those ages 18-59 on treatment for hypertension increases from 6 to 9 per 1,000 over a 5-year period and from 34 to 39 per 1,000 over a 3.8-year period for those ages 60 and older; the rate of coronary heart disease mortality and morbidity in those ages 60 and older increases decreases from 37 to 42 per 1,000 over a 3.8-year period (see Table 8). **CPB = 10,222**
- The average disutility of living with a stroke is increased from 0.200 to 0.265. CPB = 17,995
- The average disutility of living with a stroke is decreased from 0.200 to 0.134. CPB = 15,078
- The disutility associated with taking preventive medication is increased from 0.0024 to 0.0033. CPB = 16,373
- The disutility associated with taking preventive medication is reduced from 0.0024 to 0.0. CPB = 17,014

Summary of CPB – Females Only

Based on these assumptions, the CPB associated with screening for and treatment of hypertension in females 18 years and older in a British Columbia birth cohort of 40,000 is 8,778 QALYs (Table 21, row ab). The CPB of 8,778 represents the gap between no coverage and the 'best in the world' screening coverage estimated at 88.1%.

	Table 21: CPB of Screening and Treatment for Hypertension							
	Females Ages 18 - 84							
	In a BC Birth Cohort of 40.000							
Row Label	Variable	Base case	Data Source					
а	Age to start screening	18	V					
b	Age to stop screening	84	V					
с	Prevalence of hypertension	23.9%	= e/d					
d	Life years lived in cohort	1,245,898	Table 5					
е	Life years lived with hypertension	297,402	Table 5					
	Without a Screening Program							
f	Life years lived aware of hypertension	174,823	Table 5					
g	% of life years lived with hypertension and aware of the hypertension	58.8%	= f/e					
h	Life years lived on treatment for hypertension	168,822	Table 5					
i	% of life years lived with hypertension and on treatment for hypertension	56.8%	= h/e					
j	Life years lived with hypertension under control	133,818	Table 5					
k	% of life years lived with hypertension and hypertension controlled	45.0%	= j/e					
	With a Screening Program							
1	Life years lived aware of hypertension	253,786	Table 6					
m	% of life years lived with hypertension and aware of the hypertension	85.3%	= I/e					
n	Life years lived on treatment for hypertension	245,074	Table 6					
0	% of life years lived with hypertension and on treatment for hypertension	82.4%	= n/e					
р	Life years lived with hypertension under control	194,260	Table 6					
q	% of life years lived with hypertension and hypertension controlled	65.3%	= p/e					
r	Life years gained - avoid fatal CV events (females)	2,509	Table 16					
S	QALYs gained - avoid non-fatal AMI (females)	1,572	Tables 16 & 18					
t	QALYs gained - avoid non-fatal stroke (females)	4,960	Tables 16 & 18					
u	Total QALYs gained - Females	9,042	= r + s + t					
v	Life years gained - avoid fatal CV (males)		Table 17					
w	QALYs gained - avoid non-fatal AMI (males)		Tables 17 & 18					
х	QALYs gained - avoid non-fatal stroke (males)		Tables 17 & 18					
у	Total QALYs gained - Males		= v + w + x					
	Harms							
z	QALYs lost due to harms - Females	263	Table 19					
aa	QALYs lost due to harms - Males		Table 19					
	Net QALYs Gained With Screening							
ab	Net QALYs gained (CPB) - No screening to 88.1%	8,778	= u + y - z - aa					

∨ = Estimates from the literature

Sensitivity Analysis – Females Only

We also modified several major assumptions and recalculated the CPB for females as follows:

- The rate of cerebrovascular mortality and morbidity in females ages 18-59 on treatment for hypertension decreases from 6 to 5 per 1,000 over a 5-year period and from 34 to 31 per 1,000 over a 3.8-year period for females ages 60 and older; the rate of coronary heart disease mortality and morbidity in females ages 60 and older decreases from 37 to 33 per 1,000 over a 3.8-year period (see Table 8). **CPB** = **10,687**
- The rate of cerebrovascular mortality and morbidity in females ages 18-59 on treatment for hypertension increases from 6 to 9 per 1,000 over a 5-year period and from 34 to 39 per 1,000 over a 3.8-year period for females ages 60 and older; the rate of coronary heart disease mortality and morbidity in females ages 60 and older increases decreases from 37 to 42 per 1,000 over a 3.8-year period (see Table 8). **CPB = 5,395**
- The average disutility of living with a stroke is increased from 0.200 to 0.265. CPB = 9,620
- The average disutility of living with a stroke is decreased from 0.200 to 0.134. CPB = 7,924
- The disutility associated with taking preventive medication is increased from 0.0024 to 0.0033. CPB = 8,690
- The disutility associated with taking preventive medication is reduced from 0.0024 to 0.0. CPB = 9,014

Summary of CPB – Males Only

Based on these assumptions, the CPB associated with screening for and treatment of hypertension in males 18 years and older in a British Columbia birth cohort of 40,000 is 7,769 QALYs (Table 22, row ab). The CPB of 7,769 represents the gap between no coverage and the 'best in the world' screening coverage estimated at 88.1%.

	Table 22: CPB of Screening and Treatment for Hypertension							
	Males Ages 18 - 84							
	In a BC Birth Cohort of 40,000							
Row Label	Variable	Base case	Data Source					
а	Age to start screening	18	V					
b	Age to stop screening	84	V					
с	Prevalence of hypertension	24.7%	= e/d					
d	Life years lived in cohort	1,182,557	Table 5					
е	Life years lived with hypertension	291,932	Table 5					
	Without a Screening Program							
f	Life years lived aware of hypertension	173,532	Table 5					
g	% of life years lived with hypertension and aware of the hypertension	59.4%	= f/e					
h	Life years lived on treatment for hypertension	165,151	Table 5					
i	% of life years lived with hypertension and on treatment for hypertension	56.6%	= h/e					
j	Life years lived with hypertension under control	139,131	Table 5					
k	% of life years lived with hypertension and hypertension controlled	47.7%	= j/e					
	With a Screening Program							
1	Life years lived aware of hypertension	251,956	Table 6					
m	% of life years lived with hypertension and aware of the hypertension	86.3%	= I/e					
n	Life years lived on treatment for hypertension	239,789	Table 6					
0	% of life years lived with hypertension and on treatment for hypertension	82.1%	= n/e					
р	Life years lived with hypertension under control	202,010	Table 6					
q	% of life years lived with hypertension and hypertension controlled	69.2%	= p/e					
r	Life years gained - avoid fatal CV events (females)		Table 16					
S	QALYs gained - avoid non-fatal AMI (females)		Tables 16 & 18					
t	QALYs gained - avoid non-fatal stroke (females)		Tables 16 & 18					
u	Total QALYs gained - Females		= r + s + t					
v	Life years gained - avoid fatal CV (males)	3,502	Table 17					
w	QALYs gained - avoid non-fatal AMI (males)	826	Tables 17 & 18					
х	QALYs gained - avoid non-fatal stroke (males)	3,697	Tables 17 & 18					
у	Total QALYs gained - Males	8,026	= v + w + x					
	Harms							
z	QALYs lost due to harms - Females		Table 19					
aa	QALYs lost due to harms - Males	257	Table 19					
	Net QALYs Gained With Screening							
ab	Net QALYs gained (CPB) - No screening to 88.1%	7,769	= u + y - z - aa					

∨ = Estimates from the literature

Sensitivity Analysis - Males Only

We also modified several major assumptions and recalculated the CPB for males as follows:

- The rate of cerebrovascular mortality and morbidity in males ages 18-59 on treatment for hypertension decreases from 6 to 5 per 1,000 over a 5-year period and from 34 to 31 per 1,000 over a 3.8-year period for males ages 60 and older; the rate of coronary heart disease mortality and morbidity in males ages 60 and older decreases from 37 to 33 per 1,000 over a 3.8-year period (see Table 8). **CPB = 9,454**
- The rate of cerebrovascular mortality and morbidity in males ages 18-59 on treatment for hypertension increases from 6 to 9 per 1,000 over a 5-year period and from 34 to 39 per 1,000 over a 3.8-year period for males ages 60 and older; the rate of coronary heart disease mortality and morbidity in males ages 60 and older increases decreases from 37 to 42 per 1,000 over a 3.8-year period (see Table 8). **CPB = 4,827**
- The average disutility of living with a stroke is increased from 0.200 to 0.265. CPB = 8,375
- The average disutility of living with a stroke is decreased from 0.200 to 0.134. CPB = 7,155
- The disutility associated with taking preventive medication is increased from 0.0024 to 0.0033. CPB = 7,683
- The disutility associated with taking preventive medication is reduced from 0.0024 to 0.0. CPB = 7,999

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with screening for and treatment of hypertension in adults 18 years and older in a British Columbia birth cohort of 40,000.

In estimating CE, we made the following assumptions:

Cost of Screening and Interventions

- The use of an automated office blood pressure (AOBP) electronic device should be used when measuring BP in a physician's office, with the patient seated quietly for at least 5 minutes and BP measured in both arms. The patient is to refrain from caffeine or cigarette smoking for at least 30 minutes prior to the measurement.⁷⁶⁴
- In order to rule out an overestimation (white-coat hypertension) or an underestimation (masked hypertension) of BP values, 24-hour ambulatory blood pressure monitoring (ABPM), or standardized home blood pressure monitoring, should be considered to confirm a hypertension diagnosis in all patients.⁷⁶⁵
- ABPM involves wearing a blood pressure cuff and a recording device for a period of 24 hours. BP measurements are taken every 15 or 30 minutes thus providing a high number of BP readings in a variety of situations. A daytime (awake) mean of

⁷⁶⁴ BC Guidelines.ca. *Hypertension – Diagnosis and Management*. April 15, 2020. Available online at https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/bc-guidelines/htn-full-guideline.pdf. Accessed February 2022.

⁷⁶⁵ BC Guidelines.ca. *Hypertension – Diagnosis and Management*. April 15, 2020. Available online at https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/bc-guidelines/htn-full-guideline.pdf. Accessed February 2022.

 \geq 135/85, a night-time (asleep) mean of \geq 120/70 or a 24-hour mean of \geq 130/80 would result in a diagnosis of hypertension.⁷⁶⁶

- AOBP screening resulting in a normal reading would require 0.5 of an office visit. A high reading would require a full office visit to assess risk factors as well as a recommendation for a 24-hour ABPM. Reading and interpreting the results of the ABPM would require a further full office visit.
- BC Hypertension guidelines suggest that a follow-up visit is required two weeks after initiating medication usage with an estimated glomerular filtration rate (eGFR) to monitor kidney function and to assess adherence with the medication. Then monthly follow-up visits until BP is in the desired range for 2 consecutive visits. Visits every 3 6 months when the patient is stable.⁷⁶⁷
- Research from Alberta indicates that patients with incident hypertension visit their primary care physician an average of 3.5 4.0 times (for a hypertension-related visit) in the year following diagnosis and then 2.0 times per year thereafter.⁷⁶⁸
- The estimated 5.3% of patients with hypertension that is treatment-resistant may see a primary care physician more frequently and are more likely to be referred to a specialist physician.⁷⁶⁹
- For modelling purposes, we have assumed that 8 physician visits would be required in the first year for every newly diagnosed patient with hypertension, 2 for the diagnosis and 6 for medication adherence and stabilization. Each of these visits would take 0.5 of an office visit. Once stable, 3 physician visits would be required per year for maintenance, also each requiring 0.5 of an office visit.
- The BC Hypertension Guidelines state the following tests should be ordered twice a year for monitoring purposes:⁷⁷⁰
 - Urinalysis albumin to creatinine ratio (ACR), hematuria
 - Blood chemistry potassium, sodium, creatinine/estimated glomerular filtration rate (eGFR)
 - Fasting blood glucose or hemoglobin A1c level
 - Blood lipids non-HDL cholesterol and triglycerides (non-fasting is acceptable)
 - o Electrocardiogram (ECG) standard 12-lead

The diagnostic tests required and their unit costs are as follows:

⁷⁶⁶ BC Guidelines.ca. *Hypertension – Diagnosis and Management*. April 15, 2020. Available online at https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/bc-guidelines/htn-full-guideline.pdf. Accessed February 2022.

⁷⁶⁷ BC Guidelines.ca. *Hypertension – Diagnosis and Management*. April 15, 2020. Available online at https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/bc-guidelines/htn-full-guideline.pdf. Accessed February 2022.

⁷⁶⁸ Clement F, Chen G, Khan N et al. Primary care physician visits by patients with incident hypertension. *Canadian Journal of Cardiology*. 2014; 30: 653-60.

⁷⁶⁹ Leung A, Williams J, Tran K et al. Epidemiology of resultant hypertension in Canada. *Canadian Journal of Cardiology*. 2022; 38: 681-7.

⁷⁷⁰ BC Guidelines.ca. *Hypertension – Diagnosis and Management*. April 15, 2020. Available online at https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/bc-guidelines/htn-full-guideline.pdf. Accessed February 2022.

- o 12-lead ECG \$24.57⁷⁷¹
- Urinalysis (fee item 92385) \$2.05772
- o Albumin to creatinine ratio (ACR) (fee item 91985) \$11.41
- o Potassium (fee item 92100 \$1.39
- Sodium (fee item 92231) \$1.38
- Creatinine/eGFR (fee item 91421) \$1.52
- o Glucose (fasting) (fee item 91707) \$1.46
- Primary base fee (fee item 91000) \$15.62
- Hemoglobin A1c (fee item 91745) \$5.30
- Cholesterol (fee item 91375) \$6.87
- Triglycerides (fee item 92350) \$6.59
- Parathyroid hormone (PTH) (fee item 92030) \$17.52
- Calcium total (fee item 91326) \$1.55
- Phosphate (fee item 92071) \$1.62
- Total \$98.85
- Actual rates of laboratory testing may be sub-optimal. Research from Alberta found that only 42.3% of patients with newly-diagnosed hypertension received laboratory investigations for renal function, serum electrolytes, low-density lipoprotein cholesterol and diabetes in the year following their diagnosis. Approximately three-quarters received at least one of these guideline-recommended tests.⁷⁷³
- Average annual cost of antihypertensive medication Calculated based on an estimated average cost per day of treatment for antihypertensive medication in Canada of \$0.62 (365 * \$0.62 = \$226.30).⁷⁷⁴
- Capital cost of equipment for automated office blood pressure (AOBP) measurement and ambulatory blood pressure monitoring (ABPM) are not included. ABPM machines cost approximately \$2,000⁷⁷⁵ each while AOBP machines cost approximately \$400 - \$900 each.^{776,777}
- Based on these assumption, the cost of implementing a co-ordinated hypertension screening and treatment program in a BC birth cohort of 40,000 would be \$88.5 million in females (see Tables 23) and \$85.4 million in males (see Table 24).

⁷⁷¹ Medical Services Plan. *MSP Fee-For-Service Payment Analysis: 2016/17 to 2020/21*. Available at <u>https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/medical-services-</u>

plan/msp_ffs_payment_analysis_2016/2017_to_2020/2021.pdf. Accessed March 2024. 2020/21 average FFS for fee item 33016 (ECG and Interpretaion – Office – Cardiology).

⁷⁷² The following tests, fee item numbers and unit costs were provided by Jillian Hannah, Policy Analyst with the BC Ministry of Health: Laboratory and Blood Services Branch. July 2022.

⁷⁷³ Quan S, Chen G, Padwal R et al. Frequency of laboratory testing and associated abnormalities in patients with hypertension. *Journal of Clinical Hypertension*. 2020; 22: 2077-83.

⁷⁷⁴ Centre for Health Services and Policy Research. *The Canadian Rx Atlas: Third Edition*. 2013. Available at http://www.chspr.ubc.ca/sites/default/files/file_upload/publications/2013/RxAtlas/canadianrxatlas2013.pdf. Accessed March 2024.

⁷⁷⁵ See <u>https://www.cardiacdirect.com/product-category/24-hour-abp-monitors/</u>. Accessed July 2022.

⁷⁷⁶ See <u>https://medical.andonline.com/product/professional-office-blood-pressure-monitor-um-211/</u>. Accessed July 2022.

⁷⁷⁷ Dr. Martin Dawes, Professor of Family Practice, Department of Family Practice, Faculty of Medicine, UBC. Personal communication, April 2022.
Ta	Table 23: Costs Associated with Implementing a Co-ordinated Screening Program												
					Female	es Betw	veen the	Ages o	f 18 and	84			
					ln a Bri	tish Col	umbia Bir	th Coho	rt of 40,0	00			
Age	Total Life Years	Prev %	alence #	% with BP Check	# of BP Screens	GP Visits Screens	GP Visits Monitoring	Monitoring Tests	GP	Co Tests	osts Medication	Patient	Total
18	19,894	3.4%	682	58.8%	11,379	6,195	208	277	\$230,316	\$27,366	\$31,325	\$475,871	\$764,877
19	19,888 19,881	3.4%	682 682	58.8% 68.2%	11,230 13 100	5,615 6 550	208	277 277	\$209,446 \$243.062	\$27,357 \$27.348	\$31,315 \$31,304	\$432,750 \$502,206	\$700,868 \$803 920
20	19,881	3.4%	682	68.2%	13,100	6,548	207	277	\$243,002 \$242.978	\$27,348	\$31,304 \$31.294	\$502,200	\$803,520 \$803.645
22	19,867	3.4%	681	68.2%	13,090	6,545	207	276	\$242,888	\$27,329	\$31,282	\$501,846	\$803,345
23	19,859	3.4%	681	68.2%	13,085	6,543	207	276	\$242,792	\$27,318	\$31,270	\$501,649	\$803,029
24	19,851	3.4%	681	68.2%	13,080	6,540	207	276	\$242,694	\$27,307	\$31,257	\$501,447	\$802,705
25	19,843 19 834	3.4%	680	77.8%	14,981 14 974	7,490	207	276	\$276,877 \$276,754	\$27,296 \$27,284	\$31,244 \$31,230	\$572,073 \$571 819	\$907,490 \$907.087
27	19,825	3.4%	680	77.8%	14,967	7,484	207	276	\$276,628	\$27,271	\$31,216	\$571,559	\$906,675
28	19,816	3.4%	680	77.8%	14,960	7,480	207	276	\$276,497	\$27,258	\$31,201	\$571,288	\$906,245
29	19,806	3.4%	679	77.8%	14,953	7,476	207	276	\$276,360	\$27,245	\$31,186	\$571,005	\$905,796
30	19,796 10,795	3.4%	679 670	75.5%	14,478	7,239	207	275	\$267,817 \$267,668	\$27,231 \$27,216	\$31,170	\$553,355 \$553,047	\$879,574 \$870,084
32	19,785	3.4%	678	75.5%	14,470	7,235	206	275	\$267,508	\$27,210	\$31,135	\$552,728	\$878.577
33	19,761	3.4%	678	75.5%	14,453	7,226	206	275	\$267,351	\$27,183	\$31,116	\$552,392	\$878,043
34	19,749	3.4%	677	75.5%	14,444	7,222	206	275	\$267,181	\$27,166	\$31,096	\$552,039	\$877,482
35	19,736	3.4%	677	76.5%	14,642	7,321	206	275	\$270,744	\$27,148	\$31,076	\$559,403	\$888,371
36	19,722	3.4%	676	76.5%	14,632	7,316	206	274	\$270,558	\$27,129	\$31,054	\$559,017	\$887,758
37	19,708	3.4%	675	76.5%	14,621 14 610	7,311	206	274	\$270,363 \$270,156	\$27,110 \$27.089	\$31,032 \$31,008	\$558,614 \$558 188	\$887,118 \$886.442
39	19,677	3.4%	675	76.5%	14,599	7,299	205	274	\$269,942	\$27,068	\$30,984	\$557,745	\$885,739
40	19,661	14.8%	2,911	80.6%	15,393	9,676	1,016	1,355	\$384,588	\$133,957	\$153,336	\$794,623	\$1,466,503
41	19,643	14.8%	2,909	80.6%	13,562	6,781	1,015	1,354	\$280,442	\$133,837	\$153,198	\$579,440	\$1,146,917
42	19,625	14.8%	2,906	80.6%	13,549	6,775	1,014	1,353	\$280,174	\$133,710	\$153,053	\$578,887	\$1,145,824
43	19,605	14.8%	2,903	80.6%	13,535 13 521	6,768 6,760	1,013	1,351	\$279,889 \$279 583	\$133,575 \$133,431	\$152,899 \$152 734	\$578,297 \$577.666	\$1,144,661 \$1 143 414
45	19,561	14.8%	2,897	82.7%	13,915	6,957	1,011	1,348	\$286,633	\$133,277	\$152,557	\$592,232	\$1,164,700
46	19,537	14.8%	2,893	82.7%	13,898	6,949	1,010	1,347	\$286,275	\$133,112	\$152,369	\$591,493	\$1,163,249
47	19,511	14.8%	2,889	82.7%	13,879	6,940	1,009	1,345	\$285,894	\$132,936	\$152,167	\$590,705	\$1,161,702
48	19,484	14.8%	2,885	82.7%	13,859	6,930	1,007	1,343	\$285,486	\$132,748	\$151,952	\$589,861	\$1,160,047
49 50	19,454	14.8%	2,881	82.7% 79.9%	13,838	6,919	1,006	1,341	\$285,048 \$274 587	\$132,547 \$132 330	\$151,721 \$151 473	\$567 343	\$1,158,272 \$1,125,734
50	19,388	14.8%	2,870	79.9%	13,236	6,618	1,004	1,336	\$274,102	\$132,098	\$151,208	\$566,340	\$1,123,749
52	19,352	14.8%	2,866	79.9%	13,211	6,605	1,000	1,334	\$273,579	\$131,849	\$150,923	\$565,260	\$1,121,610
53	19,312	14.8%	2,860	79.9%	13,184	6,592	998	1,331	\$273,016	\$131,580	\$150,615	\$564,096	\$1,119,308
54	19,270	14.8%	2,853	79.9%	13,154	6,577	996	1,328	\$272,407	\$131,290	\$150,283	\$562,838	\$1,116,818
55	19,224	14.8%	2,847	90.0%	15,067	7,534 7 514	994 991	1,325	\$306,734 \$305 938	\$130,978 \$130 642	\$149,926 \$149 541	\$632,763 \$632,119	\$1,221,401 \$1,218,239
57	19,121	14.8%	2,835	90.0%	14,986	7,493	988	1,318	\$305,077	\$130,278	\$149,124	\$630,340	\$1,214,820
58	19,063	14.8%	2,823	90.0%	14,940	7,470	985	1,314	\$304,142	\$129,883	\$148,672	\$628,408	\$1,211,104
59	19,000	14.8%	2,814	90.0%	14,890	7,445	982	1,310	\$303,130	\$129,455	\$148,182	\$626,316	\$1,207,083
60	18,932	42.6%	8,064	88.4%	14,541	6,254	3,154	4,205	\$338,400	\$415,674	\$475,806	\$699,190	\$1,929,070
62	18,656	42.6%	8,052 7 998	88.4%	9,450	4,725	3,141	4,189	\$282,954 \$281 698	\$414,044 \$412 275	\$475,942 \$471 916	\$582 035	\$1,755,509 \$1,747,924
63	18,689	42.6%	7,960	88.4%	9,360	4,680	3,113	4,151	\$280,325	\$410,343	\$469,704	\$579,197	\$1,739,569
64	18,593	42.6%	7,920	88.4%	9,309	4,654	3,097	4,130	\$278,831	\$408,239	\$467,297	\$576,111	\$1,730,478
65	18,489	42.6%	7,875	91.2%	9,774	4,887	3,080	4,107	\$286,571	\$405,943	\$464,668	\$592,103	\$1,749,285
66	18,375	42.6%	7,826	91.2%	9,710	4,855	3,061	4,081	\$284,731	\$403,435 \$400,601	\$461,798	\$588,301 \$584,125	\$1,738,264 \$1,736,106
68	18,230	42.6%	7,715	91.2%	9,562	4,820	3,040	4,034	\$280.508	\$400,091 \$397.687	\$455,218	\$579.575	\$1,720,190 \$1.712.988
69	17,963	42.6%	7,651	91.2%	9,478	4,739	2,992	3,990	\$278,091	\$394,398	\$451,453	\$574,581	\$1,698,523
70	17,799	61.6%	10,968	91.7%	9,460	7,728	4,423	5,897	\$437,070	\$582,936	\$667,265	\$903,058	\$2,590,329
71	17,619	61.6%	10,857	91.7%	6,542	3,271	4,378	5,837	\$275,144	\$577,034	\$660,510	\$568,493	\$2,081,181
72	17,421	61.6%	10,736	91.7%	6,458	3,229	4,329	5,772	\$271,870 \$268,271	\$570,562	\$653,102	\$561,728 \$554,202	\$2,057,261
74	16,966	61.6%	10,602	91.7% 91.7%	6,265	3,165	4,275	5,700	\$266,271	\$555.654	\$636.037	\$5546,292 \$546,132	\$2,050,985 \$2.002.144
75	16,704	61.6%	10,294	95.0%	6,703	3,351	4,151	5,535	\$269,857	\$547,093	\$626,237	\$557,568	\$2,000,755
76	16,417	61.6%	10,117	95.0%	6,571	3,286	4,080	5,439	\$264,923	\$537,686	\$615,470	\$547,374	\$1,965,454
77	16,102	61.6%	9,923	95.0%	6,427	3,214	4,001	5,335	\$259,516	\$527,370	\$603,661	\$536,204	\$1,926,751
78	15,757	61.6%	9,710	95.0%	6,269	3,134	3,915	5,221	\$253,583	\$516,051	\$590,705	\$523,946	\$1,884,285
79 80	15,378 14 963	61.6%	9,476 9,221	93.0% 93.2%	5,096 5,639	3,048 2 819	3,821 3 718	5,095 4 958	\$247,084 \$235 159	5003,645 \$490 066	5560 961	\$510,517 \$485 877	⇒1,837,749 \$1,772,062
81	14,510	61.6%	8,942	93.2%	5,441	2,720	3,606	4,808	\$227,545	\$475,230	\$543,978	\$470,145	\$1,716,898
82	14,016	61.6%	8,637	93.2%	5,225	2,612	3,483	4,644	\$219,245	\$459,044	\$525,451	\$452,997	\$1,656,737
83	13,478	61.6%	8,306	93.2%	4,990	2,495	3,349	4,466	\$210,225	\$441,430	\$505,289	\$434,360	\$1,591,304
84	12,895	61.6%	7,946	93.2%	4,737	2,369	3,204	4,272	\$200,457	\$422,323	\$483,418	\$414,177	\$1,520,375
Total	1.245.898	23.9%	297.402		781.626	395.280	114.378	152.505	\$18.332.401	\$15.075.078	\$17.255.893	\$37.877.787	\$88.541.159

Та	Table 24: Costs Associated with Implementing a Co-ordinated Screening Program												
					Males	s Betwe	een the <i>i</i>	Ages of	18 and 8	34			
					In a Bri	tish Col	umbia Bir	rth Cohoi	rt of 40,00	00			
	Total Life	Prev	alence	% with	# of BP	GP Visits	GP Visits	Monitoring		Co	sts		
Age	Years	%	#	BP Check	Screens	Screens	Monitoring	Tests	GP	Tests	Medication	Patient	Total
18 19	19,876 19,864	4.4%	869 868	46.7%	8,914 8 742	5,042	193	257	\$188,278 \$164,140	\$25,387 \$25,373	\$35,788 \$35,768	\$389,014 \$339 142	\$638,468 \$564 422
20	19,804	4.4%	868	40.7% 54.2%	10.213	4,371 5.107	193	257	\$190.602	\$25,375	\$35,708	\$393.816	\$50 4 ,422 \$645.517
21	19,835	4.4%	867	54.2%	10,205	5,102	192	256	\$190,448	\$25,335	\$35,715	\$393,496	\$644,993
22	19,817	4.4%	866	54.2%	10,195	5,098	192	256	\$190,274	\$25,312	\$35,682	\$393,137	\$644,405
23	19,796	4.4%	865	54.2%	10,185	5,092	192	256	\$190,077	\$25,286	\$35,645	\$392,730	\$643,738
24	19,775	4.4%	864	54.2%	10,174	5,087	192	256	\$189,867	\$25,258	\$35,606	\$392,296	\$643,027
25	19,751	4.4%	863	59.2%	11,163	5,582	191	255	\$207,652	\$25,228	\$35,564 ¢35,564	\$429,044 ¢428.517	\$697,488
20	19,727	4.4% 4.4%	861	59.2%	11,149	5,575	191	255	\$207,597 \$207,132	\$25,197	\$35,521 \$35,475	\$420,517 \$427 969	\$695,052 \$695,741
28	19.676	4.4%	860	59.2%	11.120	5,560	191	254	\$206.858	\$25,132	\$35,428	\$427.403	\$694.821
29	19,649	4.4%	859	59.2%	11,105	5,553	190	254	\$206,576	\$25,097	\$35,380	\$426,820	\$693,874
30	19,621	4.4%	858	62.6%	11,756	5,878	190	254	\$218,275	\$25,062	\$35,330	\$450,992	\$729,660
31	19,593	4.4%	857	62.6%	11,739	5,870	190	253	\$217,961	\$25,026	\$35,280	\$450,343	\$728,610
32	19,564	4.4%	855	62.6%	11,722	5,861	190	253	\$217,640	\$24,989	\$35,228	\$449,681	\$727,538
33	19,535	4.4%	854	62.6%	11,704	5,852	189	252	\$217,313	\$24,952	\$35,175	\$449,004	\$726,444
34	19,505	4.4%	853	62.6%	11,686	5,843	189	252	\$216,979	\$24,913	\$35,121 \$35,065	\$448,314	\$725,327
36	19,474	4.4% 4.4%	850	67.4%	12,005	6 292	189	252	\$255,497 \$733 113	\$24,674 \$74,833	\$35,005 \$35,007	\$482,445 \$481 650	\$774 602
37	19,409	4.4%	848	67.4%	12,563	6.282	188	251	\$232.717	\$24,000	\$34,948	\$480.831	\$773.286
38	19,375	4.4%	847	67.4%	12,541	6,271	188	250	\$232,306	\$24,747	\$34,886	\$479,983	\$771,921
39	19,339	4.4%	845	67.4%	12,518	6,259	187	250	\$231,881	\$24,702	\$34,822	\$479,104	\$770,509
40	19,303	18.4%	3,557	77.2%	14,378	9,757	1,170	1,560	\$393,072	\$154,244	\$217,439	\$812,152	\$1,576,906
41	19,264	18.4%	3,550	77.2%	11,990	5,995	1,168	1,557	\$257,655	\$153,938	\$217,009	\$532,358	\$1,160,960
42	19,225	18.4%	3,542	77.2%	11,965	5,983	1,166	1,554	\$257,118	\$153,620	\$216,560	\$531,249	\$1,158,548
43	19,183	18.4%	3,535	77.2%	11,939	5,970	1,163	1,551	\$256,56U \$255,077	\$153,289	\$216,094 \$215,607	\$530,096 ¢520.001	\$1,156,039 \$1,152,430
44	19,140	18.4%	3,527	77.3%	11,912	5 948	1,100	1,547	\$255,577	\$152,544	\$215,007	\$528,091 \$528,071	\$1,151,324
46	19,047	18.4%	3,510	77.3%	11,865	5,933	1,155	1,540	\$254,934	\$152,198	\$214,555	\$526,736	\$1,148,423
47	18,996	18.4%	3,500	77.3%	11,834	5,917	1,152	1,536	\$254,255	\$151,797	\$213,990	\$525,334	\$1,145,375
48	18,943	18.4%	3,491	77.3%	11,800	5,900	1,148	1,531	\$253,532	\$151,370	\$213,388	\$523,838	\$1,142,128
49	18,887	18.4%	3,480	77.3%	11,764	5,882	1,145	1,527	\$252,768	\$150,919	\$212,753	\$522,261	\$1,138,702
50	18,827	18.4%	3,469	81.3%	12,484	6,242	1,141	1,522	\$265,574	\$150,442	\$212,079	\$548,721	\$1,176,816
51	18,763	18.4%	3,457	81.3%	12,441	6,220	1,138	1,517	\$264,663	\$149,932	\$211,360	\$546,838 ¢544,835	\$1,172,793
52	18,095	18.4%	3,445	81.3% 81.3%	12,395	6 173	1,133	1,511	\$203,089 \$262,652	\$149,387 \$149,387	\$210,592 \$209 774	\$544,825 \$542,683	\$1,108,492 \$1 163 916
54	18,545	18.4%	3,431	81.3%	12,340	6.147	1,124	1,305	\$261.543	\$148.187	\$208,900	\$540.392	\$1,159.022
55	18,461	18.4%	3,402	82.5%	12,465	6,233	, 1,119	1,492	\$264,448	\$147,522	\$207,963	\$546,394	\$1,166,326
56	18,372	18.4%	3,385	82.5%	12,404	6,202	1,114	1,485	\$263,157	\$146,811	\$206,960	\$543,725	\$1,160,653
57	18,277	18.4%	3,368	82.5%	12,339	6,169	1,108	1,477	\$261,772	\$146,048	\$205,886	\$540,864	\$1,154,569
58	18,175	18.4%	3,349	82.5%	12,269	6,134	1,102	1,469	\$260,288	\$145,232	\$204,735	\$537,799	\$1,148,053
59	18,065	18.4%	3,329	82.5%	12,193	6,097	1,095	1,460	\$258,694	\$144,354	\$203,498	\$534,504	\$1,141,050
6U	17,947	43.3%	7,705	89.9% 89.9%	13,440 0 182	11,233	3,124	4,105	\$510,429 \$276 706	\$411,712 \$408,803	\$580,395 \$576 204	\$1,007,028 \$571 722	\$2,575,505 \$1,833,576
62	17,620	43.3%	7.651	89.9%	9.102	4.554	3.078	4,104	\$274.516	\$405.674	\$571.883	\$567.196	\$1,819,269
63	17,537	43.3%	7,587	89.9%	9,028	4,514	3,052	4,070	\$272,154	\$402,302	\$567,129	\$562,315	\$1,803,900
64	17,379	43.3%	7,519	89.9%	8,941	4,471	3,025	4,033	\$269,613	\$398,673	\$562,013	\$557,065	\$1,787,363
65	17,208	43.3%	7,445	92.7%	9,324	4,662	2,995	3,994	\$275,421	\$394,759	\$556,496	\$569,066	\$1,795,742
66	17,024	43.3%	7,365	92.7%	9,218	4,609	2,963	3,951	\$272,372	\$390,538	\$550,546	\$562,765	\$1,776,221
67	16,826	43.3%	7,280	92.7%	9,105	4,552	2,929	3,905	\$269,089	\$385,991	\$544,136	\$555,982	\$1,755,198
68 69	16,612	43.3%	7,187	92.7%	8,982 8 8/19	4,491	2,891	3,855	\$265,541 \$261 711	\$381,082 \$375 783	\$537,216 \$529 745	\$548,651 \$540 739	\$1,732,489 \$1,707,978
70	16,132	63.9%	10.312	95.8%	9.211	8,113	4.388	5,851	\$449.656	\$578.358	\$815.319	\$929.065	\$2,772,398
71	15,863	63.9%	10,140	95.8%	5,741	2,871	4,315	5,753	\$258,465	\$568,721	\$801,733	\$534,031	\$2,162,950
72	15,573	63.9%	9,955	95.8%	5,621	2,810	4,236	5,648	\$253,464	\$558,324	\$787,076	\$523,699	\$2,122,563
73	15,260	63.9%	9,755	95.8%	5,491	2,746	4,151	5,535	\$248,071	\$547,109	\$771,266	\$512,556	\$2,079,003
74	14,923	63.9%	9,540	95.8%	5,352	2,676	4,059	5,413	\$242,265	\$535,027	\$754,234	\$500,560	\$2,032,085
75	14,560	63.9%	9,308	93.2%	4,826	2,413	3,961	5,281	\$229,269	\$522,020	\$735,897	\$473,707	\$1,960,893
76 77	14,170	63.9%	9,058	93.2%	4,675	2,338	3,855	5,139	\$222,733	\$508,030 \$402,001	\$/16,176	\$460,204	\$1,907,143
// 70	13,751	63.9%	8, /90 8 502	93.2% 93.2%	4,513	2,257	3,741 3,619	4,987 1 871	\$215,/10 \$208 109	5493,001 \$476 881	2094,989 \$672 265	\$445,/Ub \$430 177	,51,849,412 \$1 787 517
70 79	12,801	63.9%	8,195	93.2%	4,340	2,170	3,487	4,650	\$200,198	\$459 629	\$647 945	\$413 567	\$1,721,303
80	12,306	63.9%	7,867	92.9%	3,915	1,958	3,348	4,463	\$190,825	\$441,208	\$621,976	\$394,276	\$1,648,285
81	11,759	63.9%	7,517	92.9%	3,708	1,854	3,199	4,265	\$181,752	\$421,597	\$594,330	\$375,530	\$1,573,209
82	11,179	63.9%	7,146	92.9%	3,490	1,745	3,041	4,055	\$172,145	\$400,788	\$564,996	\$355,679	\$1,493,608
83	10,565	63.9%	6,754	92.9%	3,260	1,630	2,874	3,832	\$162,010	\$378,789	\$533,983	\$334,739	\$1,409,521
84	9,919	63.9%	6,341	92.9%	3,020	1,510	2,698	3,598	\$151,372	\$355,635	\$501,343	\$312,760	\$1,321,110
Total	1,182,557	24.7%	291,932		657,188	339,768	111,958	149,277	\$16,248,568	\$14,756,065	\$20,801,797	\$33,572,242	\$85,378,671

Costs Associated with Harms

- As noted earlier, pharmaceutical treatment for hypertension is associated with an increased rate of hypotension, syncope, electrolyte abnormalities, and acute kidney injury.⁷⁷⁸
- Bress and co-authors calculated the cost per serious adverse event (SAE) to be as follows:⁷⁷⁹
 - Hypotension \$7,314 in 2017 USD (\$7,401 in 2022 CAD)
 - Syncope \$6,697 in 2017 USD (\$6,776 in 2022 CAD)
 - Electrolyte abnormality \$7,142 in 2017 USD (\$7,226 in 2022 CAD)
 - o Acute kidney injury \$10,041 in 2017 USD (\$10,160 in 2022 CAD)

If one of the above SAE occurs, the probability of that occurrence is 20.4% / 24.8% / 28.4% / 26.4%, respectively.⁷⁸⁰ The weighted cost per SAE would therefore be \$7,925 in 2022 CAD.

- Richman et al assumed a 4 day hospital stay associated with each SAE with an estimated cost of \$7,151 (in 2016 USD) per event.⁷⁸¹ We converted this to \$7,373 in 2022 CAD.
- Tran et al estimated the cost of a hospitalization with a primary diagnosis of syncope (ICD-10 code R55) to be \$4,481 in 2018 CAD (or \$5,309 in 2022 CAD).⁷⁸²
- For modelling purposes, we took the difference for the cost of treating syncope in the Bress study (\$6,776) and the Tran study (\$5,309), or -\$1,467 (-21.7%) and reduced the weighted cost per SAE from the Bress study (\$7,925) by this 21.7% (\$6,209). We also assumed that each SAE is associated with four days in hospital when calculating the value of lost patient time.
- Based on these assumptions, the cost of harms associated with implementing a coordinated hypertension screening and treatment program in a BC birth cohort of 40,000 would be \$16.1 million in females and \$15.7 million in males (see Table 25).

⁷⁷⁸ Sheppard J, Stevens S, Stevens R et al. Benefits and harms of antihypertensive treatment in low-risk patients with mild hypertension. *JAMA Internal Medicine*. 2018; 178(12): 1626-34.

⁷⁷⁹ Bress A, Bellows B, King J et al. Cost-effectiveness of intensive versus standard blood-pressure control. *New England Journal of Medicine*. 2017; 377(8): 745-55.

⁷⁸⁰ Bress A, Bellows B, King J et al. Cost-effectiveness of intensive versus standard blood-pressure control. *New England Journal of Medicine*. 2017; 377(8): 745-55.

⁷⁸¹ Richman I, Fairley M, Jorgensen M et al. Cost-effectiveness of intensive blood pressure management. *JAMA Cardiology*. 2016; 8: 872-9.

⁷⁸² Tran D, Sheldon R, Kaul P et al. The current and future hospitalization cost burden of syncope in Canada. *Canadian Journal of Cardiology Open.* 2020; 2(4): 222-8.

			Tab	ole 25: E	stimated	Cost o	of Harms	5	
				Betweer	n the Ages	of 18 a	nd 84		
			Ina	British Co	lumbia Birt	h Cohort	of 40,000		
				With a Co	-ordinated Sci	reening Pr	ogram		
		# of SAEc	Females	Dationt	Total	# of SAEc	Males	Dationt	Total
	Δσρ	# 01 SAES	Costs	Time Costs	Costs	# 01 SAES	Costs	Time Costs	Costs
	18	4.0	\$24,752	\$4,444	\$29,196	3.7	\$22,963	\$4,123	\$27,085
	19	4.0	\$24,745	\$4,443	\$29,187	3.7	\$22,949	\$4,120	\$27,070
	20	4.0	\$24,736	\$4,441	\$29,178	3.7	\$22,934	\$4,118	\$27,051
	21	4.0	\$24,728 \$24,710	\$4,440 \$4,428	\$29,168 \$20,157	3.7	\$22,915	\$4,114 \$4.111	\$27,030 \$27,005
	23	4.0	\$24,719 \$24.709	\$4,436 \$4.436	\$29,137 \$29.145	3.7	\$22,894 \$22.871	\$4,111 \$4.106	\$27,003 \$26.977
	24	4.0	\$24,699	\$4,435	\$29,134	3.7	\$22,846	\$4,102	\$26,947
	25	4.0	\$24,689	\$4,433	\$29,122	3.7	\$22,819	\$4,097	\$26,916
	26	4.0	\$24,678	\$4,431	\$29,109	3.7	\$22,791	\$4,092	\$26,883
	27	4.0 4.0	\$24,667 \$24,655	\$4,429 \$4.427	\$29,095 \$29.082	3.7	\$22,762 \$22 731	\$4,087 \$4.081	\$26,848 \$26,813
	29	4.0	\$24,643	\$4,425	\$29,067	3.7	\$22,701	\$4,076	\$26,776
	30	4.0	\$24,630	\$4,422	\$29,052	3.7	\$22,669	\$4,070	\$26,739
	31	4.0	\$24,616	\$4,420	\$29,036	3.6	\$22,636	\$4,064	\$26,700
	32	4.0	\$24,602	\$4,417 \$4,415	\$29,019 \$20,002	3.6	\$22,603	\$4,058 \$4,052	\$26,661 \$26,621
	34	4.0	\$24,567 \$24 572	\$4,415	\$29,002	3.0	\$22,509 \$22,509	\$4,032 \$4,046	\$26,521
	35	4.0	\$24,555	\$4,409	\$28,964	3.6	\$22,498	\$4,039	\$26,538
	36	4.0	\$24,539	\$4,406	\$28,944	3.6	\$22,461	\$4,033	\$26,494
	37	3.9	\$24,521	\$4,403	\$28,923	3.6	\$22,423	\$4,026	\$26,449
	38 39	3.9	\$24,502 \$24,483	\$4,399 \$4,396	\$28,901 \$28,879	3.6	\$22,384 \$22,384	\$4,019 \$4,012	\$26,402 \$26,354
	40	19.5	\$121,164	\$21,754	\$142,918	22.5	\$139,513	\$25,049	\$164,562
	41	19.5	\$121,055	\$21,735	\$142,790	22.4	\$139,237	\$24,999	\$164,236
	42	19.5	\$120,941	\$21,714	\$142,655	22.4	\$138,949	\$24,948	\$163,897
	43	19.5	\$120,819	\$21,692	\$142,511	22.3	\$138,650	\$24,894	\$163,544
	44 45	19.4 19.4	\$120,688 \$120 549	\$21,669 \$21 644	\$142,357 \$142,193	22.3	\$138,338 \$138,008	\$24,838 \$24 779	\$163,176 \$162,787
	46	19.4	\$120,400	\$21,617	\$142,017	22.2	\$137,663	\$24,717	\$162,379
	47	19.4	\$120,241	\$21,589	\$141,829	22.1	\$137,300	\$24,652	\$161,951
	48	19.3	\$120,071	\$21,558	\$141,629	22.1	\$136,914	\$24,582	\$161,496
	49 50	19.3	\$119,888 \$110,602	\$21,525 \$21,400	\$141,414 \$141 182	22.0	\$136,506 \$126,074	\$24,509 \$24,422	\$161,015 \$160,506
	51	19.3	\$119,483	\$21,450 \$21,453	\$140,935	21.5	\$135,613	\$24,432 \$24,349	\$159,962
	52	19.2	\$119,257	\$21,412	\$140,669	21.8	\$135,120	\$24,260	\$159,380
	53	19.2	\$119,014	\$21,369	\$140,383	21.7	\$134,595	\$24,166	\$158,761
	54	19.1	\$118,752 \$118,460	\$21,321	\$140,073	21.6	\$134,034 \$122,422	\$24,065	\$158,100 \$157,200
	55	19.1	\$118,409 \$118,165	\$21,271 \$21.216	\$139,740	21.5	\$132,790	\$23,937 \$23.842	\$156.632
	57	19.0	\$117,836	\$21,157	\$138,993	21.3	\$132,100	\$23,718	\$155,818
	58	18.9	\$117,479	\$21,093	\$138,571	21.2	\$131,362	\$23,585	\$154,947
	59	18.9	\$117,091	\$21,023	\$138,115	21.0	\$130,568	\$23,443	\$154,011
	60 61	60.6 60.3	\$375,976 \$374 502	\$67,505 \$67,240	\$443,481 \$441 743	60.0 59.6	\$372,392 \$369 761	566,389	\$439,254 \$436 151
	62	60.1	\$372.902	\$66.953	\$439.855	59.1	\$366.931	\$65.881	\$432.812
	63	59.8	\$371,154	\$66,639	\$437,793	58.6	\$363,881	\$65,333	\$429,214
	64	59.5	\$369,252	\$66,298	\$435,549	58.1	\$360,598	\$64,744	\$425,342
	65 66	59.1	\$367,174	\$65,925	\$433,099 \$430,434	57.5	\$357,059	\$64,108	\$421,167
	67	58.4	\$362 424	\$65,072	\$427 496	56.2	\$349 128	\$62 684	\$410,004 \$411 813
	68	57.9	\$359,707	\$64,584	\$424,291	55.5	\$344,688	\$61,887	\$406,575
	69	57.5	\$356,732	\$64,050	\$420,782	54.7	\$339,895	\$61,027	\$400,921
	70	84.9	\$527,264	\$94,668	\$621,932	84.3	\$523,124	\$93,925	\$617,048
	71	84.1 92 1	\$521,926 \$516,072	\$93,710 \$02.6E0	\$615,636	82.8	\$514,407 \$505,002	\$92,360	\$606,767
	73	82.1	\$509.644	\$92,039 \$91.504	\$601.148	79.7	\$494.859	\$90,071 \$88.850	\$583.709
	74	80.9	\$502,588	\$90,238	\$592,825	77.9	\$483,931	\$86,888	\$570,818
	75	79.7	\$494,844	\$88,847	\$583,691	76.0	\$472,166	\$84,775	\$556,941
	76 77	78.3	\$486,336	\$87,320	\$573,656	74.0	\$459,512	\$82,503	\$542,016
ļ	77 78	/6.8 75 0	\$477,005 \$466 767	285,644 582 RAG	5562,649 5550 572	/1.8 60 5	\$445,918 \$421 229	580,063 \$77 //5	5225,981 \$502 722
	79	73.4	\$455,545	\$81,791	\$537,337	67.0	\$415,734	\$74,643	\$490,377
ļ	80	71.4	\$443,263	\$79,586	\$522,850	64.3	\$399,072	\$71,652	\$470,723
	81	69.2	\$429,844	\$77,177	\$507,021	61.4	\$381,333	\$68,467	\$449,800
ļ	82	66.9	\$415,204	\$74,548	\$489,752	58.4	\$362,512	\$65,087	\$427,599
	оэ 84	04.3 61.5	,212 \$381 990	\$68 585	\$450 575	55.2 51.8	۶321 671 \$321 671	\$57 755	5404,129 \$379 426
		2 196	\$13 635 372	\$2 448 174	\$16.083.549	2 150	\$13 346 827	\$7 396 267	\$15 743 104

Strokes Avoided

- Goeree et al estimated the costs associated with the *acute phase of a fatal stroke* in Canada to be \$9,364 (in 2004 CAD).⁷⁸³ We converted this to \$13,501 in 2022 CAD.
- Goeree et al estimated the *first year costs* associated with a stroke in Canada by age as follows:⁷⁸⁴
 - <55 years of age \$15,926 in 2004 CAD, converted to \$22,196 in 2022 CAD
 - o 55-64 \$12,955 (\$18,056)
 - o 65-74 \$24,593 (\$34,276)
 - o 75-84 \$28,608 (\$39,872)
 - ≥85 \$29,210 (\$40,711)
- Gloede and coauthors in Australia estimated the *ongoing annual costs* (including informal care and out-of-pocket costs) associated with an ischemic stroke to be \$7,996 (in 2010 AUD) while costs associated with a haemorrhagic stroke were \$10,251.⁷⁸⁵ Based on a mix of 85% ischemic strokes in Canada,⁷⁸⁶ the weighted cost would be \$8,335. We converted this to \$8,524 in 2022 CAD.

Myocardial Infarctions Avoided

- Anis et al estimated the cost of the *acute phase of a fatal MI* at St. Paul's Hospital in BC to be \$6,289 (in 2002 CAD).⁷⁸⁷ We converted this to \$9,346 in 2022 CAD.
- Cohen and colleagues estimated the *first year costs* associated with an MI in Ontario to be \$20,794 (in 2008 CAD).⁷⁸⁸ We converted this to \$25,500 in 2022 CAD.
- Cohen and colleagues estimated the *ongoing annual costs* following a myocardial infarct to be \$1,325 (in 2008 CAD).⁷⁸⁹ We converted this to \$1,626 in 2022 CAD.
- Based on these assumption, the costs avoided associated with implementing a coordinated hypertension screening and treatment program in a BC birth cohort of 40,000 would be \$114.5 million in females (see Tables 26) and \$86.8 million in males (see Table 27).

⁷⁸³ Goeree R, Blackhouse G, Petrovic R et al. Cost of stroke in Canada: A 1-year prospective study. *Journal of Medical Economics*. 2005; 8: 147-67.

⁷⁸⁴ Goeree R, Blackhouse G, Petrovic R et al. Cost of stroke in Canada: A 1-year prospective study. *Journal of Medical Economics*. 2005; 8: 147-67.

⁷⁸⁵ Gloede T, Halbach S, Thrift A et al. Long-term costs of stroke using 10-year longitudinal data from the North East Melbourne Stroke Incidence Study. *Stroke*. 2014: 1-8.

⁷⁸⁶ Krueger H, Lindsay P, Cote R et al. Cost avoidance associated with optimal stroke care in Canada. *Stroke*. 2012; 43(8): 2198-206.

⁷⁸⁷ Anis A, Sun H, Singh S et al. A cost-utility analysis of losartan versus atenolol in the treatment of hypertension with left ventricular hypertrophy. *Pharmacoeconomics*. 2006; 24: 387-400.

⁷⁸⁸ Cohen D, Manuel D, Tugwell P et al. Direct healthcare costs of acute myocardial infarction in Canada's elderly across the continuum of care. *The Journal of Economics of Ageing*. 2014; 3: 44-49.

⁷⁸⁹ Cohen D, Manuel D, Tugwell P et al. Direct healthcare costs of acute myocardial infarction in Canada's elderly across the continuum of care. *The Journal of Economics of Ageing*. 2014; 3: 44-49

Table 26: Estimated Costs Avoided due to the Increase in Controlled Hypertension

Females Between the Ages of 18 and 84

In a British Columbia Birth Cohort of 40,000

	Fatal CV Events & Costs				Non	-Fatal (CV Eve	nts & Year 1	Non-Fa				
		Δ	voide	d		Cos	ts Avo	ided		Av	oided	50115 00010	
Age	AMI	Stroke	Total	Costs	AMI	Stroke	Total	Costs	AMI LY	Stroke LY	Total LY	Costs	Total
18													
19		0.1	0.1	\$753		1.9	1.9	\$41,583		122	122	\$1,044,066	\$1,086,402
20		0.1	0.1	\$753		1.9	1.9	\$41,569		121	121	\$1,028,074	\$1,070,396
21		0.1	0.1	\$753		1.9	1.9	\$41,555		119	119	\$1,012,082	\$1,054,390
22		0.1	0.1	\$752		1.9	1.9	\$41,539		117	117	\$996,229	\$1,038,521
23		0.1	0.1	\$752 ¢752		1.9	1.9	\$41,523		115	115	\$980,207	\$1,022,482
24		0.1	0.1	\$/52 \$752		1.9	1.9	\$41,506 \$41,488		113	113	\$964,347 \$948,320	\$1,006,604
25		0.1	0.1	\$752		1.9	1.9	\$41,400 \$ <i>1</i> 1 <i>1</i> 70		109	109	\$940,529 \$932 153	\$990,509
27		0.1	0.1	\$752		1.9	1.9	\$41,451		105	105	\$916.583	\$958.785
28		0.1	0.1	\$751		1.9	1.9	\$41,431		106	106	\$900,548	\$942,730
29		0.1	0.1	\$751		1.9	1.9	\$41,410		104	104	\$884,670	\$926,831
30		0.1	0.1	\$751		1.9	1.9	\$41,388		102	102	\$868,788	\$910,928
31		0.1	0.1	\$751		1.9	1.9	\$41,365		100	100	\$852,888	\$895,004
32		0.1	0.1	\$751		1.9	1.9	\$41,341		98	98	\$836,990	\$879,081
33		0.1	0.1	\$751		1.9	1.9	\$41,315		96	96	\$821,243	\$863,308
34		0.1	0.1	\$750		1.9	1.9	\$41,288		94	94	\$805,332	\$847,370
35		0.1	0.1	\$750 \$750		1.9	1.9	\$41,261		93	93	\$789,425	\$831,436 \$915 656
30		0.1	0.1	\$730 \$749		1.9	1.9	\$41,232 \$41 202		80	80	\$777 765	\$815,050 \$799 716
38		0.1	0.1	\$749		1.9	1.9	\$41,202		87	87	\$742,005	\$783 925
39		0.1	0.1	\$748		1.9	1.9	\$41,138		85	85	\$726.248	\$768.134
40		0.1	0.1	\$814		2.0	2.0	\$44,720		91	91	\$772,999	\$818,533
41		0.1	0.1	\$813		2.0	2.0	\$44,680		89	89	\$755,833	\$801,326
42		0.1	0.1	\$812		2.0	2.0	\$44,637		87	87	\$738,659	\$784,108
43		0.1	0.1	\$811		2.0	2.0	\$44,592		85	85	\$721,472	\$766,876
44		0.1	0.1	\$811		2.0	2.0	\$44,544		83	83	\$704,439	\$749,793
45		0.3	0.3	\$4,516		11.2	11.2	\$248,531		450	450	\$3,839,713	\$4,092,759
46		0.3	0.3	\$4,510		11.2	11.2	\$248,223		439	439	\$3,744,400	\$3,997,133
47		0.3	0.3	\$4,504 \$4,409		11.2	11.2	\$247,895 \$247.545		428	428	\$3,649,017 \$2,554,407	\$3,901,416 \$3,906 E20
40		0.3	0.5	54,498 \$1 101		11.2	11.2	\$247,545 \$247,169		417	417	\$3,554,497 \$3,158 977	\$3,800,539 \$3,710,587
50		0.5	0.5	\$7 583		10.9	10.9	\$241,668		278	278	\$2 367 556	\$2 616 807
51		0.6	0.6	\$7,569		10.9	10.9	\$241,247		270	270	\$2,300,847	\$2,549,663
52		0.6	0.6	\$7,554		10.8	10.8	\$240,793		262	262	\$2,233,387	\$2,481,734
53		0.6	0.6	\$7,537		10.8	10.8	\$240,306		254	254	\$2,166,532	\$2,414,374
54		0.6	0.6	\$7,518		10.8	10.8	\$239,778		246	246	\$2,100,246	\$2,347,542
55		0.6	0.6	\$8,721		10.7	10.7	\$192,959		237	237	\$2,016,153	\$2,217,833
56		0.6	0.6	\$8,695		10.7	10.7	\$192,468		229	229	\$1,950,299	\$2,151,462
5/		0.6	0.6	\$8,668 ¢9,629		10.6	10.6	\$191,936		221	221	\$1,885,027	\$2,085,631
58		0.6	0.6	\$8,638 \$8,658		10.6	10.6	\$191,359		213	213	\$1,819,651	\$2,019,648 \$1,052,542
60	12	0.0	25	\$6,005 \$41,400	1/1 0	12.6	28.4	\$190,735	280	200	627	\$1,734,203 \$2,747,705	\$1,955,542
61	1.3	2.2	3.5	\$41 194	14.0	13.5	28.2	\$619 630	374	239	613	\$2,643,581	\$3 304 406
62	1.3	2.1	3.4	\$40.958	14.7	13.5	28.1	\$617.092	359	229	589	\$2.539.358	\$3,197,408
63	1.3	2.1	3.4	\$40,700	14.6	13.4	28.0	\$614,322	345	220	565	\$2,436,028	\$3,091,050
64	1.3	2.1	3.4	\$40,414	14.5	13.3	27.9	\$611,315	331	211	541	\$2,332,623	\$2,984,352
65	1.8	3.0	4.8	\$56,968	13.7	12.6	26.3	\$781,328	155	191	347	\$1,881,250	\$2,719,546
66	1.8	2.9	4.7	\$56,480	13.6	12.5	26.2	\$776,841	148	182	331	\$1,795,329	\$2,628,650
67	1.8	2.9	4.7	\$55,941	13.5	12.4	26.0	\$771,941	141	174	315	\$1,710,228	\$2,538,111
68	1.8	2.9	4.6	\$55,351	13.4	12.4	25.8	\$766,581	134	165	299	\$1,625,950	\$2,447,881
70	1./ 2.2	∠.ŏ 2 0	4.0 6 1	>>4,/U1 \$72 ⊆0⊑	10 0	12.3	20.0 20.7	\$/00,/19 \$615,021	127	110	284 215	⊋1,241,008 ¢1 172 1 <i>1€</i>	22,33/,U88 \$1 860 707
70	2.5	3.0 3.7	6.0	\$72,005	10.8	9.9	20.7	\$609 596	90	119	213	\$1,175,140 \$1 107 296	\$1,800,782 \$1,788, <i>000</i>
72	2.5	3.7	59	\$70,398	10.7	9.7	20.3	\$603 635	85	106	191	\$1.042 868	\$1,716 901
73	2.2	3.6	5.8	\$69,134	10.5	9.6	20.1	\$597.081	80	100	180	\$979.187	\$1,645.402
74	2.2	3.5	5.7	\$67,749	10.3	9.5	19.9	\$589,877	75	93	168	\$916,304	\$1,573,931
75	2.7	4.5	7.2	\$86,336	9.3	8.6	17.9	\$579,880	62	80	142	\$779,353	\$1,445,569
76	2.7	4.4	7.1	\$84,188	9.2	8.5	17.7	\$571,712	58	74	132	\$724,241	\$1,380,141
77	2.6	4.3	6.9	\$81,843	9.1	8.3	17.4	\$562,724	53	69	122	\$671,128	\$1,315,695
78	2.5	4.1	6.6	\$79,298	8.9	8.2	17.1	\$552,788	49	63	112	\$618,851	\$1,250,937
79	2.4	4.0	6.4	\$76,534	8.7	8.0	16.7	\$541,829	45	58	103	\$567,505	\$1,185,867
80	2.3	3.8 27	6.2	\$73,544	8.5 ດຳ	7.8	16.4	\$529,/36	39	53	93	\$518,579 \$470.271	\$1,121,859
82	2.2 7 1	3./ 3.5	5.9 5.6	210,318 210,318	0.3 Q 1	7.0 7.4	12.9 15 E	۵۲۲ ۵-۲۵ ۵۲۲ ۲۵۵	30 20	48 11	64 76	\$4/U,3/1 \$123 ₽⊑1	\$002 435
83	2.1 2 0	5.5 33	5.0 5.3	200,823 \$63 154	0.1 7 8	7.4 7.2	15.0	\$301,729 \$485 557	32 28	44 29	68	,>423,834 \$379 102	<i>३७७८,</i> 430 \$927 81२
84	1.9	3.1	5.0	\$59,225	7.5	6.9	14.4	\$467.786	25	35	60	\$336.227	\$863.238
				44				4.0				+	+++++++++++++++++++++++++++++++++++++++
	50	91	141	\$1,700,288	279	469	748	\$19,762,123	3,359	10,279	13,638	\$93,077,532	\$114,539,943

Table 27: Estimated Costs Avoided due to the Increase in Controlled Hypertension

Males Between the Ages of 18 and 84

In a British Columbia Birth Cohort of 40,000

	Fa	tal CV	Events	& Costs	Non-Fatal CV Events & Year 1				Non-Fatal CV Events & Ongoing Costs				
		A	voide	1		Costs	Avoid	ed		Av	voided	Boung costs	
Age	AMI	Stroke	Total	Costs	AMI	Stroke	Total	Costs	AMI LY S	Stroke LY	Total LY	Costs	Total
18													
19		0.1	0.1	\$1,425		1.2	1.2	\$25,731		70	70	\$597,247	\$624,404
20		0.1	0.1	\$1,424		1.2	1.2	\$25,713		69 68	69 69	\$587,349	\$614,486 \$604,606
21		0.1	0.1	\$1,424 \$1,423		1.2	1.2	\$25,692 \$25,668		67	67	\$577,490 \$567.688	\$604,606 \$594 779
23		0.1	0.1	\$1,422		1.2	1.2	\$25,641		65	65	\$557.829	\$584.892
24		0.1	0.1	\$1,421		1.2	1.2	\$25,612		64	64	\$547,946	\$574,978
25		0.1	0.1	\$1,420		1.2	1.2	\$25,580		63	63	\$538,029	\$565,029
26		0.1	0.1	\$1,420		1.2	1.2	\$25,546		62	62	\$528,205	\$555,171
27		0.1	0.1	\$1,419		1.1	1.1	\$25,511		61	61	\$518,371	\$545,301
28		0.1	0.1	\$1,419		1.1	1.1	\$25,475		60	60 F0	\$508,537	\$535,431
30		0.1	0.1	\$1,419 \$1,418		1.1	1.1	\$25,438 \$25,399		59 57	59 57	\$498,705 \$488,976	\$525,501 \$515 793
31		0.1	0.1	\$1,418		1.1	1.1	\$25,360		56	56	\$479.161	\$505.939
32		0.1	0.1	\$1,418		1.1	1.1	\$25,320		55	55	\$469,361	\$496,099
33		0.1	0.1	\$1,417		1.1	1.1	\$25,279		54	54	\$459,674	\$486,370
34		0.1	0.1	\$1,417		1.1	1.1	\$25,238		53	53	\$449,906	\$476,560
35		0.1	0.1	\$1,416		1.1	1.1	\$25,195		52	52	\$440,140	\$466,750
36		0.1	0.1	\$1,415		1.1	1.1	\$25,150		51	51	\$430,485	\$457,050
3/		0.1	0.1	\$1,414 \$1,412		1.1	1.1	\$25,105 \$25,058		49	49	\$420,840 \$411 201	\$447,359 \$427,672
39		0.1	0.1	\$1,413		1.1	1.1	\$25,038		40	40	\$401 476	\$437,073
40		0.1	0.1	\$1,746		1.4	1.4	\$30,879		57	57	\$484,781	\$517,406
41		0.1	0.1	\$1,744		1.4	1.4	\$30,815		55	55	\$473,004	\$505,564
42		0.1	0.1	\$1,743		1.4	1.4	\$30,748		54	54	\$461,118	\$493,609
43		0.1	0.1	\$1,741		1.4	1.4	\$30,679		53	53	\$449,359	\$481,779
44		0.1	0.1	\$1,738		1.4	1.4	\$30,607		51	51	\$437,493	\$469,838
45 46		0.9	0.9	\$11,563 \$11 545		9.4	9.4	\$207,939 \$207,401		340	340	\$2,899,559 \$2,820,262	\$3,119,061 \$2,020,208
40		0.9	0.9	\$11,545 \$11 525		9.3	9.5	\$207,401		321	321	\$2,820,302 \$2,740,402	\$2,059,508 \$2,958,763
48		0.9	0.9	\$11,504		9.3	9.3	\$206,237		312	312	\$2,661,182	\$2,878,923
49		0.9	0.9	\$11,480		9.3	9.3	\$205,605		303	303	\$2,581,970	\$2,799,055
50		1.0	1.0	\$13,821		9.1	9.1	\$201,047		203	203	\$1,730,492	\$1,945,359
51		1.0	1.0	\$13,786		9.0	9.0	\$200,345		197	197	\$1,675,590	\$1,889,721
52		1.0	1.0	\$13,748		9.0	9.0	\$199,597		190	190	\$1,620,651	\$1,833,996
53		1.0	1.0	\$13,707		9.0	9.0	\$198,803		184	184	\$1,566,257	\$1,778,766
55		1.0	1.0	\$13,001		0.9 8.8	0.9 8.8	\$159,555		170	170	\$1,511,644 \$1,447 593	\$1,725,400
56		1.1	1.1	\$14,402		8.8	8.8	\$158.377		164	164	\$1.394.607	\$1,567,385
57		1.1	1.1	\$14,337		8.7	8.7	\$157,541		157	157	\$1,341,600	\$1,513,478
58		1.1	1.1	\$14,267		8.7	8.7	\$156,647		151	151	\$1,289,133	\$1,460,047
59		1.1	1.1	\$14,189		8.6	8.6	\$155,689		145	145	\$1,236,668	\$1,406,546
60	1.9	3.1	5.1	\$60,363	14.4	13.2	27.6	\$605,936	333	210	543	\$2,333,526	\$2,999,824
61	1.9	3.1	5.0	\$59,985	14.3	13.1	27.4	\$601,564	319	201	520	\$2,232,388	\$2,893,938
63	1.9	3.1	5.0 5.0	\$59,507 \$59,100	14.Z 14.1	12.0	27.2	3090,880 \$591 871	305 291	192	497 474	\$2,132,384 \$2,032,529	\$2,788,830 \$2,683,500
64	1.9	3.0	4.9	\$58,580	13.9	12.5	26.7	\$586.507	277	174	451	\$1,933,896	\$2,578,984
65	2.9	4.7	7.5	\$89,870	12.4	11.4	23.8	\$707,025	164	149	313	\$1,534,333	\$2,331,228
66	2.8	4.6	7.5	\$88,882	12.3	11.3	23.6	\$699,533	156	141	296	\$1,453,750	\$2,242,165
67	2.8	4.6	7.4	\$87,787	12.1	11.1	23.3	\$691,538	147	133	280	\$1,374,351	\$2,153,676
68	2.8	4.5	7.3	\$86,582	12.0	11.0	23.0	\$682,964	139	126	264	\$1,296,100	\$2,065,646
69 70	2.7	4.4	7.1	\$85,253	11.8	10.9	22.7	\$673,778	130	118	249	\$1,219,064	\$1,978,095
70	4.Z	6.9	10.9	\$131,672 \$130,001	9.4	8.0	17.0	\$530,290 \$528 540	94	93 97	187	\$948,995 \$888 642	\$1,616,964 \$1,546,102
72	4.1	6.6	10.8	\$125,001	9.1	8.4	17.5	\$519.849	82	82	164	\$829.379	\$1,475,484
73	3.9	6.4	10.3	\$123,256	9.0	8.2	17.2	\$510,564	76	76	152	\$771,945	\$1,405,764
74	3.8	6.2	10.1	\$119,973	8.8	8.1	16.9	\$500,686	71	70	141	\$715,214	\$1,335,873
75	4.0	6.6	10.6	\$126,973	8.1	7.5	15.6	\$505,657	57	62	119	\$617,589	\$1,250,219
76	3.9	6.4	10.3	\$122,748	8.0	7.3	15.3	\$494,339	53	57	109	\$568,451	\$1,185,538
77	3.8	6.2	9.9	\$118,177	7.8	7.1	14.9	\$482,266	48	52	100	\$520,637	\$1,121,080
/8 70	3.6	5.9	9.5	\$113,249	7.6	6.9	14.5	\$469,388	44	47	91	\$4/4,726	\$1,057,363
79 80	כ.4 גר	5.0 5.2	9.1 8.6	\$107,953 \$107,953	7.3 71	0.7	14.1 13.6	2422,003 \$441 022	40 32	43 38	دہ 70	2430,265 \$378 509	२७७३,४४⊥ ९९७१ २७⁄
81	3.1	5.0	8.1	\$96,276	6.8	6.3	13.1	\$425.412	28	34	63	\$338.950	\$860.637
82	2.9	4.7	7.5	\$89,918	6.6	6.0	12.6	\$408,775	25	31	56	\$301,423	\$800,116
83	2.6	4.3	7.0	\$83,251	6.3	5.8	12.1	\$391,040	22	27	49	\$265,955	\$740,246
84	2.4	4.0	6.4	\$76,318	6.0	5.5	11.5	\$372,145	19	24	43	\$232,586	\$681,048
	76	143	219	\$2,639,779	249	395	643	\$16,985,880	3,040	7,295	10,336	\$67,127,866	\$86,753,526

Summary of CE – Males and Females

- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with screening for and treatment of hypertension in adults 18 years and older in a British Columbia birth cohort of 40,000 is cost-saving (Table 28, row v).

	Table 28: CE of Screening and Treatment for Hyperte	ension	
	Ages 18 - 84		
	In a BC Birth Cohort of 40.000		
Row Label	Variable	Base case	Data Source
	Cost of Screening Program		
а	Physician costs (in millions) - Females	\$18.33	Table 23
b	Lab test costs (in millions) - Females	\$15.08	Table 23
с	Medication costs (in millions) - Females	\$17.26	Table 23
d	Patient time costs (in millions) - Females	\$37.88	Table 23
e	Physician costs (in millions) - Males	\$16.25	Table 24
f	Lab test costs (in millions) - Males	\$14.76	Table 24
g	Medication costs (in millions) - Males	\$20.80	Table 24
h	Patient time costs (in millions) - Males	\$33.57	Table 24
i	Total Screening Program Costs	\$173.92	Sum a…h
	Cost of Harms		
j	Treatment costs for SAE (in millions) - Females	\$13.6	Table 25
k	Patient time costs for SAE (in millions) - Females	\$2.4	Table 25
I	Treatment costs for SAE (in millions) - Males	\$13.3	Table 25
m	Patient time costs for SAE (in millions) - Males	\$2.4	Table 25
n	Total Cost of Harms	\$31.83	Sum jm
	Treatment Costs Avoided with a Screening Program		
0	Cost of treating new AMI and strokes avoided (in millions) - Females	\$19.76	Table 26
р	Cost of treating those living with AMI or stroke avoided (in millions) - Females	\$93.08	Table 26
q	Cost of treating those who die due to AMI or stroke avoided (in millions) - Females	\$1.70	Table 26
r	Cost of treating new AMI and strokes avoided (in millions) - Males	\$16.99	Table 26
S	Cost of treating those living with AMI or stroke avoided (in millions) - Males	\$67.13	Table 26
t	Cost of treating those who die due to AMI or stroke avoided (in millions) - Males	\$2.64	Table 26
р	Total Treatment Costs Avoided	\$201.29	Sum ot
	CE per QALY Gained		
q	Net cost of screening and treatment (in millions)	\$4.45	= i + n - p
r	Total QALYs gained	16,548	Table 20
S	CE (\$/QALY gained)	\$269	q / r * 1,000,000
t	Net cost of screening and treatment (in millions, 1.5% discount)	-\$1.84	Calculated
u	Total QALYs gained, 1.5% Discount	8,876	Calculated
v	CE (\$/QALY gained), 1.5% Discount	Cost Saving	Calculated

Sensitivity Analysis – Males and Females

We also modified several major assumptions and recalculated the CE as follows:

- The rate of cerebrovascular mortality and morbidity in those ages 18-59 on treatment for hypertension decreases from 6 to 5 per 1,000 over a 5-year period and from 34 to 31 per 1,000 over a 3.8-year period for those ages 60 and older; the rate of coronary heart disease mortality and morbidity in those ages 60 and older decreases from 37 to 33 per 1,000 over a 3.8-year period (see Table 8). CE = Cost-saving
- The rate of cerebrovascular mortality and morbidity in those ages 18-59 on treatment for hypertension increases from 6 to 9 per 1,000 over a 5-year period and from 34 to 39 per 1,000 over a 3.8-year period for those ages 60 and older; the rate of coronary heart disease mortality and morbidity in those ages 60 and older increases decreases from 37 to 42 per 1,000 over a 3.8-year period (see Table 8). **CE** = **\$8,506**
- The average disutility of living with a stroke is increased from 0.200 to 0.265. CE = Cost-saving
- The average disutility of living with a stroke is decreased from 0.200 to 0.134. CE = Cost-saving
- The disutility associated with taking preventive medication is increased from 0.0024 to 0.0033. CE = Cost-saving
- The disutility associated with taking preventive medication is reduced from 0.0024 to 0.0. CE = Cost-saving
- Assume that those visits to a physician's office requiring 0.5 of an office visit would instead take a full office visit. CE = \$7,439
- Assume that the annual costs associated with care following a stroke are reduced by 25% from \$8,524 to \$6,393. CE = \$2,458
- Assume that the annual costs associated with care following a stroke are increased by 25% from \$8,524 to \$10,655. CE = Cost-saving

Summary of CE – Females Only

Based on these assumptions, the CE associated with screening for and treatment of hypertension in females 18 years and older in a British Columbia birth cohort of 40,000 is cost-saving (Table 29, row v).

	Table 29: CE of Screening and Treatment for Hyperte	ension	
	Females Ages 18 - 84		
	In a BC Birth Cohort of 40,000		
Row Label	Variable	Base case	Data Source
	Cost of Screening Program		
а	Physician costs (in millions) - Females	\$18.33	Table 23
b	Lab test costs (in millions) - Females	\$15.08	Table 23
С	Medication costs (in millions) - Females	\$17.26	Table 23
d	Patient time costs (in millions) - Females	\$37.88	Table 23
e	Physician costs (in millions) - Males		Table 24
f	Lab test costs (in millions) - Males		Table 24
g	Medication costs (in millions) - Males		Table 24
h	Patient time costs (in millions) - Males		Table 24
i	Total Screening Program Costs	\$88.54	Sum a…h
	Cost of Harms		
j	Treatment costs for SAE (in millions) - Females	\$13.6	Table 25
k	Patient time costs for SAE (in millions) - Females	\$2.4	Table 25
I	Treatment costs for SAE (in millions) - Males		Table 25
m	Patient time costs for SAE (in millions) - Males		Table 25
n	Total Cost of Harms	\$16.08	Sum jm
	Treatment Costs Avoided with a Screening Program		
0	Cost of treating new AMI and strokes avoided (in millions) - Females	\$19.76	Table 26
р	Cost of treating those living with AMI or stroke avoided (in millions) - Females	\$93.08	Table 26
q	Cost of treating those who die due to AMI or stroke avoided (in millions) - Females	\$1.70	Table 26
r	Cost of treating new AMI and strokes avoided (in millions) - Males		Table 26
S	Cost of treating those living with AMI or stroke avoided (in millions) - Males		Table 26
t	Cost of treating those who die due to AMI or stroke avoided (in millions) - Males		Table 26
р	Total Treatment Costs Avoided	\$114.54	Sum ot
	CE per QALY Gained		
q	Net cost of screening and treatment (in millions)	-\$9.92	= i + n - p
r	Total QALYs gained	8,778	Table 21
S	CE (\$/QALY gained)	-\$1,129	q / r * 1,000,000
t	Net cost of screening and treatment (in millions, 1.5% discount)	-\$8.73	Calculated
u	Total QALYs gained, 1.5% Discount	4,730	Calculated
v	CE (\$/QALY gained), 1.5% Discount	Cost Saving	Calculated

Sensitivity Analysis – Females Only

We also modified several major assumptions and recalculated the CE for females as follows:

- The rate of cerebrovascular mortality and morbidity in females ages 18-59 on treatment for hypertension decreases from 6 to 5 per 1,000 over a 5-year period and from 34 to 31 per 1,000 over a 3.8-year period for females ages 60 and older; the rate of coronary heart disease mortality and morbidity in females ages 60 and older decreases from 37 to 33 per 1,000 over a 3.8-year period (see Table 8). CE = Cost-saving
- The rate of cerebrovascular mortality and morbidity in females ages 18-59 on treatment for hypertension increases from 6 to 9 per 1,000 over a 5-year period and from 34 to 39 per 1,000 over a 3.8-year period for females ages 60 and older; the rate of coronary heart disease mortality and morbidity in females ages 60 and older increases decreases from 37 to 42 per 1,000 over a 3.8-year period (see Table 8). **CE** = **\$6,597**
- The average disutility of living with a stroke is increased from 0.200 to 0.265. CE = Cost-saving
- The average disutility of living with a stroke is decreased from 0.200 to 0.134. CE = Cost-saving
- The disutility associated with taking preventive medication is increased from 0.0024 to 0.0033. CE = Cost-saving
- The disutility associated with taking preventive medication is reduced from 0.0024 to 0.0. CE = Cost-saving
- Assume that those visits to a physician's office requiring 0.5 of an office visit would instead take a full office visit. CE = \$5,806
- Assume that the annual costs associated with care following a stroke are reduced by 25% from \$8,524 to \$6,393. CE = \$1,106
- Assume that the annual costs associated with care following a stroke are increased by 25% from \$8,524 to \$10,655. CE = Cost-saving

Summary of CE – Males Only

Based on these assumptions, the CE associated with screening for and treatment of hypertension in males 18 years and older in a British Columbia birth cohort of 40,000 000 is \$1,162 (Table 30, row v).

	Table 30: CE of Screening and Treatment for Hyperte	ension	
	Ages 18 - 84		
	In a BC Birth Cohort of 40,000		
Row Label	Variable	Base case	Data Source
	Cost of Screening Program		
а	Physician costs (in millions) - Females		Table 23
b	Lab test costs (in millions) - Females		Table 23
с	Medication costs (in millions) - Females		Table 23
d	Patient time costs (in millions) - Females		Table 23
е	Physician costs (in millions) - Males	\$16.25	Table 24
f	Lab test costs (in millions) - Males	\$14.76	Table 24
g	Medication costs (in millions) - Males	\$20.80	Table 24
h	Patient time costs (in millions) - Males	\$33.57	Table 24
i	Total Screening Program Costs	\$85.38	Sum a…h
	Cost of Harms		
j	Treatment costs for SAE (in millions) - Females		Table 25
k	Patient time costs for SAE (in millions) - Females		Table 25
I	Treatment costs for SAE (in millions) - Males	\$13.3	Table 25
m	Patient time costs for SAE (in millions) - Males	\$2.4	Table 25
n	Total Cost of Harms	\$15.74	Sum jm
	Treatment Costs Avoided with a Screening Program		
0	Cost of treating new AMI and strokes avoided (in millions) - Females		Table 26
р	Cost of treating those living with AMI or stroke avoided (in millions) - Females		Table 26
q	Cost of treating those who die due to AMI or stroke avoided (in millions) - Females		Table 26
r	Cost of treating new AMI and strokes avoided (in millions) - Males	\$16.99	Table 26
S	Cost of treating those living with AMI or stroke avoided (in millions) - Males	\$67.13	Table 26
t	Cost of treating those who die due to AMI or stroke avoided (in millions) - Males	\$2.64	Table 26
р	Total Treatment Costs Avoided	\$86.75	Sum o…t
	CE per QALY Gained		
q	Net cost of screening and treatment (in millions)	\$14.37	= i + n - p
r	Total QALYs gained	7,769	Table 22
S	CE (\$/QALY gained)	\$1,849	q / r * 1,000,000
t	Net cost of screening and treatment (in millions, 1.5% discount)	\$6.89	Calculated
u	Total QALYs gained, 1.5% Discount	4,146	Calculated
v	CE (\$/QALY gained), 1.5% Discount	\$1,662	Calculated

Sensitivity Analysis - Males Only

We also modified several major assumptions and recalculated the CE for males as follows:

- The rate of cerebrovascular mortality and morbidity in males ages 18-59 on treatment for hypertension decreases from 6 to 5 per 1,000 over a 5-year period and from 34 to 31 per 1,000 over a 3.8-year period for males ages 60 and older; the rate of coronary heart disease mortality and morbidity in males ages 60 and older decreases from 37 to 33 per 1,000 over a 3.8-year period (see Table 8). CE = Cost-saving
- The rate of cerebrovascular mortality and morbidity in males ages 18-59 on treatment for hypertension increases from 6 to 9 per 1,000 over a 5-year period and from 34 to 39 per 1,000 over a 3.8-year period for males ages 60 and older; the rate of coronary heart disease mortality and morbidity in males ages 60 and older increases decreases from 37 to 42 per 1,000 over a 3.8-year period (see Table 8). **CE = \$10,663**
- The average disutility of living with a stroke is increased from 0.200 to 0.265. CE = \$1,526
- The average disutility of living with a stroke is decreased from 0.200 to 0.134. CE = \$1,828
- The disutility associated with taking preventive medication is increased from 0.0024 to 0.0033. CE = \$1,680
- The disutility associated with taking preventive medication is reduced from 0.0024 to 0.0. CE = \$1,617
- Assume that those visits to a physician's office requiring 0.5 of an office visit would instead take a full office visit. CE = \$9,304
- Assume that the annual costs associated with care following a stroke are reduced by 25% from 8,524 to 6,393. CE = 4,000
- Assume that the annual costs associated with care following a stroke are increased by 25% from \$8,524 to \$10,655. CE = Cost-saving

Summary – Males and Females

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for and treatment of hypertension in adults 18 years and older in a British Columbia birth cohort of 40,000 is estimated to be 8,876 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be cost-saving (see Table 31).

Table 31: Screening and Treatment for Hypertension											
	Ages 18-84										
in a BC	in a BC Birth Cohort of 40,000										
Summary											
Base											
Case Range											
CPB (Potential QALYs Gaine	ed)										
Assume Current Service (Screening rate of 88.1%)											
1.5% Discount Rate 8,876 5,434 10,733											
3% Discount Rate	4,785	2,895	5,739								
0% Discount Rate	16,548	10,222	20,142								
CE (\$/QALY) including patie	ent time costs										
1.5% Discount Rate	Cost Saving	Cost-Saving	\$8,506								
3% Discount Rate	Cost-Saving	Cost-Saving	\$9,510								
0% Discount Rate	\$269	Cost-Saving	\$8,125								
CE (\$/QALY) excluding pati	ent time costs										
1.5% Discount Rate	Cost-Saving	Cost-Saving	Cost-Saving								
3% Discount Rate	Cost-Saving	Cost-Saving	Cost-Saving								
0% Discount Rate	Cost-Saving	Cost-Saving	Cost-Saving								

Summary – Females Only

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for and treatment of hypertension in females 18 years and older in a British Columbia birth cohort of 40,000 is estimated to be 4,730 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be cost-saving (see Table 32).

Table 32: Screening	g and Treatm	nent for Hy	pertension								
Fe	males Ages 1	8-84									
in a BC	Birth Cohort	of 40,000									
Summary											
	Base										
Case Range											
CPB (Potential QALYs Gain	ed)										
Assume Curi	Assume Current Service (Screening rate of 88.1%)										
1.5% Discount Rate	4,730	2,882	5,719								
3% Discount Rate	2,568	1,547	3,079								
0% Discount Rate	8,778	5,395	10,687								
CE (\$/QALY) including patie	ent time costs										
1.5% Discount Rate	Cost Saving	Cost-Saving	\$6,597								
3% Discount Rate	Cost-Saving	Cost-Saving	\$7,258								
0% Discount Rate	Cost-Saving	Cost-Saving	\$6,462								
CE (\$/QALY) excluding pati	ent time costs										
1.5% Discount Rate	Cost-Saving	Cost-Saving	Cost-Saving								
3% Discount Rate	Cost-Saving	Cost-Saving	Cost-Saving								
0% Discount Rate	Cost-Saving	Cost-Saving	Cost-Saving								

Summary – Males Only

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for and treatment of hypertension in males 18 years and older in a British Columbia birth cohort of 40,000 is estimated to be 4,146 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$1,662 per QALY (see Table 33).

Table 33: Screening	Table 33: Screening and Treatment for Hypertension										
N	1ales Ages 18	-84									
in a BC	Birth Cohort	of 40,000									
	Summary										
	Base										
Case Range											
CPB (Potential QALYs Gaine	ed)										
Assume Curr	Assume Current Service (Screening rate of 88.1%)										
1.5% Discount Rate	4,146	2,552	5,014								
3% Discount Rate	2,217	1,348	2,660								
0% Discount Rate	7,769	4,827	9,454								
CE (\$/QALY) including patie	ent time costs										
1.5% Discount Rate	\$1,662	Cost-Saving	\$10,663								
3% Discount Rate	\$1,703	Cost-Saving	\$12,093								
0% Discount Rate	\$1,849	Cost-Saving	\$9,985								
CE (\$/QALY) excluding pati	ent time costs										
1.5% Discount Rate	Cost-Saving	Cost-Saving	Cost-Saving								
3% Discount Rate	Cost-Saving	Cost-Saving	Cost-Saving								
0% Discount Rate	Cost-Saving	Cost-Saving	Cost-Saving								

Screening for Cardiovascular Disease Risk and Treatment with Statins

United States Preventive Services Task Force Recommendations (2016)

The USPSTF recommends initiating use of low- to moderate-dose statins in adults aged 40 to 75 years without a history of CVD who have 1 or more CVD risk factors (dyslipidemia, diabetes, hypertension, or smoking) and a calculated 10-year CVD event risk of 10% or greater. (B recommendation)

Identification of dyslipidemia and calculation of 10-year CVD event risk requires universal lipids screening in adults aged 40-74 years.

The USPSTF recommends using the ACC/AHA Pooled Cohort Equations to calculate the 10-year risk of CVD events. The calculator derived from these equations takes into account age, sex, race, cholesterol levels, blood pressure level, antihypertension treatment, presence of diabetes, and smoking status as risk factors.⁷⁹⁰

The CTFPHC has not completed a recent update due to the review completed by the Canadian Cardiovascular Society (CCS) in 2016.⁷⁹¹ A number of the CCS recommendations, particularly those associated with screening and primary prevention, are highlighted below.

Canadian Cardiovascular Society (2016)

Screening

We recommend that a CV risk assessment be completed every 5 years for men and women aged 40 to 75 years using the modified FRS (Framingham Heart Study Risk Score) or CLEM (Cardiovascular Life Expectancy Model) to guide therapy to reduce major CV events. A risk assessment might also be completed whenever a patient's expected risk status changes. (Strong Recommendation; High Quality Evidence).

Primary Prevention

We recommend management that does not include statin therapy for individuals at low risk (modified FRS < 10%) to decrease the risk of CVD events. (Strong Recommendation; High-Quality Evidence).

We recommend management that includes statin therapy for individuals at high risk (modified $FRS \ge 20\%$) to decrease the risk of CVD events. (Strong Recommendation; High-Quality Evidence).

We recommend management that includes statin therapy for individuals at IR (intermediate risk: modified FRS 10%-19%) with LDL-C \geq 3.5 mmol/L to decrease the risk of CVD events. Statin therapy should also be considered for IR persons with LDL-C < 3.5 mmol/L but with apoB \geq 1.2 g/L or non-HDL-C \geq 4.3 mmol/L or in men 50 years of age and older and women 60 years of age and older with \geq 1 CV risk factor. (Strong Recommendation; High-Quality Evidence).⁷⁹²

⁷⁹⁰ Bibbins-Domingo K, Grossman D, Curry S et al. Statin use for the primary prevention of cardiovascular disease in adults: US Preventive Services Task Force recommendation statement. *Journal of the American Medical Association*. 2016; 316(19): 1997-2007.

⁷⁹¹ Dr. Richard Birtwhistle, Member, Canadian Task Force on Preventive Health Care. Personal communication, January 25, 2017.

 ⁷⁹² Anderson T, Gregiore J, Pearson G et al. 2016 Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in then adult. *Canadian Journal of Cardiology*. 2016; 32: 1263-82.

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB and CE associated with universal screening for and initiating use of low- to moderate-dose statins in adults aged 40 to 75 years without a history of CVD, who have 1 or more CVD risk factors, and a calculated 10-year CVD event risk of 10% or greater.

In estimating CPB, we made the following assumptions:

• Based on BC life tables for 2018 to 2020, there are a total of 1,281,822 life years lived and 7,719 deaths between the ages of 40 and 74 in a BC birth cohort of 40,000 (see Table 1).

	Table 1: Deaths and Years of Life Lived and LostBetween the Ages of 40 and 74in a British Columbia Birth Cohort of 40,000											
	Deaths due to											
Age	Age Deaths in Cardiovascular Cerebrovascular Life Years Lost											
Group	Life Years	Birth	Dise	ase	Dise	ase	Life	All				
	Lived	Cohort	%	#	%	#	Expectancy	Deaths	Cardio	Cerebro		
40-44	194,020	307	4.20%	13	1.46%	4	42.1	12,926	543	189		
45-49	192,260	404	12.11%	49	2.44%	10	37.4	15,134	1,833	369		
50-54	189,873	562	12.11%	68	2.44%	14	32.8	18,473	2,237	451		
55-59	186,494	807	12.11%	98	2.44%	20	28.4	22,887	2,772	558		
60-64	181,582	1,185	12.11%	143	2.44%	29	24.0	28,475	3,448	695		
65-69	174,288	1,774	14.50%	257	4.57%	81	19.9	35,274	5,115	1,612		
70-74	163,305	2,679	14.50%	388	4.57%	122	16.0	42,798	6,206	1,956		
Total	1,281,822	7,719	13.17%	1,017	3.63%	280		175,967	22,153	5,830		

- Based on BC vital statistics data, 46 of 1,094 (4.20%) deaths in 25-44 year olds in 2015 were due to cardiovascular disease (ICD-10 codes I00-I51) and 16 of 1,094 (1.46%) deaths were due to cerebrovascular disease (ICD-10 codes I60-I69). In 45-64 year olds, 645 of 5,324 (12.11%) deaths were due to cardiovascular disease, and 130 of 5,324 (2.44%) deaths were due to cerebrovascular disease. In 65-79 year olds, 1,397 of 9,636 (14.50%) deaths were due to cardiovascular disease while 440 of 9,636 (4.57%) deaths were due to cerebrovascular disease.⁷⁹³ This data was used to estimate that approximately 1,017 (13.17%) of the 7,719 deaths in the birth cohort would be due to cardiovascular disease and 280 (3.63%) due to cerebrovascular disease (see Table 1 and Table 3, rows *f*, *g*, *h* & *i*).
- We are not aware of any information which indicates the proportion of adults aged 40 to 74 years in BC who have had a cardiovascular risk assessment within the past five years. Nor are we aware of BC-specific data on the proportion of adults at intermediate or higher risk of CVD who are taking statins over the longer term for primary prevention purposes. Research suggests that 54.8% of Canadians between the ages of 40 and 79 are at low risk (defined as a mean 10-year risk of a CVD event of less than 10%), 14.4% are at intermediate risk (mean 10-year risk of a CVD event of 10%-19%) and 30.9% are at high risk (mean 10-year risk of a CVD event of ≥20%)⁷⁹⁴ (see Table 2 below and Table 3, row *b*).

⁷⁹³ British Columbia Vital Statistics Agency. *Selected Vital Statistics and Health Status Indicators: One Hundred and Forty-Fourth Annual Report.* 2015. British Columbia Ministry of Health. Available at https://www2.gov.bc.ca/assets/gov/birth-adoption-death-marriage-and-divorce/statistics-reports/annual-

reports/2015/pdf/annual-report-2015.pdf. Accessed March 2023. ⁷⁹⁴ Hennessy D, Tanuseputro P, Tuna M et al. Population health impact of statin treatment in Canada. *Health Reports*. 2016; 27(1): 20-8.

	By CVD RISK Status, 2007 to 2011									
					Estima	ted % b	by CVD			
Age		Estimated	# by CVD Ri	sk Status	Ri	sk Stati	us			
Group	Population	Low	Int.	High	Low	Int.	High			
20-39	8,983,467	8,893,999	4,335	85,133	99.0%	0.05%	0.95%			
40-59	9,863,690	7,231,730	1,014,437	1,617,523	73.3%	10.3%	16.4%			
60-79	5,186,843	1,011,071	1,148,828	3,026,944	19.5%	22.1%	58.4%			
Total	24,034,000	17,136,800	2,167,600	4,729,600	71.3%	9.0%	19.7%			
40-79	15,050,533	8,242,801	2,163,265	4,644,467	54.8%	14.4%	30.9%			

Table 2: Estimated Number of Canadian Adults Ages 40-79By CVD Risk Status, 2007 to 2011

- In a systematic review for the USPSTF, Chou et al included 19 randomized control trials (RCTs) with 71,344 participants with a mean age between 51 and 66 years and an average of 4.1 years of follow-up. They conclude that statin therapy is associated with a decreased risk of the following: ⁷⁹⁵
 - All-cause mortality (RR, 0.86 [95% CI, 0.80 to 0.93]) (Table 3, row y)
 - Cardiovascular mortality (RR, 0.69 [95% CI, 0.54 to 0.88])
 - Myocardial infarction (RR, 0.64 [95% CI, 0.57 to 0.71]) (Table 3, row *ab*)
 - Stroke (RR, 0.71 [95% CI, 0.62 to 0.82]) (Table 3, row ae)
- Based on the review for the USPSTF, statin therapy (when compared with a placebo) is not associated with an increased risk of withdrawal due to adverse events, serious adverse events, any cancer, fatal cancer, myalgias or elevated aminotransferase levels, rhabdomyolysis or myopathy, renal dysfunction, cognitive harms or new-onset diabetes following initiation of statin therapy.⁷⁹⁶
- The review for the USPSTF by Chou et al has been criticized on several fronts. Redberg and Katz note that the review did not exclude studies that included patients taking statins for secondary prevention.⁷⁹⁷ A 2010 review by Ray and colleagues, which included only studies of patients receiving statins for primary prevention, did not find a benefit of statin use and all-cause mortality (RR, 0.91; 95% CI of 0.83 to 1.01).⁷⁹⁸ In addition, Redberg and Katz note that the most commonly reported side effect of muscle weakness and pain is not included in the review by Chou et al. Clinical trials suggest that statin myopathy occurs in 1-5% of patients while it may range as high as 20-30% based on observations in clinical practice.^{799,800}

⁷⁹⁵ Chou R, Dana T, Blazina I et al. Statins for prevention of cardiovascular disease in adults: evidence report and systematic review for the US Preventive Services Task Force. *Journal of the American Medical Association*. 2016; 316(19): 2008-24.

⁷⁹⁶ Ibid.

⁷⁹⁷ Redberg R and Katz M. Statins for primary prevention: the debate is intense, but the data are weak. *Journal of the American Medical Association*. 2016; 316(19): 1979-81.

⁷⁹⁸ Ray K, Seshasai S, Erqou S et al. Statins and all-cause mortality in high-risk primary prevention: a metaanalysis of 11 randomized controlled trials involving 65 229 participants. *Archives of Internal Medicine*. 2010; 170(12): 1024-31.

⁷⁹⁹ Magni P, Macchi C, Morlotti B et al. Risk identification and possible countermeasures for muscle adverse effects during statin therapy. *European Journal of Internal Medicine*. 2015; 26(2): 82-8.

⁸⁰⁰ Thompson P. What to believe and do about statin-associated adverse effects. *Journal of the American Medical Association*. 2016; 316(19): 1969-70.

- In a 2016 review of the available evidence on the safety of statin therapy, Collins and colleagues note that "(t)he only serious adverse events that have been shown to be caused by long-term statin therapy - i.e., adverse effects of the statin, are myopathy (defined as muscle pain or weakness combined with large increases in blood concentrations of creatine kinase), new-onset diabetes mellitus, and, probably, haemorrhagic stroke. Typically, treatment of 10 000 patients for 5 years with an effective regimen (e.g., atorvastatin 40 mg daily) would cause about 5 cases of myopathy (one of which might progress, if the statin therapy is not stopped, to the more severe condition of rhabdomyolysis), 50-100 new cases of diabetes, and 5-10 haemorrhagic strokes. However, any adverse impact of these side-effects on major vascular events has already been taken into account in the estimates of the absolute benefits. Statin therapy may cause symptomatic adverse events (e.g., muscle pain or weakness) in up to about 50-100 patients (i.e., 0.5-1.0% absolute harm) per 10 000 treated for 5 years. However, placebo-controlled randomised trials have shown definitively that almost all of the symptomatic adverse events that are attributed to statin therapy in routine practice are not actually caused by it (i.e., they represent misattribution)....It is, therefore, of concern that exaggerated claims about side-effect rates with statin therapy may be responsible for its under-use among individuals at increased risk of cardiovascular events. For, whereas the rare cases of myopathy and any muscle-related symptoms that are attributed to statin therapy generally resolve rapidly when treatment is stopped, the heart attacks or strokes that may occur if statin therapy is stopped unnecessarily can be devastating."801
- The controversy over side-effects continues, especially regarding muscle problems, as evidenced by the series of letters in the March 18, 2017 issue of *The Lancet* responding to the Collins et al review. In our sensitivity analysis, we have included an assumption that 5%^{802,803} of patients taking statins would develop muscle problems and that their QoL would be reduced by 53%⁸⁰⁴ during the estimated 3 months it would take for the statin withdrawal and rechallenge process^{805,806} to determine that the muscle problem is associated with the use of statins.
- Other assumptions used in assessing the clinically preventable burden are detailed in the Reference Document.

Based on these assumptions, the CPB associated with universal CVD risk-factor screening and initiating use of low- to moderate-dose statins in adults aged 40 to 74 years without a history of CVD who have 1 or more CVD risk factors and a calculated 10-year CVD event risk of 10% or greater is 7,102 QALYs (see Table 3, row *ap*). This is based on the assumption of moving from no statin use in this intermediate or high risk cohort, to 30% of this cohort initiating and sustaining statin use.

⁸⁰⁶ Ahmad Z. Statin intolerance. American Journal of Cardiology. 2014; 113(10): 1765-71.

⁸⁰¹ Collins R, Reith C, Emberson J et al. Interpretation of the evidence for the efficacy and safety of statin therapy. *The Lancet*. 2016; 388(10059): 2532-61.

⁸⁰² Parker B, Capizzi J, Grimaldi A et al. The effect of statins on skeletal muscle function. *Circulation*. 2013; 127(1): 96-103.

⁸⁰³ Ganga H, Slim H and Thompson P. A systematic review of statin-induced muscle problems in clinical trials. *American Heart Journal*. 2014; 168(1): 6-15.

⁸⁰⁴ Cham S, Evans M, Denenberg J et al. Statin-associated muscle-related adverse effects: a case series of 354 patients. *Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy*. 2010; 30(6): 541-53.

⁸⁰⁵ Jacobson T. Toward "pain-free" statin prescribing: clinical algorithm for diagnosis and management of myalgia. *Mayo Clinic Proceedings*. 2008; 83(6): 687-700.

Label	Variable	Base Case	Data Source
Laber	Estimated current status	Dube Gube	Butu bourte
a	# of life years lived between the ages of 40-74 in birth cohort	1.281.822	Table 1
b	% of life years at intermediate or high risk	45.2%	Table 2
С	# of life years at intermediate or high risk	579.800	= (a * b)
d	% of life years at intermediate or high risk on statins	30.0%	See Ref Doc
<u>е</u>	# of life years at intermediate or high risk on stating	173.940	= (c * d)
f	Total deaths in birth cohort between the ages of 40-74	7.719	Table 1
g	Cardiovascular deaths in birth cohort between the ages of 40-74	1,017	Table 1
 h	Cerebrovascular deaths in birth cohort between the ages of 40-74	280	Table 1
i	Life years lost due to total deaths	175.967	Table 1
i	Life years lost per death	22.8	=(i/f)
k	# of nonfatal cardiovascular events per fatal event	5.09	See Ref Doc
1	# of nonfatal cardiovascular events	5 176	$=(\sigma * k)$
m	Average age of individual with a cardiovascular event	68.0	See Ref Doc
n	life years lived with a nonfatal cardiovascular event	12.1	See Ref Doc
0	Life years lost due to a ponfatal cardiovascular event	63	See Ref Doc
<u> </u>	Ool reduction living with a pontiatal cardiovascular event (for 1 month)	0.5	See Ref Doc
<u>р</u>	OALYs lost due to nonfatal cardiovascular events	507	=1*n
<u>ч</u>	Patie of ponfatal carebrovascular events	1 507	Soo Pof Doc
۱ ۲	the free free free free free free free fr	4.38	-(r*b)
5 +	# of homatal celebrovascular events	72.9	
ι 	Life years lived with a perfetal cerebrovascular event	72.0	See Ref Doc
<u>u</u>	Life years lost due to a perfected core browascular event	9.5	See Ref Doc
v	Cal reduction living with a ponfetal combraves when event	0.200	See Ref Doc
w		0.200	
×	QALTS TOST due to nonnatal cerebrovascular events	2,387	= (s · u · w)
	Benefits if 30% of intermediate or nigh risk individuals were on statins	4.40/	1
У	% reduction in all cause mortality associated with statin use	14%	V (f * -1 *)
Z	Deaths avoided with statin usage	324	= (f * d * y)
aa	QALYS gained due to a reduction in all cause mortality	7,391	= (2 * j)
ab	% reduction in cardiovascular events associated with statin use	36%	V (1*1*1)
ac	Cardiovascular events avoided with 30% statin usage	559	= (I * d *ab)
ad	QALYS gained due to a reduction in nonfatal cardiovascular events associated	55	= (q * d * ab)
	with statin use	200/	
ae	% reduction in cerebrovascular events associated with statin use	29%	ν
af	Cerebrovascular events avoided with 30% statin usage	112	= (s * d * ae)
ag	QALYs gained due to a reduction in nonfatal cerebrovascular events associated	208	= (af * t * u)
-	with statin use		
ah	Total QALY's gained if 30% of intermediate or high risk individuals were on	7,653	= (aa + ad + ag)
	statins	-	
	Harms if 30% of intermediate or high risk individuals were on statins		-
ai	Disutility per year associated with taking pills for cardiovascular prevention	-0.0032	See Ref Doc
aj	Disutility associated with taking pills for cardiovascular prevention	-551	= (e * ai)
ak	Proportion of individuals taking statins who experience muscle problems	0.0%	V
al	Length of time for muscle problems to be indentified and resolved (in years)	0.25	√
am	Disutilty per year associated with muscle problems	-0.53	V
an	Disutility associated with muscle problems	0	Table 1 * b * ak * a * am
ао	QALYs lost if 30% of intermediate or high risk individuals were on statins	-551	= (aj + an)
20	Potential OALVs gained Screening & Intervention from 0% to 30%	7 102	-(ab + ao)

√ = Estimates from the literature

For our sensitivity analysis, we modified a number of major assumptions and recalculated the CPB as follows:

- Assume that decreased risk of all-cause mortality associated with statin therapy is reduced from 14% to 7% (Table 3, row *y*), the decreased risk of a myocardial infarction is reduced from 36% to 29% (Table 3, row *ab*) and the decreased risk of stroke is reduced from 29% to 18% (Table 3, row *ae*): **CPB = 3,317**.
- Assume that decreased risk of all-cause mortality associated with statin therapy is increased from 14% to 20% (Table 3, row *y*), the decreased risk of a myocardial infarction is increased from 36% to 43% (Table 3, row *ab*) and the decreased risk of stroke is increased from 29% to 38% (Table 3, row *ae*): **CPB = 10,344**.
- Assume that the disutility per year associated with taking pills for cardiovascular prevention is reduced from -0.0032 to 0.0 (Table 3, row *ai*): CPB = 7,653.
- Assume that the disutility per year associated with taking pills for cardiovascular prevention is increased from -0.0032 to -0.0044 (Table 3, row *ai*): CPB = 6,895.
- Assume that the percent of life years at intermediate risk on statins is reduced from 30% to 25% (Table 3, row *d*): CPB = 5,918.
- Assume that the percent of life years at intermediate risk on statins is increased from 30% to 40% (Table 3, row *d*): CPB = 9,469.
- Assume that statin use is associated with muscle problems in 5% of users (Table 3, row *ak*): CPB = 5,949.

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with universal screening for and initiating use of low- to moderate-dose statins in adults aged 40 to 74 years without a history of CVD, who have 1 or more CVD risk factors, and a calculated 10-year CVD event risk of 10% or greater.

In estimating CE, we made the following assumptions:

Cost of Screening for CVD Risk

- The USPSTF recommends using the ACC/AHA Pooled Cohort Equations to calculate the 10-year risk of CVD events.⁸⁰⁷
- The 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk indicate that "it is reasonable to …estimate 10-year ASCVD risk every 4-6 years in adults 40-79 years of age who are free from ASCVD."⁸⁰⁸
- The ACC-AHA-ASCVD score, however, overestimates the 10-year ASCVD risk. The USPSTF recognizes this. "The reasons for this possible overestimation are still unclear. The Pooled Cohort Equations were derived from prospective cohorts of volunteers from studies conducted in the 1990s and may not be generalizable to a

⁸⁰⁷ Bibbins-Domingo K, Grossman D, Curry S et al. Statin use for the primary prevention of cardiovascular disease in adults: US Preventive Services Task Force recommendation statement. *Journal of the American Medical Association*. 2016; 316(19): 1997-2007.

⁸⁰⁸ Goff D, Lloyd-Jones D, Bennett G et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. *Circulation*. 2014; 135(2): S49-S74.

more contemporary and diverse patient population seen in current clinical practice."809

- Cook and Ridker, using the Women's Health Study, found that the ACC-AHA-ASCVD score overestimated the actual 10-year ASCVD risk in women by 43% to 90% in women, depending on their baseline risk.⁸¹⁰ DeFilippis and colleagues compared the performance of five risk assessment tools in a community-based, sexbalanced, multiethnic cohort. The ACC-AHA-ASCVD score overestimated the 10-year ASCVD risk by 78%. They found that the best risk assessment tool was the Reynolds Risk Score.⁸¹¹ Rana and co-authors used a large contemporary, multi-ethnic population to assess the ACC-AHA-ASCVD score. They found that the ACC-AHA-ASCVD risk and that this overestimation was similar in both males and females and in four major ethnic groups (black, Asian/Pacific Islander, Hispanic and white).⁸¹² In a commentary, Nissen notes that "the extent of miscalibration is substantial.... This is not a trivial problem.... Overestimation by the guideline risk equations would likely add millions of Americans to the roles of patients for whom statins are recommended."⁸¹³
- The USPSTF notes that "because the Pooled Cohort Equations lack precision, the risk estimation tool should be used as a starting point to discuss with patients their desire for lifelong statin therapy."⁸¹⁴
- For screening purposes, we have assumed that 54.8% of the BC population ages 40-75 is at a low risk for CVD (Table 4, row *b*), 14.4% is at an intermediate risk (Table 4, row *d*) and 30.9% is at a high risk (Table 4, row *f*) (see also Table 2).
- We have assumed that the CVD screening would take place once every five years and modified this to once every two years in the sensitivity analysis (Table 4, row *h*).
- Completion of a risk assessment includes a clinician visit and a full lipid profile (total cholesterol [TC]; high density lipoprotein cholesterol [HDL-C]; low-density lipoprotein cholesterol [LDL-C], non-HDL-C; and triglycerides [TG]). The full lipid profile costs \$21.31 (Table 4, row *o*).⁸¹⁵
- We assumed that a 10-minute office visit would be required for the initial screening. If the results indicate a low risk of CVD, then the follow-up would consist of a phone call to the patient. If the results indicate an intermediate or high risk of CVD, then a

⁸⁰⁹ Bibbins-Domingo K, Grossman D, Curry S et al. Statin use for the primary prevention of cardiovascular disease in adults: US Preventive Services Task Force recommendation statement. *Journal of the American Medical Association*. 2016; 316(19): 1997-2007.

⁸¹⁰ Cook NR and Ridker PM. Further insight into the cardiovascular risk calculator: the roles of statins, revascularizations, and underascertainment in the Women's Health Study. *Journal of the American Medical Association Internal Medicine*. 2014; 174(12): 1964-71.

 ⁸¹¹ DeFilippis A, Young R, Carrubba C et al. An analysis of calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort. *Annals of Internal Medicine*. 2015; 162(4): 266-75.
⁸¹² Rana J, Tabada G, Solomon M et al. Accuracy of the atherosclerotic cardiovascular risk equation in a large contemporary, multiethnic population. *Journal of the American College of Cardiology*. 2016; 67(18): 2118-30.
⁸¹³ Nissen SE. Prevention guidelines: bad process, bad outcome. *Journal of the American Medical Association Internal Medicine*. 2014; 174(12): 1972-3.

⁸¹⁴ Bibbins-Domingo K, Grossman D, Curry S et al. Statin use for the primary prevention of cardiovascular disease in adults: US Preventive Services Task Force recommendation statement. *Journal of the American Medical Association*. 2016; 316(19): 1997-2007.

⁸¹⁵ Ministry of Health. *Cardiovascular Disease – Primary Prevention* 2021. Available online at https://www2.gov.bc.ca/gov/content/health/practitioner-professional-resources/bc-guidelines/cardiovasculardisease. Accessed March 2023.

follow-up visit would be required to discuss the results and the possibility of taking statins (Table 4, row *l*).

Costs of the Intervention

- Adherence with statin therapy in the real world is relatively poor. Benner and colleagues found that early and frequent follow-up by physicians (including cholesterol retesting) improves long-term adherence by approximately 45% (OR 1.45; 95% CI of 1.34 1.55).⁸¹⁶
- Brookhart et al., in a study based on BC data, found that a return to adherence after a period of nonadherence was associated with a return visit to the physician who initially prescribed the statin and a retest of cholesterol. "Our results suggest that continuity of care combined with increased follow-up and cholesterol testing could promote long-term adherence."⁸¹⁷
- Pandya and colleagues estimated one additional physician visit per year for individuals in a disease-free state taking statins (i.e., for primary prevention).⁸¹⁸
- The BC Guidelines for the primary prevention of cardiovascular disease suggest a follow-up physician visit 4-6 months after the initiation of statin which includes the measuring of lipid levels with a non-HDL-C or an apolipoprotein B (apoB) test, to assess patient adherence to statin therapy and any response to statin therapy, with further follow-ups as clinically indicated. The cost of a non-HDL-C test is \$12.20 while that of an apoB test is \$16.60.⁸¹⁹ For modelling purposes, we used the midpoint cost of these two tests (Table 4, row *ab*).
- For modelling purposes, we have assumed that 30% of intermediate and high risk patients would adhere to long-term statin therapy and modified this from 25% to 40% in the sensitivity analysis (Table 3, row *d*). We further assumed, based on expert input, that one annual follow-up office visit per year (Table 4, row *y*) is required for patients on statin therapy, that 100% of this office visit (Table 4, row *z*) is allocated to discussing the statin therapy and that a follow-up lipid test (non-HDL-C or apoB) would be required once every five years (Table 4, row *aa*).
- The BC Reference Drug Pricing program fully covers the costs of two statins, atorvastatin and rosuvastatin.⁸²⁰ The cost of 10mg rosuvastatin, taken by the majority of patients, is \$55 plus four dispensing fees of \$10 each, for an annual cost of \$95 (Table 4, row w).⁸²¹ The cost of 80mg atorvastatin is \$99 plus four dispensing fees of \$10 each, for an annual cost of \$139. We have used this higher cost in the sensitivity analysis.⁸²²

http://www2.gov.bc.ca/assets/gov/health/practitioner-pro/bc-guidelines/cvd.pdf. Accessed January 2017.

⁸¹⁶ Benner J, Tierce J, Ballantyne C et al. Follow-up lipid tests and physician visits are associated with improved adherence to statin therapy. *PharmacoEconomics*. 2004; 22(3): 13-23.

⁸¹⁷ Brookhart M, Patrick A, Schneeweiss S et al. Physician follow-up and provider continuity are associated with long-term medication adherence: a study of the dynamics of statin use. *Archives of Internal Medicine*. 2007; 167(8): 847-52.

 ⁸¹⁸ Pandya A, Sy S, Cho S et al. Cost-effectiveness of 10-year risk thresholds for initiation of statin therapy for primary prevention of cardiovascular disease. *Journal of the American Medical Association*. 2015; 314(2): 142-50.
⁸¹⁹ Ministry of Health. *Cardiovascular Disease – Primary Prevention* 2014. Available at

⁸²⁰ See BC *Reference Drug Program*. Available online at https://www2.gov.bc.ca/gov/content/health/practitioner-professional-resources/pharmacare/prescribers/reference-drug-program/reference-drug-program-list-of-full-and-partial-benefits. Accessed March 2023.

⁸²¹ Pacific Blue Cross. *Pharmacy Compass*. Available online at <u>https://www.pac.bluecross.ca/pharmacycompass</u>. Accessed March 2023.

⁸²² Pacific Blue Cross. *Pharmacy Compass*. Available online at <u>https://www.pac.bluecross.ca/pharmacycompass</u>. Accessed March 2023.

Costs Avoided due to the Intervention

- For modelling purposes, we assumed that the acute care costs avoided per death avoided would be \$10,260 (Table 4, row *ah*). This is based on the mix of cardiovascular and cerebrovascular deaths in the cohort (78% and 22%, respectively) (see Table 1) and the estimated cost of the acute care phase associated with a fatal myocardial infarction (\$9,346) and a fatal stroke (\$13,501).
- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with universal screening for and initiating use of low- to moderate-dose statins in adults aged 40 to 74 years without a history of CVD, who have 1 or more CVD risk factors, and a calculated 10-year CVD event risk of 10% or greater is \$4,487 / QALY (Table 4, row *ay*).

	Years with an Intermediate or High Risk of CVD in a Birt	h Cohort of 4	10,000
Row			
Label	Variable	Base Case	Data Source
а	# of life years lived between the ages of 40-74 in birth cohort	1,281,822	Table 1
b	% of life years at low risk	54.8%	Table 2
с	# of life years at low risk	702,022	= (a * b)
d	% of life years at intermediate risk	14.4%	Table 2
е	# of life years at intermediate risk	184,241	= (a * d)
f	% of life years at high risk	30.9%	Table 2
g	# of life years at high risk	395,560	= (a * f)
h	Annual frequency of screening	0.20	V
i	Adherence with offers to receive screening	48%	See Ref Doc
j	Total # of screens in birth cohort	123,055	= (a * h * i)
-	Estimated cost of screening		
k	Number of office visits associated with screening - low risk	1.0	Expert Opinion
I	Number of office visits associated with screening - medium or high risk	2.0	Expert Opinion
m	Cost of 10-minute office visit	\$35.97	See Ref Doc
n	Cost of a follow-up phone call	\$20.00	See Ref Doc
0	Cost to measure cholesterol	\$21.31	V
p	Health care costs of screening - low risk	\$5.208.218	= (i * b) * k * (m + n + o)
		· · · · ·	=((d+f)*i*l)*(m+)
q	Health care costs of screening - intermediate and high risk	\$5,190,372	(o/2))
r	Patient time required / office visit (hours)	2.0	V
S	Value of patient time (per hour)	\$37.16	V
t	Value of patient time and travel for screening	\$9,145,444	= (j * r * s)
	Estimated cost of intervention		
u	Adherence with long-term statin therapy in intermediate and high risk cohort	30%	Table 3, row d
v	Years on statin therapy	173,940	= (e + g) * u
w	Cost of statin therapy / year	\$95	V
х	Cost of statin therapy	\$16,524,308	= (v * w)
у	# of follow-up office visits per year re: statin therapy	1.0	Expert Opinion
z	Portion of 10-minute office visit for follow-up re: statin therapy	100%	Expert Opinion
аа	# of lab tests (non-HDL-C or apoB) per year re: statin therapy	0.2	Expert Opinion
ab	Cost per lab test	\$14.40	√
		AC 757 570	= (v * y * z * m) + (v *
ас	Follow-up costs	\$6,757,572	aa * ab)
ad	Value of patient time and travel for intervention	\$12,927,227	= (v * y * s * r)
	Estimated costs avoided due to intervention		
ae	# of deaths avoided	324.2	Table 3, row z
af	# of nonfatal cardiovascular events avoided	559.0	Table 3, row ac
ag	# of nonfatal cerebrovascular events avoided	111.6	Table 3, row af
ah	Acute care costs avoided per avoided death	-\$10,260	See Ref Doc
ai	First year costs avoided per nonfatal cardiovascular event avoided	-\$25,500	See Ref Doc
aj	First year costs avoided per nonfatal cerebrovascular event avoided	-\$30,252	See Ref Doc
ak	First-year acute care costs avoided	-\$20,958,082	= (ae * ah) + (af * ai) +
اد	Post-first-year appual costs avoided for pontatal cardiovascular events avoided	-\$1.676	
an	Number of years for which the costs are avoided		See Ref Doc
20	Post first year costs avoided for penfatal cardiovascular events avoided	\$10,009,072	- (af * am * al)
20	Post-first-year costs avoided for nonfatal carebrayascular events avoided	-\$10,998,072 \$9 524	
20	Number of years for which the costs are avoided	- ۲۵, ۵۲4 م ۲	See Ref Doc
ap	Number of years for which the costs are avoided	5.5 ¢0 9E0 142	- (20 * 20 * 20)
ay	Costs avoided due to intervention	-20,000,140 _\$10 006 207	
dI	CE Calculation	~~~~,0U0,29/	- ak + dii + dy
as	Cost of intervention over lifetime of birth cohort	\$55,753.142	= p + q + t + x + ac + ad
at	Costs avoided due to intervention over lifetime of birth cohort	-\$40,806.297	=ar
au	QALYs saved	7,102	Table 3. row ap
av	Cost of intervention over lifetime of birth cohort (1.5% discount)	\$43,968.362	Calculated
aw	Costs avoided due to intervention over lifetime of birth cohort (1.5% discount)	-\$25,372.096	Calculated
ах	QALYs saved (1.5% discount)	4.144	Calculated
ay	CE (\$/QALY saved)	\$4,487	= (av + aw) / ax

Table 4: CE of Universal Screening for and Initiating Use of Statins in Adults Aged 40 to 74Years with an Intermediate or High Risk of CVD in a Birth Cohort of 40,000

√ = Estimates from the literature

For our sensitivity analysis, we modified a number of major assumptions and recalculated the CE as follows:

- Assume that decreased risk of all-cause mortality associated with statin therapy is reduced from 14% to 7% (Table 3, row *y*), the decreased risk of a myocardial infarction is reduced from 36% to 29% (Table 3, row *ab*) and the decreased risk of stroke is reduced from 29% to 18% (Table 3, row *ae*): **CE** = **\$13,510**.
- Assume that decreased risk of all-cause mortality associated with statin therapy is increased from 14% to 20% (Table 3, row *y*), the decreased risk of a myocardial infarction is increased from 36% to 43% (Table 3, row *ab*) and the decreased risk of stroke is increased from 29% to 38% (Table 3, row *ae*): **CE** = **\$2,027**.
- Assume that the disutility per year associated with taking pills for cardiovascular prevention is reduced from -0.0032 to 0.0 (Table 3, row *ai*): CE = \$4,081.
- Assume that the disutility per year associated with taking pills for cardiovascular prevention is increased from -0.0032 to -0.0044 (Table 3, row *ai*): CE = \$4,662.
- Assume that the percent of life years at intermediate risk on statins is reduced from 30% to 25% (Table 3, row *d*): CE = \$5,231.
- Assume that the percent of life years at intermediate risk on statins is increased from 30% to 40% (Table 3, row *d*): CE = \$3,558.
- Assume that statin use is associated with muscle problems in 5% of users (Table 3, row *ak*): CE = \$5,667.
- Assume that the annual frequency of screening is increased from once every five years to once every two years (Table 4, row *i*): CE = \$10,066.
- Assume that the cost of statin therapy in increased from \$95 per year to \$139 per year (Table 4, row *w*): CE = \$5,944.

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with universal screening for and initiating use of low- to moderate-dose statins in adults aged 40 to 74 years without a history of CVD, who have 1 or more CVD risk factors, and a calculated 10-year CVD event risk of 10% or greater is estimated to be 4,144 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$4,487 per QALY (see Table 5).

Table 5: Universal Screening for and Initiating Use of Statinsin Adults aged 40 to 74 years with an Intermediate or HighRisk of CVD in a Birth Cohort of 40,000

Sun	nmary			
	Base			
	Case	Rang	<i>s</i> e	
CPB (Potential QALYs Gained)				
Gap between No Service and 'Be	est in the World	'' (30%)		
1.5% Discount Rate	4,144	1,890	6,075	
3% Discount Rate	2,337	1,025	3,462	
0% Discount Rate	7,102	3,317	10,344	
CE (\$/QALY) including patient time	costs			
1.5% Discount Rate	\$4,487	\$2,027	\$13,510	
3% Discount Rate	\$8,448	\$4,597	\$23,397	
0% Discount Rate	\$2,105	\$466	\$7,886	
CE (\$/QALY) excluding patient time	costs			
1.5% Discount Rate	\$287	Cost-saving	\$4,302	
3% Discount Rate	\$2,477	\$565	\$9,774	
0% Discount Rate	Cost-saving	Cost-saving	\$1,232	

Screening for Prediabetes and Type 2 Diabetes Mellitus

United States Preventive Services Task Force Recommendations (2021) 823

The USPSTF recommends screening for prediabetes and type 2 diabetes in (nonpregnant) adults aged 35 to 70 years who have overweight or obesity. Clinicians should offer or refer patients with prediabetes to effective preventive interventions. (B Recommendation)

Canadian Task Force on Preventive Health Care (2012) 824

The CTFPHC suggests a two-phase approach to screening. First, it recommends screening all adults ages 18 and older using a validated risk calculator such as FINDRISC (Finnish Diabetes Risk Score) or CANRISK (Canadian Diabetes Risk Assessment Questionnaire). This first level of screening should be completed once every 3-5 years. Those with a FINDRISC score of 15 to 20 are considered to be at high risk of diabetes (an individual's risk of developing type 2 diabetes within 10 years is between 33% and 49%) and those with a score greater than 21 are at very high risk (an individual's risk of developing diabetes within 10 years is 50% or higher). The second phase of screening involves either an A1C, fasting glucose or oral glucose tolerance test. The CTFPHC recommends the use of the A1C test given its "convenience for patients." Individuals at high risk are to be screened every 3-5 years while individuals at very high risk are to be screened every year. The CTFPHC considers these recommendations to be "weak" based on "low-quality evidence".

Best in the World

Screening

- "Prediabetes and type 2 diabetes can be detected by measuring fasting plasma glucose or HbA1c level, or with an oral glucose tolerance test... Because HbA1c measurements do not require fasting, they are more convenient than using a fasting plasma glucose level or an oral glucose tolerance test... The diagnosis of type 2 diabetes should be confirmed with repeat testing."⁸²⁵
- In Ontario, 74% of the adult population aged 20 years or older were screened with a fasting blood glucose test within a 5 year period after 2000/01.⁸²⁶
- In the Anglo-Danish-Dutch Study of Intensive Treatment in People with Screendetected Diabetes in Primary Care (ADDITION-Europe study), 73% of individuals ages 40-69 identified as high risk for diabetes participated in blood glucose testing.⁸²⁷ The highest rate was observed in Denmark were 95.1% of patients identified as high risk participated in blood glucose testing if the testing occurred immediately following their general practitioner appointment. If the patient was invited to return

⁸²³ US Preventive Service Task Force. US Preventive Services Task Force Recommendation Statement. Screening for prediabetes and type 2 diabetes: US Preventive Services Task Force recommendation statement. *JAMA*. 2021; 326(8): 736-43.

⁸²⁴ Canadian Task Force on Preventive Health Care. Recommendations on screening for type 2 diabetes in adults. *Canadian Medical Association Journal*. 2012; 184(15): 1687-96.

⁸²⁵ US Preventive Service Task Force. US Preventive Services Task Force Recommendation Statement. Screening for prediabetes and type 2 diabetes: US Preventive Services Task Force recommendation statement. *JAMA*. 2021; 326(8): 736-43.

⁸²⁶ Wilson SE, Rosella LC, Lipscombe LL et al. The effectiveness and efficiency of diabetes screening in Ontario, Canada: a population-based cohort study. *BMC Public Health*. 2010; 10(1): 506.

⁸²⁷ Simmons R, Echouffo-Tcheugui J, Sharp S et al. Screening for type 2 diabetes and population mortality over 10 years (ADDITION-Cambridge): a cluster-randomised controlled trial. *The Lancet*. 2012; 380(9855): 1741-8.

for a fasting blood glucose test on another occasion, then 80.7% participated. Ongoing attendance for blood glucose testing declines over time.⁸²⁸

• In Ontario, up-to-date glucose testing (at least 1 glycosylated hemoglobin, plasma or serum glucose or oral glucose tolerance test in the previous 3 years) in 2017 varied by age and sex, as follows:⁸²⁹

Age	Males	Females
40-49	57%	70%
50-59	69%	77%
60-69	79%	84%

• For the purposes of this project, we have assumed that the best ongoing screening rate in the world for individuals identified as high risk for diabetes would be 80.7%, based on rates observed in Denmark and adjusted this rate by age and sex based on the data from Ontario.

Modelling the Clinically Preventable Burden

In this section, we model the CPB associated with screening for prediabetes and type 2 diabetes in asymptomatic non-pregnant adults aged 35 to 70 years who have overweight or obesity.

"Screening asymptomatic adults for type 2 diabetes may allow earlier detection, diagnosis, and treatment, with the ultimate goal of improving health outcomes. Earlier detection of prediabetes may allow for interventions to prevent progression to diabetes and a shorter exposure to the hyperglycemic states associated with adverse outcomes. When screening results in a diagnosis of diabetes, treatment to prevent or reduce the risk of diabetic complications can be initiated."⁸³⁰

Definitions and Diagnosis

- Prediabetes and type 2 diabetes can be detected by measuring fasting plasma glucose or HbA_{1c} levels, or with an oral glucose tolerance test (OGTT).
- A fasting plasma glucose level of 6.99 mmol/L (126 mg/dL) or greater, an HbA_{1c} level of 6.5% or greater, or a 2-hour post load glucose level of 11.1 mmol/L (200 mg/dL) or greater are consistent with the diagnosis of **type 2 diabetes**.⁸³¹
- The Diabetes Canada Clinical Practice Guidelines note that any of these three tests are valid in diagnosing type 2 diabetes in non-pregnant adults. In the absence of symptoms, however, a second confirmatory test (ideally using the same test as the

⁸²⁸ Van den Donk M, Sandbaek A, Borch-Johnsen K et al. Screening for Type 2 diabetes. Lessons from the ADDITION-Europe study. *Diabetic Medicine*. 2011; 28(11): 1416-24.

⁸²⁹ Chu A, Shah B, Rashid M et al. Trends in glucose testing among individuals without diabetes in Ontario between 2010 and 2017: A population-based cohort study. *CMAJ Open*. 2022; 10(3):

⁸³⁰ Jonas E, Crotty K, Yun J et al. *Screening for Prediabetes and Type 2 Diabetes Mellitus: An Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 207.* AHRQ Publication No. 21-05276-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2021.

⁸³¹ US Preventive Service Task Force. US Preventive Services Task Force Recommendation Statement. Screening for prediabetes and type 2 diabetes: US Preventive Services Task Force recommendation statement. *JAMA*. 2021; 326(8): 736-43.

original) should be repeated (in a timely fashion). Positive results on both tests would yield a diagnosis of type 2 diabetes.⁸³²

- According to the USPSTF, a fasting plasma glucose level of 5.55-6.94 mmol/L (100 to 125 mg/dL), an HbA_{1c} level of 5.7% to 6.4%, or a 2-hour post load glucose level of 7.77-11.04 mmol/L (140 to 199 mg/dL) are consistent with **prediabetes**.⁸³³
- The Diabetes Canada Clinical Practice Guidelines suggest a slightly more restrictive range of test results in diagnosing **prediabetes**: A fasting plasma glucose level of 6.1-6.9 mmol/L, an HbA_{1c} level of 6.0% to 6.4%, or a 2-hour post load glucose level of 7.8-11.0 mmol/L.⁸³⁴
- While Diabetes Canada highlights the validity of these three tests, they note the variability between tests in identifying undiagnosed diabetes and prediabetes. For screening purposes, they suggest that "while fasting plasma glucose (FPG) and/or A1C are the recommended screening tests, a 75 g oral glucose tolerance test (OGTT) may be considered when the FPG is 6.1 to 6.9 mmol/L and/or A1C is 6.0% to 6.4%."⁸³⁵
- A Canadian analysis by Rosella and colleagues found that using an FPG level of ≥7.0 mmol/L identified 1.3% of non-pregnant adults ≥20 years of age as having undiagnosed diabetes. If an HbA_{1c} level of ≥6.5 was used, 3.09% were identified as having undiagnosed diabetes. The results were even more discordant when assessing prediabetes, 4.3% with FPG and 12.5% with HbA_{1c} (6.4% / 11.8% in males and 2.2% and 13.3% in females, respectively).⁸³⁶
- Similar variation has been identified in the US.^{837,838,839} One author concludes that "when employed as lone tests, the odds of false negative outcomes are very high when using the FPG or A1c....Although more difficult to administer and more costly, use of the OGTT leads to far fewer diagnostic errors."⁸⁴⁰

Probability of Diabetes Developing Based on HbA1c and BMI

• Based on an analysis by Glauber et al, the 2-year risk of diabetes diagnosis varies widely by HbA_{1C} and body mass index (BMI) (see Table 1). In their observational study of more than 77,000 adult members (age 18-75 years), 5.2% had a very high risk (black shading in Table 1) of T2DM developing within 2 years while another

⁸³² Punthakee Z, Goldenberg R, Katz P. 2018 Clinical Practice Guidelines: Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. *Canadian Journal of Diabetes*. 2018; 42: S10-S15.

⁸³³ US Preventive Service Task Force. US Preventive Services Task Force recommendation statement. Screening for prediabetes and type 2 diabetes: US Preventive Services Task Force recommendation statement. *JAMA*. 2021; 326(8): 736-43.

⁸³⁴ Punthakee Z, Goldenberg R, Katz P. 2018 Clinical Practice Guidelines: Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. *Canadian Journal of Diabetes*. 2018; 42: S10-S15.

⁸³⁵ Ekoe J, Goldenberg R, Katz P. Clinical Practice Guidelines: Screening for diabetes in adults. *Canadian Journal of Diabetes*. 2018; 42: S16-S19.

⁸³⁶ Rosella L, Lebenbaum M, Fitzpatrick T et al. Prevalence of prediabetes and undiagnosed diabetes in Canada (2007 - 2011) according to fasting plasma glucose and HbA_{1c} screening criteria. *Diabetes Care*. 2015; 38: 1299-1305.

⁸³⁷ Blum J, Aeschbacher S, Schoen T et al. Prevalence of prediabetes according to hemoglobin A1c versus fasting plasma glucose criteria in health adults. *Acta Diabetologica*. 2015; 52: 631-2.

⁸³⁸ White K, Daneshvari S, Lilyquist J et al. Prediabetes: Variation between HbA1c and fasting plasma glucose. *International Journal of Diabetology & Vascular Disease Research*. 2015; S2(001):1-7.

 ⁸³⁹ Tucker L. Limited agreement between classifications of diabetes and prediabetes resulting from the OGTT, hemoglobin A1c, and fasting glucose tests in 7412 U.S. adults. *Journal of Clinical Medicine*. 2020; 9: 2207.
⁸⁴⁰ Tucker L. Limited agreement between classifications of diabetes and prediabetes resulting from the OGTT, hemoglobin A1c, and fasting glucose tests in 7412 U.S. adults. *Journal of Clinical Medicine*. 2020; 9: 2207.

Table 1: Ty	Table 1: Two-Year Probability of Diabetes Developing								
	Based on	HbA1c ar	nd Body N	lass Inde	x				
	E	Body Mass	Index (BM)					
HbA1c	< 25	25 - 30	31-35	≥36	Total				
5.7 - 5.8	0.4%	5.0%	1.1%	2.1%					
5.9 - 6.0	0.8%	1.4%	2.3%	4.1%					
6.1 - 6.2	2.5%	3.8%	6.3%	8.8%					
6.3 - 6.4	7.9%	10.8%	15.6%	20.7%					
	Population in Each Cell *								
5.7 - 5.8	6,599	11,844	6,496	5,794	30,733				
5.9 - 6.0	4,190	8,573	5,279	5,162	23,204				
6.1 - 6.2	1,935	4,664	3,329	3,367	13,295				
6.3 - 6.4	743	2,210	1,630	2,028	6,611				
Total	13,467	27,291	16,734	16,351	73,843				
	% 0	of Populati	on in Each	Cell					
5.7 - 5.8	8.9%	16.0%	8.8%	7.8%	41.6%				
5.9 - 6.0	5.7%	11.6%	7.1%	7.0%	31.4%				
6.1 - 6.2	2.6%	6.3%	4.5%	4.6%	18.0%				
6.3 - 6.4	1.0%	3.0%	2.2%	2.7%	9.0%				
Total	18.2%	37.0%	22.7%	22.1%	100.0%				
* The BMI is n	* The BMI is missing for 3,264 individuals								

13.3% had a moderate 2-year risk (grey shading) of T2DM, whereas most (81.5%) of the population was at much lower risk (no shading).⁸⁴¹

Defining and Estimating the Population at Risk

Incidence of Pregnancy in BC

- The USPSTF recommendation excludes females who are pregnant.
- In 2022 in BC, 10,704 females ages 35-39 gave birth⁸⁴² out of a population of 192,658.⁸⁴³ That is, approximately 5.56% of the female population age 35-39 would have been pregnant that year. Likewise, 2,425 females ages 40-44 gave birth out of a population of 176,880 (1.37%).

⁸⁴¹ Glauber H, Vollmer W, Nichols G. A simple model for predicting two-year risk of diabetes development in individuals with prediabetes. *The Permanente Journal*. 2018; 22: 4-9.

⁸⁴² Statistics Canada. Live Births, By Age of Mother. Available online at

https://www150.statcan.gc.ca/t1/tbl1/en/cv.action?pid=1310041601. Accessed November 2023. ⁸⁴³ Statistics Canada. *Population Estimates on July 1, By Age and Sex*. Available online at https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1710000501. Accessed November 2023.

May 2024

Prevalence of Overweight and Obesity

- The USPSTF recommendation includes adults who have overweight or obesity.
- Between 2019 and 2021, the mean prevalence of overweight and obesity in BC was as follows (see Table 2):⁸⁴⁴

Table 2: Prevalence of Overweight and Obesity in BC									
	By Age and Sex for 2019 - 2021 (Mean)								
Overweight (BMI 25.0 - 29.9) Obese (BMI ≥ 30)									
Age Group	Females	Males	Total	Females	Males	Total			
35-49	31.9%	41.4%	36.7%	25.1%	27.1%	26.1%			
50-64	31.4%	43.1%	37.1%	24.0%	29.6%	26.8%			
≥65	35.6%	42.5%	38.8%	23.2%	24.6%	23.9%			
Statistics Canada. Table 13-10-0096-01 Health characteristics, annual estimates. Available online at https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310009601. Body Mass Index (BMI) calculations based on adjusted self-reported height and weight.									

Prevalence of Diagnosed Diabetes

- Individuals with diagnosed diabetes would not need to be screened.
- Depending on the age group, the proportion of the **female** population in BC living with diagnosed diabetes in 2020/21 ranges between 1.2% and 28.3%. Between 2000/01 and 2020/21, the total increase in prevalence by female age group ranges between 67% and 148% (see Table 3).⁸⁴⁵ Note that the increase in the 35-49 year age group at 122% is second only to the increase of 148% in the ≥80 year age group.
- Depending on the age group, the proportion of the **male** population in BC living with diagnosed diabetes in 2020/21 ranges between 1.2% and 35.2%. Between 2000/01 and 2020/21, the total increase in prevalence by male age group ranges between 74% and 129% (see Table 3). Note that the increase in the 35-49 year age group at 107% is second only to the increase of 129% in the ≥80 year age group.

 ⁸⁴⁴ Statistics Canada. Table 13-10-0096-01. Health Characteristics, Annual Estimates. Available online at https://www150.statcan.gc.ca/t1/tb11/en/tv.action?pid=1310009601. Accessed October 2023.
⁸⁴⁵ Public Health Agency of Canada. *Canadian Chronic Disease Surveillance System 2022*. Available online at https://health-infobase.canada.ca/ccdss/data-tool/. Accessed September 2023.

Table 3: Trends in the Prevalence of Diabetes in BC										
	By Age Group and Sex									
			Fisc	al 2000	D/01 to 2	020/2	1			
	20-34 35-49 50-64 65-79 ≥80									0
Fiscal Year	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male
2000/01	0.7%	0.7%	2.0%	2.4%	6.5%	8.8%	12.8%	16.2%	11.4%	15.4%
2001/02	0.8%	0.7%	2.2%	2.7%	6.9%	9.3%	13.7%	17.5%	12.3%	16.2%
2002/03	0.8%	0.7%	2.4%	2.9%	7.4%	9.9%	14.6%	18.6%	13.3%	17.3%
2003/04	0.8%	0.8%	2.6%	3.0%	7.8%	10.3%	15.5%	19.8%	14.4%	18.7%
2004/05	0.9%	0.8%	2.8%	3.2%	8.2%	10.8%	16.5%	21.0%	15.6%	20.1%
2005/06	0.9%	0.8%	3.0%	3.4%	8.6%	11.3%	17.4%	22.3%	16.8%	21.4%
2006/07	0.9%	0.9%	3.2%	3.7%	9.0%	11.8%	18.3%	23.5%	17.9%	22.8%
2007/08	0.9%	0.9%	3.3%	3.9%	9.3%	12.2%	19.0%	24.4%	19.2%	24.1%
2008/09	1.0%	0.9%	3.5%	4.1%	9.7%	12.7%	19.8%	25.4%	20.5%	25.6%
2009/10	1.0%	1.0%	3.7%	4.4%	10.2%	13.3%	20.5%	26.4%	21.5%	27.0%
2010/11	1.0%	1.0%	3.8%	4.7%	10.5%	13.8%	21.1%	27.1%	22.6%	28.1%
2011/12	1.1%	1.0%	4.0%	4.9%	10.8%	14.0%	21.6%	27.6%	23.5%	29.4%
2012/13	1.1%	1.1%	4.1%	5.0%	10.9%	14.2%	21.9%	27.8%	24.4%	30.5%
2013/14	1.1%	1.1%	4.2%	5.0%	11.1%	14.3%	22.0%	28.1%	25.2%	31.4%
2014/15	1.1%	1.1%	4.2%	5.0%	11.1%	14.4%	22.1%	28.2%	26.0%	32.2%
2015/16	1.1%	1.1%	4.3%	5.0%	11.2%	14.6%	22.0%	28.3%	26.5%	32.9%
2016/17	1.1%	1.1%	4.3%	5.0%	11.3%	14.7%	21.9%	28.3%	26.9%	33.5%
2017/18	1.1%	1.1%	4.3%	5.0%	11.4%	15.0%	21.9%	28.3%	27.4%	34.1%
2018/19	1.1%	1.1%	4.4%	5.0%	11.6%	15.3%	21.9%	28.5%	27.8%	34.6%
2019/20	1.1%	1.1%	4.4%	5.0%	11.8%	15.5%	22.0%	28.5%	28.0%	35.0%
2020/21	1.2%	1.2%	4.5%	5.1%	11.9%	15.7%	22.0%	28.6%	28.3%	35.2%
% Chanae										
2000/01 to	67%	74%	122%	107%	83%	79%	72%	77%	148%	129%
2020/21										

• To estimate the number of individuals with diagnosed diabetes in a BC birth cohort of 40,000 we began with the age- and sex-specific proportion of the BC population with diagnosed diabetes in 2020/21 (see Table 3). We assumed a linear distribution when assigning these proportions to a specific age and only included diagnosed diabetes between the ages of 35 and 70.

Prevalence of Undiagnosed Diabetes

• Based on the analysis by Wilson et al, 24.0% of Ontario males and 16.8% of Ontario females were not aware that they had diabetes. This proportion varies substantially by age group (see Table 4).⁸⁴⁶

Ţ	Table 4: Diagnosed and Undiagnosed Diabetes							
		Onta	irio By S	Sex an	d Age			
		Males				Female	es	
Age		Diagno	sed Diab	etes		Diagno	sed Diab	etes
Group	Total	Yes	No	Ratio	Total	Yes	No	Ratio
< 30	770,046	3,775	4,813	1.27	724,622	9,258	3,389	0.37
30-40	932,346	17,516	12,211	0.70	878,512	23,993	7,079	0.30
40-50	895,685	37,893	16,668	0.44	915,611	26,571	6,355	0.24
50-60	592,437	54,358	11,617	0.21	605,545	33,802	4,990	0.15
60-70	352,317	34,063	5,728	0.17	425,580	24,965	3,910	0.16
70-80	237,503	27,067	5,023	0.19	326,074	24,579	3,563	0.14
≥80	80,671	6,076	963	0.16	140,307	6,682	958	0.14
Total	3,861,005	180,748	57,023	0.32	4,016,251	149,850	30,244	0.20
Ages 30-70	2,772,785	143,830	46,224	0.32	2,825,248	109,331	22,334	0.20

• The analyses by Wilson et al noted above were based on fasting plasma glucose (FPG) diagnostic criteria. Research by Rosella and colleagues indicates that using HbA1c as the diagnostic criteria results in a higher level of undiagnosed diabetes in Canadians than using FPG. When using FPG as the diagnostic criterion, they found that 20.1% of type 2 diabetes was undiagnosed. This increased to 40.9%, however, when using HbA1c as the diagnostic criteria (see Table 5).⁸⁴⁷

Table 5: Diagnosed and Undiagnosed Diabetes								
Percent of Canadians	Age 20+ b	y Diagnos	stic Criteria					
	Females	Males	Total					
Diagnosed Type 2 Diabete	es							
FPG (≥ 7.0 mmo/L)	3.87%	5.09%	4.49%					
HbA1c (≥6.5%)	3.83%	5.10%	4.46%					
Undiagnosed Type 2 Diab	oetes							
FPG (≥ 7.0 mmo/L)	0.87%	1.40%	1.13%					
HbA1c (≥6.5%)	3.24%	2.94%	3.09%					
Total Type 2 Diabetes								
FPG (≥ 7.0 mmo/L)	4.74%	6.49%	5.62%					
HbA1c (≥6.5%)	7.07%	8.04%	7.55%					
Proportion of Type 2 Diabetes that is Undiagnosed								
FPG (≥ 7.0 mmo/L)	18.4%	21.6%	20.1%					
HbA1c (≥ 6.5%)	45.8%	36.6%	40.9%					

⁸⁴⁶ Wislon S, Rosella L, Lipscombe L et al. The effectiveness and efficiency of diabetes screening in Ontario, Canada: A population-based cohort study. *BMC Public Health*. 2010; 10(506):

⁸⁴⁷ Rosella L, Lebenbaum M, Fitzpatrick T et al. Prevalence of prediabetes and undiagnosed diabetes in Canada (2007 - 2011) according to fasting plasma glucose and HbA_{1c} screening criteria. *Diabetes Care*. 2015; 38: 1299-1305.

• To adjust for the lower proportion of undiagnosed diabetes observed in Table 4 compared with Table 5 we increased the age-and sex-specific ratios calculated from Table 4 systematically until 45.8% of life years lived with diabetes in females between the ages of 35 and 70 were life years lived with undiagnosed diabetes. Similarly, we increased the age-and sex-specific ratios calculated from Table 4 systematically until 36.6% of life years lived with diabetes in males between the ages of 35 and 70 were life years lived with diabetes in males between the ages of 35 and 70 were life years lived with diabetes in males between the ages of 35 and 70 were life years lived with undiagnosed diabetes. The results for females and males are shown in Figures 1 and 2.

Prevalence of Prediabetes

- Research by Rosella et al suggests that 4.3% of Canadians 20+ years of age have prediabetes when measured by FPG and based on the more restrictive Canadian diagnostic criteria (see *Definitions and Diagnosis* section above). This increases to 12.5% when measured by HbA1c and to 15.2% (15.8% in males and 14.6% in females) when combining both approaches to measurement.⁸⁴⁸
- Using the American diagnostic criteria, Rosella et al found that 38.3% of Canadians 20+ years of age would have prediabetes.⁸⁴⁹
- Research by Hosseini and co-authors found that 12.4% of Canadians ages 20-79 had prediabetes, when diagnosed using HbA1c and Canadian diagnostic criteria.⁸⁵⁰ The results by age group were as follows:
 - \circ 20 to 39 5.1% (95% CI of 2.4% to 7.9%)
 - $\circ \quad 40 \text{ to } 59-13.8\% \ (95\% \ CI \text{ of } 8.9\% \ to \ 18.6\%)$

⁸⁵⁰ Hosseini Z, Whiting S, Vatanparast H. Type 2 diabetes prevalence among Canadian adults - dietary habits and sociodemographic risk factors. *Applied Physiology, Nutrition, and Metabolism*. 2019; 44(10): https://doi.org/10.1139/apnm-2018-0567.

⁸⁴⁸ Rosella L, Lebenbaum M, Fitzpatrick T et al. Prevalence of prediabetes and undiagnosed diabetes in Canada (2007 - 2011) according to fasting plasma glucose and HbA_{1c} screening criteria. *Diabetes Care*. 2015; 38: 1299-1305.

⁸⁴⁹ Rosella L, Lebenbaum M, Fitzpatrick T et al. Prevalence of prediabetes and undiagnosed diabetes in Canada (2007 - 2011) according to fasting plasma glucose and HbA_{1c} screening criteria. *Diabetes Care*. 2015; 38: 1299-1305.

- 60 to 79 22.2% (95% CI of 16.2% to 28.2%)
- In the US, based on US diagnostic criteria, 36.5% of adults ages 18 and older have prediabetes, 41.0% of males and 32.0% of females.⁸⁵¹

Prevalence of Undiagnosed Prediabetes

- In the US, just 17.4% of people with prediabetes are aware that they have prediabetes, 15.9% of males and 19.4% of females.⁸⁵²
- To estimate the number of individuals with prediabetes in a BC birth cohort of 40,000 we began with the estimated age-specific proportion of the Canadian population with prediabetes as calculated by Hosseini and co-authors.⁸⁵³ We assumed a linear distribution when assigning these proportions to a specific age and only included estimated prediabetes between the ages of 35 and 70.
- We then assumed that the ratio of female to male prediabetes would be 0.78 to 1, based on evidence from the US.⁸⁵⁴
- Finally, we assumed that 15.9% of males and 19.4% of females would be aware of their prediabetes, again based on estimates from the US.⁸⁵⁵
- The estimated number of females and males between the ages of 35 and 70 in a BC birth cohort of 40,000 with diagnosed and undiagnosed prediabetes are shown in Figures 3 and 4.

⁸⁵¹ US Centers for Disease Control and Prevention. *National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States.* Available online at <u>https://www.cdc.gov/diabetes/data/statistics-report/index.html</u>. Accessed February 2024.

⁸⁵² US Centers for Disease Control and Prevention. *National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States*. Available online at <u>https://www.cdc.gov/diabetes/data/statistics-report/index.html</u>. Accessed February 2024.

⁸⁵³ Hosseini Z, Whiting S, Vatanparast H. Type 2 diabetes prevalence among Canadian adults - dietary habits and sociodemographic risk factors. *Applied Physiology, Nutrition, and Metabolism*. 2019; 44(10): https://doi.org/10.1139/apnm-2018-0567.

⁸⁵⁴ US Centers for Disease Control and Prevention. *National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States*. Available online at <u>https://www.cdc.gov/diabetes/data/statistics-report/index.html</u>. Accessed February 2024.

⁸⁵⁵ US Centers for Disease Control and Prevention. *National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States*. Available online at <u>https://www.cdc.gov/diabetes/data/statistics-report/index.html</u>. Accessed February 2024.

Summary of Population at Risk

- At age 35, an estimated 2,414 (12.2%) of the **females** in the BC birth cohort of 40,000 would have prediabetes or diabetes, with 1,617 (67%) being undiagnosed. This would increase to 9,189 (51.6%) by age 70, with 4,904 (53%) undiagnosed (see Table 6).
- At age 35, an estimated 3,011 (15.5%) of the **males** in the BC birth cohort of 40,000 would have prediabetes or diabetes, with 2,158 (72%) being undiagnosed. This would increase to 9,776 (60.6%) by age 70, with 4,862 (50%) undiagnosed (see Table 7).

		Table	e 6: F	em	ales	with	Diagi	nosec	d and	i Uno	liagn	osec	d Pred	iabet	es an	d Dia	ibete	es.	
							In	a BC	Birth	Coho	rt of 4	10,00	0						
									Ages	35 to	70								
				Predi	abetes				0	Dia	betes				Predi	abetes	and Dia	betes	
	#in	Undia	gnosed	Diag	nosed	То	tal	Undia	gnosed	Diag	nosed	Т	otal	Undia	gnosed	Diag	nosed	Т	otal
Age	Birth	%	#	%	#	%	#	%	#	%	#	%	#	%	#	%	#	%	#
35	19.736	4.6%	917	1.1%	221	5.8%	1.138	3.5%	699	2.9%	576	6.5%	1.275	8.2%	1.617	4.0%	797	12.2%	2.414
36	19,722	4.9%	974	1.2%	234	6.1%	1,208	3.8%	741	3.1%	619	6.9%	1,360	8.7%	1,715	4.3%	853	13.0%	2,568
37	19,708	5.2%	1,030	1.3%	248	6.5%	1,278	4.0%	782	3.4%	662	7.3%	1,444	9.2%	1,812	4.6%	910	13.8%	2,722
38	19,693	5.5%	1,086	1.3%	261	6.8%	1,347	4.2%	821	3.6%	705	7.8%	1,527	9.7%	1,907	4.9%	966	14.6%	2,874
39	19,677	5.8%	1,141	1.4%	275	7.2%	1,416	4.4%	859	3.8%	748	8.2%	1,608	10.2%	2,001	5.2%	1,023	15.4%	3,024
40	19,661	6.1%	1,197	1.5%	288	7.6%	1,485	4.6%	896	4.0%	791	8.6%	1,687	10.6%	2,093	5.5%	1,079	16.1%	3,172
41	19,643	6.4%	1,253	1.5%	301	7.9%	1,554	4.7%	931	4.2%	834	9.0%	1,765	11.1%	2,184	5.8%	1,136	16.9%	3,319
42	19,625	6.7%	1,308	1.6%	315	8.3%	1,623	4.9%	965	4.5%	877	9.4%	1,842	11.6%	2,273	6.1%	1,192	17.7%	3,465
43	19,605	7.0%	1,363	1.7%	328	8.6%	1,691	5.4%	1,055	5.0%	973	10.3%	2,028	12.3%	2,418	6.6%	1,301	19.0%	3,719
44	19,584	7.2%	1,418	1.7%	341	9.0%	1,759	5.8%	1,141	5.5%	1,069	11.3%	2,210	13.1%	2,559	7.2%	1,410	20.3%	3,969
45	19,561	7.5%	1,473	1.8%	354	9.3%	1,827	6.3%	1,224	6.0%	1,164	12.2%	2,388	13.8%	2,697	7.8%	1,519	21.5%	4,215
46	19,537	7.8%	1,527	1.9%	368	9.7%	1,895	6.7%	1,303	6.4%	1,259	13.1%	2,563	14.5%	2,831	8.3%	1,627	22.8%	4,458
47	19,511	8.1%	1,581	2.0%	381	10.1%	1,962	7.1%	1,379	6.9%	1,354	14.0%	2,733	15.2%	2,961	8.9%	1,735	24.1%	4,695
48	19,484	8.4%	1,035	2.0%	394 406	10.4%	2,029	7.5%	1,452	7.4%	1,448	14.9%	2,900	15.8%	3,087	9.5%	1,842	25.5%	4,929
49 50	19,454	8.7% 8.0%	1,009	2.1%	400 //10	10.8%	2,095	7.8% 9.7%	1,521	7.9% 8.4%	1,542	15.7%	2,005	10.5%	3,210	10.0%	2 054	20.5%	5,159
51	10 388	0.9%	1 786	2.2%	410	11.1%	2,150	8.5%	1 6/0	8.4%	1 720	17.0%	3,222	17.1%	3,324	11 1%	2,004	27.7%	5,578
52	19 352	9.5%	1 833	2.2%	430	11.4%	2,215	8.8%	1 707	9.4%	1 821	18.2%	3 528	18 3%	3 540	11.1%	2,150	30.0%	5 803
53	19.312	9.7%	1,881	2.3%	453	12.1%	2,333	9.1%	1.762	9.9%	1.913	19.0%	3.675	18.9%	3.643	12.2%	2,365	31.1%	6.008
54	19.270	10.0%	1.927	2.4%	464	12.4%	2.391	9.4%	1.813	10.4%	2.004	19.8%	3.817	19.4%	3.741	12.8%	2.468	32.2%	6.208
55	19,224	10.3%	1,974	2.5%	475	12.7%	2,449	9.7%	1,861	10.9%	2,094	20.6%	3,955	19.9%	3,834	13.4%	2,569	33.3%	6,403
56	19,174	10.5%	2,019	2.5%	486	13.1%	2,505	9.9%	, 1,905	11.4%	, 2,183	21.3%	4,088	20.5%	, 3,924	13.9%	2,669	34.4%	6,593
57	19,121	10.8%	2,064	2.6%	497	13.4%	2,561	10.2%	1,945	11.9%	2,272	22.1%	4,217	21.0%	4,009	14.5%	2,768	35.4%	6,777
58	19,063	11.1%	2,108	2.7%	507	13.7%	2,616	10.5%	2,010	12.6%	2,393	23.1%	4,404	21.6%	4,119	15.2%	2,901	36.8%	7,019
59	19,000	11.3%	2,151	2.7%	518	14.0%	2,669	10.9%	2,071	13.2%	2,514	24.1%	4,584	22.2%	4,222	16.0%	3,031	38.2%	7,253
60	18,932	11.6%	2,194	2.8%	528	14.4%	2,722	11.2%	2,126	13.9%	2,632	25.1%	4,758	22.8%	4,319	16.7%	3,160	39.5%	7,480
61	18,858	11.9%	2,235	2.9%	538	14.7%	2,773	11.5%	2,175	14.6%	2,749	26.1%	4,925	23.4%	4,410	17.4%	3,287	40.8%	7,697
62	18,777	12.1%	2,275	2.9%	548	15.0%	2,823	11.8%	2,220	15.3%	2,864	27.1%	5,084	23.9%	4,495	18.2%	3,412	42.1%	7,906
63	18,689	12.4%	2,314	3.0%	557	15.4%	2,871	12.1%	2,259	15.9%	2,977	28.0%	5,235	24.5%	4,572	18.9%	3,534	43.4%	8,106
64	18,593	12.6%	2,351	3.0%	566	15.7%	2,917	12.3%	2,292	16.6%	3,087	28.9%	5,379	25.0%	4,643	19.6%	3,653	44.6%	8,296
65	18,489	12.9%	2,387	3.1%	574	16.0%	2,961	12.5%	2,320	17.3%	3,194	29.8%	5,514	25.5%	4,707	20.4%	3,769	45.8%	8,475
66	18,375	13.2%	2,420	3.2%	583	16.3%	3,003	12.7%	2,342	18.0%	3,299	30.7%	5,641	25.9%	4,762	21.1%	3,881	47.0%	8,644
67	18,250	13.4%	2,452	3.2%	590	16.7%	3,042	12.9%	2,358	18.6%	3,399	31.5%	5,758	26.4%	4,810	21.9%	3,990	48.2%	8,800
68	18,113	13.7%	2,482	3.3%	597	17.0%	3,079	13.1%	2,369	19.3%	3,496	32.4%	5,865	26.8%	4,850	22.6%	4,093	49.4%	8,944
69	17,963	14.0%	2,509	3.4%	604	17.3%	3,112	13.2%	2,3/3	20.0%	3,588	33.2%	5,961	27.2%	4,881	23.3%	4,192	50.5%	9,074
	17,799	14.2%	2,533	3.4% -	010		3,142	15.5%	2,371	_20.7% _	3,076		0,040	27.5%	4,904		4,285	- - -	9,189
	Life Years	Lived	65,224	-	15,699	<u>)</u>	80,923		59,283	_	70,143		129,426		124,507	<u>,</u>	85,842	_	210,349

		Tabl	le 7:	Ма	les v	vith l	Diagn	osed	and	Und	iagno	osed	Predia	abete	es and	d Dial	oetes		
							lr	n a BC	Birth	Coho	rt of 4	40,00	0						
									Age	s 35 to	070								
				Pred	iabetes				0	Dia	betes				Prea	liabetes	and Dia	betes	
	#in	Undiagr	nosed	Diag	nosed	То	tal	Undia	gnosed	Diagr	nosed	Тс	otal	Undia	gnosed	Diag	nosed	Тс	otal
Age	Birth	%	#	%	#	%	#	%	#	%	#	%	#	%	#	%	#	%	#
35	19,474	6.2%	1,210	1.2%	229	7.4%	1,439	4.9%	948	3.2%	625	8.1%	1,572	11.1%	2,158	4.4%	853	15.5%	3,011
36	19,442	6.6%	, 1,283	1.2%	243	7.8%	1,526	5.1%	986	3.5%	674	8.5%	1,660	11.7%	2,269	4.7%	917	16.4%	3,186
37	19,409	7.0%	1,356	1.3%	256	8.3%	1,612	5.2%	1,019	3.7%	724	9.0%	1,743	12.2%	2,374	5.1%	980	17.3%	3,355
38	19,375	7.4%	1,428	1.4%	270	8.8%	1,698	5.4%	1,046	4.0%	774	9.4%	1,820	12.8%	2,474	5.4%	1,044	18.2%	3,517
39	19,339	7.8%	1,500	1.5%	284	9.2%	1,783	5.5%	1,067	4.3%	824	9.8%	1,891	13.3%	2,567	5.7%	1,107	19.0%	3,674
40	19,303	8.1%	1,571	1.5%	297	9.7%	1,868	5.6%	1,084	4.5%	873	10.1%	1,957	13.8%	2,655	6.1%	1,170	19.8%	3,825
41	19,264	8.5%	1,642	1.6%	310	10.1%	1,953	5.7%	1,094	4.8%	923	10.5%	2,017	14.2%	2,736	6.4%	1,234	20.6%	3,970
42	19,225	8.9%	1,713	1.7%	324	10.6%	2,037	5.7%	1,099	5.1%	973	10.8%	2,072	14.6%	2,812	6.7%	1,297	21.4%	4,109
43	19,183	9.3%	1,783	1.8%	337	11.1%	2,120	6.2%	1,189	5.8%	1,106	12.0%	2,295	15.5%	2,972	7.5%	1,443	23.0%	4,416
44	19,140	9.7%	1,853	1.8%	350	11.5%	2,203	6.6%	1,263	6.5%	1,239	13.1%	2,502	16.3%	3,116	8.3%	1,590	24.6%	4,705
45	19,094	10.1%	1,922	1.9%	363	12.0%	2,285	6.9%	1,322	7.2%	1,371	14.1%	2,693	17.0%	3,244	9.1%	1,735	26.1%	4,978
46	19,047	10.5%	1,990	2.0%	376	12.4%	2,367	7.2%	1,365	7.9%	1,503	15.1%	2,868	17.6%	3,356	9.9%	1,879	27.5%	5,234
47	18,996	10.8%	2,058	2.0%	389	12.9%	2,448	7.3%	1,393	8.6%	1,633	15.9%	3,026	18.2%	3,451	10.6%	2,022	28.8%	5,474
48	18,943	11.2%	2,126	2.1%	402	13.3%	2,527	7.4%	1,406	9.3%	1,762	16.7%	3,168	18.6%	3,531	11.4%	2,164	30.1%	5,696
49	18,887	11.6%	2,192	2.2%	414	13.8%	2,606	7.4%	1,403	10.0%	1,891	17.4%	3,294	19.0%	3,595	12.2%	2,305	31.2%	5,901
50	18,827	12.0%	2,252	2.3%	426	14.2%	2,6//	7.4%	1,380	10.7%	2,018	18.1%	3,404	19.3%	3,638	13.0%	2,444	32.3%	6,081
51	18,703	12.3%	2,310	2.3%	437	14.0%	2,747	7.2%	1,354	11.4%	2,144	10.1%	3,498	19.5%	3,004	13.8%	2,581	33.3%	6,245
52	18,095	12.7%	2,300	2.4%	440	15.1%	2,015	6.7%	1,307	12.1%	2,200	19.1%	3,575	19.7%	3,074	14.5%	2,710	34.2% 25.0%	0,390 6 510
55	18 5/15	13.0%	2,424	2.5%	450	15.5%	2,005	6.3%	1,245	12.0%	2,391	19.5%	3,050	19.7%	3,009	15.5%	2,050	35.0%	6,519
55	18,545	13.4%	2,400	2.5%	409	16.3%	2,949	6.6%	1,109	14.3%	2,512	20.8%	3,001	20.3%	3,049	16.9%	2,301	33.8%	6 861
56	18 372	14 1%	2,554	2.0%	489	16.5%	3,015	6.9%	1 261	15.0%	2,032	20.0%	4 010	20.5%	3 848	17.6%	3 238	38.6%	7 086
57	18 277	14.1%	2,507	2.7%	499	17.2%	3 136	7 1%	1 305	15.7%	2,745	22.0%	4 169	20.5%	3 943	18.4%	3 363	40.0%	7,305
58	18,175	14.8%	2,687	2.8%	508	17.6%	3,195	7.5%	1.359	16.5%	3.005	24.0%	4.364	22.3%	4.046	19.3%	3,513	41.6%	7,559
59	18.065	15.1%	2.735	2.9%	517	18.0%	3.252	7.8%	1.411	17.4%	3.142	25.2%	4.553	23.0%	4.146	20.3%	3.659	43.2%	7.805
60	17.947	15.5%	2.780	2.9%	526	18.4%	3.306	8.1%	, 1.461	18.3%	3.276	26.4%	4.737	23.6%	4.241	21.2%	3.802	44.8%	8.043
61	17,820	15.8%	2,824	3.0%	534	18.8%	3,357	8.5%	1,508	19.1%	3,406	27.6%	4,914	24.3%	4,332	22.1%	3,940	46.4%	8,272
62	17,684	16.2%	2,864	3.1%	542	19.3%	3,406	8.8%	1,553	20.0%	3,533	28.8%	5,085	25.0%	4,417	23.0%	4,074	48.0%	8,491
63	17,537	16.6%	2,902	3.1%	549	19.7%	3,451	9.1%	1,594	20.8%	3,654	29.9%	5,249	25.6%	4,497	24.0%	4,203	49.6%	8,700
64	17,379	16.9%	2,938	3.2%	555	20.1%	3,493	9.4%	1,633	21.7%	3,771	31.1%	5,404	26.3%	4,571	24.9%	4,326	51.2%	8,897
65	17,208	17.3%	2,970	3.3%	561	20.5%	3,531	9.7%	1,669	22.6%	3,882	32.3%	5,551	27.0%	4,638	25.8%	4,444	52.8%	9,082
66	17,024	17.6%	2,998	3.3%	567	20.9%	3,565	10.0%	1,701	23.4%	3,987	33.4%	5,688	27.6%	4,699	26.8%	4,554	54.4%	9,253
67	16,826	18.0%	3,023	3.4%	571	21.4%	3,594	10.3%	1,730	24.3%	4,086	34.6%	5,816	28.2%	4,752	27.7%	4,657	55.9%	9,410
68	16,612	18.3%	3,043	3.5%	575	21.8%	3,618	10.6%	1,755	25.1%	4,177	35.7%	5,932	28.9%	4,798	28.6%	4,752	57.5%	9,550
69	16,381	18.7%	3,058	3.5%	578	22.2%	3,637	10.8%	1,776	26.0%	4,260	36.8%	6,036	29.5%	4,834	29.5%	4,838	59.0%	9,673
70	16,132	19.0%	3,069	3.6%	580	22.6%	3,649	11.1%	1,793	26.9%	4,334	38.0%	6,127	30.1%	4,862	30.5%	4,914	60.6%	9,776
	Life Years	Lived	83,109	-	15,713		98,822		48,869	- -	84,987		133,857		131,978	<u> </u>	100,700	<u> </u>	232,678

Prediabetes

 As noted in Table 1, individuals with prediabetes, especially those based on the Canadian diagnostic criteria of an HbA_{1c} level of 6.0-6.4, have an increased probability of developing diabetes within two years. This is especially so if the individual also has obesity. For example, an individual with a BMI of ≥36 and an HbA_{1c} level of 6.3-6.4 has a 20.7% two-year probability of developing diabetes. This compares to a 0.4% probability of developing diabetes within two years if the individual has a BMI of <25 and an HbA_{1c} level of 5.7-5.8 (see Table 1).

Diabetes

- Type 2 diabetes is associated with many adverse microvascular and macrovascular complications, including chronic kidney disease (CKD), end-stage renal disease (ESRD), proliferative neuropathy, lower extremity amputation, myocardial infarction (MI), unstable angina, stroke, heart failure, stable angina and peripheral vascular disease.⁸⁵⁶
- Advances in the management of diabetes and the consequent longer life expectancies has resulted in a group of emerging diabetes-related complications over and above the traditional ones, including cancers (liver, pancreas, colorectal, endometrial, breast and ovarian), infections (including post-operative and respiratory infections), non-alcoholic fatty liver disease / non-alcoholic steatohepatitis, affective disorders (depression, anxiety), obstructive sleep apnea, dementia and cognitive impairment.⁸⁵⁷
- In a Canadian study by Goeree et al including 610,852 individuals aged 35 and older, diabetes (at 10 years after diagnosis) was associated with a significant increase in the risk of death (RR of 1.42; 95% CI of 1.42 1.42), myocardial infarction (RR of 2.09; 95% CI of 2.09 2.10), stroke (RR of 1.88; 95% CI of 1.88 1.88), angina (RR of 1.53; 95% CI of 1.53 1.53), heart failure (RR of 2.52; 95% CI of 2.52 2.53), amputation (RR of 6.82; 95% CI of 6.82 6.82), nephropathy (RR of 2.90; 95% CI of 2.90 2.90), blindness (RR of 1.21; 95% CI of 1.21 1.22), and cataract (RR of 1.33; 95% CI of 1.32 1.33).⁸⁵⁸
- The study by Goeree et al also provides information on the excess risk of complications in individuals with and without diabetes based on the time since the diagnosis of diabetes (see Table 8).⁸⁵⁹

⁸⁵⁶ An J, Nichols G, Qian L et al. Prevalence and incidence of microvascular and macrovascular complications over 15 years among patients with incident type 2 diabetes. *BMJ Open Diabetes Research & Care*. 2021; 9: e001847.

⁸⁵⁷ Tomic D, Shaw J, Magliano D. The burden and risks of emerging complications of diabetes mellitus. *Nature Reviews: Endocrinology*. 2022; 18: 525-39.

 ⁸⁵⁸ Goeree R, Lim M, Hopkins R et al. Excess risk of mortality and complications associated with newly diagnosed case of diabetes in Ontario, Canada. *Canadian Journal of Diabetes*. 2009; 33(2): 93-104.
 ⁸⁵⁹ Goeree R, Lim M, Hopkins R et al. Excess risk of mortality and complications associated with newly diagnosed case of diabetes in Ontario, Canada. *Canadian Journal of Diabetes*. 2009; 33(2): 93-104.

	By	/ Comp	olicatic	on and	Time S	Since D	liagnos	sis			
					Years :	Since Dia	ignosis				
Complication	0	1	2	3	4	5	6	7	8	9	10
Myocardial Infarction											
Diabetes CR	0.80%	1.57%	2.29%	2.99%	3.76%	4.52%	5.28%	6.06%	6.89%	7.70%	8.50%
Non-diabetes CR	0.00%	0.38%	0.77%	1.16%	1.55%	1.96%	2.38%	2.80%	3.21%	3.64%	4.06%
Excess CR	0.80%	1.19%	1.52%	1.83%	2.21%	2.56%	2.90%	3.26%	3.68%	4.06%	4.44%
Diabetes AR	0.80%	0.77%	0.72%	0.70%	0.77%	0.76%	0.76%	0.78%	0.83%	0.81%	0.80%
Non-diabetes AR	0.00%	0.38%	0.39%	0.39%	0.39%	0.41%	0.42%	0.42%	0.41%	0.43%	0.42%
Excess AR	0.80%	0.39%	0.33%	0.31%	0.38%	0.35%	0.34%	0.36%	0.42%	0.38%	0.38%
Stroke											
Diabetes CR	0.51%	1.07%	1.57%	2.05%	2.54%	3.05%	3.61%	4.17%	4.77%	5.34%	5.93%
Non-diabetes CR	0.00%	0.30%	0.58%	0.87%	1.19%	1.50%	1.81%	2.14%	2.47%	2.80%	3.16%
Excess CR	0.51%	0.77%	0.99%	1.18%	1.35%	1.55%	1.80%	2.03%	2.30%	2.54%	2.77%
Diabetes AR	0.51%	0.56%	0.50%	0.48%	0.49%	0.51%	0.56%	0.56%	0.60%	0.57%	0.59%
Non-diabetes AR	0.00%	0.30%	0.28%	0.29%	0.32%	0.31%	0.31%	0.33%	0.33%	0.33%	0.36%
Excess AR	0.51%	0.26%	0.22%	0.19%	0.17%	0.20%	0.25%	0.23%	0.27%	0.24%	0.23%
Angina											
Diabetes CR	1.71%	15.11%	20.62%	24.83%	28.48%	31.84%	34.90%	37.75%	40.47%	43.00%	45.40%
Non-diabetes CR	0.08%	8.03%	11.59%	14.51%	17.12%	19.52%	21.76%	23.91%	25.92%	27.86%	29.75%
Excess CR	1.63%	7.08%	9.03%	10.32%	11.36%	12.32%	13.14%	13.84%	14.55%	15.14%	15.65%
Diabetes AR	1.71%	13.40%	5.51%	4.21%	3.65%	3.36%	3.06%	2.85%	2.72%	2.53%	2.40%
Non-diabetes AR	0.08%	7.95%	3.56%	2.92%	2.61%	2.40%	2.24%	2.15%	2.01%	1.94%	1.89%
Excess AR	1.63%	5.45%	1.95%	1.29%	1.04%	0.96%	0.82%	0.70%	0.71%	0.59%	0.51%
Heart Failure											
Diabetes CR	0.46%	1.23%	1.82%	2.36%	2.89%	3.47%	4.08%	4.68%	5.35%	6.06%	6.78%
Non-diabetes CR	0.00%	0.29%	0.53%	0.79%	1.05%	1.31%	1.59%	1.87%	2.13%	2.40%	2.69%
Excess CR	0.46%	0.94%	1.29%	1.57%	1.84%	2.16%	2.49%	2.81%	3.22%	3.66%	4.09%
Diabetes AR	0.46%	0.77%	0.59%	0.54%	0.53%	0.58%	0.61%	0.60%	0.67%	0.71%	0.72%
Non-diabetes AR	0.00%	0.29%	0.24%	0.26%	0.26%	0.26%	0.28%	0.28%	0.26%	0.27%	0.29%
Excess AR	0.46%	0.48%	0.35%	0.28%	0.27%	0.32%	0.33%	0.32%	0.41%	0.44%	0.43%
Amputation											
Diabetes CR	0.09%	0.22%	0.29%	0.36%	0.44%	0.53%	0.63%	0.75%	0.87%	1.00%	1.16%
Non-diabetes CR	0.00%	0.02%	0.03%	0.05%	0.06%	0.08%	0.10%	0.12%	0.14%	0.15%	0.17%
Excess CR	0.09%	0.20%	0.26%	0.31%	0.38%	0.45%	0.53%	0.63%	0.73%	0.85%	0.99%
Diabetes AR	0.09%	0.13%	0.07%	0.07%	0.08%	0.09%	0.10%	0.12%	0.12%	0.13%	0.16%
Non-diabetes AR	0.00%	0.02%	0.01%	0.02%	0.01%	0.02%	0.02%	0.02%	0.02%	0.01%	0.02%
Excess AR	0.09%	0.11%	0.06%	0.05%	0.07%	0.07%	0.08%	0.10%	0.10%	0.12%	0.14%
Nephropathy											
Diabetes CR	0.08%	0.39%	0.52%	0.66%	0.79%	0.96%	1.12%	1.33%	1.52%	1.75%	2.02%
Non-diabetes CR	0.01%	0.13%	0.18%	0.23%	0.29%	0.35%	0.41%	0.48%	0.55%	0.62%	0.70%
Excess CR	0.07%	0.26%	0.34%	0.43%	0.50%	0.61%	0.71%	0.85%	0.97%	1.13%	1.32%
Diabetes AR	0.08%	0.31%	0.13%	0.14%	0.13%	0.17%	0.16%	0.21%	0.19%	0.23%	0.27%
Non-diabetes AR	0.01%	0.12%	0.05%	0.05%	0.06%	0.06%	0.06%	0.07%	0.07%	0.07%	0.08%
Excess AR	0.07%	0.19%	0.08%	0.09%	0.07%	0.11%	0.10%	0.14%	0.12%	0.16%	0.19%
Blindness											
Diabetes CR	0.00%	0.26%	0.47%	0.65%	0.83%	1.00%	1.15%	1.32%	1.51%	1.69%	1.89%
Non-diabetes CR	0.00%	0.19%	0.34%	0.49%	0.64%	0.78%	0.94%	1.11%	1.26%	1.41%	1.56%
Excess CR	0.00%	0.07%	0.13%	0.16%	0.19%	0.22%	0.21%	0.21%	0.25%	0.28%	0.33%
Diabetes AR	0.00%	0.26%	0.21%	0.18%	0.18%	0.17%	0.15%	0.17%	0.19%	0.18%	0.20%
Non-diabetes AR	0.00%	0.19%	0.15%	0.15%	0.15%	0.14%	0.16%	0.17%	0.15%	0.15%	0.15%
Excess AR	0.00%	0.07%	0.06%	0.03%	0.03%	0.03%	-0.01%	0.00%	0.04%	0.03%	0.05%
Cataract											
Diabetes CR	0.27%	2.62%	4.52%	6.28%	8.06%	9.80%	11.57%	13.52%	15.51%	17.50%	19.74%
Non-diabetes CR	0.01%	1.51%	2.89%	4.27%	5.68%	7.12%	8.56%	10.04%	11.60%	13.18%	14.89%
Excess CR	0.26%	1.11%	1.63%	2.01%	2.38%	2.68%	3.01%	3.48%	3.91%	4.32%	4.85%
Diabetes AR	0.27%	2.35%	1.90%	1.76%	1.78%	1.74%	1.77%	1.95%	1.99%	1.99%	2.24%
Non-diabetes AR	0.01%	1.50%	1.38%	1.38%	1.41%	1.44%	1.44%	1.48%	1.56%	1.58%	1.71%
Excess AR	0.26%	0.85%	0.52%	0.38%	0.37%	0.30%	0.33%	0.47%	0.43%	0.41%	0.53%
CR = cummulative ri	isk: AR = r	annııal ris	k								
	,										

Table 8: Excess Risk of Complications In Individuals With Diabetes By Complication and Time Since Diagnosis

• In a population-based retrospective cohort study from Newfoundland/Labrador, 15,152 individuals with diabetes were compared with 58,631 individuals without diabetes on all-cause and cardiovascular mortality and cardiovascular hospitalizations over a period of 10 years.⁸⁶⁰ This study also highlighted the benefits of early (no diabetes-related comorbidities at the time of diagnosis) vs late (comorbidities related to diabetes at the time of diagnosis) diagnosis of diabetes (see Table 9).

Table 9: Sex Differer	nces in Mo	ortality a	nd Morbid	ity
In Individuals V	Vith and W	ithout D i	iabetes	
	Mal	es	Fem	ales
	No Diabetes	Diabetes	No Diabetes	Diabetes
N=	30,039	7,751	28,592	7,401
Deceased at Study End	14.5%	23.8%	12.1%	23.1%
All-cause Hospitalizations	58.5%	72.3%	59.5%	74.6%
Mean Length of Hospital Stay (days)	5.6	6.4	5.5	7.0
CVD Hospitalizations	17.5%	28.9%	12.3%	22.9%
AMI Hospitalizations	3.5%	6.2%	2.0%	4.5%
Stroke Hospitalizations	2.3%	3.9%	1.8%	3.6%
	Males with	Diabetes	Females wit	h Diabetes:
Diabetes Diagnosis	Early	Late	Early	Late
N=	3,034	4,717	2,601	4,800
Deceased at Study End	13.2%	30.5%	11.7%	29.3%
All-cause Hospitalizations	64.6%	77.2%	69.1%	77.5%
Mean Length of Hospital Stay (days)	4.9	7.2	5.1	8.0
CVD Hospitalizations	17.7%	36.0%	13.8%	27.8%
AMI Hospitalizations	4.7%	7.1%	10.6%	4.3%
Stroke Hospitalizations	1.9%	5.2%	1.8%	4.6%

- In a meta-analysis of 35 studies with a mean follow-up of 10.7 years, type 2 diabetes was associated with an 85% increased risk of all-cause mortality (RR of 1.85; 95% CI of 1.79 1.92), 57% in males (RR of 1.57; 95% CI of 1.46 1.68) and 100% in females (RR of 2.00; 95% CI of 1.89 2.12).⁸⁶¹
- In a study from Canada, males and females with diabetes at the age of 55 lost on average 5.0 and 6.0 life years, respectively, compared to those without diabetes.⁸⁶²

 ⁸⁶⁰ Roche M, Wang P. Sex difference in all-cause and cardiovascular mortality, hospitalization for individuals with and without diabetes, and patients with diabetes diagnosed early and late. *Diabetes Care*. 2013; 36: 2582-90.
 ⁸⁶¹ Nwaneri C, Cooper H, Bowen-Jones D. Mortality in type 2 diabetes mellitus: Magnitude of the evidence from a systematic review and meta-analysis. *The British Journal of Diabetes & Vascular Disease*. 2013; 13(4):
 ⁸⁶² Loukine L, Waters C, Choi B et al. Impact of diabetes mellitus on life expectancy and health-adjusted life expectancy in Canada. *Population Health Metrics*. 2012; 10(7):

• Table 10 provides a summary of life years lost attributable to type 2 diabetes in the UK, by age and sex.⁸⁶³

	Ta In	ble 10: Individu	Estin als Wi By	nated th and Age and	Life Expe Without D Sex	ctancy iabetes		
	Male	es	Differe	nce in LE	Fema	les	Differe	nce in LE
Age	No Diabetes	Diabetes	Years	%	No Diabetes	Diabetes	Years	%
40-44	42.4	37.0	5.4	-12.7%	45.4	39.1	6.3	-13.9%
45-49	37.6	32.8	4.8	-12.8%	40.5	34.5	6.0	-14.8%
50-54	33.0	28.6	4.4	-13.3%	35.8	30.4	5.4	-15.1%
55-59	28.5	24.5	4.0	-14.0%	31.2	26.3	4.9	-15.7%
60-64	24.2	20.6	3.6	-14.9%	26.7	22.3	4.4	-16.5%
65-69	20.3	16.9	3.4	-16.7%	22.5	18.6	3.9	-17.3%
70-74	16.7	13.6	3.1	-18.6%	18.5	15.1	3.4	-18.4%
75-79	13.7	10.7	3.0	-21.9%	14.9	11.9	3.0	-20.1%
≥ 80	11.1	8.3	2.8	-25.2%	11.9	9.0	2.9	-24.4%

Quality of Life – Diabetes and Its Complications

- Uncomplicated diabetes mellitus reduces an individual's quality of life by 4.9% (95% CI of 3.1% to 7.2%). In this situation, the person has "a chronic disease that requires medication every day and causes some worry but minimal interference with daily activities".⁸⁶⁴
- A myocardial infarction reduces a person's quality of life by 9.8% for a period of one month (see Reference Document).
- On average, a **stroke** reduces a person's quality of life by 20% (95% CI of 13.4% to 26.5%) (see Reference Document).
- Moderate **angina** ("has chest pain that occurs with moderate physical activity, such as walking uphill or more than half a kilometer on level ground. After a brief rest, the pain goes away") reduces a person's quality of life by 8% (95% CI of 5.2% to 11.3%).⁸⁶⁵
- Moderate heart failure ("is short of breath and easily tires with minimal physical activity, such as walking only a short distance. The person feels comfortable at rest but avoids moderate activity") reduces a person's quality of life by 7.2% (95% CI of 4.7% to 10.3%).⁸⁶⁶ Individuals with heart failure have a life expectancy of approximately 2.5 years.⁸⁶⁷

 ⁸⁶³ Wright A, Kontopantelis E, Ermsley R et al. Life expectancy and cause-specific mortality in type 2 diabetes: A population-based cohort quantifying relationships in ethnic subgroups. *Diabetes Care*. 2017; 40: 338-45.
 ⁸⁶⁴ Institute for Health Metrics and Evaluation. *GBD 2016 sequelae, health states, health state lay descriptions, and disability weights*. Available online at <u>http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights</u>. Accessed February 2024.

⁸⁶⁵ GBD 2016

⁸⁶⁶ GBD 2016

⁸⁶⁷ Limpens M, Asllanaj E, Dommershuijsen L et al. Healthy lifestyle in older adults and life expectancy with and without heart failure. *European Journal of Epidemiology*. 2022; 37: 205-14.

- **Amputation** with treatment due to diabetes mellitus type 2 is associated with a reduction in quality of life of 16.7% (95% CI of 11.4% to 22.9%).⁸⁶⁸
- Nephropathy (chronic kidney disease) ("tires easily, has nausea, reduced appetite and difficulty sleeping") is associated with a reduction in quality of life of 10.4% (95% CI of 7.0% to 14.7%).⁸⁶⁹
- **Blindness** reduces a person's quality of life by 18.7% (95% CI of 12.4% to 26.0%).⁸⁷⁰
- Moderate vision impairment due to **cataract** ("has vision problems that make it difficult to recognize faces or objects across a room") reduces a person's quality of life by 3.1% (95% CI of 1.9% to 4.9%)⁸⁷¹ for a period of 16 weeks.⁸⁷²

No Screening / Intervention

In this section we estimate the type and number of complications, QALYs lost and LYL attributable to diagnosed and undiagnosed diabetes in a BC birth cohort of 40,000 between the ages of 35 and 70.

Complications

- To estimate the expected number of complications we used the excess annual risk of a specific complication as calculated in Table 8. Table 8 includes the annual risk out to 10 years after the diagnosis of diabetes. We assumed that the annual risk after 10 years would be stable (i.e. use the 10 year annual risk in year 11 and following years). This risk was applied to incident cases identified each year. For modelling purposes, we assumed that all cases of diabetes at the age of 35 would be incident cases.
- The number of excess complications attributable to diabetes in a BC birth cohort between the ages of 35 and 70 is as follows (see Table 11):
 - o 1,033 cases of myocardial infarction
 - o 635 cases of stroke
 - 2,523 cases of angina
 - o 1,061 cases of heart failure
 - o 307 amputations
 - 414 cases of nephropathy
 - o 108 cases of blindness
 - 1,289 cases of cataracts

⁸⁶⁸ GBD 2016

⁸⁶⁹ GBD 2016

⁸⁷⁰ GBD 2016

⁸⁷¹ GBD 2016

⁸⁷² 16 weeks is the benchmark wait time for cataract surgery in Canada. See Canadian Institute for Health Information. *Wait Times for Priority Procedures in Canada, 2022*. Available at <u>https://www.cihi.ca/en/wait-times-for-priority-procedures-in-canada-2022</u>. Accessed February 2024.

				Tab	le 1	1: E	xces	s Co	mplic	atic	ons	In In	divid	dua	ls V	/ith	Dia	bet	es					
							By Age	e anc	l Sex i	n a B	SC Bi	irth Co	ohor	t of	40,0	000								
	Муоса	rdial In	farction		Strok	e		Angina	a	He	art Fa	ailure	Am	puta	tion	Nep	hrop	athy	Bl	indne	ess		Catara	act
Age	F	М	Т	F	Μ	Т	F	М	Т	F	М	Т	F	М	Т	F	М	Т	F	Μ	Т	F	Μ	Т
35	10	13	23	65	8.0	15	21	26	47	59	72	13	11	14	26	09	11	2.0	0.0	0.0	0.0	33	41	74
36	5.7	6.8	12	3.8	4.5	8.3	71	87	158	6.5	8.0	14	1.5	1.8	3.3	2.5	3.0	5.5	0.9	1.1	2.0	11	14	25
37	5.2	6.2	11	3.5	4.1	7.6	31	37	68	5.3	6.3	12	0.9	1.1	2.0	1.2	1.5	2.7	0.8	1.0	1.8	7.6	9.1	17
38	5.2	6.1	11	3.2	3.8	7.0	24	28	52	4.6	5.5	10.1	0.9	1.0	1.9	1.4	1.7	3.1	0.5	0.6	1.1	6.2	7.3	14
39	6.4	7.4	14	3.1	3.6	6.7	22	24	46	4.7	5.5	10.2	1.1	1.3	2.5	1.2	1.4	2.7	0.5	0.6	1.1	6.4	7.4	14
40	6.3	7.2	13	3.7	4.1	7.8	22	24	45	5.6	6.4	12	1.2	1.4	2.6	1.8	2.1	3.9	0.5	0.6	1.2	5.8	6.5	12
41	6.4	7.2	14	4.4	5.0	9.5	20	22	42	6.0	6.8	13	1.4	1.6	3.0	1.8	2.0	3.8	0.1	0.0	0.1	6.4	7.1	14
42	6.9	7.7	15	4.4	4.8	9.2	19	20	39	6.1	6.8	13	1.7	1.9	3.6	2.4	2.7	5.1	0.2	0.1	0.3	8.4	9.5	18
43	8.8	10.1	19	5.6	6.5	12	22	23	44	8.0	9.1	17	1.9	2.2	4.0	2.3	2.6	4.9	0.7	0.8	1.4	8.6	9.6	18
44	9.0	10	19	5.7	6.5	12	27	30	56	9.2	11	20	2.3	2.7	5.0	3.1	3.6	6.7	0.7	0.7	1.4	10	11	20
45	10	11	21	6.0	6.7	13	28	31	59	10	11	21	2.7	3.2	5.9	3.7	4.3	8.0	1.0	1.2	2.2	12	14	26
46	10	11	22	6.3	7.0	13	29	32	61	10	12	22	2.9	3.3	6.2	3.9	4.5	8.4	1.1	1.2	2.3	13	14	27
47	11	12	23	6.6	7.3	14	30	32	63	11	12	23	3.1	3.5	6.5	4.1	4.7	8.8	1.1	1.3	2.4	13	15	28
48	11	12	24	7.0	7.5	14	31	32	64	12	13	24	3.2	3.6	6.8	4.4	4.9	9.3	1.2	1.4	2.6	14	15	30
49	12	13	25	7.4	7.8	15	32	32	64	12	13	25	3.4	3.8	7.2	4.6	5.1	9.7	1.2	1.3	2.6	15	16	31
50	13	13	26	7.7	8.0	16	33	31	64	13	13	26	3.6	3.9	7.5	4.9	5.3	10	1.3	1.3	2.6	16	17	32
51	13	13	27	8.1	8.3	16	33	30	64	13	14	27	3.8	4.1	7.9	5.1	5.5	11	1.3	1.4	2.7	16	17	33
52	14	14	27	8.5	8.4	17	34	29	63	14	14	28	4.0	4.2	8.2	5.4	5.7	11	1.4	1.4	2.8	17	17	34
53	14	14	28	8.8	8.5	17	34	28	62	15	15	29	4.2	4.4	8.6	5.7	5.9	12	1.5	1.5	3.0	18	18	36
54	15	14	29	9.1	8.6	18	35	27	61	15	15	30	4.5	4.5	9.0	6.0	6.1	12	1.5	1.6	3.1	19	18	37
55	15	15	31	9.4	9	19	35	27	62	16	16	32	4.7	4.8	9.5	6.3	6.4	13	1.6	1.6	3.2	19	19	38
56	16	16	32	9.7	10	19	35	33	69	1/	1/	33	4.9	5.1	10	6.6	6.8	13	1./	1./	3.4	20	20	40
5/	16	16	33	10	10	20	35	35	/1	1/	1/	35	5.1	5.3	10	6.9	7.1	14	1.8	1.9	3.6	21	21	42
58	1/	1/	34	11	11	21	37	37	74	18	18	36	5.4	5.5	11	7.2	7.4	15	1.8	1.9	3.8	22	22	44
59	18	18	30	11	11	22	40	40	80	19	19	38	5.6	5.7	11	7.6	7.7	15	2.0	2.1	4.0	23	23	46
60	19	19	37	11	11	23	41	42	83 95	20	20	39	5.8	5.9	12	7.9 0 0	7.9 0 0	10	2.1	2.2	4.Z	24	24	48
62	19	20	20	12	12	25	42	45	05 06	20	20	40	6.0	0.0 6 0	12	0.Z	0.Z	10	2.1	2.2	4.5	25	25	49 E1
62	20	20	59 //1	12	12	24	45	45	00 97	21	21	42	6.4	0.Z	12	0.4 9.7	0.4 9 7	17	2.2	2.2	4.4	25	20	52
64	20	20	41	12	12	25	43 //3	44 11	87	21	21	43	6.6	6.6	13	0.7 Q ()	8.7 8 9	18	2.5	2.5	4.0	20	20	54
65	21	21	42	13	13	25	43	44	88	22	22	45	6.8	6.8	14	9.0	9.2	18	2.5	2.5	4.7	27	27	55
66	21	21	43 44	12	13	20	43	44	88	23	23	45 47	7.0	7.0	14	9.5 9.5	9.2	19	2.4	2.4	4.0	20 28	20	57
67	22	22	45	14	14	27 27	43	44	87	23 24	23	48	7.0	7.3	14	J.J 10	10	20	2.5	2.5	-1 .5 5 1	20 29	20	58
68	23	23	45	14	14	28	43	44	86	24 24	24	49	7.4	7.5	15	10	10	20	2.5	2.6	5.2	30	30	59
69	23	23	46	14	14	28	42	43	85	25	25	50	7.6	7.7	15	10	10	21	2.7	2.7	5.3	30	30	61
70	23	23	47	14	14	28	41	43	84	25	25	51	7.8	7.8	16	11	11	21	2.7	2.7	5.5	31	31	62
Total	508	525	1,033	312	322	635	1,247	1,276	2,523	521	540	1,061	150	156	307	203	211	414	53	55	108	633	656	1,289

QALYs Lost

- To calculate the number of QALYs lost associated with living with the complications identified in Table 11, we multiplied an incident complication by the disutility attributable to that complication (see *Quality of Life Diabetes and Its Complications* above) by the remaining life expectancy when the complication occurred. For a number of complications (e.g. myocardial infarction and cataract), the disutility was temporary. For incident heart failure, we assumed the individual would survive for 2.5 years.
- We also included the disutility associated with living with uncomplicated diagnosed diabetes for those who did not experience a complication.
- Based on these assumptions, a total of 26,752 QALYs are lost (13,450 in females and 13,302 in males) in the BC birth cohort (see Table 12).

		ost	⊢	3,522	875	550	481	454	473	460	451	804	826	828	818	804	790	773	786	767	745	723	669	685	678	662	753	740	738	714	688	661	632	603	573	542	510	477	468	26,752
		QALYs	Σ	1,767	465	288	249	233	241	233	227	433	445	443	435	424	412	400	402	388	372	356	339	333	334	326	361	352	350	336	322	308	293	278	262	246	230	213	206	13,302
		Total	ш	1,755	410	263	232	221	231	227	224	371	381	385	383	381	377	373	384	379	373	367	360	352	345	336	392	388	388	377	365	352	339	325	311	296	280	264	262	13,450
	p	etes	⊢	3,122	28	134	150	151	150	147	143	442	409	387	368	349	331	314	310	292	275	259	243	225	201	184	268	241	225	204	183	163	143	124	104	85	67	48	32	0,501
	nplicate	ed Diabo	Σ	,554 3	17	2	62	62	62	1	52	253	233	220	209	199	188	178	176	166	156	147	138	127	110	66	131	117	108	96	85	74	63	52	41	31	21	11	7	459 1
betes	Uncon	Diagnose	ш	.,567 1	11	63	71	72	71	20	68	190	176	167	159	151	143	136	134	126	119	112	105	86	91	85	137	124	117	108	66	89	80	72	63	54	46	37	31	,042 5,
n Dia		-	 ⊢	0.1 1	0.3	0.2	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3).3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.4).5).5	0.5	0.5	0.6). 6	0.6	J.6	J.6	0.7	0.7	7.0	0.7	0.7	0.8	15
Wit		Catarac	Σ	0.0 (0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2 (0.2 0	0.2 0	0.2 0	0.2 0	0.2 (0.2 0	0.2	0.2	0.2 0	0.2	0.2	3 0.3	3 0.3	3 0.3	3 0.3	3 0.3	3 0.3	3 0.3	3 0.3	3 0.3	3 0.3	0.4	0.4	0.4 (∞
uals			۳	0.0	0.0	8 0.1	.3 0.1	1 0.1	1 0.1	.6 0.1	.0 6.	I3 0.1	12 0.1	0.1	0.1	0.2	0.2	0.2	0.2	1 0.2	1 0.2	20.2	20.2	2 0.2	3 0.2	3 0.2	24 O.3	24 0.3	50.0	50.0	50.3	50.0	24 0.3	24 0.3	24 0.3	3 0.3	3.0.2	3.0.2	57 0.7	7
livid 000		dness	⊢ ≻	0.0	0.5	9.4	5.3 10	5.4	5.7 1	0.1 0	1.2 2	6.5	6.3	9.6	9.9	10	10	10	10	10	10	10	10	10	11	11	11	12	12	12	12	12	11	11	11	11	11	11	11 2	31 68
ի Ind 140,		Blin	ш	0.0	9.4 1	8.5	5.0	5.1	5.4	0.5	1.6	6.4	6.1	9.0	9.4	10	10	10	10	11	11	11	12	12	12	12	12	13	13	13	13	13	13	13	13	13	12	12	13	353
ns Ir ort o		thy	⊢	11	31	15	17	14	21	20	26	24	33	38	39	40	41	42	45	45	46	47	48	49	50	50	51	51	53	23	53	52	52	52	51	51	50	49	51	,459
atio ւ Coh		phropa	Σ	6.0	16	7.7	8.7	7.2	11	10	13	12	17	19	20	20	21	21	22	22	22	23	23	23	24	24	24	24	25	55	25	24	24	24	24	24	23	23	24	706 1
nplic Birth		Ne	ш	5.3	14	7.1	8.0	6.9	10	10	13	12	16	19	19	20	20	21	23	23	24	24	25	26	26	26	27	27	28	28	28	28	28	28	27	27	27	26	27	753
Con a BC		ation	⊢	53	5	18	16	. 21	. 22	25	30	32	39	45	46	48	49	5	23	54	55	56	57	28	59	09	09	61	83	8	83	62	62	61	61	99	59	58	60	. 1,739
cess ex in		Amput	F	11 13	14 15	3.6 9.3	7.7 8.2	10 11	11 11	12	15 19	16 17	19 2(22 23	23 24	24 24	24 2/	25 25	27 26	28 26	28 27	29 27	30 27	30 28	31 28	31 29	32 29	32 29	33 3(33	33 29	33	33 20	33 29	32 28	32 28	32 28	31 27	32 28	98 87
o Ex and S			ו _	2.4	2.6	2.1	1.8	1.8	2.2	2.3	2.3	3.1	3.6	3.8	4.0	4.1	4.3	4.5	4.7	4.9	5.1	5.3	5.5	5.7	6.0	6.2	6.5	6.8	7.0	7.3	7.5	7.7	7.9	8.2	8.4	8.6	8.0	8.9	9.1	101
ue t Age a		⁼ ailure	- v	1.3	1.4	1.1	1.0	1.0	1.2	1.2	1.2	1.6	1.9	2.0	2.1	2.2	2.3	2.4	2.4	2.5	2.6	2.7	2.7	2.9	3.0	3.1	3.3	3.4	3.5	3.6	3.7	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	67
bst d By		Heart I	Z L	1.1	1.2	0.9	0.8	0.9	1.0	1.1	1.1	1.4	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.7	2.8	2.9	3.0	3.1	3.2	3.4	3.5	3.6	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.4	4.5	94
Ys Lo				33	74	83	13	36	8	66	54	71	12	16	61	61	17	13	17	11	З	£	86	8	96	£	26	8	14	11	90	Ħ	Я	88	81	73	55	26	22	2
QAL		ina	-	07 2	57 6	48 2	09 2	94 1	92 1	83 1	74 1	83 1	07 2	08 2	09 2	07 2	04 2	00 2	00 2	94 2	89 2	82 1	76 1	76 1	90	92 1	94	98 2	01 2	00	98 2	96 2	93 1	89 1	86 1	82 1	78 1	74 1	73 1	41 7,5
12:		Ang	∠	95 1	318 3	136 1	103 1	92	93	86	80	88	105 1	108	111 1	112 1	113 1	113 1	117 1	116	115	113	111	108	106	103	104	110	113 1	111	109	106	102	66	33	91	87	82	82	931 3,6
able				28	88	62	22	80	õ	35	91	16	15	11	50	52	24	56	ŝ	22	35	52	34	88	68	68	5	5	9	9	ξţ	4	5	ç	88	35	32	28	31	3,0
		ke	-	84 1!	46	4	37	34	4	84	55	59 1:	58 1:	59 1:	60	60	61 1	61 1	64 1	64	64	63	61 13	64	65 13	66 1	67 1/	67 1/	68	-1 68	1.	67 1	67 1	66 1	65 1	63 1	62	60	61 13	56 4,4
		Stro	2	74	42	38	35	33	39	47	45	57	56	58	60	61	63	65	69	71	72	72	73	73	73	73	75	76	78	78	11	76	75	74	73	72	70	68	70	312 2,1
	_		-	5	4	e	2	2	2	9	7	2	2	4	5	9	7	∞	1	2	ю	4	S	7	∞	6	1	e	9	7	∞	0	1	2	4	2	9	9	0	4 5,5
	cardia	arction	⊢ ∑	1.4 2.	0.8 1.	0.7 1	0.7 1.	0.8 1.	0.8 1.	0.8 1.	0.9 1.	1.2 2.	1.2 2.	1.2 2.	1.3 2.	1.4 2.	1.4 2.	1.5 2.	1.6 3.	1.6 3.	1.6 3.	1.7 3.	1.7 3.	1.8 3.	1.9 3.	2.0 3.	2.1 4.	2.1 4.	2.3 4.	2.3 4.	2.4 4.	2.5 5.	2.6 5.	2.6 5.	2.7 5.	2.7 5.	2.8 5.	2.8 5.	3.0 6.	63 124
	Myo	Infé	ш	1.1	0.6 (0.6 (0.6 (0.7 (0.7 (0.7 (0.8 (1.0	1.0	1.1	1.2	1.2	1.3	1.4	1.5	1.6	1.6	1.7	1.8	1.8	1.9	2.0	2.1	2.1	2.3	2.3	2.4	2.5	2.5	2.6	2.7	2.7	2.8	2.8	3.0	61
			Age	35	36	37	38	39	4	41	42	43	4	45	46	47	48	49	50	51	52	23	54	55	56	57	28	59	09	61	62	63	6	65	99	67	68	69	70	Total

Life Years Lost

- As noted in Table 10, diabetes is associated with a significant reduction in life expectancy.
- Diabetes is estimated to be associated with 60,950 LYL in the BC birth cohort, 33,189 in females and 27,761 in males (see Table 13). This is equivalent to 5.5 LYL per female with diabetes and 4.5 LYL per male with diabetes.

		Tak	ole 1	3: Life	Years	Lost du	ie Dia	betes	-	
		By A	ge an	d Sex iı	n a BC I	Birth Col	nort of	40,00	0	
				Life Exp	ectancy	% Reduc	tion in			
	Incide	ent Dia	betes	in	BC	LE with D	iabetes		Total LY	L
Age	F	М	Т	F	М	F	М	F	М	Т
35	1.275	1.572	2.848	50.8	46.5	-13.9%	-12.7%	8.993	9.310	18.304
36	, 85	, 88	, 173	49.9	45.6	-13.9%	-12.7%	589	, 510	1,099
37	84	82	166	48.9	44.7	-13.9%	-12.7%	568	468	1,037
38	82	77	159	47.9	43.7	-13.9%	-12.7%	548	428	976
39	81	71	152	47.0	42.8	-13.9%	-12.7%	528	389	917
40	80	66	145	46.0	41.9	-13.9%	-12.7%	508	351	859
41	78	60	139	45.1	41.0	-13.9%	-12.7%	489	315	804
42	77	55	132	44.1	40.1	-13.9%	-12.7%	470	280	749
43	186	223	409	43.1	39.1	-13.9%	-12.7%	1,111	1,113	2,224
44	182	207	389	42.2	38.2	-13.9%	-12.7%	1,065	1,008	2,073
45	178	191	369	41.2	37.3	-14.8%	-12.8%	1,089	909	1,998
46	175	175	349	40.3	36.4	-14.8%	-12.8%	1,042	812	1,853
47	171	158	329	39.3	35.5	-14.8%	-12.8%	995	718	1,713
48	167	142	309	38.4	34.6	-14.8%	-12.8%	949	628	1,577
49	163	126	289	37.4	33.7	-14.8%	-12.8%	904	542	1,446
50	159	110	269	36.5	32.8	-15.1%	-13.3%	875	480	1,356
51	155	94	249	35.6	31.9	-15.1%	-13.3%	831	398	1,230
52	151	77	228	34.6	31.0	-15.1%	-13.3%	788	320	1,108
53	147	61	208	33.7	30.2	-15.1%	-13.3%	745	246	991
54	142	45	187	32.8	29.3	-15.1%	-13.3%	703	176	879
55	138	166	304	31.9	28.4	-15.7%	-14.0%	689	663	1,352
56	133	163	296	30.9	27.5	-15.7%	-14.0%	647	628	1,276
57	129	159	287	30.0	26.7	-15.7%	-14.0%	606	594	1,200
58	187	195	382	29.1	25.8	-15.7%	-14.0%	855	706	1,562
59	181	189	370	28.2	25.0	-15.7%	-14.0%	799	664	1,464
60	174	184	357	27.3	24.1	-16.5%	-14.9%	782	660	1,441
61	167	177	344	26.4	23.3	-16.5%	-14.9%	725	615	1,341
62	159	171	330	25.5	22.5	-16.5%	-14.9%	670	571	1,241
63	152	163	315	24.6	21.7	-16.5%	-14.9%	616	527	1,142
64	144	155	299	23.8	20.9	-16.5%	-14.9%	562	482	1,045
65	135	147	282	22.9	20.1	-17.3%	-16.7%	536	494	1,030
66	126	137	264	22.0	19.3	-17.3%	-16.7%	482	444	926
67	117	127	244	21.2	18.5	-17.3%	-16.7%	429	395	824
68	107	116	223	20.3	17.7	-17.3%	-16.7%	377	345	722
69	97	104	201	19.5	17.0	-17.3%	-16.7%	326	296	622
70	85	91	176	18.7	16.2	-18.4%	-18.6%	293	274	567
Total	6,046	6,127	12,174	5.5	4.5			33,189	27,761	60,950

The Intervention(s)

Frequency of Screening

• The USPSTF suggests that screening adults with normal blood glucose levels every 3 years would be a reasonable approach while annual screening is typically recommended for those with prediabetes.^{873,874}

Effectiveness of the Intervention(s)

- "Intensive lifestyle interventions to achieve weight loss and increase physical activity are the first-line therapies for preventing progression of prediabetes to diabetes. The U.S. Food and Drug Administration (FDA) has not approved any medications specifically to prevent progression of prediabetes to diabetes, nor has the Canadian Medicare System."⁸⁷⁵
- The onset of diabetes occurs 4-7 years prior to its clinical diagnosis.⁸⁷⁶ Screening can reduce the lag time in identifying diabetes by an average of 3.3 years.⁸⁷⁷

Prediabetes - Intensive Lifestyle Interventions

- The Diabetes Prevention Program (DPP) study is an RCT which followed 3,234 individuals at high risk of diabetes for an average of 2.8 years. Persons were randomly assigned to three groups; placebo, metformin (850 mg twice daily) and intensive lifestyle intervention. After 2.8 years, the incidence of diabetes was 11.0, 7.8 and 4.8 cases per 100 person-years in the placebo, metformin and intensive lifestyle groups. To prevent one case of diabetes, during a period of three years, 6.9 persons would have to participate in the lifestyle intervention, and 13.9 would have to receive metformin.⁸⁷⁸
- The intensive lifestyle intervention in the DPP has become the 'gold standard' in the US for preventing diabetes in high risk individuals.⁸⁷⁹ The goals for the lifestyle intervention were to achieve and maintain a weight reduction of at least 7% of initial body weight through healthy eating and physical activity, and to achieve and maintain a level of physical activity of at least 150 min/week through moderate intensity activity.⁸⁸⁰

⁸⁷³ US Preventive Service Task Force. US Preventive Services Task Force Recommendation Statement. Screening for prediabetes and type 2 diabetes: US Preventive Services Task Force recommendation statement. *JAMA*. 2021; 326(8): 736-43.

⁸⁷⁴ Jonas E, Crotty K, Yun J et al. *Screening for Prediabetes and Type 2 Diabetes Mellitus: An Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 207.* AHRQ Publication No. 21-05276-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2021.

⁸⁷⁵ Jonas E, Crotty K, Yun J et al. *Screening for Prediabetes and Type 2 Diabetes Mellitus: An Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 207.* AHRQ Publication No. 21-05276-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2021.

⁸⁷⁶ Ekoe J, Goldenberg R, Katz P. Clinical Practice Guidelines: Screening for diabetes in adults. *Canadian Journal of Diabetes*. 2018; 42: S16-S19.

⁸⁷⁷ Rahman M, Simmons R, Hennings S et al. How much does screening bring forward the diagnosis of type 2 diabetes and reduce complications? Twelve year follow-up of the Ely cohort. *Diabetologia*. 2012; 55(6): 1651-9. ⁸⁷⁸ Diabetes Prevention Program Research Group. Reduction in the incidence or type 2 diabetes with lifestyle intervention or metformin. *The New England Journal of Medicine*. 2002; 346(6): 393-403.

⁸⁷⁹ US Preventive Service Task Force. US Preventive Services Task Force Recommendation Statement. Screening for prediabetes and type 2 diabetes: US Preventive Services Task Force recommendation statement. *JAMA*. 2021; 326(8): 736-43.

⁸⁸⁰ The Diabetes Prevention Program Research Group. The Diabetes Prevention Program: Design and methods for a clinical trial in the prevention of type 2 diabetes. *Diabetes Care*. 1999; 22(4): 623-34.

- The DPP intensive lifestyle intervention is conducted by case managers with training in nutrition, exercise, or behavior modification who meet with an individual participant for at least 16 sessions in the first 24 weeks and contact the participant at least monthly thereafter (with in-person contacts at least every 2 months throughout the remainder of the program). The initial 16 sessions represent a core curriculum, with general information about diet and exercise and behavior strategies such as selfmonitoring, goal setting, stimulus control, problem solving, and relapse prevention training. Individualization is facilitated by use of several different approaches to selfmonitoring and flexibility in deciding how to achieve the changes in diet and exercise. Two supervised group exercise sessions per week are provided to help participants achieve their exercise goal. For individuals having difficulty achieving or maintaining the weight-loss or exercise goal, a "tool box" approach is used to add new strategies for the participant. Strategies may include incentives such as items of nominal value. Additional tool box approaches may include loaning aerobic exercise tapes or other home exercise equipment, enrolling the participant in a class at an exercise facility, and use of more structured eating plans, liquid formula diets, or home visits. Group courses are also offered quarterly during maintenance, with each course lasting 4 - 6 weeks and focusing on topics related to exercise, weight loss, or behavioral issues. These courses are designed to help participants achieve and maintain the weight-loss and exercise goals.⁸⁸¹
- The China Da Qing Diabetes Prevention Outcomes Study, which began in 1986, evaluated a 6 year lifestyle intervention with 30 years of follow-up among people with prediabetes living in China.⁸⁸² The results indicate that an absolute decrease in diabetes incidence of about 24% over 6 years (43.6% vs. 67.7% of participants for lifestyle intervention vs. control) was associated with 10% fewer deaths (46% vs. 56%), 8% fewer cardiovascular deaths (22% vs. 30%), 11% fewer cardiovascular events (48% vs. 59%), and 5% fewer microvascular events (19% vs. 24%) over 30 years. The intervention delayed the onset of diabetes by a median of 3.96 years, CVD events by 4.64 years, microvascular disease outcomes by 5.17 years, death due to CVD by 7.25 years and all-cause mortality by 4.82 years. This study was assessed to be at medium risk of bias by the USPSTF and involved relatively few participants (577).⁸⁸³
- In the Da Qing study, those in the lifestyle intervention arms (diet only, exercise only, diet and exercise) initially received individual counselling by a physician followed by small group counselling sessions weekly for the first month, monthly for three months and then every three months for the duration of the 6 years.⁸⁸⁴
- The review for the USPSTF found 23 RCTs which included lifestyle interventions meant to delay or prevent diabetes in persons with obese or overweight. These lifestyle interventions were associated with a 22% reduction (RR 0.78 95% CI 0.69 to 0.88) in the incidence of subsequent diabetes.⁸⁸⁵ Interventions with a high level of

⁸⁸¹ The Diabetes Prevention Program Research Group. The Diabetes Prevention Program: Design and methods for a clinical trial in the prevention of type 2 diabetes. *Diabetes Care*. 1999; 22(4): 623-34.

⁸⁸² Gong Q, Zhang P, Wang J, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. *The Lancet: Diabetes and Endocrinology*. 2019; 7(6): 452-61.

⁸⁸³ Jonas E, Crotty K, Yun J et al. *Screening for Prediabetes and Type 2 Diabetes Mellitus: An Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 207.* AHRQ Publication No. 21-05276-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2021.

⁸⁸⁴ Pan X, Li G, Hu Y et al. Effect of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: The Da Qing IGT and Diabetes Study. *Diabetes Care*. 1997; 20(4): 537-44.

⁸⁸⁵ Jonas D, Crotty K, Yun J et al. Screening for prediabetes and type 2 diabetes: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2021; 326(8): 744-60.

contact (>360 minutes) were most effective when delivered to individuals with a BMI \geq 30.⁸⁸⁶

Key targets associated with intensive lifestyle interventions include: weight loss >5%, intake of fat <30% energy, intake of saturated fats <10% energy, increase of dietary fiber to ≥15 g/1,000 kcal, and increase of physical activity to at least four hours per week.⁸⁸⁷

Prediabetes - Pharmaceutical Interventions

 Based on three studies, the review for the USPSTF found that metformin was associated with a 27% reduction (RR 0.73 95% CI 0.64 to 0.83) in the incidence of subsequent diabetes.⁸⁸⁸

Diabetes – Screen Detected

• The USPSTF review found two RCTs that addressed whether screening for type 2 diabetes in asymptomatic adults improves health outcomes. Neither study found a significant benefit in terms of a reduction in mortality or morbidity. While the follow-up was for 10 years, the USPSTF notes that 10 years of follow-up "may have been too short to detect an effect on health outcomes."⁸⁸⁹

Diabetes - Recently Diagnosed

- The USPSTF review found 3 studies that assessed the effect of interventions for newly diagnosed (not screen detected) diabetes on health outcomes. One study (the UK Prospective Diabetes Study - UKPDS) found a benefit of sulfonylureas or insulin over 20 years of follow-up but not at shorter follow-up. For example, for persons with overweight in the UKPDS, intensive glucose control with metformin decreased all-cause mortality (RR 0.64: 95% CI 0.45 to 0.91), diabetes-related mortality (RR 0.58: 95% CI 0.37 to 0.91), and myocardial infarction (RR 0.61: 95% CI 0.41 to 0.89) at the 10-year follow-up and benefits were maintained during the subsequent 10 years of post-trail; follow-up. The other two studies found no benefits but only had follow-up periods of 3 and 7 years.⁸⁹⁰
- The USPSTF notes that "it is uncertain whether results from trials of persons with recently diagnosed diabetes are applicable to those with screen-detected diabetes. Recently diagnosed diabetes was generally clinically detected (e.g., because of symptoms) and may represent a different subset of the diabetes spectrum, possibly with greater condition severity. The evidence of benefits for persons with recently diagnosed (not screen-detected) diabetes comes primarily from the UKPDS, conducted among predominantly White participants from 1977 through 1997, when

⁸⁸⁶ Jonas E, Crotty K, Yun J et al. *Screening for Prediabetes and Type 2 Diabetes Mellitus: An Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 207.* AHRQ Publication No. 21-05276-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2021.

⁸⁸⁷ Tuomilehto J, Schwarz P, Lindström J. Long-term benefits from lifestyle interventions for type 2 diabetes prevention: Time to expand the efforts. *Diabetes Care*. 2011; 34(Suppl 2): S210-14.

⁸⁸⁸ Jonas E, Crotty K, Yun J et al. *Screening for Prediabetes and Type 2 Diabetes Mellitus: An Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 207.* AHRQ Publication No. 21-05276-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2021.

⁸⁸⁹ US Preventive Service Task Force. US Preventive Services Task Force Recommendation Statement. Screening for prediabetes and type 2 diabetes: US Preventive Services Task Force recommendation statement. *JAMA*. 2021; 326(8): 736-43.

⁸⁹⁰ US Preventive Service Task Force. US Preventive Services Task Force Recommendation Statement. Screening for prediabetes and type 2 diabetes: US Preventive Services Task Force recommendation statement. *JAMA*. 2021; 326(8): 736-43.

routine care for CVD prevention would not have included treatments now considered to be current standard medical therapy (e.g., statins, lower blood pressure targets)."⁸⁹¹

Summary

The preponderance of the evidence reviewed for the USPSTF indicates that interventions are effective in delaying the progression from prediabetes to diabetes in individuals ages 35-70 with overweight or obesity. While both intensive lifestyle and pharmaceutical (metformin) interventions appear to be effective, medications specifically to prevent progression of prediabetes to diabetes are currently not approved for use in the US or Canada. The evidence suggesting any potential benefits with intensive treatment following screen-detected diabetes is very limited. It is not surprising then that the USPSTF recommends that clinicians should focus on referring "patients with *prediabetes* (emphasis added) to effective preventive interventions".⁸⁹² In the following modelling we will focus on the benefits of intensive lifestyle interventions in delaying the progression from prediabetes to diabetes in individuals ages 35-70 with overweight or obesity.

Real-World Effectiveness of Intensive Lifestyle Interventions

As noted above, based on research evidence, intensive lifestyle interventions for individuals with prediabetes are associated with a 22% reduction in the incidence of subsequent diabetes.⁸⁹³ This success has resulted in a number of countries implementing national diabetes prevention programs, including Finland (in 2003),⁸⁹⁴ Australia (in 2007),⁸⁹⁵ the US (in 2012)⁸⁹⁶ and the UK (in 2016).⁸⁹⁷ A key question is whether, when implemented outside of the research environment, the effectiveness of these national programs approaches that of the interventions as implemented within research trials.

Finland's National Diabetes Prevention Program

- The Finnish program (FIN-D2D) consists of 4-8 group sessions either once a week or every other week, with a follow-up session one month after the final intervention session. "The program, its content and the methods used are planned together with the members and the manager of the group according to patient empowerment principles."⁸⁹⁸
- Between 2003 and 2008, a total of 10,149 individuals were identified as high risk, based primarily on a score of ≥15 on the FINDRISC. Of these 10,149, a total of 8,353

⁸⁹¹ Jonas D, Crotty K, Yun J et al. Screening for prediabetes and type 2 diabetes: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2021; 326(8): 744-60.

⁸⁹² US Preventive Service Task Force. US Preventive Services Task Force Recommendation Statement. Screening for prediabetes and type 2 diabetes: US Preventive Services Task Force recommendation statement. *JAMA*. 2021; 326(8): 736-43.

⁸⁹³ Jonas D, Crotty K, Yun J et al. Screening for prediabetes and type 2 diabetes: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2021; 326(8): 744-60.

⁸⁹⁴ Saaristo T, Peltonen M, Keinänen-Kiukaanniemi S et al. National type 2 diabetes prevention programme in Finland: FIN-D2D. *International Journal of Circumpolar Health*. 2007; 66(2): 101-12.

⁸⁹⁵ Laatikainen T, Dunbar J, Chapman A et al. Prevention of Type 2 Diabetes by lifestyle intervention in an Australian primary health care setting: Greater Green Triangle (GGT) Diabetes Prevention Project. *BMC Public Health*. 2007; 7: 249-55.

⁸⁹⁶ Albright A, Gregg E. Preventing type 2 diabetes in communities across the U.S.: The National Diabetes Prevention Program. *American Journal of Preventive Medicine*. 2013; 44 (Suppl. 4): S346-51.

⁸⁹⁷ Penn L, Rodrigues A, Haste A et al. NHS Diabetes Prevention Programme in England: Formative evaluation of the programme in early phase implementation. *BMJ Open*. 2018; 8: e019467

⁸⁹⁸ Saaristo T, Peltonen M, Keinänen-Kiukaanniemi S et al. National type 2 diabetes prevention programme in Finland: FIN-D2D. *International Journal of Circumpolar Health*. 2007; 66(2): 101-12.

went on to receive a confirmatory oral glucose tolerance test and 5,523 had any follow-up data with 3,880 having follow-up data at one-year post intervention.⁸⁹⁹

- Of those with follow-up data at one-year post intervention, 17.5% had a weight loss of ≥5%, 16.8% had a weight loss of between 2.5-4.9%, the weight remained stable for 46.1% and 19.5% gained ≥2.5% weight.⁹⁰⁰
- At seven years of follow-up, individuals who lost 5% or more of their weight during the first year had a 29% (HR of 0.71; 95% CI of 0.56 to 0.90) lower risk of diabetes, compared to those with stable weight.⁹⁰¹

Australia's Life! Taking Action on Diabetes Program

- The Australian program (*Life! Taking Action on Diabetes [Life!*]) consists of a groupcourse six session intensive intervention for 8–15 people. The first five sessions occurred every fortnight for 9 weeks. The sixth intervention session was scheduled for 8 months after the first session. The objective of session six is to follow up with participants and observe maintenance of their newly learned lifestyles.⁹⁰²
- A review of the results indicates that 14,819 individuals were referred to the program between October of 2007 and June of 2011, with 8,412 commencing the program. Of the 8,412, a total of 6,632 attended session five and 3,114 attended session six. Those completing sessions one through five had a weight loss of 1.4kg while those attending session six had a weight loss of 2.4kg.⁹⁰³
- *Life!* was estimated to cost \$400 (in 2010 Australian dollars) per participant⁹⁰⁴ or \$446 in 2022 CDN.

US National Diabetes Prevention Program

- The US program (National DPP) consists of 16 hourly sessions held at approximately weekly intervals during the first 6 months, followed by a minimum of six sessions held at approximately monthly intervals during months 7–12. The second 6 months is intended to reinforce and build on content delivered in the first half of the program.⁹⁰⁵
- An analysis of 14,747 participants who attended at least one of the 22 sessions found that 12,775 attended at least four sessions. Median weight loss was 3.6% for those attending at least four sessions vs. 0.4% for those who did not. Median weight loss

⁸⁹⁹ Saaristo T, Moilanen L, Korpi-Hyov E et al .Lifestyle intervention for prevention of type 2 diabetes in primary health care: One-year follow-up of the Finnish National Diabetes Prevention Program. *Diabetes Care*. 2010; 33(10): 2146-51.

⁹⁰⁰ Saaristo T, Moilanen L, Korpi-Hyov E et al .Lifestyle intervention for prevention of type 2 diabetes in primary health care: One-year follow-up of the Finnish National Diabetes Prevention Program. *Diabetes Care*. 2010; 33(10): 2146-51.

⁹⁰¹ Rintamäki R, Rautio N, Peltonend M et al. Long-term outcomes of lifestyle intervention to prevent type 2 diabetes in people at high risk in primary health care. *Primary Care Diabetes*. 2021; 15: 444-50.

⁹⁰² Dunbar J, Jayawardena A, Johnson G et al. Scaling up diabetes prevention in Victoria, Australia: Policy development, implementation, and evaluation. *Diabetes Care*. 2014; 37: 934-42.

⁹⁰³ Dunbar J, Jayawardena A, Johnson G et al. Scaling up diabetes prevention in Victoria, Australia: Policy development, implementation, and evaluation. *Diabetes Care*. 2014; 37: 934-42.

⁹⁰⁴ Dunbar J, Jayawardena A, Johnson G et al. Scaling up diabetes prevention in Victoria, Australia: Policy development, implementation, and evaluation. *Diabetes Care*. 2014; 37: 934-42.

⁹⁰⁵ Ely E, Gruss S, Luman E et al. A national effort to prevent type 2 diabetes: Participant level evaluation of CDC's National Diabetes Prevention Program. *Diabetes Care*. 2017; 40: 1331-41.

for those attending at least 17 sessions was 6.0%.⁹⁰⁶ The authors note that 43% completed 16 sessions, compared with 95% in the original DPP.⁹⁰⁷

• A review of the first 41,203 attendees of the National DPP found that 63% of participants were retained in the program through week 18 and 31.9% completed the entire program.⁹⁰⁸

UK's Healthier You: National Health Service Diabetes Prevention Programme

- The UK program (NHS DPP) involves groups of 15–20 adults attending at least 13 sessions (totalling 16 hours) with a minimum of 9 months' duration.⁹⁰⁹
- A total of 99,473 individuals were referred to the NHS DPP during 2016 and 2017. Of those referred, 55,275 started the program (attended at least the initial assessment), 37,871 attended at least one intervention session, 18,562 attended at least 60% of the intervention sessions and 12,127 completed the full course.⁹¹⁰
- An evaluation of early outcomes noted a clear dose-response with individuals who attended more sessions experiencing greater reductions in both weight and HbA_{1c}. Those who attended at least 60% of sessions had a mean weight loss of > 3 kg and a reduction of between 2.0 and 3.0 mmol/mol in HbA_{1c}.⁹¹¹
- Initial research suggests that the implementation of the NHS DPP has reduced rates of type 2 diabetes incidence at the population level during 2018 and 2019, with an estimated 13,776 (6.2%) fewer cases than would be expected in the absence of the NHS DPP.⁹¹²
- Providing the NHS DPP digitally also appears to be effective.^{913,914}
- The average cost of the NHS DPP has been estimated at £143 (in 2020 or \$262 in 2022 CDN) per referral and £342 (in 2020 or \$626 in 2022 CDN) per referral that completed at least 60% of the program.⁹¹⁵

Health Policy. 2023; 21: 891-903.

⁹⁰⁶ Ely E, Gruss S, Luman E et al. A national effort to prevent type 2 diabetes: Participant level evaluation of CDC's National Diabetes Prevention Program. *Diabetes Care*. 2017; 40: 1331-41.

⁹⁰⁷ Wing R, Hamman R, Bray G et al. Achieving weight and activity goals among Diabetes

Prevention Program lifestyle participants. Obesity Research. 2004; 12: 1426-34.

⁹⁰⁸ Cannon M, Masalovich S, Ng B et al. Retention among participants in the National Diabetes Prevention Program lifestyle change program. *Diabetes Care*. 2020; 43: 2042-9.

⁹⁰⁹ Penn L, Rodrigues A, Haste A et al. NHS Diabetes Prevention Programme in England: Formative evaluation of the programme in early phase implementation. *BMJ Open.* 2018; 8: e019467

⁹¹⁰ Howarth E, Bower P, Kontopantelis E et al. 'Going the distance': An independent cohort study of engagement and dropout among the first 100 000 referrals into a large-scale diabetes prevention program. *BMJ Open Diabetes Research & Care*. 2020; 8: e001835

⁹¹¹ Valabhji J, Barron E, Bradley D et al. Early outcomes from the English National Health Service Diabetes Prevention Programme. *Diabetes Care*. 2020; 43: 152-60.

⁹¹² McManus E, Meacock R, Parkinson P et al. Population level impact of the NHS Diabetes Prevention Programme on incidence of type 2 diabetes in England: An observational study. *The Lancet Regional Health – Europe*. 2022; 19: 100429.

 ⁹¹³ Ross J, Barron E, McGough B et al. Uptake and impact of the English National Health Service digital diabetes prevention programme: Observational study. *BMJ Open Diabetes Research & Care*. 2022; 10: e002736.
 ⁹¹⁴ Barron E, Bradley D, Safazadeh S et al. Effectiveness of digital and remote provision of the Healthier You: NHS Diabetes Prevention Programme during the COVID-19 pandemic. *Diabetic Medicine*. 2023; 40: e15028.
 ⁹¹⁵ McManus E, Meacock R, Parkinson P et al. Evaluating the short-term costs and benefits of a nationwide Diabetes Prevention Programme in England: Retrospective observational study. *Applied Health Economics and*

BC-Based Diabetes Prevention Programmes

Small Steps for Big Changes

- Small Steps for Big Changes (SSBC) "is a brief motivational interviewing-informed diabetes prevention program designed to empower clients to make diet and exercise changes that suit their lives."⁹¹⁶ In addition to a focus on client autonomy, the program has a focus on improving equitable access and inclusive care to everyone.⁹¹⁷
- SSBC involves a training phase which includes a free 1-month gym membership, six sessions of 1-on-1 exercise and dietary change counselling with a trained coach over three weeks, the completion of two to four independent exercise sessions each week and tracking diet and exercise with a health app and fitness watch.⁹¹⁸
- SSBC is currently being offered at eight centres in the interior and north of BC.⁹¹⁹
- An effectiveness evaluation based on 123 participants who completed both the training phase and attended the six-month check in, indicated a weight loss of 3.9% (3.35kg), a decrease in waist circumference of 4.0% (4.2 cm) and a 6.0% improvement in the 6-minute walk test at six-months post intervention.⁹²⁰
- The six 1-on-1 sessions are each estimated to take an average of 60 minutes of a coaches time.⁹²¹ YMCA frontline staff, fitness managers and volunteers are trained to be SSBC coaches.⁹²² We have used the average B.C. hourly wage rate in 2022 (\$31.49⁹²³) to value their time. Furthermore, we have assumed an additional 18% for benefits and 16% for paid, non-working days.⁹²⁴ The estimated cost per coaches hour would thus be \$42.20 (\$31.49 + (31.49*0.18) + (\$31.49 * 0.16)). The estimated labour cost per participant would therefore be estimated at \$253 (6.0 hours * \$42.20).
- In addition, approximately \$150 per participant is required to cover costs such as coaches training, materials (marketing, workbook, scales, tablet, etc.) and a dedicated website for coaches.⁹²⁵

⁹¹⁶ Dineen T, Bean C, Jung M. Successes and challenges from a motivational interviewing-informed diabetes prevention program situated in the community. *Health Promotion Practice*. 2024; 25(2): 274-84.

⁹¹⁷ Cranston K, MacPherson M, Sim J, Jung M. Small steps towards an inclusive diabetes prevention program: How Small Steps for Big Changes is improving program equity and inclusion. *Community Health Equity Research* & *Policy*. 2023; 0(0). doi:10.1177/2752535X231189932

⁹¹⁸ The University of British Columbia. *Small Steps for Big Changes*. Available online at <u>https://ok-smallsteps.sites.olt.ubc.ca/</u>. Accessed April 2024.

⁹¹⁹ The University of British Columbia. *Small Steps for Big Changes*. Available online at <u>https://ok-smallsteps.sites.olt.ubc.ca/</u>. Accessed April 2024.

⁹²⁰ Bean C, Dineen T, Locke S et al. An evaluation of the reach and effectiveness of a diabetes prevention behaviour change program situated in a community site. *Canadian Journal of Diabetes*. 2021; 45(4): 360-8.
⁹²¹ Dr. Mary Jung. Personal Communication. May 2024.

⁹²² The University of British Columbia. *Small Steps for Big Changes*. Available online at <u>https://ok-smallsteps.sites.olt.ubc.ca/</u>. Accessed April 2024.

⁹²³ BC Stats. Earning & Employment Trends – August 2022. Available at

https://www2.gov.bc.ca/assets/gov/data/statistics/people-population-

community/income/earnings_and_employment_trends_data_tables.pdf. Accessed September 2023.

⁹²⁴ Of the 260 potential paid days in a year (52 weeks * 5 days / week), 20 days are paid vacation days, 12 days are paid statutory holidays, 5 are paid days for educational leave and 5 are paid days for sick time. Therefore, 16.2% (42/260) of paid days are non-working days.

⁹²⁵ Dr. Mary Jung. Personal Communication. May 2024.

LifestyleRx

- *LifestyleRx* is a comprehensive, evidence-based approach to diabetes reversal, which individuals with provincial health coverage in British Columbia, Alberta and Ontario can attend for no charge (funded by MSP in BC).⁹²⁶
- A referral from a primary care provider (with a diagnosis of pre-diabetes or diabetes) is required to enter the program. The program begins with a full consultation with a physician followed by 12 weekly online physician-led sessions in groups of 15-30. Individuals also have access up to five appointments with a physician by video call over a 1 year period. Between sessions, individuals watch videos explaining core concepts, print out reference guides and cheat sheets, and complete ongoing learning exercises. Furthermore, they complete self-assessments and exercises to show where they are doing well and where they need to focus. Finally, individuals are provided with personal health reports that help them to understand what their lab results and other markers show about their current health and diabetic reversal path.
- Based on results to date, 61% of participants are female.⁹²⁷
- Results from the first 941 participants indicate an average reduction in HbA_{1c} from 7.8% to 6.7% over an average 141 day time period.⁹²⁸
- Program costs consist of an initial physician consult at \$85, 12 group medical visits at \$14.50 per person attending and up to 5 one-on-one physician follow-up consults at \$45 each, for a total estimated program cost of \$484 per participant.⁹²⁹

Male / Female Involvement in Diabetes Prevention Programmes

- Approximately 70-80% of those enrolled and participating in a diabetes prevention program are female.^{930,931,932,933,934}
- The one exception appears to be the English NHS DPP in which the male / female participation is approximately 45% / 55%.⁹³⁵
- Offering a virtual program appears to increase male participation.⁹³⁶ Note that 39% of participants in the online *Lifestyle Rx* program are male.

⁹²⁶ LifestyleRx. Available online at https://lifestylerx.io/. Accessed April, 2024.

⁹²⁷ Dr. Brendan Byrne. Personal Communication. April 2024.

⁹²⁸ Dr. Brendan Byrne. Personal Communication. April 2024.

⁹²⁹ Dr. Brendan Byrne. Personal Communication. April 2024.

⁹³⁰ Ali M, Echouffo-Tcheugui J, Williamson D. How effective were lifestyle interventi9ons in real-world settings that were modeled on the Diabetes Prevention Program? *Health Affairs*. 2012; 31(1): 67-75.

⁹³¹ Ely E, Gruss S, Luman E et al. A national effort to prevent type 2 diabetes: Participant level evaluation of CDC's National Diabetes Prevention Program. *Diabetes Care*. 2017; 40: 1331-41.

⁹³² Gruss S, Nhim K, Gregg E et al. Public health approaches to type 2 diabetes prevention: The US National Diabetes Prevention Program and beyond. *Current Diabetes Reports*. 2019; 19: 78.

⁹³³ Galavitz K, Weber M, Straus A et al. Global diabetes prevention interventions: A systematic review and network meta-analysis of the real-world impact on incidence, weight, and glucose. *Diabetes Care*. 2018; 41: 1526-34.

 ⁹³⁴ Bean C, Dineen T, Locke S et al. An evaluation of the reach and effectiveness of a diabetes prevention behaviour change program situated in a community site. *Canadian Journal of Diabetes*. 2021; 45(4): 360-8.
 ⁹³⁵ Valabhji J, Barron E, Bradley D et al. Early outcomes from the English National Health Service Diabetes Prevention Programme. *Diabetes Care*. 2020; 43: 152-60.

⁹³⁶ Cannon M, Ng B, Lloyd K et al. Delivering the National Diabetes Prevention Program: Assessment of enrollment in in-person and virtual organizations. *Journal of Diabetes Research*. 2022; Article ID 2942918.

Retention in Diabetes Prevention Programmes

• Retention in a diabetes prevention program is critical to the effectiveness of the intervention in reducing the progression from prediabetes to diabetes. While retention is often high in research trials (suggesting a highly motivated cohort who enter the trials), retention in the real world setting is often suboptimal. While program completion is not necessarily required to achieve benefits, most programs suggest a minimum attendance at 4-6 sessions before benefits are realized (the effective dose). From the experience in Finland, Australia and the UK, the proportion of individuals referred to a diabetes prevention program who achieve an effective dose ranges between 18.7% and 44.8% (see Table 14).

Table 14: Retention in	Diabetes	Preventio	on Pro	grammes
	Finland	Aust	ralia	UK
Referred	10,149	14,819		99,473
Started (e.g. initial assessment)	8,353 82.3	8,412	56.8%	55,275 55.6%
Attend at least one session	5,523 54.4	% NA		37,871 38.1%
Effective dose	3,880 38.2	6,632	44.8%	18,562 18.7%
Complete program	NA	3,114	21.0%	12,127 12.2%

- Once enrolled, the retention of males and females in a diabetes prevention program appears to be similar.⁹³⁷
- For modelling purposes we will assume that 44.8% of those referred to a diabetes prevention program will stay involved long enough to receive an 'effective dose' (as in Australia) and reduce this to 18.7% (as in the UK) in the sensitivity analysis.

With Intervention

Individuals Eligible for Screening

- To estimate the number of individuals eligible for screening, we calculated the percent of the population that had overweight and obesity (after first excluding pregnant females in the female cohort) and then excluded those with diagnosed diabetes from the cohort with overweight and obesity (essentially assuming that all individuals with type 2 diabetes would be in the overweight category). At age 35, this meant that 51% (10,048 of 19,736) of females and 65% (12,715 of 19,474) of males would be eligible for screening (see Table 15). By age 70, 38% of females and 40% of males would be eligible for screening.
- Because screening occurs just once every three years, we would expect 2,698 screens at age 35 in females and 2,780 in males (see Table 15).

⁹³⁷ Cannon M, Masalovich S, Ng B et al. Retention among participants in the National Diabetes Prevention Program lifestyle change program, 2012-2017. *Diabetes Care*. 2020; 43: 2042-9.

				Та	ble 1	L5: N	lum	ber o	of Ir	ndiv	iduals	Eligik	le f	or Sc	reer	ning					
								In a B	C Bii	rth C	ohort o	f 40,0	00								
									Ages	5 35 t	o 70 by S	Sex									
				Female	25									I	Vales						
			0	W or	Diagr	nosed	Eligi	ble for	Scre	ening	# of		0	W or	Diagn	osed	Eligi	ble for	Scre	ening	# of
	#in	#	O	bese	Diab	etes	Scre	ening	Up	-to-	Annual	L .	0	bese	Diab	etes	Scre	ening	Up	-to-	Annual
Age	Birth	Pregnant	%	#	%	#	%	#	%	#	Screens	Males	%	#	%	#	%	#	%	#	Screens
35	19,736	1,097	57%	10,624	2.9%	576	51%	10,048	81%	8,094	2,698	19,474	69%	13,340	3.2%	625	65%	12,715	66%	8,341	2,780
36	19,722	1,097	57%	10,617	3.1%	619	51%	9,997	81%	8,054	2,685	19,442	69%	13,318	3.5%	674	65%	12,643	66%	8,294	2,765
37	19,708	1,096	57%	10,609	3.4%	662	50%	9,947	81%	8,013	2,671	19,409	69%	13,295	3.7%	724	65%	12,571	66%	8,246	2,749
38	19,693	1,095	57%	10,601	3.6%	705	50%	9,896	81%	7,972	2,657	19,375	69%	13,272	4.0%	774	65%	12,498	66%	8,198	2,733
39	19,677	1,094	57%	10,593	3.8%	748	50%	9,844	81%	7,931	2,644	19,339	69%	13,247	4.3%	824	64%	12,424	66%	8,150	2,717
40	19,661	269	57%	11,053	4.0%	/91	52%	10,262	81%	8,267	2,756	19,303	69%	13,222	4.5%	8/3	64%	12,349	66%	8,101	2,700
41	19,643	269	5/%	11,043	4.2%	834	52%	10,209	81%	8,224	2,741	19,264	69%	13,196	4.8%	923	64%	12,273	66%	8,051	2,684
42	19,025	209	57%	11,033	4.5% E 0%	077	52% E10/	10,150	01% 010/	0,101 0,00E	2,727	19,225	69%	12,109	5.1% E 00/	9/3	62%	12,190	66%	0,000 7 004	2,007
43	19,005	209	57%	11,022	5.5%	1 069	51%	9 941	81%	8,095	2,038	19,183	69%	13,140	5.8%	1,100	62%	11 872	66%	7 788	2,031
45	19,561	200	57%	11,150	6.0%	1,164	51%	9,986	81%	8,044	2,681	19.094	69%	13.080	7.2%	1.371	61%	11,708	66%	7,680	2,550
46	19.537		57%	11.136	6.4%	1.259	51%	9.877	81%	7.957	2.652	19.047	69%	13.047	7.9%	1.503	61%	11.544	66%	7.573	2.524
47	19,511		57%	11,121	6.9%	1,354	50%	9,767	81%	7,869	2,623	18,996	69%	13,013	8.6%	1,633	60%	11,379	66%	7,465	2,488
48	19,484		57%	11,106	7.4%	1,448	50%	9,657	81%	7,780	2,593	18,943	69%	12,976	9.3%	1,762	59%	11,213	66%	7,356	2,452
49	19,454		57%	11,089	7.9%	1,542	49%	9,546	81%	7,691	2,564	18,887	69%	12,937	10.0%	1,891	58%	11,047	66%	7,246	2,415
50	19,422		55%	10,760	8.4%	1,636	47%	9,124	89%	8,085	2,695	18,827	73%	13,687	10.7%	2,018	62%	11,669	79%	9,266	3,089
51	19,388		55%	10,741	8.9%	1,729	46%	9,012	89%	7,986	2,662	18,763	73%	13,641	11.4%	2,144	61%	11,497	79%	9,129	3,043
52	19,352		55%	10,721	9.4%	1,821	46%	8,900	89%	7,887	2,629	18,695	73%	13,591	12.1%	2,268	61%	11,323	79%	8,991	2,997
53	19,312		55%	10,699	9.9%	1,913	45%	8,786	89%	7,786	2,595	18,622	73%	13,538	12.8%	2,391	60%	11,147	79%	8,852	2,951
54	19,270		55%	10,675	10.4%	2,004	45%	8,672	89%	7,684	2,561	18,545	73%	13,482	13.5%	2,512	59%	10,970	79%	8,711	2,904
55	19,224		55%	10,650	10.9%	2,094	45%	8,556	89%	7,582	2,527	18,461	/3%	13,421	14.3%	2,632	58%	10,790	79%	8,568	2,856
50	19,174		55% EE0/	10,623	11.4%	2,183	44%	8,439 0 2 2 1	89% 000/	7,479	2,493	18,372	73%	13,357	15.0%	2,749	58%	10,008	79%	8,423	2,808
52	19,121		55%	10,595	12.6%	2,272	44 <i>%</i>	0,521 8 168	80%	7 228	2,450	10,277	73%	13 213	16.5%	2,004	56%	10,425	79%	0,277 8 106	2,759
59	19,005		55%	10,501	13.2%	2,555	42%	8 013	89%	7 100	2,413	18,175	73%	13 133	17.4%	3,005	55%	9 991	79%	7 934	2,702
60	18,932		55%	10,488	13.9%	2.632	41%	7.856	97%	7.595	2,532	17.947	73%	13.047	18.3%	3.276	54%	9.771	91%	8.884	2,961
61	18,858		55%	10,447	14.6%	2,749	41%	7,698	97%	7,442	2,481	17,820	73%	12,955	19.1%	3,406	54%	9,549	91%	8,682	2,894
62	18,777		55%	10,403	15.3%	2,864	40%	7,538	97%	7,288	2,429	17,684	73%	12,856	20.0%	3,533	53%	9,323	91%	8,477	2,826
63	18,689		55%	10,354	15.9%	2,977	39%	7,377	97%	7,131	2,377	17,537	73%	12,749	20.8%	3,654	52%	9,095	91%	8,269	2,756
64	18,593		55%	10,301	16.6%	3,087	39%	7,214	97%	6,974	2,325	17,379	73%	12,634	21.7%	3,771	51%	8,863	91%	8,058	2,686
65	18,489		59%	10,871	17.3%	3,194	42%	7,677	97%	7,422	2,474	17,208	67%	11,547	22.6%	3,882	45%	7,664	91%	6,968	2,323
66	18,375		59%	10,804	18.0%	3,299	41%	7,506	97%	7,256	2,419	17,024	67%	11,423	23.4%	3,987	44%	7,436	91%	6,760	2,253
67	18,250		59%	10,731	18.6%	3,399	40%	7,331	97%	7,087	2,362	16,826	67%	11,290	24.3%	4,086	43%	7,204	91%	6,550	2,183
68	18,113		59%	10,650	19.3%	3,496	39%	7,154	97%	6,916	2,305	16,612	67%	11,147	25.1%	4,177	42%	6,970	91%	6,337	2,112
69	17,963		59%	10,562	20.0%	3,588	39%	6,974	97%	6,742	2,247	16,381	67%	10,992	26.0%	4,260	41%	6,732	91%	6,120	2,040
70	17,799		59%	10,466	20.7%	3,6/6	38%	ь, /90	9/%	0,564	2,188	16,132	ь/%	10,824	26.9%	4,334	40%	6,490	91%	5,901	1,967

Undiagnosed Prediabetes Identified by Screening, Receipt of Treatment and Treatment Effectiveness

- To estimate the number of individuals with undiagnosed prediabetes who would be identified through screening we started with the estimated number of females (see Table 6) and males (see Table 7) with undiagnosed prediabetes by age in the birth cohort. We then used the proportion of the population by sex and age whose screening is up to date (see Table 15) to estimate the number of individuals with undiagnosed prediabetes who would be identified by screening (see Table 16). In doing so, we essentially assumed that all individuals with prediabetes would have overweight or obesity (see Table 1).
- We then assumed that all individuals with screen identified prediabetes would be referred to an intensive lifestyle intervention and that 44.8% of those referred would receive an effective dose. Attendance at the intervention would consist of a 70:30

female-to-male ratio. An equal proportion of females and males who attend would receive an effective dose. Of those who receive an effective dose, 22% would not progress from prediabetes to diabetes (see Table 16).

• Table 16 should be read as follows: at age 35, 917 females in the cohort have undiagnosed prediabetes. Of these, 739 (81%) would be identified by screening and referred to an intensive lifestyle intervention, 481 would participate in the intervention long enough to receive an effective dose and 106 (22%) would not progress from prediabetes to diabetes due to their change in lifestyle. At age 36, an additional 56 females would be diagnosed with prediabetes and so on.

Table 16: Individuals with Undiagnosed Prediabetes Identified by Screening Receiving an **Effective Dose** In a BC Birth Cohort of 40,000 Ages 35 to 70 Females Males #in Undiagnosed Identified # Receiving #Not #in Undiagnosed Identified # Receiving #Not Birth Prediabetes Effective Progressing Birth Prediabetes Effective Progressing bv bv Prevalance Incidence Prevalance Incidence Cohort to Diabetes Cohort Screening to Diabetes Screening Dose Age Dose 739 105.8 794 45.3 35 19,736 917 917 481 19,474 1,210 1,210 206 36 19,722 974 56 45 29 6.4 19,442 1,283 73 48 13 2.8 45 29 48 37 19,708 1,030 56 6.4 19,409 1,356 73 12 2.7 45 29 72 47 12 2.7 38 19,693 1,086 56 6.4 19,375 1,428 45 29 47 39 19,677 1,141 56 6.4 19,339 1,500 72 12 2.7 40 19,661 1,197 56 45 29 6.3 19,303 1,571 71 47 12 2.7 45 29 47 12 41 19,643 1,253 56 6.3 19,264 1,642 71 2.7 19.625 1.308 45 29 6.3 1.713 71 46 12 2.7 42 55 19,225 43 19,605 1,363 55 44 28 6.2 19,183 1,783 70 46 12 2.7 44 19,584 1,418 55 44 28 6.2 19,140 1,853 70 46 12 2.7 45 19,561 1,473 55 44 28 6.2 19,094 1,922 69 45 12 2.6 46 19,537 1,527 54 44 28 6.1 19,047 1,990 69 45 12 2.6 47 19,511 1,581 54 44 28 2,058 68 45 12 6.1 18,996 2.6 54 43 48 19,484 1,635 27 6.0 18,943 2,126 67 44 12 2.6 19,454 1,689 54 43 27 6.0 2,192 44 12 49 18,887 66 2.6 50 19,422 1,737 49 43 28 6.2 18,827 2,252 60 47 12 2.7 19,388 43 28 2.310 47 12 51 1.786 48 6.2 18,763 59 2.6 19,352 1,833 48 42 28 6.1 2,368 46 12 52 18,695 58 2.6 53 19,312 1,881 47 42 27 6.0 18,622 2,424 57 45 12 2.6 41 27 11 54 19,270 1,927 47 5.9 18,545 2,480 55 44 2.5 41 26 5.8 43 11 2.5 19,224 1,974 46 18,461 2,534 54 55 40 42 46 26 5.7 53 11 19,174 2,019 18,372 2,587 2.4 56 40 25 41 57 19,121 2,064 45 5.5 18,277 2,638 51 11 2.4 39 25 2,687 39 11 58 19,063 2,108 44 5.4 18,175 49 2.3 19,000 2,151 43 38 24 5.3 18,065 2,735 48 38 10 2.3 59 41 26 2,780 41 18,932 2,194 42 5.7 17,947 46 11 2.4 60 40 25 39 61 18,858 2,235 41 5.5 17,820 2,824 43 11 2.3 18,777 2,275 40 39 24 17,684 2,864 41 37 10 2.2 62 5.2 18,689 2,314 39 37 23 5.0 17,537 2,902 38 35 10 2.1 63 32 18,593 2,351 37 36 21 2,938 35 9 64 4.7 17.379 2.0 9 65 18,489 2,387 36 34 20 4.4 17,208 2,970 32 29 1.9 18,375 2,420 34 33 18 4.0 17,024 2,998 28 26 8 1.7 66 22 7 67 18,250 2,452 32 31 17 3.7 16,826 3,023 25 1.6 2,482 28 6 18,113 29 15 3.2 16,612 3.043 20 18 1.4 68 5 17,963 2,509 27 26 13 2.8 3,058 14 69 16,381 16 1.2 70 17,799 2,533 24 23 10 2.3 16,132 3,069 10 10 4 1.0

Estimating the Complications Avoided Due to Newly Diagnosed and Treated Prediabetes

• As calculated in Table 16, 298 females and 128 males in the BC birth cohort would not progress from prediabetes to diabetes due to screening and intervention. These individuals would also avoid the excess complications attributable to diabetes. In Table 17, we calculate that 42 cases of myocardial infarction, 26 cases of stroke, 97 cases of angina, 44 cases of heart failure, 13 amputations, 17 cases of nephropathy, 5 cases of blindness and 54 cases of cataracts would be avoided.

				Т	able	e 17	: Con	nplic	atior	ns A	voi	ded I	Due	to /	Avoi	ded	Dia	abet	es					
							By A	ge ar	nd Sex	in a	BC	Birth	Coho	ort d	of 40	,000								
	Myoca	rdial Inf	farction	:	Strok	e		Angina	1	He	art Fa	ilure	An	nputa	tion	Nep	ohrop	athy	B	indne	ss		Catara	ct
Age	F	Μ	Т	F	Μ	Т	F	М	Т	F	Μ	Т	F	Μ	Т	F	Μ	Т	F	Μ	Т	F	Μ	Т
35	0.8	0.4	1.2	0.5	0.2	0.8	1.7	0.7	2.5	0.5	0.2	0.7	0.1	0.0	0.1	0.1	0.0	0.1	0.00	0.00	0.00	0.3	0.1	0.4
36	0.5	0.2	0.7	0.3	0.1	0.4	5.9	2.5	8.4	0.5	0.2	0.8	0.1	0.1	0.2	0.2	0.1	0.3	0.07	0.03	0.11	0.9	0.4	1.3
37	0.4	0.2	0.6	0.3	0.1	0.4	2.5	1.1	3.6	0.4	0.2	0.6	0.1	0.0	0.1	0.1	0.0	0.1	0.07	0.03	0.10	0.6	0.3	0.9
38	0.4	0.2	0.6	0.3	0.1	0.4	1.9	0.8	2.8	0.4	0.2	0.5	0.1	0.0	0.1	0.1	0.1	0.2	0.04	0.02	0.06	0.5	0.2	0.7
39	0.5	0.2	0.7	0.3	0.1	0.4	1.8	0.8	2.5	0.4	0.2	0.6	0.1	0.0	0.1	0.1	0.0	0.1	0.04	0.02	0.06	0.5	0.2	0.7
40	0.5	0.2	0.7	0.3	0.1	0.4	1.7	0.7	2.5	0.5	0.2	0.7	0.1	0.0	0.1	0.1	0.1	0.2	0.04	0.02	0.06	0.5	0.2	0.7
41	0.5	0.2	0.7	0.4	0.2	0.5	1.6	0.7	2.4	0.5	0.2	0.7	0.1	0.0	0.2	0.1	0.1	0.2	0.00	0.00	0.00	0.5	0.2	0.7
42	0.6	0.2	0.8	0.4	0.2	0.5	1.6	0.7	2.2	0.5	0.2	0.7	0.1	0.1	0.2	0.2	0.1	0.3	0.01	0.01	0.02	0.7	0.3	1.0
43	0.7	0.3	0.9	0.4	0.2	0.6	1.6	0.7	2.3	0.6	0.3	0.9	0.1	0.1	0.2	0.2	0.1	0.3	0.06	0.02	0.08	0.7	0.3	1.0
44	0.6	0.3	0.9	0.4	0.2	0.6	1.5	0.7	2.2	0.7	0.3	1.0	0.2	0.1	0.2	0.2	0.1	0.3	0.05	0.02	0.07	0.7	0.3	1.0
45	0.7	0.3	0.9	0.4	0.2	0.6	1.5	0.6	2.1	0.7	0.3	1.0	0.2	0.1	0.3	0.3	0.1	0.4	0.07	0.03	0.10	0.8	0.4	1.2
46	0.7	0.3	1.0	0.4	0.2	0.6	1.5	0.6	2.2	0.7	0.3	1.0	0.2	0.1	0.3	0.3	0.1	0.4	0.07	0.03	0.11	0.9	0.4	1.2
47	0.7	0.3	1.0	0.4	0.2	0.6	1.5	0.7	2.2	0.7	0.3	1.1	0.2	0.1	0.3	0.3	0.1	0.4	0.08	0.03	0.11	0.9	0.4	1.3
48	0.7	0.3	1.0	0.4	0.2	0.6	1.6	0.7	2.2	0.8	0.3	1.1	0.2	0.1	0.3	0.3	0.1	0.4	0.08	0.03	0.11	0.9	0.4	1.3
49	0.7	0.3	1.1	0.5	0.2	0.7	1.6	0.7	2.3	0.8	0.3	1.1	0.2	0.1	0.3	0.3	0.1	0.5	0.08	0.04	0.12	1.0	0.4	1.4
50	0.8	0.3	1.1	0.5	0.2	0.7	1.6	0.7	2.3	0.8	0.4	1.2	0.2	0.1	0.4	0.3	0.1	0.5	0.09	0.04	0.12	1.0	0.4	1.4
51	0.8	0.3	1.1	0.5	0.2	0.7	1.7	0.7	2.4	0.8	0.4	1.2	0.3	0.1	0.4	0.3	0.1	0.5	0.09	0.04	0.13	1.0	0.4	1.5
52	0.8	0.4	1.2	0.5	0.2	0.7	1.7	0.7	2.4	0.9	0.4	1.2	0.3	0.1	0.4	0.4	0.2	0.5	0.09	0.04	0.13	1.1	0.5	1.5
53	0.8	0.4	1.2	0.5	0.2	0.7	1.7	0.7	2.5	0.9	0.4	1.3	0.3	0.1	0.4	0.4	0.2	0.5	0.10	0.04	0.14	1.1	0.5	1.6
54	0.9	0.4	1.2	0.5	0.2	0.8	1.7	0.7	2.5	0.9	0.4	1.3	0.3	0.1	0.4	0.4	0.2	0.5	0.10	0.04	0.14	1.1	0.5	1.6
55	0.9	0.4	1.3	0.5	0.2	0.8	1.8	0.8	2.5	0.9	0.4	1.4	0.3	0.1	0.4	0.4	0.2	0.6	0.10	0.04	0.14	1.2	0.5	1.7
56	0.9	0.4	1.3	0.6	0.2	0.8	1.8	0.8	2.6	1.0	0.4	1.4	0.3	0.1	0.4	0.4	0.2	0.6	0.10	0.04	0.15	1.2	0.5	1.7
57	0.9	0.4	1.3	0.6	0.2	0.8	1.8	0.8	2.6	1.0	0.4	1.4	0.3	0.1	0.4	0.4	0.2	0.6	0.11	0.05	0.15	1.2	0.5	1.7
58	0.9	0.4	1.4	0.6	0.2	0.8	1.8	0.8	2.6	1.0	0.4	1.5	0.3	0.1	0.4	0.4	0.2	0.6	0.11	0.05	0.16	1.2	0.5	1.8
59	1.0	0.4	1.4	0.6	0.3	0.8	1.8	0.8	2.6	1.0	0.4	1.5	0.3	0.1	0.5	0.4	0.2	0.6	0.11	0.05	0.16	1.3	0.5	1.8
60	1.0	0.4	1.4	0.6	0.3	0.9	1.9	0.8	2.7	1.1	0.5	1.5	0.3	0.1	0.5	0.4	0.2	0.6	0.12	0.05	0.16	1.3	0.6	1.9
61	1.0	0.4	1.4	0.6	0.3	0.9	1.9	0.8	2.7	1.1	0.5	1.6	0.3	0.1	0.5	0.5	0.2	0.7	0.12	0.05	0.17	1.3	0.6	1.9
62	1.0	0.4	1.5	0.6	0.3	0.9	1.9	0.8	2.7	1.1	0.5	1.6	0.3	0.1	0.5	0.5	0.2	0.7	0.12	0.05	0.17	1.4	0.6	1.9
63	1.0	0.4	1.5	0.6	0.3	0.9	1.9	0.8	2.7	1.1	0.5	1.6	0.4	0.2	0.5	0.5	0.2	0.7	0.12	0.05	0.18	1.4	0.6	2.0
64	1.1	0.5	1.5	0.6	0.3	0.9	1.9	0.8	2.8	1.2	0.5	1.7	0.4	0.2	0.5	0.5	0.2	0.7	0.13	0.05	0.18	1.4	0.6	2.0
65	1.1	0.5	1.5	0.7	0.3	0.9	1.9	0.8	2.8	1.2	0.5	1.7	0.4	0.2	0.5	0.5	0.2	0.7	0.13	0.06	0.18	1.4	0.6	2.1
66	1.1	0.5	1.6	0.7	0.3	1.0	1.9	0.8	2.7	1.2	0.5	1.7	0.4	0.2	0.5	0.5	0.2	0.7	0.13	0.06	0.19	1.5	0.6	2.1
67	1.1	0.5	1.6	0.7	0.3	1.0	1.9	0.8	2.7	1.2	0.5	1.7	0.4	0.2	0.5	0.5	0.2	0.7	0.13	0.06	0.19	1.5	0.6	2.1
68	1.1	0.5	1.6	0.7	0.3	1.0	1.9	0.8	2.7	1.2	0.5	1.8	0.4	0.2	0.5	0.5	0.2	0.7	0.14	0.06	0.19	1.5	0.6	2.1
69	1.1	0.5	1.6	0.7	0.3	1.0	1.9	0.8	2.7	1.2	0.5	1.8	0.4	0.2	0.6	0.5	0.2	0.8	0.14	0.06	0.20	1.5	0.7	2.2
/U Tatal	1.1	0.5	1.6	0.7	0.3	1.0	1.8	0.8	2.6	1.3	0.5	1.8	0.4	0.2	0.6	0.5	0.2	0.8	0.14	0.06	0.20	1.5	0./	2.2
Iotal	30	13	42	18	ð	26	60	29	9/	51	13	44	9.1	3.9	13	12	5	1/	3.2	1.4	4.5	3/	10	54

QALYs Gained due to Complications and Living with Diabetes Avoided

• As noted previously, each of the complications attributable to diabetes, as well as living with diagnosed diabetes, is associated with a reduction on QoL. We have calculated that by avoiding progressing from prediabetes to diabetes, the 298 females would gain 918 QALYs and the 128 males would gain 356 QALYs (see Table 18).

Inter Amputation Nephropative Bilindness Catanat Diagnosed Diabetes 1 7 F M T F M T					by v	Age an	d sex	5					000(ли	complic	ated			
2.4 8. 79 31 11 01 00 01 03 14 00 000 00 00 00 00 00 00 00 00 00 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 0	ш	Stroke M T	Angina F M T	Heart F _i F M	ailure T	Am A	putation M ⊤	ž "	ephropa M	thy ⊤	Bline	Aness M	ו _	Cat	aract M T	Diagn F	osed Di	iabetes T	Total F	QALYs G M	ained T
14.8 36 10 00 11 14 10 000 000 10 <th< td=""><td>6.2 2</td><td>2.4 8.6</td><td>7.9 3.1 11</td><td>0.1 0.</td><td>0.0</td><td>1 0.9</td><td>0.4 1.</td><td>ю.</td><td>4 0.2</td><td>0.6</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.00.0</td><td>00 0.00</td><td>288</td><td>113</td><td>401</td><td>303</td><td>119</td><td>422</td></th<>	6.2 2	2.4 8.6	7.9 3.1 11	0.1 0.	0.0	1 0.9	0.4 1.	ю.	4 0.2	0.6	0.0	0.0	0.0	0.00.0	00 0.00	288	113	401	303	119	422
11 4.3 11 0.0 0.1 0.6 0.2 0.8 0.7 0.3 0.0	3.4	1.4 4.8	26 10 37	0.1 0.	0	1 1.1	0.4 1.	6 1.	2 0.5	1.7	0.8	0.3	L.1 0	0.01.0	00 0.01	- 1.9	- 0.7	-2.6	31	12	43
11 14 0 84 31 2 01 00 01 06 01 00 01 06 01 00 01 00 01 00 01 00 01 00 01 01 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 <td>3.1</td> <td>1.2 4.3</td> <td>11.1 4.3 15</td> <td>0.1 0.</td> <td>0.0</td> <td>1 0.7</td> <td>0.3 1.</td> <td>0.</td> <td>6 0.2</td> <td>0.8</td> <td>0.7</td> <td>0.3</td> <td>L.O</td> <td>.01 0.</td> <td>00 0.01</td> <td>7.9</td> <td>3.1</td> <td>11</td> <td>24</td> <td>6</td> <td>34</td>	3.1	1.2 4.3	11.1 4.3 15	0.1 0.	0.0	1 0.7	0.3 1.	0.	6 0.2	0.8	0.7	0.3	L.O	.01 0.	00 0.01	7.9	3.1	11	24	6	34
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.8	1.1 4.0	8.4 3.3 12	0.1 0.	0	1 0.6	0.2 0.	О	7 0.3	0.9	0.4	0.2	0.6	0.01.0	00 0.01	9.4	3.7	13	22	6	31
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.7	1.1 3.7	7.4 2.9 10	0.1 0.	0	1 0.8	0.3 1.	1.	6 0.2	0.8	0.4	0.2	0.6	0.01.0	00 0.01	9.6	3.8	13	22	∞	30
15 53 70<	3.2	1.3 4.5	7.5 2.9 10	0.1 0.	0 0	1 0.9	0.3 1.	. 0	8 0.3	1.2	0.4	0.2	0.6	0.01	00 0.01	9.4	3.7	13	22	б	31
11 55 51 10 01 10 11 10 11 10 10 10 10 10 10 10 10 10 10 10 11 10 10 10 11 10 11 10<	m r	3 1.5 5.3	7.0 2.7 9.7	0.1	0, 0 0, 0	, 1.0 , 2, 0	0.4	4 r 0 r	8 0.3		0.0	0.0		0.01	00 0.01	9.2	3.6	ст С	22 5	თ ი	8
15 55 61 24 84 01 01 02 14 05 14 16 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16<	0.4	2 1.6 5.8	0.5 2.5 3.0 6.6 2.6 9.1	0.1		т <u>т.</u> 2 1.2	0.5 I.		9 0.4	1. 1 1. 1	0.5	0.2	n z.c		TO:0 00	e.o 9.7	1. t	11	22	0 00	2 00
915 54 57 22 80 01 01 02 17 05 23 14 05 13 09 000 001 57 22 8 10 0115 55 57 22 78 01 01 02 17 07 23 09 000 000 67 26 93 0115 55 55 57 22 78 01 01 02 17 07 23 09 000 000 67 28 23 24 15 05 10 01 000 000 53 21 74 15 05 14 05 10 000 000 53 21 73 20 10 10 02 17 07 14 15 07 01 000 000 67 23 24 21 74 25 25 21 73 14 25	'n	9 1.5 5.5	6.1 2.4 8.4	0.1	٦ 0	2 1.4	0.6 2.	Ч	2 0.5	1.6	0.4	0.2	0.6	010	00 0.01	7.6	3.0	11	21	∞	29
9 15 55 57 27 0 </td <td>'n</td> <td>9 1.5 5.4</td> <td>5.7 2.2 8.0</td> <td>0.1 0.</td> <td>1 0.</td> <td>2 1.6</td> <td>0.6 2.</td> <td>.3 1-</td> <td>4 0.5</td> <td>1.9</td> <td>0.6</td> <td>0.2</td> <td>0.9.0</td> <td>0.01.0</td> <td>00 0.01</td> <td>7.2</td> <td>2.8</td> <td>10</td> <td>21</td> <td>∞</td> <td>29</td>	'n	9 1.5 5.4	5.7 2.2 8.0	0.1 0.	1 0.	2 1.6	0.6 2.	.3 1-	4 0.5	1.9	0.6	0.2	0.9.0	0.01.0	00 0.01	7.2	2.8	10	21	∞	29
0 15 55 57 27 0 1 02 17 07 23 14 05 20 07 03 09 000 001 58 22 8 1 0 16 56 22 78 01 01 02 17 07 24 15 06 20 07 33 10 001 000 002 58 22 8 1 74 2 16 59 57 15 06 21 07 03 10 001 000 002 58 24 21 74 2 16 59 57 27 0 01 000	'n	.9 1.5 5.5	5.7 2.2 7.9	0.1 0.	1 0	2 1.7	0.6 2.		4 0.5	1.9	0.6	0.3 (0.9.0	.01 0.	00 0.01	6.7	2.6	9.3	20	∞	28
1015 55 56 27 01 01 02 17 07 24 14 06 20 03 03 01 000 001 58 22 81 1216 55 56 27 8 01 01 02 17 07 24 15 06 21 07 03 10 000 000 58 22 81 1216 55 55 57 22 78 02 01 02 103 10 000 001 53 23 20 73 1216 55 57 22 78 02 01 02 10 02 13 16 66 23 07 31 10 001<000	ч	I.0 1.5 5.5	5.7 2.2 7.9	0.1 0.	1 0	2 1.7	0.7 2.	3.1	4 0.5	2.0	0.7	0.3 (0.9	.01 0.	00 0.01	6.3	2.4	8.7	20	∞	28
10 16 56 56 27 78 01 01 02 17 07 23 10 001 000 022 54 21 74 12 16 55 55 55 55 55 55 55 57 20 01 02 18 07 25 10 001 000 002 53 22 80 73 20 73 10 001<000	4	I.0 1.5 5.5	5.6 2.2 7.8	0.1 0.	1 0	2 1.7	0.7 2.	4 1.	4 0.6	2.0	0.7	0.3 (0.9.0	0.01 0.	00 0.01	5.8	2.2	8.1	20	8	27
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	.0 1.6 5.6	5.6 2.2 7.8	0.1 0.	1 0	2 1.7	0.7 2.	4 1.	5 0.6	2.0	0.7	0.3	0.9	0.01	00 0.02	5.4	2.1	7.4	19	7	26
216 59 58 22 80 02 01 02 18 07 23 10 001 001 001 002 53 22 73 23 216 59 57 22 73 18 66 23 07 03 10 001 001 002 24 18 66 53 23 115 53 23 115 53 23 116 59 53 113 46 53 114 46 53	Р	.2 1.6 5.8	5.8 2.2 8.0	0.1 0.	1 0	2 1.8	0.7 2.	5.1.	5 0.6	2.1	0.7	0.3	LO LO	0.01 0.	00 0.02	5.8	2.2	8.0	20	∞	28
1216 5.9 5.7 22 0.1 0.2 1.9 0.7 2.6 1.6 0.7 0.3 10 0.01 0.02 4.8 1.8 6.6 1216 5.9 5.7 22 7.8 0.2 0.1 0.2 1.9 0.7 2.6 1.6 0.6 2.2 0.7 0.3 10 0.01 0.02 4.3 1.6 5.9 1216 5.8 5.5 2.1 7.6 0.2 0.1 0.2 1.9 0.7 2.6 1.6 0.6 2.2 0.7 0.3 1.0 0.01 0.02 3.3 1.3 4.6 5.3 1.3 1.3 1.4 5.3 1.3 0.2 0.1 0.3 1.9 0.7 2.6 1.6 0.6 2.2 0.7 0.3 1.0 0.01 0.02 2.3 1.3 1.4 6.9 5.3 1.3 1.4 6.9 5.3 1.4 6.6 2.3 1.0 0.01 0.02 0.0 2.3 1.1 4.0 2.3 1.4 1.4	ч	I.2 1.6 5.9	5.8 2.2 8.0	0.2 0.	1 0	2 1.8	0.7 2.	5.	5 0.6	2.1	0.7	0.3	LO D	0.01	01 0.02	5.3	2.0	7.3	20	8	27
1216 59 57 22 01 02 10 01 001 <td>7</td> <td>l.2 1.6 5.9</td> <td>5.7 2.2 7.9</td> <td>0.2 0.</td> <td>1 0.</td> <td>2 1.9</td> <td>0.7 2.</td> <td>6 1.</td> <td>6 0.6</td> <td>2.2</td> <td>0.7</td> <td>0.3</td> <td>L.O</td> <td>0.01</td> <td>01 0.02</td> <td>4.8</td> <td>1.8</td> <td>6.6</td> <td>19</td> <td>7</td> <td>26</td>	7	l.2 1.6 5.9	5.7 2.2 7.9	0.2 0.	1 0.	2 1.9	0.7 2.	6 1.	6 0.6	2.2	0.7	0.3	L.O	0.01	01 0.02	4.8	1.8	6.6	19	7	26
42 16 58 56 21 77 02 01 02 19 07 26 16 0.6 22 0.7 0.3 10 0.01 0.02 3.8 15 5.3 42 16 58 55 21 7.6 0.2 0.1 0.2 19 0.7 2.6 16 0.6 2.2 0.7 0.3 10 0.01 0.02 3.3 13 4.6 41 16 57 5.5 5.0 1.3 0.2 0.1 0.3 19 0.7 2.6 1.6 0.6 2.2 0.7 0.3 10 0.01 0.02 2.9 11 4.0 41 16 57 5.3 5.0 1.9 0.7 2.6 1.6 0.6 2.2 0.7 0.3 10 0.01 0.02 2.9 11 4.0 3.4 4.6 3.4 4.6 3.4 4.6 3.4 4.6 3.4 4.6 3.4 4.6 3.4 4.6 3.4 4.6 3.4 4.6 3.4 4.6 3.4 4.6 3.4 4.6 3.4	~	4.2 1.6 5.9	5.7 2.2 7.8	0.2 0.	1 0	2 1.9	0.7 2.	1.	6 0.6	2.2	0.7	0.3	L.O	0.01	01 0.02	4.3	1.6	5.9	19	7	26
1116 5.5 5.1 7.6 0.2 0.1 0.2 19 0.7 2.6 1.6 0.6 2.2 0.7 0.3 10 0.01 0.02 2.3 1.1 4.0 1116 5.7 5.3 2.0 7.3 0.2 0.1 0.2 1.9 0.7 2.6 1.6 0.6 2.2 0.7 0.3 10 0.01 0.02 2.9 1.1 4.0 1116 5.7 5.3 2.0 7.1 0.2 0.1 0.3 1.8 0.7 2.6 1.6 0.6 2.2 0.7 0.3 1.0 0.01 0.02 2.0 0.3 1.4 0.0 2.4 0.9 3.4 1115 5.6 5.0 1.9 7.0 0.3 1.9 0.7 2.6 1.6 0.6 2.2 0.7 0.3 1.0 0.3 1.4 0.7 2.6 1.6 0.6 2.1 0.3 1.0 0.3 1.4 0.9 2.4 0.9 2.4 0.9 2.4 0.3 1.4	7	1.2 1.6 5.8	5.6 2.1 7.7	0.2 0.	1 0.	2 1.9	0.7 2.	1	6 0.6	2.2	0.7	0.3	L.O	0.01	01 0.02	3.8	1.5	5.3	18	7	25
116 5.8 5.4 2.1 7.4 0.2 0.1 0.2 1.9 0.7 2.6 1.6 0.6 2.2 0.7 0.3 1.0 0.01 0.02 2.9 1.1 4.0 116 5.7 5.3 2.0 7.3 0.2 0.1 0.3 1.9 0.7 2.6 1.6 0.6 2.2 0.7 0.3 1.0 0.01 0.01 0.02 2.4 0.9 3.4 1115 5.6 5.0 1.9 7.0 0.3 1.8 0.7 2.6 1.6 0.6 2.2 0.7 0.3 1.0 0.01 0.01 0.02 0.8 2.7 1115 5.6 5.0 1.9 7.0 0.3 1.9 0.7 2.6 1.6 0.6 2.2 0.7 0.3 1.0 0.01 0.01 0.02 0.6 2.1 0.8 2.7 0.6 2.1 0.8 2.7 0.6 2.1 0.8 2.7 0.6 2.1 0.8 1.4 0.6 0.6 0.1 0.3 <td>ব</td> <td>.2 1.6 5.8</td> <td>5.5 2.1 7.6</td> <td>0.2 0.</td> <td>1 0</td> <td>2 1.9</td> <td>0.7 2.</td> <td>.6</td> <td>6 0.6</td> <td>2.2</td> <td>0.7</td> <td>0.3</td> <td>LO D</td> <td>0.01</td> <td>01 0.02</td> <td>3.3</td> <td>1.3</td> <td>4.6</td> <td>17</td> <td>7</td> <td>24</td>	ব	.2 1.6 5.8	5.5 2.1 7.6	0.2 0.	1 0	2 1.9	0.7 2.	.6	6 0.6	2.2	0.7	0.3	LO D	0.01	01 0.02	3.3	1.3	4.6	17	7	24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Р	.2 1.6 5.8	5.4 2.1 7.4	0.2 0.	1 0	2 1.9	0.7 2.	.6	6 0.6	2.2	0.7	0.3	LO LO	0.01	01 0.02	2.9	1.1	4.0	17	9	23
1116 5.7 5.2 0.7 0.3 1.0 0.01 0.02 2.0 0.8 2.7 1115 5.6 5.0 1.9 7.0 0.3 1.8 0.7 2.5 1.5 0.01 0.01 0.01 0.02 1.5 0.6 2.1 1115 5.6 5.0 1.9 7.0 0.3 1.9 0.7 2.6 1.6 0.6 2.2 0.7 0.3 1.0 0.01 0.01 0.02 1.5 0.6 2.1 1115 5.6 5.0 1.9 6.9 0.2 0.1 0.3 1.9 0.7 2.6 1.6 0.6 2.2 0.7 0.3 1.0 0.02 0.01 0.02 1.1 0.8 2.9 1015 5.5 4.9 1.8 6.7 0.2 1.1 0.3 1.8 0.7 2.5 1.5 0.6 2.1 0.7 0.3 1.0 0.02 0.01 0.02 0.6 0.6 2.1 0.8 2.1 0.6 0.6 0.6 0.6	4	I.1 1.6 5.7	5.3 2.0 7.3	0.2 0.	1 0	3 1.9	0.7 2.	.6	6 0.6	2.2	0.7	0.3	L.O	0.01	01 0.02	2.4	0.9	3.4	16	9	23
1115 5.6 5.0 19 7.0 0.2 0.1 0.3 1.8 0.7 2.5 1.0 0.01 0.02 0.15 0.6 2.1 1116 5.7 5.1 1.9 7.0 0.2 0.1 0.3 1.9 0.7 2.6 1.6 0.6 2.2 0.7 0.3 1.0 0.02 0.01 0.02 2.1 0.8 2.9 10 15 5.5 5.0 1.9 6.9 0.2 0.1 0.3 1.8 0.7 2.5 1.5 0.6 2.1 0.7 0.3 1.0 0.02 0.01 0.02 1.1 0.8 2.9 10 15 5.5 4.9 1.8 6.7 0.3 1.8 0.7 2.5 1.5 0.6 2.1 0.7 0.3 1.0 0.02 0.01 0.02 1.4 1.4 18 17 6.3 0.3 1.8 0.7 2.5 1.5 0.6 2.1 0.7 0.3 1.0 0.02 0.01 0.02 0.1	7	1.1 1.6 5.7	5.2 2.0 7.1	0.2 0.	10.	3 1.8	0.7 2.	1	6 0.6	2.2	0.7	0.3	L.O	0.01	01 0.02	2.0	0.8	2.7	16	9	22
1116 5.7 5.1 1.9 7.0 0.2 0.1 0.3 1.9 0.7 0.3 1.0 0.02 0.01 0.02 2.1 0.8 2.9 1115 5.6 5.0 1.9 6.9 0.2 0.1 0.3 1.9 0.7 2.6 1.6 0.6 2.2 0.7 0.3 1.0 0.02 0.01 0.02 1.5 0.6 2.1 0.7 1.8 0.7 2.5 1.5 0.6 2.1 0.7 0.3 1.0 0.02 0.01 0.02 1.0 0.4 1.4 1.9 1.5 5.4 4.7 1.8 6.5 0.2 0.1 0.3 1.8 0.7 2.5 1.5 0.6 2.1 0.7 0.3 1.0 0.02 0.01 0.02 0.1 0.4 1.4 1.9 1.5 5.3 4.6 1.7 6.3 0.3 1.8 0.7 2.5 1.5 0.6 2.1 0.7 0.3 1.0 0.02 0.01 0.02 0.0 0.0 0.0	4	I.1 1.5 5.6	5.0 1.9 7.0	0.2 0.	1 0	3 1.8	0.7 2.	5.1.	5 0.6	2.1	0.7	0.3	L.O	0.01	01 0.02	1.5	0.6	2.1	15	9	21
1115 5.6 5.0 19 6.9 0.2 0.1 0.3 1.9 0.7 2.6 1.6 0.6 2.2 0.7 0.3 1.0 0.02 0.01 0.02 1.5 0.6 2.1 10 15 5.5 4.9 1.8 6.7 0.2 0.1 0.3 1.8 0.7 2.5 1.5 0.6 2.1 0.7 0.3 1.0 0.02 0.01 0.02 1.0 0.4 1.4 3.9 15 5.3 4.6 1.7 6.3 0.3 1.8 0.7 2.5 1.5 0.6 2.1 0.7 0.3 1.0 0.02 0.01 0.02 0.7 0.3 1.4 0.4 1.4 0.5 0.7 0.3 1.0 0.02 0.0	~	1.1 1.6 5.7	5.1 1.9 7.0	0.2 0.	1 0	3 1.9	0.7 2.	1.	6 0.6	2.2	0.7	0.3	LO LO	02 0	01 0.02	2.1	0.8	2.9	16	9	22
No 1.5 5.5 4.9 1.8 6.7 0.2 0.1 0.3 1.8 0.7 0.3 1.0 0.02 0.01 0.02 1.0 0.4 1.5 1.6 1.1 1.1 1.1 1.1 1.1 1.1 0.1 0.3 1.7 0.7 2.4 1.5 0.6 2.1 0.7 0.3 1.0 0.02 0.01 0.02 0.0	7	l.1 1.5 5.6	5.0 1.9 6.9	0.2 0.	1 0	3 1.9	0.7 2.	.6	6 0.6	2.2	0.7	0.3	L.O	0.02	01 0.02	1.5	0.6	2.1	15	9	21
15 5.4 4.7 1.8 6.5 0.2 0.1 0.3 1.8 0.7 2.5 1.6 0.7 0.3 1.0 0.02 0.01 0.02 0.2 0.7 0.7 1.9 1.9 1.5 5.3 4.6 1.7 6.3 0.2 0.1 0.3 1.8 0.7 2.5 1.5 0.6 2.1 0.7 0.3 1.0 0.02 0.01 0.02 0.0	4	1.0 1.5 5.5	4.9 1.8 6.7	0.2 0.	1 0	3 1.8	0.7 2.	.5 .1	5 0.6	2.1	0.7	0.3	LO LO	02 0	01 0.02	1.0	0.4	1.4	14	ъ	20
8)91.5 5.3 4.6 1.7 6.3 0.2 0.1 0.3 1.8 0.7 0.3 10 0.02 0.01 0.02 - 0.0 - 0.1 <		3.9 1.5 5.4	4.7 1.8 6.5	0.2 0.	1 0.	3 1.8	0.7 2.	5.1.	5 0.6	2.1	0.7	0.3	L.O	0.02 0.	01 0.02	0.5	0.2	0.7	14	S	19
.8 1.4 5.2 4.4 1.7 6.1 0.2 0.1 0.3 1.7 0.7 2.4 1.5 0.6 2.0 0.7 0.3 1.0 0.02 0.01 0.02 - 0.2 -0.7 1.4 1.7 1.4 5.0 4.2 1.4 0.5 2.0 0.7 0.3 0.9 0.02 0.01 0.02 - 1.4 - - - - 0.4 -1.4 - - - 0.4 -1.4 - - 0.3 0.9 0.02 0.01 0.02 - 1.4 - 0.4 -1.4 - 0.4 -1.4 - 0.4 -1.4 - 0.4 -1.4 - 0.4 -1.4 - 0.4 0.4 -0.4 -1.4 - 0.4 -1.4 - 0.4 -1.4 - 0.4 -1.4 - 0.4 -0.5 0.6 0.6 0.02 0.01 0.03 -0.5 0.6 -0.5 0.7 0.6 0.7 0.6 0.7 0.7 <td< td=""><td>m</td><td>.9 1.5 5.3</td><td>4.6 1.7 6.3</td><td>0.2 0.</td><td>1 0</td><td>3 1.8</td><td>0.7 2.</td><td>5.</td><td>5 0.6</td><td>2.1</td><td>0.7</td><td>0.3</td><td>LO D</td><td>02 0</td><td>01 0.02</td><td>- 0.0</td><td>- 0.0</td><td>-0.0</td><td>13</td><td>ъ</td><td>18</td></td<>	m	.9 1.5 5.3	4.6 1.7 6.3	0.2 0.	1 0	3 1.8	0.7 2.	5.	5 0.6	2.1	0.7	0.3	LO D	02 0	01 0.02	- 0.0	- 0.0	-0.0	13	ъ	18
3.7 1.4 5.0 4.2 1.6 5.4 1.4 0.5 2.0 0.7 0.3 0.9 0.02 0.01 0.02 - 1.4 - 1.4 - 1.4 0.5 1.9 0.7 0.3 0.9 0.02 0.01 0.02 - 1.4 - 1.4 0.5 1.9 0.7 0.2 0.9 0.02 0.01 0.03 - 1.4 - 1.4 0.5 1.9 0.7 0.2 0.9 0.02 0.01 0.03 - 1.4 - 2.1 3.5 1.4 5.3 1.4 0.5 1.9 0.7 0.2 0.9 0.02 0.01 0.03 - 1.4 0.5 2.1 9.5 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.7 0.7 0.6 0.7 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 <td></td> <td>3.8 1.4 5.2</td> <td>4.4 1.7 6.1</td> <td>0.2 0.</td> <td>1 0.</td> <td>3 1.7</td> <td>0.7 2.</td> <td>4 1.</td> <td>5 0.6</td> <td>2.0</td> <td>0.7</td> <td>0.3</td> <td>L.O</td> <td>0.02 0.</td> <td>01 0.02</td> <td>- 0.5</td> <td>- 0.2</td> <td>-0.7</td> <td>12</td> <td>S</td> <td>16</td>		3.8 1.4 5.2	4.4 1.7 6.1	0.2 0.	1 0.	3 1.7	0.7 2.	4 1.	5 0.6	2.0	0.7	0.3	L.O	0.02 0.	01 0.02	- 0.5	- 0.2	-0.7	12	S	16
3.6 1.3 4.9 4.0 1.5 5.6 0.2 0.1 0.3 1.7 0.6 2.1 1.9 0.7 0.2 0.9 0.02 0.01 0.03 - 1.5 - 0.6 -2.1 1.3 3.5 1.3 4.8 3.8 1.4 5.3 0.2 0.1 0.3 1.6 0.6 2.1 1.9 0.6 0.2 0.9 0.02 0.01 0.03 - 0.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.1 -		3.7 1.4 5.0	4.2 1.6 5.8	0.2 0.	1 0.	3 1.7	0.6 2.	4 1.	4 0.5	2.0	0.7	0.3 (0.9	0.02 0.	01 0.02	- 1.0	- 0.4	-1.4	11	4	15
3.5 1.3 4.8 3.8 1.4 5.3 0.2 0.1 0.3 1.6 0.6 2.2 1.4 0.5 1.9 0.6 0.2 0.9 0.02 0.01 0.03 - 2.0 - 0.7 -2.7 3.3 1.2 4.6 3.6 1.4 5.0 0.2 0.1 0.3 1.6 0.6 2.2 1.3 0.5 1.8 0.6 0.2 0.9 0.02 0.01 0.03 - 2.5 - 0.9 -3.4		3.6 1.3 4.9	4.0 1.5 5.6	0.2 0.	1 0	3 1.7	0.6 2.		4 0.5	1.9	0.7	0.2	0.9	0.02 0.	01 0.03	- 1.5	- 0.6	-2.1	10	4	14
3.3 1.2 4.6 3.6 1.4 5.0 0.2 0.1 0.3 1.6 0.6 2.2 1.3 0.5 1.8 0.6 0.2 0.9 0.02 0.01 0.03 - 2.5 - 0.9 -3.4		3.5 1.3 4.8	3.8 1.4 5.3	0.2 0.	1 0.	3 1.6	0.6 2.	2 1.	4 0.5	1.9	0.6	0.2 (0.9	0.02 0.	01 0.03	- 2.0	- 0.7	-2.7	6	4	13
		3.3 1.2 4.6	3.6 1.4 5.0	0.2 0.	1 0.	3 1.6	0.6 2.	2 1.	3 0.5	1.8	0.6	0.2 (0.9	0.02	01 0.03	- 2.5	- 0.9	-3.4	8	m	12
4.1.34./ 3.61.350.00 0.20 0.20 1.30 0.52 1.40.52 1.40.50 4.1 5.00 0.20 0.20 0.20 0.20 0.20 0.20 0.20	(1)	3.4 1.3 4.7	3.6 1.3 5.0	0.2 0.	1 0.	3 1.6	0.6 2.	2 1.	4 0.5	1.9	0.6	0.2 (0.9	0.02 0.	01 0.03	- 3.1	- 1.2	-4.3	8	ĸ	11
0 54 194 226 87 313 5.5 2.4 7.9 56 21 77 47 18 65 22 8 30 0.44 0.19 0.62 418 163 581 9	4	0 54 194	226 87 313	5.5 2.4	1 7.9	56	21 7	4	7 18	65	22	∞	0	.44 0	19 0.62	418	163	581	918	356	1,274

Life Years Gained with Diabetes Avoided

• As noted previously, diabetes is associated with a reduced life expectancy (see Table 10). We have calculated that by avoiding progressing from prediabetes to diabetes, the 298 females would gain 1,761 life years and the 128 males would gain 621 life years (see Table 19).

Table 19: Life Years Gained due to Diabetes Avoided																
By Age and Sex in a BC Birth Cohort of 40,000																
	Incide	nt Diab	etes	Life Exp	ectancy	% Reduc	tion in	Total Life Years								
	Α	voided	l	in	BC	LE with D	iabetes	(Gaineo	ł						
Age	F	М	Т	F	Μ	F	Μ	F	Μ	Т						
35	106	45	151	50.8	46.5	-13.9%	-12.7%	746	268	1,014						
36	6.4	2.8	9.2	49.9	45.6	-13.9%	-12.7%	44	16	60						
37	6.4	2.7	9.1	48.9	44.7	-13.9%	-12.7%	43	16	59						
38	6.4	2.7	9.1	47.9	43.7	-13.9%	-12.7%	42	15	58						
39	6.4	2.7	9.1	47.0	42.8	-13.9%	-12.7%	41	15	56						
40	6.3	2.7	9.0	46.0	41.9	-13.9%	-12.7%	40	14	55						
41	6.3	2.7	9.0	45.1	41.0	-13.9%	-12.7%	39	14	53						
42	6.3	2.7	9.0	44.1	40.1	-13.9%	-12.7%	38	14	52						
43	6.2	2.7	8.9	43.1	39.1	-13.9%	-12.7%	37	13	51						
44	6.2	2.7	8.9	42.2	38.2	-13.9%	-12.7%	36	13	49						
45	6.2	2.6	8.8	41.2	37.3	-14.8%	-12.8%	38	13	50						
46	6.1	2.6	8.8	40.3	36.4	-14.8%	-12.8%	37	12	49						
47	6.1	2.6	8.7	39.3	35.5	-14.8%	-12.8%	35	12	47						
48	6.0	2.6	8.6	38.4	34.6	-14.8%	-12.8%	34	11	46						
49	6.0	2.6	8.5	37.4	33.7	-14.8%	-12.8%	33	11	44						
50	6.2	2.7	8.9	36.5	32.8	-15.1%	-13.3%	34	12	46						
51	6.2	2.6	8.8	35.6	31.9	-15.1%	-13.3%	33	11	44						
52	6.1	2.6	8.7	34.6	31.0	-15.1%	-13.3%	32	11	43						
53	6.0	2.6	8.6	33.7	30.2	-15.1%	-13.3%	30	10	41						
54	5.9	2.5	8.4	32.8	29.3	-15.1%	-13.3%	29	10	39						
55	5.8	2.5	8.3	31.9	28.4	-15.7%	-14.0%	29	10	39						
56	5.7	2.4	8.1	30.9	27.5	-15.7%	-14.0%	28	9	37						
57	5.5	2.4	7.9	30.0	26.7	-15.7%	-14.0%	26	9	35						
58	5.4	2.3	7.7	29.1	25.8	-15.7%	-14.0%	25	8	33						
59	5.3	2.3	7.5	28.2	25.0	-15.7%	-14.0%	23	8	31						
60	5.7	2.4	8.1	27.3	24.1	-16.5%	-14.9%	26	9	34						
61	5.5	2.3	7.8	26.4	23.3	-16.5%	-14.9%	24	8	32						
62	5.2	2.2	7.5	25.5	22.5	-16.5%	-14.9%	22	8	30						
63	5.0	2.1	7.1	24.6	21.7	-16.5%	-14.9%	20	7	27						
64	4.7	2.0	6.7	23.8	20.9	-16.5%	-14.9%	18	6	25						
65	4.4	1.9	6.3	22.9	20.1	-17.3%	-16.7%	17	6	24						
66	4.0	1.7	5.8	22.0	19.3	-17.3%	-16.7%	15	6	21						
67	3.7	1.6	5.2	21.2	18.5	-17.3%	-16.7%	13	5	18						
68	3.2	1.4	4.6	20.3	17.7	-17.3%	-16.7%	11	4	16						
69	2.8	1.2	4.0	19.5	17.0	-17.3%	-16.7%	9	3	13						
70	2.3	1.0	3.2	18.7	16.2	-18.4%	-18.6%	8	3	11						
Total	297	127	425	5.9	4.9			1,761	621	2,381						

Summary of CPB

Based on these assumptions, the CPB associated with screening for, and treatment of, prediabetes in adults aged 35 to 70 years who have overweight or obesity in a BC birth cohort of 40,000 is 3,655 QALYs (2,679 QALYs in females and 976 QALYs in males) (see Table 20).

Table 20: CPB of Screening for, and Treatment of, Prediabetes in Asymptomatic Non-Pregnant Adults Aged 35 to 70 Years Who Have Overweight or Obesity

Row							
Label	Variable	Base Case	Data Source				
	In the Absence of Screening						
а	Life years lived with diagnosed prediabetes - Females	15,699	Table 6				
b	Life years lived with undiagnosed prediabetes - Females	65,224	Table 6				
с	Life years lived with diagnosed diabetes - Females	70,143	Table 6				
d	Life years lived with undiagnosed diabetes - Females	59,283	Table 6				
е	Total life years lived with prediabetes/diabetes - Females	210,349	=a+b+c+d				
f	Life years lived with diagnosed prediabetes - Males	15,713	Table 7				
g	Life years lived with undiagnosed prediabetes - Males	83,109	Table 7				
h	Life years lived with diagnosed diabetes - Males	84,987	Table 7				
i	Life years lived with undiagnosed diabetes - Males	48,869	Table 7				
j	Total life years lived with prediabetes/diabetes - Males	232,678	=f+g+h+i				
k	Expected # of Complications - Females	3,627	Table 11				
I	Expected # of Complications - Males	3,742	Table 11				
m	Expected # of Complications - Total	7,369	=k+l				
n	QALYs lost due to complications and living with diagnosed diabetes - Females	13,450	Table 12				
0	QALYs lost due to complications and living with diagnosed diabetes - Males	13,302	Table 12				
р	QALYs lost due to complications and living with diagnosed diabetes - Total	26,752	=n+o				
q	LYL attributable to diabetes - Females	33,189	Table 13				
r	LYL attributable to diabetes - Males	27,761	Table 13				
S	LYL attributable to diabetes - Total	60,950	=q+r				
	With Screening / Intervention						
t	Incident diabetes avoided - Females	297	Table 16				
u	Incident diabetes avoided - Males	127	Table 16				
v	Incident diabetes avoided - Total	425	=t+u				
w	Complications avoided due to diabetes avoided - Females	141	Table 17				
х	Complications avoided due to diabetes avoided - Males	61	Table 17				
У	Complications avoided due to diabetes avoided - Total	202	=w+x				
Z	QALYs gained due to complications and living with diabetes avoided - Females	918	Table 18				
аа	QALYs gained due to complications and living with diabetes avoided - Males	356	Table 18				
ab	QALYs gained due to complications and living with diabetes avoided - Total	1,274	=z+aa				
ас	Life years gained due to diabetes avoided - Females	1,761	Table 19				
ad	Life years gained due to diabetes avoided - Males	621	Table 19				
ae	Life years gained due to diabetes avoided - Total	2,381	=ac+ad				
af	Potential QALYs gained, Screening increasing from 0% to 80.7% - Females	2,679	=z+ac				
ag	Potential QALYs gained, Screening increasing from 0% to 80.7% - Males	976	=aa+ad				
ah	Potential QALYs gained, Screening increasing from 0% to 80.7% - Total	3,655	=af+ag				

We also modified a number of major assumptions and recalculated the CPB as follows:

- Reduce the disutility associated with a stroke from 20.0% to 13.4%, angina from 8.0% to 5.2%, heart failure from 7.2% to 4.7%, amputation from 16.7% to 11.4%, nephropathy from 10.4% to 7.0%, blindness from 18.7% to 12.4%, cataract from 1.0% to 0.6% and living with diagnosed diabetes from 4.9% to 3.1%. CPB = 3,209 (2,357 in females and 852 in males).
- Increase the disutility associated with a stroke from 20.0% to 26.5%, angina from 8.0% to 11.3%, heart failure from 7.2% to 10.3%, amputation from 16.7% to 22.9%, nephropathy from 10.4% to 14.7%, blindness from 18.7% to 26.0%, cataract from 1.0% to 1.5% and living with diagnosed diabetes from 4.9% to 7.2%. CPB = 4,191 (3,065 in females and 1,126 in males).
- Decrease the proportion of those referred to an intensive lifestyle intervention who receive an effective dose from 44.8% to 18.7%. CPB = **1,526** (1,118 in females and 408 in males).
- Increase the effectiveness of the intensive lifestyle intervention in transitioning from prediabetes to diabetes from 22.0% to 31.0%. CPB = **5,151** (3,775 in females and 1,376 in males).
- Decrease the effectiveness of the intensive lifestyle intervention in transitioning from prediabetes to diabetes from 22.0% to 12.0%. CPB = 1,994 (1,461 in females and 533 in males).

Modelling Cost-Effectiveness

In this section, we model CE associated with screening for, and treatment of, prediabetes in non-pregnant adults aged 35 to 70 years who have overweight or obesity in a BC birth cohort of 40,000.

In calculating CE, we made the following assumptions:

Unit Costs

- The cost of an office visit to a General Practitioner (GP) in BC is estimated at \$35.97.938
- Patient time costs resulting from receiving, as well as travelling to and from, a service are valued based on the average hourly wage rate in BC in 2022 (\$31.49⁹³⁹) plus 18% benefits for an average cost per hour of \$37.16. In the absence of specific data on the amount of time required, we assume two hours per service.

 ⁹³⁸ Ministry of Health. *Medical Services Commission Payment Schedule*. 2021. Available at https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/medical-services-plan/msc-payment-schedule-may-2021.pdf. Accessed September 2023.
 ⁹³⁹ BC Stats. *Earning & Employment Trends – August 2022*. Available at

⁹³⁹ BC Stats. Earning & Employment Trends – August 2022. Available at https://www2.gov.bc.ca/assets/gov/data/statistics/people-populationcommunity/income/earnings_and_employment_trends_data_tables.pdf. Accessed September 2023.

- Laboratory screening tests The cost of an A1C test (MSP fee item 91745) in BC is \$5.30.940,941
- Cohen and colleagues estimated the *first year costs* associated with a **myocardial infarction** in Ontario to be \$20,794 (in 2008 CAD).⁹⁴² We converted this to \$25,500 in 2022 CAD. Cohen and colleagues estimated the *ongoing annual costs* following a myocardial infarct to be \$1,325 (in 2008 CAD).⁹⁴³ We converted this to \$1,626 in 2022 CAD.
- Goeree et al estimated the *first year costs* associated with a **stroke** in Canada by age as follows:⁹⁴⁴
 - <55 years of age \$15,926 in 2004 CAD (converted to \$22,196 in 2022 CAD)
 - o 55-64 \$12,955 (\$18,056)
 - o 65-74 \$24,593 (\$34,276)
 - o 75-84 \$28,608 (\$39,872)
 - $\geq 85 \$29,210 (\$40,711)$
- Gloede and coauthors in Australia estimated the *ongoing annual costs* (including informal care and out-of-pocket costs) associated with an ischemic **stroke** to be \$7,996 (in 2010 AUD) while costs associated with a haemorrhagic stroke were \$10,251.⁹⁴⁵ Based on a mix of 85% ischemic strokes in Canada,⁹⁴⁶ the weighted cost would be \$8,335. We converted this to \$8,524 in 2022 CAD.
- The typical event cost for **angina** is \$3,183 with annual costs thereafter of \$1,485 (in 2000 CAD)⁹⁴⁷ or \$5,328 and \$2,486 respectively in 2022 CAD.

⁹⁴⁰ BC Ministry of Health. Schedule of Fees for the Laboratory Services Outpatient Payment Schedule. February 29, 2024. Available online at

http://www.phsa.ca/plms/Documents/Laboratory%20Services%20Outpatient%20Payment%20Schedule.pdf. Accessed March 2024.

⁹⁴¹ Approximately 73% of hemoglobin A1C testing in BC is conducted by LifeLabs, a private laboratory provider who is compensated through the Master Laboratory Services Agreement and not on a fee-for-service basis as with other providers in the province. This means that the fee amount included in the Outpatient Payment Schedule may not actually be reflective of the true cost of the testing to the system, as LifeLabs is compensated through a contract amount encompassing many different laboratory services. Jillian Hannah, Senior Policy Analyst, BC Ministry of Health. Personal Communication, March 19, 2024.

⁹⁴² Cohen D, Manuel D, Tugwell P et al. Direct healthcare costs of acute myocardial infarction in Canada's elderly across the continuum of care. *The Journal of Economics of Ageing*. 2014; 3: 44-49.

⁹⁴³ Cohen D, Manuel D, Tugwell P et al. Direct healthcare costs of acute myocardial infarction in Canada's elderly across the continuum of care. *The Journal of Economics of Ageing*. 2014; 3: 44-49

⁹⁴⁴ Goeree R, Blackhouse G, Petrovic R et al. Cost of stroke in Canada: A 1-year prospective study. *Journal of Medical Economics*. 2005; 8: 147-67.

⁹⁴⁵ Gloede T, Halbach S, Thrift A et al. Long-term costs of stroke using 10-year longitudinal data from the North East Melbourne Stroke Incidence Study. *Stroke*. 2014: 1-8.

⁹⁴⁶ Krueger H, Lindsay P, Cote R et al. Cost avoidance associated with optimal stroke care in Canada. *Stroke*. 2012; 43(8): 2198-206.

⁹⁴⁷ O'Brien JA, Patrick AR and Caro JJ. Cost of managing complications resulting from type 2 diabetes mellitus in Canada. *BMC Health Services Research*. 2003; 3(1): 7.

- **Heart failure** is associated with annual costs of \$7,100⁹⁴⁸ (in 2020 CDN or \$8,231 in 2022 CDN). Individuals with heart failure have a life expectancy of approximately 2.5 years.⁹⁴⁹
- The typical event cost for a lower extremity **amputation** is \$24,583 with annual costs thereafter of \$1,020 (in 2000 CAD)⁹⁵⁰ or \$37,600 and \$1,560 respectively in 2022 CAD.
- **Nephropathy** (microalbuminuria) is associated with annual costs of \$3,936⁹⁵¹ (in 2012 USD or \$4,291 in 2022 CDN).
- In the US, **blindness** is associated with an annual increase in medical costs of \$2,157 (in 2004 USD) or \$2,606 in 2022 CAD, after adjusting for age, sex, marital status, education, income, self-reported health status, type of health insurance and family size.⁹⁵²
- The estimated cost of cataract surgery in BC is \$350.953
- Harris and colleagues estimated patient out-of-pocket costs associated with type 2 diabetes to be \$679 annually⁹⁵⁴ (in 2005 CDN or \$1,004 in 2022 CDN).

Costs of Screening and Intervention

- The original Diabetes Prevention Program intensive lifestyle intervention conducted within the RCT was conducted by case managers with training in nutrition, exercise, or behavior modification who met with an individual participant for at least 16 sessions in the first 24 weeks and contacted the participant at least monthly thereafter (with in-person contacts at least every 2 months throughout the remainder of the program).⁹⁵⁵ The intensity of the intervention and the one-to-one relationship between the case manager and the participant meant that the intervention was expensive; an estimated \$3,820 per participant⁹⁵⁶ (in 2010 USD or \$6,100 in 2022 CDN). The majority of national interventions established since the success of the original Diabetes Prevention Program have used group-based programs.
- The Australian group-based (8-15 per group) program *Life!* was estimated to cost \$400 (in 2010 Australian dollars) per participant⁹⁵⁷ or \$446 in 2022 CDN.

⁹⁴⁸ Levy A, Johnston K, Daoust A et al. Health expenditures after first hospital admission for heart failure in Nova Scotia, Canada: A retrospective cohort study. *CMAJ Open*. 2021; 9(3):

⁹⁴⁹ Limpens M, Asllanaj E, Dommershuijsen L et al. Healthy lifestyle in older adults and life expectancy with and without heart failure. *European Journal of Epidemiology*. 2022; 37: 205-14.

⁹⁵⁰ O'Brien JA, Patrick AR and Caro JJ. Cost of managing complications resulting from type 2 diabetes mellitus in Canada. *BMC Health Services Research*. 2003; 3(1): 7.

⁹⁵¹ Zhuo X, Zhang P, Hoerger T. Lifetime direct medical costs of treating type 2 diabetes and diabetic complications. *American Journal of Preventive Medicine*. 2013; 45(3): 253-61.

⁹⁵² Frick K, Gower E, Kempen J et al. Economic impact of visual impairment and blindness in the United States. *Archives of Ophthalmology*. 2007; 125(4): 544-50.

⁹⁵³ CBC News. Judge says B.C. can reduce fees for cataract surgery. November 6, 2018.

⁹⁵⁴ Harris S, Leiter L, Yale J et al. Out-of-pocket costs of managing hyperglycemia and hypoglycemia in patients with type 1 diabetes and insulin-treated type 2 diabetes. *Canadian Journal of Diabetes*. 2007; 31(1): 25-33.

⁹⁵⁵ The Diabetes Prevention Program Research Group. The Diabetes Prevention Program: Design and methods for a clinical trial in the prevention of type 2 diabetes. *Diabetes Care*. 1999; 22(4): 623-34.

⁹⁵⁶ The Diabetes Prevention Program Research Group. The 10-year cost-effectiveness of lifestyle intervention or metformin for diabetes prevention: An intent-to-treat analysis of the DPP/DPPOS. *Diabetes Care*. 2012; 35: 723-30.

⁹⁵⁷ Dunbar J, Jayawardena A, Johnson G et al. Scaling up diabetes prevention in Victoria, Australia: Policy development, implementation, and evaluation. *Diabetes Care*. 2014; 37: 934-42.

- The average cost of the group-based (15-20 per group) NHS DPP has been estimated at £143 (in 2020 or \$262 in 2022 CDN) per referral and £342 (in 2020 or \$626 in 2022 CDN) per referral that completed at least 60% of the program.⁹⁵⁸
- For modelling purposes, we assumed that the HbA_{1C} test would be used for screening purposes. All individuals with overweight and obesity with an HbA_{1C} score of ≥ 6 but ≤ 6.5 would return for a confirmatory test. If prediabetes is confirmed, the individual would be referred to an intensive lifestyle intervention program. Of those referred, 44.8% would receive an effective dose. The program cost for those receiving an effective dose would be \$626. The program cost for those referred but not receiving an effective dose would be \$262.
- We have assumed that the intervention would include at least 13 sessions totalling 16 hours of contact time (i.e. each session lasts 1.23 hours), as per the intervention in the UK. Patient time costs for the intervention are based on those not receiving an effective dose attending an average of 3.4 sessions while those who received an effective dose would attend an average of 10.4 sessions.⁹⁵⁹ We included 60 minutes of travel time to/from each session.
- Based on these assumptions, costs of screening and intervention would total \$13.37 million in females and \$12.98 million in males (see Table 21).

⁹⁵⁸ McManus E, Meacock R, Parkinson P et al. Evaluating the short-term costs and benefits of a nationwide Diabetes Prevention Programme in England: Retrospective observational study. *Applied Health Economics and Health Policy*. 2023; 21: 891-903.

⁹⁵⁹ Valabhji J, Barron E, Bradley D et al. Early outcomes from the English National Health Service Diabetes Prevention Programme. *Diabetes Care*. 2020; 43: 152-60.

	Table 21: Cost of Screening and Intervention															
	In a BC Birth Cobort of 40,000															
								s 35 to 70 ł		,000						
	Females Males															
		#of				Inte	rvention			# of				Interv		
	#in	Annual			#	#				Annual			#	#		
Age_	Birth	Screens	System \$	Patient \$	Referred	Effective	System \$	Patient \$	Males	Screens	System \$	Patient \$	Referred	Effective	System \$	Patient \$
35	19,736	2,698	\$141,855	\$255,455	739	481	\$368,624	\$485,048	19,474	2,780	\$147,506	\$265,632	794	206	\$282,991	\$340,508
36	19,722	2,685	\$112,663	\$202,886	45	29	\$22,480	\$29,555	19,442	2,765	\$116,069	\$209,019	48	13	\$17,079	\$20,564
37	19,708	2,671	\$112,098	\$201,869	45	29	\$22,424	\$29,476	19,409	2,749	\$115,407	\$207,828	48	12	\$17,010	\$20,483
38	19,693	2,657	\$111,528	\$200,842	45	29	\$22,360	\$29,389	19,375	2,733	\$114,738	\$206,622	47	12	\$16,935	\$20,395
39	19,677	2,644	\$110,954	\$199,808	45	29	\$22,296	\$29,301	19,339	2,/1/	\$114,060	\$205,402	47	12	\$16,857	\$20,305
40	19,001	2,750	\$115,578	\$208,130 \$207,070	45	29	\$22,227 \$22,142	\$29,205	19,303	2,700	\$113,375 \$112,670	\$204,169 \$202.014	47	12	\$16,776	\$20,209 \$20,101
41	19,643	2,741	\$114,980 ¢114,200	\$207,070 \$205,002	45	29	\$22,143 \$22,060	\$29,092	19,264	2,084	\$112,079 \$111.072	\$202,914 \$201 642	47	12	\$16,084 \$16 E90	\$20,101 \$10.099
42	19,023	2,727	\$112,500 \$112,105	\$203,995 \$203,844	43	29	\$22,000 \$21,068	\$28,577	19,223	2,007	\$110,972 \$110,008	\$201,042 \$108 088	40	12	\$16,369	\$19,900 \$10,870
45	19,005	2,050	\$111 QQ5	\$203,044	44	20	\$21,500	\$28,052	19 1/0	2,001	\$109.018	\$196 323	46	12	\$16 379	\$19,070 \$19,7/1
45	19,561	2,681	\$112,482	\$202,561	44	20	\$21,000	\$28,560	19,094	2,550	\$107,529	\$193.641	45	12	\$16,253	\$19,593
46	19.537	2.652	\$111.267	\$200.373	44	28	\$21.633	\$28.396	19.047	2.524	\$106.033	\$190.947	45	12	\$16.125	\$19.441
47	19.511	2.623	\$110.046	\$198.173	44	28	\$21.504	\$28.221	18.996	2.488	\$104.529	\$188.238	45	12	\$15.986	\$19.277
48	19,484	2,593	\$108,816	\$195,959	43	27	\$21,358	\$28,020	18,943	2,452	\$103,011	\$185,504	44	12	\$15,822	\$19,084
49	19,454	2,564	\$107,577	\$193,728	43	27	\$21,200	\$27,806	18,887	2,415	\$101,483	\$182,754	44	12	\$15,654	\$18,886
50	19,422	2,695	\$113,004	\$203,501	43	28	\$21,584	\$28,435	18,827	3,089	\$129,425	\$233,072	47	12	\$16,810	\$20,207
51	19,388	2,662	\$111,628	\$201,023	43	28	\$21,377	\$28,151	18,763	3,043	\$127,513	\$229,629	47	12	\$16,568	\$19,923
52	19,352	2,629	\$110,240	\$198,523	42	28	\$21,144	\$27,832	18,695	2,997	\$125,579	\$226,146	46	12	\$16,301	\$19,608
53	19,312	2,595	\$108,839	\$196,000	42	27	\$20,893	\$27,489	18,622	2,951	\$123,625	\$222,628	45	12	\$16,020	\$19,278
54	19,270	2,561	\$107,423	\$193,450	41	27	\$20,610	\$27,102	18,545	2,904	\$121,646	\$219,064	44	11	\$15,706	\$18,907
55	19,224	2,527	\$105,994	\$190,876	41	26	\$20,306	\$26,685	18,461	2,856	\$119,639	\$215,449	43	11	\$15,357	\$18,496
56	19,174	2,493	\$104,548	\$188,273	40	26	\$19,971	\$26,229	18,372	2,808	\$117,605	\$211,786	42	11	\$14,983	\$18,056
57	19,121	2,458	\$103,085	\$185,638	40	25	\$19,600	\$25,721	18,277	2,759	\$115,540	\$208,068	41	11	\$14,570	\$17,569
58	19,063	2,413	\$101,181	\$182,208	39	25	\$19,184	\$25,155	18,175	2,702	\$113,139	\$203,743	39	11	\$14,121	\$17,040
59	19,000	2,367	\$99,259	\$178,748	38	24	\$18,731	\$24,537	18,065	2,645	\$110,704	\$199,358	38	10	\$13,622	\$16,451
60	18,932	2,532	\$106,163	\$191,181	41	26	\$20,106 \$10,495	\$26,375 \$25,529	17,947	2,961	\$123,921	\$223,160 \$217,008	41	11	\$14,8/1	\$17,939
62	10,000	2,401	\$104,019 \$101 8E0	\$107,520 \$102,414	40 20	25	\$19,465 ¢10.006	\$25,526	17,620	2,694	\$121,054 ¢110,172	\$217,990 \$313 7EE	59 27	10	\$14,190 \$12,442	\$17,130 \$16.255
63	18 689	2,429	\$101,830	\$105,414 \$179,452	39	24	\$18,000 \$18,036	\$24,002 \$23 554	17,004	2,820	\$116,145 \$115 183	\$212,733 \$207,424	37	10	\$13,442 \$12,611	\$10,233 \$15 273
64	18,593	2,377	\$97,421	\$175,438	36	23	\$17,204	\$22,554	17,379	2,686	\$112,174	\$207,424	32	9	\$11,713	\$14,214
65	18.489	2,474	\$103.517	\$186.415	34	20	\$16,269	\$21,151	17.208	2.323	\$97.058	\$174,784	29	9	\$10,715	\$13.035
66	18,375	2,419	\$101,165	\$182,180	33	18	\$15,238	\$19,751	17,024	2,253	\$94,065	\$169,394	26	8	\$9,621	\$11,744
67	18,250	2,362	\$98,766	\$177,861	31	17	\$14,091	\$18,198	16,826	2,183	\$91,025	\$163,920	22	7	\$8,435	\$10,341
68	18,113	2,305	\$96,320	\$173,454	28	15	\$12,818	\$16,473	16,612	2,112	\$87,928	\$158,344	18	6	\$7,114	\$8,779
69	17,963	2,247	\$93,820	\$168,953	26	13	\$11,408	\$14,566	16,381	2,040	\$84,776	\$152,666	14	5	\$5,669	\$7,070
70	17,799	2,188	\$91,262	\$164,346	23	10	\$9,847	\$12,457	16,132	1,967	\$81,566	\$146,886	10	4	\$4,095	\$5,206
Total		91,599	\$3,868,582	\$6,966,634	2,139	1,352	\$1,052,602	\$1,381,027		95,216	\$4,019,217	\$7,237,902	2,173	579	\$780,159	\$940,973

Costs Avoided

- We calculated previously (see Table 16) that 298 females and 128 males in the BC birth cohort would not progress from prediabetes to diabetes due to screening and intervention. These individuals would also avoid the excess complications attributable to diabetes. In Table 17, we calculated that 42 cases of myocardial infarction, 26 cases of stroke, 97 cases of angina, 44 cases of heart failure, 13 amputations, 17 cases of nephropathy, 5 cases of blindness and 54 cases of cataracts would be avoided.
- In Table 22, we calculate that the costs avoided due to the excess complications avoided (as well as patient costs avoided) would total \$40.93 million, \$29.46 million in females and \$11.48 million in males.

			s Avoided A T	35 \$8.35	53 \$1.88	33 \$1.18	30 \$1.05	28 51.00	20.15 22	28 \$1.00	29 \$1.04	28 \$1.01	28 \$1.00	28 \$0.99	28 \$0.99	28 \$0.98	27 \$0.98	28 \$0.98	27 \$0.98	27 \$0.97	27 \$0.95	26 \$0.94	26 \$0.92	25 \$0.91	25 \$0.89	24 \$0.87	24 \$0.86	24 20.80		22 50.80	21 \$0.77	21 \$0.76	20 \$0.73	19 \$0.70	19 \$0.67	18 \$0.64	17 \$0.60	48 \$40.93
			Total Cost F N	\$6.00 \$2	\$1.35 \$0	\$0.85 \$0	\$0.75 50.75	20.72 20.72	05 EZ.05	\$0.72 \$0	\$0.74 \$0	\$0.72 \$0	\$0.72 \$0	\$0.71 \$0	\$0.71 \$0	\$0.71 \$0	\$0.70 \$0	\$0.71 \$0	\$0.70 \$0	\$0.70 \$0	\$0.69 \$0	\$0.68 \$0	\$0.67 \$0	\$0.66 \$0	\$0.64 \$0	\$0.63 \$0	\$0.62 \$0.62 \$0			so.57 so	\$0.56 \$0	\$0.55 \$0	\$0.53 \$0	\$0.51 \$0	\$0.48 \$0	\$0.46 \$0	\$0.44 \$0	\$29.46 \$11
		Patient Out-of-	Pocket Costs F M T	\$5.40 \$2.12 <i>\$</i> 7.51	\$0.32 \$0.13 \$0.45	\$0.31 \$0.12 \$0.44	\$0.31 \$0.12 \$0.43	\$0.30 \$0.12 \$0.42	\$0.29 \$0.11 \$0.40	\$0.28 \$0.11 \$0.39	\$0.27 \$0.11 \$0.38	\$0.26 \$0.10 \$0.36	\$0.26 \$0.10 \$0.35	\$0.25 \$0.10 \$0.34	\$0.24 \$0.09 \$0.33	\$0.23 \$0.09 \$0.32	\$0.22 \$0.09 \$0.31	\$0.23 \$0.09 \$0.32	\$0.22 \$0.08 \$0.30	\$0.21 \$0.08 \$0.29	\$0.20 \$0.08 \$0.28	\$0.19 \$0.07 \$0.27	\$0.19 \$0.07 \$0.26	\$0.18 \$0.07 \$0.24	\$0.17 \$0.06 \$0.23	\$0.16 \$0.06 \$0.22	\$0.15 \$0.06 \$0.21	50.14 50.05 50.20	07.05 C0.05 4T.05	\$0.12 \$0.05 \$0.17	\$0.11 \$0.04 \$0.15	\$0.10 \$0.04 \$0.14	\$0.09 \$0.03 \$0.12	\$0.08 \$0.03 \$0.11	\$0.07 \$0.02 \$0.09	\$0.05 \$0.02 \$0.07	\$0.04 \$0.02 \$0.06	\$12.22 \$4.74 \$16.96
osts Avoided			Cataract F M T	\$0.000 \$0.000 \$0.000	\$0.000 \$0.000 \$0.000	\$0.000 \$0.000 \$0.000	\$0.000 \$0.000 \$0.000	\$0.000 \$0.000 \$0.000 \$0.000 \$0.000 \$0.000		\$0.000 \$0.000 \$0.000	\$0.000 \$0.000 \$0.000	\$0.000 \$0.000 \$0.000	\$0.000 \$0.000 \$0.000	\$0.000 \$0.000 \$0.000	\$0.000 \$0.000 \$0.000	\$0.000 \$0.000 \$0.000	\$0.000 \$0.000 \$0.000	\$0.000 \$0.000 \$0.000	\$0.000 \$0.000 \$0.001	\$0.000 \$0.000 \$0.001	\$0.000 \$0.000 \$0.001	\$0.000 \$0.000 \$0.001	\$0.000 \$0.000 \$0.001	\$0.000 \$0.000 \$0.001	\$0.000 \$0.000 \$0.001	\$0.000 \$0.000 \$0.001	\$0.000 \$0.000 \$0.001			\$0.000 \$0.000 \$0.001	\$0.000 \$0.000 \$0.001	\$0.001 \$0.000 \$0.001	\$0.001 \$0.000 \$0.001	\$0.001 \$0.000 \$0.001	\$0.001 \$0.000 \$0.001	\$0.001 \$0.000 \$0.001	\$0.001 \$0.000 \$0.001	\$0.013 \$0.006 \$0.019
ıs and Patient C	of 40,000		Blindness F M T	\$0.000 \$0.000 \$0.000	\$0.010 \$0.004 \$0.013	\$0.009 \$0.003 \$0.012	\$0.005 \$0.002 \$0.007	\$0.005 \$0.002 \$0.007 \$0.005 \$0.003 \$0.007	100.05 000.05 000.05 000.05	\$0.002 \$0.001 \$0.002	\$0.006 \$0.002 \$0.009	\$0.005 \$0.002 \$0.007	\$0.008 \$0.003 \$0.011	\$0.008 \$0.003 \$0.011	\$0.008 \$0.003 \$0.011	\$0.008 \$0.003 \$0.011	\$0.008 \$0.003 \$0.011	\$0.008 \$0.003 \$0.011	\$0.008 \$0.003 \$0.011	\$0.008 \$0.003 \$0.012	\$0.008 \$0.003 \$0.012	\$0.008 \$0.003 \$0.012	\$0.008 \$0.003 \$0.012	\$0.008 \$0.003 \$0.012	\$0.008 \$0.003 \$0.012	\$0.008 \$0.003 \$0.011	\$0.008 \$0.003 \$0.011	110.05 500.05 50.011		\$0.008 \$0.003 \$0.011	\$0.008 \$0.003 \$0.011	\$0.008 \$0.003 \$0.011	\$0.008 \$0.003 \$0.010	\$0.007 \$0.003 \$0.010	\$0.007 \$0.003 \$0.010	\$0.007 \$0.003 \$0.010	\$0.007 \$0.003 \$0.009	\$0.253 \$0.097 \$0.350
Complication	3C Birth Cohort (Viillion\$		Nephropathy F M T	\$0.02 \$0.01 \$0.02	\$0.04 \$0.02 \$0.06	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03		\$0.03 \$0.01 \$0.04	\$0.04 \$0.01 \$0.05	\$0.03 \$0.01 \$0.05	\$0.04 \$0.02 \$0.06	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	70.04 Z0.04 20.04 20.04 C0.04 20.04		\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.06	\$0.05 \$0.02 \$0.06	\$0.04 \$0.02 \$0.06	\$0.04 \$0.02 \$0.06	\$1.60 \$0.61 \$2.21
lue to Excess	e and Sex in a E In P		Amputation F M T	\$0.01 \$0.00 \$0.02	\$0.01 \$0.01 \$0.02	\$0.01 \$0.00 \$0.01	\$0.01 \$0.00 \$0.01	\$0.01 \$0.00 \$0.01	20.05 00.05 10.05 \$0.05 00.05	\$0.01 \$0.01 \$0.02	\$0.02 \$0.01 \$0.02	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.03 \$0.01 \$0.04	\$0.03 \$0.01 \$0.04	\$0.03 \$0.01 \$0.04	\$0.03 \$0.01 \$0.04	\$0.03 \$0.01 \$0.04	50.05 10.05 50.05		\$0.03 \$0.01 \$0.04	\$0.03 \$0.01 \$0.04	\$0.03 \$0.01 \$0.04	\$0.03 \$0.01 \$0.04	\$0.03 \$0.01 \$0.04	\$0.03 \$0.01 \$0.04	\$0.03 \$0.01 \$0.04	\$0.03 \$0.01 \$0.04	\$0.77 \$0.31 \$1.08
sts Avoided o	By Ag		Heart Failure F M T	\$0.01 \$0.00 \$0.01	\$0.01 \$0.00 \$0.02	\$0.01 \$0.00 \$0.01	\$0.01 \$0.00 \$0.01	\$0.01 \$0.00 \$0.01	10.05 00.05 10.05 20.01 50.00 50.00	\$0.01 \$0.00 \$0.01	\$0.01 \$0.01 \$0.02	\$0.01 \$0.01 \$0.02	\$0.01 \$0.01 \$0.02	\$0.01 \$0.01 \$0.02	\$0.02 \$0.01 \$0.02	\$0.02 \$0.01 \$0.02	\$0.02 \$0.01 \$0.02	\$0.02 \$0.01 \$0.02	\$0.02 \$0.01 \$0.02	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	50.04 10.04 20.04 50.04 10.04 20.04	50.05 10.05 20.05 50.05 10.05 20.05	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.03	\$0.02 \$0.01 \$0.04	\$0.02 \$0.01 \$0.04	\$0.03 \$0.01 \$0.04	\$0.03 \$0.01 \$0.04	\$0.03 \$0.01 \$0.04	\$0.63 \$0.27 \$0.91
Table 22: Co			Angina F M T	\$0.23 \$0.09 \$0.32	\$0.76 \$0.30 \$1.06	\$0.32 \$0.13 \$0.44	\$0.24 \$0.09 \$0.34	\$0.21 \$0.08 \$0.30	\$0.19 \$0.08 \$0.27	\$0.18 \$0.07 \$0.25	\$0.18 \$0.07 \$0.25	\$0.17 \$0.07 \$0.24	\$0.16 \$0.06 \$0.22	\$0.16 \$0.06 \$0.22	\$0.16 \$0.06 \$0.22	\$0.16 \$0.06 \$0.22	\$0.16 \$0.06 \$0.22	\$0.16 \$0.06 \$0.22	\$0.16 \$0.06 \$0.22	\$0.15 \$0.06 \$0.21	\$0.15 \$0.06 \$0.21	\$0.15 \$0.06 \$0.21	\$0.15 \$0.06 \$0.21	\$0.15 \$0.06 \$0.20	\$0.14 \$0.06 \$0.20	\$0.14 \$0.05 \$0.20	\$0.14 \$0.05 \$0.19	91.04 CU.04 PT.04	\$0.12 \$0.05 \$0.19	\$0.13 \$0.05 \$0.18	\$0.12 \$0.05 \$0.17	\$0.12 \$0.05 \$0.17	\$0.12 \$0.04 \$0.16	\$0.11 \$0.04 \$0.15	\$0.11 \$0.04 \$0.15	\$0.10 \$0.04 \$0.14	\$0.09 \$0.04 \$0.13	\$6.28 \$2.44 \$8.72
			Stroke F M T	\$0.25 \$0.10 \$0.34	\$0.14 \$0.05 \$0.19	\$0.12 \$0.05 \$0.17	\$0.11 \$0.04 \$0.16	\$0.11 \$0.04 \$0.15 \$0.12 \$0.05 \$0.13	12.05 50.05 20.21 \$0.15 \$0.06 \$0.21	\$0.14 \$0.06 \$0.20	\$0.16 \$0.06 \$0.22	\$0.15 \$0.06 \$0.21	\$0.15 \$0.06 \$0.21	\$0.15 \$0.06 \$0.21	\$0.15 \$0.06 \$0.21	\$0.16 \$0.06 \$0.22	\$0.16 \$0.06 \$0.22	\$0.16 \$0.06 \$0.22	\$0.16 \$0.06 \$0.22	\$0.16 \$0.06 \$0.22	\$0.16 \$0.06 \$0.22	\$0.16 \$0.06 \$0.22	\$0.16 \$0.06 \$0.22	\$0.16 \$0.06 \$0.22	\$0.16 \$0.06 \$0.21	\$0.15 \$0.06 \$0.21	\$0.15 \$0.06 \$0.21	17.04 90.04 ct.04	17.0¢ 00.0¢ ct.0¢	\$0.15 \$0.06 \$0.20	\$0.14 \$0.05 \$0.20	\$0.15 \$0.06 \$0.21	\$0.15 \$0.06 \$0.20	\$0.14 \$0.06 \$0.20	\$0.14 \$0.05 \$0.20	\$0.14 \$0.05 \$0.19	\$0.13 \$0.05 \$0.18	\$5.39 \$2.08 \$7.47
		Myocardial	Infarction F M T	\$0.09 \$0.04 \$0.13	\$0.05 \$0.02 \$0.07	\$0.04 \$0.02 \$0.06	\$0.04 \$0.02 \$0.06	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.07	\$0.05 \$0.02 \$0.08	\$0.06 \$0.02 \$0.09	\$0.06 \$0.02 \$0.08	\$0.06 \$0.02 \$0.09	\$0.06 \$0.02 \$0.09	\$0.06 \$0.03 \$0.09	\$0.06 \$0.03 \$0.09	\$0.06 \$0.03 \$0.09	\$0.07 \$0.03 \$0.09	\$0.07 \$0.03 \$0.09	\$0.07 \$0.03 \$0.09	\$0.07 \$0.03 \$0.09	\$0.07 \$0.03 \$0.10	\$0.07 \$0.03 \$0.10	\$0.07 \$0.03 \$0.10	\$0.07 \$0.03 \$0.10	\$0.07 \$0.03 \$0.10	\$0.07 \$0.03 \$0.10	01.04 EU.04 10.04 01.04 EU.04	0T.05 C0.05 70.05	\$0.07 \$0.03 \$0.10	\$0.07 \$0.03 \$0.10	\$0.07 \$0.03 \$0.09	\$0.07 \$0.03 \$0.09	\$0.07 \$0.03 \$0.09	\$0.07 \$0.03 \$0.09	\$0.06 \$0.03 \$0.09	\$0.06 \$0.03 \$0.09	\$2.29 \$0.91 \$3.21
			Age	35	36	37	88	65	9 4	42	43	4	45	46	47	48	49	50	51	52	53	54	55	56	57	28	6 <u>5</u> (8 2	10	8	64	65	99	67	68	69	70	Total

Summary of CE

- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with screening for, and treatment of, prediabetes in asymptomatic non-pregnant adults aged 35 to 70 years who have overweight or obesity in a BC birth cohort of 40,000 is cost-saving (see Table 23, row ai).

Table 23: CE of Screening for, and Treatment of, Prediabetes in Asymptomatic Non-Pregnant Adults Aged 35 to 70 Years Who Have Overweight or Obesity

Label	Variable	Base Case	Data Source
	Costs of Screening and Interventiion		
а	Costs of screening (System) - Females	\$3,868,582	Table 21
b	Cost of screening (Patient) - Females	\$6,966,634	Table 21
С	Costs of intervention (System) - Females	\$1,052,602	Table 21
d	Cost of intervention (Patient) - Females	\$1,381,027	Table 21
е	Total costs of screening and intervention - Females	\$13,268,845	=a+b+c+d
f	Costs of screening (System) - Males	\$4,019,217	Table 21
g	Cost of screening (Patient) - Males	\$7,237,902	Table 21
h	Costs of intervention (System) - Males	\$780,159	Table 21
i	Cost of intervention (Patient) - Males	\$940,973	Table 21
j	Total costs of screening and intervention - Males	\$12,978,251	=f+g+h+i
k	Total costs of screening and intervention	\$26,247,096	=e+j
	Cost Avoided		
I	Cases of diabetes avoided - Females	297	Table 19
m	Cases of diabetes avoided - Males	127	Table 19
n	Cases of diabetes avoided - Total	425	=l+m
0	Costs avoided due to excess complications and patient costs avoided - Females	\$29,456,404	Table 22
р	Costs avoided due to excess complications and patient costs avoided - Males	\$11,476,604	Table 22
q	Costs avoided due to excess complications and patient costs avoided - Total	\$40,933,008	=o+p
r	Costs avoided per case of diabetes avoided - Females	\$99,023	=o/l
S	Costs avoided per case of diabetes avoided - Males	\$90,022	=p/m
t	Costs avoided per case of diabetes avoided - Total	\$96,323	=q/n
	CE Calculation		
u	Net cost - Females	-\$16,187,559	=e-o
v	Net cost - Males	\$1,501,647	=j-p
w	Net cost - Total	-\$14,685,912	=k-q
х	CPB - Females	2,679	Table 20
у	CPB - Males	976	Table 20
z	CPB - Total	3,655	Table 20
aa	Net Cost (1.5% discount)- Females	-\$13,811,588	Calculated
ab	Net Cost (1.5% discount)- Males	\$749,645	Calculated
ac	Net Cost (1.5% discount)- Total	-\$13,061,943	Calculated
ad	CPB (1.5% discount)- Females	2,338	Calculated
ae	CPB (1.5% discount)- Males	854	Calculated
af	CPB (1.5% discount)- Total	3,192	Calculated
ag	CE (\$/QALY saved, 1.5% discount) - Females	Cost-saving	
ah	CE (\$/QALY saved, 15% discount) - Males	\$878	
ai	CE (\$/QALY saved, 1.5% discount) - Total	Cost-saving	
We also modified several major assumptions and recalculated the cost per QALY as follows:

- Reduce the disutility associated with a stroke from 20.0% to 13.4%, angina from 8.0% to 5.2%, heart failure from 7.2% to 4.7%, amputation from 16.7% to 11.4%, nephropathy from 10.4% to 7.0%, blindness from 18.7% to 12.4%, cataract from 1.0% to 0.6% and living with diagnosed diabetes from 4.9% to 3.1%. CE = Cost-saving for total and females, \$1,005 for males.
- Increase the disutility associated with a stroke from 20.0% to 26.5%, angina from 8.0% to 11.3%, heart failure from 7.2% to 10.3%, amputation from 16.7% to 22.9%, nephropathy from 10.4% to 14.7%, blindness from 18.7% to 26.0%, cataract from 1.0% to 1.5% and living with diagnosed diabetes from 4.9% to 7.2%. CE = Cost-saving for total and females, \$762 for males.
- Decrease the proportion of those referred to an intensive lifestyle intervention who receive an effective dose from 44.8% to 18.7%. CE = **\$4,306** (\$16,855 for males and cost-saving for females).
- Increase the effectiveness of the intensive lifestyle intervention in transitioning from prediabetes to diabetes from 22.0% to 31.0%. CE = Cost-saving for females, males and total.
- Decrease the effectiveness of the intensive lifestyle intervention in transitioning from prediabetes to diabetes from 22.0% to 12.0%. CE = \$1,330 (\$10,875 for males and cost-saving for females).

Summary

Males and Females

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for, and treatment of, prediabetes in asymptomatic non-pregnant adults aged 35 to 70 years who have overweight or obesity in a BC birth cohort of 40,000 is estimated to be 3,192 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is cost-saving (see Table 24).

Table 24: Screening, and Intervention, for Prediabetes in a							
Birth Cohort of 40,000							
Summary for I	emales an	d Males					
	Base						
	Case	Rang	ge				
CPB (Potential QALYs Gained)							
Gap between No Service and 'B	est in the World	' (80.7%)					
1.5% Discount Rate	3,192	1,333	4,498				
3% Discount Rate	2,838	1,185	3,999				
0% Discount Rate	3,655	1,526	5,151				
CE (\$/QALY) including patient time	costs						
1.5% Discount Rate	Cost-saving	Cost-saving	\$4,306				
3% Discount Rate	Cost-saving	Cost-saving	\$3,405				
0% Discount Rate	Cost-saving	Cost-saving	\$5,307				
CE (\$/QALY) excluding patient time	costs						
1.5% Discount Rate	Cost-saving	Cost-saving (Cost-saving				
3% Discount Rate	Cost-saving	Cost-saving (Cost-saving				
0% Discount Rate	Cost-saving	Cost-saving (Cost-saving				

Females Only

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for, and treatment of, prediabetes in asymptomatic non-pregnant females aged 35 to 70 years who have overweight or obesity in a BC birth cohort of 40,000 is estimated to be 2,338 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is cost-saving (see Table 25).

Table 25: Screening, and In	tervention	, for Predi	abetes in a						
Birth Cohort of 40,000									
Summary for Females									
	Base								
	Case	Rar	nge						
CPB (Potential QALYs Gained)									
Gap between No Service and 'Be	est in the World	'' (80.7%)							
1.5% Discount Rate	2,338	976	3,295						
3% Discount Rate	2,078	867	2,928						
0% Discount Rate	2,679	1,118	3,775						
CE (\$/QALY) including patient time	costs								
1.5% Discount Rate	Cost-saving	Cost-saving	Cost-saving						
3% Discount Rate	Cost-saving	Cost-saving	Cost-saving						
0% Discount Rate	Cost-saving	Cost-saving	\$204						
CE (\$/QALY) excluding patient time	costs								
1.5% Discount Rate	Cost-saving	Cost-saving	Cost-saving						
3% Discount Rate	Cost-saving	Cost-saving	Cost-saving						
0% Discount Rate	Cost-saving	Cost-saving	Cost-saving						

Males Only

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for, and treatment of, prediabetes in asymptomatic males aged 35 to 70 years who have overweight or obesity in a BC birth cohort of 40,000 is estimated to be 854 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is \$878 (see Table 26).

Table 26: Screening, and Intervention, for Prediabetes in a Birth Cohort of 40.000										
Summary for Males										
	Base									
	Case	Ran	ge							
CPB (Potential QALYs Gained)										
Gap between No Service and 'B	est in the World	l' (80.7%)								
1.5% Discount Rate	854	356	1,203							
3% Discount Rate	760	317	1,071							
0% Discount Rate	976	408	1,376							
CE (\$/QALY) including patient time	costs									
1.5% Discount Rate	\$878	Cost-saving	\$16,855							
3% Discount Rate	\$283	Cost-saving	\$14,649							
0% Discount Rate	\$1,538	Cost-saving	\$19,306							
CE (\$/QALY) excluding patient time	costs									
1.5% Discount Rate	Cost-saving	Cost-saving	Cost-saving							
3% Discount Rate	Cost-saving	Cost-saving	Cost-saving							
0% Discount Rate	Cost-saving	Cost-saving	Cost-saving							

Screening for Depression in the General Adult Population

Canadian Task Force on Preventive Health Care (2013)960

Recommendations on screening for depression in primary care settings are provided for people 18 years of age or older who present at a primary care setting with no apparent symptoms of depression. These recommendations do not apply to people with known depression, with a history of depression or who are receiving treatment for depression.

*For adults at average risk of depression,*⁹⁶¹ *we recommend not routinely screening for depression. (Weak recommendation; very-low-quality evidence)*

For adults in subgroups of the population who may be at increased risk of depression,⁹⁶² we recommend not routinely screening for depression.⁹⁶³ (Weak recommendation; very-low-quality evidence)

Note that the 2013 recommendations from the CTFPHC are different than their 2005 recommendations. In 2005, the CTFPHC recommended the following:

There is fair evidence to recommend screening adults in the general population for depression in primary care settings that have integrated programs for feedback to patients and access to case management or mental health care (grade B recommendation).

*This is insufficient evidence to recommend for or against screening adults in the general; population for depression in primary care settings where effective follow-up and treatment are not available (grade I recommendation).*⁹⁶⁴

United States Preventive Services Task Force Recommendations (2016)

The USPSTF recommends screening for depression in the general adult population, including pregnant and postpartum women. Screening should be implemented with adequate systems in place to ensure accurate diagnosis, effective treatment, and appropriate follow-up. (B recommendation)⁹⁶⁵

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with screening non-pregnant adults ages 18 and older for depression when staff-assisted depression care supports are in place to assure accurate diagnosis, effective treatment, and follow-up in a BC birth cohort of 40,000.

⁹⁶⁰ Canadian Task Force on Preventive Health Care. Recommendations on screening for depression in adults. *Canadian Medical Association Journal*. 2013; 185(9): 775-82.

⁹⁶¹ The average-risk population includes all individuals 18 years of age or older with no apparent symptoms of depression who are not considered to be at increased risk.

⁹⁶² Subgroups of the population who may be at increased risk of depression include people with a family history of depression, traumatic experiences as a child, recent traumatic life events, chronic health problems, substance misuse, perinatal and postpartum status, or Aboriginal origin.

⁹⁶³ Clinicians should be alert to the possibility of depression, especially in patients with characteristics that may increase the risk of depression, and should look for it when there are clinical clues, such as insomnia, low mood, anhedonia and suicidal thoughts.

⁹⁶⁴ MacMillan HL, Patterson CJ and Wathen CN. Screening for depression in primary care: recommendation statement from the Canadian Task Force on Preventive Health Care. *Canadian Medical Association Journal*. 2005; 172(1): 33-5.

⁹⁶⁵ Siu AL and the US Preventive Services Task Force (USPSTF). Screening for depression in adults: US Preventive Services Task Force recommendation statement. *JAMA*. 2016; 315(4): 380-7.

In modelling CPB, we made the following assumptions:

- In BC in 2012, 4.6% of the population aged ≥15 had a major depressive episode (MDE) within the previous 12 months (4.0% for males and 5.2% for females). The lifetime risk for an MDE is 11.6% (9.3% for males and 13.9% for females).⁹⁶⁶
- The average duration of a first episode of a MDE is 71.0 weeks (1.37 years) for males and 75.9 weeks (1.46 years) for females (see Table 1).⁹⁶⁷

Table 1: Length of First Major Depression Episode									
British Columbia in 2012 by Sex									
			Males	;				Female	25
Episode	Episode					Episode			
duration (as	duration (in			Cumulative		duration (in			Cumulative
reported)	weeks)	Number	Percent	percent		weeks)	Number	Percent	percent
2 weeks	2.0	8	6.1%	6.1%		2.0	10	4.0%	4.0%
3 weeks	3.0	5	3.8%	9.9%		3.0	4	1.6%	5.6%
1 month	4.3	11	8.4%	18.3%		4.3	33	13.1%	18.7%
2 months	8.7	9	6.9%	25.2%		8.7	19	7.6%	26.3%
3 months	13.0	16	12.2%	37.4%		13.0	17	6.8%	33.1%
4 months	17.3	5	3.8%	41.2%		17.3	7	2.8%	35.9%
5 months	21.7	1	0.8%	42.0%		21.7	9	3.6%	39.4%
6 months	26.0	15	11.5%	53.4%		26.0	31	12.4%	51.8%
7 months	30.3	1	0.8%	54.2%		30.3	0	0.0%	51.8%
8 months	34.7	4	3.1%	57.3%		34.7	5	2.0%	53.8%
9 months	39.0	2	1.5%	58.8%		39.0	4	1.6%	55.4%
10 months	43.3	3	2.3%	61.1%		43.3	2	0.8%	56.2%
11 months	47.7	0	0.0%	61.1%		47.7	2	0.8%	57.0%
1 year	52.0	17	13.0%	74.0%		52.0	40	15.9%	72.9%
2 years*	156.0	25	19.1%	93.1%		156.0	48	19.1%	92.0%
5 years*	364.0	9	6.9%	100.0%		364.0	20	8.0%	100.0%
Total	71.0	131	-			75.9	251	-	

* Reponses were categorized as ranges: 2-4 years and 5 or more years. Assume a duration of 3 years for the first category and 7 years for the second.

- Depression is a highly recurrent disorder.⁹⁶⁸ On average, half of individuals experiencing at least one MDE during their lifetime will experience between 5-9 recurrent episodes during their lifetime.^{969,970,971} For modelling purposes, we assumed that 50% of individuals experiencing an initial MDE would experience 7 recurrent episodes during their lifetime.
- The above information was used to generate the expected number of life years lived with depression by males and females in a BC birth cohort of 40,000. For males, an estimated 0.95% of life years lived between the age of 18 and death would be with

⁹⁶⁶ Statistics Canada. Canadian Community Health Survey (CCHS), 2012 Public Use Microdata file (Catalogue number 82M0013X2013001). 2013: All computations, use and interpretation of these data are entirely that of H. Krueger & Associates Inc.

⁹⁶⁷ Patten SB. A major depression prognosis calculator based on episode duration. *Clinical Practice and Epidemiology in Mental Health*. 2006; 2(1): 13-20.

⁹⁶⁸ Burcusa SL and Iacono WG. Risk for recurrence in depression. *Clinical Psychology Review*. 2007; 27(8): 959-85.

⁹⁶⁹ Kessler RC, Zhao S, Blazer DG et al. Prevalence, correlates, and course of minor depression and major depression in the National Comorbidity Survey. *Journal of Affective Disorders*. 1997; 45(1): 19-30.

 ⁹⁷⁰ Kessler RC and Walters EE. Epidemiology of DSM-III-R major depression and minor depression among adolescents and young adults in the national comorbidity survey. *Depression and Anxiety*. 1998; 7(1): 3-14.
 ⁹⁷¹ Colman I, Naicker K, Zeng Y et al. Predictors of long-term prognosis of depression. *Canadian Medical Association Journal*. 2011; 183(17): 1969-76.

Table 2: Years of Life Lived with Depression in a British Columbia Male Birth Cohort of 20,000									
	Individuals		Estimated	Years of Life with	Years of	% of Life			
Age	in Birth	Estimated	Subsequent	Depression in	Life in Birth	Years with			
Group	Cohort	First MDE	MDE	Birth Cohort	Cohort	Depression			
18-19	19,870	58.7	205.3	376.9	39,740	0.95%			
20-24	19,815	146.3	511.9	939.7	99,073	0.95%			
25-29	19,701	145.4	508.9	934.3	98,505	0.95%			
30-34	19,564	144.4	505.4	927.8	97,819	0.95%			
35-39	19,408	143.2	501.4	920.4	97,038	0.95%			
40-44	19,223	141.9	496.6	911.6	96,115	0.95%			
45-49	18,993	140.2	490.7	900.7	94,967	0.95%			
50-54	18,690	138.0	482.8	886.3	93,451	0.95%			
55-59	18,270	134.9	472.0	866.4	91,351	0.95%			
60-64	17,673	130.4	456.6	838.1	88,366	0.95%			
65-69	16,810	124.1	434.3	797.2	84,050	0.95%			
70-74	15,550	114.8	401.7	737.4	77,750	0.95%			
75-79	13,720	101.3	354.4	650.7	68,602	0.95%			
80+	9,117	26.9	94.2	172.9	18,234	0.95%			
Total Ag	es 18+	1,690	5,916	10,860	1,145,062	0.95%			

diagnosed depression (see Tables 2). For females, an estimated 1.33% of life years lived between the age of 18 and death would be with diagnosed depression (see Tables 3).

Table 3: Years of Life Lived with Depressionin a British Columbia Female Birth Cohort of 20,000

	Individuals		Estimated	Years of Life with	Years of	% of Life
Age	in Birth	Estimated	Subsequent	Depresion in	Life in Birth	Years with
Group	Cohort	First MDE	MDE	Birth Cohort	Cohort	Depression
18-19	19,891	82.5	288.9	530.3	39,782	1.33%
20-24	19,867	206.1	721.3	1,324.1	99,333	1.33%
25-29	19,825	205.6	719.8	1,321.3	99,124	1.33%
30-34	19,773	205.1	717.9	1,317.8	98,864	1.33%
35-39	19,707	204.4	715.5	1,313.4	98,536	1.33%
40-44	19,624	203.6	712.5	1,307.9	98,118	1.33%
45-49	19,509	202.4	708.3	1,300.3	97,547	1.33%
50-54	19,349	200.7	702.5	1,289.5	96,744	1.33%
55-59	19,116	198.3	694.0	1,274.1	95,582	1.33%
60-64	18,770	194.7	681.5	1,251.0	93,850	1.33%
65-69	18,238	189.2	662.1	1,215.5	91,189	1.33%
70-74	17,402	180.5	631.8	1,159.8	87,008	1.33%
75-79	16,072	166.7	583.5	1,071.1	80,358	1.33%
80+	12,031	149.8	524.2	962.2	72,188	1.33%
Total Ag	es 18+	2,590	9,064	16,638	1,248,224	1.33%

Depression increases an individual's mortality risk. Males living with depression are 21 times as likely to commit suicide as males without depression. For females, this ratio increases to 27 times.⁹⁷² Individuals living with depression also have higher rates of overall excess mortality with an early meta-analysis suggesting a RR of 1.81 (95% CI of 1.58 to 2.07).⁹⁷³ This review, however, did not adjust for confounding variables such as chronic illness and lifestyle. After adjusting for tobacco smoking and heavy alcohol use. Murphy et al. found a non-significant increase in mortality associated with depression in men (RR 1.6, 95% CI of 0.8 to 3.1).⁹⁷⁴ Other research has found that the effect of depression on mortality is independent of chronic illnesses such as diabetes⁹⁷⁵ and congestive heart failure.⁹⁷⁶ After adjusting for a number of potentially confounding covariates, including the presence of chronic disease, Schoevers, et al. found a 41% higher mortality rate associated with chronic depression.977 A more recent meta-analysis of excess mortality associated with depression found a RR of 1.52 (95% CI of 1.45 to 1.59).⁹⁷⁸ For modelling purposes we calculated the number of deaths occurring for males and females between the ages of 20 and 74 in our birth cohort and then estimated how many of these deaths would be in individuals living with depression. We assumed that depression would increase the premature mortality rate by 52% and varied this in the sensitivity analysis from 45% to 59%. In males, 21 deaths and 529 life years lost in the cohort are attributable to depression (see Table 4). In females, 17 deaths and 451 life years lost are attributable to depression (see Table 5).

 ⁹⁷² Lépine J-P and Briley M. The increasing burden of depression. *Neuropsychiatric Disease and Treatment*. 2011;
 7(Suppl 1): 3-7.

⁹⁷³ Cuijpers P and Smit F. Excess mortality in depression: a meta-analysis of community studies. *Journal of Affective Disorders*. 2002; 72(3): 227-36.

 ⁹⁷⁴ Murphy JM, Burke Jr JD, Monson RR et al. Mortality associated with depression: A forty-year perspective from the Stirling County Study. *Social Psychiatry and Psychiatric Epidemiology*. 2008; 43(8): 594-601.
 ⁹⁷⁵ Lin EH, Heckbert SR, Rutter CM et al. Depression and increased mortality in diabetes: unexpected causes of death. *The Annals of Family Medicine*. 2009; 7(5): 414-21.

 ⁹⁷⁶ Jiang W, Alexander J, Christopher E et al. Relationship of depression to increased risk of mortality and rehospitalization in patients with congestive heart failure. *Archives of Internal Medicine*. 2001; 161(15): 1849-56.
 ⁹⁷⁷ Schoevers R, Geerlings M, Deeg D et al. Depression and excess mortality: evidence for a dose response

relation in community living elderly. *International Journal of Geriatric Psychiatry*. 2009; 24(2): 169-76. ⁹⁷⁸ Cuijpers P, Vogelzangs N, Twisk J et al. Comprehensive meta-analysis of excess mortality in depression in the

general community versus patients with specific illnesses. *American Journal of Psychiatry*. 2014; 171(4): 453-62.

	Table 4: Deaths and Life Years Lost Attributable to Depression								
	in a British Columbia Male Birth Cohort of 20,000								
				Unadjusted	Adjusted	Deaths			
	Individuals		Proportion	Deaths in	Deaths in	Attributable	Average	Life Years	
Age	in Birth		with	Pop. With	Pop. With	to	Life Years	Lost to	
Group	Cohort	Deaths	Depression	Depression	Depression	Depression	Lived	Depression	
18-19	19,870								
20-24	19,815	55	0.95%	0.5	0.8	0.3	58.6	16	
25-29	19,701	114	0.95%	1.1	1.6	0.6	53.9	30	
30-34	19,564	137	0.95%	1.3	2.0	0.7	49.3	33	
35-39	19,408	156	0.95%	1.5	2.3	0.8	44.6	34	
40-44	19,223	185	0.95%	1.8	2.7	0.9	40.1	36	
45-49	18,993	230	0.95%	2.2	3.3	1.1	35.5	40	
50-54	18,690	303	0.95%	2.9	4.4	1.5	31.0	46	
55-59	18,270	420	0.95%	4.0	6.1	2.1	26.7	55	
60-64	17,673	597	0.95%	5.7	8.6	2.9	22.5	66	
65-69	16,810	863	0.95%	8.2	12.4	4.3	18.5	79	
70-74	15,550	1,260	0.95%	12.0	18.2	6.2	14.8	92	
Total		4,320		41	62	21		529	

Table 5: Deaths and Life Years Lost Attributable to Depression in a British Columbia Female Birth Cohort of 20,000

				Unadjusted	Adjusted	Deaths		
	Individuals		Proportion	Deaths in	Deaths in	Attributable	Average	Life Years
Age	in Birth	Female	with	Pop. With	Pop. With	to	Life Years	Lost to
Group	Cohort	Deaths	Depression	Depression	Depression	Depression	Lived	Depression
18-19	19,891							
20-24	19,867	24	1.33%	0.3	0.5	0.2	63.4	11
25-29	19,825	42	1.33%	0.6	0.8	0.3	58.6	17
30-34	19,773	52	1.33%	0.7	1.1	0.4	53.7	19
35-39	19,707	66	1.33%	0.9	1.3	0.5	48.9	22
40-44	19,624	84	1.33%	1.1	1.7	0.6	44.1	26
45-49	19,509	114	1.33%	1.5	2.3	0.8	39.3	31
50-54	19,349	161	1.33%	2.1	3.3	1.1	34.6	39
55-59	19,116	232	1.33%	3.1	4.7	1.6	30.0	48
60-64	18,770	347	1.33%	4.6	7.0	2.4	25.5	61
65-69	18,238	532	1.33%	7.1	10.8	3.7	21.2	78
70-74	17,402	836	1.33%	11.1	16.9	5.8	17.1	99
Total		2,489		33	50	17		451

- Diagnosing depression is challenging. "The diagnosis of a mental health disorder is a • process that often takes time and develops in a context of trust. Both patient and doctor may need to be sure that the somatic symptoms of depression are exactly that, and not the symptoms of an underlying physical illness."979
- Based on a meta-analysis of 41 studies including 50,371 patients, for every 100 • patients, GPs identify 10 true positive cases of depression, diagnose 15 patients with depression who do not have depression (false positives) and miss 10 cases of depression (false negatives). Accuracy is improved with prospective examination

⁹⁷⁹ Kessler D, Sharp D and Lewis G. Screening for depression in primary care. British Journal of General Practice. 2005; 55(518): 659-60.

over an extended period of time (3-12 months) rather than relying on a one-time assessment or case-note records. 980

- Those who meet screening criteria and were previously undiagnosed by their primary care physician tend to be less severely ill than those who were previously diagnosed.^{981,982} Approximately half (52%) of primary care patients identified by screening have transient symptoms (possibly related to life events) lasting less than two weeks and do not require treatment.⁹⁸³
- Zimmerman et al. found that 71% of patients diagnosed with major depressive disorder in their outpatient practice had a Hamilton Depression Rating Scale (HDRS) score of less than 22.⁹⁸⁴ Scores on the HDRS can be interpreted as follows: no depression (0-7), mild depression (8-16), moderate depression (17-23) and severe depression (≥24).⁹⁸⁵
- When a longitudinal perspective is taken, 30% of patients with depression remain undetected at 1 year and only 14% at the end of 3 years, or approximately one out of seven patients with treatable depression.^{986,987,988} For modelling purposes, we assumed that 14% of depression is undiagnosed treatable depression (see Table 6, row *i*) and increased this to 30% in the sensitivity analysis.
- 85% of patients diagnosed with depression were prescribed anti-depressant medication (ADM) in 2011/12 in Canada.⁹⁸⁹
- Approximately 60% of patients stay on ADM for at least 3 months and 45% for at least 6 months.^{990,991}

⁹⁸⁰ Mitchell AJ, Vaze A and Rao S. Clinical diagnosis of depression in primary care: a meta-analysis. *The Lancet*. 2009; 374(9690): 609-19.

⁹⁸¹ Ormel J, Koeter MW, Van den Brink W et al. Recognition, management, and course of anxiety and depression in general practice. *Archives of General Psychiatry*. 1991; 48(8): 700-6.

⁹⁸² Simon GE and VonKorff M. Recognition, management, and outcomes of depression in primary care. *Archives of Family Medicine*. 1995; 4(2): 99-105.

⁹⁸³ Coyne JC, Klinkman MS, Gallo SM et al. Short-term outcomes of detected and undetected depressed primary care patients and depressed psychiatric patients. *General Hospital Psychiatry*. 1997; 19(5): 333-43.

⁹⁸⁴ Zimmerman M, Posternak MA and Chelminski I. Symptom severity and exclusion from antidepressant efficacy trials. *Journal of Clinical Psychopharmacology*. 2002; 22(6): 610-4.

⁹⁸⁵ Zimmerman M, Martinez JH, Young D et al. Severity classification on the Hamilton depression rating scale. *Journal of Affective Disorders*. 2013; 150(2): 384-8.

⁹⁸⁶ Kessler D, Heath I, Lloyd K et al. Cross sectional study of symptom attribution and recognition of depression and anxiety in primary care. *BMJ*. 1999; 318(7181): 436-40.

⁹⁸⁷ Kessler D, Bennewith O, Lewis G et al. Detection of depression and anxiety in primary care: follow up study. *BMJ*. 2002; 325(7371): 1016-7.

⁹⁸⁸ Tylee A and Walters P. Underrecognition of anxiety and mood disorders in primary care: why does the problem exist and what can be done? *The Journal of Clinical Psychiatry*. 2006; 68(2): 27-30.

⁹⁸⁹ Wong ST, Manca D, Barber D et al. The diagnosis of depression and its treatment in Canadian primary care practices: an epidemiological study. *Canadian Medical Association Journal*. 2014; 2(4): e337-e42.

⁹⁹⁰ Solberg LI, Trangle MA and Wineman AP. Follow-up and follow-through of depressed patients in primary care: the critical missing components of quality care. *The Journal of the American Board of Family Practice*. 2005; 18(6): 520-7.

⁹⁹¹ Cantrell CR, Eaddy MT, Shah MB et al. Methods for evaluating patient adherence to antidepressant therapy: a real-world comparison of adherence and economic outcomes. *Medical Care*. 2006; 44(4): 300-3.

- The use of ADM for major depression is associated with a 64% (OR = 0.36, 95% CI of 0.15 to 0.88) reduced risk of recurrent depression eight years later⁹⁹² and a 70% (OR = 0.30, 95% CI of 0.1 to 1.0) reduced risk after 10 years.⁹⁹³
- The theoretical cumulative effectiveness of achieving remission through four levels of treatment (primarily medication switching or augmentation) based on the Sequenced Treatment Alternatives to relieve Depression (STAR*D) trial is 36.8% at Level 1, 56.1% at Level 2, 62.1% at Level 3 and 67.1% at Level 4.^{994,995} For modelling purposes we used Level 2 (56.1%) results as the base with sensitivity analysis using Level 1 and Level 4 results (see Table 6, row *n*).
- Depression has an important influence on a person's QoL. Studies have also shown that individuals with current or treated depression report lower preference scores for depression health states that the general population.^{996,997} Pyne and colleagues suggest that "public stigma may result in the general population being less sympathetic to the suffering of individuals with depression and less willing to validate the impact of depression symptoms."⁹⁹⁸ Revicki and Wood, based on input from patients with depression who had completed at least eight weeks of ADM, identified the following health state utilities: severe depression =0.30, moderate depression = 0.55 to 0.63, mild depression = 0.64 to 0.73 and antidepressant maintenance therapy = 0.72 to 0.83.⁹⁹⁹ Whiteford and colleagues¹⁰⁰⁰ suggest the following health utilities:
 - Severe depression = 0.35 (95% CI of 0.18-0.53)
 - Moderate depression = 0.59 (95% CI of 0.45-0.72)
 - Mild depression = 0.84 (95% CI of 0.78-0.89)

For modelling purposes we assumed an equal proportion of individuals with mild, moderate and severe depression and used the average health utilities provided by Whiteford and colleagues (0.59, 95% CI of 0.47-0.72) adjusted for a general population QoL of 0.848 (see Reference Document) resulting in a QoL reduction of 0.30 (see Table 6, row *p*), ranging from 0.16 to 0.45.

• Other assumptions used in assessing the clinically preventable burden are detailed in the Reference Document.

Based on these assumptions, screening for depression results in a CPB of 94 quality-adjusted life years saved (see Table 6, row s). The CPB of 94 represents the gap between existing coverage (no coverage) and the 'best in the world' coverage estimated at 12%.

¹⁰⁰⁰ Whiteford HA, Degenhardt L, Rehm J et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. *The Lancet*. 2013; 382(9904): 1575-86.

⁹⁹² Colman I, Zeng Y, Ataullahjan A et al. The association between antidepressant use and depression eight years later: a national cohort study. *Journal of Psychiatric Research*. 2011; 45(8): 1012-8.

⁹⁹³ Colman I, Croudace TJ, Wadsworth ME et al. Psychiatric outcomes 10 years after treatment with antidepressants or anxiolytics. *The British Journal of Psychiatry*. 2008; 193(4): 327-31.

⁹⁹⁴ Howland RH. Sequenced Treatment Alternatives to Relieve Depression (STAR* D): Part 2: Study Outcomes. *Journal of Psychosocial Nursing & Mental Health Services*. 2008; 46(10): 21.

⁹⁹⁵ Sinyor M, Schaffer A and Levitt A. The sequenced treatment alternatives to relieve depression (STAR* D) trial: a review. *Canadian Journal of Psychiatry*. 2010; 55(3): 126-35.

⁹⁹⁶ Pyne JM, Fortney JC, Tripathi S et al. How bad is depression? Preference score estimates from depressed patients and the general population. *Health Services Research*. 2009; 44(4): 1406-23.

⁹⁹⁷ Gerhards SA, Evers SM, Sabel PW et al. Discrepancy in rating health-related quality of life of depression between patient and general population. *Quality of Life Research*. 2011; 20(2): 273-9.

⁹⁹⁸ Pyne JM, Fortney JC, Tripathi S et al. How bad is depression? Preference score estimates from depressed patients and the general population. *Health Services Research*. 2009; 44(4): 1406-23.

⁹⁹⁹ Revicki DA and Wood M. Patient-assigned health state utilities for depression-related outcomes: differences by depression severity and antidepressant medications. *Journal of Affective Disorders*. 1998; 48(1): 25-36.

	Table 6: CPB of Screening for Depression in a Birth Co	hort of 40	,000
Row			
Label	Variable	Base Case	Data Source
а	Life years lived from age 18 to death in a birth cohort of 20,000 males	1,145,062	Table 2
b	Life years lived from age 18 to death in a birth cohort of 20,000 females	1,248,224	Table 3
с	Life years lived with depression in a birth cohort of 20,000 males	10,860	Table 2
d	Life years lived with depression in a birth cohort of 20,000 females	16,638	Table 3
e	Proportion of life years lived with depression in a birth cohort of 20,000 males	0.95%	= c / a
f	Proportion of life years lived with depression in a birth cohort of 20,000 females	1.33%	= d / b
g	Life years lost attributable to depression in a birth cohort of 20,000 males	529	Table 4
h	Life years lost attributable to depression in a birth cohort of 20,000 females	451	Table 5
i	Proportion of treatable depression undiagnosed	14%	V
j	Life years lived with undiagnosed treatable depression in a birth cohort of 20,000 males	1,520	= c * i
k	Life years lived with undiagnosed treatable depression in a birth cohort of 20,000 females	2,329	= d * i
1	Adherence with screening	12%	V
m	Life years lived with undiagnosed treatable depression identified by screening	462	= (j + k) * l
n	Effectiveness of ADM in achieving remission	56%	V
0	Life years lived in remission with treated depression identified by screening	259	= m * n
р	Quality of life reduction	30%	٧
q	QALYs gained	78	= o * p
r	Life-years gained / death averted	16	= (g + h) * i * l
S	Potential QALYs gained, Screening increasing from 0% to 12%	94	= q + r

∨ = Estimates from the literature

We also modified a number of major assumptions and recalculated the CPB as follows:

- Assume that the RR of excess mortality associated with depression is reduced from 1.52 to 1.45 (Table 4 and 5): CPB = 92.
- Assume that the RR of excess mortality associated with depression is increased from 1.52 to 1.59 (Table 4 and 5): CPB = 96.
- Assume the proportion of treatable depression that is undiagnosed is increased from 14% to 30% (Table 6, row *i*): CPB = 202.
- Assume the effectiveness of ADM in achieving remission is reduced from 56% to 37% (Table 6, row *n*): CPB = 68.
- Assume the effectiveness of ADM in achieving remission is increased from 56% to 67% (Table 6, row *n*): CPB = 109.
- Assume the QoL adjustment is reduced from 30% to 16% (Table 6, row p): CPB = **57**.
- Assume the QoL adjustment is increased from 30% to 45% (Table 6, row p): CPB = 132.

To this point we have not considered some of the potential harms associated with screening for depression, including the negative side-effects of ADM or the possibility that individuals may be diagnosed with depression who do not have depression (false positives).

- There is a side effect burden associated with taking ADM: 48.7% of individuals taking ADM experienced side effects at least 50% of the time, with the maximum side effect burden being at least moderate 34.2% of the time.¹⁰⁰¹ Based on input from patients with depression who had completed at least eight weeks of ADM, Revicki and Wood identified a health state utility of between 0.72 and 0.83 associated with antidepressant maintenance therapy.¹⁰⁰² With an average population health state utility of 0.848 (see Reference Document), this represents a disutility of between 0.02 (or 2.4%) and 0.13 (15.3%). For modelling purposes we assumed a disutility of 8.8% (the midpoint) and varied this assumption from 2.4% and 15.3% in the sensitivity analysis (Table 7, row *t*).
- Screening for depression may result in 15 patients being diagnosed with depression who do not have depression (false positives) for every 10 patients who are true positive cases of depression.¹⁰⁰³ For modelling purposes, we have assumed a ratio of 1.5 to 1 false positives to true positives (Table 7, row *n*) and that false positive patients will be prescribed ADM the same as true positive patients.
- One of the harms associated with a diagnosis of depression is being rated (i.e. charged a higher life insurance premium) or being refused insurance coverage when the diagnosis of depression is included in the patient's medical chart. Bell suggests that this is one reason why underdiagnoses may be by design rather than accident.¹⁰⁰⁴ We have not included this potential harm in the modelling.

Based on these additional assumptions, the calculation of CPB is reduced from 94 to -7 quality-adjusted life years saved (see Table 7, row v). *That is, when these harms are taken into account, screening for depression does more harm than good.*

¹⁰⁰¹ Thase ME, Friedman ES, Biggs MM et al. Cognitive therapy versus medication in augmentation and switch strategies as second-step treatments: a STAR* D report. *The American Journal of Psychiatry*. 2007; 164(5): 739-52.

 ¹⁰⁰² Revicki DA and Wood M. Patient-assigned health state utilities for depression-related outcomes: differences by depression severity and antidepressant medications. *Journal of Affective Disorders*. 1998; 48(1): 25-36.
 ¹⁰⁰³ Mitchell AJ, Vaze A and Rao S. Clinical diagnosis of depression in primary care: a meta-analysis. *The Lancet*. 2009; 374(9690): 609-19.

¹⁰⁰⁴ Bell JR. Underdiagnosis of depression in primary care: by accident or design? *Journal of the American Medical Association*. 1997; 277(18): 1433-33.

	Table 7: CPB of Screening for Depression in a Birth Cohort of 40,000							
Row Label	Variable	Base Case	Data Source					
а	Life years lived from age 18 to death in a birth cohort of 20,000 males	1,145,062	Table 2					
b	Life years lived from age 18 to death in a birth cohort of 20,000 females	1,248,224	Table 3					
с	Life years lived with depression in a birth cohort of 20,000 males	10,860	Table 2					
d	Life years lived with depression in a birth cohort of 20,000 females	16,638	Table 3					
е	Proportion of life years lived with depression in a birth cohort of 20,000 males	0.95%	= c / a					
f	Proportion of life years lived with depression in a birth cohort of 20,000 females	1.33%	= d / b					
g	Life years lost attributable to depression in a birth cohort of 20,000 males	529	Table 4					
h	Life years lost attributable to depression in a birth cohort of 20,000 females	451	Table 5					
i	Proportion of treatable depression undiagnosed	14%	V					
j	Life years lived with undiagnosed treatable depression in a birth cohort of 20,000 males	1,520	= c * i					
k	Life years lived with undiagnosed treatable depression in a birth cohort of 20,000 females	2,329	= d * i					
I	Adherence with screening	12%	V					
m	Life years lived with undiagnosed treatable depression identified by screening	462	= (j + k) * l					
n	Life years treated for depression - false positives	693	= m * 1.5					
0	Effectiveness of ADM in achieving remission	56%	V					
р	Life years lived in remission with treated depression identified by screening	259	= m * o					
q	Quality of life adjustment	30%	V					
r	QALYs gained	78	= p * q					
S	Life-years gained / death averted	16	= (g + h) * i * l					
t	Disutility associated with ADM	-8.8%	V					
u	QALYs lost associated with ADM	-102	= (m + n) * t					
v	Potential QALYs gained, Screening increasing from 0% to 12%	-7	= r + s + u					

√ = *Estimates from the literature*

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with screening non-pregnant adults ages 18 and older for depression when staff-assisted depression care supports are in place to assure accurate diagnosis, effective treatment, and follow-up in a BC birth cohort of 40,000.

In modelling CE, we made the following assumptions:

- We did not include false positives or the potential disutility associated with taking ADM, as identified in Table 7.
- We assumed that screening would occur annually (Table 8, row *c*).
- For patient time and travel costs, we estimated two hours of patient time required per screening visit (Table 8, row *g*).

- We assumed that diagnosed depression results in an additional 6 physician visits per year and modified this assumption from 4 to 8 in the sensitivity analysis (see Table 8, row *m*).
- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the estimated cost per QALY would be \$171,912 (see Table 8, row s).

	Table 8: CE of Screening for Depression in a Birth (Cohort of 40	,000
Row			
Label	Variable	Base Case	Data Source
а	Life years lived from age 18 to death without diagnosed depression in a birth cohort of 20,000 males	1,134,202	Table 6, row a - row c
b	Life years lived from age 18 to death without diagnosed depression in a birth cohort of 20,000 females	1,231,586	Table 6, row b - row d
	Costs of intervention		
с	Frequency of screening (every x years)	1	Assumed
d	Total number of screens (100% adherence)	2,365,788	= (a + b) / c
е	Adherence with screening	12%	Table 6, row l
f	Cost of 10-minute office visit	\$35.97	Ref Doc
g	Value of patient time and travel for office visit	\$74.32	Ref Doc
h	Portion of 10-minute office visit for screen	50%	Assumed
i	Cost of screening	\$15,655,365	= (d * e) * (f + g) * h
j	Life years treated for depression	462	Table 6, row m
k	Annual cost of ADM	\$492	Ref Doc
I	Cost of ADM	\$227,076	= j * k
m	Annual # of additional visits to a clinician associated with treatment for depression	6	Assumed
n	Cost of additional follow-up office visits to a clinician	\$305,708	= (m * j) * (f + g)
	CE calculation		
0	Cost of intervention over lifetime of birth cohort	\$16,188,149	= (i + l + n)
р	QALYs saved	94	Table 6, row s
q	Cost of intervention over lifetime of birth cohort (1.5% discount)	\$10,255,578	Calculated
r	QALYs saved (1.5% discount)	60	Calculated
S	CE (\$/QALY saved)	\$171,912	= q / r

∨ = Estimates from the literature

We also modified a number of major assumptions and recalculated the CE as follows:

- Assume the proportion of treatable depression that is undiagnosed is increased from 14% to 30% (Table 6, row *i*): CE = **\$82,243**.
- Assume the effectiveness of ADM in achieving remission is reduced from 56% to 37% (Table 6, row *n*): CE = \$238,745.
- Assume the effectiveness of ADM in achieving remission is increased from 56% to 67% (Table 6, row *n*): CPB = CE = \$147,936.
- Assume the QoL adjustment is reduced from 30% to 16% (Table 6, row p): CE = **\$285,291**.

- Assume the QoL adjustment is increased from 30% to 45% (Table 6, row p): CE = \$122,831.
- Assume that the proportion of an office visit required for screening is reduced from 50% to 33% (Table 8, row *h*): CE = \$115,385.
- Assume that the proportion of an office visit required for screening is increased from 50% to 67% (Table 8, row *h*): CE = \$228,438.
- Assume that diagnosed depression results in an additional 4 physician visits per year rather than 6 (see Table 8, row *m*): CE = \$170,830.
- Assume that diagnosed depression results in an additional 8 physician visits per year rather than 6 (see Table 8, row m): CE = \$172,994.

Summary – Excluding Harms

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening non-pregnant adults ages 18 and older for depression (excluding harms) is estimated to be 60 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$171,912 per QALY (see Table 9).

Table 9: Screening for Depression in a Birth Cohort of40,000								
Summary Ex	cluding Ha	rms						
	Base							
	Case	Ra	nge					
CPB (Potential QALYs Gained)								
Gap between B.C. Current (0%)) and 'Best in th	ne World' (1	2%)					
1.5% Discount Rate	60	36	128					
3% Discount Rate	40	24	86					
0% Discount Rate	94	57	202					
CE (\$/QALY) including patient time	e costs							
1.5% Discount Rate	\$171,912	\$82,243	\$285,291					
3% Discount Rate	\$171,912	\$82,243	\$285,291					
0% Discount Rate	\$171,912	\$82,243	\$285,291					
CE (\$/QALY) excluding patient time	CE (\$/QALY) excluding patient time costs							
1.5% Discount Rate	\$57,692	\$28,774	\$95,742					
3% Discount Rate	\$57,692	\$28,774	\$95,742					
0% Discount Rate	\$57,692	\$28,774	\$95,742					

Summary – Including Harms

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening non-pregnant adults ages 18 and older for depression (including harms) is estimated to be -5 (that is, harmful) quality-adjusted life years (QALYs). This results in the cost-effectiveness (CE) being dominated (see Table 10).

Table 10: Screening for Depression in a Birth Cohort of40,000											
Summary Including Harms											
Base											
	Case	Rai	nge								
CPB (Potential QALYs Gained)	CPB (Potential QALYs Gained)										
Gap between B.C. Current (0%) and 'Best in the World' (12%)											
1.5% Discount Rate	-5	-28	-10								
3% Discount Rate	-3	-19	-7								
0% Discount Rate	-7	-45	-16								
CE (\$/QALY) including patient time	e costs										
1.5% Discount Rate											
3% Discount Rate	Dominated	Dominated	Dominated								
0% Discount Rate											
CE (\$/QALY) excluding patient tim	e costs										
1.5% Discount Rate											
3% Discount Rate	Dominated	Dominated	Dominated								
0% Discount Rate											

Screening for Depression in Pregnant and Postpartum Women

Canadian Task Force on Preventive Health Care (2013)

For adults in subgroups of the population who may be at increased risk of depression, [including pregnant and postpartum women, phrase added]¹⁰⁰⁵ we recommend not routinely screening for depression.¹⁰⁰⁶ (Weak recommendation; very-low-quality evidence)¹⁰⁰⁷

United States Preventive Services Task Force Recommendations (2016)

The USPSTF recommends screening for depression in the general adult population, *including pregnant and postpartum women* [emphasis added]. Screening should be implemented with adequate systems in place to ensure accurate diagnosis, effective treatment, and appropriate follow-up. (B recommendation)¹⁰⁰⁸

The Lifetime Prevention Schedule Expert Oversight Committee acknowledges the conflict between the two recommendations. Upon further examination, the USPSTF review included literature investigating screening and treatment of depression in perinatal and postpartum women. The CTFPHC included literature examining screening only, which was sparse; literature examining screening and treatment was excluded. In BC, the current standard for delivery of public health services is offering the Edinburgh Postnatal Depression Scale (EPDS) by eight weeks postpartum, with education/intervention/referral for treatment as needed. The USPSTF review includes a number of validation studies on perinatal and postpartum depression screening tools (including the Edinburgh Postnatal Depression Scale) in a variety of settings. These do not appear in the CTFPHC review. Finally, there are several studies on perinatal and postpartum depression screening and treatment that were published after the CTFPHC review in 2013, but were included in the more recent USPSTF review. Therefore, the LPS will use the USPSTF recommendation as the most current evidence of clinical effectiveness and proceed with the modelling of population health impact and costeffectiveness of screening and treatment for depression in perinatal and postpartum women.

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with screening pregnant and postpartum women for depression in a BC birth cohort of 40,000.

In modelling CPB, we made the following assumptions:

• On average, each female in a BC birth cohort would be expected to birth 1.20 children over their lifetime, based on data from 2018 to 2022 (Table 1, row *a*).¹⁰⁰⁹

¹⁰⁰⁵ Subgroups of the population who may be at increased risk of depression include people with a family history of depression, traumatic experiences as a child, recent traumatic life events, chronic health problems, substance misuse, perinatal and postpartum status, or Aboriginal origin.

¹⁰⁰⁶ Clinicians should be alert to the possibility of depression, especially in patients with characteristics that may increase the risk of depression, and should look for it when there are clinical clues, such as insomnia, low mood, anhedonia and suicidal thoughts.

¹⁰⁰⁷ Canadian Task Force on Preventive Health Care. Recommendations on screening for depression in adults. *Canadian Medical Association Journal*. 2013; 185(9): 775-82.

¹⁰⁰⁸ Siu AL and the US Preventive Services Task Force (USPSTF). Screening for depression in adults: US Preventive Services Task Force recommendation statement. *JAMA*. 2016; 315(4): 380-7.

¹⁰⁰⁹ Statistics Canada. *Fertility Indicators, Provinces and Territories: Interactive Dashboard*. Available online at <u>https://www150.statcan.gc.ca/n1/pub/71-607-x/71-607-x2022003-eng.htm</u>. Accessed November 2023.

- In 2003/04, 11.9% of pregnant women in BC visited a physician at least once for depression services during the 27 month time period surrounding their child's birth (9 months before conception to 9 months after giving birth).¹⁰¹⁰
- A 2004 systematic review found prevalence rates of depression of 7.4%, 12.8% and 12.0% during the first, second and third trimesters.¹⁰¹¹
- A 2005 systematic review found that the point prevalence of minor and major depressions ranged from approximately 8-11% during pregnancy, peaked at approximately 13% three months after giving birth and then fell to about 6% eight months after giving birth. Less than half of the depressive episodes are MDE.¹⁰¹² MDE is a distinct clinical syndrome for which treatment is clearly indicated.¹⁰¹³
- The majority of depressive episodes resolve within three to six months postpartum. A subset of new mothers (approximately 30%), however, remain chronically depressed after this time period.¹⁰¹⁴
- For modelling purposes we assumed that screening would occur at 7 weeks post birth (Table 1, row *d*) and modified this to screen at 30 weeks pregnancy in the sensitivity analysis (Table 1, row *e*).
- For modelling purposes we assumed a prevalence of depression of 7.4% during the first trimester, 12.8% during the second trimester, 12.0% during the third trimester and 13% during the eight months after giving birth. We also assumed an equal distribution between mild, moderate and severe depression, yielding a weighted average prevalence of 7.9% for moderate to severe depression (Table 1, row *v*). If we screen at 7 weeks post birth, a potential total of 1,274 years lived with moderate to severe depression between 7 weeks and eight months post birth would be identified in the cohort (Table 1, row *d*). If we screen at 30 weeks pregnant, a potential total of 1,996 years lived with moderate to severe depression between 30 weeks pregnant and eight months post birth would be identified in the cohort (Table 1, row *d*).
- Depression is associated with the following disutility:¹⁰¹⁵
 - Severe depression = 0.65 (95% CI of 0.47-0.82)
 - Moderate depression = 0.41 (95% CI of 0.28-0.55)
 - Mild depression = 0.16 (95% CI of 0.11-0.22)

We assumed an equal distribution between mild, moderate and severe depression, yielding an average disutility of 0.53 (95% CI of 0.38-0.69) for moderate to severe depression. The average QoL for a 18-39 year old is 0.90 (see Reference Document), resulting in a % reduction in QoL of 59% (0.53 / 0.90) (Table 1, row *f*).

¹⁰¹⁰ BC Reproductive Mental Health Program. *Addressing Perinatal Depression - A Framework for BC's Health Authorities*. 2006. Available at

http://www.health.gov.bc.ca/library/publications/year/2006/MHA_PerinatalDepression.pdf. Accessed March 2016.

¹⁰¹¹ Bennett HA, Einarson A, Taddio A et al. Prevalence of depression during pregnancy: systematic review. *Obstetrics & Gynecology*. 2004; 103(4): 698-709.

¹⁰¹² Gavin NI, Gaynes BN, Lohr KN et al. Perinatal depression: a systematic review of prevalence and incidence. *Obstetrics & Gynecology*. 2005; 106(5, Part 1): 1071-83.

¹⁰¹³ Gaynes BN, Gavin N, Meltzer-Brody S et al. Perinatal depression: Prevalence, screening accuracy, and screening outcomes: Summary. *Evidence Report/Technology Assessment (Summary)* 2005; (119): 1-8.

¹⁰¹⁴ Vliegen N, Casalin S and Luyten P. The course of postpartum depression: a review of longitudinal studies. *Harvard Review of Psychiatry*. 2014; 22(1): 1-22.

¹⁰¹⁵ Whiteford HA, Degenhardt L, Rehm J et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. *The Lancet*. 2013; 382(9904): 1575-86.

- Suicide during the perinatal period is rare, with estimates between one and five per 100,000 live births in high income settings. For modelling purposes we have used a rate of 3/100,000 as the base case and modified this from 1 to 5/100,000 in the sensitivity analysis (Table 1, row *h*). When suicides do occur during this period, the mean age of the mother is 30.5 years, resulting in a loss of 55 QALYs per suicide (Table 1, row *j*).¹⁰¹⁶ Women who commit suicide during the perinatal period are twice as likely (RR of 2.19, 95% CI of 1.43 to 3.34) to have a diagnosis of depression as women who commit suicide outside of the perinatal period (Table 1, row *k*).¹⁰¹⁷
- Mothers with a high level of depressive symptoms report significantly poorer adherence with childhood safety prevention practices such as the consistent use of car seats, covering electrical plugs, and having syrup of ipecac in the home.¹⁰¹⁸
- Postpartum depression does not appear to influence the number of well-baby visits or the likelihood of immunization but it may increase the likelihood of infant hospitalization and sick/emergency visits during the first year of life.^{1019,1020}
- Postpartum depression is associated with a 59% (OR of 1.59, 95% CI of 1.24 to 2.04) increase in unintentional injury (Table 1, row *o*) and a 41% (OR of 1.41, 95% CI of 1.02 to 1.95) increase in falls in infants.¹⁰²¹
- In BC, the rate of hospital separations due to unintentional injuries in children less than 5 years of age is 671 per 100,000 (Table 1, row *m*). The rate of deaths due to unintentional injuries is 10.7 per 100,000 (Table 1, row *n*).¹⁰²² If we assume that the average death occurs at age 2, then each death results in 80 years of life lost (Table 1, row *r*).¹⁰²³
- Pregnancy and postpartum depression are associated with a shorter duration of breastfeeding.¹⁰²⁴ An Australian study found the median duration of breastfeeding to be 26-28 weeks in women with depression and 39 weeks in women without depression.¹⁰²⁵ Maternal depressive symptoms at 2 to 4 months postpartum are associated with a 27% (95% CI of 12% to 39%) reduced odds of continuing breastfeeding.¹⁰²⁶ For modelling purposes, we assumed a 27% reduction of exclusive

¹⁰¹⁶ See http://www.statcan.gc.ca/pub/84-537-x/2013005/tbl-eng.htm. Accessed December 2015.

 ¹⁰¹⁷ Khalifeh H, Hunt IM, Appleby L et al. Suicide in perinatal and non-perinatal women in contact with psychiatric services: 15 year findings from a UK national inquiry. *The Lancet Psychiatry*. 2016: 1-10.
 ¹⁰¹⁸ McLennan JD and Kotelchuck M. Parental prevention practices for young children in the context of maternal

depression. *Pediatrics*. 2000; 105(5): 1090-5. ¹⁰¹⁹ Farr SL, Dietz PM, Rizzo JH et al. Health care utilisation in the first year of life among infants of mothers with perinatal depression or anxiety. *Paediatric and Perinatal Epidemiology*. 2013; 27(1): 81-8.

¹⁰²⁰ Minkovitz CS, Strobino D, Scharfstein D et al. Maternal depressive symptoms and children's receipt of health care in the first 3 years of life. *Pediatrics*. 2005; 115(2): 306-14.

 ¹⁰²¹ Yamaoka Y, Fujiwara T and Tamiya N. Association between maternal postpartum depression and unintentional injury among 4-month-old infants in Japan. *Maternal and Child Health Journal*. 2015; 20: 326-36.
 ¹⁰²² Rajabali F, Han G, Artes S et al. *Unintentional Injuries in British Columbia: Trends and Patterns Among*

Children & Youth. 2005. B.C. Injury Research and Prevention Unit. Available at https://northernhealth.ca/Portals/0/Your_Health/Programs/Injury%20Prevention/Unintentional%20Injuries%20in%20BC%20Trends%20Among%20Children%20and%20Youth%202005.pdf. Accessed March 2016.

¹⁰²³ See <u>http://www.statcan.gc.ca/pub/84-537-x/2013005/tbl-eng.htm</u>. Accessed December 2015.

¹⁰²⁴ Dias CC and Figueiredo B. Breastfeeding and depression: A systematic review of the literature. *Journal of Affective Disorders*. 2015; 171: 142-54.

¹⁰²⁵ Henderson JJ, Evans SF, Straton JA et al. Impact of postnatal depression on breastfeeding duration. *Birth*. 2003; 30(3): 175-80.

¹⁰²⁶ McLearn KT, Minkovitz CS, Strobino DM et al. Maternal depressive symptoms at 2 to 4 months post partum and early parenting practices. *Archives of Pediatrics & Adolescent Medicine*. 2006; 160(3): 279-84.

breastfeeding to six months associated with maternal depression (Table 1, row u) and varied this from 12% to 39% in the sensitivity analysis.

- Breastfeeding is associated with a reduced risk of excess weight, otitis media, atopic dermatitis, gastrointestinal infection, lower respiratory tract infection, asthma, type 1 diabetes, childhood leukemia and sudden infant death syndrome in infants and breast and ovarian cancers in the mother.^{1027,1028} In a previous analysis of the promotion of breastfeeding, we calculated that exclusive breastfeeding to six months is associated with an increase of 0.40 QALYs per infant/mother pair (Table 1, row *t*).¹⁰²⁹
- Depression *in the year before birth* is independently associated with an increase in the risk of Sudden Infant Death Syndrome (SIDS) (OR of 4.9, 95% CI of 1.1 to 22.1). Depression *during pregnancy or after birth* is not significantly associated with SIDS.¹⁰³⁰ Since the proposed screening for depression would take place during pregnancy or shortly after birth, we have not included SIDS in this analysis.
- An increased risk of preterm birth is associated with antenatal depression and has been estimated at 37% (OR of 1.37, 95% CI of 1.04 to 1.81) and 39% (OR of 1.39, 95% CI of 1.19 to 1.61) in two meta-analyses.^{1031,1032}
- Preterm births, including late preterm births, are associated with a greater risk of developmental delay, mental retardation, cerebral palsy, and poor health related outcomes (and utilization) during their first year.^{1033,1034,1035}
- Children born preterm tend to have a lower overall QoL than their full term counterparts. The difference in QoL decreases with age (a disutility of 0.13 from birth to age 12 and a disutility of 0.06 from age 13 to 19) and tends to disappear when they become adults.¹⁰³⁶
- Screening and treatment for depression starting late in pregnancy or shortly after birth, however, is unlikely to have an impact on pre-term birth rates and has not been included in this analysis.
- Maternal depressive symptoms at 2 to 4 months postpartum are associated with a 19% reduced odds of showing books, 30% reduced odds of playing with the infant,

¹⁰²⁷ Chung M, Raman G, Trikalinos T et al. Interventions in primary care to promote breastfeeding: an evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2008; 149(8): 565-82.

¹⁰²⁸ Bartick M and Reinhold A. The burden of suboptimal breastfeeding in the United States: a pediatric cost analysis. *Pediatrics*. 2010; 125(5): e1048-e56.

¹⁰²⁹ H. Krueger & Associates Inc. *Establishing Priorities among Effective Clinical Prevention Services in British Columbia (Update): Technical Report for Breastfeeding, Screening for Type 2 Diabetes, STI Behavioural Counselling and Obesity in Adults.* March 30, 2015.

¹⁰³⁰ Howard LM, Kirkwood G and Latinovic R. Sudden infant death syndrome and maternal depression. *The Journal of Clinical Psychiatry*. 2007; 68(8): 1279-83.

¹⁰³¹ Grigoriadis S, VonderPorten EH, Mamisashvili L et al. The impact of maternal depression during pregnancy on perinatal outcomes: a systematic review and meta-analysis. *The Journal of Clinical Psychiatry*. 2013; 74(4): e321-e41.

¹⁰³² Grote NK, Bridge JA, Gavin AR et al. A meta-analysis of depression during pregnancy and the risk of preterm birth, low birth weight, and intrauterine growth restriction. *Archives of General Psychiatry*. 2010; 67(10): 1012-24.

¹⁰³³ Dong Y and Yu JL. An overview of morbidity, mortality and long-term outcome of late preterm birth. *World Journal of Pediatrics*. 2011; 7(3): 199-204.

¹⁰³⁴ McGowan JE, Alderdice FA, Holmes VA et al. Early childhood development of late-preterm infants: a systematic review. *Pediatrics*. 2011; 127(6): 1111-24.

¹⁰³⁵ Samra HA, McGrath JM and Wehbe M. An integrated review of developmental outcomes and late-preterm birth. *Journal of Obstetric, Gynecologic, and Neonatal Nursing*. 2011; 40(4): 399-411.

¹⁰³⁶ Zwicker JG and Harris SR. Quality of life of formerly preterm and very low birth weight infants from preschool age to adulthood: a systematic review. *Pediatrics*. 2008; 121(2): e366-e76.

26% reduced odds of talking to the infant and 39% reduced odds of following routines, compared to mothers without depressive symptoms.¹⁰³⁷

- Few studies have assessed the benefits of treating depression during the perinatal period and the subsequent well-being of the child. The limited research available "has yielded a mixed pattern of results suggesting additional investigations are needed."¹⁰³⁸
- A commonly used depression screening instrument in postpartum and pregnant women is the Edinburgh Postnatal Depression Scale (EPDS). The sensitivity of the EPDS is 0.79 (95% CI of 0.72 to 0.85) and the specificity is always higher than 0.87.¹⁰³⁹ This means that the test would identify 79% of true positive cases (women with perinatal depression) and would falsely identify 13% of cases as positive (the false positive rate) (Table 1, row *y*).
- Involvement in screening programs, with or without additional treatment components, is associated with an 18% to 59% (weighted mean of 32%) reduced risk of depression (Table 1, row *ab*).¹⁰⁴⁰
- The use of second generation antidepressants during pregnancy may be associated with increased risk of some serious side-effects, ¹⁰⁴¹ although the research remains unclear.^{1042,1043}
- Cognitive behavioural therapy (CBT) is associated with a 34% (RR of 1.34, 95% CI of 1.19 to 1.50) increase in the likelihood of remission.¹⁰⁴⁴
- Other assumptions used in assessing the clinically preventable burden are detailed in the Reference Document.

Based on these assumptions, the CPB is 99 quality-adjusted life years saved (see Table 1, row *ae*). The CPB of 99 represents the gap between no coverage and the 'best in the world' coverage estimated at 40%.

¹⁰⁴¹ Ibid.

¹⁰³⁷ McLearn KT, Minkovitz CS, Strobino DM et al. Maternal depressive symptoms at 2 to 4 months post partum and early parenting practices. *Archives of Pediatrics & Adolescent Medicine*. 2006; 160(3): 279-84.

¹⁰³⁸ Stein A, Pearson RM, Goodman SH et al. Effects of perinatal mental disorders on the fetus and child. *The Lancet*. 2014; 384(9956): 1800-19.

¹⁰³⁹ O'Connor E, Rossom RC, Henninger M et al. Primary care screening for and treatment of depression in pregnant and postpartum women: evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2016; 315(4): 388-406.

¹⁰⁴⁰ Ibid.

¹⁰⁴² Molyneaux E, Trevillion K and Howard LM. Antidepressant treatment for postnatal depression. *JAMA*. 2015; 313(19): 1965-6.

 ¹⁰⁴³ Furu K, Kieler H, Haglund B et al. Selective serotonin reuptake inhibitors and venlafaxine in early pregnancy and risk of birth defects: population based cohort study and sibling design. *BMJ*. 2015; 350: h1798-h806.
 ¹⁰⁴⁴ O'Connor E, Rossom RC, Henninger M et al. Primary care screening for and treatment of depression in

pregnant and postpartum women: evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2016; 315(4): 388-406.

Tal	ble 1: Calculation of Clinically Preventable Burden	(CPB) Est	imate for	
Sc	reening Pregnant and Postpartum Women for De	pression i	n a Birth	
Deux	Conort of 40,000 (B.C.)			
Label	Variable	Base Case	Data Source	
a	Lifetime live hirths per female	1 20	√ V	
b	Proportion of females surviving to age 20 in the cohort	99.41%	V	
<u>с</u>	Number of pregnancies in the birth cohort	23.857	= (b * 20.000) * a	
	Estimated years lived with moderate to severe perinatal depression		(2 _0,000, 0	
d	- 7 weeks post birth to 34 weeks post birth	1,274	V	
	Estimated years lived with moderate to severe perinatal depression			
e	- 30 weeks pregnant to 34 weeks post birth	1,996	V	
f	Disutility associated with moderate to severe depression	0.59	V	
g	QALYs lost due to moderate to severe perinatal depression	750	= d * f	
h	Rate of suicide in perinatal women without depression	0.00003	V	
i	Suicides in perinatal women without depression	0.72	= c * h	
i	Years of life lost due to suicide	55	√ V	
k	Increase in risk of suicide in perinatal women with depression	119%	V	
	OALY's lost due to suicide attributable to perinatal depression	46.8	= (i * k) * i	
	Bate of hospitalizations due to unintentional injuries in children age	10.0		
m	0-4: mothers without depression	0.0067	V	
	Mortality rate due to unintentional injuries in children age 0-4:			
n	mothers without depression	0.00011	V	
0	Increased risk of unintentional injuries: mothers with depression	59%	V	
	Hospitalizations due unintentional injuries in children age 0-4			
р	attributable to mothers with depression	94	= (r * c) * t	
	Deaths due to unintentional injuries in children age 0-4 attributable			
q	to mothers with depression	1.5	= (s * c) * t	
r	Years of life lost due to death of child from unintentional injury	80	V	
	QALYs lost due to unintentional injury attributable to perinatal			
S	depression	120	= q * r	
	QALYs lost per mother/infant pair due to not exclusively	0.40	,	
t	breastfeeding to six months	0.40	v	
	Reduced risk of exclusive breastfeeding to six months associated	070/	,	
u	with maternal depression	27%	v	
v	Estimated prevalence of moderate to severe perinatal depression	7.9%	V	
w	QALYs lost due to shorter duration of breastfeeding	204	= v * c * t * u	
х	Total QALYs lost due to moderate to severe perinatal depression	1,129	= g + j + s + w	
У	Proportion of true positive cases identified by using the EPDS	79%	V	
Z	Adherence with screening	39%	Ref Doc	
аа	Years lived with moderate to severe perinatal depression identified	348	= (w * z) * y	
ah	Effectiveness of screening in reducing the risk of moderate to	220/		
ab	severe depression	32%	l ∧	
ac	Years lived with moderate to severe perinatal depression reduced by	111	= aa * ab	
	% of years lived with moderate to severe perinatal depression	0 70/	- 20 / d	
ad	reduced by screening	ð./%	= ac / d	
ae	Potential QALYs saved (CPB) - Screening increasing from 0% to 40%	99	= x * ad	

√ = Estimates from the literature

We also modified a number of major assumptions and recalculated the CPB as follows:

- Assume that screening would occur at 30 weeks pregnant and again at 7 weeks post birth instead of just at 7 weeks post birth (Table 1, row *e*): CPB = 119.
- Assume that the disutility associated with moderate to severe depression is reduced from 0.59 to 0.42 (Table 1, row *f*): CPB = 64.
- Assume that the disutility associated with moderate to severe depression is increased from 0.59 to 0.76 (Table 1, row *f*): CPB = 141.
- Assume that the increased risk of unintentional injuries in children (mothers with depression) is reduced from 59% to 24% (Table 1, row *o*): CPB = 87.
- Assume that the increased risk of unintentional injuries in children (mothers with depression) is increased from 59% to 104% (Table 1, row *o*): CPB = 115.
- Assume that the effectiveness of screening in reducing the risk of moderate to severe depression is reduced from 32% to 18% (Table 1, row *ab*): **CPB = 56**.
- Assume that the effectiveness of screening in reducing the risk of moderate to severe depression is increased from 32% to 59% (Table 1, row *ab*): **CPB = 182**.
- Assume that the reduced risk of exclusive breastfeeding to six months associated with maternal depression is reduced from 27% to 12% (Table 1, row u): CPB = 80.
- Assume that the reduced risk of exclusive breastfeeding to six months associated with maternal depression is increased from 27% to 39% (Table 1, row u): CPB = 115.

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with screening pregnant and postpartum women for depression in a BC birth cohort of 40,000.

In modelling CE, we made the following assumptions:

- **Expected screens** We assumed that screening would occur once per pregnancy (Table 2, row *a*) and modified this to twice in the sensitivity analysis. ^{1045,1046}
- **Cost of office visit** Screening with the EPDS takes approximately 5 minutes.¹⁰⁴⁷ We therefore assumed that 50% of a 10-minute office visit would be required for the screening and varied this from 33% to 67% in the sensitivity analysis (Table 2, row h).
- Evaluation of women with positive screens Women who test positive for depression on the EPDS should be offered a psychiatric diagnostic assessment.¹⁰⁴⁸ We assumed a cost of \$252.38 for this assessment, based on fee code 00610 full

¹⁰⁴⁵ British Columbia. *Healthy Start Initiative: Provincial Perinatal, Child and Family Public Health Services.* April 2013

¹⁰⁴⁶ BC Reproductive Mental Health Program and Perinatal Services BC. *Best Practice Guidelines for Mental Health Disorders in the Perinatal Period*. 2014. Available at

http://www.perinatalservicesbc.ca/Documents/Guidelines-

Standards/Maternal/MentalHealthDisordersGuideline.pdf. Accessed March 2016.

¹⁰⁴⁷ Ibid.

¹⁰⁴⁸ Wisner KL, Sit DK, McShea MC et al. Onset timing, thoughts of self-harm, and diagnoses in postpartum women with screen-positive depression findings. *JAMA Psychiatry*. 2013; 70(5): 490-8.

diagnostic interview by a psychiatrist in the BC MSC Payment Schedule (Table 2, row o).¹⁰⁴⁹ The assessment and fee applies to all true and false positive cases.

- Treatment for depression For the base model, we assumed that women with severe depression would be treated with CBT rather than antidepressant medication, due to potential safety concerns. CBT can be provided in a group or to an individual. Individual therapy consists of 12 - 90 minute sessions with 1-2 follow-up sessions lasting from 10-30 minutes for a total therapy time of approximately 19 hours.¹⁰⁵⁰ The cost of psychiatric treatment in BC is \$219.74 per hour, based on fee code 00632 - individual patient per 1 hour in the BC MSC Payment Schedule¹⁰⁵¹ for a total cost of \$4,175 per individual. Group therapy general consists of 1 initial individual session lasting 90 minutes, eight individuals receiving 12 - 120 minute sessions with 1-2 follow-up sessions lasting from 10-30 minutes.¹⁰⁵² The cost of group therapy in BC with eight clients is \$404 per hour.¹⁰⁵³ The cost of group therapy would therefore be \$1,592 per person (Table 2, row q). For modelling purposes, we assumed in the base model that CBT would be provided as group therapy and then included the costs for individual therapy in the sensitivity analysis. For patient time and travel costs associated with CBT we assumed 26.5 hours in therapy plus 1 hour travel for each session for a total of 41 hours. If antidepressant medication is used, the cost/day for antidepressant prescriptions in BC ranges from \$1.00 for prescriptions paid by the provincial government to \$1.19 for prescription paid for by uninsured patients and \$1.27 paid for by private insurers (in 2012 CAD)¹⁰⁵⁴ or \$1.17 / \$1.39 / \$1.48 respectively in 2022 CAD. The average is \$1.35/day or \$492/year.
- **Hospitalizations avoided due to unintentional injury** We assumed that the hospital costs per unintentional injury would be \$19,485 (in 2010 Can\$)¹⁰⁵⁵ or \$23,794 in 2022 Can\$ (Table 2, row *u*).
- **Costs avoided due to increased duration of breastfeeding** In the previous analysis of the promotion of breastfeeding, we calculated that exclusive breastfeeding

¹⁰⁵¹ Medical Services Commission. *MSC Payment Schedule*. 2023. Available online at

¹⁰⁵³ Medical Services Commission. MSC Payment Schedule. 2023. Available online at

¹⁰⁴⁹ Medical Services Commission. *MSC Payment Schedule*. 2023. Available online at

https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/medical-services-plan/msc_payment_schedule__march_2023.pdf. Accessed November 2023.

¹⁰⁵⁰ Stevenson M, Scope A, Sutcliffe P et al. Group cognitive behavioural therapy for postnatal depression: a systematic review of clinical effectiveness, cost-effectiveness and value of information analyses. *Health Technology Assessment*. 2010; 14(44): 1-135.

https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/medical-services-plan/msc_payment_schedule_march_2023.pdf. Accessed November 2023.

¹⁰⁵² Stevenson M, Scope A, Sutcliffe P et al. Group cognitive behavioural therapy for postnatal depression: a systematic review of clinical effectiveness, cost-effectiveness and value of information analyses. *Health Technology Assessment*. 2010; 14(44): 1-135.

https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/medical-services-plan/msc_payment_schedule_march_2023.pdf. Accessed November 2023.

¹⁰⁵⁴ Morgan S, Smolina K, Mooney D et al. *The Canadian Rx Atlas, Third Edition.* 2013. UBC Centre for Health Services and Policy Research. Available at

http://www.chspr.ubc.ca/sites/default/files/file_upload/publications/2013/RxAtlas/canadianrxatlas2013.pdf. Accessed January 2018.

¹⁰⁵⁵ British Columbia Injury Research and Prevention Unit. *Economic Burden of Injury in British Columbia*. 2015. Available at http://www.injuryresearch.bc.ca/wp-content/uploads/2015/08/BCIRPU-EB-2015.pdf. Accessed March 2016.

to six months is associated with costs avoided of \$6,189 per infant/mother pair (Table 2, row w).¹⁰⁵⁶

- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the estimated cost per QALY would be \$25,553 (Table 2, row *ad*).

Та	able 2. Calculation of Cost-effectiveness (C	CE) for Scree	ening Pregnant and			
	Postpartum Women for Depression in	a Birth Coh	ort of 40,000			
Row Label	Variable	Base Case	Data Source			
а	Number of screens per pregnancy	1	V			
b	Number of pregnancies in the birth cohort	23,857	= Table 1, row c			
с	Total # of screens in birth cohort - 100% adherence	23,857	= a * b			
d	Adherence with screening	39%	= Table 1, row z			
е	Total # of screens in birth cohort - 40% adherence	9,304	= c * d			
f	Cost of 10-minute office visit	\$35.97	Ref Doc			
g	Value of patient time and travel for office visit	\$74.32	Ref Doc			
h	Portion of 10-minute office visit for screen	50%	V			
i	Cost of screening	\$513,091	= e* (f + g) * h			
j	Estimated prevalence of perinatal depression	7.9%	= Table 1, row v			
k	EPDS true positive %	79%	= Table 1, row y			
	EPDS false positive %	13%	√			
m	# of true positive screens	581	= b * d * j * k			
n	# of false positive screens	96	= b * d * j * l			
0	Cost per psychiatric assessment	\$252.38	√			
р	Cost of psychiatric assessment	\$221,097	= (m + n) * o + (m + n) * g			
q	Cost of CBT / ADM per individual	\$1,592	√			
r	Costs of patient time for CBT per individual	\$1,524	= 41 * (g / 2)			
S	Cost of CBT	\$1,810,541	= (q + r) *m			
t	Hospitalizations due to unintentional injuries avoided	8.3	= Table 1, row p * Table 1, row ad			
	with screening	¢22.704				
u	Cost of nospital treatment	-\$23,794	V			
v	Losts avoided due to unintentional injury hospitalizations avoided	-\$196,444	= t * u			
w	Costs avoided due to exclusive breastfeeding to six months per mother / infant pair	-\$6,189	V			
x	Reduced risk of exclusive breastfeeding associated with maternal depression	27%	= Table 1, row u			
У	Costs avoided due to longer duration of breastfeeding	-\$275,511	= Table 1, row v * Table 1, row c * Table 1, row ad * w * x			
Z	Net screening and patient costs (undiscounted)	\$2,072,775	= i + p + s + v + y			
аа	QALYs saved (undiscounted)	99	= Table 1, row ae			
ab	Net screening and patient costs (1.5% discount)	\$2,153,634	Calculated			
ас	QALYs saved (1.5% discount)	85	Calculated			
ad	CE (\$/QALY saved)	\$25,425	= ab / ac			

√ = Estimates from the literature

¹⁰⁵⁶ In the promotion of breastfeeding model, an increase in exclusive 6-month breastfeeding in 7,788 additional infant/mother pairs (Table 2, row g) results in \$48.2 million in costs avoided of (Table 3, row ww), or \$6,189 per infant/mother pair.

We also modified a number of major assumptions and recalculated the CE as follows:

- Assume that screening would occur at 30 weeks pregnant and again at 7 weeks post birth instead of just at 7 weeks post birth (Table 1, row *e*): CE = \$20,680.
- Assume that the disutility associated with moderate to severe depression is reduced from 0.59 to 0.42 (Table 1, row *f*): CE = \$42,180.
- Assume that the disutility associated with moderate to severe depression is increased from 0.59 to 0.76 (Table 1, row *f*): CE = \$16,922.
- Assume that the increased risk of unintentional injuries in children (mothers with depression) is reduced from 59% to 24% (Table 1, row o): CE = \$30,221.
- Assume that the increased risk of unintentional injuries in children (mothers with depression) is increased from 59% to 104% (Table 1, row o): CE = \$20,445.
- Assume that the effectiveness of screening in reducing the risk of depression is reduced from 32% to 18% (Table 1, row *ab*): **CE = \$48,691**.
- Assume that the effectiveness of screening in reducing the risk of depression is increased from 32% to 59% (Table 1, row *ab*): **CE = \$11,940**.
- Assume that the portion of a 10-minute office visit required for screening is reduced from 50% to 33% (Table 2, row *h*): CE = \$23,514.
- Assume that the portion of a 10-minute office visit required for screening is increased from 50% to 67% (Table 2, row *h*): CE = \$27,593.
- Assume that the cost of CBT per individual is increased from \$1,592 to \$4,175 (Table 2, row q): CE = \$43,101.
- Assume that 50% of individuals use group CBT and 50% ADM (Table 2, row q): CE = \$21,817.
- Assume that the reduced risk of exclusive breastfeeding to six months associated with maternal depression is reduced from 27% to 12% (Table 1, row u): CE = \$32,156.
- Assume that the reduced risk of exclusive breastfeeding to six months associated with maternal depression is increased from 27% to 39% (Table 1, row u): CE = \$21,312.

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening pregnant and postpartum women for depression is estimated to be 85 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$25,425 per QALY (see Table 3).

Table 3: Offer of Screening Pregnant and Postpartum Womenfor Depression in a Birth Cohort of 40,000										
Summary										
	Base									
	Case	Rar	ıge							
CPB (Potential QALYs Gained)										
Gap between 0% and 'Best in th	he World' (39%)									
1.5% Discount Rate	85	48	156							
3% Discount Rate	74	41	136							
0% Discount Rate	99	56	182							
CE (\$/QALY) including patient time	costs									
1.5% Discount Rate	\$25,425	\$11,880	\$48,446							
3% Discount Rate	\$29,616	\$14,266	\$55,704							
0% Discount Rate	\$21,003	\$9,203	\$41,059							
CE (\$/QALY) excluding patient time	e costs									
1.5% Discount Rate	\$10,520	\$3,796	\$21,949							
3% Discount Rate	\$12,725	\$5,105	\$25,676							
0% Discount Rate	\$8,019	\$2,161	\$17,975							

Screening for Primary Prevention of Fragility Fractures

Canadian Task Force on Preventive Health Care Recommendations (2023)

We recommend "risk assessment-first" screening for prevention of fragility fractures in females aged 65 years and older, with initial application of the Canadian clinical Fracture Risk Assessment Tool (FRAX) without bone mineral density (BMD). The FRAX result should be used to facilitate shared decision-making about the possible benefits and harms of preventive pharmacotherapy. After this discussion, if preventive pharmacotherapy is being considered, clinicians should request BMD measurement using dual-energy x-ray absorptiometry (DXA) of the femoral neck, and re-estimate fracture risk by adding the BMD T-score into FRAX (conditional recommendation, low-certainty evidence).

We recommend against screening females aged 40–64 years and males aged 40 years and older (strong recommendation, very low-certainty evidence).

*These recommendations apply to community-dwelling individuals who are not currently on pharmacotherapy to prevent fragility fractures.*¹⁰⁵⁷

United States Preventive Services Task Force Recommendations (2018)

The USPSTF recommends screening for osteoporosis with bone measurement testing to prevent osteoporotic fractures in women 65 years and older. (B recommendation)

The USPSTF recommends screening for osteoporosis with bone measurement testing to prevent osteoporotic fractures in postmenopausal women younger than 65 years at increased risk of osteoporosis, as determined by a formal clinical risk assessment tool. (B recommendation)

The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of screening for osteoporosis to prevent osteoporotic fractures in men. (I statement)¹⁰⁵⁸

Best in the World

Screening

- Based on a retrospective longitudinal cohort study within 13 primary care clinics in the Sacramento, CA region, 57.8% of 65-74 year old women are referred to and receive a bone density scan within a 7 year period.¹⁰⁵⁹
- The rate of screening for fragility fractures with either FRAX and/or BMD in females 65 years of age and older in BC is unknown.

¹⁰⁵⁷ Theriault G, Limburg H, Klarenbach S et al. Recommendation on screening for primary prevention of fragility fractures. *CMAJ*. 2023; 195: E639-49.

 ¹⁰⁵⁸ Curry S, Krist A, Owens D et al. Screening for osteoporosis to prevent fractures: US Preventive Services Task
 ^{Force} recommendation statement. *Journal of the American Medical Association*. 2018; 319(24): 2521-31.
 ¹⁰⁵⁹ Amarnath A, Franks P, Robbins J et al. Underuse and Overuse of Osteoporosis Screening in a Regional Health
 System: a Retrospective Cohort Study. *Journal of General Internal Medicine*. 2015; 12(30): 1733-40.

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with screening for, and treatment of, fragility fractures in community-dwelling females ages 65 and older.

"The aim of screening is not to detect the existence of osteoporosis but rather to reduce fracture-related burden of morbidity, mortality, and costs."¹⁰⁶⁰

Definitions

- "Fragility fractures are those that occur spontaneously during normal daily activities or that result from minor impacts that would not normally cause a fracture in healthy adults."¹⁰⁶¹
- Risk factors for fragility factors include older age, female sex, low body weight, smoking, alcohol use, the use of certain medications (e.g. glucocorticoids), family history of fracture, history of falls, type 2 diabetes and a prior history of fragility fractures.¹⁰⁶²

Defining and Estimating the Population at Risk

Community-Dwelling Females Ages ≥ 65

- The rate of fragility fractures varies significantly by place of residence at the time of the fracture and by the place of residence after the fracture. In Ontario in 2018/19 the hip fracture rate per 10,000 in females ages 66 and older was 33 for those remaining in the community (community to community), 254 for those living in long-term care (long-term care to long-term care) and 567 for those transferring from the community to long-term care).¹⁰⁶³
- In 2015/16, an estimated 45,646 BC seniors lived in residential care,¹⁰⁶⁴ or an estimated 5.38% of the population aged 65 or older (45,646 of 848,990¹⁰⁶⁵).
- The Statistics Canada dwelling universe consists of collective and private dwellings.¹⁰⁶⁶ Collective dwellings are organized into 10 broad categories¹⁰⁶⁷

¹⁰⁶⁰ Gates M, Pillay J, Theriault G et al. Screening to prevent fragility fractures among adults 40 years and older in primary care: Protocol for a systematic review. *BMC Systematic Reviews*. 2019; 8(216): ¹⁰⁶¹ Ibid.

¹⁰⁶² Ibid.

¹⁰⁶³ Jaglal S, MacKay C, Cameron C et al. *Ontario Osteoporosis Strategy - Provincial Performance Data for Osteoporosis Management: Technical Report*. March 17. 2023. Available online at <u>https://osteostrategy.on.ca/wp-content/uploads/OOS-Provincial-Performance-Data-Technical-Report-Mar-17-23.pdf</u>. Accessed January 2024.

¹⁰⁶⁴ Peterson S, Yung S, Beaumier J et al. *Residential Care and Administrative Data in British Columbia: Developing Methods to Identify Residents*. November 2020. UBC Centre for Health Services and Policy Research. Available online at

https://www.popdata.bc.ca/sites/default/files/documents/data%20access/methodological/CHSPR-Residential-Care-2020.pdf. Accessed January 2024.

¹⁰⁶⁵ Statistics Canada. *British Columbia – Age distribution, 2001 to 2021*. Available online at <u>https://www12.statcan.gc.ca/census-recensement/2021/as-sa/fogs-</u>

spg/alternative.cfm?topic=2&lang=E&dguid=2021A000259&objectId=1. Accessed January 2024.

¹⁰⁶⁶ Statistics Canada. *Structural Type of Dwelling and Collectives Reference Guide, Census of Population, 2016.* Available online at <u>https://www12.statcan.gc.ca/census-recensement/2016/ref/guides/001/98-500-x2016001-eng.cfm</u>. Accessed January 2024.

¹⁰⁶⁷ Collective dwellings are organized into the following 10 broad categories: hospital, nursing home and/or residence for senior citizens, residential care facility, shelter, correction or custodial facility, lodging or rooming house, religious establishment, Hutterite colony, establishment with temporary accommodation services and other establishment.

although the majority of individuals, especially seniors, in the collective dwellings category live in the nursing home and/or residence for senior citizens category.

• Figure 1 provides an overview of the proportion of males and females ages 65 and older living in collective dwellings in British Columbia in 2016.¹⁰⁶⁸

¹⁰⁶⁸ Statistics Canada. Dwelling Type (5), Age (20) and Sex (3) for the Population in Occupied Dwellings of Canada, Provinces and Territories, Census Metropolitan Areas and Census Agglomerations, 2016 Census. Accessed January 2024.

Table 1: Screening for Fragility Fractures											
Р	lace of R	Residence	e, Fema	ales Ages	≥65						
	In	a BC Birth	Cohort of	40,000							
			Place of	Residence							
	# in	Private D	wellings	Collective Dwellings							
Age	Cohort	%	#	%	#						
64	18,593										
65	18,489	99.1%	18,330	0.9%	159						
66	18,375	99.0%	18,188	1.0%	186						
67	18,250	98.8%	18,036	1.2%	213						
68	18,113	98.7%	17,873	1.3%	240						
69	17,963	98.5%	17,698	1.5%	265						
70	17,799	98.4%	17,508	1.6%	290						
71	17,619	98.2%	17,304	1.8%	315						
72	17,421	98.1%	17,083	1.9%	338						
73	17,204	97.6%	16,794	2.4%	410						
74	16,966	97.2%	16,486	2.8%	480						
75	16,704	96.7%	16,158	3.3%	547						
76	16,417	96.3%	15,807	3.7%	610						
77	16,102	95.8%	15,432	4.2%	670						
78	15,757	94.5%	14,897	5.5%	859						
79	15,378	93.3%	14,341	6.7%	1,037						
80	14,963	92.0%	13,761	8.0%	1,202						
81	14,510	90.7%	13,157	9.3%	1,353						
82	14,016	89.4%	12,528	10.6%	1,488						
83	13,478	85.0%	11,450	15.0%	2,028						
84	12,895	80.5%	10,383	19.5%	2,512						
85	12,264	76.1%	9,332	23.9%	2,933						
86	11,585	71.7%	8,302	28.3%	3,284						
87	10,859	67.2%	7,300	32.8%	3,559						
88	10,086	64.1%	6,462	35.9%	3,625						
89	9,271	60.6%	5,620	39.4%	3,651						
90	8,417	57.0%	4,796	43.0%	3,621						

• The CTFPHC recommends screening in community-dwelling females ages ≥ 65 . Based on the information in Figure 1, we estimated the number of females ages ≥ 65 that would live in private (i.e. community) versus collective dwellings (see Table 1). **Risk of Fragility Fractures**

- The study by Hopkins and colleagues calculated the total number of patients with fractures in Canada between April 1, 2010 and March 31, 2011, by sex, age and type of fracture using data from the Canadian Institute for Health Information (CIHI).¹⁰⁶⁹ Individuals were identified as having a fracture if they reported a hospital admission, day surgery, emergency room visit, or hospital-based clinic visit with an International Statistical Classification of Diseases and Related Health Problems, Tenth Revision, Canada (ICD-10-CA) code for the various types of fractures. We compiled the relevant data for women ages 50-99 and calculated the incidence rate per 100,000 by age group (50-59, 60-69, 70-79, 80-89 and 90-99) and by fracture type (see Table 2).
- It is possible that up to two-thirds of asymptomatic vertebral fractures are not accounted for in this data, though they are clinically relevant.¹⁰⁷⁰

Incidence of Fi	ractures b	by Type of	Fracture	and Age	e Group	1
			A	ge Group		
	50 - 59	60 - 69	70 - 79	80 - 89	90 - 99	Total
Female Population in 2011	2,472,362	1,760,036	1,085,293	681,159	153,566	6,152,416
Number of Fractures in Can	ada in 2011	L				
Hip	737	1,826	4,238	9,612	4,924	21,337
Vertebral	624	904	1,673	2,540	835	6,576
All Other						
Wrist	8,064	7,584	5,131	4,486	1,149	26,414
Humerus	1,314	1,844	2,015	2,423	727	8,323
Other	9,351	8,867	8,055	11,779	4,845	42,897
Multiple	918	1,271	1,835	2,769	1,369	8,162
Subtotal All Other	19,647	19,566	17,036	21,457	8,090	85,796
Total	21,008	22,296	22,947	33,609	13,849	113,709
Fracture Rate per 100,000 p	erson years	S				
Hip	30	104	390	1,411	3,206	347
Vertebral	25	51	154	373	544	107
All Other						
Wrist	326	431	473	659	748	429
Humerus	53	105	186	356	473	135
Other	378	504	742	1,729	3,155	697
Multiple	37	72	169	407	891	133
Subtotal All Other	795	1,112	1,570	3,150	5,268	1,395
Total	850	1,267	2,114	4,934	9,018	1,848

- -_ _ _ _ _ _ _ _

¹⁰⁶⁹ Hopkins R, Burke N, Von Keyserlingk C et al. The current economic burden of illness of osteoporosis in Canada. Osteoporosis International. 2016; 27(10): 3023-32.

¹⁰⁷⁰ de Klerk G, Hegeman J, Bronkhorst P et al. The (a)-symptomatic vertebral fracture: A frequently discovered entity with clinical relevance in fracture patients screened on osteoporosis. Geriatric Orthopaedic Surgery & Rehabilitation. 2012; 3(2): 74-78.

• The rates in Table 2 were combined with the information in Table 1 to estimate the number of fragility fractures that would occur in community-dwelling females ages ≥ 65 in a BC birth cohort of 40,000 (20,000 females). In estimating the rates for each year, we assumed that the rate in Table 2 would occur at the mid-point of the age group (e.g. at age 65 in the 60-69 year age group) and would increase linearly between posted rates.

Number of Fragility Fractures in a BC Birth Cohort

• We would expect 9,822 fragility fractures to occur in a BC birth cohort of 20,000 females between the ages of 65 and 90, 2,272 hip fractures, 678 vertebral fractures, 1,829 wrist fractures, 758 humerus (upper arm) fractures, 783 fractures at multiple sites and 3,502 other fractures (see Table 3).

Table 3: Estimated Number of Fragility Fractures Community-Dwelling Females Ages ≥65 In the Absence of Screening / Intervention

		#in	Hip)	Vertebral Wrist			Humer	Humerus Multiple			All Other		Total		
Age	# in Cohort	Private Dwelling	Rate / 100,000	#	Rate / 100,000	#	Rate / 100,000	#	Rate / 100,000	#	Rate / 100,000	#	Rate / 100,000	#	Rate / 100,000	#
65	18,489	18,330	104	19	51	9	431	79	105	19	72	13	504	92	1,267	232
66	18,375	18,188	132	24	62	11	435	79	113	21	82	15	528	96	1,352	246
67	18,250	18,036	161	29	72	13	439	79	121	22	92	17	551	99	1,436	259
68	18,113	17,873	190	34	82	15	443	79	129	23	101	18	575	103	1,521	272
69	17,963	17,698	218	39	92	16	448	79	137	24	111	20	599	106	1,606	284
70	17,799	17,508	247	43	103	18	452	79	145	25	121	21	623	109	1,691	296
71	17,619	17,304	276	48	113	20	456	79	153	27	130	23	647	112	1,775	307
72	17,421	17,083	304	52	123	21	460	79	161	28	140	24	671	115	1,860	318
73	17,204	16,794	333	56	134	22	464	78	169	28	150	25	695	117	1,945	327
74	16,966	16,486	362	60	144	24	469	77	178	29	159	26	718	118	2,030	335
75	16,704	16,158	390	63	154	25	473	76	186	30	169	27	742	120	2,114	342
76	16,417	15,807	493	78	176	28	491	78	203	32	193	30	841	133	2,396	379
77	16,102	15,432	595	92	198	31	510	79	220	34	217	33	940	145	2,678	413
78	15,757	14,897	697	104	220	33	529	79	237	35	240	36	1,038	155	2,960	441
79	15,378	14,341	799	115	242	35	547	78	254	36	264	38	1,137	163	3,242	465
80	14,963	13,761	901	124	264	36	566	78	271	37	288	40	1,236	170	3,524	485
81	14,510	13,157	1,003	132	285	38	584	77	288	38	312	41	1,334	176	3,806	501
82	14,016	12,528	1,105	138	307	38	603	76	305	38	335	42	1,433	180	4,088	512
83	13,478	11,450	1,207	138	329	38	621	71	322	37	359	41	1,532	175	4,370	500
84	12,895	10,383	1,309	136	351	36	640	66	339	35	383	40	1,631	169	4,652	483
85	12,264	9,332	1,411	132	373	35	659	61	356	33	407	38	1,729	161	4,934	460
86	11,585	8,302	1,591	132	390	32	668	55	367	31	455	38	1,872	155	5,343	444
87	10,859	7,300	1,770	129	407	30	677	49	379	28	504	37	2,014	147	5,751	420
88	10,086	6,462	1,950	126	424	27	685	44	391	25	552	36	2,157	139	6,159	398
89	9,271	5,620	2,129	120	441	25	694	39	403	23	600	34	2,300	129	6,568	369
90	8,417	4,796	2,309	111	458	22	703	34	415	20	649	31	2,442	117	6,976	335
Total			-	2,272		678		1,829	-	758		783		3,502		9,822

Mortality Associated with Fragility Fractures

- In their meta-analysis on morbidity associated with hip fractures, Haentjen and colleagues calculated a hazard ratio of 2.87 (95% CI 2.52 3.27) of death in the first year for females 50 and older with a hip fracture compared to those without.¹⁰⁷¹ A hazard ratio of 1.00 suggests that the death rate in the group of interest is the same as that in the general population.
- When stratified by age group, the probability of dying in the first year following a hip fracture was 5 times as high (OR of 5.0; 95% CI of 2.6 to 9.5) in females <70 years of age, 2.4 times as high (OR of 2.4; 95% CI of 1.8 to 3.3) in females 70-79 years of age but did not increase (OR of 1.1; 95% CI of 0.6 to 2.1) in females ≥ 80 years of age. Excess mortality following a hip fracture may continue for up to 10 years in females <70 years. OR of 3.2; 95% CI of 1.0 to 10.2).¹⁰⁷²
- Tran and colleagues report that for women over 50 the hazard ratio (of excess mortality) of any fragility fracture is 1.51 (95% CI 1.31 1.75), 2.13 (95% CI 1.58 2.87) for hip fractures, 1.82 (95% CI 1.28 2.57) for vertebral fractures and 1.38 (95% CI 1.18 1.62) for non-hip, non-vertebral fractures.¹⁰⁷³
- A study from Ontario calculated the risk of death in 101,773 individuals ≥ 66 years of age with an index fragility fracture sustained between January 1, 2011 and March 31, 2015 and compared this with matched controls.¹⁰⁷⁴ Compared to the 1-year absolute risk of death observed in the non-fracture cohort (5.4%), all index fracture types are associated with an increased risk of death with the exception of wrist fractures (see Table 4).

Table 4: Risk of Death Following an Incident Fracture											
By Index Fracture Site											
		Mortality at 1-Year									
Index	# of	Post-Inde	x Fracture								
Fracture Type	Fractures	#	%								
Нір	26,963	6,625	24.6%								
Vertebral	6,595	1,183	17.9%								
Wrist	16,467	718	4.4%								
Humerus	11,756	1,159	9.9%								
Multiple	3,299	608	18.4%								
Other	36,693	4,319	11.8%								
Total	101,773	14,612	14.4%								

¹⁰⁷¹ Haentjens P, Magaziner J, Colón-Emeric C et al. Meta-analysis: excess mortality after hip fracture among older women and men. *Annals of Internal Medicine*. 2010; 152(6): 380-90.

¹⁰⁷² LeBlanc E, Hillier T, Pedula K et al. Hip fracture and increased short-term but not long-term mortality in healthy older women. *JAMA Archives of Internal Medicine*. 2011; 171(20):1831-7.

¹⁰⁷³ Tran T, Bliuc D, van Geel T et al. Population-wide impact of non-hip non-vertebral fractures on mortality. *Journal of Bone and Mineral Research*. 2017; 32(9): 1802-10.

¹⁰⁷⁴ Brown J, Adachi J, Schemitsch E et al. Mortality in older adults following a fragility fracture: Real-world retrospective matched-cohort study in Ontario. *BMC Musculoskeletal Disorders*. 2021; 22(103:

• Based on the same study from Ontario, the higher risk of death increases with age and is maintained for at least three years after the index fracture.¹⁰⁷⁵ Table 5 summarizes these results for females.

In Females by Age Cohort and Time Since the Fracture											
	Absolute										
	Frac	ture Coho	ort	Non-Fr	acture Co	ohort	Risk				
	%	95%	CI	%	95%	CI	Difference				
-			Within	1 Year							
66-70	3.5%	3.2%	3.8%	1.0%	0.8%	1.2%	2.5%				
71-75	5.2%	4.8%	5.6%	1.7%	1.4%	1.9%	3.5%				
76-80	7.8%	7.3%	8.3%	2.9%	2.7%	3.3%	4.9%				
81-85	11.6%	11.1%	12.2%	4.8%	4.5%	5.2%	6.8%				
86+	23.6%	22.9%	24.2%	10.0%	9.6%	10.4%	13.6%				
Ages ≥66	12.5%	12.5% 12.2% 12		5.1%	4.9%	5.2%	7.4%				
66-70	5.3%	4.9%	5.8%	2.1%	1.8%	2.3%	3.2%				
71-75	8.3%	7.7%	8.8%	3.3%	3.0%	3.7%	5.0%				
76-80	12.4%	11.8%	13.1%	5.9%	5.5%	6.4%	6.5%				
81-85	18.5%	17.8%	19.2%	9.9%	9.4%	10.4%	8.6%				
86+	34.9%	34.1%	35.6%	19.2%	18.7%	19.8%	15.7%				
Ages ≥66	19.0%	18.7%	19.3%	9.9%	9.7%	10.1%	9.1%				
			Within 3	3 Years							
66-70	7.3%	6.8%	7.8%	3.3%	3.0%	3.7%	4.0%				
71-75	11.4%	10.8%	12.0%	5.1%	4.7%	5.5%	6.3%				
76-80	17.7%	16.9%	18.4%	9.4%	8.9%	10.0%	8.3%				
81-85	25.8%	25.0%	26.6%	15.3%	14.7%	15.9%	10.5%				
86+	45.8%	44.9%	46.6%	27.7%	27.0%	28.4%	18.1%				
Ages ≥66	25.6%	25.2%	26.0%	14.8%	14.5% 15.0%		10.8%				

Table 5: Risk of Death Following an Incident Freature In Females by Age Cohort and Time Since the Fracture

¹⁰⁷⁵ Brown J, Adachi J, Schemitsch E et al. Mortality in older adults following a fragility fracture: Real-world retrospective matched-cohort study in Ontario. *BMC Musculoskeletal Disorders*. 2021; 22(103:

• For modelling purposes, we calculated the excess risk of death attributable to each type of fragility fracture (see Table 4). For example, the 1-year absolute risk of death observed in the non-fracture Ontario cohort was 5.4% while the 1-year risk of death following a hip fracture was 24.6%. The excess risk of death attributable to the hip fracture would thus be 3.55 times that of the non-fracture cohort (24.6% - 5.4% = 19.2%; 19.2% / 5.4% = 3.55). The excess risk of death attributable to a vertebral, wrist, humerus, multiple and other fracture are 2.32/0.0/0.83/2.41/1.18, respectively. The excess risk of death attributable to the annual mortality % observed in the BC birth cohort of 20,000 females to estimate that 1,100 deaths are attributable to fragility fractures between the ages of 65 and 90 in the BC birth cohort (see Table 6).

	Table 6: Screening for Fragility Fractures																	
	Estimating the Number of Excess Deaths Attributable to Fragility Fractures																	
				0		Females	Ages ≥	: 65 ln a B	C Birth C	ohort o	f 40,000	0	,					
		# in	Deaths in C	Community-														
	# in	Private	dwelling	g Elderly		Nu	mber o	f Fragilty	Fracture	S		Ex	cess Death	ns Attri	butable t	o Fragilty	/ Fractu	ures
Age	Cohort	Dwelling	#	%	Нір	Vertebral	Wrist	Humerus	Multiple	Other	Total	Нір	Vertebral	Wrist	Humerus	Multiple	Other	Total
65	18,489	18,330			19	9	79	19	13	92	232							
66	18,375	18,188	142	0.78%	24	11	79	21	15	96	246	0.5	0.2	0.0	0.1	0.2	0.8	2
67	18,250	18,036	152	0.84%	29	13	79	22	17	99	259	0.7	0.2	0.0	0.1	0.3	1.0	2
68	18,113	17,873	163	0.91%	34	15	79	23	18	103	272	0.9	0.3	0.0	0.2	0.4	1.1	3
69	17,963	17,698	176	0.99%	39	16	79	24	20	106	284	1.2	0.3	0.0	0.2	0.4	1.2	3
70	17,799	17,508	189	1.08%	43	18	79	25	21	109	296	1.5	0.4	0.0	0.2	0.5	1.4	4
71	17,619	17,304	204	1.18%	48	20	79	27	23	112	307	1.8	0.5	0.0	0.2	0.6	1.5	5
72	17,421	17,083	221	1.29%	52	21	79	28	24	115	318	2.2	0.6	0.0	0.3	0.7	1.7	5
73	17,204	16,794	289	1.72%	56	22	78	28	25	117	327	3.2	0.8	0.0	0.4	1.0	2.3	8
74	16,966	16,486	308	1.87%	60	24	77	29	26	118	335	3.7	1.0	0.0	0.4	1.1	2.6	9
75	16,704	16,158	328	2.03%	63	25	76	30	27	120	342	4.3	1.1	0.0	0.5	1.3	2.8	10
76	16,417	15,807	351	2.22%	78	28	78	32	30	133	379	5.0	1.3	0.0	0.5	1.5	3.1	11
77	16,102	15,432	375	2.43%	92	31	79	34	33	145	413	6.7	1.6	0.0	0.6	1.8	3.8	15
78	15,757	14,897	535	3.59%	104	33	79	35	36	155	441	11.7	2.5	0.0	1.0	2.9	6.1	24
79	15,378	14,341	557	3.88%	115	35	78	36	38	163	465	14.3	3.0	0.0	1.1	3.4	7.1	29
80	14,963	13,761	580	4.21%	124	36	78	37	40	170	485	17.1	3.4	0.0	1.3	3.8	8.1	34
81	14,510	13,157	604	4.59%	132	38	77	38	41	176	501	20.2	3.9	0.0	1.4	4.4	9.2	39
82	14,016	12,528	629	5.02%	138	38	76	38	42	180	512	23.5	4.4	0.0	1.6	5.0	10.4	45
83	13,478	11,450	1,078	9.42%	138	38	71	37	41	175	500	46.3	8.4	0.0	3.0	9.5	19.9	87
84	12,895	10,383	1,067	10.28%	136	36	66	35	40	169	483	50.4	9.0	0.0	3.1	10.2	21.3	94
85	12,264	9,332	1,051	11.27%	132	35	61	33	38	161	460	54.4	9.5	0.0	3.3	10.8	22.5	100
86	11,585	8,302	1,030	12.41%	132	32	55	31	38	155	444	58.0	10.0	0.0	3.4	11.4	23.6	106
87	10,859	7,300	1,002	13.72%	129	30	49	28	37	147	420	64.3	10.3	0.0	3.5	12.5	25.2	116
88	10,086	6,462	838	12.97%	126	27	44	25	36	139	398	59.5	8.9	0.0	3.0	11.5	22.5	105
89	9,271	5,620	842	14.97%	120	25	39	23	34	129	369	67.0	9.5	0.0	3.1	12.9	24.6	117
90	8,417	4,796	824	17.18%	111	22	34	20	31	117	335	73.0	9.9	0.0	3.2	14.0	26.2	126
			13,534		2,272	678	1,829	758	783	3,502	9,822	591	101	0	36	122	250	1,100
• Based on the average life expectancy of females at the time of their death, an estimated 8.3 years of life would be lost per death due to a fragility fracture for a total of 9,143 life years lost attributable to fragility fractures in the BC birth cohort (see Table 7).

					Т	able	7: Scre	ening	for F	ragilit	y Frac	cture	5					
				Es	timatin	g the	Life Yea	rs Lost	Attrik	outable	to Fra	gility I	racture	S				
						Femal	es Ages	≥65 In a	a BC Bi	rth Coh	ort of 4	0,000						
		# in				D -	- 41								·			
	# in	Private				De	atns		0.1						e fears Lo	ost	0.1	
Age	Cohort	Dwelling	In Cohort	Нір	Vertebral	Wrist	Humerus	Multiple	Other	Total		Нір	Vertebral	Wrist	Humerus	Multiple	Other	Total
65	18,489	18,330																
66	18,375	18,188	142	0.5	0.2	0	0.1	0.2	0.8	1.9	22.0	12	4	0	3	5	19	42
67	18,250	18,036	152	0.7	0.2	0	0.1	0.3	1.0	2.3	21.2	15	5	0	3	6	20	50
68	18,113	17,873	163	0.9	0.3	0	0.2	0.4	1.1	2.8	20.3	19	6	0	3	7	22	57
69	17,963	17,698	176	1.2	0.3	0	0.2	0.4	1.2	3.4	19.5	23	7	0	4	8	23	65
70	17,799	17,508	189	1.5	0.4	0	0.2	0.5	1.4	4.0	18.7	28	8	0	4	10	25	74
71	17,619	17,304	204	1.8	0.5	0	0.2	0.6	1.5	4.7	17.9	32	9	0	4	11	27	84
72	17,421	17,083	221	2.2	0.6	0	0.3	0.7	1.7	5.5	17.1	37	10	0	5	12	29	93
73	17,204	16,794	289	3.2	0.8	0	0.4	1.0	2.3	7.7	16.3	52	14	0	6	16	38	126
74	16,966	16,486	308	3.7	1.0	0	0.4	1.1	2.6	8.8	15.5	57	15	0	7	18	40	137
75	16,704	16,158	328	4.3	1.1	0	0.5	1.3	2.8	10	14.7	63	16	0	7	19	42	148
76	16,417	15,807	351	5.0	1.3	0	0.5	1.5	3.1	11	14.0	69	18	0	8	20	44	159
77	16,102	15,432	375	6.7	1.6	0	0.6	1.8	3.8	15	13.2	89	21	0	9	24	50	192
78	15,757	14,897	535	12	2.5	0	1.0	2.9	6.1	24	12.5	146	32	0	13	36	77	304
79	15,378	14,341	557	14	3.0	0	1.1	3.4	7.1	29	11.8	169	35	0	13	40	84	340
80	14,963	13,761	580	17	3.4	0	1.3	3.8	8.1	34	11.1	191	38	0	14	43	90	376
81	14,510	13,157	604	20	3.9	0	1.4	4.4	9.2	39	10.5	211	40	0	15	46	96	409
82	14,016	12,528	629	24	4.4	0	1.6	5.0	10	45	9.8	231	43	0	15	49	102	440
83	13,478	11,450	1,078	46	8.4	0	3.0	10	20	87	9.2	425	77	0	27	88	183	800
84	12,895	10,383	1,067	50	9.0	0	3.1	10	21	94	8.6	432	77	0	27	87	182	806
85	12,264	9,332	1,051	54	10	0	3.3	11	23	100	8.0	434	76	0	26	86	180	803
86	11,585	8,302	1,030	58	10	0	3.4	11	24	106	7.4	431	74	0	25	84	175	791
87	10,859	7,300	1,002	64	10	0	3.5	13	25	116	6.9	443	71	0	24	86	173	798
88	10,086	6,462	838	60	9	0	3.0	12	23	105	6.4	380	57	0	19	73	144	673
89	9,271	5,620	842	67	10	0	3.1	13	25	117	5.9	395	56	0	18	76	145	691
90	8,417	4,796	824	73	10	0	3.2	14	26	126	5.4	397	54	0	17	76	142	687
			13,534	591	101	0	36	122	250	1,100	8.3	4,783	862	0	317	1,027	2,154	9,143
LE = life	e expectan	су																

Quality of Life Associated with Fragility Fractures

- "Years of life lost can be directly quantified by measuring the difference between the individual's age at death as a consequence of the fracture, and the mean age of death for their country, adjusted for sex. However, it is more difficult and less objective to quantify the pain, disturbance of physical function, decreased mobility and social interaction commonly associated with fractures, yet these make an important contribution to the morbidity and costs of fractures to both individuals and society."¹⁰⁷⁶
- Based on a systematic review and meta-analysis, Si and co-authors found a 22.4% decrement in QoL in the first year following a hip fracture, declining to 13.2% in

¹⁰⁷⁶ Abimanyi-Ochom J, Watts J, Borgstrom F et al. Changes in quality of life associated with fragility fractures: Australian arm of the International Cost and Utility Related to Osteoporotic Fractures Study (AusICUROS). *Osteoporosis International.* 2015; 26: 1781-90.

subsequent years. A 27.6% decrement in QoL was observed in the first year following a vertebral fracture, also declining to 13.2% in subsequent years.¹⁰⁷⁷

- Based on an Australian study, hip/wrist/vertebral/humerus/ankle/'other' fractures are associated with a 26/11/20/17/24/21%, respectively, decrement in QoL in the 12 months following the fracture. At 18 months post-fracture, individuals with wrist, humerus, ankle and 'other' fracture had returned to a pre-fracture QoL but the QoL in individuals with a hip or vertebral fractures fracture remained 13% and 11% lower than pre-fracture levels.¹⁰⁷⁸
- Based on data from 11 countries, Svedbom et al calculated a 34% reduction in QoL in the first year following a hip fracture. They estimated a QoL decrement of 12% in year 2 and an 11% decrement in subsequent years. For vertebral fractures, they calculated a 27% reduction in year 1, 13% reduction in year 2 and a 13% reduction in subsequent years.¹⁰⁷⁹
- Research from Ontario provides an assessment of QoL in the **three years** following a fragility fracture. At one-month post-fracture the QoL was reduced by 30-41% with the QoL decrement remaining at between 21-28% at 36 months post-fracture (see Table 8).¹⁰⁸⁰ This study included community-dwelling elderly as well as elderly in long-term care.

Table	8: QoL	Decren	nent Fo	llowing	a Fragil	ity Frac	ture
By F	rcature 1	Type and	Months	Since th	e Incide	nt Fractu	ire
Fracture		Nu	mber of M	onths Sinc	e the Fract	ure	
Туре	1	3	6	12	18	24	36
Hip	39%	29%	28%	25%	25%	26%	28%
Vertebral	31%	22%	19%	18%	21%	24%	23%
Wrist	30%	15%	16%	18%	21%	22%	21%
Humerus	37%	21%	20%	20%	19%	21%	22%
Multiple	41%	25%	21%	21%	21%	24%	28%
Other	31%	19%	18%	18%	19%	20%	22%

- Research in Canada suggests that there is a statistically significant deficit in QoL in community-dwelling females ages 50+ five years after a fracture of the hip (18.2%, 95% CI of 10.9% to 26.7%), vertebra (7.3%, 95% CI of 1.2% to 13.4%) or rib (6.1%, 95% CI of 1.2% to 12.2%) but not after a fracture of the pelvis, forearm or 'other' fracture.¹⁰⁸¹
- At **ten years** of follow-up in this Canadian cohort, a fracture of the hip (19.4%, 95% CI of 12.2% to 26.7%), vertebra (8.5%, 95% CI of 2.4% to 14.6%) or rib (9.7%, 95%

¹⁰⁷⁷ Si L, Winzenberg T, de Graaff B et al. A systematic review and meta-analysis of utility-based quality of life for osteoporosis-related conditions. *Osteoporosis International*. 2014; 25: 1987-97.

¹⁰⁷⁸ Abimanyi-Ochom J, Watts J, Borgstrom F et al. Changes in quality of life associated with fragility fractures: Australian arm of the International Cost and Utility Related to Osteoporotic Fractures Study (AusICUROS). *Osteoporosis International.* 2015; 26: 1781-90.

¹⁰⁷⁹ Svedbom A, Borgstom F, Hernlund E et al. Quality of life for up to 18 months after low-energy hip, vertebral and distal forearm fractures – results from the ICUROS. *Osteoporosis International*. 2018; 29(3): 557-66. ¹⁰⁸⁰ Tarride J, Burke N, Leslie W et al. Loss of health related quality of life following low-trauma fractures in the

elderly. *BMC Geriatrics*. 2016; 16(84).

¹⁰⁸¹ Papaioannou A, Kennedy C, Ioannidis G et al. The impact of incident fractures on health-related quality of life: 5 years of data from the Canadian Multicentre Osteoporosis Study. *Osteoporosis International*. 2009; 20: 703-14.

CI of 3.6% to 14.6%) continued to be associated with a statistically significant reduction in QoL. 1082

• For modelling purposes, we assumed the decrement in QoL by fracture type and time since the fracture as indicated in Table 9, based primarily on research from Australia¹⁰⁸³ and Canada.^{1084,1085}

Table 9: Qo	L Decrer	nent Fo	llowing	a Fragili	ty Fracture
By Fractu	re Type ai	nd Years S	Since the	Incident F	racture
Fracture	N	umber of Y	ears Since	the Fractu	re
Туре	1	2	3	4	≥5
Hip	26.0%	19.4%	19.4%	19.4%	19.4%
Vertebral	20.0%	11.0%	10.0%	9.0%	8.5%
Wrist	11.0%				
Humerus	17.0%				
Multiple	21.0%				
Other	21.0%				

¹⁰⁸² Borhan S, Papaioannou A, Gaji-Veljanoski O et al. Incident fragility fractures have a long-term negative impact on health-related quality of life of older people: The Canadian Multicentre Osteoporosis Study. *Journal of Bone and Mineral Health.* 2019; 34(5): 838-48.

¹⁰⁸³ Abimanyi-Ochom J, Watts J, Borgstrom F et al. Changes in quality of life associated with fragility fractures: Australian arm of the International Cost and Utility Related to Osteoporotic Fractures Study (AusICUROS). *Osteoporosis International*. 2015; 26: 1781-90.

¹⁰⁸⁴ Papaioannou A, Kennedy C, Ioannidis G et al. The impact of incident fractures on health-related quality of life: 5 years of data from the Canadian Multicentre Osteoporosis Study. *Osteoporosis International*. 2009; 20: 703-14.

¹⁰⁸⁵ Borhan S, Papaioannou A, Gaji-Veljanoski O et al. Incident fragility fractures have a long-term negative impact on health-related quality of life of older people: The Canadian Multicentre Osteoporosis Study. *Journal of Bone and Mineral Health.* 2019; 34(5): 838-48.

• Applying the QoL decrement in Table 9 to fragility fracture survivors in the BC birth cohort results in 5,863 QALYs lost, with the majority (4,009 or 68%) of these QALYs lost in survivors of hip fractures (see Table 10).

Table 10: Screening for Fragility Fractures Quality Adjusted Life Years Lost for Individuals Living with Fracture Females Ages ≥ 65 In a BC Birth Cohort of 40,000

									Qua	lity Adjust	ed Lif	e Years Lo	st Due to	Fragil	ity
		Numbe	er Living	with Fra	ctures						1	Fractures			
Age	Нір	Vertebral	Wrist	Humerus	Multiple	Other	Total	LE	Hip	Vertebral	Wrist	Humerus	Multiple	Other	Total
65	19	9	79	19	13	92	232	23	86	20	9	3	3	19	140
66	24	11	79	20	15	95	244	22	102	22	9	3	3	20	160
67	28	13	79	22	16	99	257	21	118	25	9	4	3	21	180
68	33	14	79	23	18	102	269	20	132	27	9	4	4	21	197
69	37	16	79	24	19	105	281	20	144	29	9	4	4	22	212
70	42	18	79	25	21	108	292	19	154	31	9	4	4	23	225
71	46	19	79	26	22	110	303	18	162	32	9	4	5	23	235
72	50	20	79	27	23	113	312	17	168	33	9	5	5	24	243
73	53	22	78	28	24	114	319	16	170	33	9	5	5	24	246
74	56	23	77	29	25	116	326	15	172	34	8	5	5	24	248
75	59	24	76	30	26	117	332	15	172	34	8	5	5	25	249
76	73	27	78	31	29	130	367	14	202	36	9	5	6	27	285
77	85	29	79	33	32	141	399	13	224	37	9	6	7	30	312
78	92	30	79	34	33	149	417	13	230	37	9	6	7	31	319
79	100	32	78	35	35	156	436	12	236	37	9	6	7	33	328
80	107	33	78	36	36	162	451	11	238	36	9	6	8	34	330
81	112	34	77	36	37	166	462	10	234	35	8	6	8	35	327
82	115	34	76	37	37	169	467	10	226	34	8	6	8	36	318
83	92	29	71	34	32	155	413	9	170	28	8	6	7	33	250
84	85	27	66	32	30	148	389	9	148	24	7	5	6	31	222
85	77	25	61	30	27	139	360	8	125	21	7	5	6	29	193
86	74	22	55	27	26	132	337	7	112	18	6	5	6	28	173
87	65	19	49	24	24	122	304	7	91	14	5	4	5	26	146
88	66	18	44	22	24	117	293	6	87	13	5	4	5	25	138
89	53	15	39	20	21	105	252	6	64	10	4	3	4	22	108
90	38	12	34	17	17	91	208	5	42	8	4	3	4	19	79
Total	1,681	577	1,829	722	661	3,252	8,721		4,009	708	201	123	139	683	5,863
LE = Life E	xpectan	Cy .													

The Intervention

Fracture Risk Assessment Tool (FRAX)

- The CTFPHC recommends a two-step assessment process, with the initial application of the Canadian clinical Fracture Risk Assessment Tool (FRAX) without bone mineral density (BMD) measurement. The FRAX result should be used to facilitate shared decision-making about the possible benefits and harms of preventive pharmacotherapy. The CTFPHC recommends this screening once every eight years.¹⁰⁸⁶
- Based on a convenience survey of 79 family physicians, the CTFPHC has estimated that calculating FRAX, informing the patient of her risk, engaging in shared decision-making to inform if she would consider preventive medication and wants a BMD to help her decide would take 6.9 minutes.^{1087,1088}
- The CTFPHC estimated that 30.1% of females aged 65-69 years, 36.2% of females aged 70-74 years, 41.4% of females aged 75-79 years and 45.6% of females aged 80-84 years would be at a high risk of a fracture and would receive a BMD measurement.¹⁰⁸⁹
- A high risk of fracture is indicated by a 10-year probability of a major osteoporosis related fracture of $\geq 20\%$ as calculated with the FRAX.¹⁰⁹⁰

Bone Mineral Density Measurement

- After the assessment with FRAX followed by a discussion with the patient, if preventive pharmacotherapy is being considered, clinicians should request BMD measurement using dual-energy x-ray absorptiometry (DXA) of the femoral neck, and re-estimate fracture risk by adding the BMD T-score into FRAX.
- The CTFPHC estimated that ordering a BMD after risk calculation with FRAX would take 2.2 minutes and that a discussion post-BMD to decide on whether or not to prescribe preventive medication would take 8.2 minutes.^{1091,1092}

Harms of Screening

• The CTFPHC notes that screening may lead to unintended consequences, including labelling and stigma.¹⁰⁹³

¹⁰⁸⁶ Theriault G, Limburg H, Klarenbach S et al. Recommendation on screening for primary prevention of fragility fractures. *CMAJ*. 2023; 195: E639-49

¹⁰⁸⁷ Grad R, Reynolds D, Antao V et al. Screening for primary prevention of fragility fractures: How much time does it take? *Canadian Family Physician*. 2023; 69: 537-41.

¹⁰⁸⁸ CTFPHC. How was this calculation made? Available online at <u>https://canadiantaskforce.ca/how-was-this-calculation-made/</u>. Accessed January 2024.

¹⁰⁸⁹ CTFPHC. How was this calculation made? Available online at <u>https://canadiantaskforce.ca/how-was-this-calculation-made/</u>. Accessed January 2024.

¹⁰⁹⁰ Gates M, Pillay J, Nuspl M et al. Screening for the primary prevention of fragility fractures among adults aged 40 years and older in primary care: Systematic reviews of the effects and acceptability of screening and treatment, and the accuracy of risk prediction tools. *BMC Systematic Reviews*. 2023; 12(51):

¹⁰⁹¹ Grad R, Reynolds D, Antao V et al. Screening for primary prevention of fragility fractures: How much time does it take? *Canadian Family Physician*. 2023; 69: 537-41.

¹⁰⁹² CTFPHC. How was this calculation made? Available online at <u>https://canadiantaskforce.ca/how-was-this-calculation-made/</u>. Accessed January 2024.

¹⁰⁹³ Theriault G, Limburg H, Klarenbach S et al. Recommendation on screening for primary prevention of fragility fractures. *CMAJ*. 2023; 195: E639-49

- The research evidence supporting this appears to be largely based on qualitative interview studies involving 10-17 elderly females.
- Some of these studies suggest that a diagnosis of osteoporosis may be associated with uncertainty, worry and restricted physical activities.^{1094,1095,1096}
- Others, however, suggest that the interviewees were "resilient and optimistic individuals...that carried out a number of positive coping strategies to manage health-related anxiety."¹⁰⁹⁷
- A study of 15 women by Hansen et al found that "women handle (a diagnosis of) osteoporosis in different ways. This is very much influenced by positive or negative experiences of the diagnosis process and seems to affect the acceptance of the diagnosis and living with osteoporosis in general."¹⁰⁹⁸ These same 15 women were followed for a period of a year and the researchers found that "moving on" with a chronic illness or a condition is a complex process of learning, finding meaning and the redefining of self a unique journey for each person depending upon their particular situation and context."¹⁰⁹⁹
- A 2016 systematic review of this qualitative literature included 34 international studies exploring the experiences of 773 participants (89% female). The authors concluded that their "review demonstrates contrasting feeling; on the one hand, osteoporosis is invisible and fragility fractures do not accord with the lived experience of symptoms that they could observe or feel; conversely, others interpreted the diagnosis as inhabiting a body that could be easily damaged with little or no provocation. The process can be accompanied by overwhelming uncertainty. We see how patients might not fully understand tests, risk or how to decide what action to take. This overwhelming uncertainty is underpinned by a person's relationship with their healthcare provider."¹¹⁰⁰

Pharmacotherapy

• Uptake of pharmacotherapy in individuals at high risk of a fragility fracture is less than ideal. The proportion of patients who receive an osteoporosis medication prescription following their diagnosis (or following a fragility fracture), ranges from

¹⁰⁹⁴ Hvas L, Reventlow S, Jensen H et al. Awareness of risk of osteoporosis may cause uncertainty and worry in menopausal women. *Scandinavian Journal of Public Health*. 2005; 33: 203-7.

¹⁰⁹⁵ Reventlow S, Hvas L, Malterud K. Making the invisible body visible. Bone scans, osteoporosis and women's bodily experiences. *Social Science & Medicine*. 2006; 62(11): 2720-31.

¹⁰⁹⁶ Reventlow S. Perceived risk of osteoporosis: restricted physical activities? Qualitative interview study with women in their sixties. *Scandinavian Journal of Primary Health Care*. 2007; 25: 160-5.

¹⁰⁹⁷ Weston J, Norris E, Clark E. The invisible disease: Making sense of an osteoporosis diagnosis in older age. *Qualitative Health Research*. 2011; 21(12): 1692-1704.

¹⁰⁹⁸ Hansen C, Konradsen H, Abrahamsen B et al. Women's experiences of their osteoporosis diagnosis at the time of diagnosis and 6 months later: A phenomenological hermeneutic study. *International Journal of Qualitative Studies in Health and Well-Being.* 2014; 9: 22438.

¹⁰⁹⁹ Hansen C, Abrahamsen B, Konradsen H et al. Women's lived experiences of learning to live with osteoporosis: A longitudinal qualitative study. *BMC Women's Health*. 2017; 17(17).

¹¹⁰⁰ Barker K, Toye F, Lowe C. A qualitative systematic review of patient's experience of osteoporosis using meta-ethnography. *Archives of Osteoporosis.* 2016; 11: 33.

27% - 66%.^{1101,1102,1103} The study suggesting 66%¹¹⁰⁴ is by far the largest (n=27,736 versus 85 and 117 in the other two studies) so for modelling purposes we assumed that 66% of individuals at high risk of a fragility fracture would initiate pharmacotherapy.

- Bisphosphonates have been shown effective in building back bone mineral density and were the most frequently studied medication referenced by the USPSTF¹¹⁰⁵ and the CTFPHC.¹¹⁰⁶
- The 2018 review for the USPSTF found that bisphosphonates significantly reduce vertebral fractures (RR of 0.57, 95% CI, 0.41-0.78) and nonvertebral fractures (RR of 0.84, 95% CI, 0.76-0.92) but not hip fractures (RR of 0.70, 95% CI, 0.44-1.11).¹¹⁰⁷
- The 2023 review for the CTFPHC found that a median of two years of treatment with bisphosphonates (alendronate, risedronate, zoledronic acid) in females ≥65 years of age results in the following absolute risk reduction (ARD):¹¹⁰⁸
 - Hip fractures ARD of 5.3 fewer in 1,000 (95% CI of 8.3 to 1.6 fewer). The average risk for this population was estimated to be 20 / 1,000.
 - Clinical vertebral fractures ARD of 12.8 fewer in 1,000 (95% CI of 17.9 to 5.0 fewer). The average risk for this population was estimated to be 27 / 1,000.
 - All clinical fragility fractures ARD of 33.6 fewer in 1,000 (95% CI of 46.0 to 19.8 fewer). The average risk for this population was estimated to be 202 / 1,000.
 - No change in the risk of all-cause mortality
- The Clinical Practice Guidelines for Management of Osteoporosis and Fracture Prevention in Canada: 2023 Update recommends that "for females who meet criteria for initiation of pharmacotherapy, we recommend bisphosphonates (alendronate, risedronate or zoledronic acid). Strong recommendation; high-certainty evidence."¹¹⁰⁹
- The Clinical Practice Guidelines for Management of Osteoporosis and Fracture Prevention in Canada: 2023 Update also recommends that "for people on bisphosphonates, we suggest initial therapy for a duration of 3-6 years. Six years of

¹¹⁰¹ Billington E, Feasel A, Kline G. At odds about the odds: Women's choices to accept osteoporosis medications do not closely agree with physician-set treatment thresholds. *Journal of General Internal Medicine*. 2019; 35(1): 276-82.

¹¹⁰² Yu J, Brenneman S, Sazonov V et al. Reasons for not initiating osteoporosis therapy among a managed care population. *Patient Preference and Adherence*. 2015; 9: 821-30.

¹¹⁰³ Keshishian A, Boystov N, Burge R et al. Examining the effect of medication adherence on risk of subsequent fracture among women with a fragility fracture in the U.S. Medicare Population. *Journal of Managed Care & Specialty Pharmacy*. 2017; 23(11): 1178-90.

¹¹⁰⁴ Ibid.

¹¹⁰⁵ Curry SJ, Krist AH, Owens DK et al. Screening for osteoporosis to prevent fractures: US Preventive Services Task Force recommendation statement. *Journal of the American Medical Association*. 2018; 319(24): 2521-31.

¹¹⁰⁶ Gates M, Pillay J, Nuspl M et al. Screening for the primary prevention of fragility fractures among adults aged 40 years and older in primary care: Systematic reviews of the effects and acceptability of screening and treatment, and the accuracy of risk prediction tools. *BMC Systematic Reviews*. 2023; 12(51):

¹¹⁰⁷ Curry SJ, Krist AH, Owens DK et al. Screening for osteoporosis to prevent fractures: US Preventive Services Task Force recommendation statement. *Journal of the American Medical Association*. 2018; 319(24): 2521-31.

¹¹⁰⁸ Gates M, Pillay J, Nuspl M et al. Screening for the primary prevention of fragility fractures among adults aged 40 years and older in primary care: Systematic reviews of the effects and acceptability of screening and treatment, and the accuracy of risk prediction tools. *BMC Systematic Reviews*. 2023; 12(51):

¹¹⁰⁹ Morin S, Feldman S, Funnell L et al. Clinical practice guidelines for management of osteoporosis and fracture prevention in Canada: 2023 update. *CMAJ*. 2023; 195(39): E1333-48.

therapy is appropriate for individuals with a history of hip, vertebral or multiple nonvertebral fractures, or new or ongoing risk factor(s) for accelerated bone loss or fracture. Conditional recommendation; low-certainty evidence."¹¹¹⁰

- Recommended dosages for alendronate are 70 mg weekly or 10 mg daily (oral), risedronate 35 mg weekly or 150 mg monthly or 5 mg daily (oral), zoledronic acid 5 mg annually (intravenous).¹¹¹¹
- In Ontario, the weekly dose of alendronate and risedronate are the most commonly prescribed bisphosphonates, with 71% of new patients starting on alendronate in 2015 and 28% starting on risedronate.^{1112,1113}

Compliance with Pharmacotherapy

- Outside of a clinical trial (i.e. in the real world), persistence / adherence / compliance with pharmacotherapy may be substantially lower than that achieved in clinical trials. Persistence can be defined as "the accumulation of time from initiation to discontinuation of therapy", while adherence / compliance can be defined as "the extent to which a patient acts in accordance with the prescribed interval and dose as well as dosing regimen." ¹¹¹⁴
- Persistence and compliance with bisphosphonate pharmacotherapy over the long-term is critical in achieving a reduced risk of fracture.¹¹¹⁵
- Studies have shown that up to 50% of patients discontinue oral bisphosphonates during the first year of treatment,¹¹¹⁶ and approximately 30–50% of patients do not take their medication as directed.¹¹¹⁷
- Research in Canada suggests that approximately 20-40% of patients discontinue bisphosphonate pharmacotherapy within one year and 30-50% within two years.^{1118,1119,1120,1121}
- Compliance is often measured by calculating the medication possession ratio (MPR) or the proportion of days covered (PDC). MPR is calculated based on the number of

¹¹¹⁰ Morin S, Feldman S, Funnell L et al. Clinical practice guidelines for management of osteoporosis and fracture prevention in Canada: 2023 update. *CMAJ*. 2023; 195(39): E1333-48.

¹¹¹¹ Morin S, Feldman S, Funnell L et al. Clinical practice guidelines for management of osteoporosis and fracture prevention in Canada: 2023 update. *CMAJ*. 2023; 195(39): E1333-48.

¹¹¹² Cadarette S, Carney G, Baek D et al. Osteoporosis medication prescribing in British Columbia and Ontario: Impact of public drug coverage. *Osteoporosis International*. 2012; 28: 1475-80.

¹¹¹³ Hayes K, Ban J, Athanasiadis G et al. Time trends in oral bisphosphonate initiation in Ontario, Canada over 20 years reflect drug policy and healthcare delivery changes. *Osteoporosis International*. 2019; 30: 2311-19. ¹¹¹⁴ Fatoye F, Smith P, Gebrye T et al. Real-world persistence and adherence with oral bisphosphonates for

osteoporosis: A systematic review. BMJ Open. 2019; 9: e027049.

¹¹¹⁵ Fatoye F, Smith P, Gebrye T et al. Real-world persistence and adherence with oral bisphosphonates for osteoporosis: A systematic review. *BMJ Open.* 2019; 9: e027049.

¹¹¹⁶ Cramer J, Gold D, Silverman S et al. A systematic review of persistence and compliance with bisphosphonates for osteoporosis. *Osteoporosis International*. 2007; 18: 1023-31.

¹¹¹⁷ Cramer J, Amonkar M, Hebborn A et al. Compliance and persistence with bisphosphonate dosing regimens among women with postmenopausal osteoporosis. *Current Medical Research and Opinion*. 2005; 21(9): 1453-60. ¹¹¹⁸ Papaioannou A, Ioannidis G, Adachi J et al. Adherence to bisphosphonates and hormone replacement therapy in a tertiary care setting of patients in the CANDOO database. *Osteoporosis International*. 2003; 14: 808–13.

¹¹¹⁹ Jones T, Petrella R, Crilly R. 'Determinants of persistence with weekly bisphosphonates in patients with osteoporosis.' *The Journal of Rheumatology*, 2008; 35: 1865-73.

¹¹²⁰ Burden A, Paterson J, Solomon D, et al. Bisphosphonate prescribing, persistence and cumulative exposure in Ontario, Canada. *Osteoporosis International*. 2012; 23: 1075-82.

¹¹²¹ Burden A, Paterson J, Gruneir A et al. Adherence to osteoporosis pharmacotherapy is underestimated using days supply values in electronic pharmacy claims data. *Pharmacoepidemiology and Drug Safety*. 2015; 24: 67-74.

days' supply of medication divided by the length of the follow-up period. An MPR or PDC of >80% is usually considered to be a sufficiently high compliance rate to realize the drug's benefits. Research in Canada suggests that between 54-58% of patients are considered to be compliant with oral bisphosphonate pharmacotherapy (e.g. alendronate, risedronate).^{1122,1123,1124}

- In a study of 19,987 (mostly [97%]) females ages 65 and older), Patrick et al. calculated that 36.5% of the study cohort took their medication between 80% and 100% of the time during the 300-day medication study compliance period.¹¹²⁵ A further 31.8% of the cohort were in the 0-19% compliance group, 11.3% were in the 20-39% compliance group, 8.8% were in the 40-59% compliance group and 11.5% in the 60-79% compliance group.
- It was in the high compliance group (80-100%) that Patrick et al. found a statistically significant 5-year reduction of 23% (95% CI of 8% to 36%) in hip fractures, 26% (95% CI of 12% to 38%) reduction in vertebral fractures and a 20% (95% CI of 9% to 29%) reduction in other non-hip fractures when compared to the group with poor or no compliance. The only other compliance group that saw a significant reduction in hip fractures was the 60-79% group (24%, 95% CI of 1% to 42%).¹¹²⁶
- A systematic review found that persistence with alendronate and risedronate weekly treatment was comparable but that annual intravenous treatment with zoledronic acid improved persistence by 27% (HR = 0.73; 95% CI of 0.61 to 0.88).¹¹²⁷

Harms of Pharmacotherapy

• The 2023 review for the CTFPHC found that the risk of serious adverse events (e.g. gastrointestinal adverse events such as cancers, perforations, ulcers and bleeds and cardiovascular adverse events such as stoke and myocardial infarction) are not increased with the use of bisphosphonates. Furthermore, the risk of non-serious adverse events (e.g. multiple influenza-like symptoms, arthritis and arthralgia and myalgia) are not increased with the use of bisphosphonates with the possible exception of zoledronic acid.¹¹²⁸

Monitoring

• The Clinical Practice Guidelines for Management of Osteoporosis and Fracture Prevention in Canada: 2023 Update suggests that good practice includes "regular

 ¹¹²² Blouin J, Dragomir A, Fredette M et al. Comparison of direct health care costs related to the pharmacological treatment of osteoporosis and to the management of osteoporotic fractures among compliant and noncompliant users of alendronate and risedronate: A population-based study. *Osteoporosis International*. 2009; 20: 1571-81.
¹¹²³ Sampalis J, Adachi J, Rampakakis E et al. Long-term impact of adherence to oral bisphosphonates on osteoporotic fracture incidence. *Journal of Bone and Mineral Research*. 2012; 27: 202-10.

¹¹²⁴ Burden A, Paterson J, Gruneir A et al. Adherence to osteoporosis pharmacotherapy is underestimated using days supply values in electronic pharmacy claims data. *Pharmacoepidemiology and Drug Safety*. 2015; 24: 67-74. ¹¹²⁵ Patrick A, Brookhart M, Losina E et al. The complex relation between bisphosphonate adherence and fracture reduction. *The Journal of Clinical Endocrinology & Metabolism*. 2010; 95(7): 3251-9.

¹¹²⁶ Patrick A, Brookhart M, Losina E et al. The complex relation between bisphosphonate adherence and fracture reduction. *The Journal of Clinical Endocrinology & Metabolism*. 2010; 95(7): 3251-9.

¹¹²⁷ Bastounis A, Langley T, Davis S et al. Comparing medication adherence in patients receiving bisphosphonates for preventing fragility fracture: A comprehensive systematic review and network meta-analysis. *Osteoporosis International*. 2022; 33: 1223-33.

¹¹²⁸ Gates M, Pillay J, Nuspl M et al. Screening for the primary prevention of fragility fractures among adults aged 40 years and older in primary care: Systematic reviews of the effects and acceptability of screening and treatment, and the accuracy of risk prediction tools. *BMC Systematic Reviews*. 2023; 12(51):

clinical assessment for new fractures and new or active risk factors such as falls, as well as adherence to therapy, tolerability and adverse effects."¹¹²⁹

Fragility Fractures, Deaths and Quality of Life with Screening / Intervention

Fragility Fractures Avoided

- To estimate the number of fragility fractures avoided with screening / intervention in a BC birth cohort of 40,000 (20,000 females), we have made the following assumptions:
 - Screening would be up-to-date in 57.8% of community-dwelling elderly.¹¹³⁰
 - The proportion of the population screened who would be at high risk of a fragility fracture would be 30.1% of females aged 65-69 years, 36.2% of females aged 70-74 years, 41.4% of females aged 75-79 years and 45.6% of females aged 80-84 years.¹¹³¹
 - 66% of patients at high risk would begin oral bisphosphonate pharmacotherapy¹¹³² and 56% of those would achieve a high level of compliance.^{1133,1134,1135} In a sensitivity analysis, we will assume that the 66% would receive annual intravenous treatment with zoledronic acid which would lead to a high level of compliance in 71.1% of patients (or 27% higher than the 56%) over the average 4.5 years that the medication is taken.¹¹³⁶
 - With a high level of compliance with bisphosphonate pharmacotherapy, hip fractures would be reduced by 26.5% (95% CI 8.0% to 41.5%), vertebral fractures by 47.4% (95% CI 18.5% to 66.3%) and all other fractures would be reduced by 16.6% (95% CI 9.8% to 22.8%).¹¹³⁷
- Based on these assumptions, screening for primary prevention of fragility fractures in a BC birth cohort of 40,000 would be associated with a reduction of 183 fragility fractures (see Table 11).
- The data in Table 11 should be read as follows: at age 65, there are 18,330 females living in private dwellings. Screening for fragility fractures would be up-to-date in

¹¹²⁹ Morin S, Feldman S, Funnell L et al. Clinical practice guidelines for management of osteoporosis and fracture prevention in Canada: 2023 update. *CMAJ*. 2023; 195(39): E1333-48.

¹¹³⁰ Amarnath A, Franks P, Robbins J et al. Underuse and Overuse of Osteoporosis Screening in a Regional Health System: a Retrospective Cohort Study. *Journal of General Internal Medicine*. 2015; 12(30): 1733-40.

¹¹³¹ CTFPHC. How was this calculation made? Available online at <u>https://canadiantaskforce.ca/how-was-this-calculation-made/</u>. Accessed January 2024.

¹¹³² Keshishian A, Boystov N, Burge R et al. Examining the effect of medication adherence on risk of subsequent fracture among women with a fragility fracture in the U.S. Medicare Population. *Journal of Managed Care & Specialty Pharmacy*. 2017; 23(11): 1178-90.

¹¹³³ Blouin J, Dragomir A, Fredette M et al. Comparison of direct health care costs related to the pharmacological treatment of osteoporosis and to the management of osteoporotic fractures among compliant and noncompliant users of alendronate and risedronate: A population-based study. *Osteoporosis International*. 2009; 20: 1571-81. ¹¹³⁴ Sampalis J, Adachi J, Rampakakis E et al. Long-term impact of adherence to oral bisphosphonates on osteoporotic fracture incidence. *Journal of Bone and Mineral Research*. 2012; 27: 202-10.

¹¹³⁵ Burden A, Paterson J, Gruneir A et al. Adherence to osteoporosis pharmacotherapy is underestimated using days supply values in electronic pharmacy claims data. *Pharmacoepidemiology and Drug Safety*. 2015; 24: 67-74. ¹¹³⁶ Bastounis A, Langley T, Davis S et al. Comparing medication adherence in patients receiving bisphosphonates

for preventing fragility fracture: A comprehensive systematic review and network meta-analysis. *Osteoporosis International.* 2022; 33: 1223-33.

¹¹³⁷ Gates M, Pillay J, Nuspl M et al. Screening for the primary prevention of fragility fractures among adults aged 40 years and older in primary care: Systematic reviews of the effects and acceptability of screening and treatment, and the accuracy of risk prediction tools. *BMC Systematic Reviews*. 2023; 12(51):

57.8% (10,595) of these females. Of the 10,595, 30.1% (3,189) would be at high risk of fragility fractures. Of the 3,189, 66% (2,105) would start oral bisphosphonate pharmacotherapy. Of the 2,105, 56% (1,179) would achieve a high level of compliance with bisphosphonate pharmacotherapy. Without bisphosphonate pharmacotherapy, the risk of a hip fracture would be 104/100,000 person-years (see Table 3), suggesting that 1.23 hip fractures would occur that year in these 1,179 individuals. But, because they are on bisphosphonate pharmacotherapy, their risk of a hip fracture would be reduced by 26.5%, or 0.32 of the 1.23 projected hip fractures.

Table 11: Estimated Number of Fragility Fractures Community-Dwelling Females Ages ≥65 With Screening / Intervention In a BC Birth Cohort of 40,000 Compliance # (57.8%) **Fragility Fractures Avoided** with Start # in % at # at with Up-Medication Medication Private High High All to-Date 56.0% Hip Vertebral Wrist Humerus Multiple Other Total 66.0% Age Dwelling Screening Risk Risk 0.3 0.8 18,330 10,595 30.1% 3,189 2,105 1,179 0.3 0.2 0.1 1.0 3 65 18,188 10,513 30.1% 3,164 2,088 1,170 0.4 0.3 0.8 0.2 0.2 1.0 3 66 67 18,036 10,425 30.1% 3,138 2,071 1,160 0.5 0.4 0.8 0.2 0.2 1.1 3 10.331 0.8 0.2 0.2 3 68 17.873 30.1% 3.110 2.052 1.149 0.6 0.4 1.1 69 17,698 10,229 30.1% 3,079 2,032 1,138 0.7 0.5 0.8 0.3 0.2 1.1 4 70 2,418 1,354 0.9 0.7 0.3 0.3 1.4 5 17,508 10,120 36.2% 3,663 1.0 71 17,304 10,002 36.2% 3,621 2,390 1,338 1.0 0.7 1.0 0.3 0.3 1.4 5 72 17,083 9,874 36.2% 3,574 2,359 1.1 0.8 1.0 0.4 0.3 1.5 5 1,321 73 16,794 9,707 36.2% 3,514 2,319 0.8 1.0 0.4 0.3 1.5 5 1,299 1.1 5 74 16,486 9,529 36.2% 3,449 2,277 1,275 1.2 0.9 1.0 0.4 0.3 1.5 75 16,158 9,339 41.4% 3,866 2,552 1,429 1.5 1.0 1.1 0.4 0.4 1.8 6 76 15,807 9,136 41.4% 3,782 2,496 1,398 1.8 1.2 1.1 0.5 0.4 2.0 7 77 15,432 8,920 41.4% 3,693 2,437 1,365 2.2 1.3 1.2 0.5 0.5 2.1 8 1.2 78 14,897 8,611 41.4% 3,565 2,353 1,318 2.4 1.4 0.5 0.5 2.3 8 41.4% 79 2.7 1.5 1.2 0.5 0.6 2.4 9 14,341 8,289 3,432 2,265 1,268 7,954 45.6% 1.3 0.6 10 80 13,761 3,627 2,394 1,341 3.2 1.7 0.6 2.8 81 7,605 45.6% 2,289 3.4 1.7 1.2 0.6 0.7 2.8 11 13,157 3,468 1,282 82 12,528 7,241 45.6% 3,302 2,179 1,220 3.6 1.8 1.2 0.6 0.7 2.9 11 45.6% 83 11,450 6,618 3,018 1,992 1,115 3.6 1.7 1.2 0.6 0.7 2.8 11 84 10,383 6,001 45.6% 2,737 1,011 3.5 1.7 1.1 0.6 0.6 2.7 10 1,806 85 9,332 5,394 45.6% 2,460 1,623 909 3.4 1.6 1.0 0.5 0.6 2.6 10 86 8,302 4,798 45.6% 2,188 809 3.4 1.5 0.9 0.5 0.6 2.5 9 1,444 87 7,300 4,219 45.6% 1,924 1,270 3.3 0.8 0.4 0.6 2.4 9 711 1.4 8 88 6,462 3,735 45.6% 1,703 1,124 629 3.3 1.3 0.7 0.4 0.6 2.3 547 89 5,620 3,248 45.6% 1.481 978 3.1 1.1 0.6 0.4 0.5 2.1 8 90 4,796 2,772 45.6% 1,264 834 467 2.9 1.0 0.5 0.3 0.5 1.9 7 55 29 26 11 12 51 183 Total

Deaths Attributable to Fragility Fractures Avoided

- We then used the same approach as taken previously (see Table 6) to estimate that the 183 fragility fractures avoided with screening / intervention (see Table 11) would be associated with 26 deaths avoided (see Table 12).
- Furthermore, we used the same approach as taken previously (see Table 7) to estimate the number of life years lost attributable to the 26 deaths. On average, each death would be associated with 8.1 LYL for a total of 212 LYL (see Table 13).

Table 12: Estimated Number of Deaths Attributable to Fragility Fractures Community-Dwelling Females Ages ≥65 With Screening / Intervention

In a BC	Birth Coho	rt of 40.000

	# in														
	Private		Number	of Fra	gilty Frac	tures Avo	bided		Dea	ths Avoid	ed Att	ributable	to Fragilt	y Fract	ures
Age	Dwelling	Нір	Vertebral	Wrist	Humerus	Multiple	Other	Total	Hip	Vertebral	Wrist	Humerus	Multiple	Other	Total
65	18,330	0.3	0.3	0.8	0.2	0.1	1.0	3							
66	18,188	0.4	0.3	0.8	0.2	0.2	1.0	3	0.01	0.01	0.00	0.00	0.00	0.01	0.0
67	18,036	0.5	0.4	0.8	0.2	0.2	1.1	3	0.01	0.01	0.00	0.00	0.00	0.01	0.0
68	17,873	0.6	0.4	0.8	0.2	0.2	1.1	3	0.02	0.01	0.00	0.00	0.00	0.01	0.0
69	17,698	0.7	0.5	0.8	0.3	0.2	1.1	4	0.02	0.01	0.00	0.00	0.00	0.01	0.1
70	17,508	0.9	0.7	1.0	0.3	0.3	1.4	5	0.03	0.01	0.00	0.00	0.01	0.01	0.1
71	17,304	1.0	0.7	1.0	0.3	0.3	1.4	5	0.04	0.02	0.00	0.00	0.01	0.02	0.1
72	17,083	1.1	0.8	1.0	0.4	0.3	1.5	5	0.04	0.02	0.00	0.00	0.01	0.02	0.1
73	16,794	1.1	0.8	1.0	0.4	0.3	1.5	5	0.07	0.03	0.00	0.01	0.01	0.03	0.1
74	16,486	1.2	0.9	1.0	0.4	0.3	1.5	5	0.08	0.04	0.00	0.01	0.01	0.03	0.2
75	16,158	1.5	1.0	1.1	0.4	0.4	1.8	6	0.09	0.04	0.00	0.01	0.02	0.04	0.2
76	15,807	1.8	1.2	1.1	0.5	0.4	2.0	7	0.12	0.05	0.00	0.01	0.02	0.05	0.2
77	15,432	2.2	1.3	1.2	0.5	0.5	2.1	8	0.16	0.07	0.00	0.01	0.03	0.06	0.3
78	14,897	2.4	1.4	1.2	0.5	0.5	2.3	8	0.27	0.11	0.00	0.01	0.04	0.09	0.5
79	14,341	2.7	1.5	1.2	0.5	0.6	2.4	9	0.34	0.12	0.00	0.02	0.05	0.10	0.6
80	13,761	3.2	1.7	1.3	0.6	0.6	2.8	10	0.40	0.14	0.00	0.02	0.06	0.12	0.7
81	13,157	3.4	1.7	1.2	0.6	0.7	2.8	11	0.52	0.18	0.00	0.02	0.07	0.15	0.9
82	12,528	3.6	1.8	1.2	0.6	0.7	2.9	11	0.61	0.20	0.00	0.03	0.08	0.17	1.1
83	11,450	3.6	1.7	1.2	0.6	0.7	2.8	11	1.19	0.39	0.00	0.05	0.15	0.32	2.1
84	10,383	3.5	1.7	1.1	0.6	0.6	2.7	10	1.30	0.42	0.00	0.05	0.17	0.34	2.3
85	9,332	3.4	1.6	1.0	0.5	0.6	2.6	10	1.40	0.44	0.00	0.05	0.18	0.36	2.4
86	8,302	3.4	1.5	0.9	0.5	0.6	2.5	9	1.50	0.46	0.00	0.06	0.18	0.38	2.6
87	7,300	3.3	1.4	0.8	0.4	0.6	2.4	9	1.66	0.48	0.00	0.06	0.20	0.41	2.8
88	6,462	3.3	1.3	0.7	0.4	0.6	2.3	8	1.54	0.41	0.00	0.05	0.19	0.36	2.5
89	5,620	3.1	1.1	0.6	0.4	0.5	2.1	8	1.73	0.44	0.00	0.05	0.21	0.40	2.8
90	4,796	2.9	1.0	0.5	0.3	0.5	1.9	7	1.88	0.46	0.00	0.05	0.23	0.42	3.0
		55	29	26	11	12	51	183	15.0	4.6	0.0	0.6	1.9	3.9	26.0

Table 13: Estimated Number of Life Years Lost Attributable to Fragility Fractures

Community-Dwelling Females Ages ≥65

With Screening / Intervention

In a BC Birth Cohort of 40,000

	# m Private	De	aths Avoid	ded At	tributable	e to Fragi	lty Frac	tures				Lif	fe Years L	ost		
Age	Dwelling	Нір	Vertebral	Wrist	Humerus	Multiple	Other	Total	LE	Hip	Vertebral	Wrist	Humerus	Multiple	Other	Total
65	18,330															
66	18,188	0.01	0.01	0.00	0.00	0.00	0.01	0.0	22.0	0.2	0.1	0.0	0.0	0.1	0.2	0.6
67	18,036	0.01	0.01	0.00	0.00	0.00	0.01	0.0	21.2	0.3	0.1	0.0	0.0	0.1	0.2	0.7
68	17,873	0.02	0.01	0.00	0.00	0.00	0.01	0.0	20.3	0.3	0.2	0.0	0.0	0.1	0.2	0.8
69	17,698	0.02	0.01	0.00	0.00	0.00	0.01	0.1	19.5	0.4	0.2	0.0	0.0	0.1	0.3	1.0
70	17,508	0.03	0.01	0.00	0.00	0.01	0.01	0.1	18.7	0.5	0.2	0.0	0.0	0.1	0.3	1.1
71	17,304	0.04	0.02	0.00	0.00	0.01	0.02	0.1	17.9	0.7	0.3	0.0	0.1	0.1	0.3	1.5
72	17,083	0.04	0.02	0.00	0.00	0.01	0.02	0.1	17.1	0.8	0.4	0.0	0.1	0.2	0.4	1.7
73	16,794	0.07	0.03	0.00	0.01	0.01	0.03	0.1	16.3	1.1	0.5	0.0	0.1	0.2	0.5	2.3
74	16,486	0.08	0.04	0.00	0.01	0.01	0.03	0.2	15.5	1.2	0.6	0.0	0.1	0.2	0.5	2.6
75	16,158	0.09	0.04	0.00	0.01	0.02	0.04	0.2	14.7	1.3	0.6	0.0	0.1	0.2	0.5	2.8
76	15,807	0.12	0.05	0.00	0.01	0.02	0.05	0.2	14.0	1.6	0.8	0.0	0.1	0.3	0.6	3.4
77	15,432	0.16	0.07	0.00	0.01	0.03	0.06	0.3	13.2	2.1	0.9	0.0	0.1	0.3	0.7	4.2
78	14,897	0.27	0.11	0.00	0.01	0.04	0.09	0.5	12.5	3.4	1.3	0.0	0.2	0.5	1.1	7
79	14,341	0.34	0.12	0.00	0.02	0.05	0.10	0.6	11.8	4.0	1.5	0.0	0.2	0.6	1.2	7
80	13,761	0.40	0.14	0.00	0.02	0.06	0.12	0.7	11.1	4.5	1.6	0.0	0.2	0.6	1.3	8
81	13,157	0.52	0.18	0.00	0.02	0.07	0.15	0.9	10.5	5.5	1.9	0.0	0.2	0.7	1.6	10
82	12,528	0.61	0.20	0.00	0.03	0.08	0.17	1.1	9.8	6.0	2.0	0.0	0.2	0.8	1.7	11
83	11,450	1.19	0.39	0.00	0.05	0.15	0.32	2.1	9.2	11.0	3.6	0.0	0.4	1.4	3.0	19
84	10,383	1.30	0.42	0.00	0.05	0.17	0.34	2.3	8.6	11.2	3.6	0.0	0.4	1.4	3.0	20
85	9,332	1.40	0.44	0.00	0.05	0.18	0.36	2.4	8.0	11.2	3.5	0.0	0.4	1.4	2.9	19
86	8,302	1.50	0.46	0.00	0.06	0.18	0.38	2.6	7.4	11.1	3.4	0.0	0.4	1.4	2.8	19
87	7,300	1.66	0.48	0.00	0.06	0.20	0.41	2.8	6.9	11.4	3.3	0.0	0.4	1.4	2.8	19
88	6,462	1.54	0.41	0.00	0.05	0.19	0.36	2.5	6.4	9.8	2.6	0.0	0.3	1.2	2.3	16
89	5,620	1.73	0.44	0.00	0.05	0.21	0.40	2.8	5.9	10.2	2.6	0.0	0.3	1.2	2.4	17
90	4,796	1.88	0.46	0.00	0.05	0.23	0.42	3.0	5.4	10.2	2.5	0.0	0.3	1.2	2.3	17
		15.0	4.6	0.0	0.6	1.9	3.9	26.0	8.1	120	38	0	5	16	33	212
LE = life	expectancy															

QALYs Gained Due to Fragility Fractures Avoided

• As noted above, the 183 fragility fractures avoided would be associated with 26 deaths, leaving 157 living with their fragility fracture. For these 153 individuals, we used the same approach as taken previously (see Table 10) to calculate that living with these fragility fractures would result in 137 QALYs lost, with the majority (92 or 67%) of these QALYs lost in survivors of hip fractures (see Table 14).

Table 14: Estimated Number of QALYs Lost Attributable to Fragility Fractures

Community-Dwelling Females Ages ≥65 With Screening / Intervention

						павс	Birth Co	nort of 4	0,000	ulity Adjust	od Life	o Voars La	st Due to	Eracil	itv
		Numbe	r Living	with Era	cturos				Qui	iiity Aujusi	eu Lije	ractures	ist Due to	riugii	цу
Age	Hip	Vertebral	Wrist	Humerus	Multiple	Other	Total	LE	Hip	Vertebral	r Wrist	Humerus	Multiple	Other	Total
65	0.3	0.3	0.8	0.2	0.1	1.0	3	23	1.5	0.6	0.1	0.0	0.0	0.2	2
66	0.4	0.3	0.8	0.2	0.2	1.0	3	22	1.7	0.7	0.1	0.0	0.0	0.2	3
67	0.5	0.4	0.8	0.2	0.2	1.1	3	21	2.0	0.8	0.1	0.0	0.0	0.2	3
68	0.6	0.4	0.8	0.2	0.2	1.1	3	20	2.3	0.8	0.1	0.0	0.0	0.2	3
69	0.6	0.5	0.8	0.3	0.2	1.1	4	20	2.5	0.9	0.1	0.0	0.0	0.2	4
70	0.9	0.6	1.0	0.3	0.3	1.4	5	19	3.2	1.1	0.1	0.1	0.1	0.3	5
71	0.9	0.7	1.0	0.3	0.3	1.4	5	18	3.3	1.2	0.1	0.1	0.1	0.3	5
72	1.0	0.8	1.0	0.4	0.3	1.5	5	17	3.4	1.2	0.1	0.1	0.1	0.3	5
73	1.1	0.8	1.0	0.4	0.3	1.5	5	16	3.5	1.2	0.1	0.1	0.1	0.3	5
74	1.1	0.8	1.0	0.4	0.3	1.5	5	15	3.5	1.2	0.1	0.1	0.1	0.3	5
75	1.4	1.0	1.1	0.4	0.4	1.7	6	15	4.1	1.4	0.1	0.1	0.1	0.4	6
76	1.7	1.1	1.1	0.5	0.4	1.9	7	14	4.7	1.5	0.1	0.1	0.1	0.4	7
77	2.0	1.2	1.2	0.5	0.5	2.1	7	13	5.3	1.6	0.1	0.1	0.1	0.4	8
78	2.2	1.3	1.2	0.5	0.5	2.2	8	13	5.4	1.5	0.1	0.1	0.1	0.5	8
79	2.3	1.3	1.2	0.5	0.5	2.3	8	12	5.5	1.5	0.1	0.1	0.1	0.5	8
80	2.8	1.5	1.3	0.6	0.6	2.6	9	11	6.2	1.7	0.1	0.1	0.1	0.6	9
81	2.9	1.6	1.2	0.6	0.6	2.7	10	10	6.0	1.6	0.1	0.1	0.1	0.6	9
82	3.0	1.6	1.2	0.6	0.6	2.7	10	10	5.8	1.6	0.1	0.1	0.1	0.6	8
83	2.4	1.4	1.2	0.5	0.5	2.5	8	9	4.4	1.3	0.1	0.1	0.1	0.5	7
84	2.2	1.3	1.1	0.5	0.5	2.4	8	9	3.8	1.1	0.1	0.1	0.1	0.5	6
85	2.0	1.2	1.0	0.5	0.4	2.3	7	8	3.2	1.0	0.1	0.1	0.1	0.5	5
86	1.9	1.0	0.9	0.4	0.4	2.1	7	7	2.9	0.8	0.1	0.1	0.1	0.4	4
87	1.7	0.9	0.8	0.4	0.4	2.0	6	7	2.3	0.7	0.1	0.1	0.1	0.4	4
88	1.7	0.9	0.7	0.4	0.4	1.9	6	6	2.2	0.6	0.1	0.1	0.1	0.4	3
89	1.4	0.7	0.6	0.3	0.3	1.7	5	6	1.6	0.5	0.1	0.1	0.1	0.4	3
90	1.0	0.6	0.5	0.3	0.3	1.5	4	5	1.1	0.3	0.1	0.0	0.1	0.3	2
Total	40	24	26	10	10	47	157		92	28	3	2	2	10	137

Based on the above approach and assumptions, the CPB associated with screening for, and treatment of, fragility fractures in community-dwelling females ages 65 and older is 348 QALYs (see Table 15, row z).

	In a BC Birth Cohort of 40,000	onnen o	
Row Label	Variable	Base case	Data Source
	In The Absence of Screening / Intervention		
а	Expected number of hip fractures	2,272	Table 3
b	Expected number of vertebral fractures	678	Table 3
с	Expected number of all other fractures	6,872	Table 3
d	Expected number of deaths attributable to hip fractures	591	Table 6
e	Expected number of deaths attributable to vertebral fractures	101	Table 6
f	Expected number of deaths attributable to all other fractures	408	Table 6
g	Expected number of LYL due to deaths attributable to hip fractures	4,783	Table 7
h	Expected number of LYL due to deaths attributable to vertebral fractures	862	Table 7
i	Expected number of LYL due to deaths attributable to all other fractures	3,498	Table 7
j	QALYs lost due to living with hip fractures	4,009	Table 10
k	QALYs lost due to living with vertebral fractures	708	Table 10
	QALYs lost due to living with other fractures	1,146	Table 10
m	Total QALYs Lost	15,006	g+h+i+j+k+l
	With Screening / Intervention		
n	Number of hip fractures avoided	55	Table 11
0	Number of vertebral fractures avoided	29	Table 11
р	Number of all other fractures avoided	99	Table 11
q	Number of deaths attributable to hip fractures avoided	15	Table 12
r	Number of deaths attributable to vertebral fractures avoided	5	Table 12
S	Number of deaths attributable to all other fractures avoided	6	Table 12
t	Number of LYL due to deaths attributable to hip fractures avoided	120	Table 13
u	Number of LYL due to deaths attributable to vertebral fractures avoided	38	Table 13
v	Number of LYL due to deaths attributable to all other fractures avoided	54	Table 13
w	QALYs lost due to living with hip fractures	92	Table 14
x	QALYs lost due to living with vertebral fractures	28	Table 14
У	QALYs lost due to living with other fractures	16	Table 14
Z	Total QALYs gained due to screening (going from 0% to 57.8%)	348	t+u+v+w+x+y

Table 15: CPB of Screening for Fragility Fractures in Women 654

For the sensitivity analysis, we modified a number of major assumptions and recalculated the CPB as follows:

- Assume that the hip fracture reduction rate is reduced from 26.5% to 8.0%, the • vertebral fracture reduction rate is reduced from 47.4% to 18.5% and the other fracture reduction rate is reduced from 16.6% to 9.8%: CPB = 131
- Assume that the hip fracture reduction rate is increased from 26.5% to 41.5%, the • vertebral fracture reduction rate is increased from 47.4% to 66.3% and the other fracture reduction rate is increased from 16.6% to 22.8%: CPB = 521
- Assume that all patients receiving pharmacotherapy would be given an annual 5mg • IV infusion of zoledronic acid rather than weekly alendronate or risedronate, resulting in the proportion of patients being in the high level of compliance group increasing from 56% to 71.1%: CPB = 442

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with screening of, and treatment for, fragility fractures in community-dwelling females ages 65 and older.

In modelling CE, we made the following assumptions:

Unit Costs

- The cost of each 10 minute primary care provider office visit is \$35.97 (see Reference Document).
- The value of patient time is \$37.16 per hour (see Reference Document).
- According to the BC Medical Services Plan Fee-For-Service Payment Analysis for 2016/17 2020/21, a single area bone density scan (fee item 8688) averaged \$69.28 per scan in 2020/21. Adding a second area (fee item 8689) costs an additional \$47.48 per scan. A second area scan occurred at a rate of approximately 99.4% of single area scans.¹¹³⁸ The average cost of a bone scan is therefore \$116.47 (\$69.28 + (0.994 * \$47.48).
- Based on data from Pacific Blue Cross,¹¹³⁹ the generic equivalent to alendronate 70 mg weekly costs between \$1.92 and \$2.73 per pill (in Vancouver), with a mid-point of \$2.33. The dispensing fee ranges from \$4.49 \$13.99, with only a single dispensing fee below \$10.00. We assume a dispensing fee at the midpoint of \$10.00 \$13.99 (or \$12.00) and assume a 3-month dose is dispensed each time. Annual costs would therefore be \$169.16 (\$2.33 * 52 + \$12.00 * 4).
- Based on data from Pacific Blue Cross,¹¹⁴⁰ the generic equivalent to risedronate 35 mg weekly costs between \$1.81 and \$3.18 per pill (in Vancouver), with a mid-point of \$2.50. The dispensing fee ranges from \$4.49 \$11.60, with only a single dispensing fee below \$9.99. We assume a dispensing fee at the midpoint of \$9.99 \$11.60 (or \$10.80) and assume a 3-month dose is dispensed each time. Annual costs would therefore be \$173.20 (\$2.50 * 52 + \$10.80 * 4).
- The cost for an annual 5mg IV infusion of zoledronic acid is estimated at \$447.¹¹⁴¹ The cost of administering zoledronic acid intravenously has been estimated at \$187 (2013 USD) per infusion,¹¹⁴² or \$200 in 2022 CAD. The total annual cost of zoledronic acid would thus be \$647 (\$447 + \$200).
- A 2016 Canadian study by Hopkins et al. estimated the annual costs of a fragility fracture to be \$24,789 (in 2014 CAD or \$33,128 in 2022 CAD).¹¹⁴³ Costs included acute care, rehabilitation care, long term care, home care, outpatient physician

¹¹³⁹ Pacific Blue Cross. *Pharmacy Compass*. 2023. Available online at

https://www.pac.bluecross.ca/pharmacycompass. Accessed January 2024.

¹¹⁴⁰ Pacific Blue Cross. *Pharmacy Compass*. 2023. Available online at

https://www.pac.bluecross.ca/pharmacycompass. Accessed January 2024.

¹¹³⁸ B.C. Ministry of Health, Health Sector Information, Analysis & Reporting Division. *MSP Fee-For-Service Payment Analysis 2016/2017 - 2020/2021*. 2021. Available at

https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/medical-services-

plan/msp_ffs_payment_analysis_20162017_to_20202021.pdf. Accessed January 2024.

¹¹⁴¹ Coyle D. Cost-effectiveness of pharmaceutical treatments for osteoporosis consistent with the revised economic evaluation guidelines for Canada. *MDM Policy & Practice*. 2019; 4(1). doi:10.1177/2381468318818843.

doi:10.1177/2381468318818843.

¹¹⁴² Insinga R. Administration costs of denosumab and zoledronic acid for postmenopausal osteoporosis. *The American Journal of Pharmacy Benefits*. 2016; 8(3): e42-7.

¹¹⁴³ Hopkins R, Burke N, Von Keyserlingk C et al. The current economic burden of illness of osteoporosis in Canada. *Osteoporosis International*. 2016; 27(10): 3023-32.

services, mobility devices, patient time costs and caregiver costs. The costs by fragility fracture type are as follows:

- o Hip \$63,649 in 2014 CAD / \$78,491 in 2022 CAD
- o Wrist \$8,681 / \$10,705
- o Vertebral \$26,960 / \$33,247
- Humerus \$15,862 / \$19,561
- o Multiple \$54,145 / \$66,771
- o All Other \$14,6419 / \$18,055
- Nikotovic and colleagues calculated that direct health care costs utilized in the process of dying following a hip fracture were \$34,873 (in 2010 CAD or \$46,605 in 2022 CAD).¹¹⁴⁴

Costs of Screening / Intervention

- We model that $57.8\%^{1145}$ of females ≥ 65 year of age are screened using FRAX with this initial screening taking 6.9 minutes.^{1146,1147}
- The screening would identify 30.1% of females aged 65-69 years, 36.2% of females aged 70-74 years, 41.4% of females aged 75-79 years and 45.6% of females aged ≥ 80 years to be at high risk and these high risk patients would go on to receive a BMD measurement.¹¹⁴⁸
- Ordering a BMD after risk calculation with FRAX would take 2.2 minutes and a discussion post-BMD to decide on whether or not to prescribe preventive medication would take 8.2 minutes.^{1149,1150}
- For those not identified as high risk on FRAX, screening would take 70% of a primary care provider visit. For those identified as high risk on FRAX, screening and ordering a BMD would require a full primary care provider visit followed by a second primary care provider visit to discuss results and initiate pharmacotherapy.
- We model one additional visit to a primary care provider for monitoring medication for those with low compliance and two **annual** visits to a primary care provider for a period of 4.5 years for monitoring medication for those with high compliance.
- 66% of patients at high risk would initiate oral bisphosphonate pharmacotherapy (once weekly alendronate or risedronate) and 56% would achieve a high level of

¹¹⁴⁴ Nikitovic M, Wodchis W, Krahn M et al. Direct health-care costs attributable to hip fractures among seniors: A matched cohort study.

¹¹⁴⁵ Amarnath ALD, Franks P, Robbins JA et al. Underuse and Overuse of Osteoporosis Screening in a Regional Health System: a Retrospective Cohort Study. *Journal of General Internal Medicine*. 2015; 12(30): 1733-40. ¹¹⁴⁶ Grad R, Reynolds D, Antao V et al. Screening for primary prevention of fragility fractures: How much time does it take? *Canadian Family Physician*. 2023; 69: 537-41.

¹¹⁴⁷ CTFPHC. How was this calculation made? Available online at <u>https://canadiantaskforce.ca/how-was-this-calculation-made/</u>. Accessed January 2024.

¹¹⁴⁸ CTFPHC. How was this calculation made? Available online at <u>https://canadiantaskforce.ca/how-was-this-calculation-made/</u>. Accessed January 2024.

¹¹⁴⁹ Grad R, Reynolds D, Antao V et al. Screening for primary prevention of fragility fractures: How much time does it take? *Canadian Family Physician*. 2023; 69: 537-41.

¹¹⁵⁰ CTFPHC. How was this calculation made? Available online at <u>https://canadiantaskforce.ca/how-was-this-calculation-made/</u>. Accessed January 2024.

compliance with 4.5 years oral bisphosphonate pharmacotherapy.^{1151,1152,1153} Those who are not at high compliance would still utilize some drugs while not gaining the benefits of those drugs. We have estimated that the 44% not at high compliance would use approximately 30% of the drugs used by those in high compliance.¹¹⁵⁴

- The annual cost of pharmacotherapy is estimated at \$171.18 based on the midpoint between the annual costs for the generic equivalents to alendronate and risedronate.
- An estimated two hours of patient time is required for each visit to a primary care provider and to receive a BMD measurement.
- Based on these assumptions, the estimated cost of screening and intervention for fragility fractures in community-dwelling females ages 65 and older in a BC birth cohort of 40,000 (20,000 females) is \$14.0 million (see Table 16).

 ¹¹⁵¹ Blouin J, Dragomir A, Fredette M et al. Comparison of direct health care costs related to the pharmacological treatment of osteoporosis and to the management of osteoporotic fractures among compliant and noncompliant users of alendronate and risedronate: A population-based study. *Osteoporosis International*. 2009; 20: 1571-81.
¹¹⁵² Sampalis J, Adachi J, Rampakakis E et al. Long-term impact of adherence to oral bisphosphonates on osteoporotic fracture incidence. *Journal of Bone and Mineral Research*. 2012; 27: 202-10.

¹¹⁵³ Burden A, Paterson J, Gruneir A et al. Adherence to osteoporosis pharmacotherapy is underestimated using days supply values in electronic pharmacy claims data. *Pharmacoepidemiology and Drug Safety*. 2015; 24: 67-74. ¹¹⁵⁴ Patrick A, Brookhart M, Losina E et al. The complex relation between bisphosphonate adherence and fracture reduction. *The Journal of Clinical Endocrinology & Metabolism*. 2010; 95(7): 3251-9.

		Total Cost	\$2,495,031 \$461,747 \$461,747 \$461,747 \$230,873	¢ን 570 851	\$482,301 \$482,301 \$482,301 \$482,301 \$241,150	\$2,388,090 \$479,385 \$479,385 \$479,385 \$239,693	\$1,169,013 \$353,703	\$13,958,704
		ollow-up Patient	\$244,020 \$175,194 \$175,194 \$175,194 \$87,597	\$751 D32	\$175,194 \$175,194 \$175,194 \$175,194 \$87,597	\$250,037 \$175,194 \$175,194 \$175,194 \$175,194 \$87,597	\$207,164 \$175,194	\$2,966,986
		Cost of F PCP	\$118,103 \$84,792 \$84,792 \$84,792 \$42,396	¢121.496	\$84,792 \$84,792 \$84,792 \$42,396	\$121,015 \$84,792 \$84,792 \$84,792 \$42,396	\$100,265 \$84,792	\$1,435,986
		edication Low	\$47,558	\$57 403	60 1 ,200	\$51,716	\$22,090	\$173,767
on		Cost of Me High	\$201, 761 \$201, 761 \$201, 761 \$201, 761 \$100, 880	<i>\$777</i> 315	\$222,315 \$222,315 \$222,315 \$222,315 \$111,157	\$219,399 \$219,399 \$219,399 \$219,399 \$109,700	\$93, 717 \$93, 717	\$3,083,071
enti		iance :h ation Low 44.0%	926	1 020	UZU,T	1,007	430	I
nterv	5	Compli wit Medic High 56.0%	1,179	1 299	г. г	1,282	547	
ig and li	Ages ≥6. 000	Accept Medication 66.0%	2,105	7 319	CTC'7	2,289	978	
creenir	Females ort of 40,	ow-up Patient	\$474,010	¢577 299		\$515,449	\$220,176	\$1,731,934
ost of S)welling Birth Coh	of BMD Foll BMD	\$371,421	<u> </u>	007 /2014	\$403,891	\$172,523	\$1,357,093
ated C	nunity-[In a BC	Cost c	\$114,708	¢176 393	666 (071¢	\$124,736	\$53,281	\$419,118
Estim	Comr	# of Bone Density Scans	3,189	3 514	t TC (c	3,468	1,481	11,652
16: F		# at High Risk	3,189	3 514	4TC (C	3,468	1,481	I
able-		% at High Risk	30.1% 30.1% 30.1% 30.1% 30.1% 36.2%	36.2% 36.2% 36.2%	30.2% 36.2% 41.4% 41.4% 41.4%	41.4% 41.4% 45.6% 45.6% 45.6% 45.6% 45.6% 45.6% 45.6% 45.6% 45.6%	45.6% 45.6%	
		of FRAX ening Patient	\$622, 276	¢583 330	Dec (cort	\$472,947	\$202,021	\$1,880,574
		Cost c Scre	\$301,174	<i>\$787 37</i> 5	C7C (707¢	\$228,901	\$97,776	\$910,176
		# of FRAX Screens	10,595	707 P	1016	7,605	3,248	31,155
		# (57.8%) with Up- to-Date Screening	10,595 10,513 10,425 10,331 10,229 10,120	10,002 9,874 9 707	9,529 9,339 9,136 8,920	8,611 8,289 7,954 7,605 7,241 6,618 6,001 5,394 4,798 4,219 4,219	3,248 2,772	
		# in Private Dwelling	18, 330 18, 188 18, 036 17, 873 17, 698 17, 508	17,304 17,083 16 794	16,734 16,486 16,158 15,807 15,432	14,897 14,341 13,761 13,157 13,157 11,450 11,450 9,332 8,302 7,300 6,467 6,467	5,620 4,796	
		Age	65 66 67 68 69 70	71 72 73	27 75 76 77	73 79 81 82 83 83 85 83 85 83 85 83 85 83 85 83	68 06	Total

Costs Avoided

- The prevention of fragility fractures is associated with medical costs avoided. For modeling purposes, we have assumed that fragility fractures are associated with the following costs avoided:
 - o Hip \$78,491
 - o Wrist \$10,705
 - o Vertebral \$33,247
 - o Humerus \$19,561
 - o Multiple \$66,771
 - o All Other \$18,055
- Furthermore, we have assumed that each death avoided is associated with \$46,605 in medical costs avoided.
- Based on these assumptions, total medical costs avoided associated with screening and intervention for fragility fractures in community-dwelling females ages 65 and older in a BC birth cohort of 40,000 (20,000 females) is \$8.7 million (see Table 17).

Table 17: Estimated Costs Avoided with Screening and Intervention Community-Dwelling Females Ages ≥65

In a BC Birth Cohort of 40,000

		Numbo	r of Er	agilty Fra	stures Av	aidad		Costs	De	eaths Avoi	ded Attril	outable t	o Fragi	lty	Costs	Total
		Multipe		agiity ria		Olleu	T 1				Flactu		0.1			Costs
Age	нр	vertebrai	wrist	Humerus	wuitipie	Other	Iotal	Avoided	нр	Vertebrai	Humerus	wuitipie	Other	Iotal	Avoided	Avoided
65	0.3	0.3	0.8	0.2	0.1	1.0	2.8	\$75,324								\$75,324
66	0.4	0.3	0.8	0.2	0.2	1.0	3.0	\$86,104	0.01	0.01	0.00	0.00	0.01	0.03	\$1,267	\$87,371
67	0.5	0.4	0.8	0.2	0.2	1.1	3.2	\$96,651	0.01	0.01	0.00	0.00	0.01	0.03	\$1,581	\$98,231
68	0.6	0.4	0.8	0.2	0.2	1.1	3.4	\$106,940	0.02	0.01	0.00	0.00	0.01	0.04	\$1,936	\$108,876
69	0.7	0.5	0.8	0.3	0.2	1.1	3.6	\$116,945	0.02	0.01	0.00	0.00	0.01	0.05	\$2,339	\$119,284
70	0.9	0.7	1.0	0.3	0.3	1.4	4.6	\$152,293	0.03	0.01	0.00	0.01	0.01	0.06	\$2,799	\$155,092
71	1.0	0.7	1.0	0.3	0.3	1.4	4.8	\$163,514	0.04	0.02	0.00	0.01	0.02	0.09	\$3,998	\$167,512
72	1.1	0.8	1.0	0.4	0.3	1.5	5.0	\$174,259	0.04	0.02	0.00	0.01	0.02	0.10	\$4,712	\$178,971
73	1.1	0.8	1.0	0.4	0.3	1.5	5.2	\$183,924	0.07	0.03	0.01	0.01	0.03	0.14	\$6,704	\$190,628
74	1.2	0.9	1.0	0.4	0.3	1.5	5.3	\$192,936	0.08	0.04	0.01	0.01	0.03	0.16	\$7,689	\$200,625
75	1.5	1.0	1.1	0.4	0.4	1.8	6.3	\$230,138	0.09	0.04	0.01	0.02	0.04	0.19	\$8,789	\$238,927
76	1.8	1.2	1.1	0.5	0.4	2.0	7.0	\$268,707	0.12	0.05	0.01	0.02	0.05	0.25	\$11,470	\$280,177
77	2.2	1.3	1.2	0.5	0.5	2.1	7.7	\$304,866	0.16	0.07	0.01	0.03	0.06	0.31	\$14,677	\$319,544
78	2.4	1.4	1.2	0.5	0.5	2.3	8.3	\$335,363	0.27	0.11	0.01	0.04	0.09	0.53	\$24,622	\$359,986
79	2.7	1.5	1.2	0.5	0.6	2.4	8.8	\$362,357	0.34	0.12	0.02	0.05	0.10	0.63	\$29,317	\$391,674
80	3.2	1.7	1.3	0.6	0.6	2.8	10.1	\$424,756	0.40	0.14	0.02	0.06	0.12	0.74	\$34,402	\$459,158
81	3.4	1.7	1.2	0.6	0.7	2.8	10.5	\$446,056	0.52	0.18	0.02	0.07	0.15	0.94	\$43,951	\$490,007
82	3.6	1.8	1.2	0.6	0.7	2.9	10.8	\$462,762	0.61	0.20	0.03	0.08	0.17	1.08	\$50,507	\$513,269
83	3.6	1.7	1.2	0.6	0.7	2.8	10.6	\$457,699	1.19	0.39	0.05	0.15	0.32	2.11	\$98,287	\$555,986
84	3.5	1.7	1.1	0.6	0.6	2.7	10.2	\$446,563	1.30	0.42	0.05	0.17	0.34	2.28	\$106,140	\$552,702
85	3.4	1.6	1.0	0.5	0.6	2.6	9.8	\$429,675	1.40	0.44	0.05	0.18	0.36	2.44	\$113,542	\$543,217
86	3.4	1.5	0.9	0.5	0.6	2.5	9.4	\$422,885	1.50	0.46	0.06	0.18	0.38	2.58	\$120,330	\$543,215
87	3.3	1.4	0.8	0.4	0.6	2.4	8.9	\$407,586	1.66	0.48	0.06	0.20	0.41	2.80	\$130,656	\$538,242
88	3.3	1.3	0.7	0.4	0.6	2.3	8.5	\$392,413	1.54	0.41	0.05	0.19	0.36	2.55	\$118,781	\$511,194
89	3.1	1.1	0.6	0.4	0.5	2.1	7.9	\$368,812	1.73	0.44	0.05	0.21	0.40	2.83	\$131,776	\$500,588
90	2.9	1.0	0.5	0.3	0.5	1.9	7.1	\$338,223	1.88	0.46	0.05	0.23	0.42	3.04	\$141,846	\$480,069
Total	55	29	26	11	12	51	183	\$7,447,750	15.0	4.6	0.6	1.9	3.9	26.0	\$1,212,117	\$8,659,868

Cost-effectiveness

Based on the above assumptions, the CE associated with screening and intervention for fragility fractures in community-dwelling females ages 65 and older in a BC birth cohort of 40,000 is \$18,832/QALY (see Table 18, row v).

Tabl	e 18: Cost Effectiveness of Screening for Fragility	Fractures in	Females 65+
	In a BC Birth Cohort of 40,000		
Row Label	Variable	Base case	Data Source
	Cost of Screening and Intervention		
а	Cost of FRAX screening - PCP	\$910,176	Table 16
b	Cost of FRAX screening - Patient	\$1,880,574	Table 16
С	Cost of BMD follow-up - PCP	\$419,118	Table 16
d	Cost of BMD follow-up - BMD	\$1,357,093	Table 16
е	Cost of BMD follow-up - Patient	\$1,731,934	Table 16
f	Cost of medication	\$3,256,838	Table 16
g	Cost of follow-up - PCP	\$1,435,986	Table 16
h	Cost of follow-up - Patient	\$2,966,986	Table 16
i	Subtotal - Healthcare system costs	\$7,379,210	+a+c+d+f+g
j	Subtotal - Patient costs	\$6,579,494	+ b + e + h
k	Total Costs	\$13,958,704	+i+j
	Potential Costs Avoided		
I	Number of fragility fractures avoided	183	Table 17
m	Costs avoided due to fragility fractures avoided	-\$7,447,750	Table 17
n	Deaths avoided attributable to fragilty fractures	26	Table 17
0	Costs avoided due to deaths avoided	-\$1,212,117	Table 17
р	Total Costs Avoided	-\$8,659,868	+ m + o
q	Net cost of intervention	\$5,298,837	+ k + p
r	QALYs gained	348	Table 15
S	Cost effectiveness (CE) of intervention, \$/QALY	\$15,205	+ q / r
t	Net Cost of Intervention (1.5% Discount)	\$5,179,979	Calculated
u	Net QALYs Gained (1.5% Discount)	275	Calculated
v	Cost Effectiveness (CE) of Intervention, \$/QALY (1.5% Discount)	\$18,832	Calculated

For the sensitivity analysis, we modified a number of major assumptions and recalculated the CE as follows:

- Assume that the hip fracture reduction rate is reduced from 26.5% to 8.0%, the vertebral fracture reduction rate is reduced from 47.4% to 18.5% and the other fracture reduction rate is reduced from 16.6% to 9.8%: **CE = \$89,847**
- Assume that the hip fracture reduction rate is increased from 26.5% to 41.5%, the vertebral fracture reduction rate is increased from 47.4% to 66.3% and the other fracture reduction rate is increased from 16.6% to 22.8%: CE = \$4,502
- Assume that all patients receiving pharmacotherapy would be given an annual 5mg IV infusion of zoledronic acid rather than weekly alendronate or risedronate, resulting in the proportion of patients being in the high level of compliance group increasing from 56% to 71.1%: CE = \$41,248 (total medication costs [row f] increase from \$3.3 to \$15.2 million)

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for, and treatment of, osteoporosis in females ages 65 and older in order to prevent fractures is estimated to be 275 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$18,832 per QALY (see Table 19).

Table 19: Screening for Fragility Fractures in Females 65+in a BC Birth Cohort of 40,000							
Su	Summary						
	Base						
	Case	Ran	ge				
CPB (Potential QALYs Gained)							
Assume	No Current Serv	ice					
1.5% Discount Rate	275	104	411				
3% Discount Rate	218	82	326				
0% Discount Rate	348	131	521				
CE (\$/QALY) including patient time	e costs						
1.5% Discount Rate	\$18,832	\$4,502	\$89,847				
3% Discount Rate	\$23,107	\$7,361	\$101,314				
0% Discount Rate	\$15,205	\$2,077	\$80,130				
CE (\$/QALY) <i>excluding</i> patient time costs							
1.5% Discount Rate	Cost saving	Cost saving	\$35,024				
3% Discount Rate	\$371	Cost saving	\$40,870				
0% Discount Rate	Cost saving	Cost saving	\$30,049				

Screening for Abdominal Aortic Aneurysms

United States Preventive Services Task Force Recommendations¹¹⁵⁵

The USPSTF recommends 1-time screening for AAA with ultrasonography in men aged 65 to 75 years who have ever smoked. (B recommendation).

Canadian Task Force on Preventive Health Care Recommendations¹¹⁵⁶

We recommend one-time screening with ultrasonography for AAA of men aged 65 to 80 years (weak recommendation; moderate quality of evidence).

We recommend not screening men older than 80 years of age for AAA (weak recommendation; low quality of evidence).

The Canadian Task force acknowledged "evidence showing increased risk of AAA among smokers" but did not make a separate recommendation on screening this population "because there is no evidence on outcomes of screening smokers for AAA."¹¹⁵⁷

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with screening for abdominal aortic aneurysms in males ages 65 to 75 who have ever smoked.

An abdominal aortic aneurysm is conventionally diagnosed when the diameter of the aorta below the kidneys is 30 mm (3.0 cm) or greater.¹¹⁵⁸

The USPSTF considers an "ever-smoker" someone who has smoked at least 100 cigarettes in their lifetime.¹¹⁵⁹

Unless otherwise noted, we apply these conventions and definitions in our modelling.

In modelling CPB, we made the following assumptions:

- The single screen recommended by the USPSTF is conducted at age 65.
- Jacomelli and colleagues report that the National Health Service in England's AAA screening programme had mean uptake across the country of 78.1%, but varied regionally between 61.7 85.8%.¹¹⁶⁰ We use 85.8% as the best in the world screening rate for AAA.

¹¹⁵⁵ LeFevre ML. Screening for abdominal aortic aneurysm: US Preventive Services Task Force recommendation statement. *Annals of Internal Medicine*. 2014; 161(4): 281-90.

¹¹⁵⁶ Singh H, Dickinson JA, Lewin G et al. Recommendations on screening for abdominal aortic aneurysm in primary care. *Canadian Medical Association Journal*. 2017; 189(36): E1137-E45.

¹¹⁵⁷ Singh H, Dickinson JA, Lewin G et al. Recommendations on screening for abdominal aortic aneurysm in primary care. *Canadian Medical Association Journal*. 2017; 189(36): E1137-E45.

 ¹¹⁵⁸ Sakalihasan N, Limet R and Defawe OD. Abdominal aortic aneurysm. *The Lancet*. 2005; 365(9470): 1577-89.
¹¹⁵⁹ LeFevre ML. Screening for abdominal aortic aneurysm: US Preventive Services Task Force recommendation statement. *Annals of Internal Medicine*. 2014; 161(4): 281-90.

¹¹⁶⁰ Jacomelli J, Summers L, Stevenson A et al. Impact of the first 5 years of a national abdominal aortic aneurysm screening programme. *British Journal of Surgery*. 2016; 103(9): 1125-31.

- The large, population-based randomized controlled trials (RCTs) used by the USPSTF in making their recommendation found an abdominal aortic aneurysm (AAA) in 4.0 7.7% of male screening participants.¹¹⁶¹
- Citing more recent epidemiologic evidence from Europe and New Zealand, the USPSTF acknowledged a "substantial decrease in AAA prevalence in men aged 65 years or older in the past 2 decades"¹¹⁶² and referenced a study by Svensjö et al. citing an AAA prevalence rate of 1.7% in Sweden.¹¹⁶³
- In the UK, the AAA prevalence rate in 65-year old men has decreased from 5.0% in 1991 to 1.3% in 2015.¹¹⁶⁴ In Denmark, the prevalence rate in 65-year old men was 2.6% during 2008-2011.¹¹⁶⁵
- For modelling purposes we use an AAA prevalence rate in 65-year old men of 2.35% (Table 5, row *e*). Using 2.35% prevalence in our model brings the model results with screening reasonably close to actual BC results. The 2.35% prevalence rate used is between the values reported for the UK and Denmark.
- The USPSTF rated the quality of the population-based randomized controlled trials (RCTs) used by the USPSTF in making their recommendation. The USPSTF considered the Multicentre Aneurysm Screening Study (MASS) and the Viborg AAA studies as "good-quality", and the Chichester and Western Australia AAA studies as "fair-quality".¹¹⁶⁶ Neither good-quality study included men over the age of 74. On the other hand, both fair-quality studies included older men up to ages 80 (Chichester) and 83 (Western Australia).
- The prevalence of AAA increases with increasing age.¹¹⁶⁷
- In the MASS study, 4.9% of screened men were diagnosed with AAA and the total AAA-related death rate was 109 per 100,000 person years in the control group.¹¹⁶⁸ In the Viborg study, 4.0% of screened men were diagnosed with AAA and the total AAA-related death rate was 87 per 100,000 person years in the control group.¹¹⁶⁹
- Based on 25 years of experience with an ultrasound screening program for AAA in the UK, Oliver-Williams and colleagues report that while the "prevalence of screen-

¹¹⁶¹ LeFevre ML. Screening for abdominal aortic aneurysm: US Preventive Services Task Force recommendation statement. *Annals of Internal Medicine*. 2014; 161(4): 281-90.

¹¹⁶² Guirguis-Blake JM, Beil TL, Senger CA et al. Ultrasonography screening for abdominal aortic aneurysms: a systematic evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2014; 160(5): 321-9.

¹¹⁶³ Svensjö S, Björck M, Gürtelschmid M et al. Low prevalence of abdominal aortic aneurysm among 65-year-old Swedish men indicates a change in the epidemiology of the disease. *Circulation*. 2011; 124(10): 1118-23. ¹¹⁶⁴ Oliver-Williams C, Sweeting MJ, Turton G et al. Lessons learned about prevalence and growth rates of

abdominal aortic aneurysms from a 25-year ultrasound population screening programme. *British Journal of Surgery*. 2018; 105(1): 68-74.

¹¹⁶⁵ Grøndal N, Søgaard R and Lindholt JS. Baseline prevalence of abdominal aortic aneurysm, peripheral arterial disease and hypertension in men aged 65–74 years from a population screening study (VIVA trial). *British Journal of Surgery*. 2015; 102(8): 902-6.

¹¹⁶⁶ Guirguis-Blake JM, Beil TL, Senger CA et al. Ultrasonography screening for abdominal aortic aneurysms: a systematic evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2014; 160(5): 321-9.

¹¹⁶⁷ Grøndal N, Søgaard R and Lindholt JS. Baseline prevalence of abdominal aortic aneurysm, peripheral arterial disease and hypertension in men aged 65–74 years from a population screening study (VIVA trial). *British Journal of Surgery*. 2015; 102(8): 902-6.

 ¹¹⁶⁸ Thompson S, Ashton H, Gao L et al. Final follow-up of the Multicentre Aneurysm Screening Study (MASS) randomized trial of abdominal aortic aneurysm screening. *British Journal of Surgery*. 2012; 99(12): 1649-56.
¹¹⁶⁹ Lindholt JS, Sørensen J, Søgaard R et al. Long-term benefit and cost-effectiveness analysis of screening for abdominal aortic aneurysms from a randomized controlled trial. *British Journal of Surgery*. 2010; 97(6): 826-34.

detected small and medium AAAs has decreased over the past 25 years, ...growth rates have remained similar. Men with a subaneurysmal aorta at age 65 years have a substantial risk of developing a large AAA by the age of 80 years."¹¹⁷⁰

• For modelling purposes, we assume that the death rate / 100,000 person years of 98.0 observed in the control groups of the MASS and Viborg studies would be reduced linearly to 51.7 / 100,000 person years due to the lower estimated prevalence of AAA (2.35%) used in our model (see Table 1).

Table 1: Screening for Abdominal Aortic Aneurysm Men Ages 65+ Adjusted Study Results Based on Lower AAA Prevalence							
Study Death Rate Adjusted							
USPSTF Study in Control Group Model Deat							
	Study	Prevalence	per 100,000	Prevalence	per 100,000		
Study	Rating	of AAA	person years	of AAA	person years		
MASS (Thompson et al., 2012)	Good	4.9%	109	2.35%	52.3		
Viborg (Lindholt et al.) Good 4.0% 87 2.35% 51.1							
Average of Good Quality Studies98.051.7							

- As early as 1998, Semmens et al. reported a decline in AAA-related emergency and elective procedures in Western Australia, ahead of similar results being reported in Europe and theorized that this may be due to "significant changes in the health of the Australian community" including "the success of the anti-smoking movement".¹¹⁷¹
- In Sweden, Johansson and colleagues observed that AAA mortality declined from 36 to 10 deaths per 100,000 for men aged 65-74 between the early 2000s and 2015.¹¹⁷² They note, however, that only an estimated 30% of this reduction was associated with the introduction of screening for AAA and that 70% is due to other factors, most notably a reduction in smoking. Between 1970 and 2010, the prevalence of smoking in Sweden decreased from 44% to 15%.¹¹⁷³
- In a 2018 systematic review and meta-analysis of tobacco smoking and AAA, Aune and colleagues report that the relative risk of AAA in current smokers is 4.87 (95% CI 3.93 6.02) and in former smokers is 2.10 (95% CI 1.76 2.50) compared to never smokers.¹¹⁷⁴
- The Canadian Tobacco, Alcohol and Drugs Survey, 2017 indicated that 16.8% (95% CI 11.6 22.0%) of men 45+ in BC are current smokers, 36.3% (95% CI 29.6 43.0%) are former smokers and 47% (95% CI 39.6 54.3) have never smoked.¹¹⁷⁵

¹¹⁷⁰ Oliver-Williams C, Sweeting MJ, Turton G et al. Lessons learned about prevalence and growth rates of abdominal aortic aneurysms from a 25-year ultrasound population screening programme. *British Journal of Surgery*. 2018; 105(1): 68-74.

¹¹⁷¹ Semmens J, Norman P, Lawrence-Brown M et al. Population-based record linkage study of the incidence of abdominal aortic aneurysm in Western Australia in 1985–1994. *British Journal of Surgery*. 1998; 85(5): 648-52.

¹¹⁷² Johansson M, Zahl PH, Siersma V et al. Benefits and harms of screening men for abdominal aortic aneurysm in Sweden: a registry-based cohort study. *The Lancet*. 2018; 391(10138): 2441-7.

¹¹⁷³ Johansson M, Zahl PH, Siersma V et al. Benefits and harms of screening men for abdominal aortic aneurysm in Sweden: a registry-based cohort study. *The Lancet*. 2018; 391(10138): 2441-7.

¹¹⁷⁴ Aune D, Schlesinger S, Norat T et al. Tobacco smoking and the risk of abdominal aortic aneurysm: a systematic review and meta-analysis of prospective studies. *Scientific Reports*. 2018; 8(1): 14786.

¹¹⁷⁵ Government of Canada. *Canadian Tobacco, Alcohol and Drugs (CTADS) Survey: 2017 Detailed Tables.* 2017. Available at <u>https://www.canada.ca/en/health-canada/services/canadian-tobacco-alcohol-drugs-survey/2017-summary/2017-detailed-tables.html#t2</u>. Accessed January 2019.

- Based on Canadian Community Health Survey data from 2014, 12.9% of BC men ages **65-69** are daily or occasional smokers.¹¹⁷⁶
- For modelling purposes, we assume that 12.9% of men 65 years of age are current smokers (Table 5, row *d*), 47% are never smokers (Table 5, row *b*) and the balance (40.1%) are former smokers (Table 5, row *c*).
- In Table 2 we combine the estimated AAA-related death rate for the population as a whole (51.7 / 100,000 person years, see Table 1), the proportion of 65 year old BC men by smoking category and the relative risk of AAA for current-smokers, former-smokers and never-smokers. At the same time, we calculated the prevalence of AAA in each group, using our model prevalence of 2.35% for the whole population (Table 5, row *e*).
- The results suggest a prevalence of 1.21% (Table 5, row *f*) and an AAA-related death rate of 26.6 / 100,000 in never-smokers, a prevalence of 2.54% (Table 5, row *g*) and an AAA-related death rate of 55.9 / 100,000 in former-smokers and a prevalence of 5.90% (Table 5, row *h*) and an AAA-related death rate of 129.7 / 100,000 in current-smokers.

Table 2: Screening for Abdominal Aortic Aneurysm Men 65+ AAA Prevalence and Death Rates by Smoking Category						
Proportion of Population	1.00	0.470	0.401	0.129		
Relative Risk of AAA		1.00	2.10	4.87		
Prevalence of AAA	2.35%	1.21%	2.54%	5.90%		
Death Rate per 100,000	51.7	26.6	55.9	129.7		

- Howard et al. report the incidence of acute AAA events to be 55 / 100,000 per year in 65-74 year olds and 112 / 100,000 per year in 75-84 year olds. Of these acute AAA events, 59.2% were fatal within 30 days.¹¹⁷⁷ This works out to AAA-related death rates of 32.6 (55 * 0.592) and 66.3 (112 * 0.592) / 100,000 for 65-74 and 75-84 year olds respectively.
- Howard and colleagues also report that 22.3% of incident AAA-events took place in 65 – 74 year olds, with only 13.1% of AAA-related deaths occurring in this age group.¹¹⁷⁸
- We adjust the rates for age groups from 65 74 and 75 84 to reflect that 86.9% of AAA-related deaths are in the 75+ age group, while ensuring the total population rates still reflect what was calculated in Table 2. The deaths and life-years lost in a cohort of BC men 65+ due to AAA is shown in Table 3. We model AAA screening at age 65 through to age 84, in keeping with the average life expectancy of 19.5 years for a 65 year old male from the BC Life Table.

¹¹⁷⁶ Based on the Statistics Canada's Canadian Community Health Survey 2014 Public Use Microdata File. All computations, use and interpretation of these data are entirely that of H. Krueger & Associates Inc.

¹¹⁷⁷ Howard D, Banerjee A, Fairhead J et al. Age-specific incidence, risk factors and outcome of acute abdominal aortic aneurysms in a defined population. *British Journal of Surgery*. 2015; 102(8): 907-15.

¹¹⁷⁸ Howard D, Banerjee A, Fairhead J et al. Age-specific incidence, risk factors and outcome of acute abdominal aortic aneurysms in a defined population. *British Journal of Surgery*. 2015; 102(8): 907-15.

- AAA is usually asymptomatic prior to rupture,¹¹⁷⁹ therefore reduced quality of life in those living with AAA is not presented in Table 3 or considered in our model.
- Table 3 indicates that, in our birth cohort, we would expect 36 AAA-related deaths in male never-smokers (Table 5, row *p*), 65 AAA-related deaths in former-smokers (Table 5, row *q*) and 48 AAA-related deaths in current-smokers (Table 5, row *r*). These 149 AAA-related deaths represent 2.05% of the total 7,289 deaths in the cohort between the ages of 65 and 84. Research from other jurisdictions suggests an AAA-related death rate of between 1-2% of total deaths.^{1180,1181} These 149 deaths would result in the loss of 1,555 (377 + 675 + 503) QALYs in our cohort.
- BC Vital Statistics annual reports provide a detailed listing (by ICD-10 code) of annual deaths by age and sex. ICD-10 code I71 is for deaths due to "aortic aneurysm & dissection." If we combine deaths due to ICD-10 code I71 from the 2013¹¹⁸², 2014¹¹⁸³ and 2015¹¹⁸⁴ BC Vital Statistics annual reports, 0.78% of deaths in males 65 79 and 0.72% of deaths in males 80 and over were attributed to ICD-10 code I71. In males over 65, 0.74% of deaths were attributed to ICD-10 code I71. This proportion of deaths attributable to ICD-10 code I71 is considerably lower than our modelled estimate of 2.05%. Using cause of death data from vital statistics can be somewhat challenging as research has indicted that at least 15% of all deaths are miscoded in vital statistics data in the US and Canada.¹¹⁸⁵ It is possible, therefore, that the 0.74% is an underrepresentation of the actual proportion of deaths due to AAA in BC males 65 years of age and older due to AAA.

¹¹⁷⁹ Kapila V, Jetty P, Doug Wooster M et al. 2018 Screening for abdominal aortic aneurysms in Canada: review and position statement from the Canadian Society of Vascular Surgery. Available at https://canadianvascular.ca/resources/Documents/Clinical-Guidelines/FINAL-2018-CSVS-Screening-

Recommendations.pdf. Accessed January 2019.

¹¹⁸⁰ Howard D, Banerjee A, Fairhead J et al. Age-specific incidence, risk factors and outcome of acute abdominal aortic aneurysms in a defined population. *British Journal of Surgery*. 2015; 102(8): 907-15.

¹¹⁸¹ Sandiford P, Mosquera D and Bramley D. Trends in incidence and mortality from abdominal aortic aneurysm in New Zealand. *British Journal of Surgery*. 2011; 98(5): 645-51.

¹¹⁸² BC Vital Statistics Agency. *Annual Report 2013. Selected Vital Statistics and Health Status Indicators.* 2015. Available at <u>https://www2.gov.bc.ca/assets/gov/birth-adoption-death-marriage-and-divorce/statistics-reports/annual-reports/2013/pdf/annual-report-2013.pdf</u>. Accessed February 2019.

¹¹⁸³ BC Vital Statistics Agency. Annual Report 2014. Selected Vital Statistics and Health Status Indicators. 2015. Available at <u>https://www2.gov.bc.ca/assets/gov/birth-adoption-death-marriage-and-divorce/statistics-</u>

reports/annual-reports/2014/pdf/annual-report-2014.pdf. Accessed February 2019.

¹¹⁸⁴ BC Vital Statistics Agency. *Annual Report 2015. Selected Vital Statistics and Health Status Indicators.* 2015. Available at <u>https://www2.gov.bc.ca/assets/gov/birth-adoption-death-marriage-and-divorce/statistics-reports/2015/pdf/annual-report-2015.pdf</u>. Accessed February 2019.

¹¹⁸⁵ Naghavi M, Makela S, Foreman K. Research Algorithms for enhancing public health utility of national causesof-death data. *Population Health Metrics*. 2010; 8: 9.

					Table 2.9	creening fo	r Abdom	inal Aortic	Anounismi	n Mon 6	51				
										II Ivien o	JT				
Deaths and Life Years Lost Due to Abdominal Aortic Aneurysm															
						Ina	a BC Birth	Cohort of 40	,000		_				
		N	lever Smokers		Fo	rmer Smokers		Cu	rrent Smokers				Life Years	Lost Due	to Death
			AAA-Related			AAA-Related			AAA-Related		AAA-				
		Proportion	Deaths per	AAA-	Proportion	Deaths per	AAA-	Proportion	Deaths per	AAA-	Deaths in				
	# in	of	100,000	Related	of	100,000	Related	of	100,000	Related	Ever	Life	Never	Former	Current
Age	Cohort	Population	person years	Deaths	Population	person years	Deaths	Population	person years	Deaths	Smokers	Expectancy	Smokers	Smokers	Smokers
65	17,208	47.0%	6.1	0.5	40.1%	12.9	0.9	12.9%	29.8	0.7	1.5	19.5	9.7	17.3	12.9
66	17,024	47.0%	6.1	0.5	40.1%	12.9	0.9	12.9%	29.8	0.7	1.5	18.7	9.2	16.4	12.2
67	16,826	47.0%	6.1	0.5	40.1%	12.9	0.9	12.9%	29.8	0.6	1.5	17.9	8.7	15.5	11.6
68	16,612	47.0%	6.1	0.5	40.1%	12.9	0.9	12.9%	29.8	0.6	1.5	17.1	8.2	14.6	10.9
69	16,381	47.0%	6.1	0.5	40.1%	12.9	0.8	12.9%	29.8	0.6	1.5	16.4	7.7	13.8	10.3
70	16,132	47.0%	6.1	0.5	40.1%	12.9	0.8	12.9%	29.8	0.6	1.5	15.6	7.2	13.0	9.7
71	15,863	47.0%	6.1	0.5	40.1%	12.9	0.8	12.9%	29.8	0.6	1.4	14.9	6.8	12.2	9.1
72	15,573	47.0%	6.1	0.4	40.1%	12.9	0.8	12.9%	29.8	0.6	1.4	14.2	6.4	11.4	8.5
73	15,260	47.0%	6.1	0.4	40.1%	12.9	0.8	12.9%	29.8	0.6	1.4	13.5	5.9	10.6	7.9
74	14,923	47.0%	6.1	0.4	40.1%	12.9	0.8	12.9%	29.8	0.6	1.3	12.8	5.5	9.8	7.3
75	14,560	47.0%	53.9	3.7	40.1%	113.1	6.6	12.9%	262.3	4.9	11.5	12.1	44.6	79.9	59.6
76	14,170	47.0%	53.9	3.6	40.1%	113.1	6.4	12.9%	262.3	4.8	11.2	11.5	41.3	73.9	55.1
77	13,751	47.0%	53.9	3.5	40.1%	113.1	6.2	12.9%	262.3	4.7	10.9	10.8	37.6	67.4	50.3
78	13,301	47.0%	53.9	3.4	40.1%	113.1	6.0	12.9%	262.3	4.5	10.5	10.2	34.3	61.5	45.9
79	12,820	47.0%	53.9	3.2	40.1%	113.1	5.8	12.9%	262.3	4.3	10.2	9.6	31.2	55.8	41.6
80	12,306	47.0%	53.9	3.1	40.1%	113.1	5.6	12.9%	262.3	4.2	9.7	9.0	28.0	50.2	37.5
81	11,759	47.0%	53.9	3.0	40.1%	113.1	5.3	12.9%	262.3	4.0	9.3	8.4	25.0	44.8	33.4
82	11,179	47.0%	53.9	2.8	40.1%	113.1	5.1	12.9%	262.3	3.8	8.9	7.9	22.4	40.1	29.9
83	10,565	47.0%	53.9	2.7	40.1%	113.1	4.8	12.9%	262.3	3.6	8.4	7.4	19.8	35.5	26.5
84	9,919	47.0%	53.9	2.5	40.1%	113.1	4.5	12.9%	262.3	3.4	7.9	6.9	17.3	31.0	23.2
Total			26.6	36		55.9	65		129.7	48	113		377	675	503

- There are three primary AAA-related modes of death considered by the randomized controlled trials: death as a result of AAA rupture before receiving emergency surgery at a hospital, death as a result of AAA rupture after receiving emergency surgery, and death due to complications following elective surgery.
- Only one good quality USPSTF referenced study reported on rates of elective and emergency surgery in the control and screening intervention groups; the Viborg study reported by Lindholt and colleagues.¹¹⁸⁶ They report an elective surgery rate of 70 / 100,000 and an emergency surgery rate of 70 / 100,000 in the control population at a reported AAA prevalence of 4.0%.
- We model that these rates would be reduced linearly to 41 / 100,000 person years (Table 5, row v) and 41 / 100,000 person years (Table 5, row ac) for elective and emergency procedures respectively due to the lower estimated prevalence of AAA (2.35%) used in our model (see Table 4).

Table 4: Screening for Abdominal Aortic Aneurysm Men Ages 65+						
Adjusted Surgery Rates Based on Lower AAA Prevalence ¹						
				Adjusted		
	Study	Incidence per	Model	Incidence per		
	Prevalence	100,000 person	Prevalence	100,000		
Variable	of AAA	years	of AAA	person years		
Elective Operations, Control	4.0%	70	2.35%	41		
Acute Operation, with Rupture, Control	4.0%	57	2.35%	33		
Acute Operation, without rupture, Control	4.0%	13	2.35%	8		
Total for Acute Operations, Control	4.0%	70	2.35%	41		

¹Source: Lindholt et al. (2010)

¹¹⁸⁶ Lindholt J, Juul S, Fasting H et al. Screening for abdominal aortic aneurysms: single centre randomised controlled trial. *BMJ*. 2005; 330: 750.

- Guirguis-Blake and colleagues conducted a pooled analysis of RCTs reporting 13-15 year follow up results and calculated the following relative risks in the screening group: ¹¹⁸⁷
 - \circ RR of elective operations for AAA: 2.15 (95% CI, 1.89 2.44)
 - \circ RR of emergency operations for AAA: 0.52 (95% CI, 0.40 0.66)
 - \circ RR of AAA-related mortality: 0.58 (95% CI, 0.39 0.88)
- We model the RR after the pooled analysis by Guirguis-Blake et al. with a relative risk of elective operations of 2.15 (Table 5, row *al*), a relative risk of emergency operations of 0.52 (Table 5, row *au*), and an overall relative risk of AAA-related death of 0.58 in the screening group (Table 5, row *az*).
- There are a number of cases of asymptomatic AAA that could be found without screening. This number ranges from 7 25% in economic analyses and studies reporting this variable.^{1188,1189,1190,1191,1192}
- For modelling purposes we use the mid-point between 7% and 25% (13%) and vary this from 7 25% in our sensitivity analysis (Table 5, row *ak*).
- Reporting on the years 2003 2004 for Canada, Forbes et al. reported that 8.9% of elective AAA-repair was carried out by endovascular surgery, with the balance being open surgery.¹¹⁹³
- Jetty and Husereau reported on Canadian trends from 2004 2009 and reported that endovascular aneurysm repair (EVAR) rates rose from 11.5% to 35.5% in Canada during that time. They also report substantial regional differences in elective endovascular repair rates, from a low of 15.8% in Manitoba to a high of 45.0% in BC in 2009. BC's rate increased each year from 7.5% in 2005 to 45.0% in 2009.¹¹⁹⁴
- Of the 1,958 surgeries for AAA in BC between 2013/14 and 2017/18, 1,142 were EVAR (58%) and 816 were open (42%).¹¹⁹⁵

¹¹⁸⁷ Guirguis-Blake J, Beil T, Sun X et al. Primary Care Screening for Abdominal Aortic Aneurysm: A Systematic Evidence Review for the US Preventive Services Task Force. Evidence Synthesis No. 109. 2014: Available at <u>https://www.ncbi.nlm.nih.gov/books/NBK184793/</u>. Accessed January 2019.

¹¹⁸⁸ Montreuil B and Brophy J. Screening for abdominal aortic aneurysms in men: a Canadian perspective using Monte Carlo–based estimates. *Canadian Journal of Surgery*. 2008; 51(1): 23.

¹¹⁸⁹ Silverstein MD, Pitts SR, Chaikof EL et al. Abdominal aortic aneurysm (AAA): cost-effectiveness of screening, surveillance of intermediate-sized AAA, and management of symptomatic AAA. *Baylor University Medical Center Proceedings*. 2005; 18(4): 345-67.

¹¹⁹⁰ Wanhainen A, Lundkvist J, Bergqvist D et al. Cost-effectiveness of different screening strategies for abdominal aortic aneurysm. *Journal of Vascular Surgery*. 2005; 41(5): 741-51.

¹¹⁹¹ Wanhainen A, Hultgren R, Linné A et al. Outcome of the Swedish nationwide abdominal aortic aneurysm screening program. *Circulation*. 2016; 134(16): 1141-8.

¹¹⁹² Howard D, Banerjee A, Fairhead J et al. Age-specific incidence, risk factors and outcome of acute abdominal aortic aneurysms in a defined population. *British Journal of Surgery*. 2015; 102(8): 907-15.

¹¹⁹³ Forbes TL, Lawlor DK, DeRose G et al. National audit of the recent utilization of endovascular abdominal aortic aneurysm repair in Canada: 2003 to 2004. *Journal of Vascular Surgery*. 2005; 42(3): 410-4.

¹¹⁹⁴ Jetty P and Husereau D. Trends in the utilization of endovascular therapy for elective and ruptured abdominal aortic aneurysm procedures in Canada. *Journal of Vascular Surgery*. 2012; 56(6): 1518-26.

¹¹⁹⁵ Aciemme (Sam) Ospan, Senior Manager, Lifetime Prevention Schedule, Healthy Living and Health Promotion Branch, BC Ministry of Health. June 3, 2019. Personal communication.

• Recent evidence from the UK and Sweden also indicate a rate for elective EVAR of 59%.^{1196,1197}

•	We model an EVAR rate of 58% in BC (Table 5, rows <i>x</i> &	<i>ap</i>).
---	--	--------------

- The USPSTF referenced two key studies comparing early open surgery with surveillance in their analysis of the harms of screening.¹¹⁹⁸ One study was conducted in the UK (UKSAT)¹¹⁹⁹ and the other in the US (ADAM).¹²⁰⁰
- Greenhalgh and colleagues reported a 30-day mortality rate of 5.8% in patients receiving open surgery in the UK Small Aneurysm Trial (UKSAT). The authors acknowledge that this rate was "about half the national in-hospital mortality rate for elective repair" of AAA. ¹²⁰¹ This study was conducted at a time when endovascular surgery was "still under development".
- Lederle and colleagues reported a 30-day mortality rate of 2.0% in patients receiving open surgery in the Aneurysm Detection and Management (ADAM) study.¹²⁰²
- Thompson and colleagues reported a 30-day mortality of 1.8% and 4.6% for elective endovascular and elective open AAA surgeries respectively (MASS study in UK).¹²⁰³
- Several studies published since the USPSTF recommendation in 2014 have reported on elective surgery mortalities. A study of Medicare beneficiaries in the US reported a perioperative (within 30-days of surgery) mortality rate of 1.6% for endovascular repair of AAA and 5.2% for open repair. The mean age was 75.6 for those receiving surgery and the data used was from 2001 2008.¹²⁰⁴
- More recent European studies report ranges of 0.3% 0.7% and 0.9% 1.3% for 30day mortality following endovascular repair and open surgery respectively.^{1205,1206} Neither study explicitly states the mean age of patients receiving surgery, but

¹¹⁹⁶ Jacomelli J, Summers L, Stevenson A et al. Impact of the first 5 years of a national abdominal aortic aneurysm screening programme. *British Journal of Surgery*. 2016; 103(9): 1125-31.

¹¹⁹⁷ Wanhainen A, Hultgren R, Linné A et al. Outcome of the Swedish nationwide abdominal aortic aneurysm screening program. *Circulation*. 2016; 134(16): 1141-8.

¹¹⁹⁸ Guirguis-Blake JM, Beil TL, Senger CA et al. Ultrasonography screening for abdominal aortic aneurysms: a systematic evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2014; 160(5): 321-9.

¹¹⁹⁹ Greenhalgh R, Brady A, Brown L et al. Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. The UK Small Aneurysm Trial Participants. *The Lancet.* 1998; 352: 1649-55.

¹²⁰⁰ Lederle FA, Wilson SE, Johnson GR et al. Immediate repair compared with surveillance of small abdominal aortic aneurysms. *New England Journal of Medicine*. 2002; 346(19): 1437-44.

¹²⁰¹ Greenhalgh R, Brady A, Brown L et al. Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. The UK Small Aneurysm Trial Participants. *The Lancet.* 1998; 352: 1649-55.

¹²⁰² Lederle FA, Wilson SE, Johnson GR et al. Immediate repair compared with surveillance of small abdominal aortic aneurysms. *New England Journal of Medicine*. 2002; 346(19): 1437-44.

¹²⁰³ Thompson S, Ashton H, Gao L et al. Final follow-up of the Multicentre Aneurysm Screening Study (MASS) randomized trial of abdominal aortic aneurysm screening. *British Journal of Surgery*. 2012; 99(12): 1649-56.

¹²⁰⁴ Schermerhorn ML, Buck DB, O'malley AJ et al. Long-term outcomes of abdominal aortic aneurysm in the Medicare population. *New England Journal of Medicine*. 2015; 373(4): 328-38.

¹²⁰⁵ Jacomelli J, Summers L, Stevenson A et al. Impact of the first 5 years of a national abdominal aortic aneurysm screening programme. *British Journal of Surgery*. 2016; 103(9): 1125-31.^o

¹²⁰⁶ Wanhainen A, Hultgren R, Linné A et al. Outcome of the Swedish nationwide abdominal aortic aneurysm screening program. *Circulation*. 2016; 134(16): 1141-8.

Jacomelli et al.¹²⁰⁷ report on screening of 65 year-old men and Wanhainen et al.¹²⁰⁸ on 65 - 74 year old men, so it can be inferred that their results are taken from a younger cohort than is reported by Schermerhorn and colleagues.¹²⁰⁹

- In a report using Ontario data de Mestral and colleagues report a 90-day mortality rate following endovascular repair of 1.6%.¹²¹⁰
- Reporting on outcomes of open repair of AAA in Ontario, Dubois and colleagues report a 30-day mortality for open repair of 3%.¹²¹¹
- We model a 30-day mortality of 1.0% and 3.0% for elective endovascular and open surgery respectively (Table 5, rows *z* & *aa* and *ar* & *as*).
- In their evidence synthesis for the USPSTF, Guirguis-Blake and colleagues report an estimate of 41% mortality (either in hospital or 30-day) associated with emergency surgery for AAA.¹²¹²
- We model an emergency surgery 30-day mortality of 41% (Table 5, row *ae* & *ax*).

Based on these assumptions, the CPB associated with screening for abdominal aortic aneurysms in males aged 65 who have ever smoked is 495 QALYs (see Table 5, row *bk*).

Comparison to Actual BC Data

Analysis from the discharge abstract database in BC from 2013/14 - 2017/18 indicates that 77.8 / 100,000 men over 65 years old had elective AAA surgery and 24.8 / 100,000 men over 65 years old had emergency and / or ruptured AAA surgery, a ratio of 3.14.¹²¹³ Our model calculates these rates at 88.4 /100,000 and 21.4 / 100,000 respectively, a difference of approximately 14% from the actuals in both cases. With no screening (i.e. in the control group), the Viborg study reported the same rates of elective and emergency surgery (see Table 4). If there was no screening in BC, we might expect a similar ratio as the unscreened population in the Viborg study. The fact that there are more than three times as many elective as emergency surgeries in BC suggests that BC physicians are already opportunistically screening their patients in the province. In the fully screened population analysed by the USPSTF, ¹²¹⁴ the ratio of elective to emergency surgeries was 4.13, indicating that while

¹²⁰⁷ Jacomelli J, Summers L, Stevenson A et al. Impact of the first 5 years of a national abdominal aortic aneurysm screening programme. *British Journal of Surgery*. 2016; 103(9): 1125-31.

¹²⁰⁸ Wanhainen A, Hultgren R, Linné A et al. Outcome of the Swedish nationwide abdominal aortic aneurysm screening program. *Circulation*. 2016; 134(16): 1141-8.

¹²⁰⁹ Schermerhorn ML, Buck DB, O'malley AJ et al. Long-term outcomes of abdominal aortic aneurysm in the Medicare population. *New England Journal of Medicine*. 2015; 373(4): 328-38.

¹²¹⁰ de Mestral C, Croxford R, Eisenberg N et al. The impact of compliance with imaging follow-up on mortality after endovascular abdominal aortic aneurysm repair: a population based cohort study. *European Journal of Vascular and Endovascular Surgery*. 2017; 54(3): 315-23.

¹²¹¹ Dubois L, Shariff S, Jenkyn KB et al. PC010 Higher Surgeon Annual Volume, but Not Years of Experience, Leads to Reduced Rates of Perioperative Complications and Reoperations Following Open AAA Repair. *Journal of Vascular Surgery*. 2017; 65(6): 143S-4S.

¹²¹² Guirguis-Blake J, Beil T, Sun X et al. Primary Care Screening for Abdominal Aortic Aneurysm: A Systematic Evidence Review for the US Preventive Services Task Force. Evidence Synthesis No. 109. 2014: Available at https://www.ncbi.nlm.nih.gov/books/NBK184793/. Accessed January 2019.

¹²¹³ Aciemme (Sam) Ospan, Senior Manager, Lifetime Prevention Schedule, Healthy Living and Health Promotion Branch, BC Ministry of Health. June 3, 2019. Personal communication.

¹²¹⁴ Guirguis-Blake J, Beil T, Sun X et al. Primary Care Screening for Abdominal Aortic Aneurysm: A Systematic Evidence Review for the US Preventive Services Task Force. Evidence Synthesis No. 109. 2014: Available at https://www.ncbi.nlm.nih.gov/books/NBK184793/. Accessed January 2019.

opportunistic screening is occurring in BC, it has not yet reached a level in which the majority of eligible males (we model a 'best-in-the –world' rate of 85.8%¹²¹⁵) are screened.

	Table 5: CPB of Abdominal Aortic Aneurysm Screening in In a BC Birth Cohort of 40,000	Ever-Smoki	ng Men 65+
Row Label	Variable	Base Case	Data Source
	Deaths and Life-Years Lost due to AAA in an Unscreened Cohort		
а	Number of 65-year old men in cohort	17,208	BC Life Table
b	Proportion of population, never-smokers	47.0%	V
с	Proportion of population, former smokers	40.1%	V
d	Proportion of population, current smokers	12.9%	V
е	Prevalence of AAA in population	2.35%	V
f	Prevalence of AAA in never-smokers	1.21%	Table 2
g	Prevalence of AAA in former smokers	2.54%	Table 2
h	Prevalence of AAA in <i>current smokers</i>	5.90%	Table 2
i	Life years for cohort from 65 - 84	286,132	Table 3
j	Life years, ever-smokers for cohort from 65 - 84	151,650	= i * (c + d)
k	Number with AAA in cohort at age 65, never-smokers	98	=a * b * f
1	Number with AAA in cohort at age 65, former smokers	176	=a * c * g
m	Number with AAA in cohort at age 65, current smokers	131	=a * d * h
n	Number of AAA-related deaths over cohort lifetime	149	Table 3
0	Fraction of those with AAA dying over cohort lifetime, total population	36.9%	= n / (k + l + m)
р	Number of deaths over cohort lifetime, never-smokers	36	= k * o
q	Number of deaths over cohort lifetime, former smokers	65	= I * o
r	Number of deaths over cohort lifetime, current smokers	48	= m * o
S	Life years lost over cohort lifetime, never-smokers	377	Table 3
t	Life years lost over cohort lifetime, former smokers	675	Table 3
u	Life years lost over cohort lifetime, current smokers	503	Table 3
	AAA-related deaths in an Unscreened Cohort of Ever-Smokers		
v	Rate of elective surgery per 100,000, unscreened population	41	Table 4
w	Number of elective surgeries in cohort	62	= (v / 100,000) * j
х	Proportion of elective surgeries that are endovascular	58%	V
у	Proportion of elective surgeries that are open	42%	= (1 - ag)
Z	30-day mortality for elective endovascular AAA surgery	1.0%	٧
аа	30-day mortality for elective open AAA surgery	3.0%	V
ab	Number of deaths associated with elective surgeries	1.1	= w * ((x * z) + (y * aa))
ac	Rate of emergency surgery per 100,000, unscreened population	41	Table 4
ad	Number of emergency surgeries in cohort	62	= (ac / 100,000) * j
ae	Death rate, emergency surgery	41%	٧
af	Number of deaths associated with emergency surgeries	25.6	= ad * ae
ag	Number of deaths prior to arriving at hospital for surgery	86.3	= (q + r) - ab - af

¹²¹⁵ Jacomelli J, Summers L, Stevenson A et al. Impact of the first 5 years of a national abdominal aortic aneurysm screening programme. *British Journal of Surgery*. 2016; 103(9): 1125-31.

In a BC Birth Cohort of 40,000					
Row Label	Variable	Base Case	Data Source		
	AAA-related deaths in a Screened Cohort of Ever-Smokers				
ah	Number targeted for screening, base case: ever-smokers (current + former)	9,120	= a * (c + d)		
ai	Screening Rate	85.8%	V		
aj	Total Number screened	7,825	= v * w		
ak	Proportion of AAA opportunistically detected without screening	13%	٧		
al	Relative risk of elective surgery, screened vs. unscreened population	2.15	٧		
am	Rate of elective surgery per 100,000, screened population	88.4	= al * v		
an	Number of elective surgeries in cohort	134	= ((am / 100,000) * j)		
ao	Number of elective surgeries in cohort, due to screening alone	62	= an * (1 - ak)		
ар	Proportion of elective surgeries that are endovascular	58%	= x		
aq	Proportion of elective surgeries that are open	42%	= y		
ar	30-day mortality for elective endovascular AAA surgery	1.0%	= z		
as	30-day mortality for elective open AAA surgery	3.0%	= aa		
at	Number of deaths associated with elective surgeries	2.5	= an * ((ap * ar) + (aq * as))		
au	Relative risk of emergency surgery, screened vs. unscreened population	0.52	٧		
av	Rate of emergency surgery per 100,000, unscreened population	21.4	= au *ac		
aw	Number of emergency surgeries in cohort	32	= (au / 100,000) * j		
ах	Death rate, emergency surgery	41%	٧		
ay	Number of deaths associated with emergency surgeries	13.3	= aw * ax		
az	Relative risk of AAA-related death, overall, screened vs. unscreened population	0.58	V		
ba	AAA-related deaths in screened cohort	66	= (q + r) * az		
bb	Number of deaths prior to arriving at hospital for surgery	49.8	= ba - ay - at		
	Difference in AAA-related deaths in a Screened vs. Unscreened Cohort of Ever-				
	Smokers				
bc	Deaths due to elective surgeries, screened vs. unscreened	1.3	= at - ab		
bd	Deaths due to emergency surgeries, screened vs. unscreened	-12.3	= ay - af		
bf	Deaths prior to hospital arrival, screened vs. unscreened	-36.5	= bb - ag		
bg	Difference in total AAA-related deaths, screened vs. unscreened	-47.5	= bc + bd + bf		
bh	Total AAA-related deaths in unscreened cohort	113	= q + r		
bi	Fraction of deaths avoided as a result of screening	42%	= (-bg) / bh		
	Difference in Life Years, Screened vs. Unscreened Cohort of Ever-Smokers				
bj	Life years lost due to death from AAA in unscreened ever-smoking group	1178	Table 3		
bk	QALYs saved by screening	495	= bi * bj		

Table 5: CPB of Abdominal Aortic Aneurysm Screening in Ever-Smoking Men 65+

v = Estimates from the literature

For the sensitivity analysis, we modified the relative risk assumptions and recalculated the CPB as follows:

- Assume that the relative risk of overall death is increased from 0.58 to 0.88 (Table 5, • row az), the relative risk of elective surgery in screened individuals is *decreased* from 2.15 to 1.89 (Table 5, row al) and the relative risk of emergency surgery is increased from 0.52 to 0.66 (Table 5, row *au*): CPB = 141
- Assume that the relative risk of overall death is decreased from 0.58 to 0.39 (Table 5, ٠ row az), the relative risk of elective surgery in screened individuals is *increased* from 2.15 to 2.44 (Table 5, row al) and the relative risk of emergency surgery is decreased from 0.52 to 0.40 (Table 5, row au): CPB = 719
- Offer screening to all 65 year old males, rather than to just 65 year old male ever-• smokers (Table 5, rows b, c and d): CPB = 653

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with screening for abdominal aortic aneurysms in males ages 65 to 75 who have ever smoked

In modelling CE, we made the following assumptions:

- The single screen recommended by the USPSTF is conducted at age 65.
- The screen targets only the population of ever-smokers (i.e. current and former smokers). We assess the benefits of screening the whole population in our sensitivity analysis.
- For modelling purposes, we assume that 12.9% of men 65 years of age are current smokers (Table 6, row *d*) and 40.1% are former smokers (Table 6, row *c*).
- We assume that all 65 year old males will have at least one visit to their GP each year.
- We model a best-in-world screening acceptance rate of 85.8% (Table 6, row e).¹²¹⁶
- The cost of each 10 minute primary care provider office visit is \$35.97 (Reference Document) (Table 6, row *g*)
- The value of patient time (based on 2 hours, including travel time) for each visit to a primary care office and for abdominal ultrasound screening is \$74.32 (Reference Document) (Table 6, row *h*).
- The proportion of each office visit attributable to recommending screening is 50% (Reference Document) (Table 6, row *i*).
- The average service fee cost of an abdominal B-scan (ultrasound fee item 8648) in BC in 2021 was \$110.36 (Table 6, row k).¹²¹⁷
- Visser reported elective endovascular surgery costs at €20,767 (2003) or \$41,113 (2022 CAD), with those costs rising to €23,588 (2003) or \$46,697 (2022 CAD) if one-year follow-up costs were included.¹²¹⁸
- Matsumura and colleagues reported elective endovascular surgery costs between \$34,800 – 38,900 USD (2008) or \$37,797 – \$42,250 (2022 CAD), depending on which device was used in the surgery.¹²¹⁹
- Similarly, in their cost-effectiveness analysis, Svensjo and colleagues use an elective endovascular surgery cost of €24,493 (2012), with that cost rising to €29,758 if post-

¹²¹⁶ Jacomelli J, Summers L, Stevenson A et al. Impact of the first 5 years of a national abdominal aortic aneurysm screening programme. *British Journal of Surgery*. 2016; 103(9): 1125-31.

¹²¹⁷ B.C. Ministry of Health, Health Sector Information, Analysis & Reporting Division. *MSP Fee-For-Service Payment Analysis 2016/2017 - 2020/2021*. 2021. Available at

https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/medical-services-

plan/msp_ffs_payment_analysis_20162017_to_20202021.pdf. Accessed September 2023.

¹²¹⁸ Visser JJ, van Sambeek MR, Hunink MM et al. Acute abdominal aortic aneurysms: cost analysis of endovascular repair and open surgery in hemodynamically stable patients with 1-year follow-up. *Radiology*. 2006; 240(3): 681-9.

¹²¹⁹ Matsumura JS, Stroupe KT, Lederle FA et al. Costs of repair of abdominal aortic aneurysm with different devices in a multicenter randomized trial. *Journal of Vascular Surgery*. 2015; 61(1): 59-65.

operative costs were included as well.¹²²⁰ Converted to 2022 CAD the amounts are \$44,875 and \$54,521 respectively.

- For elective endovascular surgery, Burgers and colleagues reported surgery costs of €14,690 (2013) or \$25,260 (2022 CAD).¹²²¹
- Elective endovascular surgery costs, adjusted to 2022 CAD, range between \$25,260 (Burgers et al.) and \$54,521 (Svensjö et al.). We model elective endovascular AAA-repair surgery costs at \$39,891 (the mid-point of this) and vary this to \$25,260 and \$54,521 in our sensitivity analysis (Table 6, row *s*).
- We noted previously that we assume a 30-day mortality of 1.0% and 3.0% for elective endovascular and open surgery respectively. This early mortality advantage associated with EVAR erodes over time, with no survival advantage after 4 to 5 years of follow-up.^{1222,1223,1224}
- Based on 15 years of follow-up results from the UK EVAR trial, graft-related reinterventions remained higher in patients with endovascular repair compared with open repair. Overall, any graft-related re-intervention occurred in 26% of EVAR vs. 12% of open patients. Serious graft-related re-interventions occurred in 22% of EVAR vs. 9% of open patients while life-threatening re-interventions occurred in 14% of EVAR vs. 7% of open patients. The authors note that "there is no time to assume that it is safe to discontinue surveillance in patients who have had EVAR".¹²²⁵
- Studies assessing the long-term cost-effectiveness of EVAR vs. open surgery that take into account the changing survival profile following EVAR and open surgery, as well as differential graft-related intervention rates, have found no differences in cost-effectiveness. Epstein and colleagues "did not find that EVAR is cost-effective compared with open repair in the long term in trials conducted in European centres."¹²²⁶ Lederle and co-authors conclude that, based on follow-up of 9 years, "survival, quality of life, costs and cost-effectiveness did not differ between elective open and endovascular repair of AAA."¹²²⁷ Cost-effectiveness studies with a follow-up period of less than 4 years, on the other hand, find EVAR to be cost-effective

¹²²⁰ Svensjö S, Mani K, Björck M et al. Screening for abdominal aortic aneurysm in 65-year-old men remains costeffective with contemporary epidemiology and management. *European Journal of Vascular and Endovascular Surgery*. 2014; 47(4): 357-65.

¹²²¹ Burgers L, Vahl A, Severens J et al. Cost-effectiveness of elective endovascular aneurysm repair versus open surgical repair of abdominal aortic aneurysms. *European Journal of Vascular and Endovascular Surgery*. 2016; 52(1): 29-40.

¹²²² Patel R, Sweeting MJ, Powell JT et al. Endovascular versus open repair of abdominal aortic aneurysm in 15years' follow-up of the UK endovascular aneurysm repair trial 1 (EVAR trial 1): a randomised controlled trial. *The Lancet*. 2016; 388(10058): 2366-74.

¹²²³ Deery SE and Schermerhorn ML. Open versus endovascular abdominal aortic aneurysm repair in Medicare beneficiaries. *Surgery*. 2017; 162(4): 721-31.

¹²²⁴ Powell JT, Sweeting MJ, Ulug P et al. Meta-analysis of individual-patient data from EVAR-1, DREAM, OVER and ACE trials comparing outcomes of endovascular or open repair for abdominal aortic aneurysm over 5 years. *British Journal of Surgery*. 2017; 104(3): 166-78.

¹²²⁵ Patel R, Sweeting MJ, Powell JT et al. Endovascular versus open repair of abdominal aortic aneurysm in 15years' follow-up of the UK endovascular aneurysm repair trial 1 (EVAR trial 1): a randomised controlled trial. *The Lancet*. 2016; 388(10058): 2366-74.

¹²²⁶ Epstein D, Sculpher M, Powell J et al. Long-term cost-effectiveness analysis of endovascular versus open repair for abdominal aortic aneurysm based on four randomized clinical trials. *British Journal of Surgery*. 2014; 101(6): 623-31.

¹²²⁷ Lederle FA, Stroupe KT, Kyriakides TC et al. Long-term cost-effectiveness in the veterans affairs open vs endovascular repair study of aortic abdominal aneurysm: A randomized clinical trial. *JAMA Surgery*. 2016; 151(12): 1139-44.

compared with open surgery, largely due to the early survival advantages associated with $\rm EVAR.^{1228}$

- Because of this long term convergence in the benefits and costs between EVAR and open surgery, we have not taken into account the longer-term benefits or costs of EVAR or open surgery in our modelling.
- Visser reported elective open surgery costs at €35,470 (2003) or \$70,220 (2022 CAD), with those costs rising to €36,448 (2003) or \$72,157 (2022 CAD) if one-year follow-up costs were included.¹²²⁹
- Matsumura and colleagues reported elective open surgery costs between \$38,900 \$45,100 (2008 USD) or \$42,250 \$48,984 (2022 CAD), depending on which device was used in the surgery.¹²³⁰
- Similarly, in their cost-effectiveness analysis, Svensjo and colleagues use an elective open surgery cost of €30,099 (2012), with that cost rising to €35,615 if post-operative costs were included as well.¹²³¹ Converted to 2022 CAD the amounts are \$55,146 and \$65,252 respectively.
- For elective open surgery, Burgers and colleagues reported surgery costs of €16,399 (2013) or \$28,199 (2022 CAD).¹²³²
- In papers not reporting on the specific type of elective surgery, the elective surgery costs ranged from \$15,489 \$48,847 (2022 CAD).^{1233,1234,1235,1236,1237,1238,1239,1240}

¹²²⁸ IMPROVE Trial Investigators. Comparative clinical effectiveness and cost-effectiveness of endovascular strategy v open repair for ruptured abdominal aortic aneurysm: three year results of the IMPROVE randomised trial. *British Medical Journal*. 2017; 359: j4859.

¹²²⁹ Visser JJ, van Sambeek MR, Hunink MM et al. Acute abdominal aortic aneurysms: cost analysis of endovascular repair and open surgery in hemodynamically stable patients with 1-year follow-up. *Radiology*. 2006; 240(3): 681-9.

¹²³⁰ Matsumura JS, Stroupe KT, Lederle FA et al. Costs of repair of abdominal aortic aneurysm with different devices in a multicenter randomized trial. *Journal of Vascular Surgery*. 2015; 61(1): 59-65.

¹²³¹ Svensjö S, Mani K, Björck M et al. Screening for abdominal aortic aneurysm in 65-year-old men remains costeffective with contemporary epidemiology and management. *European Journal of Vascular and Endovascular Surgery*. 2014; 47(4): 357-65.

¹²³² Burgers L, Vahl A, Severens J et al. Cost-effectiveness of elective endovascular aneurysm repair versus open surgical repair of abdominal aortic aneurysms. *European Journal of Vascular and Endovascular Surgery*. 2016; 52(1): 29-40.

 ¹²³³ Lindholt JS, Sørensen J, Søgaard R et al. Long-term benefit and cost-effectiveness analysis of screening for abdominal aortic aneurysms from a randomized controlled trial. *British Journal of Surgery*. 2010; 97(6): 826-34.
¹²³⁴ Thompson S, Ashton H, Gao L et al. Screening men for abdominal aortic aneurysm: 10 year mortality and cost-effectiveness results from the randomised Multicentre Aneurysm Screening Study. *British Medical Journal*. 2009; 338: b2307.

¹²³⁵ Chew HF, You C, Brown MG et al. Mortality, morbidity, and costs of ruptured and elective abdominal aortic aneurysm repairs in Nova Scotia, Canada. *Annals of Vascular Surgery*. 2003; 17(2): 171-9.

¹²³⁶ Brox AC, Filion KB, Zhang X et al. In-hospital cost of abdominal aortic aneurysm repair in Canada and the United States. *Archives of Internal Medicine*. 2003; 163(20): 2500-4.

¹²³⁷ Wanhainen A, Lundkvist J, Bergqvist D et al. Cost-effectiveness of different screening strategies for abdominal aortic aneurysm. *Journal of Vascular Surgery*. 2005; 41(5): 741-51.

¹²³⁸ Silverstein MD, Pitts SR, Chaikof EL et al. Abdominal aortic aneurysm (AAA): cost-effectiveness of screening, surveillance of intermediate-sized AAA, and management of symptomatic AAA. *Baylor University Medical Center Proceedings*. 2005; 18(4): 345-67.

¹²³⁹ Montreuil B and Brophy J. Screening for abdominal aortic aneurysms in men: a Canadian perspective using Monte Carlo–based estimates. *Canadian Journal of Surgery*. 2008; 51(1): 23.

¹²⁴⁰ Giardina S, Pane B, Spinella G et al. An economic evaluation of an abdominal aortic aneurysm screening program in Italy. *Journal of Vascular Surgery*. 2011; 54(4): 938-46.
- Elective open surgery costs, adjusted to 2022 CAD, range between \$28,199 (Burgers et al.) and \$72,157 (Visser et al.). We model elective open AAA-repair surgery costs at \$50,178 (open surgery mid-point) and vary this to \$28,199 and \$72,157 in our sensitivity analysis (Table 6, row *t*).
- Chew and colleagues reported that emergency AAA-repair surgery costs in Nova Scotia were \$18,899 (1998 CAD), including overhead. This is equivalent to \$30,733 (2022 CAD).¹²⁴¹
- In a Swedish cost analysis, Wanhainen and colleagues used €32,183 (2003) for emergency AAA-repair with rupture or \$55,354 (2022 CAD).¹²⁴²
- In a model of US costs, Silverstein and colleagues used \$60,000 (2003) USD to account for emergency surgery and emergency care costs. Adjusted to 2022 CAD, this comes to \$74,425.¹²⁴³
- Montreuil and colleagues conducted a Monte Carlo analysis of screening Canadian men for AAA and used \$35,982 (2005 CAD) for emergency AAA-repair surgery costs, equivalent to \$48,630 (2022 CAD).¹²⁴⁴
- Lindholt and colleagues reported an emergency AAA-repair surgery cost of €35,928 (2007) in Denmark or \$69,876 (2022 CAD).¹²⁴⁵
- Reporting on the cost-effectiveness of screening using the MASS results, Thompson and colleagues used an emergency AAA-repair cost of £14,825 (2008) or \$32,831 (2022 CAD).¹²⁴⁶
- Giardina and colleagues report an emergency AAA-repair cost of €15,602 (2009) in Italy, or \$30,364 (2022 CAD).¹²⁴⁷
- Emergency AAA-repair surgery costs, adjusted to 2022 CAD, range between \$30,364 (Giardina et al.) and \$74,425 (Silverstein et al.). We model the cost of emergency surgery as \$46,853 (mid-point of emergency surgery range) and vary this from \$30,364 to \$74,425 in our sensitivity analysis (Table 6, row *ao*).
- Chew et al. reported a mean length of stay in Nova Scotia of 19.57 days in hospital for emergency surgery survivors and 9.22 days in hospital for emergency surgery patients who died.¹²⁴⁸ We model accordingly (Table 6, rows *aq* & *ar*)

¹²⁴¹ Chew HF, You C, Brown MG et al. Mortality, morbidity, and costs of ruptured and elective abdominal aortic aneurysm repairs in Nova Scotia, Canada. *Annals of Vascular Surgery*. 2003; 17(2): 171-9.

¹²⁴² Wanhainen A, Lundkvist J, Bergqvist D et al. Cost-effectiveness of different screening strategies for abdominal aortic aneurysm. *Journal of Vascular Surgery*. 2005; 41(5): 741-51.

¹²⁴³ Silverstein MD, Pitts SR, Chaikof EL et al. Abdominal aortic aneurysm (AAA): cost-effectiveness of screening, surveillance of intermediate-sized AAA, and management of symptomatic AAA. *Baylor University Medical Center Proceedings*. 2005; 18(4): 345-67.

¹²⁴⁴ Montreuil B and Brophy J. Screening for abdominal aortic aneurysms in men: a Canadian perspective using Monte Carlo–based estimates. *Canadian Journal of Surgery*. 2008; 51(1): 23.

¹²⁴⁵ Lindholt JS, Sørensen J, Søgaard R et al. Long-term benefit and cost-effectiveness analysis of screening for abdominal aortic aneurysms from a randomized controlled trial. *British Journal of Surgery*. 2010; 97(6): 826-34. ¹²⁴⁶ Thompson S, Ashton H, Gao L et al. Screening men for abdominal aortic aneurysm: 10 year mortality and

cost-effectiveness results from the randomised Multicentre Aneurysm Screening Study. *British Medical Journal*. 2009; 338: b2307.

¹²⁴⁷ Giardina S, Pane B, Spinella G et al. An economic evaluation of an abdominal aortic aneurysm screening program in Italy. *Journal of Vascular Surgery*. 2011; 54(4): 938-46.

¹²⁴⁸ Chew HF, You C, Brown MG et al. Mortality, morbidity, and costs of ruptured and elective abdominal aortic aneurysm repairs in Nova Scotia, Canada. *Annals of Vascular Surgery*. 2003; 17(2): 171-9.

- The Canadian Society for Vascular Surgery (CSVS) and HealthLinkBC agree that hospital stays for elective endovascular AAA-repair surgery will range between 1 3 days.^{1249,1250}
- The Canadian Society for Vascular Surgery suggests that elective open AAA-repair surgery will require 5 7 days in hospital.¹²⁵¹
- Analysis from the discharge abstract database in BC from 2013/14 2017/18 indicates the average length of stay for elective endovascular AAA repair in BC is no less than 4 days, while the average length of stay for elective open AAA repair is 10 days.¹²⁵²
- HealthLinkBC states that patients will typically fully recover 4 weeks after endovascular AAA-repair surgery and suggests planning to take 1 - 2 weeks off work.¹²⁵³ The CSVS reports a full recovery time between 2 – 4 weeks.¹²⁵⁴
- HealthLinkBC states that patients will typically resume "usual activities" 4 6 weeks after *open* AAA-repair surgery and that full recovery will take 2 – 3 months.¹²⁵⁵ The CSVS reports a full recovery time between 1 – 3 months.¹²⁵⁶
- For the purposes of calculating patient time costs, we model 4 days and 10 days in hospital for elective endovascular and open AAA-repair surgeries respectively (Table 6, rows v & w). We model time off work at 10 days (midpoint of 1 2 weeks) and 35 days (midpoint of 4 6 weeks) for endovascular and open AAA-repair surgeries respectively (Table 6, rows x & y). In our sensitivity analysis we range the days off work between 7 14 for endovascular and 28 42 for open surgery.
- Emergency ground transport in BC costs \$848 for non-MSP beneficiaries.¹²⁵⁷ This can be considered the unsubsidized cost of emergency ground transportation.
- We model that the difference in the sum of emergency surgeries and deaths prior to hospitalization for AAA between the unscreened and screened cohort is equivalent to the number of avoided emergency transports (Table 6, row *ay*). These emergency transports each cost \$530 (Table 6, row *az*).

Based on these assumptions, the CE associated with screening for abdominal aortic aneurysms in males ages 65 to 75 who have ever smoked is 9,300 / QALY (see Table 6, row *bg*).

¹²⁴⁹ Canadian Society for Vascular Surgery. *Abdominal Aortic Aneurysm.* 2018. Available at <u>https://canadianvascular.ca/Abdominal-Aortic-Aneurysms</u>. Accessed February 2019.

¹²⁵⁰ HealthLinkBC. *Endovascular Repair for Abdominal Aortic Aneurysm*. 2018. Available at

¹²⁵³ HealthLinkBC. Endovascular Repair for Abdominal Aortic Aneurysm. 2018. Available at

https://www.healthlinkbc.ca/health-topics/abn3549#abn3550. Accessed February 2019.

¹²⁵⁵ HealthLinkBC. *Open Repair Surgery for Abdominal Aortic Aneurysm*. 2018. Available at https://www.healthlinkbc.ca/health-topics/abn3540. Accessed February 2019

¹²⁵⁶ Canadian Society for Vascular Surgery. *Abdominal Aortic Aneurysm*. 2018. Available at <u>https://canadianvascular.ca/Abdominal-Aortic-Aneurysms</u>. Accessed February 2019.

¹²⁵⁷ Island Health. Emergency Transport Fees. 2023. Available at <u>https://www.islandhealth.ca/patients-</u>

visitors/fees-payments/patient-transportation-fees. Accessed November 2023.

https://www.healthlinkbc.ca/health-topics/abn3549#abn3550. Accessed February 2019. ¹²⁵¹ Canadian Society for Vascular Surgery. *Abdominal Aortic Aneurysm.* 2018. Available at

https://canadianvascular.ca/Abdominal-Aortic-Aneurysms. Accessed February 2019.

¹²⁵² Aciemme (Sam) Ospan, Senior Manager, Lifetime Prevention Schedule, Healthy Living and Health Promotion Branch, BC Ministry of Health. June 3, 2019. Personal communication.

¹²⁵⁴ Canadian Society for Vascular Surgery. Abdominal Aortic Aneurysm. 2018. Available at

https://canadianvascular.ca/Abdominal-Aortic-Aneurysms. Accessed February 2019.

	In a BC Birth Cohort of 40.000		
Row Label	Variable	Base case	Data Source
а	Number of 65-year old men in cohort	17,208	BC Life Table
b	Proportion who are former smokers	40.1%	V
с	Proportion who are current smokers	12.9%	V
d	Number targeted for screening	9,120	= a * (d + e)
e	Screening Rate	85.8%	V
f	Total Number screened	7,825	= f * g
g	Cost of 10 minute office visit	\$35.97	Ref Doc
h	Value of patient time and travel for office visit	\$74.32	Ref Doc
i	Portion of 10-minute office visit for screening	50%	Ref Doc
j	Cost of initial primary care visit for cohort	\$431,519	= f * (g + h) * i
k	Cost of ultrasonic screening session	\$110	V
I	Cost of ultrasonic screening for cohort	\$1,445,190	= f * (h + k)
m	Number of elective surgeries in ever-smokers, unscreened	62	Table 5, row w
n	Number of elective surgeries in ever-smokers, screened	134	Table 5, row an
0	Rate of opportunistically detected AAA	13%	Table 5, row ak
р	Number of additional elective surgeries attributable to screening alone	62	= ((n - m) * (1 - o))
q	Proportion of surgeries that are endoscopic surgeries	58%	Table 5, row ap
r	Proportion of surgeries that are open surgeries	42%	= 1 - q
S	Cost per elective surgery, endoscopic AAA repair	\$39,891	٧
t	Cost per elective surgery, open AAA repair	\$50,178	V
u	Cost of additional elective surgery due to screening	\$2,756,748	= p * ((q * s) + (r * t))
v	Time in hospital, days, endovascular AAA repair	4	V
w	Time in hospital, days, open AAA repair	10	V
х	Recovery time, days, endovascular AAA repair	10	V
у	Recovery time, days, open AAA repair	35	V
Z	Cost per day of patient time in hospital	\$279	Ref Doc
aa	Patient time cost for additional elective AAA surgeries	\$468,262.78	= p * ((q * (v + x)) + (r * (w + y)) * z
ab	Number of elective surgeries, endoscopic	36	= p * q
ас	Cost of CT Scan	\$223.50	V
ad	Cost of office visit, 100% for AAA follow-up	\$110	= g + h
ae	Average life expectancy of 65-year old man	20	BC Life Table
af	Estimated compliance with annual follow-up protocol	70%	٧
ag	Cost of CT Scans	\$113,825	= ab * ac * ae * af
ah	Cost of follow-up office visits	\$56,169	= ab * ad * ae * af
ai	Lifetime failure rates of EVAR	10%	V
aj	Cost to correct EVAR failure with open surgery	\$182,535	= ab * ai * t
ak	Total cost due to additional elective AAA surgery in cohort	\$3,577,540	= u + aa + ag + ah + aj
al	Number of emergency surgeries in ever-smokers, unscreened	62.4	Table 5, row ad
am	Number of emergency surgeries in ever-smokers, screened	32.4	Table 5, row aw
an	Reduction in emergency surgeries in screened population	29.9	= al - am
ао	Lost of emergency surgery, AAA rupture repair	\$52,395	V
ар	Cost reduction due to avoided surgery	\$1,568,479	= an * ao
aq	Time in hospital, emergency AAA repair, survivors	19.57	V
ar	nine in nospital, emergency AAA repair, patients who die	9.22	V
dS	Average time in begnital emergency AAA repair	41%	V
at	Average unite in nospital, entergency AAA repair	15.3 ¢122 70	$-((ay^{-}(1-as)) + (ar^{-}as))$
du	ration time cost avoided due to avoided effergency surgery	\$1,605,240	
dV	Number of emergency surgeries and are bespital deaths uncorpored eshert	21,050,349 170	
dW	Number of emergency surgeries and pre-hospital deaths, discreteined conort	145 82	Table 5, row aw + Table 5, row bb
dX	Number of avoided emergency transports due to scrooping	62	
ay 27	Average cost of emergency transport	¢0 <i>1</i> 9	- aw - ax
ha	Avoided emergency transportation cost	ې ن- ن ¢۲۶ २//ହ	v = av * az
hh	Net cost of intervention	\$3 701 552	= ay a2 = i + l + ak - ay - ba
bc	OALYs saved	μος μος	Table 5 row bk
hd	Cost effectiveness (CE) of intervention $\$/O\Delta IV$	\$7 <i>4</i> 79	= hb / hc
50		ע ידן ייך	
be	Net Cost of Intervention (1.5% Discount)	\$3,874,550	Calculated
bf	Net QALYs Gained (1.5% Discount)	417	Calculated
bg	Cost Effectiveness (CE) of Intervention, \$/QALY (1.5% Discount)	\$9,300	= be / bf

Table 6: Cost Effectiveness of Abdominal Aortic Aneurysm Screening in Ever-Smoking Men 65+

√ = Estimates from the literature

For the sensitivity analysis, we modified a number of major assumptions and recalculated the CE as follows:

- Assume that the relative risk of overall death moves from 0.58 to 0.88 (Table 5, row *az*), the relative risk of elective surgery in screened individuals is *decreased* from 2.15 to 1.89 (Table 5, row *al*) and the relative risk of emergency surgery moves from 0.52 to 0.66 (Table 5, row *au*): CE = \$29,687
- Assume that the relative risk of overall death moves from 0.58 to 0.39 (Table 5, row *az*), the relative risk of elective surgery in screened individuals is *increased* from 2.15 to 2.44 (Table 5, row *al*) and the relative risk of emergency surgery moves from 0.52 to 0.40 (Table 5, row *au*): **CE** = **\$7,230**
- Assume the rate of opportunistically detected AAA in the population increases from 13% to 25% (Table 5, row *ak*): CE = \$8,150
- Assume the rate of opportunistically detected AAA in the population decreases from 13% to 7% (Table 5, row *ak*): CE = \$9,875
- Assume the cost of elective endovascular surgery increases from \$39,891 to \$54,521 (Table 6, row *s*), the cost of elective open endovascular surgery increases from \$50,178 to \$72,157 (Table 6, row *t*), and the cost of emergency AAA-repair surgery increases from \$52,395 to \$74,425 (Table 6, row *ao*): CE = \$10,726
- Assume the cost of elective endovascular surgery decreases from \$39,891 to \$25,260 (Table 6, row *s*), the cost of elective open endovascular surgery decreases from \$50,178 to \$28,199 (Table 6, row *t*), and the cost of emergency AAA-repair surgery decreases from \$52,395 to \$30,364 (Table 6, row *ao*): CE = \$7,873
- Assume that the time off work for elective endovascular surgery increases from 10 to 14 days (Table 6, row *x*) and the time off work for elective open surgery increases from 35 to 42 days (Table 6, row *y*): CE = \$9,512
- Assume that the time off work for elective endovascular surgery decreases from 10 to 7 days (Table 6, row *x*) and the time off work for elective open surgery increases from 35 to 28 days (Table 6, row *y*): CE = \$9,110
- Offer screening to all 65 year old males, rather than to just 65 year old male eversmokers (Table 5, rows *b*, *c* and *d*): CE = \$13,455

Summary

Ever-Smoking Males Ages 65 and Older

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for, and treatment of, abdominal aortic aneurysm in ever-smoking males ages 65 and older is estimated to be 417 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$9,300 per QALY (see Table 7).

Table 7: Abdominal Aortic Aneurysm Screening in Ever-								
Smoking Men 65+ in a BC Birth Cohort of 40,000								
Sum	mary							
	Base							
	Case	Ra	nge					
CPB (Potential QALYs Gained)								
Assume No	Current Servi	ice						
1.5% Discount Rate	417	119	605					
3% Discount Rate	353	101	513					
0% Discount Rate	495	141	719					
CE (\$/QALY) including patient time	costs							
1.5% Discount Rate	\$9,300	\$7,230	\$29,687					
3% Discount Rate	\$11,317	\$8,829	\$35,788					
0% Discount Rate	\$7,479	\$5,784	\$24,193					
CE (\$/QALY) excluding patient time	costs							
1.5% Discount Rate	\$6,285	\$4,993	\$19,805					
3% Discount Rate	\$7,756	\$6,187	\$24,131					
0% Discount Rate	\$4,952	\$3,911	\$15,894					

All Males Ages 65 and Older

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for, and treatment of, abdominal aortic aneurysm in in all males ages 65 and older is estimated to be 550 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$13,455 per QALY (see Table 8).

Table 8: Abdominal Aortic Aneurysm Screening in Men65+ in a BC Birth Cohort of 40,000								
Summary								
	Base							
	Case	Rai	nge					
CPB (Potential QALYs Gained)								
Assume No	o Current Serv	ice						
1.5% Discount Rate	550	157	799					
3% Discount Rate	466	133	677					
0% Discount Rate	653	187	949					
CE (\$/QALY) including patient time	e costs							
1.5% Discount Rate	\$13,455	\$10,489	\$42,671					
3% Discount Rate	\$16,339	\$12,775	\$51,394					
0% Discount Rate	\$10,853	\$8,423	\$34,817					
CE (\$/QALY) excluding patient time costs								
1.5% Discount Rate	\$9,145	\$7,292	\$28,542					
3% Discount Rate	\$11,248	\$8,998	\$34,727					
0% Discount Rate	\$7,240	\$5,745	\$22,952					

Screening for Sexually Transmitted Infections and Blood Borne Pathogens

Human Immunodeficiency Virus

United States Preventive Services Task Force Recommendations (2013)

An estimated 1.2 million persons in the United States are currently living with HIV infection, and the annual incidence of the disease is approximately 50 000 cases. Since the first cases of AIDS were reported in 1981, more than 1.1 million persons have been diagnosed and nearly 595 000 have died from the condition.

Approximately 20% to 25% of individuals living with HIV infection are unaware of their positive status.

The USPSTF recommends that clinicians screen adolescents and adults aged 15 to 65 years for HIV infection. Younger adolescents and older adults who are at increased risk should also be screened. (A recommendation)

*The USPSTF recommends that clinicians screen all pregnant women for HIV, including those who present in labor who are untested and whose HIV status is unknown. (A recommendation)*¹²⁵⁸

Canadian Task Force on Preventive Health Care Recommendations (2016)

The CTFPHC has reviewed the USPSTF guideline on screening for HIV infection and conclude that it "is a high-quality guideline, but the CTFPHC does not recommend its use in Canada. In the opinion of the CTFPHC, available evidence does not justify routinely screening all adult Canadians for HIV." Instead, the focus should be on screening high-risk groups and pregnant women.¹²⁵⁹

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with screening adolescents and adults aged 15 to 65 years for HIV infection in a BC birth cohort of 40,000.

In modelling CPB, we made the following assumptions:

• The total number of individuals living with HIV infections in BC is estimated to be 12,100 (with a range from 9,700 to 14,500) (see Table 1).¹²⁶⁰

¹²⁵⁸ Moyer VA. Screening for HIV: U.S. Preventive Services Task Force Recommendation Statement. *Annals of Internal Medicine*. 2013; 159(1): 51-60.

 ¹²⁵⁹ Canadian Task Force on Preventive Health Care. *HIV 2013 Critical Appraisal Report*. Available online at https://canadiantaskforce.ca/wp-content/uploads/2016/05/2013-hiv-en-ca-final.pdf. Accessed February 2018.
 ¹²⁶⁰ BC Centre for Disease Control. *HIV in British Columbia: Annual Surveillance Report 2015*. 2017. Available online at http://www.bccdc.ca/resource-

gallery/Documents/Statistics%20and%20Research/Statistics%20and%20Reports/STI/HIV_Annual_Report_2015-FINAL.pdf. Accesed February 2018.

In British Columbia by Exposure Category 2014								
Exposure Category	Number	Ra	nge	% of Total				
MSM MSM-PWID PWID HET (non-endemic) HET (endemic) Other All	5,500 385 3,400 2,220 470 125 12,100	4,400 270 2,700 1,740 340 80 9,700	6,600 500 4,100 2,700 600 170 14,500	45% 3% 28% 18% 4% 1%				
MSM - Men who have sex with men PWID - People who inject drugs HET (non-endemic) - Heterosexual contact with a person who is either HIV-infected or at risk for HIV or heterosexual as the only identified risk HET (endemic) - Heterosexual contact and origin from a country where HIV is endemic Other - Recipients of blood transfusion or clotting factor, perinatal, and occupational transmission								

- 20% of HIV-infected men who have sex with men (MSM), 24% of HIV-infected injection drug users (IDU) and 34% of HIV-infected heterosexuals (HET) are unaware of their HIV status (Table 2, rows *c*, *f* & *i*).¹²⁶¹
- Adherence with universal screening was assumed to be 83% for MSM, 45% for HET and 60% for IDU (Table 2, rows *u*, *v* & *w*) (see Reference Document).
- 4.56% of HIV infected individuals die prematurely without early initiation of antiretroviral therapy (ART) (deferring initiation of ART to CD4 levels of 200 cells/μL). This can be reduced to 1.11% with early initiation of ART (Table 2, rows y & z).¹²⁶²
- The average age at which undiagnosed HIV is detected is 40 (Table 2, row bb).¹²⁶³
- The gain in quality of life associated with early detection and treatment of an HIV infection is 0.11 (Table 2, row *ee*).¹²⁶⁴
- Antiretroviral therapy is a potent intervention for prevention of HIV in discordant couples. The RCT by Cohen, et al. found that just 1 of 28 transmissions occurred in a serodiscordant couple in which the infected partner received early initiation of antiretroviral therapy (a hazard ratio of 0.04; 95% CI from 0.01 to 0.27).¹²⁶⁵ The 2013 Cochrane review by Anglemyer and colleagues noted the RCT study by Cohen, et al. as well as nine observational studies. Results from the observational studies suggested that treating the HIV-infected partner in a serodiscordant couple reduces the risk of transmission by 64% (a relative risk of 0.36; 95% CI from 0.17 to

 ¹²⁶¹ Public Health Agency of Canada. Summary: Estimates of HIV Prevalence and Incidence in Canada, 2011.
 2011. Available at http://www.phac-aspc.gc.ca/aids-sida/publication/survreport/assets/pdf/estimat2011-eng.pdf.
 Accessed May 2014.

 ¹²⁶² Siegfried N, Uthman OA and Rutherford GW. Optimal time for initiation of antiretroviral therapy in asymptomatic, HIV-infected, treatment-naive adults. *Cochrane Database of Systematic Reviews*. 2011.
 ¹²⁶³ Ibid.

 ¹²⁶⁴ Long EF, Brandeau ML and Owens DK. The cost-effectiveness and population outcomes of expanded HIV screening and antiretroviral treatment in the United States. *Annals of Internal Medicine*. 2010; 153(12): 778-89.
 ¹²⁶⁵ Cohen MS, Chen YQ, McCauley M et al. Prevention of HIV-1 infection with early antiretroviral therapy. *New England Journal of Medicine*. 2011; 365(6): 493-505.

0.75).^{1266,1267} In BC, the expanded utilization of highly active antiretroviral therapy (HAART) between 1996 and 2012 is associated with a 66% decrease in new diagnoses of HIV.¹²⁶⁸ To incorporate this information into our model, we first calculated the rate per person year of HIV transmission in HIV-discordant couples if the HIV-positive partner is not treated with ART. This is based on the results from the control arms of the 1 RCT and 9 observational studies included in the Cochrane review by Anglemyer et al. (1,094 transmissions during 42,917 person-years, a transmission rate of 0.0255 per person-year, Table 2, row *gg*). We then assumed a 64% reduction in the transmission rate per person-year if the HIV-positive partner is treated with ART. This results in an annual transmission rate of 0.0092 per person-year (Table 2, row *hh*). In the sensitivity analysis we used results from the Cohen et al study (96% reduction) as the upper bounds and the 95% CI from the 9 observational studies reviewed by Anglemyer et al (RR of 0.75 or a 25% reduction) as the lower bounds.

- We assumed that the 16.58 infections avoided associated with screening and the early treatment with ART (Table 2, row *kk*) would lead to an additional 11.91 infections avoided (Table 2, row *nn*), due to second order transmission benefits.
- The difference in quality of life between avoided infection and symptomatic HIV treated with ART is 0.17 (Table 2, row *oo*).¹²⁶⁹
- Other assumptions used in assessing the clinically preventable burden are detailed in the Reference Document.

Based on these assumptions, the calculation of CPB (Table 2, row qq) is 360 QALYs. This represents the potential CPB of moving from no screening to 45% in the heterosexual population, 60% in people who inject drugs and 83% in men who have sex with men.

¹²⁶⁶ Anglemyer A, Rutherford GW, Horvath T et al. Antiretroviral therapy for prevention of HIV transmission in HIV-discordant couples. *Cochrane Database of Systematic Reviews*. 2013.

¹²⁶⁷ Anglemyer A, Horvath T and Rutherford G. Antiretroviral therapy for prevention of HIV transmission in HIVdiscordant couples. *Journal of the American Medical Association*. 2013; 310(15): 1619-20.

¹²⁶⁸ Montaner JS, Lima VD, Harrigan PR et al. Expansion of HAART coverage is associated with sustained decreases in HIV/AIDS morbidity, mortality and HIV transmission: the "HIV Treatment as Prevention" experience in a Canadian setting. *PLoS One.* 2014; 9(2): e87872.

¹²⁶⁹ Long EF, Brandeau ML and Owens DK. The cost-effectiveness and population outcomes of expanded HIV screening and antiretroviral treatment in the United States. *Annals of Internal Medicine*. 2010; 153(12): 778-89.

	40,000		
Row Label	Variable	Base Case	Data Source
a	Prevalence of HIV Infections in B.C.	12.100	Table 1
b	Prevalence of HIV Infections in MSM	5,500	V
с	% Undiagnosed in MSM	20%	V
d	Undiagnosed HIV in MSM	1,100	= b*c
е	Prevalence of HIV Infections in PWID	3,785	V
f	% Undiagnosed in PWID	24%	V
g	Undiagnosed HIV in PWID	908	= e*f
h	Prevalence of HIV Infections in HET	2,690	٧
i	% Undiagnosed in HET	34%	V
j	Undiagnosed HIV in HET	915	= h*i
k	Undiagnosed HIV in BC	2,923	= d+g+j
I	Diagnosed HIV in BC	9,177	= a-k
m	BC Population Ages 15-65	3,239,000	V
n	Prevalence / 100,000 Diagnosed HIV	283	=l/(m/100,000)
0	Prevalence / 100,000 Undiagnosed HIV	90	=k/(m/100,000)
р	Est. diagnosed HIV in BC birth cohort of 40,000	113	= n*0.4
q	Est. undiagnosed HIV in BC birth cohort of 40,000	36	= o*0.4
r	Est. undiagnosed HIV in BC birth cohort of 40,000 - MSM	14	= (d/k)*q
s	Est. undiagnosed HIV in BC birth cohort of 40,000 - PWID	11	= (g/k)*q
t	Est. undiagnosed HIV in BC birth cohort of 40,000 - HET	11	= (j/k)*q
u	Adherence with screening - MSM	83.0%	Ref Doc
v	Adherence with screening - PWID	60.0%	V
w	Adherence with screening - HET	45.0%	Ref Doc
x	Previously undiagnosed HIV infections detected by universal screening	23.09	=r*u+s*v+t*w
У	% early death without early initiation of antiretroviral therapy (ART)	4.56%	v
Z	% early death with early initiation of ART	1.11%	V
аа	Early deaths avoided with early initiation of ART	0.80	=(x*y)-(x*z)
bb	Average age at which undiagnosed HIV infection detected	40	V
сс	Life expectancy of a 40 year-old	44	V
dd	QALYs gained - premature death avoided	35.0	=aa*cc
ee	Gain in QoL associated with early detection and treatment of HIV	0.11	V
ff	QALYs gained - early detection and treatment	112	=x*cc*ee
	HIV transmission in HIV-discordant couples, HIV positive	0.0255	
88	partner untreated with ART - rate/person year	0.0255	v
hh	HIV transmission in HIV-discordant couples, HIV positive partner treated with ART - rate/person year	0.0092	v
ii	Potential HIV transmissions, HIV positive partner untreated with ART	25.91	=x*cc*gg
jj	Potential HIV transmissions, HIV positive partner treated with ART	9.33	=x*cc*hh
kk	Infections avoided per early detection associated with ART- first order	16.58	=ii-jj
11	Potential HIV transmissions, HIV positive partner untreated with ART	18.60	=kk*gg*cc
mm	Potential HIV transmissions, HIV positive partner treated with ART	6.70	=kk*hh*cc
nn	Infections avoided per early detection associated with ART- second order	11.91	=II-mm
00	Difference in QoL associated with no infection vs.	0.17	V
pn	OALYS gained - infections avoided due to ART	213	=(kk+nn)*cc*oo
qq	Total QALYs gained, Utilization increasing from 0% to 45% for HET, 60% for PWID and 83% for MSM	360	=dd+ff+pp
	1		

Table 2: CPB of Screening to Detect and Treat HIV in a BC Birth Cohort of 40,000

√ = Estimates from the literature

We also modified several major assumptions and recalculated the CPB as follows:

- Assume the prevalence of individuals living with HIV infections in BC is decreased from 12,100 to 9,700 (Table 2, row *a*): CPB = 288.
- Assume the prevalence of individuals living with HIV infections in BC is increased from 12,100 to 14,500 (Table 2, row *a*): CPB = 431.
- Assume that the early initiation of antiretroviral therapy is associated with a 96% reduction (from 64%) in the transmission rate per person-year (Table 2, row *hh*): **CPB = 533.**
- Assume that the early initiation of antiretroviral therapy is associated with a 25% reduction (from 64%) in the transmission rate per person-year (Table 2, row *hh*): **CPB = 209**.

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with screening adolescents and adults aged 15 to 65 years for HIV infection in a BC birth cohort of 40,000.

In modelling CE, we made the following assumptions:

- Number of screens We have assumed screening between the ages of 15-65 would occur every year in high risk populations and once every 5 years in low-risk populations.¹²⁷⁰ Long and colleagues estimated the high-risk population to be 2.85% of the total population ages 15-65 in the US¹²⁷¹ and 1.62% in the UK.¹²⁷² We assumed 2.85% for BC (Table 3, row *a*). In the sensitivity analysis, we adjusted screening once every five years in the low-risk population to once every 10 years and once per lifetime.
- **True / false positive screens** The ratio of true to false positive test results is 1:1 (Table 3, row *i*).¹²⁷³
- **Laboratory cost per screen** The estimated cost per screen is \$7 (with a range from \$5 to \$9). The estimated cost of confirming true / false positive results is \$400 (with a range from \$300 to \$500).¹²⁷⁴ We increased these costs to 2022 CAD with an estimated cost per screen of \$7.89 (\$5.63 to \$10.14) and the estimated cost of confirming true / false positive results of \$451 (\$338 to \$563) (Table 3, rows *m* & *n*).
- **Cost of a counselling session** We estimated the average cost of a counselling session associated with a true / false positive result to be \$85.95, based on MSP fee item 13015 (*HIV/AIDS Primary Care Management in or out of office per half hour or major portion thereof*) (Table 3, row *o*).¹²⁷⁵

¹²⁷⁰ Office of the Provincial Health Officer. *HIV Testing Guidelines for the Province of British Columbia* 2014. Available at http://www.bccdc.ca/NR/rdonlyres/B35EDEBD-98CA-48BB-AB7C-

B18A357AC19D/0/HIV_GUIDE_051114.pdf. Accessed May 2014.

 ¹²⁷¹ Long EF, Brandeau ML and Owens DK. The cost-effectiveness and population outcomes of expanded HIV screening and antiretroviral treatment in the United States. *Annals of Internal Medicine*. 2010; 153(12): 778-89.
 ¹²⁷² Long EF, Mandalia R, Mandalia S et al. Expanded HIV testing in low-prevalence, high-income countries: a cost-effectiveness analysis for the United Kingdom. *PLoS One*. 2014; 9(4): e95735.

¹²⁷³ Dr. Mel Krajden, Associate Medical Director, BCCDC Public Health Microbiology and Reference Laboratory, BC Centre for Disease Control. Personal communication, March, 2014.
¹²⁷⁴ Ibid.

¹²⁷⁵ Medical Services Commission. *Payment Schedule*. 2022. Available online at

https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/medical-services-plan/msc_payment_schedule_-_may_2022.pdf. Accesed November 2018.

- Average annual cost of antiretrovirals for HIV Calculated based on an estimated average cost per day of treatment in Canada of \$26.00 (in 2012 CAD)¹²⁷⁶ or \$30.39 in 2022 CAD (Table 3, row *s*). Costs in BC may be as high as \$47.00 per day (in 2005 CAD)¹²⁷⁷ or \$63.52 in 2022 CAD. We have used this higher estimate in our sensitivity analysis.
- **Direct medical costs avoided** The annual direct medical costs (excluding medications) associated with HIV/AIDS in Canada have been estimated by stage of infection at \$1,684 for asymptomatic HIV, \$2,534 for symptomatic HIV and \$9,715 for AIDS (in 2009 CAD).¹²⁷⁸ We modelled avoided cost using the annual direct medical costs associated with symptomatic HIV, updated to 2022 CAD of \$3,183 (Table 3, row *w*).
- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the estimated cost per QALY would be \$18,930 (see Table 3, row gg).

¹²⁷⁶ Centre for Health Services and Policy Research. *The Canadian Rx Atlas: Third Edition*. 2013. Available at http://www.chspr.ubc.ca/sites/default/files/file_upload/publications/2013/RxAtlas/canadianrxatlas2013.pdf. Accessed November 2023.

¹²⁷⁷ Johnston KM, Levy AR, Lima VD et al. Expanding access to HAART: a cost-effective approach for treating and preventing HIV. *AIDS*. 2010; 24(12): 1929-35.

¹²⁷⁸ Kingston-Riechers, J. *The Economic Cost of HIV/AIDS in Canada*. Canadian AIDS Society, 2011. Available online at <u>http://www.cdnaids.ca/files.nsf/pages/economiccostofhiv-</u>

aidsincanada/\$file/Economic%20Cost%20of%20HIV-AIDS%20in%20Canada.pdf. Accessed July, 2014.

Table 3: CE of Screening to Detect and Treat HIV in a BC Birth Cohort of 40,000

Row			
Label	Variable	Base Case	Data Source
а	Proportion of population high risk	2.85%	V
b	Proportion of population low risk	97.15%	=1-a
с	Screening rate in high risk populations	Annual	V
d	Screening rate in low risk populations	Every 5 years	V
е	Lifetime screens in high risk populations	44,883	Calculated
f	Lifetime screens in low risk populations	167,873	Calculated
g	Total screens	212,756	=e+f
h	# of true positive screens	23.09	Table 2, row x
i	Estimated # of false positive screens	23.09	=h
	Costs of screening and counseling		
j	Cost of 10-minute office visit	\$35.97	Ref Doc
k	Value of patient time and travel for office visit	\$74.32	Ref Doc
<u> </u>	Proportion of office visit required	0.50	Assumed
m	Cost per screen	\$7.89	V
n	Cost per true/false positive screen	\$451	V
0	Cost per counselling session	\$85.95	V
р	Cost of screening	\$5,525,900	=(g*j*l)+(g*m)+(h+i)*n
q	Cost of counselling	\$3,969	=(h+i)*o
r	Patient time costs	\$7,906,031	= g*k*l
	Costs of antiretrovirals		
S	Cost per day of treatment	\$30.39	٧
+	Cost of antiretrovirals	\$11 268 765	=Table 2, row x * Table 2,
		\$11,200,705	row cc *365 * s
	Costs avoided		
	HIV infections avoided - treatment with ART	28.49	Table 2, row kk + Table 2,
ŭ		20.15	row nn
v	Cost of antiretrovirals avoided	-\$13 902 488	= -u * Table 2, row
		\$13,302,100	cc*365*s
w	Annual direct medical costs (excluding medications)	\$3 183	V
	associated with symptomatic HIV	<i>\$</i> 0,±00	•
x	Direct medical costs avoided	-\$3,989,382	= -u * Table 2, row cc*w
	CE calculation		
у	Cost of screening and counseling (undiscounted)	\$13,435,900	= p+q+r
z	Cost of antiretrovirals (undiscounted)	\$11,268,765	= t
аа	Costs avoided (undiscounted)	-\$17,891,869	= V+X
bb	QALYs saved (undiscounted)	360	Table 2, row qq
СС	Cost of screening and counseling (1.5% discount rate)	\$9,854,484	Calculated
dd	Cost of antiretrovirals (1.5% discount rate)	\$8,265,011	Calculated
ee	Costs avoided (1.5% discount rate)	-\$13,122,690	Calculated
ff	QALYs saved (1.5% discount rate)	264	Calculated
gg	CE (\$/QALY saved)	\$18,930	=(cc+dd+ee)/ff

√ = Estimates from the literature

We also modified several major assumptions and recalculated the cost per QALY as follows:

- Assume the prevalence of individuals living with HIV infections in BC is decreased from 12,100 to 9,700 (Table 2, row *a*): CE = \$28,150.
- Assume the prevalence of individuals living with HIV infections in BC is increased from 12,100 to 14,500 (Table 2, row *a*): CE = \$12,763.
- Assume that the early initiation of antiretroviral therapy is associated with a 96% reduction (from 64%) in the transmission rate per person-year (Table 2, row *hh*): CE = Cost-saving.
- Assume that the early initiation of antiretroviral therapy is associated with a 25% reduction (from 64%) in the transmission rate per person-year (Table 2, row *hh*): **CE** = **\$93,297.**
- Assume screening once every 10 years rather than once every 5 years in the low-risk population (Table 3, row d): CE = \$4,137.
- Assume screening once per lifetime rather than once every 5 years in the low-risk population (Table 3, row *d*): CE = Cost-saving.
- Assume the cost of screening is reduced from \$7.89 and \$451 to \$5.63 and \$338 (Table 3, rows *m* & *n*): CE = \$17,580.
- Assume the cost of screening is increased from \$7.89 and \$451 to \$10.14 and \$563 (Table 3, rows *m* & *n*): CE = \$20,275.
- Assume the proportion of an office visit required is reduced from 0.50 to 0.33 (Table 3, row *l*): CE = \$7,846.
- Assume the proportion of an office visit required is increased from 0.50 to 0.67 (Table 3, row *l*): CE = \$30,015.
- Assume the average annual cost of antiretrovirals for HIV is increased from \$26 to \$47 per day (Table 3, row *s*): CE = \$10,952.

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening adolescents and adults aged 15 to 65 years for HIV infection is estimated to be 264 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$18,930.

Table 4: Screening to Diagnose and Treat HIV Infections in aBirth Cohort of 40,000									
Summary									
	Base								
	Case	Ran	ge						
CPB (Potential QALYs Gained)									
1.5% Discount Rate	264	153	391						
3% Discount Rate	198	115	294						
0% Discount Rate	360	209	533						
CE (\$/QALY) including patient time	costs								
1.5% Discount Rate	\$18,930	Cost-saving	\$93,297						
3% Discount Rate	\$18,930	Cost-saving	\$93,297						
0% Discount Rate	\$18,930	Cost-saving	\$93,297						
CE (\$/QALY) excluding patient time	costs								
1.5% Discount Rate	Cost-saving	Cost-saving	\$55 <i>,</i> 453						
3% Discount Rate	Cost-saving	Cost-saving	\$55,453						
0% Discount Rate	Cost-saving	Cost-saving	\$55,453						

Screening for Chlamydial / Gonococcal Infections - Evidence Update

Background

In 2014, we modelled screening for chlamydial and gonococcal infections for the Lifetime Prevention Schedule (LPS) based on the newly released 2014 recommendation from the U.S. Preventive Services Task Force (USPSTF). The USPSTF recommended screening for chlamydia and gonorrhea in sexually active females aged 24 years or younger and in older women who are at increased risk for infection (B recommendation).¹²⁷⁹

Our modelling leaned heavily on the assumptions used by Hu and colleagues in their costeffectiveness analysis.¹²⁸⁰ At the time, we noted that the modelling was highly sensitive to a number of key assumptions, a fact also recognized by Hu and colleagues.¹²⁸¹ Furthermore, there was a significant debate about these key assumptions. For example, Hu and colleagues assumed that 30% of infections with chlamydia would lead to acute pelvic inflammatory disease (PID), with a range from 10-40%. Subsequent research suggested that the rate might be much lower, resulting in a change in the lower end of the range from 10% to just 0.43%.^{1282,1283} Others indicated that we simply do not know very much about the natural progression from infection with either chlamydia or gonorrhea to PID.¹²⁸⁴

This uncertainty surrounding key assumptions meant a large range in our model results, from \$37,189 to \$234,414 per quality-adjusted life year (QALY).¹²⁸⁵

There was also substantial debate about whether screening is associated with any significant reduction in PID and its sequelae. In a landmark article published in the *New England Journal of Medicine* in 1996, Scholes et al. presented the results of a randomized controlled clinical trial in which they observed a significant reduction in PID in women screened for chlamydia (relative risk of 0.44; 95% CI of 0.20 to 0.90).¹²⁸⁶ The 2014 USPSTF recommendation leaned heavily on this study. Subsequent research, however, has not been able to replicate these results. The Prevention of Pelvic Infection (POPI) trial in the UK, also a randomized controlled trial, for example, found a non-significant reduction in PID associated with screening (relative risk of 0.65; 95% CI of 0.34 to 1.22).¹²⁸⁷

schedule/images/lps-update-report-2022.pdf. Accessed December 2023.

¹²⁷⁹ LeFevre M. Screening for chlamydia and gonorrhea: US Preventive Services Task Force recommendation statement. *Annals of Internal Medicine*. 2014; 161(12): 902-10.

¹²⁸⁰ Hu D, Hook E and Goldie S. Screening for Chlamydia trachomatis in women 15 to 29 years of age: A costeffectiveness analysis. *Annals of Internal Medicine*. 2004; 141(7): 501-13.

¹²⁸¹ Hu D, Hook III E and Goldie S. The impact of natural history parameters on the cost-effectiveness of Chlamydia trachomatis screening strategies. *Sexually Transmitted Diseases*. 2006; 33(7): 428-36.

¹²⁸² van Valkengoed I, Morré S, van den Brule A et al. Overestimation of complication rates in evaluations of Chlamydia trachomatis screening programmes - implications for cost-effectiveness analyses. *International Journal of Epidemiology*. 2004; 33(2): 416-25.

¹²⁸³ Hu D, Hook III E and Goldie S. The impact of natural history parameters on the cost-effectiveness of Chlamydia trachomatis screening strategies. *Sexually Transmitted Diseases*. 2006; 33(7): 428-36.

¹²⁸⁴ Herzog S, Heijne J, Althaus C et al. Describing the progression from Chlamydia trachomatis and Neisseria gonorrhoeae to pelvic inflammatory disease: Systematic review of mathematical modelling studies. *Sexually Transmitted Diseases*. 2012; 39(8): 628-37.

¹²⁸⁵ The Lifetime Prevention Schedule. *Establishing Priorities among Effective Clinical Prevention Services in British Columbia. Summary and Technical Report.* September 2022 Update. Available online at https://www2.gov.bc.ca/assets/gov/health/about-bc-s-health-care-system/health-priorites/lifetime-prevention-

¹²⁸⁶ Scholes D, Stergachis A, Heidrich F et al. Prevention of pelvic inflammatory disease by screening for cervical chlamydial infection. *New England Journal of Medicine*. 1996; 334(21): 1362-6

¹²⁸⁷ Oakeshott P, Kerry S, Aghaizu A et al. Randomised controlled trial of screening for Chlamydia trachomatis to prevent pelvic inflammatory disease: the POPI (prevention of pelvic infection) trial. *British Medical Journal*. 2010; 340(340): c1642.

2021 CTFPHC Recommendation Statement

In 2021 the CTFPHC released the following recommendation:¹²⁸⁸

We recommend opportunistic screening of sexually active individuals under 30 years of age who are not known to belong to a high-risk group, annually, for chlamydia and gonorrhea at primary care visits, using a self- or clinician-collected sample (Conditional recommendation; very low-certainty evidence).

Opportunistic Versus Systematic Population Screening

Several things should be noted about this recommendation. First, the recommendation is for **opportunistic screening**. "Opportunistic screening is distinct from a systematic population screening program, in which invitations for screening are sent to all eligible participants, monitored for uptake and evaluated through a centralized program, usually at the provincial level."¹²⁸⁹ One of the primary goals of the LPS work is to identify clinical prevention services (CPS) that are worth doing based on their overall population health impact and their cost-effectiveness. A key assumption used by the LPS is that if a CPS is worth doing in BC, then we would try to achieve screening / intervention rates that are equal to the best in the world. This is unlikely to be achieved without a systematic population screening program.

What Does the Recommendation Mean for the LPS?

Second, the CTFPHC recommendation is a **conditional recommendation based on very low-certainty evidence**. In 2013 the LPS Expert Committee (LPSEC) released a methodology report,¹²⁹⁰ at least in part to clarify which recommendations of effectiveness would lead to a positive response to the first question asked by the LPS when considering a CPS: Is the service effective?¹²⁹¹

Prior to 2011, the CTFPHC used a grading system similar to that of the USPSTF, which essentially provided each CPS reviewed with one of five potential summary grades: A, B, C, D, I. At the time, the LPSEC accepted an A (*the USPSTF recommends the service. There is high certainty that the net benefit is substantial*) or B grade (*the USPSTF recommends the service. There is high certainty that the net benefit is moderate to substantial*) as sufficient evidence of effectiveness to trigger the detailed modelling to assess the overall population health impact and the cost-effectiveness of the CPS in BC.

In November of 2011 the CTFPHC moved to incorporate 'strong' or 'weak' recommendations for or against implementing a CPS. The weak recommendation was subsequently renamed "conditional". Furthermore, each recommendation included one of four potential grades for the evidence based on how confident the CTFPHC was that the estimates of effect are correct; high-, moderate-, low- or very low-certainty.

In 2013, the LPSEC determined that the new weak or conditional recommendation from the CTFPHC would likely overlap both the 'B' and 'C' grades of the USPSTF. A C grade from the USPSTF at the time meant that "the USPSTF recommends selectively offering or providing this service to individual patients based on

¹²⁹¹ Lifetime Prevention Schedule. An Overview of the Process. Available online at

¹²⁸⁸ Moore A, Traversy G, Reynolds D et al. Recommendation on screening for chlamydia and gonorrhea in primary care for individuals not known to be at high risk. *CMAJ*. 2021; 193(16): E549-59. ¹²⁸⁹ Ibid.

¹²⁹⁰ Lifetime Prevention Schedule. *Evidence Review and Economic Modelling of Preventive Health Maneuvers to Update the BC Lifetime Prevention Schedule: Methodology Report*. October 21, 2013.

https://www2.gov.bc.ca/gov/content/health/about-bc-s-health-care-system/health-priorities/lifetime-prevention. Accessed December 2023.

professional judgment and patient preferences. There is at least moderate certainty that the net benefit is small."

The decision rule applied by the LPSEC was that a weak/conditional recommendation based on at least moderate-certainty evidence would be approximately comparable to the previous 'B' recommendation from the CTFPHC and a current 'B' recommendation from the USPSTF, while a weak/conditional recommendation based on low- or very low-certainty evidence would be approximately comparable to a 'C' recommendation.¹²⁹²

Based on these decision rules, the current **conditional recommendation; very low-certainty evidence** would be considered equivalent to a 'C' grade and would not lead to a positive response to the first question asked by the LPS when considering a CPS: Is the service effective?

When the CTFPHC and the USPSTF Disagree

The two main sources for evidence of effectiveness for the LPS are the CTFPHC and the USPSTF. On occasion, both organizations will provide a recommendation and aspects of those recommendations may differ. For example, slightly different start and stop ages for screening may be recommended by the two organizations. In the current situation, however, the difference may be significant if we agree that the CTFPHC recommendation is equivalent to a 'C' from the USPSTF while the actual recommendation from the USPSTF is a 'B' (see below).

Over time, several decision rules have been applied by the LPS when the two task forces disagree. First, if there is a gap of at least 5 years in the timing of the recommendations, the recommendation assessing the most recent evidence takes priority. Second, if the two recommendations are assessing the same or similar research evidence, the recommendation of the CTFPHC takes priority. Any reason for not following these decision rules should be clearly documented (e.g. at the outset of the modelling process).

2021 USPSTF Recommendation Statement

In 2021, based on their updated review of the literature, the USPSTF released the following recommendations:¹²⁹³

The USPSTF recommends screening for chlamydia in all sexually active women 24 years or younger and in women 25 years or older who are at increased risk for infection (B recommendation).

The USPSTF recommends screening for gonorrhea in all sexually active women 24 years or younger and in women 25 years or older who are at increased risk for infection (B recommendation).

The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of screening for chlamydia and gonorrhea in men (I recommendation).

¹²⁹² Lifetime Prevention Schedule. *Evidence Review and Economic Modelling of Preventive Health Maneuvers to Update the BC Lifetime Prevention Schedule: Methodology Report*. October 21, 2013.

¹²⁹³ US Preventative Services Task Force. Screening for Chlamydia and Gonorrhea: US Preventative Services Task Force Recommendation Statement. *JAMA*. 2021; 326(10): 957-66.

Evidence of Effectiveness

Differences in the Research Evidence Used to Assess Effectiveness

The CTFPHC found 14 publications that met their inclusion criteria in addressing the question: "What is the effectiveness of screening compared with no screening for chlamydia and/or gonorrhea in non-pregnant sexually active individuals?" Ten studies were randomized controlled clinical trials (RCTs), two were non-randomized controlled clinical trials (CCT) and two were retrospective cohort studies (see Table 1). The USPSTF included just four of these publications (see Table 1) in addressing the question: "In sexually active, asymptomatic adolescents and adults, including those who are pregnant, what is the effectiveness of screening for chlamydial or gonococcal infections in reducing complications of infection and transmission or acquisition of disease, including gonorrhea, chlamydia, and HIV?"¹²⁹⁴

Appendix A5 of the detailed evidence review for the USPSTF¹²⁹⁵ includes a list of 366 publications considered for inclusion but ultimately excluded together with the reason for exclusion. None of the 10 studies included in the CTFPHC but not included in the USPSTF appear to have been considered for inclusion by the USPSTF (i.e. they do not appear in Appendix A5), suggesting a substantial difference in literature search strategies.

Table 1: Studies Included by the CTFPHC and the USPSTF in Assessing the Benefits of Screening for Chlamydia and Gonorrhea

	5	U C		
Study Authors	Type of Study	Used by	Used by	Considered (and Rejected)
(Date)		CTFPHC	USPSTF	by the USPSTF
Scholes et al (1996) ¹²⁹⁶	Randomized controlled clinical trial (RCT)	Yes	Yes	NA
Ostergaard et al (2000) ¹²⁹⁷	RCT	Yes	Yes	NA
Oakeshott et al (2010) ¹²⁹⁸	RCT	Yes	Yes	NA
Hocking et al (2018) ¹²⁹⁹	RCT	Yes	Yes	NA
Study Authors (Date)	Type of Study	Used by CTFPHC	Used by USPSTF	Considered (and Rejected) by the USPSTF

¹²⁹⁴ Cantor A, Dana T, Griffin J et al. *Screening for Chlamydial and Gonococcal Infections: A Systematic Review Update for the U.S. Preventive Services Task Force. Evidence Synthesis No. 206.* AHRQ Publication No. 21-05275-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2021.

¹²⁹⁵ Ibid.

¹²⁹⁶ Scholes D, Stergachis A, Heidrich F et al. Prevention of pelvic inflammatory disease by screening for cervical chlamydial infection. *NEJM*. 1996; 334(21): 1362–6.

¹²⁹⁷ Ostergaard L, Andersen B, Moller J et al. Home sampling versus conventional swab sampling for screening of Chlamydia trachomatis in women: A cluster-randomized 1-year follow-up study. *Clinical Infectious Diseases*. 2000; 31(4): 951–7.

¹²⁹⁸ Oakeshott P, Kerry S, Aghaizu A et al. Randomised controlled trial of screening for Chlamydia trachomatis to prevent pelvic inflammatory disease: the POPI (prevention of pelvic infection) trial. *British Medical Journal*. 2010; 340(340): c1642.

¹²⁹⁹ Hocking J, Temple-Smith M, Guy R et al. Population effectiveness of opportunistic chlamydia testing in primary care in Australia: a cluster-randomised controlled trial. *Lancet*. 2018; 392(10156): 1413–22.

Table 1: Studies Included by the CTFPHC and the USPSTF in Assessing the Benefits of Sensoning for Chlomydia and Concerns.										
Van den BroekRCTYesNoNo										
et al (2012) ¹³⁰⁰										
Hodgins et al (2002) ¹³⁰¹	RCT	Yes	No	No						
Andersen et al (2011) ¹³⁰²	RCT	Yes	No	No						
Garcia et al (2012) ¹³⁰³	RCT	Yes	No	No						
Klovstad et al (2013) ¹³⁰⁴	RCT	Yes	No	No						
Senok et al (2005) ¹³⁰⁵	RCT	Yes	No	No						
Clark et al (2002) ¹³⁰⁶	Non-randomized controlled clinical trial (CCT)	Yes	No	No						
Cohen et al (1999) ¹³⁰⁷	ССТ	Yes	No	No						
Sufrin et al (2012) ¹³⁰⁸	Retrospective cohort	Yes	No	No						
Low et al (2006) ¹³⁰⁹	Retrospective cohort	Yes	No	No						

¹³⁰⁰ van den Broek, van Bergen J, Brouwers E et al. Effectiveness of yearly, register based screening for chlamydia in the Netherlands: Controlled trial with randomised stepped wedge implementation. *BMJ*. 2012; 345: e4316 ¹³⁰¹ Hodgins S, Peeling R, Dery S et al. The value of mass screening for chlamydia control in high prevalence communities. *Sexually Transmitted Infections*. 2002; 78(Suppl 1): i64–8.

¹³⁰² Andersen B, van Valkengoed I, Sokolowski I et al. Impact of intensified testing for urogenital Chlamydia trachomatis infections: A randomised study with 9-year follow-up. *Sexually Transmitted Infections*. 2011; 87(2): 156–61.

¹³⁰³ Garcia P, Holmes K, Carcamo C et al. Prevention of sexually transmitted infections in urban communities (Peru

PREVEN): A multicomponent community-randomised controlled trial. *Lancet.* 2012; 379(9821): 1120–8. ¹³⁰⁴ Klovstad H, Natas O, Tverdal A et al. Systematic screening with information and home sampling for genital Chlamydia trachomatis infections in young men and women in Norway: A randomized controlled trial. *BMC Infectious Diseases.* 2013; 13(1): 30.

¹³⁰⁵ Senok A, Wilson P, Reid M et al. Can we evaluate population screening strategies in UK general practice? A pilot randomised controlled trial comparing postal and opportunistic screening for genital chlamydial infection. *Journal of Epidemiology and Community Health.* 2005; 59(3): 198–204.

¹³⁰⁶ Clark K, Howell M, Li Y et al. Hospitalization rates in female US Army recruits associated with a screening program for Chlamydia trachomatis. *Sexually Transmitted Diseases*. 2002; 29(1): 1–5.

¹³⁰⁷ Cohen D, Nsuami M, Martin D et al. Repeated school-based screening for sexually transmitted diseases: A feasible strategy for reaching adolescents. *Pediatrics*. 1999; 104(6): 1281–5.

¹³⁰⁸ Sufrin C, Postlethwaite D, Armstrong M et al. Neisseria gonorrhea and Chlamydia trachomatis screening at intrauterine device insertion and pelvic inflammatory disease. *Obstetrics & Gynecology*. 2012; 120(6): 1314–21. ¹³⁰⁹ Low N, Egger M, Sterne J et al. Incidence of severe reproductive tract complications associated with diseased sprint schemydial infections. The Umpach Warner's Cohert Study. *Severally Transmitted Infections*.

diagnosed genital chlamydial infection: The Uppsala Women's Cohort Study. *Sexually Transmitted Infections*. 2006; 82(3): 212–8.

The Four RCTs Considered by Both Task Forces

The Study by Scholes et al.

The landmark study by Scholes et al¹³¹⁰, published in 1996, set out to "experimentally verify that testing and treating women with early chlamydial infection affects their risk of subsequent pelvic inflammatory disease." A total of 36,547 women ages 18 to 34 enrolled in the Group Health Cooperative of Puget Sound in Washington State were approached to join the study, with 17,725 (48%) responding to the invitation. Of these 17,725, a total of 2,607 (14.7%) were considered to be at high risk of chlamydia infection and agreed to be in the RCT, with 1,009 allocated to the screening group and 1,598 to the usual care group. In the screening group, 645 (64%) were tested for cervical chlamydial infection and 44 (6.8%) were found to be positive. At one-year follow-up, responses were received from 76% of the 2,607, with 24% lost to follow-up. For those followed for a year, women who were assigned to the screening group had a 56% lower incidence of pelvic inflammatory disease (RR 0.44: 95% CI of 0.20 to 0.90) than in the usual care group. There were 9 confirmed cases of PID in the screening group (0.9%) and 33 in the usual care group (2.1%).

This study is given a 'fair quality' rating by the USPSTF largely due to this high loss to follow-up (24%).¹³¹¹ In addition, the study was critiqued for prematurely randomizing subjects¹³¹² and for keeping members of the screening group cohort who were not tested (364; 1,009 minus 645) in the statistical analysis of the screening group cohort.¹³¹³ Abter and colleagues argue that if the 364 had been moved from the screening group cohort to the usual group cohort in the analysis, the relative risk (RR) would be 0.60 with a 95% CI of 0.22 to 1.3.¹³¹⁴ Finally, others have pointed out challenges in diagnosing PID^{1315,1316} and that less than half of PID cases are attributable to gonorrhea and/or chlamydia.¹³¹⁷

The Study by Ostergaard et al.

The study by Ostergaard and colleagues¹³¹⁸, published in 2000, set out to "compare a screening strategy based on home sampling with a strategy of conventional testing in order to determine the prevalence of disease after 1 year and the number of treated PID cases during the 1 year of follow-up." Note that this study is assessing two different approaches to screening rather than comparing screening to no screening.

In this study, 5,487 females from 17 high schools in Denmark were cluster randomized (by school) to a study group (tested by home sampling) or a control group (tested in a physician's office). Of the 5,487, a total of 2,351 (43%) responded positively to the invitation to participate. Of the 2,351, a total of 1,761 were sexually experienced (75%) with 928 in the

¹³¹⁰ Scholes D, Stergachis A, Heidrich F et al. Prevention of pelvic inflammatory disease by screening for cervical chlamydial infection. *NEJM*. 1996; 334(21): 1362–6.

¹³¹¹ Cantor A, Dana T, Griffin J et al. *Screening for Chlamydial and Gonococcal Infections: A Systematic Review Update for the U.S. Preventive Services Task Force. Evidence Synthesis No. 206.* AHRQ Publication No. 21-05275-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2021.

¹³¹² Sellors J, Paavonen J. Screening to prevent pelvic inflammatory disease. *NEJM*. 1996; 335: 1531-2.

 ¹³¹³ Abter E, Mahmud M. Screening to prevent pelvic inflammatory disease. *NEJM*. 1996; 335: 1531.
 ¹³¹⁴ Ibid.

¹³¹⁵ Pitroff R. Screening to prevent pelvic inflammatory disease. *NEJM*. 1996; 335: 1532.

¹³¹⁶ Hillier S, Bernstein K, Aral S. A review of the challenges and complexities in the diagnosis, etiology, epidemiology, and pathogenesis of pelvic inflammatory disease. *The Journal of Infectious Diseases*. 2021; 224 (Suppl 2): S23-8.

¹³¹⁷ Mitchell C, Anyalechi G, Cohen C et al. Etiology and diagnosis of pelvic inflammatory disease: Looking beyond gonorrhea and chlamydia. *The Journal of Infectious Diseases*. 2021; 224 (Suppl 2): S29-35.

¹³¹⁸ Ostergaard L, Andersen B, Moller J et al. Home sampling versus conventional swab sampling for screening of Chlamydia trachomatis in women: A cluster-randomized 1-year follow-up study. *Clinical Infectious Diseases*. 2000; 31(4): 951–7.

study group and 833 in the control group. Females in the study group were supplied with a home sampling kit and 867 (93%) were ultimately tested with 43 (5.0%) infections identified. Females in the control group were offered a free test at their local health clinic or physicians' office, with 63 of 833 (7.6%) being tested and 5 (7.9%) infections identified. Outcome measures at one year were available for 443 (48%) of the 928 in the study group (with 13 infections and 9 reporting being treated for PID) and for 487 of the 833 (58%) in the control group (with 32 infections and 20 reporting being treated for PID). The authors indicate that the difference in the proportion of infections in the control group (32 of 487 or 6.6%) is statistically significantly higher (p = 0.026) than in the study group (13 of 443 or 2.9%). Furthermore, the proportion of females self-reporting treatment for PID in the control group (20 of 487 or 4.2%) is statistically significantly higher (p = 0.045) than in the study group (9 of 443 or 2.1%).

This study is given a 'fair quality' rating by the USPSTF largely due to the high loss (47%) to follow-up.¹³¹⁹ Also, as noted by Peterman et al,¹³²⁰ the low number of individuals tested for chlamydia at baseline in the control group versus the study group (7.6% vs. 93.0%) means that the control group results at 1 year include both incident and prevalent cases while the study group consists largely of incident cases. While the data is not provided, excluding prevalent cases from the control group would likely have negated the observed statistically significant differences between the two groups.

The Study by Oakeshott et al.

The study in the UK by Oakeshott and co-authors¹³²¹, published in 2010, set out to determine "whether screening young sexually active female students for chlamydial infection and treating those found to be infected reduced the incidence of pelvic inflammatory disease in the subsequent 12 months."

In this study, 2,529 sexually active female students between the ages of 16 and 27 were randomly allocated to a screening group (1,259) or to deferred screening controls (1,270). All participants were asked to complete a questionnaire and to provide self-taken vaginal swabs. The swabs in the control group were frozen and analysed after one year. Follow-up data at 12 months was available for 95% of the screening group and 93% of the control group. Sixty-eight (5.4%) females in the study group tested positive at baseline with 59 of these being treated for chlamydia infection. In the control group, 75 (5.9%) tested positive when the samples were tested at 12 months. The incidence of pelvic inflammatory disease was 1.3% (15/1191) in screened women compared with 1.9% (23/1186) in controls (relative risk 0.65, 95% CI of 0.34 to 1.22). After adjustment for symptoms at baseline the relative risk was 0.57 (95% CI of 0.29 to 1.11).

The authors note that 43% of females in the control group were independently tested and that this high rate of testing likely reduced the effectiveness of the intervention. Furthermore, the study sample size was chosen based on an assumption of a 3.0% incidence of PID and thus was underpowered based on an observed overall incidence of PID of 1.6%.

The authors conclude that "although some evidence suggests that screening for chlamydia reduces rates of pelvic inflammatory disease, especially in women with chlamydial infection

¹³¹⁹ Cantor A, Dana T, Griffin J et al. *Screening for Chlamydial and Gonococcal Infections: A Systematic Review Update for the U.S. Preventive Services Task Force. Evidence Synthesis No. 206.* AHRQ Publication No. 21-05275-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2021.

¹³²⁰ Peterman T, Gottlieb S, Berman S. Commentary: *Chlamydia trachomatis* screening: What are we trying to do? *International Journal of Epidemiology*. 2009; 38: 449-51.

¹³²¹ Oakeshott P, Kerry S, Aghaizu A et al. Randomised controlled trial of screening for Chlamydia trachomatis to prevent pelvic inflammatory disease: the POPI (prevention of pelvic infection) trial. *British Medical Journal*. 2010; 340(340): c1642.

at baseline, the effectiveness of a single chlamydia test in preventing pelvic inflammatory disease over 12 months may have been overestimated."

This study is given a 'good quality' rating by the USPSTF.¹³²²

The Study by Hocking et al.

The study by Hocking et al¹³²³, published in 2018, set out to "investigate the effect of opportunistic testing in primary care clinics on *C trachomatis* prevalence, PID and epididymitis in the population." In this study, 26 rural towns in Australia with a minimum of 500 males and females ages 16-29, and no more than six primary care clinics, were randomly allocated to receive a clinic-based chlamydia testing intervention or continue usual care. A total of 93,828 individuals were included in the intervention cohort (from 63 clinics) and 86,527 in the control cohort (from 67 clinics). Unlike previous studies with follow-up periods of 12 months, the mean follow-up in this study was 3.1 years. The intervention included computerized reminders, an education package, payments for chlamydia testing and feedback on testing rates. Annual chlamydia testing rates increased from 8.2% to 20.1% in the intervention group.

Results indicate that the estimated prevalence of chlamydia decreased from 5.0% to 3.4% during the study period. While this at first appears to be a significant success of the intervention, a similar reduction (from 4.6% to 3.4%) occurred in the control group, suggesting that the observed decrease was not specifically attributable to the intervention (the odds ratio for the difference between the intervention and control clusters was 0.9 with a 95% CI of 0.5 to 1.5). In addition, the incidence of PID diagnosed in the clinics did not significantly differ between the intervention and control groups (44.7 / 10,000 in the intervention group vs 39.2 / 10,000 in the control group, OR of 1.2 with a 95% CI of 0.8 to 1.9). When using the incidence of PID as diagnosed in hospital as the outcome, the intervention group had a marginally lower rate of PID (24.2 / 10,000 in the intervention group vs 37.9 / 10,000 in the control group, OR of 0.6 with a 95% CI of 0.4 to 1.0).

The authors conclude that their results, "in conjunction with evidence about the feasibility of sustained uptake of opportunistic testing in primary care clinics, indicate that substantial reductions in chlamydia prevalence or chlamydia-associated complications might not be achievable."

Significant strengths of this study include the large sample size, limited loss to follow-up (1.6% and 4.5% of clinics in the intervention and control groups) and a longer follow-up period including multiple rounds of testing. This study is given a 'good quality' rating by the USPSTF.¹³²⁴

¹³²² Cantor A, Dana T, Griffin J et al. *Screening for Chlamydial and Gonococcal Infections: A Systematic Review Update for the U.S. Preventive Services Task Force. Evidence Synthesis No. 206.* AHRQ Publication No. 21-05275-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2021.

¹³²³ Hocking J, Temple-Smith M, Guy R et al. Population effectiveness of opportunistic chlamydia testing in primary care in Australia: a cluster-randomised controlled trial. *Lancet*. 2018; 392(10156): 1413–22.

¹³²⁴ Cantor A, Dana T, Griffin J et al. *Screening for Chlamydial and Gonococcal Infections: A Systematic Review Update for the U.S. Preventive Services Task Force. Evidence Synthesis No. 206.* AHRQ Publication No. 21-05275-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2021.

The 2016 Cochrane Review

Low and colleagues included four RCTs in their review of the effectiveness of chlamydia screening versus usual care on the incidence of PID at 12 months;¹³²⁵ the studies by Scholes et al, Ostergaard et al, Oakeshott et al and Andersen et al.¹³²⁶ The RCT by Andersen et al published in 2011 was included in the evidence review by the CTFPHC but not by the USPSTF. The more recent RCT by Hocking et al. was not published until 2018.

Each of the four studies was assessed for their risk of bias. "Bias refers to factors that can systematically affect the observations and conclusions of the study and cause them to be different from the truth...Risks of bias are the likelihood that features of the study design or conduct of the study will give misleading results."¹³²⁷

Taken together, the results of the four included RCTs suggest a 32% lower risk of PID associated with chlamydia screening (RR of 0.68; 95% CI of 0.49 to 0.94). The absolute risk of PID at 12 months is 0.75% in the intervention group and 0.92% in the control group.

The authors then subdivided the studies into those at high or unclear risk of bias (Scholes et al and Ostergaard et al) and those at low risk of bias, or better quality studies (Oakeshott et al and Andersen et al). Results for studies with an unclear/high risk of bias were considerably more positive (RR of 0.42; 95% CI of 0.22 to 0.83) than those with a low risk of bias (RR of 0.80; 95% CI of 0.55 to 1.17). In lower quality studies, the absolute risk of PID at 12 months is 0.89% in the intervention group and 2.10% in the control group. In higher quality studies, the absolute risk of PID at 12 months is 0.72% in the intervention group and 0.76% in the control group.

The authors conclude that "the risk of PID was 32% lower in women who were invited to have a single chlamydia screening test than in women who were not invited. When we removed two trials with lower quality evidence, the protective effect of chlamydia screening decreased... We are moderately sure that chlamydia screening can reduce the risk of PID, but we are not sure by how much because of our concerns about quality in some trials."¹³²⁸

Evidence of Potential Harms

2021 USPSTF Systematic Review

The systematic review for the 2021 USPSTF recommendation considered harms such as labeling, anxiety, false-positive / false alarm results, false-negative / reassurance, or changes in risk behaviours or risk perceptions.¹³²⁹ False-positive rates for chlamydia screening in females ranged from 0-2% while false-negative rates ranged from 0-28% in five studies with a sixth study observing false-negative rates of 44-56%. False-positive rates for gonorrhea screening in females were less than 1% while false-negative rates ranged from 0-10%. They found no studies meeting inclusion criteria which "evaluated psychosocial harms related to screening or evaluated effects of screening on changes in risk behaviors or risk perceptions."

https://www.nhmrc.gov.au/guidelines/orguidelines/develop/assessing-risk-bias. Accessed January 2024. ¹³²⁸ Low N, Redmond S, Uuskula A et al. Screening for genital chlamydia infection. *Cochrane Database of Systematic Reviews*. 2016; Issue 9: Art. No.: CD010866.

¹³²⁵ Low N, Redmond S, Uuskula A et al. Screening for genital chlamydia infection. *Cochrane Database of Systematic Reviews*. 2016; Issue 9: Art. No.: CD010866.

¹³²⁶ Andersen B, van Valkengoed I, Sokolowski I et al. Impact of intensified testing for urogenital Chlamydia trachomatis infections: A randomised study with 9-year follow-up. *Sexually Transmitted Infections*. 2011; 87(2): 156–61

¹³²⁷ Australian Government. National Health and Medical Research Council. *Building a Healthy Australia: Guidelines for Guidelines (Assessing Risk of Bias)*. Available online at

¹³²⁹ US Preventative Services Task Force. Screening for chlamydial and gonococcal infections: Updated evidence report and systematic review for the US Preventative Services Task Force. *JAMA*. 2021; 326(10): 957-66.

As noted previously, Appendix A5 of the detailed evidence review for the USPSTF¹³³⁰ includes a list of 366 publications considered for inclusion but ultimately excluded together with the reason for exclusion. Unfortunately, the information in this appendix does not indicate specifically which publications were considered (and rejected) when evaluating psychosocial harms or changes in risk behaviors or risk perceptions associated with screening.

2021 CTFPHC Systematic Review

In contrast, the systematic review¹³³¹ for the 2021 CTFPHC recommendation¹³³² included the following 11 publications (one RCT and 10 uncontrolled cohort studies) when considering harms:

Hocking J, Temple-Smith M, Guy R et al. Population effectiveness of opportunistic chlamydia testing in primary care in Australia: A cluster-randomised controlled trial. *Lancet*. 2018; 392 (10156): 1413–22.

Andersson N, Carre H, Janlert U et al. Gender differences in the well-being of patients diagnosed with Chlamydia trachomatis: A cross-sectional study. *Sexually Transmitted Infections*. 2018; 94(6): 401–5.

Campbell R, Mills N, Sanford E et al. Does population screening for Chlamydia trachomatis raise anxiety among those tested? Findings from a population based chlamydia screening study. *BMC Public Hea*lth. 2006; 6: 106.

Fielder R, Carey K, Carey M. Acceptability of sexually transmitted infection testing using self-collected vaginal swabs among college women. *Journal of American College Health*. 2013; 61(1): 46–53.

France C, Thomas K, Slack R et al. Psychosocial impacts of chlamydia testing are important. *BMJ*. 2001; 322: 1245.

Gottlieb S, Stoner B, Zaidi A et al. A prospective study of the psychosocial impact of a positive Chlamydia trachomatis laboratory test. *Sexually Transmitted Diseases*. 2011; 38(11): 1004–11.

Gotz H, Veldhuijzen I, van Bergen J et al. Acceptability and consequences of screening for Chlamydia trachomatis by home-based urine testing. *Sexually Transmitted Diseases*. 2005; 32(9): 557-62.

Kangas I, Andersen B, Olesen F et al. Psychosocial impact of Chlamydia trachomatis testing in general practice. *British Journal of General Practice*. 2006; 56(529): 587–93.

Low N, Connell P, McKevitt C et al. 'You can't tell by looking': pilot study of a community-based intervention to detect asymptomatic sexually transmitted infections. *International Journal of STD & AIDS*. 2003; 14(12): 830–4.

O'Farrell N, Weiss H. Effect of chlamydia diagnosis on heterosexual relationships. *International Journal of STD & AIDS*. 2013; 24(9): 722–6.

¹³³⁰ Cantor A, Dana T, Griffin J et al. *Screening for Chlamydial and Gonococcal Infections: A Systematic Review Update for the U.S. Preventive Services Task Force. Evidence Synthesis No. 206.* AHRQ Publication No. 21-05275-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2021.

¹³³¹ Moore A, Traversy G, Reynolds D et al. Recommendation on screening for chlamydia and gonorrhea in primary care for individuals not known to be at high risk. *CMAJ*. 2021; 193(16): E549-59.

¹³³² Pillay J, Wingart A, MacGregor T et al. Screening for chlamydia and/or gonorrhea in primary health care: Systematic reviews on effectiveness and patient preferences. *Systematic Reviews*. 2021; 10(118):

Walker J, Walker S, Fairley C et al. What do young women think about having a chlamydia test? Views of women who tested positive compared with women who tested negative. *Sexual Health*. 2013; 10(1):3 9 - 42.

While the Hocking et al RCT was included in the USPSTF assessment of effectiveness, it does not appear to have been considered with respect to data on harms. It also appears as if none of the other 10 publications were even considered by the USPSTF. That is, none of them appear in the list of 366 publications that were considered and rejected. This again suggests that very different literature search strategies were applied by the two organizations.

The authors of the CTFPHC review recognized that the literature base on harms is incomplete and inconsistent and that any conclusions drawn could only be made with low- or very-low certainty. With these caveats, they suggest the following:

- Screening for chlamydia has little effect on general anxiety or anxiety about one's sexual aspects of life but between 5-40% of individuals feel some degree of anxiety about their or their partner's potential infertility.
- Of those screened for chlamydia, 6-30% will have one or more feelings related to stigmatization (mainly related to embarrassment and disapproval by one's social environment) although the severity of these symptoms are unknown.
- A positive diagnosis may result in anxiety about fertility in 40-60% of females.
- A positive diagnosis may cause one or more symptoms related to anxiety in 40-80% of individuals though the duration of effects is unknown.
- A positive diagnosis may lead to one or more stigma-related symptoms (e.g. feeling dirty, shame, embarrassment) in 20-50% of those diagnosed.
- A positive diagnosis may cause some relationship distress in 10-50% of those diagnosed.

Overdiagnosis and Overtreatment

Overdiagnosis and overtreatment are not specifically considered by the USPSTF or the CTFPHC. Van Bergen and co-authors, on the other hand, suggest that overdiagnosis and overtreatment may also constitute a significant harm.¹³³³ They argue that "testing for asymptomatic infections means that test-positive individuals and their, often untested and asymptomatic, partners are treated with antibiotics although the majority will never develop either symptoms or complications." Furthermore, this overtreatment with antibiotics in asymptomatic individuals may contribute to increased antimicrobial resistance. In addition, "antibiotic treatment affects oral, vaginal and rectal microbiota. A healthy microbiome is considered a major factor in the prevention of infections and reinfection." ¹³³⁴

Are There Alternatives?

PID could be prevented by either preventing C. trachomatis in the first place, or by curing infections before they progress to PID. This distinction is important.¹³³⁵

A potential alternative with a focus on primary prevention, rather than early detection, of chlamydial infections is the 2014 USPSTF recommendation for "intensive behavioral

 ¹³³³ Van Bergen J, Hoenderboom B, David S et al. Where to go in chlamydia control? From infection control towards infectious disease control. *Sexually Transmitted Infections*. 2021; 97: 501-6.
 ¹³³⁴ Ibid.

¹³³⁵ Peterman T, Gottlieb S, Berman S. Commentary: *Chlamydia trachomatis* screening: What are we trying to do? *International Journal of Epidemiology*. 2009; 38: 449-51.

counselling for all sexually active adolescents and for adults who are at increased risk for STIs. (B recommendation)"¹³³⁶ They note that "interventions ranging in intensity from 30 min to ≥ 2 h of contact time are beneficial; evidence of benefit increases with intervention intensity. Interventions can be delivered by primary care clinicians or through referral to trained behavioral counselors. Most successful approaches provide basic information about STIs and STI transmission; assess risk for transmission; and provide training in pertinent skills, such as condom use, communication about safe sex, problem solving, and goal setting."¹³³⁷

The current modelling for the LPS notes that high intensity (> 2 hours) behavioural counselling interventions are associated with a 62% reduction in STI incidence in adolescents (OR = 0.38, 95% CI of 0.24–0.60) and a 30% reduction in STI incidence in adults (OR = 0.70, 95% CI of 0.56–0.87).¹³³⁸ If this intervention was applied in 29% of situations in which it was appropriate, then the clinically preventable burden (CPB) associated with behavioural counselling interventions for the prevention of sexually transmitted diseases in British Columbia would be estimated at 2,381 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) would be estimated to be \$12,454 per QALY.

Conclusions

While both the CTFPHC and the USPSTF have recently updated their recommendations for screening for chlamydial and gonococcal infections, the CTFPHC appears to have taken a more inclusive approach with respect to the literature on effectiveness and harms and a more nuanced approach to interpreting this literature. The USPSTF recognizes that the early RCTs, which tended to return positive results on the effectiveness of screening and subsequent reduction in PID, were of poorer quality and at higher risk of bias than later studies. The more recent higher quality studies found that the evidence of effectiveness of screening and subsequent reduction in PID was weak or non-existent. Yet it appears that the four RCTs assessed by the USPSTF were given equal weight in order to achieve a B grade recommendation (*the USPSTF recommends the service. There is high certainty that the net benefit is moderate or there is moderate certainty that the net benefit is moderate to substantial*).

Based on a more detailed review of the available evidence, we suggest that the conditional recommendation for opportunistic screening based on very low-certainty evidence by the CTFPHC more closely aligns with the current research evidence on benefits and harms of screening. In our opinion, the available literature does not support a finding that there is moderate certainty that the net benefit is moderate to substantial.

We conclude that the available evidence leads to a negative response to the first question asked by the LPS when considering a CPS: Is the service effective? Thus, detailed modelling of the clinically preventable burden and cost-effectiveness of the CPS is not recommended.

 ¹³³⁶ LeFevre M. Behavioral counselling interventions to prevent sexually transmitted infections: US Preventive Services Task Force recommendation statement. *Annals of Internal Medicine*. 2014; 161(12): 894-901.
 ¹³³⁷ Ibid.

¹³³⁸ O'Connor E, Lin J, Burda B et al. Behavioral sexual risk-reduction counselling in primary care to prevent sexually transmitted infections: An updated systematic evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2014; 161(12): 874.

Hepatitis C Virus

United States Preventive Services Task Force Recommendations (2013)

Hepatitis C virus is the most common chronic bloodborne pathogen in the United States and a leading cause of complications from chronic liver disease. The prevalence of the anti-HCV antibody in the United States is approximately 1.6% in noninstitutionalized persons. According to data from 1999 to 2008, about three fourths of patients in the United States living with HCV infection were born between 1945 and 1965, with a peak prevalence of 4.3% in persons aged 40 to 49 years from 1999 to 2002. The most important risk factor for HCV infection is past or current injection drug use, with most studies reporting a prevalence of 50% or more. The incidence of HCV infection was more than 200 000 cases per year in the 1980s but decreased to 25 000 cases per year by 2001. According to the Centers for Disease Control and Prevention (CDC), there were an estimated 16 000 new cases of HCV infection in 2009 and an estimated 15 000 deaths in 2007. Hepatitis C-related endstage liver disease is the most common indication for liver transplants among U.S. adults, accounting for more than 30% of cases. Studies suggest that about one half of the recently observed 3-fold increase in incidence of hepatocellular carcinoma is related to acquisition of HCV infection 2 to 4 decades earlier.

*The USPSTF recommends screening for HCV infection in persons at high risk for infection. The USPSTF also recommends offering 1-time screening for HCV infection to adults born between 1945 and 1965. (B recommendation)*¹³³⁹

United States Preventive Services Task Force Recommendations - (2019 DRAFT)

HCV is the most common chronic bloodborne pathogen in the United States and a leading cause of complications from chronic liver disease. HCV infection is associated with more deaths than the top 60 other reportable infectious diseases combined, including HIV. The most important risk factor for HCV infection is past or current injection drug use. In the United States, an estimated 4.1 million persons have past or current HCV infection (i.e., tests positive for the anti-HCV antibody). Of these persons with antibodies, approximately 2.4 million have current infections based on testing with molecular assays for HCV RNA. The estimated prevalence of chronic HCV infection is approximately 1.0% (2013 to 2016). An estimated 41,200 new HCV infections occurred in the United States in 2016. Cases of acute HCV infection have increased approximately 3.5-fold (2010 to 2016) over the last decade. The increase in acute HCV incidence has mostly affected young, white persons who inject drugs (PWID), especially those living in rural areas. There has also been an increase in the number of women ages 15 to 44 years with HCV infection.

*The USPSTF recommends screening for hepatitis C virus (HCV) infection in adults ages 18 to 79 years. (B recommendation.)*¹³⁴⁰

¹³³⁹ Moyer VA. Screening for hepatitis C virus infection in adults: U.S. Preventive Services Task Force recommendation statement. *Annals of Internal Medicine*. 2013; 159(5): 349-57.

¹³⁴⁰ U.S. Preventive Services Task Force. Draft Recommendation Statement

Hepatitis C Virus Infection in Adolescents and Adults: Screening. 2019. Available at https://www.uspreventiveservicestaskforce.org/Page/Document/draft-recommendation-statement/hepatitis-c-screening1. Accessed October 2019.

Canadian Task Force on Preventive Health Care Recommendations (2017)

The task force recommends against screening for HCV in asymptomatic Canadian adults (including baby boomers) who are not at elevated risk of HCV infection. Strong recommendation based on very low-quality evidence.

A strong recommendation against screening is warranted given its uncertain benefits but the certainty that it would lead to high levels of resource consumption. Referring individuals with screen-detected HCV for assessment would reduce access to assessment and treatment for people with clinically evident HCV.¹³⁴¹

Background

In 2014, the BC Lifetime Prevention Schedule Expert Committee (LPSEC) requested that the CPB and CE of "offering 1-time screening for HCV infection to adults born between 1945 and 1965" in BC be modelled, based on the 2013 USPSTF recommendation.

In 2018, the LPSEC requested that all 26 CPS modelled to date be updated using 2017 data (or the most recently available data) and that all modelling assumptions be consistently applied in each of the individual models. At the time of this update, the CTFPHC recommendation "against screening for HCV in asymptomatic Canadian adults (including baby boomers)" had been published. In considering the divergent recommendations of the USPSTF and the CTFPHC, the LPSEC recommended that the analysis of CPB and CE be updated following the USPSTF recommendation to offer one-time screening for HCV infection to adults born between 1945 and 1965 due to the higher HCV infection rate in BC compared with the rest of Canada.

In 2019, the LPSEC became aware of a significant error in the calculation of CPB in the existing model. In addition, a substantial amount of new and updated data is currently available to allow for a more thorough model of CPB and CE.

Modelling the Clinically Preventable Burden

In this section, we will update and recalculate the CPB associated with one-time screening for HCV infection in BC adults born between 1945 and 1964.

In modelling CPB, we made the following assumptions:

- Hepatitis C infections tend to occur as "twin epidemics". *New infections* occur in younger birth cohorts who are commonly co-infected with HIV and/or the hepatitis B virus (HBV), socioeconomically marginalized, and living with mental health and addictions. *Prevalent infections* tend to be acquired in the distant past (prevalent infections are currently highest in the 1945 1964 birth cohort) and do not usually involve ongoing risk activities.¹³⁴²
- The hepatitis C virus has multiple genotypes. A genotype is a way of categorizing HCV based on similar genes. Until recently, HCV was categorized into six genotypes¹³⁴³, which could be split into sub-types, but as genome sequencing

¹³⁴¹ Canadian Task Force on Preventive Health Care. Recommendations on hepatitis C screening for adults. *Canadian Medical Association Journal*. 2017; 189(16): E594-E604.

¹³⁴² Janjua N, Yu A, Kuo M, et al. Twin epidemics of new and prevalent hepatitis C infections in Canada: BC Hepatitis Testers Cohort. *BMC Infectious Diseases*. 2016; 16(334):

¹³⁴³ Hajarizadeh B, Grebely J and Dore GJ. Epidemiology and natural history of HCV infection. *Nature Reviews Gastroenterology & Hepatology*. 2013; 10(9): 553.

technology has improved, as many as eight distinct genotypes have been discovered.¹³⁴⁴

- HCV genotypes are important because different genotypes respond differently to some medication used to treat and cure HCV.¹³⁴⁵ The BC Centre for Disease Control routinely performs HCV genotyping after confirming an HCV infection "as it will inform the type and length of treatment."¹³⁴⁶
- Recent treatment advances for HCV include direct-acting antivirals (DAA). Some of the most recent DAA are "pangenotypic" meaning that cure rates are similar regardless of genotype.^{1347,1348}
- HCV Genotype 1 is the most common genotype in North America.¹³⁴⁹ Genotypes 1, 2 and 3 are the most common in BC.¹³⁵⁰
- The presence of an HCV infection is verified by the presence of HCV antibodies in the blood. A person thus infected is termed anti-HCV positive, meaning that HCV antibodies have been detected. The majority of HCV infections are asymptomatic.¹³⁵¹
- An HCV infection is considered active if the HCV virus is replicating itself. This is determined by testing for the presence of HCV RNA (ribonucleic acid), the virus' genetic material.¹³⁵²
- Approximately 25% of persons infected with HCV spontaneously clear the infection (i.e. without medication).^{1353,1354,1355} In these individuals, the hepatitis C virus stops replicating and they are considered cured.

¹³⁴⁴ Borgia SM, Hedskog C, Parhy B et al. Identification of a novel hepatitis C virus genotype from Punjab, India: expanding classification of hepatitis C virus into 8 genotypes. *The Journal of Infectious Diseases*. 2018; 218(11): 1722-9.

¹³⁴⁵ Treatment Action Group. HCV Genotypes.2016. Available at

http://www.treatmentactiongroup.org/sites/default/files/Genotypes.pdf. Accessed October 2019.

¹³⁴⁶ BC Centre for Disease Control. *Communicable Disease Control. Hepatitis C.* 2016. Available at <u>http://www.bccdc.ca/health-professionals/clinical-resources/communicable-disease-control-</u>manual/communicable-disease-control. Accessed October 2019.

¹³⁴⁷ Treatment Action Group. *HCV Genotypes*.2016. Available at

http://www.treatmentactiongroup.org/sites/default/files/Genotypes.pdf. Accessed October 2019.

¹³⁴⁸ Ponziani FR, Miele L, Tortora A et al. Treatment of early stage chronic hepatitis C virus infection. *Expert Review of Clinical Pharmacology*. 2018; 11(5): 519-24.

¹³⁴⁹ Hajarizadeh B, Grebely J and Dore GJ. Epidemiology and natural history of HCV infection. *Nature Reviews Gastroenterology & Hepatology*. 2013; 10(9): 553.

¹³⁵⁰ BC Centre for Disease Control. *Communicable Disease Control. Hepatitis C.* 2016. Available at <u>http://www.bccdc.ca/health-professionals/clinical-resources/communicable-disease-control-manual/communicable-disease-control. Accessed October 2019.</u>

¹³⁵¹ Hajarizadeh B, Grebely J and Dore GJ. Epidemiology and natural history of HCV infection. *Nature Reviews Gastroenterology & Hepatology*. 2013; 10(9): 553.

¹³⁵² BC Centre for Disease Control. *Communicable Disease Control. Hepatitis C.* 2016. Available at http://www.bccdc.ca/health-professionals/clinical-resources/communicable-disease-control-

manual/communicable-disease-control. Accessed October 2019.

¹³⁵³ Government of Canada. For Health Professionals: Hepatitis C. 2019. Available at

https://www.canada.ca/en/public-health/services/diseases/hepatitis-c/health-professionals-hepatitis-c.html. Accessed October 2019.

¹³⁵⁴ Hajarizadeh B, Grebely J and Dore GJ. Epidemiology and natural history of HCV infection. *Nature Reviews Gastroenterology & Hepatology*. 2013; 10(9): 553.

¹³⁵⁵ Hajarizadeh B, Grebely J and Dore GJ. Epidemiology and natural history of HCV infection. *Nature Reviews Gastroenterology & Hepatology*. 2013; 10(9): 553.

- Individuals who do not spontaneously clear the infection continue to have HCV RNA present and are considered HCV RNA positive.
- Successful treatment of HCV interferes with the replication of the hepatitis C virus.¹³⁵⁶ Removal of the virus and an absence of HCV RNA after 12 weeks indicates having achieved a sustained virologic response (SVR), or a cure.¹³⁵⁷
- Individuals who have not either spontaneously cleared HCV or achieved SVR are considered to be actively infected. We use the term *chronic* HCV infection to identify these individuals.
- An active HCV infection kills liver cells (mostly through the body's response to the inflammation caused by HCV). Part of the body's natural defence against infection involves placing fibrous collagen¹³⁵⁸ in the area around damaged cells. The collagen is normally then dissolved as part of the completed healing process. When infected with hepatitis C however, the body is producing collagen at a faster rate than it can be dissolved leading to an accumulation of scar tissue in the liver that is termed fibrosis. Eventually, this accumulation of scar tissue (i.e. fibrosis progression), reduces the liver's ability to function since healthy cells are being cut off from nutrients and oxygen provided by the blood.¹³⁵⁹
- Fibrosis generally progresses slowly and is classified in stages. One commonly used classification system is the METAVIR system (see Table 1).^{1360,1361}

	Table 1: Liver Fibrosis Stages (METAVIR Scoring)								
Stage	Technical Definition	Common Definition	Liver Damage and Liver Function						
FO	No Fibrosis	Mild fibrosis	No liver damage.						
F1	Portal fibrosis without septa*	Mild fibrosis	Very mild liver damage.						
F2	Portal fibrosis with few septa*	Significant fibrosis	Scarring has built up around the blood supply to the liver.						
F3	Numerous septa* without cirrhosis	Severe fibrosis	The scars around different blood vessels in the liver are joined but liver function is unaffected.						
F4	Cirrhosis	Compensated cirrhosis	The scarring is beginning to build up in the tissues of the liver and it's function is impaired.						
		Decompensated cirrhosis	The liver can no longer maintain its function due to the extent of the scarring.						

* A septum is a partition separating two chambers. Septa is the plural of septum.

http://www.treatmentactiongroup.org/sites/default/files/Genotypes.pdf. Accessed October 2019.

manual/communicable-disease-control. Accessed October 2019.

¹³⁶¹ The Hepatitis C Trust. *Hepatitis C Liver Damage Progression*. 2019. Available at

http://www.hepctrust.org.uk/information/impact-hepatitis-c-liver/progression-hepatitis-c. Accessed October 2019.

¹³⁵⁶ Treatment Action Group. *HCV Genotypes*.2016. Available at

¹³⁵⁷ BC Centre for Disease Control. *Communicable Disease Control. Hepatitis C.* 2016. Available at http://www.bccdc.ca/health-professionals/clinical-resources/communicable-disease-control-

¹³⁵⁸ Scar tissue

¹³⁵⁹ The Hepatitis C Trust. How Hepatitis C Damages the Liver. 2019. Available at

http://www.hepctrust.org.uk/information/impact-hepatitis-c-liver/hepatitis-c-and-liver-damage. Accessed October 2019.

¹³⁶⁰ Poynard T, Bedossa P and Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. *The Lancet*. 1997; 349(9055): 825-32.

- After progressing through the stages of fibrosis, individuals with *chronic* HCV can further progress to hepatic decompensation (decompensated cirrhosis) and / or hepatocellular carcinoma.¹³⁶²
- There is not any conclusive evidence linking genotype and the rate of fibrosis progression.¹³⁶³
- We model HCV infection overall, rather than on a genotype level, since current treatment success rates and disease progression are largely genotype-independent.
- In their analysis of the burden of disease of HCV in Canada, Myers and colleagues back-calculated HCV progression rates by sex and 10-year age band.¹³⁶⁴ We use these data and apply a weighting to the Myers et al. numbers based on the proportion of each sex who have HCV in BC.¹³⁶⁵ The results are shown in Table 2.

Annual Rate of Progression to Next Stage, by Age									
	Current Stage (From) Future Stage (To)	f0 to f1	f1 to f2	f2 to f3	f3 to Cirrhosis	f3 to HCC	Cirrhosis to HCC		
	20 - 29	5.2%	3.8%	5.3%	2.5%	0.0%	0.3%		
	30 - 39	3.8%	2.7%	3.9%	5.7%	0.0%	0.5%		
	40 - 49	13.9%	10.1%	14.3%	8.8%	0.1%	0.9%		
Male	50 - 59	17.1%	12.4%	17.5%	4.8%	0.1%	1.4%		
	60 - 69	19.4%	14.1%	19.9%	9.9%	0.2%	2.4%		
	70 - 79	21.8%	15.8%	22.4%	19.1%	0.3%	3.9%		
	80+	17.9%	13.0%	18.3%	19.1%	0.3%	3.9%		
	20 - 29	4.3%	3.1%	4.4%	2.1%	0.0%	0.3%		
	30 - 39	3.1%	2.3%	3.2%	4.7%	0.0%	0.4%		
	40 - 49	11.6%	8.4%	11.9%	7.4%	0.0%	0.7%		
Female	50 - 59	14.3%	10.4%	14.6%	4.0%	0.1%	1.2%		
	60 - 69	16.2%	11.7%	16.6%	8.3%	0.1%	2.0%		
	70 - 79	18.2%	13.2%	18.6%	15.9%	0.2%	3.3%		
	80+	14.9%	10.8%	15.3%	1.6%	0.2%	3.3%		
	20, 20	4.00/	2 50/	F 00/	2 40/	0.0%	0.2%		
	20 - 29	4.9%	3.5%	5.0%	2.4%	0.0%	0.3%		
	30 - 39	3.5%	2.6%	3.6%	5.3%	0.0%	0.5%		
	40 - 49	13.1%	9.5%	13.4%	8.3%	0.1%	0.8%		
weighted total	50 - 59	10.1%	11.7%	10.4%	4.5%	0.1%	1.3%		
	60 - 69 70 - 70	18.2%	13.2%	18.7%	9.3%	0.2%	2.3%		
	70 - 79	20.5%	14.8%	21.0%	17.9%	0.3%	3.7%		
	80+	16.8%	12.2%	17.2%	12.6%	0.3%	3./%		
	BC HCV Diagnose	d who are	Male		63.1%				
	BC HCV Diagnosed who are Female 36.9%								

¹³⁶² Xu F, Moorman AC, Tong X et al. All-cause mortality and progression risks to hepatic decompensation and hepatocellular carcinoma in patients infected with hepatitis C virus. *Clinical Infectious Diseases*. 2015; 62(3): 289-97.

Table 2. Disease

ama (HCC)

¹³⁶³ Hajarizadeh B, Grebely J and Dore GJ. Epidemiology and natural history of HCV infection. *Nature Reviews Gastroenterology & Hepatology*. 2013; 10(9): 553.

¹³⁶⁴ Myers RP, Krajden M, Bilodeau M et al. Burden of disease and cost of chronic hepatitis C virus infection in Canada. *Canadian Journal of Gastroenterology and Hepatology*. 2014; 28(5): 243-50.

¹³⁶⁵ Bartlett S, Yu A, Chapinal N, et al. The population level care cascade for hepatitis C in British Columbia, Canada as of 2018: Impact of direct acting antivirals. *Liver International*. 2019; DOI: 10.1111/liv.14227.

- In addition to the annual progression probabilities outlined in Table 2, we have assumed that, once cirrhosis has developed, there is an annual risk of 3 6% of **hepatic decompensation**. ^{1366,1367} We model an annual risk of hepatic decompensation after cirrhosis of 4.5% (the mid-point of 3% and 6%) and vary this between 3% and 6% in our sensitivity analysis.
- The annual probability of death due to hepatic decompensation ranges from 13.5% to 21.6%.^{1368,1369,1370} We model an annual risk of death following hepatic decompensation of 17.6% (the mid-point of 13.5% and 21.6%) and vary this between 13.5% and 21.6% in our sensitivity analysis.
- Once cirrhosis has developed, there is an annual risk of 1 5% of developing hepatocellular carcinoma (HCC).^{1371,1372,1373,1374} Our model values fall within this range (see Table 2).
- We model the annual probability of death due to **HCC** at 70.7% (43.0% to 77.0%) in the first year and 16.2% (11.0% 23.0%) each subsequent year.¹³⁷⁵
- We model the annual probability of a **liver transplant** following decompensated cirrhosis or liver cancer is 3.2%.^{1376,1377}
- Myers and colleagues report an annual probability of death after liver transplant of between 10.7% and 33.1% in the first year and between 3.9% and 4.8% each subsequent year.¹³⁷⁸
- Wong et al. use a 14.2% annual probability of death within the first year of a liver transplant and 3.4% each subsequent year.¹³⁷⁹

¹³⁶⁷ Westbrook RH and Dusheiko G. Natural history of hepatitis C. *Journal of Hepatology*. 2014; 61(1): S58-S68.
 ¹³⁶⁸ Rein DB, Smith BD, Wittenborn JS et al. The cost-effectiveness of birth-cohort screening for hepatitis C antibody in U.S. primary care settings. *Annals of Internal Medicine*. 2012; 156(4): 263-70.

¹³⁶⁶ Rein DB, Smith BD, Wittenborn JS et al. The cost-effectiveness of birth-cohort screening for hepatitis C antibody in U.S. primary care settings. *Annals of Internal Medicine*. 2012; 156(4): 263-70.

 ¹³⁶⁹ Westbrook RH and Dusheiko G. Natural history of hepatitis C. *Journal of Hepatology*. 2014; 61(1): S58-S68.
 ¹³⁷⁰ Wong WW, Erman A, Feld JJ et al. Model-based projection of health and economic effects of screening for hepatitis C in Canada. *CMAJ Open*. 2017; 5(3): E662.

¹³⁷¹ Rein DB, Smith BD, Wittenborn JS et al. The cost-effectiveness of birth-cohort screening for hepatitis C antibody in U.S. primary care settings. *Annals of Internal Medicine*. 2012; 156(4): 263-70.

¹³⁷² Hajarizadeh B, Grebely J and Dore GJ. Epidemiology and natural history of HCV infection. *Nature Reviews Gastroenterology & Hepatology*. 2013; 10(9): 553.

 ¹³⁷³ Westbrook RH and Dusheiko G. Natural history of hepatitis C. *Journal of Hepatology*. 2014; 61(1): S58-S68.
 ¹³⁷⁴ Wong WW, Erman A, Feld JJ et al. Model-based projection of health and economic effects of screening for hepatitis C in Canada. *CMAJ Open*. 2017; 5(3): E662.

¹³⁷⁵ Myers RP, Krajden M, Bilodeau M et al. Burden of disease and cost of chronic hepatitis C virus infection in Canada. *Canadian Journal of Gastroenterology and Hepatology*. 2014; 28(5): 243-50.

¹³⁷⁶ Rein DB, Smith BD, Wittenborn JS et al. The cost-effectiveness of birth-cohort screening for hepatitis C antibody in U.S. primary care settings. *Annals of Internal Medicine*. 2012; 156(4): 263-70.

¹³⁷⁷ Wong WW, Erman A, Feld JJ et al. Model-based projection of health and economic effects of screening for hepatitis C in Canada. *CMAJ Open.* 2017; 5(3): E662.

¹³⁷⁸ Myers RP, Krajden M, Bilodeau M et al. Burden of disease and cost of chronic hepatitis C virus infection in Canada. *Canadian Journal of Gastroenterology and Hepatology*. 2014; 28(5): 243-50.

¹³⁷⁹ Wong WW, Erman A, Feld JJ et al. Model-based projection of health and economic effects of screening for hepatitis C in Canada. *CMAJ Open.* 2017; 5(3): E662.

- We model annual probability of death after **liver transplant** after Myers et al.¹³⁸⁰ and use the midpoint of the ranges for liver transplant deaths (21.9% in the first year and 4.4% in each subsequent year.)
- In 2019, an individual born in 1964 would be approximately 55 years of age while an individual born in 1945 would be approximately 74 years of age. The average age of the cohort is 65 (average of 55 and 74 rounded up). The average life expectancy of a 65 year old in BC is 20.8 years.
- For the 65-year-old cohort representative of the 1945 1964 birth cohort we assume that any HCV infected individual whose disease had progressed beyond cirrhosis (i.e. fibrosis stage f4) by age 65 had been detected and identified as HCV infected.
- In their modelling, Wong et al. estimate treatment naïve patients with a mean age of 50 years old to be distributed into the following stages of fibrosis: f0 8%, f1 20%, f2 35%, f3 21% and f4 (cirrhosis) 16%.¹³⁸¹
- In a different model, Wong et al. assumed the following distribution in 55 79 year olds based on intake data from a tertiary treatment facility: f0 5%, f1 10%, f2 15%, f3 45% and f4 (cirrhosis) 25%.¹³⁸²
- We model the distribution of cases detected by screening after the treatment naïve patients and use the tertiary intake data in our sensitivity analysis.
- The BC Hepatitis Testers Cohort (BC-HTC) consists of over 1.7 million individuals in British Columbia tested for HCV or human immunodeficiency virus (HIV) or those reported as a case of hepatitis B virus (HBV), HCV, HIV or active tuberculosis (TB) since 1990.¹³⁸³
- Based on data from the BC-HTC, in the BC 1945-64 birth cohort, there are an estimated 37,056 individuals in BC who are HCV antibody positive; 30,574 have been diagnosed¹³⁸⁴ and an estimated 6,482 are undiagnosed.¹³⁸⁵ In 2018, there are an estimated 1,278,177 individuals in the BC 1945-64 birth cohort, suggesting that 2.392% (Table 11, row *f*) of the cohort are diagnosed HCV antibody positive and 0.507% (6,482 / 1,278,177) are undiagnosed (Table 11, row *g*).
- Using the estimated 0.507% of undiagnosed cases in the BC 1945-64 birth cohort, we calculated the number of cases of HCV that would be detected by screening within our birth cohort of 40,000 at 113.3 (Table 11, row *m*). We proceed to model these 113.3 previously undiagnosed cases detected through screening within our birth cohort based on the assumption of no universal screening (they would *not* be

November 2019.

¹³⁸⁰ Myers RP, Krajden M, Bilodeau M et al. Burden of disease and cost of chronic hepatitis C virus infection in Canada. *Canadian Journal of Gastroenterology and Hepatology*. 2014; 28(5): 243-50.

¹³⁸¹ Wong WW, Lee KM, Singh S et al. Drug therapies for chronic hepatitis C infection: a cost-effectiveness analysis. *CMAJ Open.* 2017; 5(1): E97.

¹³⁸² Wong WW, Erman A, Feld JJ et al. Model-based projection of health and economic effects of screening for hepatitis C in Canada. *CMAJ Open.* 2017; 5(3): E662.

 ¹³⁸³ Bartlett S, Yu A, Chapinal N, et al. The population level care cascade for hepatitis C in British Columbia, Canada as of 2018: Impact of direct acting antivirals. *Liver International*. 2019; DOI: 10.1111/liv.14227.
 ¹³⁸⁴ Bartlett S, Yu A, Chapinal N, et al. The population level care cascade for hepatitis C in British Columbia, Canada as of 2018: Impact of direct acting antivirals. *Liver International*. 2019; DOI: 10.1111/liv.14227.
 ¹³⁸⁵ Dr. Mel Krajden. Medical Head, Hepatitis, BC Centre for Disease Control. Personal Communication.

detected). That is, we modelled changes in their disease states assuming no intervention with DAA for the 20.8 years of life remaining for the average 65 year old British Columbian (see Table 3).

Table 3	Table 3: Undetected Individuals with RNA+ HCV in BC 1945 - 64 Birth Cohort within BC Birth Cohort											
	of 40,000											
Numbe	r of Indi	vduals ir	n Each D	isease S	tate at the	Start of	the Year	In the	Absence	of Screeni	ng and Tr	eatment
									1st Year		HCV-	
						Decomp.	1st Year		Liver	Liver	Related	
Age	f0	f1	f2	f3	Cirrhosis	Cirr	HCC	HCC	Transplant	Transplant	Death	Total
65	9.1	22.7	39.7	23.8	18.1	0.0	0.0	0.0	0.0	0.0	0.0	113.3
66	7.4	21.3	35.2	29.0	19.1	0.8	0.4	0.0	0.0	0.0	0.0	113.3
67	6.1	19.9	31.5	32.8	20.5	1.5	0.5	0.1	0.0	0.0	0.5	113.3
68	5.0	18.3	28.2	35.6	22.2	2.1	0.5	0.2	0.1	0.0	1.1	113.3
69	4.1	16.8	25.4	37.5	24.0	2.7	0.6	0.3	0.1	0.1	1.9	113.3
70	3.3	15.3	22.9	38.7	25.9	3.2	0.6	0.4	0.1	0.2	2.8	113.3
71	2.6	13.7	20.3	36.4	30.7	3.7	1.1	0.5	0.1	0.2	3.9	113.3
72	2.1	12.2	18.1	34.1	34.7	4.3	1.2	0.7	0.2	0.3	5.4	113.3
73	1.7	10.8	16.1	31.7	38.0	5.0	1.4	0.9	0.2	0.4	7.2	113.3
74	1.3	9.6	14.3	29.3	40.5	5.7	1.5	1.0	0.2	0.6	9.2	113.3
75	1.1	8.4	12.8	27.0	42.5	6.3	1.6	1.2	0.3	0.7	11.5	113.3
76	0.8	7.4	11.3	24.8	43.8	6.9	1.6	1.4	0.3	0.9	14.0	113.3
77	0.7	6.5	10.0	22.6	44.7	7.5	1.7	1.6	0.3	1.1	16.7	113.3
78	0.5	5.6	8.9	20.6	45.1	7.9	1.7	1.7	0.3	1.3	19.6	113.3
79	0.4	4.9	7.9	18.7	45.1	8.3	1.7	1.8	0.4	1.5	22.6	113.3
80	0.3	4.3	6.9	17.0	44.8	8.6	1.7	1.9	0.4	1.7	25.7	113.3
81	0.3	3.8	6.3	16.0	43.3	8.9	1.7	2.0	0.4	1.9	28.9	113.3
82	0.2	3.4	5.7	15.0	41.7	9.0	1.6	2.0	0.4	2.2	32.1	113.3
83	0.2	3.0	5.1	14.0	40.2	9.0	1.6	2.1	0.4	2.4	35.3	113.3
84	0.2	2.7	4.6	13.1	38.7	8.9	1.5	2.1	0.4	2.6	38.5	113.3
85	0.1	2.4	4.1	12.2	37.2	8.8	1.5	2.1	0.4	2.8	41.7	113.3
86	0.1	2.1	3.7	11.3	35.7	8.7	1.4	2.0	0.4	3.0	44.8	113.3

• Transition data from Table 2 was then used to estimate how many of the 113.3 individuals in the cohort would enter a given disease state (e.g. cirrhosis, decompensated cirrhosis, HCC, liver transplant recipient and death) by year / age in the absence of any screening / treatment program (see Table 4). That is, of the 113.3 individuals, 96.2 either already had or would eventually get cirrhosis and 34.9 of these would move to decompensated cirrhosis. Of the 113.3 individuals, 28.4 (1.27 + 27.08) would move to HCC and 5.8 (4.09 + 1.69) would get a liver transplant. Finally, a total of 47.9 HCV-related deaths would occur in the cohort, 23.3 due to HCC, 22.4 due to decompensated cirrhosis and 2.2 following a liver transplant (see Table 4).

Number of Incident Cases in each Disease State by Year - In the <i>Absence</i> of Screening and Treatment															
						HCC Origi	nating From	Liver Tx Originating From		Deaths Resulting From					
											Liver Tx	Liver Tx	HCC		Total HCV-
					Decomp			Decomp		Decomp	(Within the	(A <i>fter</i> the	(Within	HCC (After	Related
Age	f1	f2	f3	Cirrhosis	Cirrhosis	f3	Cirrhosis	Cirrhosis	HCC	Cirrhosis	1st Yr)	1st Yr)	the 1st Yr)	the 1st Yr)	Deaths
65	1.65	2.99	7.41	2.22	0.82	0.04	0.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
66	1.35	2.82	6.58	2.70	0.86	0.05	0.43	0.03	0.01	0.14	0.00	0.00	0.32	0.00	0.46
67	1.10	2.62	5.88	3.05	0.92	0.05	0.46	0.05	0.02	0.26	0.01	0.00	0.34	0.02	0.63
68	0.90	2.42	5.27	3.31	1.00	0.06	0.50	0.07	0.02	0.37	0.01	0.00	0.36	0.04	0.79
69	0.74	2.22	4.74	3.49	1.08	0.06	0.54	0.09	0.03	0.47	0.02	0.00	0.39	0.05	0.94
70	0.68	2.28	4.80	6.93	1.16	0.10	0.95	0.10	0.03	0.56	0.02	0.01	0.43	0.06	1.08
71	0.54	2.04	4.27	6.53	1.38	0.10	1.13	0.12	0.05	0.65	0.03	0.01	0.74	0.08	1.51
72	0.43	1.82	3.80	6.11	1.56	0.09	1.28	0.14	0.06	0.76	0.04	0.01	0.87	0.11	1.78
73	0.34	1.61	3.38	5.68	1.71	0.08	1.40	0.16	0.07	0.87	0.04	0.02	0.97	0.14	2.04
74	0.27	1.42	3.01	5.25	1.82	0.08	1.49	0.18	0.08	0.99	0.05	0.03	1.05	0.17	2.28
75	0.22	1.25	2.68	4.84	1.91	0.07	1.56	0.20	0.09	1.11	0.06	0.03	1.11	0.20	2.50
76	0.17	1.10	2.38	4.44	1.97	0.07	1.61	0.22	0.10	1.21	0.06	0.04	1.15	0.23	2.70
77	0.14	0.96	2.11	4.06	2.01	0.06	1.64	0.24	0.10	1.31	0.07	0.05	1.19	0.25	2.86
78	0.11	0.84	1.87	3.70	2.03	0.05	1.66	0.25	0.11	1.39	0.07	0.06	1.20	0.27	3.00
79	0.09	0.73	1.65	3.36	2.03	0.05	1.66	0.27	0.11	1.46	0.08	0.07	1.21	0.29	3.10
80	0.06	0.52	1.19	2.15	2.01	0.04	1.65	0.28	0.12	1.51	0.08	0.08	1.21	0.31	3.18
81	0.05	0.46	1.08	2.02	1.95	0.04	1.59	0.28	0.12	1.55	0.09	0.09	1.20	0.32	3.24
82	0.04	0.41	0.97	1.90	1.88	0.04	1.54	0.29	0.12	1.57	0.09	0.10	1.15	0.33	3.24
83	0.03	0.37	0.88	1.78	1.81	0.04	1.48	0.29	0.12	1.57	0.09	0.10	1.11	0.34	3.21
84	0.03	0.33	0.79	1.66	1.74	0.03	1.42	0.29	0.12	1.56	0.09	0.11	1.07	0.34	3.18
85	0.02	0.29	0.71	1.54	1.67	0.03	1.37	0.28	0.11	1.55	0.09	0.12	1.03	0.34	3.12
86	0.02	0.26	0.64	1.43	1.61	0.03	1.31	0.28	0.11	1.52	0.09	0.13	0.99	0.33	3.06
Total	8.97	29.76	66.09	78.11	34.94	1.27	27.08	4.09	1.69	22.37	1.18	1.05	19.09	4.20	47.90

LUCV in BC 10/E CA Dirth Cab with DNA

- HCV testing data from the BC-HTC is summarized on Table 5.¹³⁸⁶ A total of • 1,235,457 British Columbians had been tested for HCV by December 31, 2015. Of these, 55,568 (4.5%) tested positive and were still alive. A total of 3,459,242 British Columbians had not yet been tested, or 74% of the population.
- For the 1,325,760 individuals born between 1945 and 1965, 416,669 (31.4%, see • Table 11, row c) had been tested for HCV by December 31, 2015 (see Table 5). Of 416,669 that had been tested, 34,511 (8.3%) tested positive and were still alive. A total of 909,091 (or 68.6%) of this cohort had not yet been tested.

Table 5: Testing for HCV Positive Individuals in BC As of December 31, 2015, Adjusted for Deaths										
	2015									
Birth Year	Population	Ever Tested	% of Cohort	HCV	% of Tested					
Cohort	BC	for HCV	Tested	Positive	HCV Positive					
<1945	504,792	104,771	20.8%	2,677	2.6%					
1945-65	1,325,760	416,669	31.4%	34,511	8.3%					
1966-75	635,543	252,364	39.7%	11,187	4.4%					
>1975	2,228,604	461,653	20.7%	7,193	1.6%					
Total	4,694,699	1,235,457	26.3%	55,568	4.5%					

Based on the data in Table 5, we assumed that 31.4% (Table 11, row c) of the BC 1945-64 birth cohort in our model has been screened.

• Using data from the BC-HTC, Bartlett and colleagues provide details on the population level care cascade for Hep C in BC based on all individuals ever tested

¹³⁸⁶ Dr. Mel Krajden. Medical Head, Hepatitis, BC Centre for Disease Control. Personal Communication. September, 2019.
between 1990 and 2015, with linkage to the data on medical visits, hospitalizations, cancers, prescription drugs and deaths through to December 31, 2018. We use this data in Table 6.¹³⁸⁷

- A total of 44,507 individuals who are HCV antibody positive have had HCV RNA testing. 32,031 of these 44,507 (72.0%) tested RNA positive. For the 1945-64 birth cohort, 19,060 of the 25,577 (74.5%) tested RNA positive (Table 6 and Table 11, row *j*).
- Of the 17,441 individuals who have had HCV treatment initiated, an estimated 15,672 (89.9%) achieved a sustained virologic response (SVR). For the 1945-64 birth cohort, an estimated 10,895 of 12,030 (90.6%) achieved SVR.

Table 6: The Care Cascade for Hepatitis C in BCAs of December 31, 2018, Adjusted for Deaths												
Birth Tested HCV 2018 HCV HCV SVR Year Antibody Population Antibody HCV RNA Treatment Achieved / Cohort # % BC % two Tested Positive % two Initiated Unknown										% Achieving		
	Conort		70	BC	% +Ve	Testeu	POSITIVE	% +ve	Initiated	Unknown	SVR	
	<1945	2,249	4.2%	426,050	0.53%	1,770	1,315	74.3%	697	616	88.4%	
	1945-64	30,574	57.2%	1,278,177	2.39%	25,577	19,060	74.5%	12,030	10,895	90.6%	
	1965-74	11,679	21.9%	680,687	1.72%	9,472	6,680	70.5%	2,981	2,641	88.6%	
	>1974	8,939	16.7%	2,605,235	0.34%	7,688	4,976	64.7%	1,733	1,520	87.7%	
	Total	53,441	100.0%	4,990,150	1.07%	44,507	32,031	72.0%	17,441	15,672	89.9%	

¹ Patients who were treated, but who did not have an HCV RNA negative test on record (unknown) were assumed to achieve SVR at the same rate as those had an HCV RNA negative test recorded.

- In their modelling work, Wong and colleagues assumed an uptake of screening ranging from 76.6% to 90.0% based on the cohort's risk of infection and age range, using clinical expert's opinions.¹³⁸⁸ We have assumed that 83.3% (the mid-point of the Wong et al estimates) of the unscreened population within the 1945-64 birth cohort would accept screening (see Table 11, row *l*) and varied this from 76.6% to 90.0% in the sensitivity analysis.
- In their modelling work, Wong and colleagues assumed an uptake of treatment ranging from 80.0% to 95.0% based on the cohort's risk of infection and age range, using clinical expert's opinions.¹³⁸⁹ We have assumed that, in the absence of personal financial barriers, the proportion of the population that is HCV RNA+ that is eligible for and will accept treatment is estimated at 87.5% % (the mid-point of the Wong et al estimates) (see Table 11, row *n*), and varied this from 80.0% to 95.0% in the sensitivity analysis.

 ¹³⁸⁷ Bartlett S, Yu A, Chapinal N, et al. The population level care cascade for hepatitis C in British Columbia, Canada as of 2018: Impact of direct acting antivirals. *Liver International*. 2019; DOI: 10.1111/liv.14227.
 ¹³⁸⁸ Wong WW, Erman A, Feld JJ et al. Model-based projection of health and economic effects of screening for hepatitis C in Canada. *CMAJ Open*. 2017; 5(3): E662.

¹³⁸⁹ Wong WW, Erman A, Feld JJ et al. Model-based projection of health and economic effects of screening for hepatitis C in Canada. *CMAJ Open.* 2017; 5(3): E662.

- The efficacy of Direct Acting Antiviral (DAA) treatment in producing a sustained viral response (i.e. a cure) in *clinical trials* is 95%.^{1390,1391,1392,1393}
- As noted above, the effectiveness of DAA treatment in BC in the 1945-64 birth cohort appears to be 90.6% (see Table 6).¹³⁹⁴
- Newer types of DAA treatment continue to come on to the market. Some of these treatments are more efficacious for specific genotypes, but pangenomic treatments are now available where the efficacy is similar for all genotypes. Since 2017 in BC, 66.9% of DAA treatment for HCV has been by Epclusa, a pangenomic treatment. In 2018 and 2019, 91.1% of HCV treatment in BC was with Epclusa, Maviret and Zepatier.¹³⁹⁵ Epclusa and Maviret are both pangenomic, while Zepatier is indicated for genotypes 1 and 4.
- Epclusa (sofosbuvir 400 mg velpatasvir 100 mg) results in an SVR in 98.2% of HCV infected individuals of all genotypes, with or without cirrhosis (except genotype 3 with cirrhosis). For individuals with genotype 3 HCV and cirrhosis, 96.3% achieved SVR.¹³⁹⁶ Overall, Epclusa achieved SVR rates of 95 – 99% in clinical trials.^{1397,1398}
- In clinical trials of **Zepatie**r, overall SVR rates of 95% were reported for treatmentnaïve participants with HCV genotypes 1, 4 and 6.¹³⁹⁹
- In clinical trials of Maviret (glecaprevir 300 mg pibrentasvir 120 mg), SVR rates in excess of 99% for all genotypes without cirrhosis were achieved, except genotype 3 for which SVR rates were 95%.^{1400,1401}

¹³⁹⁰ Kowdley KV, Gordon SC, Reddy KR et al. Ledipasvir and sofosbuvir for 8 or 12 weeks for chronic HCV without cirrhosis. *New England Journal of Medicine*. 2014; 370(20): 1879-88.

¹³⁹¹ Afdhal N, Zeuzem S, Kwo P et al. Ledipasvir and sofosbuvir for untreated HCV genotype 1 infection. *New England Journal of Medicine*. 2014; 370(20): 1889-98.

¹³⁹² Afdhal N, Reddy KR, Nelson DR et al. Ledipasvir and sofosbuvir for previously treated HCV genotype 1 infection. *New England Journal of Medicine*. 2014; 370(16): 1483-93.

¹³⁹³ Zeuzem S, Dusheiko GM, Salupere R et al. Sofosbuvir and ribavirin in HCV genotypes 2 and 3. *New England Journal of Medicine*. 2014; 370(21): 1993-2001.

¹³⁹⁴ Bartlett SR, Yu A, Chapinal N et al. The population level care cascade for hepatitis C in British Columbia, Canada as of 2018: Impact of Direct Acting Antivirals. *Liver International*. 2019; 00: 1-12.

¹³⁹⁵ Tijana Fazlagic. A/Executive Director, Pharmacare Benefits, Pharmaceutical Therapies & Pharmacare Division, BC Ministry of Health. Personal Communication. October 30, 2019.

¹³⁹⁶ Jacobson IM, Lawitz E, Gane EJ et al. Efficacy of 8 weeks of sofosbuvir, velpatasvir, and voxilaprevir in patients with chronic HCV infection: 2 phase 3 randomized trials. *Gastroenterology*. 2017; 153(1): 113-22.

¹³⁹⁷ Feld JJ, Jacobson IM, Hézode C et al. Sofosbuvir and velpatasvir for HCV genotype 1, 2, 4, 5, and 6 infection. *New England Journal of Medicine*. 2015; 373(27): 2599-607.

¹³⁹⁸ Foster GR, Afdhal N, Roberts SK et al. Sofosbuvir and velpatasvir for HCV genotype 2 and 3 infection. *New England Journal of Medicine*. 2015; 373(27): 2608-17.

¹³⁹⁹ Zeuzem S, Ghalib R, Reddy KR et al. Grazoprevir–elbasvir combination therapy for treatment-naive cirrhotic and noncirrhotic patients with chronic hepatitis C virus genotype 1, 4, or 6 infection: a randomized trial. *Annals of Internal Medicine*. 2015; 163(1): 1-13.

¹⁴⁰⁰ Asselah T, Kowdley KV, Zadeikis N et al. Efficacy of glecaprevir/pibrentasvir for 8 or 12 weeks in patients with hepatitis C virus genotype 2, 4, 5, or 6 infection without cirrhosis. *Clinical Gastroenterology and Hepatology*. 2018; 16(3): 417-26.

¹⁴⁰¹ Zeuzem S, Foster GR, Wang S et al. Glecaprevir–pibrentasvir for 8 or 12 weeks in HCV genotype 1 or 3 infection. *New England Journal of Medicine*. 2018; 378(4): 354-69.

- We model the effectiveness of DAA treatment in the 1945-64 birth cohort at 97% (midpoint of 95% and 99% for Epclusa, the most common type of DAA currently prescribed) and vary this between 95% - 99% in the sensitivity analysis (Table 11, row p).
- We assume that a salvage treatment using a combination of sofosbuvir / velpatasvir / voxilaprevir is attempted for individuals who do not respond to the first treatment. We model the effectiveness of the salvage DAA treatment at a rate of 97%, varied between 95% - 99% in the sensitivity analysis (Table 11, row p).¹⁴⁰²
- We then updated our model assuming that 87.5% (Table 11, row *n*) of the 113.3 individuals with undiagnosed RNA+ HCV infection detected through screening would accept treatment and that the overall effectiveness of DAA treatment, including salvage treatment, in achieving SVR would be 99.9% (Table 11, row q). We assume that disease progression stops once SVR is achieved. Using this approach means that 14.3 of the 113.3 individuals with undiagnosed RNA+ HCV infection detected through screening would either not accept treatment or would not achieve SVR if treated. Using only these 14.3 individuals beginning at age 65, we allowed the disease to progress without any intervention for the 20.8 years of life remaining for the average 65 year old British Columbian (see Table 7).

	of 40,000											
N	umber	of Indiv	duals in	Each Dis	sease Stat	e at the S	tart of the	e Year	- Untreated	d or Failed	Treatmer	nt
									1st Year		HCV-	
						Decomp.	1st Year		Liver	Liver	Related	
Age	f0	f1	f2	f3	Cirrhosis	Cirr	HCC	HCC	Transplant	Transplant	Death	Total
65	1.14	2.85	4.99	2.99	2.28	0.00	0.00	0.00	0.00	0.00	0.00	14.3
66	0.93	2.68	4.43	3.64	2.41	0.10	0.06	0.00	0.00	0.00	0.00	14.3
67	0.76	2.50	3.96	4.13	2.58	0.19	0.06	0.01	0.01	0.00	0.06	14.3
68	0.62	2.31	3.55	4.47	2.79	0.27	0.06	0.03	0.01	0.00	0.14	14.3
69	0.51	2.12	3.19	4.71	3.02	0.34	0.07	0.04	0.01	0.01	0.24	14.3
70	0.42	1.93	2.87	4.86	3.25	0.40	0.08	0.05	0.01	0.02	0.35	14.3
71	0.33	1.73	2.56	4.58	3.86	0.47	0.13	0.06	0.02	0.03	0.49	14.3
72	0.26	1.54	2.28	4.29	4.37	0.54	0.15	0.08	0.02	0.04	0.68	14.3
73	0.21	1.36	2.03	3.98	4.78	0.63	0.17	0.11	0.02	0.06	0.90	14.3
74	0.17	1.21	1.80	3.69	5.10	0.71	0.19	0.13	0.03	0.07	1.16	14.3
75	0.13	1.06	1.60	3.39	5.34	0.79	0.20	0.15	0.03	0.09	1.45	14.3
76	0.11	0.93	1.42	3.11	5.51	0.87	0.21	0.18	0.04	0.11	1.76	14.3
77	0.08	0.81	1.26	2.85	5.62	0.94	0.21	0.20	0.04	0.14	2.10	14.3
78	0.07	0.71	1.12	2.59	5.67	1.00	0.21	0.21	0.04	0.16	2.46	14.3
79	0.05	0.62	0.99	2.36	5.67	1.05	0.22	0.23	0.05	0.19	2.84	14.3
80	0.04	0.54	0.87	2.14	5.63	1.08	0.21	0.24	0.05	0.22	3.23	14.3
81	0.04	0.48	0.79	2.01	5.44	1.11	0.21	0.25	0.05	0.24	3.63	14.3
82	0.03	0.43	0.71	1.89	5.25	1.13	0.21	0.26	0.05	0.27	4.04	14.3
83	0.02	0.38	0.64	1.77	5.06	1.13	0.20	0.26	0.05	0.30	4.44	14.3
84	0.02	0.34	0.58	1.65	4.87	1.12	0.19	0.26	0.05	0.33	4.85	14.3
85	0.02	0.30	0.52	1.53	4.68	1.11	0.18	0.26	0.05	0.35	5.25	14.3
86	0.01	0.27	0.47	1.43	4.49	1.09	0.18	0.26	0.05	0.38	5.64	14.3

Table 7: Undetected Individuals with RNA+ HCV in BC 1945 - 64 Birth Cobort within BC Birth Cobo

¹⁴⁰² Dr. Naveed Janjua, Epidemiologist and Senior Scientists, Hepatitis, BC Centre for Disease Control. Personal Communication. November 2019.

Transition data from Table 2 was then used to estimate how many of the 14.3 individuals in the cohort would enter a given disease state (e.g. cirrhosis, decompensated cirrhosis, HCC, liver transplant recipient and death) by year / age in the absence of any screening / treatment program (see Table 8). That is, of the 14.3 individuals, 12.1 either already had or would eventually get cirrhosis and 4.40 of these would move to decompensated cirrhosis. Of the 14.3 individuals, 3.6 (0.16 + 3.41) would move to HCC and 0.73 (0.51 + 0.21) would get a liver transplant. Finally, a total of 6.02 HCV-related deaths would occur in the cohort, 2.93 due to HCC, 2.81 due to decompensated cirrhosis and 0.28 following a liver transplant (see Table 8).

	Table 8: Undetected Individuals with RNA+ HCV in BC 1945 - 64 Birth Cohort within BC Birth Cohort of 40,000														
			Numbe	er of Incid	ent Cases	s in each	Disease St	ate by Yea	r - In the <i>Pr</i>	esence of	Screening	and Trea	tment		
						HCC Origi	nating From	Liver Tx Orig	inating From		Death	s Resulting	From		
											Liver Tx	Liver Tx	НСС		Total HCV-
					Decomp			Decomp		Decomp	(Within the	(After the	(Within	HCC (After	Related
Age	f1	f2	f3	Cirrhosis	Cirrhosis	f3	Cirrhosis	Cirrhosis	HCC	Cirrhosis	1st Yr)	1st Yr)	the 1st Yr)	the 1st Yr)	Deaths
65	0.21	0.38	0.93	0.28	0.10	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
66	0.17	0.35	0.83	0.34	0.11	0.01	0.05	0.00	0.00	0.02	0.00	0.00	0.04	0.00	0.06
67	0.14	0.33	0.74	0.38	0.12	0.01	0.06	0.01	0.00	0.03	0.00	0.00	0.04	0.00	0.08
68	0.11	0.30	0.66	0.42	0.13	0.01	0.06	0.01	0.00	0.05	0.00	0.00	0.05	0.00	0.10
69	0.09	0.28	0.60	0.44	0.14	0.01	0.07	0.01	0.00	0.06	0.00	0.00	0.05	0.01	0.12
70	0.09	0.29	0.60	0.87	0.15	0.01	0.12	0.01	0.00	0.07	0.00	0.00	0.05	0.01	0.14
71	0.07	0.26	0.54	0.82	0.17	0.01	0.14	0.01	0.01	0.08	0.00	0.00	0.09	0.01	0.19
72	0.05	0.23	0.48	0.77	0.20	0.01	0.16	0.02	0.01	0.10	0.00	0.00	0.11	0.01	0.22
73	0.04	0.20	0.43	0.71	0.21	0.01	0.18	0.02	0.01	0.11	0.01	0.00	0.12	0.02	0.26
74	0.03	0.18	0.38	0.66	0.23	0.01	0.19	0.02	0.01	0.12	0.01	0.00	0.13	0.02	0.29
75	0.03	0.16	0.34	0.61	0.24	0.01	0.20	0.03	0.01	0.14	0.01	0.00	0.14	0.02	0.31
76	0.02	0.14	0.30	0.56	0.25	0.01	0.20	0.03	0.01	0.15	0.01	0.01	0.15	0.03	0.34
77	0.02	0.12	0.27	0.51	0.25	0.01	0.21	0.03	0.01	0.16	0.01	0.01	0.15	0.03	0.36
78	0.01	0.11	0.23	0.46	0.26	0.01	0.21	0.03	0.01	0.17	0.01	0.01	0.15	0.03	0.38
79	0.01	0.09	0.21	0.42	0.26	0.01	0.21	0.03	0.01	0.18	0.01	0.01	0.15	0.04	0.39
80	0.01	0.07	0.15	0.27	0.25	0.01	0.21	0.03	0.01	0.19	0.01	0.01	0.15	0.04	0.40
81	0.01	0.06	0.14	0.25	0.24	0.01	0.20	0.04	0.01	0.19	0.01	0.01	0.15	0.04	0.41
82	0.00	0.05	0.12	0.24	0.24	0.00	0.19	0.04	0.01	0.20	0.01	0.01	0.15	0.04	0.41
83	0.00	0.05	0.11	0.22	0.23	0.00	0.19	0.04	0.01	0.20	0.01	0.01	0.14	0.04	0.40
84	0.00	0.04	0.10	0.21	0.22	0.00	0.18	0.04	0.01	0.20	0.01	0.01	0.13	0.04	0.40
85	0.00	0.04	0.09	0.19	0.21	0.00	0.17	0.04	0.01	0.19	0.01	0.02	0.13	0.04	0.39
86	0.00	0.03	0.08	0.18	0.20	0.00	0.17	0.03	0.01	0.19	0.01	0.02	0.12	0.04	0.38
Total	1.13	3.74	8.31	9.83	4.40	0.16	3.41	0.51	0.21	2.81	0.15	0.13	2.40	0.53	6.02

- A comparison of the results between Table 4 and Table 8 suggest that screening and treatment in the birth cohort would result in the following:
 - The number of new cases of cirrhosis would be reduced by 68.3 (see Table 11, row *u*), from 78.1 in the *absence* of screening and treatment (see Table 4) to 9.8 in the *presence* of screening and treatment (see Table 8).
 - The number of cases of decompensated cirrhosis would be reduced by 30.6 (see Table 11, row *v*), from 34.9 in the *absence* of screening and treatment (see Table 4) to 4.4 in the *presence* of screening and treatment (see Table 8).
 - The number of cases of HCC would be reduced by 24.8 (see Table 11, row *w*), from 28.4 in the *absence* of screening and treatment (see Table 4) to 3.6 in the *presence* of screening and treatment (see Table 8).
 - The number of liver transplants would be reduced by 5.1 (see Table 11, row *x*), from 5.8 in the *absence* of screening and treatment (see Table 4) to 0.7 in the *presence* of screening and treatment (see Table 8).

- The number of HCV-related deaths would be reduced by 41.9 (see Table 11, row *y*), from 47.9 in the *absence* of screening and treatment (see Table 4) to 6.0 in the *presence* of screening and treatment (see Table 8).
- Impairment in health-related quality of life (QoL) associated with various HCVrelated disease states is based on a study of 751 HCV patients recruited from several tertiary care settings in Vancouver, Canada¹⁴⁰³ and utilized in Canadian modelling studies.^{1404,1405,1406} Impairment in QoL following a liver transplant are from Ratcliffe and colleagues¹⁴⁰⁷ as calculated by Williams et al.¹⁴⁰⁸
- We have assumed an average QoL for a 65 year old in BC to be 0.80 (see Reference Document) and calculated the impairment in QoL accordingly, as follows:
 - Non-cirrhosis (fibrosis stage 0-3): -8.8% (ranging from -3.8% to -13.8%)
 - Compensated cirrhosis (fibrosis stage 4): -13.8% (ranging from -8.8% to -18.8%)
 - Decompensated cirrhosis: -18.8% (ranging from -8.8% to -18.8%)
 - HCC: -10.0% (ranging from -6.3% to -15.0%)
 - Liver transplant (1st year): -43.8%
 - Liver transplant (subsequent years): -16.3%
 - On-treatment: -11.3% (ranging from -6.3% to -16.3%) (Table 11, row af)
 - Viral clearance: No change in QoL
- We then calculated the number of QALYs lost by individuals in the cohort who would be in a given disease state by year / age in the *absence* of any screening / treatment program (see Table 9) as well as the number of QALYs lost by individuals in the cohort who would be in a given disease state by year / age in the *presence* of a screening / treatment program (see Table 10).
- Based on this approach, the QALYs gained because of disease states avoided due to screening and treatment are as follows:
 - Non-cirrhosis 69.9 QALYs gained (Table 11, row z)
 - Compensated cirrhosis 74.7 QALYs gained (Table 11, row *aa*)
 - Decompensated cirrhosis 16.8 QALYs gained (Table 11, row *ab*)
 - \circ HCC 3.7 QALYs gained (Table 11, row *ac*)

 ¹⁴⁰³ Hsu PC, Federico CA, Krajden M et al. Health utilities and psychometric quality of life in patients with earlyand late-stage hepatitis C virus infection. *Journal of Gastroenterology and Hepatology*. 2012; 27(1): 149-57.
 ¹⁴⁰⁴ Wong WW, Tu H-A, Feld JJ et al. Cost-effectiveness of screening for hepatitis C in Canada. *Canadian Medical Association Journal*. 2015; 187(3): E110-E21.

¹⁴⁰⁵ Wong WW, Erman A, Feld JJ et al. Model-based projection of health and economic effects of screening for hepatitis C in Canada. *CMAJ Open.* 2017; 5(3): E662.

¹⁴⁰⁶ Wong WW, Lee KM, Singh S et al. Drug therapies for chronic hepatitis C infection: a cost-effectiveness analysis. *CMAJ Open.* 2017; 5(1): E97.

¹⁴⁰⁷ Ratcliffe J, Longworth L, Young T et al. Assessing health-related quality of life pre- and post-liver transplantation: a prospective multicenter study. *Liver Transplantation*. 2002; 8(3): 263-270.

¹⁴⁰⁸ Williams J, Miners A, Harris R et al. The Cost-Effectiveness of One-Time Birth Cohort Screening for Hepatitis C as Part of the National Health Service Health Check Programme in England. *Value in Health*. 2019:

• Liver transplant – 4.4 QALYs gained (Table 11, row *ad*)

Table 9: QALYs Lost by Disease State and Age											
	In	the Abse	ence of So	creenin	g and Treat	tment					
	Non-		Decomp.		Liver	HCV-Related					
Age	Cirrhosis	Cirrhosis	Cirrhosis	HCC	Transplant	Death	Total				
65	6.7	1.99	0.00	0.00	0.00	0.0	8.7				
66	6.5	2.10	0.12	0.04	0.00	0.0	8.8				
67	6.3	2.26	0.23	0.05	0.01	8.2	17.1				
68	6.1	2.44	0.32	0.06	0.03	10.8	19.7				
69	5.9	2.64	0.40	0.07	0.04	12.9	21.9				
70	5.6	2.85	0.48	0.08	0.06	14.6	23.7				
71	5.1	3.38	0.56	0.12	0.08	16.1	25.4				
72	4.7	3.82	0.65	0.15	0.10	21.4	30.8				
73	4.2	4.18	0.75	0.18	0.13	24.0	33.5				
74	3.8	4.46	0.85	0.20	0.16	26.1	35.6				
75	3.4	4.67	0.95	0.22	0.19	27.6	37.1				
76	3.1	4.82	1.04	0.24	0.22	28.8	38.2				
77	2.8	4.92	1.12	0.26	0.25	29.1	38.5				
78	2.5	4.96	1.19	0.27	0.29	29.2	38.4				
79	2.2	4.96	1.25	0.28	0.32	28.8	37.8				
80	2.0	4.92	1.29	0.29	0.36	27.9	36.8				
81	1.8	4.76	1.33	0.29	0.39	26.7	35.4				
82	1.7	4.59	1.35	0.29	0.42	25.6	33.9				
83	1.6	4.42	1.35	0.29	0.45	24.0	32.0				
84	1.4	4.26	1.34	0.29	0.48	22.2	30.0				
85	1.3	4.09	1.32	0.28	0.50	20.3	27.8				
86	1.2	3.93	1.30	0.28	0.53	18.4	25.7				
Total	80.0	85.42	19.17	4.24	5.00	442.8	636.7				

• HCV – related death – 387.1 QALYs gained (Table 11, row *ag*)

Table 10: QALYs Lost by Disease State and Age											
	In	the Prese	e nce of S	creenin	g and Treat	ment					
	Non-		Decomp.		Liver l	HCV-Related					
Age	Cirrhosis	Cirrhosis	Cirrhosis	HCC	Transplant	Death	Total				
65	0.8	0.25	0.00	0.00	0.00	0.0	1.1				
66	0.8	0.26	0.02	0.00	0.00	0.0	1.1				
67	0.8	0.28	0.03	0.01	0.00	1.0	2.1				
68	0.8	0.31	0.04	0.01	0.00	1.4	2.5				
69	0.7	0.33	0.05	0.01	0.01	1.6	2.8				
70	0.7	0.36	0.06	0.01	0.01	1.8	3.0				
71	0.6	0.42	0.07	0.02	0.01	2.0	3.2				
72	0.6	0.48	0.08	0.02	0.01	2.7	3.9				
73	0.5	0.53	0.09	0.02	0.02	3.0	4.2				
74	0.5	0.56	0.11	0.03	0.02	3.3	4.5				
75	0.4	0.59	0.12	0.03	0.02	3.5	4.7				
76	0.4	0.61	0.13	0.03	0.03	3.6	4.8				
77	0.4	0.62	0.14	0.03	0.03	3.7	4.8				
78	0.3	0.62	0.15	0.03	0.04	3.7	4.8				
79	0.3	0.62	0.16	0.04	0.04	3.6	4.8				
80	0.3	0.62	0.16	0.04	0.04	3.5	4.6				
81	0.2	0.60	0.17	0.04	0.05	3.4	4.4				
82	0.2	0.58	0.17	0.04	0.05	3.2	4.3				
83	0.2	0.56	0.17	0.04	0.06	3.0	4.0				
84	0.2	0.54	0.17	0.04	0.06	2.8	3.8				
85	0.2	0.51	0.17	0.04	0.06	2.6	3.5				
86	0.2	0.49	0.16	0.03	0.07	2.3	3.2				
Total	10.1	10.74	2.41	0.53	0.63	55.7	80.1				

- Treatment based cures of HCV infection have a positive effect on extrahepatic disease states such as type 2 diabetes, chronic kidney disease and mood and anxiety disorders.¹⁴⁰⁹ We have assumed that the impairment in QoL associated with being in a state of non-cirrhosis in HCV positive individuals noted above takes into account the potential change in QoL associated with extrahepatic manifestations.
- Although highly effective and well tolerated, each DAA has its own metabolism and presents an important potential for drug–drug interactions.^{1410,1411} The model does not take into account any additional resources that might be required in managing drug–drug interactions or the potential harms associated with drug–drug interactions.
- Other assumptions used in assessing the CPB are detailed in the Reference Document.

Based on these assumptions, the calculation of CPB is 555 QALYs (Table 11, row *aj*). This represents the potential CPB of one-time screening for 83% of the previously unscreened BC birth cohort born between 1945 and 1964 and treating 88% of individuals detected with RNA+ HCV with direct acting antiviral (DAA) treatment.

 ¹⁴⁰⁹ Rossi C, Jeong D, Wong S, et al. Sustained virological response from interferon-based hepatitis C regimens is associated with reduced risk of extrahepatic manifestations. *Journal of Hepatology*. 2019; 71: 1116-1125.
 ¹⁴¹⁰ Pons S, Boyer A, Lamblin G et al. Managing drug–drug interactions with new direct-acting antiviral agents in chronic hepatitis C. *British Journal of Clinical Pharmacology*. 2017; 83(2): 269-93.

¹⁴¹¹ Néant N & Solas C. Drug-drug interactions potential of direct-acting antivirals for the treatment of chronic hepatitis C virus infection. *International Journal of Antimicrobial Agents*. 2018; https://doi.org/10.1016/j.ijantimicag.2018.10.014.

Table 11: CPB of Screening to Detect and Treat Hepatitis C Infection										
	in a Birth Cohort of 40,000 (B.C.)									
	For Individuals Born Between 1945 - 64	1								
Row										
Label	Variable	Base Case	Data Source							
а	Median age of Birth Cohort (2019)	65	V							
b	Birth Cohort population of 65 year olds	35,996	BC Life Table							
С	% of Birth Cohort screened	31.4%	Table 5							
d	Estimated # of individuals in Birth Cohort screened	11,313	b * c							
e	Estimated # of individuals in Birth Cohort unscreened	24,683	b - d							
f	Estimated % of individuals in Birth Cohort living with diagnosed HVC	2.392%	√							
g	Estimated % of individuals in Birth Cohort living with undiagnosed HVC	0.507%	√							
h	Estimated # of individuals in Birth Cohort living with diagnosed HVC	861	b * f							
i	Estimated # of individuals in Birth Cohort living with undiagnosed HVC	183	b*g							
j	% of individuals with undiagnosed HCV expected to be RNA+	74.5%	Table 6							
k	# of individuals with undiagnosed HCV expected to be RNA+	136.0	i*j							
I	Adherence with screening	83.3%	V							
m	Cases of undiagnosed RNA+ HCV infection detected through screening	113.3	k * I							
n	% eligible for and accepting treatment	87.5%	٧							
о	Cases of undiagnosed RNA+ HCV infection detected through screening receiving treatment	99.2	m * n							
р	Effectiveness of antiviral therapy in producing a sustained viral response	97.0%	V							
	Total SVP rate, including solvage treatment	00.0%	-1 - (1 - n)							
r r	Cases of undiagnosed RNA+ HCV infection detected through screening	99.1	0*q							
	receiving treatment and achieving a SVR (i.e. are 'cured')									
s	Cases of undiagnosed RNA+ HCV infection that are detected through	14.3	m - r							
	screening but are untreated or fail to achieve SVR									
	Disease states avoided due to screening and treatment	01.0	Table 4 Table 0							
t	- Non-cirrhosis	91.6	Table 4 - Table 8							
u	- Cirrhosis	68.3	Table 4 - Table 8							
V		30.5	Table 4 - Table 8							
W		24.8	Table 4 - Table 8							
X	- Liver transplant	5.1	Table 4 - Table 8							
У	- HCV-related dealin	41.9								
	CALTS gained because of disease states avoided due to screening and									
7		60.0	Table 9 - Table 10							
2		74.7	Table 9 - Table 10							
aa	Decomponented cirrhocic	16.9	Table 9 - Table 10							
20		3.7	Table 9 - Table 10							
ad	- Liver transplant	3.7 4 A	Table 9 - Table 10							
20	- HCV-related death	387 1	Table 9 - Table 10							
		507.1	7 + aa + ab + ac + ac + ac + ac + ac + ac							
af	QALYs gained	556.6	ad + ae							
ag	QALY decrement associated with treatment	11.3%	V							
ah	Length of time on treatment (12 weeks) - in years	0.23	12 / 52							
ai	QALYs lost due to treatment	2.1	o * (ag * 0.8) * ah							
aj	Total (net) QALYs gained	554.5	af - ai							

∨ = Estimates from the literature

We also modified several major assumptions and recalculated the CPB as follows:

- Assume the annual progression probabilities are **reduced** as follows:
 - \circ $\,$ From cirrhosis to hepatic decomposition is reduced from 4.5% to 3.0% $\,$
 - From hepatic decomposition to death is reduced from 17.6% to 13.5%
 - From hepatocellular carcinoma to death is reduced from 70.7% to 43.0% in Year 1 and from 16.2% to 11.0% in subsequent years.
 - CPB = 463
- Assume the annual progression probabilities are **increased** as follows:
 - From cirrhosis to hepatic decomposition is reduced from 4.5% to 6.0%
 - \circ From hepatic decomposition to death is reduced from 17.6% to 21.6%
 - From hepatocellular carcinoma to death is reduced from 70.7% to 77.0% in Year 1 and from 16.2% to 23.0% in subsequent years.
 - \circ CPB = 614
- Assume that the proportion of the unscreened population within the 1945-64 birth cohort that would accept screening is **reduced** from 83.3% to 76.6% (Table 11, row 1). CPB = 510
- Assume that the proportion of the unscreened population within the 1945-64 birth cohort that would accept screening is **increased** from 83.3% to 90.0% (Table 11, row l). CPB = 599
- Assume that the uptake of treatment is **reduced** from 87.5% to 80.0% (Table 11, row n). CPB = 507
- Assume that the uptake of treatment is **increased** from 87.5% to 95.0% (Table 11, row n). CPB = 602
- Assume there is **more** of an annual QoL decrement associated with various disease states follows:
 - Non-cirrhosis from -8.8% to -13.8%
 - Compensated cirrhosis from -13.8% to -18.8%
 - HCC from -10.0% to -15.0%
 - Treatment from -11.3% to -6.3%
 - \circ CPB = 623
- Assume there is **less** of an annual QoL decrement associated with various disease states follows:
 - Non-cirrhosis from -8.8% to -3.8%
 - Compensated cirrhosis from -13.8% to -8.8%
 - Decompensated cirrhosis from -18.8% to -8.8%
 - HCC from -10.0% to -6.3%
 - Treatment from -11.3% to -16.3%

 \circ CPB = 478

- Assume the rate of sustained virologic response (SVR) **increases** from 97% to 99% (Table 11, row *p*). CPB = 555
- Assume the rate of sustained virologic response (SVR) **decreases** from 97% to 95% (Table 11, row *p*). CPB = 554

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with one-time screening for HCV infection in BC adults born between 1945 and 1965.

In modelling CE, we made the following assumptions:

- Screening for HCV We assumed that there would be two office visits associated with screening, one to initiate screening and one to discuss lab results and follow-up treatment, if necessary (Table 12, row *l*). Furthermore, we have assumed that 50% of the office visit would be required (as per the Reference Document) but that the entire office visit to discuss lab results would be required if the lab test is positive.
- An HCV antibody test is used to determine if HCV antibodies are present in the serum. HCV antibodies are produced when an individual is exposed to HCV and usually remain present for life. Anti-HCV becomes detectable 5-10 weeks after infection, and confirms that the individual has been infected at some time. Nucleic Acid Testing (NAT) is required to confirm if active infection is present by detecting hepatitis C RNA. If HCV RNA is detected, a repeat HCV RNA test would be performed after 6 months to establish chronic infection.¹⁴¹²
- In BC, the majority (95%) of HCV antibody tests and all HCV RNA tests are performed at the BC Center for Disease Control (BCCDC) Public Health Laboratory.¹⁴¹³
- We estimated the cost of a hepatitis C antibody EIA test to be \$24.28 in 2016 CAD\$ or \$27.40 in 2022 CAD\$ (Table 12, row *p*).¹⁴¹⁴ A positive screening test would be followed by a hepatitis C RNA amp probe and a hepatitis C RNA quant test to confirm RNA detection and quantify RNA for a total cost per positive screening test of \$234.62 in 2016 CAD\$ or \$264.73 in 2022 CAD\$.¹⁴¹⁵ Total lab costs associated with a positive screening test of \$529.46 (Tale 12, row *q*) include a repeat HCV RNA test after 6 months to establish chronic infection.
- **Cost of Direct-Acting Antivirals** (DAA) As noted previously, the majority of current HCV treatment in BC is with Epclusa, Maviret and Zepatier.

¹⁴¹² BC Centre for Disease Control. *Communicable Disease Control: Hepatitis C*. August 2016. Available online at <u>http://www.bccdc.ca/resource-</u>

gallery/Documents/Guidelines%20and%20Forms/Guidelines%20and%20Manuals/Epid/CD%20Manual/Chapter %201%20-%20CDC/HepC_Guidelines.pdf. Accessed November 2019.

¹⁴¹³ BC Centre for Disease Control. *Communicable Disease Control: Hepatitis C*. August 2016. Available online at <u>http://www.bccdc.ca/resource-</u>

gallery/Documents/Guidelines%20and%20Forms/Guidelines%20and%20Manuals/Epid/CD%20Manual/Chapter %201%20-%20CDC/HepC_Guidelines.pdf. Accessed November 2019.

 ¹⁴¹⁴ Leggett L, Coward S, Soril L, et al. *Hepatitis C Screening in Alberta: A Health Technology Assessment*.
 Government of Alberta. 2016. Available at <u>https://open.alberta.ca/publications/hepatitis-c-screening-in-alberta</u>.
 Accessed November 2019.
 ¹⁴¹⁵ Ibid.

- Epclusa is made by Gilead Sciences and contains the following medicines: sofosbuvir – 400 mg and velpatasvir – 100 mg. The wholesale price of Epclusa in Canada is reported as \$60,000 per treatment (1 pill per day x 12 weeks).¹⁴¹⁶ Using the Pacific Blue Cross Pharmacy Compass¹⁴¹⁷ and searching for "Epclusa, 400 mg-100 mg. DIN: 02456370" results in prices per pill ranging from \$728.72 - \$837.85 excluding a \$10 - \$13 dispensing fee. We calculate a treatment cost of \$61,222 -\$70,392 CAD per treatment (12 weeks of daily pills).
- **Zepatier,** made by Merck, is a fixed-dose formulation (one pill) containing the following two medicines: elbasvir 50 mg and grazoprevir 100 mg. The wholesale price of Zepatier in Canada is reported as \$60,300 per 12 week treatment.¹⁴¹⁸
- **Maviret**, made by Abbvie, consists of a combination of two DAAs (glecaprevir and pibrentasvir). The wholesale price of Maviret in Canada is reported as \$40,000 per 8-week treatment.¹⁴¹⁹ The Government of BC lists three treatment lengths with Maviret; 8, 12 and 16 weeks.¹⁴²⁰ Using the midpoint (12 weeks) results in an estimated cost of \$60,000 for a 12-week course of treatment. Using the Pacific Blue Cross Pharmacy Compass¹⁴²¹ and searching for "Maviret, 100 mg-40 mg. DIN: 02467550" results in prices per pill ranging from \$242.85 \$260.28 excluding a \$10.25 \$12.95 dispensing fee. We calculate a treatment cost of \$61,210 \$65,600 CAD per treatment (12 weeks of pills three times a day).
- While the listed prices for current DAAs are approximately \$60,000 per course of treatment, a number of countries have been able to negotiate substantial price discounts. While details of these contractual arrangements are confidential they do suggest a steep price discount, particularly if governments "present plans (to the pharmaceutical companies) that ensure a greater number of patients undertake treatment."¹⁴²²
- Available evidence suggests that Australia, Italy, Spain and Portugal have all
 negotiated DAA course prices of between \$10,000 and \$16,000.¹⁴²³ DAA prices in
 the UK have also recently been "slashed"¹⁴²⁴ leading Williams et al to use a cost of
 approximately \$17,000 in their recent UK-based cost-effectiveness modelling.¹⁴²⁵

¹⁴¹⁶ CATIE. *Hepatitis C treatment Epclusa approved in Canada—key information*. 2016 Available at <u>https://www.catie.ca/en/catienews/2016-07-20/hepatitis-c-treatment-epclusa-approved-canada-key-information</u>. Accessed November 2019.

¹⁴¹⁷ Pacific Blue Cross. *Pharmacy Compass*. 2019. Available at <u>https://www.pac.bluecross.ca/pharmacycompass</u>. Accessed November 2019.

¹⁴¹⁸ CATIE. Zepatier for hepatitis C approved in Canada. 2016 Available at

https://www.catie.ca/en/catienews/2016-01-29/zepatier-hepatitis-c-approved-canada. Accessed November 2019. ¹⁴¹⁹ ClaimSecure. *MAVIRETTM* - Short Course Antiviral Therapy for All Genotypes of Hepatitis C Virus. 2018. Available at <u>https://www.claimsecure.com/drug-reviews-blog/2018/february/maviret-short-course-antiviral-therapy-for-all-genotypes-of-hepatitis-c-virus/</u>. Accessed November 2019.

¹⁴²⁰ Government of BC. *Limited Coverage Drugs – glecaprevir-pibrentasvir*. Available at <u>https://www2.gov.bc.ca/gov/content/health/practitioner-professional-resources/pharmacare/prescribers/limited-coverage-drugs-glecaprevir-pibrentasvir</u>. Accessed November 2019.

¹⁴²¹ Pacific Blue Cross. *Pharmacy Compass.* 2019. Available at <u>https://www.pac.bluecross.ca/pharmacycompass</u>. Accessed November 2019.

¹⁴²² Douglass CH, Pedrana A, Lazarus JV et al. Pathways to ensure universal and affordable access to hepatitis C treatment. *BMC Medicine*. 2018; 16(1): 175.

¹⁴²³ Douglass CH, Pedrana A, Lazarus JV et al. Pathways to ensure universal and affordable access to hepatitis C treatment. *BMC Medicine*. 2018; 16(1): 175.

 ¹⁴²⁴ Hurley R. Slashed cost of hepatitis C drugs spurs drive to eliminate the disease. BMJ. 2018; 361: k1679.
 ¹⁴²⁵ Williams J, Miners A, Harris R et al. The Cost-Effectiveness of One-Time Birth Cohort Screening for Hepatitis C as Part of the National Health Service Health Check Programme in England. *Value in Health*. 2019:

- BC has also negotiated a confidential price reduction for DAA. For modelling purposes, we have assumed a cost per treatment for DAA in BC of \$13,500 (the midpoint between \$10,000 and \$17,000) and modified this in the sensitivity analysis from \$10,000 to \$17,000 (Table 12, row *v*).
- In their analysis of the cost-effectiveness of one-time birth cohort screening for HCV in England, Williams and collaegues asumed a 50% increase in the cost of DAA for a second course of treatment if SVR is not achieved after the first course of treatment. We have done likewise (Table 12, row *ac*).
- **Follow-up** Patients on DAA treatment would require an average of 9 follow-up visits to their physician, at weeks 2, 4, 8, 12, 16, 24, 32, 40 and 48 (Table 12, row *x*).¹⁴²⁶ Each visit would include the following three lab tests: complete blood count (CBC), thyroid stimulating hormone (TSH) and a renal panel. The costs of the lab tests are estimated at \$10.96,¹⁴²⁷ \$9.90¹⁴²⁸ and \$31.52,¹⁴²⁹ respectively, for a total cost of \$52.38¹⁴³⁰ (Table 12, row *y*). We have assumed that the entire visit would be utilized to discuss progress and lab results and that a lab visit would be associated with each physician follow-up visit.
- **Costs Avoided** As noted above, successful treatment with DAA means that a variety of diseases states (and their direct health care costs) are avoided.
- The incremental annual health care cost associated with an HCV infection (noncirrhosis stages f0 to f3) is \$383 (in 2013 CAD\$ or \$440 in 2022 CAD\$). This average cost is adjusted for the proportion of patients who are not under care, estimated to range from 39% for stage f0 down to 24% for stage f3.¹⁴³¹ These costs are based on El Saadany et al.'s research and include inpatient care, outpatient visits, diagnostic procedures, surgical procedures, and medication. Costs for each resource used were obtained from the Province of Alberta.¹⁴³²
- The incremental annual health care cost associated with compensated cirrhosis (stage f4) is \$803 (in 2013 CAD\$ or \$922 in 2022 CAD\$). These costs are also based on El Saadany et al.'s research and include inpatient care, outpatient visits, diagnostic procedures, surgical procedures, and medication.^{1433,1434}
- The incremental annual health care cost associated with decompensated cirrhosis is \$11,179 (in 2001 CAD\$ or \$16,819 in 2022 CAD\$). These costs are also based on El

¹⁴²⁶ McGarry LJ, Pawar VS, Panchmatia HR et al. Economic model of a birth cohort screening program for hepatitis C virus. *Hepatology*. 2012; 55(5): 1344-55.

¹⁴²⁷ Fee item 90205 – hematology profile

¹⁴²⁸ Fee item 92325 - thyroid stimulating hormone (TSH) – any method

¹⁴²⁹ Includes fee items 91000 (primary base fee, \$15.62), 91040 (albumin – serum/plasma, \$1.55), 91235 (bicarbonate - serum/plasma, \$2.37), 91326 (calcium – total, serum/plasma, \$1.55), 91366 (chloride - serum/plasma, \$1.49), 91421 (creatinine - serum/plasma, \$1.52), 91707 (glucose quantitative – serum/plasma, \$1.46), 92071 (phosphates – serum/plasma, \$1.62), 92100 (potassium – serum/plasma, \$1.39), 92231 (sodium – serum/plasma, \$1.38) and 92368 (urea – serum/plasma, \$1.57).

¹⁴³⁰ See https://www.dr-bill.ca/msp_billing_codes?code_search=92368. Accessed November 2023.

¹⁴³¹ Myers RP, Krajden M, Bilodeau M et al. Burden of disease and cost of chronic hepatitis C virus infection in Canada. *Canadian Journal of Gastroenterology and Hepatology*. 2014; 28(5): 243-50.

¹⁴³² El Saadany S, Coyle D, Giulivi A et al. Economic burden of hepatitis C in Canada and the potential for prevention. *European Journal of Health Economics*. 2005; 6: 159-165.

¹⁴³³ El Saadany S, Coyle D, Giulivi A et al. Economic burden of hepatitis C in Canada and the potential for prevention. *European Journal of Health Economics*. 2005; 6: 159-165.

¹⁴³⁴ Myers RP, Krajden M, Bilodeau M et al. Burden of disease and cost of chronic hepatitis C virus infection in Canada. *Canadian Journal of Gastroenterology and Hepatology*. 2014; 28(5): 243-50.

Saadany et al.'s research and include inpatient care, outpatient visits, diagnostic procedures, surgical procedures, and medication.¹⁴³⁵

- Based on data from Ontario, the cost estimates for the *acute phase of a fatal liver cancer* are \$27,560 (95% CI of \$25,747 to \$29,373) (in 2009 CAD).¹⁴³⁶ We converted this to \$34,614 in 2022 CAD.
- Based on data from Ontario, the estimated *first year costs* associated with a liver cancer survivor are \$32,717 (95% CI of \$30,591 to \$34,844) (in 2009 CAD).¹⁴³⁷ We converted this to \$41,090 in 2022 CAD.
- Based on data from the US, the *ongoing annual costs* associated with a liver cancer survivor after the first year are estimated at \$6,611 (in 2010 USD) or \$7,044 in 2017 CAD.¹⁴³⁸ Survival following liver cancer averages 4.7 years (see Reference Document).
- The cost for a liver transplant, including pre-transplant work-up, the transplant and the first year post-transplant care cost \$121,732 (in 1998 CAD\$ or \$197,959 in 2022 CAD\$). Annual costs following the first year post-transplant average \$4,882 (in 1998 CAD\$ or \$7,939 in 2022 CAD\$).¹⁴³⁹
- Treatment based cures of HCV infection have a positive effect on extrahepatic disease states such as type 2 diabetes, chronic kidney disease and mood and anxiety disorders.¹⁴⁴⁰ We have assumed that the costs associated with being in a state of non-cirrhosis in HCV positive individuals noted above takes into account the potential costs associated with extrahepatic manifestations
- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.

Based on these assumptions, the estimated cost per QALY would be \$3,846 (Table 12, row *aw*). This represents the potential CE of one-time screening for 83% of the previously unscreened BC birth cohort born between 1945 and 1964 and treating 88% of individuals detected with RNA+ HCV with direct acting antiviral (DAA) treatment.

¹⁴³⁵ El Saadany S, Coyle D, Giulivi A et al. Economic burden of hepatitis C in Canada and the potential for prevention. *European Journal of Health Economics*. 2005; 6: 159-165.

¹⁴³⁶ de Oliveira C, Bremner K, Pataky R et al. Understanding the costs of cancer care before and after diagnosis for the 21 most common cancers in Ontario: a population-based descriptive study. *Canadian Medical Association Journal Open*. 2013; 1(1): E1-E8.

¹⁴³⁷ de Oliveira C, Bremner K, Pataky R et al. Understanding the costs of cancer care before and after diagnosis for the 21 most common cancers in Ontario: a population-based descriptive study. *Canadian Medical Association Journal Open*. 2013; 1(1): E1-E8.

¹⁴³⁸ Mariotto A, Robin Y, Shao Y et al. Projections of the cost of cancer care in the United States: 2010–2020. *Journal of the National Cancer Institute*. 2011; 103(2): 117-28. This study included the costs of care for 14 major cancers which did not include liver cancer. We used the 'other' cancer category to estimate ongoing annual costs for liver cancer.

¹⁴³⁹ Taylor M, Grieg P, Detsky A, et al. Factors associated with the high cost of liver transplantation in adults. *Canadian Journal of Surgery*. 2002; 45(6): 425-434.

¹⁴⁴⁰ Rossi C, Jeong D, Wong S, et al. Sustained virological response from interferon-based hepatitis C regimens is associated with reduced risk of extrahepatic manifestations. *Journal of Hepatology*. 2019; 71: 1116-1125.

Table 12: CE of Screening to Detect and Treat Hepatitis C Infection in a Birth Cohort of40,000 (B.C.)									
Row Label	Variable	Base Case	Data Source						
а	Median age of Birth Cohort (2019)	65	Table 11. row a						
b	Birth Cohort population of 65 year olds	35.996	Table 11, row b						
C	Estimated # of individuals in Birth Cohort unscreened	24.683	Table 11. row e						
d	Adherence with screening	83.3%	Table 11. row l						
e	Population screened	20.561	= c * d						
f	Estimated # of individuals in Birth Cohort living with undiagnosed HVC	183	Table 11. row i						
g	Anti-HCV positive tests	152	= d * f						
h	Anti-HCV negative tests	20.409	= e - g						
i	Cases of undiagnosed RNA+ HCV infection detected through screening	113.3	Table 11, row m						
i	Eligible and accepting treatment	87.5%	Table 11. row n						
k	Treated cases	99.2	= i + i						
	Costs of screening		,						
I	# of office visits required - 1 to initiate screening, 1 to discuss lab results	2	Assumed						
m	Cost of 10-minute office visit	\$35.97	Ref Doc						
n	Portion of office visit needed	50%	Ref Doc						
0	Cost of office visits	\$745,036	(e * l * m * n) + (g * l)						
p	Lab costs initial screening test	\$27.40	√ V						
	Lab costs per positive screening tests (including 2nd confirmatory test at								
q	6 months)	\$529.46	V						
r	Costs of lab tests	\$643.871	(e * p) + (g * q)						
S	Cost of patient time and travel for office visit and per lab test	\$74.32	Ref Doc						
t	Patient time costs - screening	\$3,067,436	(e * l * n * s) + (e * s) + (g * s)						
u	Total costs of screening	\$4,456,343	= o + r + t						
	Cost of treatment - First Round								
v	Drug costs per treatment - antiviral therapy	\$13,500	V						
w	Costs of antiviral therapy	\$1,338,528	= k * v						
х	Follow-up visits during treatment	9	V						
у	Cost of lab tests / follow-up	\$52.38	V						
Z	Follow-up costs (office visits & lab costs)	\$78,839	= k * (x * (m + y))						
aa	Patient time (office & lab visits)	\$132,639	= k * (x * 2) * s						
ab	Total cost of treatment - first round	\$1,550,006							
	Cost of treatment - Second Round								
ас	Drug costs per treatment - antiviral therapy	\$20,250	= v * 1.5						
ad	Effectiveness of antiviral therapy in producing SVR (i.e. a cure)	97.0%	Table 11, row p						
ae	Number of patients requiring a second round of treatment	3.0	= k - (k * ad)						
af	Costs of antiviral therapy	\$60,234	= ac * ae						
ag	Follow-up visits during treatment	9	٧						
ah	Follow-up costs (office visits & lab costs)	\$2,365	= (ae * ag) * (m + y)						
ai	Patient time (office & lab visits)	\$3,979	= (ae * ag) * 2 * s						
aj	Total cost of treatment - second round	\$66,578	= af + ah + ai						
ak	Total cost of screening and treatment	\$6,072,928	= u + ab + aj						
	Costs Avoided								
al	Costs avoided, living with HCV stages f0 - f3	\$439,634	Calculated						
am	Costs avoided, living with cirrhosis	\$625,919	Calculated						
an	Costs avoided, living with decompensated cirrhosis	\$1,879,339	Calculated						
ao	Costs avoided, living with HCC	\$418,063	Calculated						
ар	Costs avoided, dying of HCC	\$704,896	Calculated						
aq	Costs avoided, living with liver transplant	\$1,100,076	Calculated						
ar	Total cost avoided (undiscounted)	\$5,167,927	= SUM (alaq)						
	CE calculation	44							
as	Net Costs (undiscounted)	\$905,001	= ak - ar						
at	QALYS saved (undiscounted)	555	Table 11, row aj						
au	Losts (1.5% discount rate)	\$1,795,006	Calculated						
av	QALYs saved (1.5% discount rate)	467	Calculated						
aw	CE (\$/QALY saved)	Ş3,846	= au / av						

√ = Estimates from the literature

We also modified several major assumptions and recalculated the cost per QALY as follows:

- Assume the annual progression probabilities are **reduced** as follows:
 - \circ From cirrhosis to hepatic decomposition is reduced from 4.5% to 3.0%
 - From hepatic decomposition to death is reduced from 17.6% to 13.5%
 - From hepatocellular carcinoma to death is reduced from 70.7% to 43.0% in Year 1 and from 16.2% to 11.0% in subsequent years.
 - CE = \$3,989
- Assume the annual progression probabilities are **increased** as follows:
 - From cirrhosis to hepatic decomposition is reduced from 4.5% to 6.0%
 - From hepatic decomposition to death is reduced from 17.6% to 21.6%
 - From hepatocellular carcinoma to death is reduced from 70.7% to 77.0% in Year 1 and from 16.2% to 23.0% in subsequent years.
 - CE = \$3,525
- Assume that the proportion of the unscreened population within the 1945-64 birth cohort that would accept screening is **reduce**d from 83.3% to 76.6% (Table 11, row 1). CE = \$3,846 (no change)
- Assume that the proportion of the unscreened population within the 1945-64 birth cohort that would accept screening is **increased** from 83.3% to 90.0% (Table 11, row l). CE = \$3,846 (no change)
- Assume that the uptake of treatment is **reduced** from 87.5% to 80.0% (Table 11, row n). CE = \$4,741
- Assume that the uptake of treatment is **increase**d from 87.5% to 95.0% (Table 11, row n). CE = \$3,092
- Assume there is **mor**e of an annual QoL decrement associated with various disease states follows:
 - Non-cirrhosis from -8.8% to -13.8%
 - Compensated cirrhosis from -13.8% to -18.8%
 - HCC from -10.0% to -15.0%
 - Treatment from -11.3% to -6.3%
 - \circ CE = \$3,411
- Assume there is **less** of an annual QoL decrement associated with various disease states follows:
 - Non-cirrhosis from -8.8% to -3.8%
 - Compensated cirrhosis from -13.8% to -8.8%
 - Decompensated cirrhosis from -18.8% to -8.8%
 - \circ $\,$ HCC from -10.0% to -6.3% $\,$
 - Treatment from -11.3% to -16.3%
 - CE = \$4,484

- Assume the proportion of an office visit required is **reduced** from 50% to 33% (Table 12, row n). CE = \$2,194
- Assume the proportion of an office visit required is **increased** from 50% to 67% (Table 12, row n). CE = \$5,498
- Assume the costs of DAA per treatment are **reduced** from \$13,500 to \$10,000 (Table 12, row v). CE = \$3,069
- Assume the costs of DAA per treatment are **increased** from \$13,500 to \$17,000 (Table 12, row v). CE = \$4,623
- Assume the annual treatment costs per disease state are **reduced** by 25%. **CE** = **\$6,137**
- Assume the annual treatment costs per disease state are **increased** by 25%. **CE** = **\$1,554**
- Assume the rate of sustained virologic response (SVR) **increases** from 97% to 99% (Table 11, row *p*). CE = \$3,740
- Assume the rate of sustained virologic response (SVR) **decreases** from 97% to 95% (Table 11, row *p*). CE = \$3,962

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with onetime screening for Hepatitis C infection for 83% of the previously unscreened BC birth cohort born between 1945 and 1964 and treating 88% of individuals detected with RNA+ HCV with direct acting antiviral (DAA) treatment is estimated to be 467 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$3,846 per QALY (see Table 13).

Table 13: Screening to Detec	t and Treat	t Hepatitis	C Infection
in a Birth Coho	rt of 40,00	0 (B.C.)	
Sur	mmary		
	Base		
	Case	Rar	nge
CPB (Potential QALYs Gained)			
1.5% Discount Rate	467	388	526
3% Discount Rate	396	329	449
0% Discount Rate	555	463	623
CE (\$/QALY) including patient time c	osts		
1.5% Discount Rate	\$3,846	\$1,554	\$6,137
3% Discount Rate	\$6,300	\$4,046	\$8,555
0% Discount Rate	\$1,632	Cost-saving	\$3,962
CE (\$/QALY) excluding patient time of	osts		
1.5% Discount Rate	Cost-saving	Cost-saving	Cost-saving
3% Discount Rate	Cost-saving	Cost-saving	\$473
0% Discount Rate	Cost-saving	Cost-saving	Cost-saving

Our calculated cost per QALY of \$3,846 (ranging from \$1,554 to \$6,137) is substantially lower than the Canadian estimate modelled by Wong et al in 2015 ranging from \$34,359 to \$44,034.¹⁴⁴¹ There are a number of important differences between our model and the Wong model.

First, the Wong model is based on screening and treating individual's ages 25-64 years or 45-64 years while our model is based on screening the 1945-64 birth cohort with an average age of 65 years.

Second, the Wong model assumed a price per treatment of approximately \$55,000 compared with our current estimate of \$13,500. Changing our base case cost per treatment to \$55,000 would increase our cost per QALY from \$3,846 to \$13,058.

Third, the Wong model does not appear to include healthcare costs avoided associated with treatment success. If our model excluded these costs, our cost per QALY would increase from \$3,846 to \$13,011.

If these last two variables were modified simultaneously in our base case, then our cost per QALY would increase from \$3,846 to \$22,224.

¹⁴⁴¹ Wong WW, Tu H-A, Feld JJ et al. Cost-effectiveness of screening for hepatitis C in Canada. *Canadian Medical Association Journal.* 2015; 187(3): E110-E21.

Behavioural Counselling Interventions

Definition

In 2002, the USPSTF published an article outlining its vision for a broader appreciation of the importance of behavioural counselling interventions in clinical care.¹⁴⁴² The paper includes important definitional and context information for this area and we have thus quoted liberally from the paper below.

Behavioral counselling interventions address complex behaviors that are integral to daily living; they vary in intensity and scope from patient to patient; they require repeated action by both patient and clinician, modified over time, to achieve health improvement; and they are strongly influenced by multiple contexts (family, peers, worksite, school, and community). Further, "counselling" is a broadly used but imprecise term that covers a wide array of preventive and therapeutic activities, from mental health or marital therapy to the provision of health education and behavior change support. Thus, we have chosen to use the term "behavioral counselling interventions" to describe the range of personal counselling and related behaviorchange interventions that are effectively employed in primary care to help patients change health-related behaviors. (p.270)

Behavioral counselling interventions in clinical care are those activities delivered by primary care clinicians and related healthcare staff to assist patients in adopting, changing, or maintaining behaviors proven to affect health outcomes and health status. Common health promoting behaviors include smoking cessation, healthy diet, regular physical activity, appropriate alcohol use, and responsible use of contraceptives. (p. 269-70)

The strongest evidence for the efficacy of primary care behavior-change interventions comes from tobacco-cessation research and, to a lesser extent, problem drinking. Accumulating evidence also shows the effectiveness of similar interventions for other behaviors. These interventions often provide more than brief clinician advice. Effective interventions typically involve behavioral counselling techniques and use of other resources to assist patients in undertaking advised behavior changes. For example, intervention adjuncts to brief clinician advice may involve a broader set of healthcare team members (e.g., nurses, other office staff, health educators, and pharmacists), a number of complementary communication channels (e.g., telephone counselling, video or computer assisted interventions, self-help guides, and tailored mailings), and multiple contacts with the patient. (p. 268)

In 2014, the USPSTF published an article discussing challenges it encounters in aggregating the behavioural counselling intervention literature, including clear descriptions of the study population, intervention protocols, assessment of outcomes, and linking behaviour changes to health outcomes.¹⁴⁴³ Researchers are encouraged to pay closer attention to these issues in designing and writing up their behavioural intervention research.

¹⁴⁴² Whitlock EP, Orleans CT, Pender N et al. Evaluating primary care behavioral counselling interventions: an evidence-based approach. *American Journal of Preventive Medicine*. 2002; 22(4): 267-84.

¹⁴⁴³ Curry S, Grossman D, Whitlock E et al. Behavioral counselling research and evidence-based practice recommendations: U.S. Preventive Services Task Force Perspectives. *Annals of Internal Medicine*. 2014; 160: 407-13.

Prevention of Sexually Transmitted Diseases

Canadian Task Force on Preventive Health Care (2001)

A 2001 report from the CTFPHC titled "Counselling for Risky Health Habits: A Conceptual Framework for Primary Care Practitioners" noted that,

Risky lifestyle choices contribute to many contemporary health conditions. Primary care practitioners have frequent opportunities to help patients clarify issues and alter adverse behaviour patterns....The six risky behaviours addressed in this paper are appropriate targets for counselling. Some situations respond to brief on-the-spot advice, others require a few repeated counselling sessions utilizing concepts from behavioural theory, and certain ones need referral to a structured counselling program that employs a longer time-frame and allows for the opportunity to use a range of methods.¹⁴⁴⁴

The "six risky behaviours" include dietary patterns, unintentional injury, problem drinking, physical inactivity patterns, **risky sexual patterns** and cigarette smoking.

United States Preventive Services Task Force Recommendations (2014)

The USPSTF recommends intensive behavioral counselling for all sexually active adolescents and for adults who are at increased risk for STIs. (B recommendation)

All sexually active adolescents are at increased risk for STIs. Other risk groups include adults with current STIs or other infections within the past year, adults who have multiple sex partners, and adults who do not consistently use condoms.

Clinicians should be aware of populations with a particularly high prevalence of STIs. African Americans have the highest STI prevalence of any racial/ethnic group, and prevalence is higher in American Indians, Alaska Natives, and Latinos than in white persons. Increased STI prevalence rates are also found in men who have sex with men (MSM), persons with low incomes living in urban settings, current or former inmates, military recruits, persons who exchange sex for money or drugs, persons with mental illness or a disability, current or former intravenous drug users, persons with a history of sexual abuse, and patients at public STI clinics.

Behavioral counselling interventions can reduce a person's likelihood of acquiring an STI. Interventions ranging in intensity from 30 min to ≥ 2 h of contact time are beneficial; evidence of benefit increases with intervention intensity. Interventions can be delivered by primary care clinicians or through referral to trained behavioral counselors. Most successful approaches provide basic information about STIs and STI transmission; assess risk for transmission; and provide training in pertinent skills, such as condom use, communication about safe sex, problem solving, and goal setting.¹⁴⁴⁵

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with behavioural counselling interventions for the prevention of sexually transmitted diseases in a British Columbia birth cohort of 40,000.

¹⁴⁴⁴ Canadian Task Force on Preventive Health Care. *Counselling for Risky Health Habits: A Conceptual Framework for Primary Care Practitioners* 2001. Available at http://canadiantaskforce.ca/files/guidelines/2001-risky-health-habits-en.pdf. Accessed February 2015.

¹⁴⁴⁵ LeFevre ML. Behavioral counselling interventions to prevent sexually transmitted infections: US Preventive Services Task Force recommendation statement. *Annals of Internal Medicine*. 2014; 161(12): 894-901.

In estimating CPB, we made the following assumptions:

The age and sex specific incidence rates per 100,000 for acute hepatitis B are taken from the BCCDC Annual Summary of Reportable Diseases 2016.¹⁴⁴⁶ The age and sex specific incidence rates per 100,000 for human immunodeficiency virus (HIV) are taken from the BCCDC HIV Annual Annual Report 2015.¹⁴⁴⁷ The age and sex specific incidence rates per 100,000 for chlamydia, gonorrhea and syphilis infections are taken from the BCCDC Annual Report 2015.¹⁴⁴⁸ The incidence of human papillomavirus (HPV) infection in females is taken from an Ontario study.¹⁴⁴⁹ We have assumed that the age specific incidence rate for males is the same as for females.¹⁴⁵⁰ We calculated the incidence of herpes simplex virus type 2 (HSV-2) infection based on the number of patients within each age group who had their first herpes-related physician billings in 2006, as reported by the BC Centre for Disease Control.¹⁴⁵¹ We reduced the rates of first herpes-related visits proportional to the percentage of age-specific laboratory-diagnosed HSV infections in BC that were from genital specimens and were confirmed HSV-2. In 2005, approximately 31% of HSV-2 cases were identified in males and 69% percent in females; therefore, new cases were distributed between sexes according to these proportions (see Table 1).

	Table 1: Sexually Transmitted Infections in British Columbia													
	Rate per 100,000 by Sex and Age Group													
	HI\	/	Chlam	ydia	Gonor	rhea	Hepatitis F	3 - Acute	Syph	ilis	HPV		HSV	/-2
	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male
10-14	-	-	40	2	4	-	-	-	-	-	NA	NA	2.8	1.3
15-19	2	1	1,433	322	121	64	-	-	1	6	25,000	25,000	140.1	63.3
20-24	1	11	1,993	961	195	219	-	-	5	35	8,800	8,800	209.6	94.7
25-29	1	23	1,111	895	162	281	-	-	3	64	8,300	8,300	222.9	100.7
30-39	4	14	427	395	76	202	-	0.3	2	61	13,000	13,000	248.0	112.2
40-59	2	13	86	103	17	69	0.2	0.3	1	49	7,600	7,600	164.9	74.5
60+	1	3	6	17	2	15	-	0.2	0	10	NA	NA	113.0	51.6
NA = no	IA = not available													

• The age- and sex- specific incidence rates were combined with years of life in a given age group by sex in the BC birth cohort to calculate the expected number of STIs by age and sex (see Tables 2 and 3).

¹⁴⁴⁷ BC Centre for Disease Control. HIV Annual Report 2015. Available at <u>http://www.bccdc.ca/resource-gallery/Documents/Statistics%20and%20Research/Statistics%20and%20Reports/STI/HIV_Annual_Report_2015-</u>

FINAL.pdf. Accessed February 2018.

¹⁴⁵⁰ Giuliano AR, Lu B, Nielson CM et al. Age-specific prevalence, incidence, and duration of human papillomavirus infections in a cohort of 290 US men. *Journal of Infectious Diseases*. 2008; 198(6): 827-35.

6D1081449B98/0/STI_Report_TrendsInHSV19922006_20090520.pdf. Accessed March 2015.

¹⁴⁴⁶ BC Centre for Disease Control. *British Columbia Annual Summary of Reportable Diseases 2016.* 2017. Available at <u>http://www.bccdc.ca/resource-</u>

gallery/Documents/Statistics%20and%20Research/Statistics%20and%20Reports/Epid/Annual%20Reports/2016C DAnnualReportFinal.pdf. Accessed February 2018.

¹⁴⁴⁸ BC Centre for Disease Control. STI Annual Report 2015. Available at <u>http://www.bccdc.ca/resource-gallery/Documents/Statistics%20and%20Research/Statistics%20and%20Reports/STI/STI Annual Report 2015-</u> FINAL.pdf. Accessed February 2018.

¹⁴⁴⁹ Sellors JW, Karwalajtys TL, Kaczorowski J et al. Incidence, clearance and predictors of human papillomavirus infection in women. *Canadian Medical Association Journal*. 2003; 168(4): 421-5.

 ¹⁴⁵¹ Li X, Kim PH-J and Gilbert M. *Trends in Herpes Simplex Virus Cases in British Columbia, 1992-2006.* 2008.
 Available at http://www.bccdc.ca/NR/rdonlyres/11F4B322-54F7-48AC-A116-

Table 2: Estimated Number of Sexually Transmitted Infectionsin a Male Birth Cohort of 20,000

Age Group	Individuals in Birth Cohort	Years of Life in Birth Cohort	Chlamydia	HIV	Gonorrhea	Hepatitis B - Acute	Syphilis	HPV	HSV-2
15-19	19,882	99,412	320	1	63	0	6	24,853	63
20-24	19,815	99,073	952	11	217	0	34	8,718	94
25-29	19,701	98,505	882	22	277	0	63	8,176	99
30-34	19,564	97,819	386	13	197	0	59	12,716	110
35-39	19,408	97,038	383	13	196	0	59	12,615	109
40-44	19,223	96,115	99	12	66	0	47	7,305	72
45-49	18,993	94,967	98	12	65	0	46	7,217	71
50-54	18,690	93,451	96	12	64	0	46	7,102	70
55-59	18,270	91,351	94	12	63	0	44	6,943	68
Total Ages 15 - 59		867,731	3,312	110	1,208	2	405	95,646	754

Table 3: Estimated Number of Sexually Transmitted Infections in a Female Birth Cohort of 20,000

Age	Individuals in Birth	Years of Life in Birth				Hepatitis			
Group	Cohort	Cohort	Chlamydia	HIV	Gonorrhea	B - Acute	Syphilis	HPV	HSV-2
15-19	19,899	99,493	1,425	2	120	0	1	24,873	139
20-24	19,867	99,333	1,980	1	194	0	4	8,741	208
25-29	19,825	99,124	1,101	1	161	0	3	8,227	221
30-34	19,773	98,864	422	4	76	0	2	12,852	245
35-39	19,707	98,536	421	4	75	0	2	12,810	244
40-44	19,624	98,118	84	2	16	0	1	7,457	162
45-49	19,509	97,547	84	2	16	0	1	7,414	161
50-54	19,349	96,744	83	2	16	0	1	7,353	160
55-59	19,116	95,582	82	2	16	0	1	7,264	158
Total Age	es 15 - 59	883,342	5,683	21	690	1	17	96,991	1,698

- The data in Tables 2 and 3 was used to populate rows *a n* in Table 4.
- High intensity (> 2 hours) behavioural counselling interventions are associated with a 62% (OR = 0.38, 95% CI of 0.24–0.60) reduction in STI incidence in adolescents and a 30% (OR = 0.70, 95% CI of 0.56–0.87) reduction in STI incidence in adults (Table 4, rows *o* & *p*).¹⁴⁵²
- Reductions in quality of life attributable to an infection with chlamydia, gonorrhea, HPV and HSV-2 are based on data provided in the relevant appendixes of the document *Vaccines for the 21st Century: A Tool for Decision Making* (Table 4, rows *y*, *aa*, *dd* & *ee*).¹⁴⁵³ These appendixes include an estimated rate for all sequelae

¹⁴⁵² O'Connor EA, Lin JS, Burda BU et al. Behavioral sexual risk-reduction counselling in primary care to prevent sexually transmitted infections: an updated systematic evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2014; 161(12): 874.

¹⁴⁵³ Institute of Medicine. *Vaccines for the 21st Century: A Tool for Decision Making*. Washington, DC: National Academy Press; 2000.

following the infection, together with the time in a given state and the relevant change in quality of life over that time period.

- Vaccines for the 21st Century: A Tool for Decision Making suggest that chronic pelvic pain is associated with a 0.40 reduction in quality of life for a period of 22.73 years. The GBD study, however, found that moderate pelvic pain is associated a disability weight of 0.114 (95% CI of 0.078 to 0.159).¹⁴⁵⁴ Given the average QoL of women ages less than 30 of 0.914 (see Reference Document), the 0.114 disability weight results in a reduced QoL of 12.5% (95% CI of 8.5% to 17.4%). We therefore modified the assumption in Vaccines for the 21st Century: A Tool for Decision Making from 0.40 reduction in quality of life associated with chronic pelvic pain to 0.125.
- Vaccines for the 21st Century: A Tool for Decision Making suggest that infertility is associated with a 0.18 reduction in quality of life for 22.73 years. The GBD study, however, found that primary infertility ("wants to have a child and has a fertile partner but the couple cannot conceive") is associated with a disability weight of just 0.008 (95% CI of 0.003 to 0.015).¹⁴⁵⁵ Given the average QoL of women ages less than 50 of approximately 0.886 (see Reference Document), the 0.008 disability weight results in a reduced QoL of 0.9% (95% CI of 0.3% to 1.7%). We therefore modified the assumption in Vaccines for the 21st Century: A Tool for Decision Making from 0.18 reduction in quality of life associated with infertility to 0.009.
- We assumed that the average HIV infection would occur at age 40^{1456} with 44 years of life remaining at a 17% reduced quality of life (Table 4, row z).¹⁴⁵⁷ We assumed a reduction of 0.05 QALYs per infection with syphilis (Table 4, row *cc*), roughly equivalent to the calculated reductions for chlamydia (0.049, Table 4, row *y*) and gonorrhea (0.055, Table 4, row *aa*). We assumed an 18.5% reduction in quality of life attributable to a hepatitis B acute infection (Table 4, row *bb*).¹⁴⁵⁸
- Other assumptions used in assessing the clinically preventable burden are detailed in the Reference Document.

Based on these assumptions, the CPB associated with behavioural counselling interventions for the prevention of sexually transmitted diseases is 3,267 QALYs (Table 4, row *ff*).

¹⁴⁵⁴ Institute for Health Metrics and Evaluation. *GBD 2016 sequelae, health states, health state lay descriptions, and disability weights*. Available online at <u>http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights</u>. Accessed January 2018.
¹⁴⁵⁵ Ibid.

¹⁴⁵⁶ Siegfried N, Uthman OA and Rutherford GW. Optimal time for initiation of antiretroviral therapy in asymptomatic, HIV-infected, treatment-naive adults. *The Cochrane Library*. 2010: 2.

¹⁴⁵⁷ Long EF, Mandalia R, Mandalia S et al. Expanded HIV testing in low-prevalence, high-income countries: a cost-effectiveness analysis for the United Kingdom. *PLoS One*. 2014; 9(4): e95735.

¹⁴⁵⁸ Colombo GL, Gaeta GB, Viganò M et al. A cost-effectiveness analysis of different therapies in patients with chronic hepatitis B in Italy. *ClinicoEconomics and Outcomes Research*. 2011; 3: 37.

Deur		51 -40,000	
Label	Variable	Base Case	Data Source
а	Estimated number of STIs in birth cohort as adolescents - Chlamydia	1,746	Tables 2 and 3
b	Estimated number of STIs in birth cohort as adults - Chlamydia	7,250	Tables 2 and 3
с	Estimated number of STIs in birth cohort as adolescents - HIV	4	Tables 2 and 3
d	Estimated number of STIs in birth cohort as adults - HIV	127	Tables 2 and 3
e	Estimated number of STIs in birth cohort as adolescents - Gonorrhea	183	Tables 2 and 3
f	Estimated number of STIs in birth cohort as adults - Gonorrhea	1,715	Tables 2 and 3
g	Estimated number of STIs in birth cohort as adolescents - Hep B-Acute	0	Tables 2 and 3
h	Estimated number of STIs in birth cohort as adults - Hep B-Acute	2	Tables 2 and 3
i	Estimated number of STIs in birth cohort as adolescents - Syphilis	7	Tables 2 and 3
j	Estimated number of STIs in birth cohort as adults - Syphilis	415	Tables 2 and 3
k	Estimated number of STIs in birth cohort as adolescents - HPV	49,726	Tables 2 and 3
I	Estimated number of STIs in birth cohort as adults - HPV	142,911	Tables 2 and 3
m	Estimated number of STIs in birth cohort as adolescents - HSV-2	202	Tables 2 and 3
n	Estimated number of STIs in birth cohort as adults - HSV-2	2,250	Tables 2 and 3
	Benefits Associated with Behavioural Counselling		
0	Effectiveness of high intensity behavioural counselling in reducing STI	67%	N
0	incidence in adolescents	0278	v
n	Effectiveness of high intensity behavioural counselling in reducing STI	30%	v
٩	incidence in adults	3670	•
q	Adherence with behavioural counselling	29%	Ref Doc
r	Estimated # of chlamydia infections avoided	945	= ((a * o) + (b * p)) * q
S	Estimated # of HIV infections avoided	12	= ((c * o) + (d * p)) * q
t	Estimated # of gonorrhea infections avoided	182	= ((e * o) + (f * p)) * q
u	Estimated # of Hep B-Acute infections avoided	0.2	= ((g * o) + (h * p)) * q
v	Estimated # of syphilis infections avoided	37	= ((i * o) + (j * p)) * q
w	Estimated # of HPV infections avoided	21,374	= ((k * o) + (l * p)) * q
х	Estimated # of HSV-2 infections avoided	232	= ((m * o) + (n * p)) * q
У	Reduction in QALYs per infection - Chlamydia	0.049	٧
Z	Reduction in QALYs per infection - HIV	7.48	٧
aa	Reduction in QALYs per infection - Gonorrhea	0.055	٧
bb	Reduction in QALYs per infection - Hep B - Acute	0.185	
сс	Reduction in QALYs per infection - Syphilis	0.050	Assumed
dd	Reduction in QALYs per infection - HPV	0.146	V
ee	Reduction in QALYs per infection - HSV-2	0.0028	٧
ff	Potential OALVs gained Behavioural Counseling increasing from 0% to 20%	2 267	= r * y + s * z + t * aa + u * bb
	Forential QALTS gamen, behavioural Counsening increasing from 0% to 29%	5,207	+ v * cc + w * dd * x * ee

Table 4: CPB of Behavioural Counselling Interventions for the Prevention of SexuallyTransmitted Infections in a Birth Cohort of 40,000

∨ = Estimates from the literature

We also modified a number of major assumptions and recalculated the CPB as follows:

- Assume the effectiveness of high intensity behavioural counselling interventions in reducing the incidence of STIs is reduced from 62% to 40% in adolescents and from 30% to 13% in adults (Table 4, rows *o* & *p*): **CPB = 1,697 QALYs**.
- Assume the effectiveness of high intensity behavioural counselling interventions in reducing the incidence of STIs is increased from 62% to 74% in adolescents and from 30% to 44% in adults (Table 4, rows *o* & *p*): **CPB = 4,472 QALYs**.

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with behavioural counselling interventions for the prevention of sexually transmitted diseases in a British Columbia birth cohort of 40,000.

In estimating CE, we made the following assumptions:

• We have assumed that all individuals between the ages of 15 and 59 who had sexual intercourse within the past 12 months would be eligible for this intervention. Rates of sexually transmitted diseases are relatively rare before age 15 and after age 60 (see Table 1 above). The rates by sex and age group for those who have 'ever had sexual intercourse' and 'had sexual intercourse in the past 12 months' are taken from the 2010 Canadian Community Health Survey Public Use Microdata File.¹⁴⁵⁹ Based on this data, approximately 81% of individuals between the ages of 15 and 59 have been sexually active within the past 12 months (see Table 5).

Table 5: Sexual Behaviours in British Columbia										
By Age and Sex, 2010										
Had sexual										
	Ever had	d sexual	intercour	se in past	BC Popu	lation in	BC Popu	lation at		
Age	interc	ourse	12 m	onths	20	10	Ri	sk		
Group	Males	Females	Males	Females	Males	Females	Males	Females		
15-17	31.9%	19.3%	28.4%	17.7%	87,147	78,702	24,774	13,932		
18-19	70.0%	63.3%	61.8%	59.9%	59,622	54,725	36,876	32,794		
20-24	84.4%	87.5%	74.6%	77.7%	154,199	150,826	114,961	117,200		
25-29	91.9%	91.2%	87.0%	84.1%	158,599	158,757	138,019	133,532		
30-34	99.3%	96.6%	93.6%	93.2%	146,617	146,738	137,211	136,730		
35-39	95.7%	96.7%	89.1%	91.1%	148,222	151,380	132,139	137,833		
40-44	99.5%	97.9%	91.4%	85.6%	158,902	162,455	145,166	139,097		
45-49	99.5%	95.9%	86.1%	82.7%	178,859	182,002	154,079	150,497		
50-59	99.5%	95.9%	86.1%	82.7%	328,360	331,907	282,868	274,454		
Total			82.1%	80.1%	1,420,527	1,417,492	1,166,093	1,136,069		

- **Frequency of screening** We assumed that a general practitioner would enquire about a patient's sexual behaviours once every four years (Table 7, row *c*).
- **Patient time costs for behavioural counselling intervention** We assumed three hours of patient time would be required (including travel to and from the session) (Table 7, row *o*).
- **Costs of a behavioural counselling intervention** We assumed that a clinical nurse specialist with a wage rate of \$65 per hour (\$122,000 per year) would lead the session. Their direct time involvement would be 3.5 hours (2.5 for the session and 1 hour for preparation). To these costs we added 24% for benefits (e.g., dental, long-term disability, etc.), 40% for non-productive paid hours (e.g., statutory holidays, vacations, sick time, educational leave, etc.) and 50% for overhead costs (e.g., use of the facility and support staff). Based on these assumptions, the estimated costs per behavioural counselling intervention would be \$592 (Table 7, row *n*). We have

¹⁴⁵⁹ Statistics Canada. *Canadian Community Health Survey Public Use Microdata File 2009-2010 and 2010*. All computations, use and interpretation of these data are entirely that of H. Krueger & Associates Inc.

assumed that each session would be attended by an average of 5 individuals (Table 7, row *l*).

• **Costs per infection avoided** - The direct medical costs per infection avoided are taken from a US study (Table 7, rows x - dd).¹⁴⁶⁰ These costs, provided in 2008 US dollars, were adjusted to 2022 CAD. When costs were provided separately for males and females, we estimated the combined average costs based on the proportion of infections by sex expected in BC (Table 2 and 3) (see Table 6).

	Table 6: Estimated Direct Medical Cost of Selected												
	Sexually Transmitted Infections												
		,	2008 US\$			2	022 Can	\$					
STI	Sex	Est	Rar	nge		Est	Rar	nge		% M/F	Est	Ra	ange
Chla	mydia												
	Male	\$30	\$15	\$45		\$33	\$16	\$49		37%	\$261	\$121	¢303
	Female	\$364	\$182	\$546		\$395	\$198	\$593		63%	Υ	JIJI	2552
Gon	orrhea												
	Male	\$79	\$40	\$119		\$86	\$43	\$129		64%	¢102	¢07	¢200
	Female	\$354	\$177	\$531		\$384	\$192	\$577		36%	2522	،رر 	323U
нви	1	\$2,667	\$2,172	\$2,924		\$2,897	\$2,359	\$3,176					
ніх		\$304,500	\$229,300	\$379,700		\$330,735	\$249,056	\$412,414					
HPV	,												
	Male	\$45	\$23	\$78		\$49	\$25	\$85		50%	\$128	\$65	\$221
	Female	\$191	\$96	\$329		\$207	\$104	\$357		50%	J120		
HSV	-2												
	Male	\$761	\$381	\$1,142		\$827	\$414	\$1,240		31%	\$722	\$361	\$1 083
	Female	\$621	\$311	\$932		\$675	\$338	\$1,012		69%	<u>۲۲۲</u>	1005	JI,005
Sypł	nilis	\$709	\$355	\$1,064		\$770	\$386	\$1,156					

• Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.

• Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with behavioural counselling interventions for the prevention of sexually transmitted diseases is 12,454 per QALY (Table 7, row *kk*).

¹⁴⁶⁰ Owusu-Edusei Jr K, Chesson HW, Gift TL et al. The estimated direct medical cost of selected sexually transmitted infections in the United States, 2008. *Sexually Transmitted Diseases*. 2013; 40(3): 197-201.

Table 7: CE of Behavioural Counselling Interventions for the Prevention of Sexually Transmitted						
	Infections in a Birth Cohort of 40.0	00				
Row						
Label	Variable	Base Case	Data Source			
a	Years of life between the ages of 15 and 59 in birth cohort	1.751.073	Tables 2 and 3			
b	Proportion of years sexually active	81%	Table 5			
	Costs of intervention					
с	Frequency of screening to determine sexual activity (every x years)	4	Assumed			
d	Total number of screens	437,768	= a / c			
е	Cost of 10-minute office visit	\$35.97	Ref Doc			
f	Value of patient time and travel for office visit	\$74.32	Ref Doc			
g	Portion of 10-minute office visit for screen	50%	Ref Doc			
h	Cost of screening	\$24,140,727	= d * (e + f) * g			
i	Screen positive for sexual activity	354,592	= d * b			
j	Adherence with behavioural counselling	29%	Table 4, row q			
k	Attendance at a behavioural counselling intervention	102,832	= i * j			
I	Individuals per behavioural counselling intervention	5	Assumed			
m	Total number of behavioural counselling interventions	20,566	= k / m			
n	Cost per behavioural counselling intervention	\$592	V			
0	Value of patient time and travel for behavioural counselling intervention	\$111.48	٧			
р	Cost of behavioural counselling interventions	\$23,647,395	= (m * n) + (k * o)			
	Cost avoided					
q	Estimated # of chlamydia infections avoided	945	Table 4, row r			
r	Estimated # of HIV infections avoided	12	Table 4, row s			
S	Estimated # of gonorrhea infections avoided	182	Table 4, row t			
t	Estimated # of Hep B-Acute infections avoided	0.2	Table 4, row u			
u	Estimated # of syphilis infections avoided	37	Table 4, row v			
v	Estimated # of HPV infections avoided	21,374	Table 4, row w			
w	Estimated # of HSV-2 infections avoided	232	Table 4, row x			
x	Cost of chlamydia infection avoided	\$261	V			
У	Cost of HIV infection avoided	\$330,735	V			
z	Cost of gonorrhea infection avoided	\$193	V			
аа	Cost of Hep B-Acute infection avoided	\$2,897	V			
bb	Cost of syphilis infection avoided	\$770	V			
сс	Cost of HPV infection avoided	\$128	٧			
dd	Cost of HSV-2 infection avoided	\$722	V			
	CE calculation					
ee	Cost of intervention over lifetime of birth cohort	\$47,788,122	= h + p			
ff	Costs avoided	\$7,098,383	= q * x + r * y + s * z + t * aa			
gg	QALYs saved	3,267	Table 4 row ff			
hh	Cost of intervention over lifetime of birth cohort (1.5% discount)	\$34.828.196	Calculated			
ii	Costs avoided (1.5% discount)	\$5,173.333	Calculated			
ii	QALYs saved (1.5% discount)	2,381	Calculated			
kk	CE (\$/QALY saved)	\$12,454	= (hh - ii) / jj			

√ = *Estimates from the literature*

We also modified several major assumptions and recalculated the cost per QALY as follows:

Assume the effectiveness of high intensity behavioural counselling interventions in • reducing the incidence of STIs is reduced from 62% to 40% in adolescents and from 30% to 13% in adults (Table 4, rows *o* & *p*): CE = \$26,163/QALY.

- Assume the effectiveness of high intensity behavioural counselling interventions in reducing the incidence of STIs is increased from 62% to 74% in adolescents and from 30% to 44% in adults (Table 4, rows *o* & *p*): **CE** = **\$8,437/QALY**.
- Assume screening to determine sexual activity is less frequent, carried out once every 5 years rather than once every 4 years (Table 7, rows *c*): CE = \$9,529/QALY.
- Assume screening to determine sexual activity is more frequent, carried out once every 3 years rather than once every 4 years (Table 7, rows *c*): $CE = \frac{17,329}{QALY}$.
- Assume the average number of individuals attending each behavioural counselling intervention is increased from 5 to 10 (Table 7, rows *l*): CE = \$10,589/QALY.
- Assume the average number of individuals attending each behavioural counselling intervention is reduced from 5 to 1 (Table 7, rows *l*): **CE** = **\$27,370/QALY.**
- Assume the average direct cost per HIV infection is reduced from \$330,735 to \$249,056 (Table 7, rows *y*): CE = \$12,747/QALY.
- Assume the average direct cost per HIV infection is increased from \$330,735 to \$412,414 (Table 7, rows *y*): CE = \$12,161/QALY.
- Assume the average direct cost per HPV infection is reduced from \$128 to \$65 (Table 7, rows *cc*): CE = \$12,870/QALY.
- Assume the average direct cost per HPV infection is increased from \$128 to \$221 (Table 7, rows *cc*): CE = \$11,846/QALY.

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with behavioural counselling interventions for the prevention of sexually transmitted diseases is estimated to be 2,381 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$12,454 per QALY (see Table 8).

Table 8: Behavioural Counselling Interventions for the Brovention of Sexually Transmitted Infections in								
a Birth Cohort of 40,000								
a birti cor								
501	Base							
	Case	Case Range						
CPB (Potential QALYs Gained)								
Gap between 0% and Best in t	he World (29%)							
1.5% Discount Rate	2,381	1,697	3,259					
3% Discount Rate	1,780	925	2,437					
0% Discount Rate	3,267	1,697	4,472					
CE (\$/QALY) including patient tim	e costs							
1.5% Discount Rate	\$12,454	\$8,437	\$27,370					
3% Discount Rate	\$12,454	\$8,437	\$27,370					
0% Discount Rate	\$12,454	\$8,437	\$27,370					
CE (\$/QALY) excluding patient tim	CE (\$/QALY) excluding patient time costs							
1.5% Discount Rate	\$3,966	\$2,237	\$18,883					
3% Discount Rate	\$3,966	\$2,237	\$18,883					
0% Discount Rate	\$3,966	\$2,237	\$18,883					

Smoking Cessation Advice and Help to Quit

United States Preventive Services Task Force Recommendations (2009)

Tobacco use, cigarette smoking in particular, is the leading preventable cause of death in the United States. Tobacco use results in more than 400 000 deaths annually from cardiovascular disease, respiratory disease, and cancer. Smoking during pregnancy results in the deaths of about 1000 infants annually and is associated with an increased risk for premature birth and intrauterine growth retardation. Environmental tobacco smoke contributes to death in an estimated 38 000 people annually.

The USPSTF strongly recommends that clinicians screen all adults for tobacco use and provide tobacco cessation interventions for those who use tobacco products. (A Recommendation).

The USPSTF strongly recommends that clinicians screen all pregnant women for tobacco use and provide augmented pregnancy-tailored counselling to those who smoke. (*A Recommendation*)¹⁴⁶¹

Canadian Task Force on Preventive Health Care Recommendations (1994)

A large body of evidence has accumulated regarding the health effects of smoking. Tobacco use has been consistently linked with a variety of serious pulmonary, cardiovascular and neoplastic diseases. Evaluation of this evidence is beyond the scope of this chapter but detailed reviews and estimates of relative risk for the many tobacco associated diseases have been published elsewhere. Likewise, reviews of the evidence regarding the health consequences of ETS are published elsewhere. In 1992 the U.S. Environmental Protection Agency (EPA) named ETS a Group A carcinogen (shown to cause cancer in humans) at typical environmental levels.

There is good evidence to support counselling for smoking cessation in the periodic health examination of individuals who smoke (A Recommendation). Nicotine replacement therapy can be effective as an adjunct (A Recommendation).

There is fair evidence to support physicians also referring patients to other programs after offering cessation advice (B Recommendation).

There is insufficient evidence to evaluate counselling to reduce ETS exposure (C Recommendation) but it may be useful to combine such counselling with cessation advice, again based on the burden of suffering, the potential benefits of the intervention and the effectiveness of cessation advice.¹⁴⁶²

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with behavioural counselling and interventions for the prevention of tobacco use in a British Columbia birth cohort of 40,000.

In estimating CPB, we made the following assumptions:

• The proportion of the BC population that are light smokers (less than 10 cigarettes per day), moderate smokers (10-19 cigarettes per day) and heavy smokers (20 or

¹⁴⁶¹ U.S. Preventive Services Task Force. Counselling and interventions to prevent tobacco use and tobaccocaused disease in adults and pregnant women: U.S. Preventive Services Task Force reaffirmation recommendation statement. *Annals of Internal Medicine*. 2009; 150(8): 551-5.

¹⁴⁶² Taylor MC and Dingle JL. *Canadian Guide to Clinical Preventive Health Care: Chapter 43: Prevention of Tobacco-Caused Disease*. 1994. Health Canada. Available at http://www.phac-aspc.gc.ca/publicat/clinic-clinique/pdf/s6c43e.pdf. Accessed July 2008.

more cigarettes per day) by age group is based on 2014 CCHS data.¹⁴⁶³ No data is available for ages 80+ so we assumed a 50% decline in smoking rate between the ages of 79 and 84 and further 50% decline between the ages of 85 and 89. Between the ages of 18 and 89, the proportion of life years lived with light smoking is 7.9% (200,053 of 2,520,119 life years), moderate smoking is 3.9% (98,295 of 2,520,119 life years) and heavy smoking is 2.3% (59,090 of 2,520,119 life years) (see Table 1).

Table 1: Years of Life Lived and Current SmokingBetween the Ages of 18 and 89in a British Columbia Birth Cohort of 40,000

Age Group	Individuals in Birth Cohort	% of BC Popu Current Smo Light Mod	ılation okers Heavy	BC F	Popula Sm Mod	tion Cur okers Heavy	rrent Total	Life Years Lived	Years Li S Light	ved as Cu Smokers Mod	urrent Heavy
18-19	39,759	10.3% 0.4%	0.4%	4,093	143	143	4,380	79,517	8,186	286	287
20-24	39,677	20.5% 1.9%	0.4%	8,130	767	176	9,073	198,385	40,650	3,835	878
25-29	39,518	14.9% 5.2%	2.3%	5,897	2,071	905	8,873	197,592	29,485	10,355	4,527
30-34	39,327	16.6% 5.2%	1.3%	6,530	2,042	516	9,088	196,633	32,650	10,208	2,580
35-39	39,103	8.9% 6.7%	1.2%	3,495	2,631	486	6,612	195,517	17,474	13,154	2,431
40-44	38,835	6.8% 5.0%	3.5%	2,654	1,925	1,376	5,955	194,174	13,268	9,625	6,879
45-49	38,492	4.4% 2.9%	3.2%	1,712	1,109	1,237	4,058	192,462	8,560	5,547	6,183
50-54	38,031	7.6% 4.1%	4.6%	2,891	1,545	1,750	6,186	190,154	14,454	7,726	8,750
55-59	37,379	3.9% 7.9%	4.3%	1,453	2,957	1,618	6,028	186,897	7,267	14,783	8,092
60-64	36,435	3.9% 4.7%	3.5%	1,413	1,728	1,276	4,418	182,174	7,067	8,642	6,382
65-69	35,035	4.7% 3.5%	3.0%	1,640	1,225	1,052	3,917	175,175	8,200	6,124	5,260
70-74	32,929	3.7% 3.6%	2.1%	1,202	1,201	698	3,102	164,644	6,011	6,007	3,492
75-79	29,753	2.9% 0.9%	1.4%	860	254	425	1,539	148,766	4,301	1,270	2,123
80-84	25,060	1.4% 0.4%	0.7%	362	107	179	648	125,300	1,811	535	894
85-89	18,546	0.7% 0.2%	0.4%	134	40	66	240	92,728	670	198	331
Total		7.9% 3.9%	2.3%					2,520,119	200,053	98,295	59,090

- A significant proportion of smokers quit on their own.¹⁴⁶⁴ According to the *Treating Tobacco Use and Dependence: 2008 Update* document, individuals who quit on their own have a success (abstinence rate) of 10.9%. This increases to 28.0% (95% CI of 23.0% 33.6%) with 2-3 brief counselling interventions with a primary care provider and the use of medications.¹⁴⁶⁵ We used the rate of 10.9% to populate row *w* in Table 2 and the 28.0% to populate row *x*.
- Other assumptions used in assessing the clinically preventable burden are detailed in the Reference Document.

recommendations/tobacco/clinicians/treating_tobacco_use08.pdf. Accessed January 2014.

¹⁴⁶³ This analysis is based on the Statistics Canada's Canadian Community Health 2014 Public Use Microdata File. All computations, use and interpretation of these data are entirely that of H. Krueger & Associates Inc. ¹⁴⁶⁴ Smith A and Chapman S. Quitting smoking unassisted: the 50-year research neglect of a major public health phenomenon. *Journal of the American Medical Association*. 2014; 311(2): 137-8.

¹⁴⁶⁵ Fiore M, Jaen C, Baker T et al. *Clinical Practice Guideline. Treating Tobacco Use and Dependence: 2008 Update. 2008.* U.S. Department of Health and Human Services. Available at

http://www.ahrq.gov/professionals/clinicians-providers/guidelines-

Based on these assumptions, the CPB associated with behavioural counselling and interventions for the prevention of tobacco use is 5,904 QALYs (Table 2, row ac). The CPB of 5,904 represents the gap between no coverage and the 'best in the world' coverage estimated at 51%.

BC Birth Cohort of 40,000									
Label	Variable Base Case Data S								
	Estimated current status								
а	# of life years lived between the ages of 18-89 in birth cohort	2,520,119	Table 1						
b	% of life years at light smoking (<10 cigarettes / day)	7.9%	Table 1						
С	# of life years at light smoking	200,053	=(a * b)						
d	% of life years at moderate smoking (10-19 cigarettes / day)	3.9%	Table 1						
e	# of life years at moderate smoking	98,295	=(a * d)						
f	% of life years at heavy smoking (≥20 cigarettes / day)	2.3%	Table 1						
g	# of life years at heavy smoking	59,090	= (a * f)						
	Life years lost due to Smoking								
h	% of life years lost due to light smoking	10.2%	Ref Doc						
i	# of life years lost due to light smoking	20,360	= (c * h)						
j	% of life years lost due to moderate smoking	18.4%	Ref Doc						
k	# of life years lost due to moderate smoking	18,037	=(e *j)						
I	% of life years lost due to heavy smoking	27.9%	Ref Doc						
m	# of life years lost due to heavy smoking	16,492	= (g * I)						
n	Life years lost due to smoking	54,890	= i + k + m						
	QALYs lost due to Smoking								
0	% of QoL lost due to light smoking	3.7%	Ref Doc						
р	# of QALYs lost due to light smoking	6,569	= (c - i) * o						
q	% of QoL lost due to moderate smoking	3.9%	Ref Doc						
r	# of QALYs lost due to moderate smoking	3,123	= (e - k) * q						
S	% of QoL lost due to heavy smoking	7.3%	Ref Doc						
t	# of QALYs lost due to heavy smoking	3,114	= (g - m) * s						
u	QALYs lost due to smoking	12,807	= p + r + t						
v	Total QALYs lost due to smoking	67,696	= n + u						
	Benefits if 51% of smokers received counselling and an intervention								
w	Quit rate without intervention	10.9%	V						
x	Quit rate with intervention	28.0%	V						
у	QALYs gained without intervention	7,379	= v * w						
z	QALYs gained with intervention with 100% adherence	18,955	= v * x						
аа	Net QALYs gained with 100% adherence	11,576	= z - y						
ab	Estimated adherence with screening and intervention	51%	Ref Doc						
ас	Potential QALYs gained, Screening & Intervention from 0% to 51%	5,904	= aa * ab						

Table 2: CPB of Behavioural Counselling and Interventions to Prevent Tobacco Use in a

√ = Estimates from the literature

We also modified a number of major assumptions and recalculated the CPB as follows:

- Assume the disutility of light smoking is reduced from 3.7% to 2.1% (Table 2, row • o), the disutility of moderate smoking is reduced from 3.9% to 2.2% (Table 2, row q) and the disutility of heavy smoking is reduced from 7.3% to 5.0% (Table 2, row s): CPB = 5,460 QALYs.
- Assume the disutility of light smoking is increased from 3.7% to 5.3% (Table 2, row o), the disutility of moderate smoking is increased from 3.9% to 5.5% (Table 2, row q) and the disutility of heavy smoking is increased from 7.3% to 9.7% (Table 2, row *s*): CPB = 6,366 QALYs.

- Assume that the quit rate with intervention (2-3 sessions + medication) is reduced from 28.0% to 23.0% (Table 2, row *x*): **CPB = 4,178 QALYs**.
- Assume that the quit rate with intervention (2-3 sessions + medication) is increased from 28.0% to 33.6% (Table 2, row *x*): **CPB = 7,837 QALYs**.

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with behavioural counselling and interventions for the prevention of tobacco use in a British Columbia birth cohort of 40,000.

In estimating CE, we made the following assumptions:

- For modelling purposes, we assumed that of the smokers who would successfully quit as a result of the intervention, 50% would quit at age 30, 25% at age 40 and 25% at age 50.
- Average cost of smoking cessation aids per quit attempt in 2011, BC PharmaCare estimated the costs for pharmacological aids to smoking cessation based on a 12 week supply including mark-up and dispensing fees.¹⁴⁶⁶ Varenicline (Champix®) was estimated to cost \$336, buproprion (Zyban®) \$209, nicotine patch \$273 and nicotine gum \$122-\$289. In deriving the average cost we assumed that 56% of all smokers would use the patch, 22% would use varenicline and 22% of all smokers would use nicotine gum.¹⁴⁶⁷ The mid-point for the cost estimate of nicotine gum was used. Based on these assumptions, the average cost of smoking cessation aids per quit attempt in BC was \$272.01 (in 2011 CAD) or \$321.75 (in 2022 CAD).
- **Portion of counselled who use a smoking cessation aid** Because the effectiveness of the intervention is based on 2-3 brief counselling sessions and the use of medication, we have assumed the 100% of those counselled would use a smoking cessation aid.
- In estimating the costs avoided due to the intervention, we assumed annual costs avoided of \$893 per light smoker, \$1,576 per moderate smoker and \$2,332 per heavy smoker (see Reference Document). These costs avoided, however, are not fully realized until 20 years following smoking cessation.^{1468,1469} This gradual increase in costs avoided was incorporated into the model.
- The later in life smoking cessation occurs, the fewer the benefits. Based on data provided by Jha and colleagues,¹⁴⁷⁰ we have assumed that 91.3% of potential benefits would occur if smoking cessation occurred at age 30, 82.6% at age 40 and 56.5% at age 50.
- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.

coverage/pharmacare/bc_smoking_cessation_survey_evaluation_20201116.pdf. Accessed November 2023. ¹⁴⁶⁸ Kenfield S, Stampfer M, Rosner B, Colditz GA. Smoking and smoking cessation in relation to mortality in women. *Journal of the American Medical Association*. 2008; 299(17): 2037-47.

 ¹⁴⁶⁶ BC Ministry of Health. *Effective Pharmacological Aids to Smoking Cessation*. 2011. Available at http://www.health.gov.bc.ca/pharmacare/pdf/sc-prod-info.pdf. Accessed January 2014.
 ¹⁴⁶⁷ BC Stats. *Report on the B.C. Smoking Cessation Program Evaluation Survey*. November 2020. Available online at https://www2.gov.bc.ca/assets/gov/health/health-drug-

¹⁴⁶⁹ Krueger H, Turner D, Krueger J, Ready E. The economic benefits of risk factor reduction in Canada: Tobacco smoking, excess weight and physical inactivity. *Canadian Journal of Public Health*. 2014; 105(1): e69e78.

¹⁴⁷⁰ Jha P, Ramasundarahettige C, Landsman V et al. 21st-century hazards of smoking and benefits of cessation in the United States. *New England Journal of Medicine*. 2013; 368(4): 341-50.

• Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, behavioural counselling and interventions for the prevention of tobacco use is associated cost-savings of 11.5 million (Table 3, row *y*).

Table	3: CE of Behavioural Counselling and Interventions to Prev Cohort of 40,000	ent Tobacco	Use in a BC Birth
Row			Dela fa una
Label	variable	Base Case	Data Source
а	# of life years lived between the ages of 18-89 in birth conort	2,520,119	
b	# of life years lived as smokers between the ages of 18-89 in birth cohort	357,438	row e + Table 2, row g
	Estimated cost of screening		
С	Number of annual screens to assess willingness to quit	357,438	= b
d	Proportion of office visit required	50%	See Ref Doc
е	Cost of 10-minute office visit	\$35.97	See Ref Doc
f	Patient time costs / office visit	\$74.32	See Ref Doc
g	Estimated cost of screening	\$19,710,910	= (e + f) * d * c
	Estimated cost of intervention		
h	Average # of smokers in birth cohort ages 20-29	8,973	Table 1
i	Estimated adherence with screening and intervention	51%	Table 2, row ab
j	# of brief counselling interventions	3	V
k	Cost of smoking cessation aids	\$321.75	٧
I	Estimated cost of intervention	\$2,986,524	=((h*i)*j)*(e+f))+(h*i*k)
m	Average # of smokers in birth cohort ages 30-39	7,850	Table 1
n	Estimated cost of intervention	\$2,612,676	=((m*i)*j)*(e+f)+(m*i*k)
0	Average # of smokers in birth cohort ages 40-49	5,006	Table 1
р	Estimated cost of intervention	\$1,666,247	=((o*i)*j)*(e+f)+(o*i*k)
q	Total cost of interventions	\$7,265,447	= l + n + p
r	Estimated costs avoided due to intervention	\$55,978,709	Calculated
	CE Calculation		
S	Cost of intervention over lifetime of birth cohort	\$26,976,357	= g + q
t	Costs avoided due to intervention over lifetime of birth cohort	\$55,978,709	= r
u	QALYs saved	5,904	Table 2, row ac
v	Cost of intervention over lifetime of birth cohort (1.5% discount)	\$19,414,115	Calculated
w	Costs avoided due to intervention over lifetime of birth cohort (1.5% discount)	\$30,955,338	Calculated
x	QALYs saved (1.5% discount)	3,265	Calculated
у	Costs saved due to intervention (1.5% discount)	-\$11,541,223	= v - w
Z	CE (\$/QALY saved)	Cost-saving	

√ = Estimates from the literature

We also modified a number of major assumptions and recalculated the cost per QALY as follows:

- Assume the disutility of light smoking is reduced from 3.7% to 2.1% (Table 2, row *o*), the disutility of moderate smoking is reduced from 3.9% to 2.2% (Table 2, row *q*) and the disutility of heavy smoking is reduced from 7.3% to 5.0% (Table 2, row *s*): CE = Cost-saving.
- Assume the disutility of light smoking is increased from 3.7% to 5.3% (Table 2, row *o*), the disutility of moderate smoking is increased from 3.9% to 5.5% (Table 2, row *q*) and the disutility of heavy smoking is increased from 7.3% to 9.7% (Table 2, row *s*): CE = Cost-saving.
- Assume that the quit rate with intervention (2-3 sessions + medication) is reduced from 28.0% to 23.0% (Table 2, row *x*): CE = Cost-saving.

- Assume that the quit rate with intervention (2-3 sessions + medication) is increase from 28.0% to 33.6% (Table 2, row *x*): CE = Cost-saving.
- Assume the proportion of an office visit required for screening is reduced from 50% to 33% (Table 3, row *d*): CE = Cost-saving.
- Assume the proportion of an office visit required for screening is increased from 50% to 67% (Table 3, row *d*): CE = Cost-saving.

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with behavioural counselling and interventions for the prevention of tobacco use is estimated to be 3,265 quality-adjusted life years (QALYs) while resulting in cost-savings (see Table 4).

Table 4: Behavioural Counselling and Interventions toPrevent Tobacco Use in a BC Birth Cohort of 40,000										
Sui	Summary									
	Base									
	Case	Rai	nge							
CPB (Potential QALYs Gained)										
Gap between No Service and 'Be	est in the World	' (51%)								
1.5% Discount Rate	3,265	2,310	4,334							
3% Discount Rate	1,821	1,288	2,417							
0% Discount Rate	5,904	4,178	7,837							
Gap between BC Current (19%) (and 'Best in the	World' (51%)								
1.5% Discount Rate	1,216	861	1,615							
3% Discount Rate	678	480	900							
0% Discount Rate	2,200	1,557	2,920							
CE (\$/QALY) including patient time of	costs									
1.5% Discount Rate	Cost-saving	Cost-saving	Cost-saving							
3% Discount Rate	Cost-saving	Cost-saving	\$367							
0% Discount Rate	Cost-saving	Cost-saving	Cost-saving							
CE (\$/QALY) excluding patient time	costs									
1.5% Discount Rate	Cost-saving	Cost-saving	Cost-saving							
3% Discount Rate	Cost-saving	Cost-saving	Cost-saving							
0% Discount Rate	Cost-saving	Cost-saving	Cost-saving							

Screening and Behavioural Counseling Interventions to Reduce Unhealthy Alcohol Use

United States Preventive Services Task Force Recommendations (2018)¹⁴⁷¹

Excessive alcohol use is one of the most common causes of premature mortality in the United States. From 2006 to 2010, an estimated 88 000 alcohol-attributable deaths occurred annually in the United States, caused by both acute conditions (e.g., injuries from motor vehicle collisions) and chronic conditions (e.g., alcoholic liver disease). Alcohol use during pregnancy is also one of the major preventable causes of birth defects and developmental disabilities.

The USPSTF recommends screening for unhealthy alcohol use in primary care settings in adults 18 years or older, including pregnant women, and providing persons engaged in risky or hazardous drinking with brief behavioral counseling interventions to reduce unhealthy alcohol use. (B recommendation)

The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of screening and brief behavioral counseling interventions for alcohol use in primary care settings in adolescents aged 12 to 17 years. (I statement)

Canadian Task Force on Preventive Health Care Recommendations (1989)¹⁴⁷²

In 1989 the Canadian Task Force on the Periodic Health Examination concluded that there was fair evidence that routine case-finding for problem drinking, and that brief counselling intervention in patients identified thereby was effective in reducing alcohol consumption and related consequences.

Best in the World

- In a 2016 US survey of 1,506 primary care providers, 96% reported screening patients for alcohol misuse but only 38% used a USPSTF-preferred screening tool.¹⁴⁷³
- In a 2013 US consumer survey, 24.7% of respondents who visited a primary care provider in the past year reported receiving alcohol screening (24.9% of women and 24.5% of men).¹⁴⁷⁴
- Based on data from the 2011 US Behavioural Risk Factor Surveillance System, 15.7% of U.S. adults reported ever discussing alcohol use with a health professional (ranging from a low of 8.7% in Kansas to a high of 25.5% in the District of Columbia). This increased to 17.4% for current drinkers, 25.4% for binge drinkers and 34.9% for binge drinkers reporting ≥10 episodes in the past 30 days.¹⁴⁷⁵
- In Oregon, 4.6% of individuals are screened in primary care for unhealthy alcohol use¹⁴⁷⁶ but 41% of Medicaid enrollees in the state with an alcohol use disorder

¹⁴⁷¹ US Preventive Services Task Force. Screening and Behavioral Counseling Interventions to Reduce Unhealthy Alcohol Use in Adolescents and Adults: US Preventive Services Task Force Recommendation Statement. *JAMA*. 2018: 320(18); 1899-1909.

¹⁴⁷² Haggerty JL. *Canadian Guide to Clinical Preventive Health Care: Chapter 42: Early Detection and Counselling of Problem Drinking*. 1994. Health Canada. Available at http://www.phac-aspc.gc.ca/publicat/clinic-clinique/pdf/s6c42e.pdf. Accessed July 2008.

¹⁴⁷³ Tan C, Hungerford D, Denny C et al. Screening for alcohol misuse: Practices among U.S. primary care providers, DocStyles 2016. *American Journal of Preventive Medicine*. 2018: 54(2); 173-80.

¹⁴⁷⁴ Denny C, Hungerford D, McKnight-Eily L et al. Self-reported prevalence of alcohol screening among U.S. adults. *American Journal of Preventive Medicine*. 2016: 50(3); 380-83.

¹⁴⁷⁵ McKnight-Eily L, Liu Y, Brewer R et al. Vital signs: Communication between health professional and their patients about alcohol use – 44 state and the District of Columbia, 2011. *Morbidity and Mortality Weekly Report*. 2014: 63(1): 16-22.

¹⁴⁷⁶ Rieckmann T, Renfro S, McCarty D et al. Quality metrics and systems transformation: Are we advancing alcohol and drug screening in primary care? *Health Services Research*. 2018: 53(3); 1702-26.

receive treatment,¹⁴⁷⁷ suggesting that primary care providers may target at-risk patients for formal screening.

- Screening for alcohol misuse (a score of ≥ 5 on the Alcohol Use Disorders Identification Test (AUDIT-C) in the primary care settings of Poland (2.0%), England (4.6%) and the Netherlands (5.3%) is also low but results return a high positive rate (41.2% in Poland, 48.9% in England and 44.4% in The Netherlands). Modelling work by Angus and colleagues estimated that a high proportion of individuals with positive results would receive a brief intervention over a 10-year time horizon (cumulatively 95.8% in Poland, 85.9% in England and 70.4% in The Netherlands).
- In integrated health-care systems where screening is mandated and built into the electronic medical record system, screening can be nearly universal. In one study of the US Veterans Health Administration system, 93% of individuals were screened for alcohol misuse in 2004.¹⁴⁷⁹
- In a survey of 8,476 primary care patients from six European countries, 8.7% (4.8% in females and 14.6% in males) were found to have alcohol dependence, of whom 22.3% (95% CI from 19.4% to 25.2%) sought and received professional help, 18.6% (95% CI from 13.7% to 23.5%) in females and 24.1% (95% CI from 20.4% to 227.8%) in males. The proportion receiving professional help ranged from a low of 16.6% in Latvia to a high of 38.5% in Italy (95% CI from 26.7% to 50.2%).¹⁴⁸⁰
- A survey of US midwives, nurse practitioners and nurses providing prenatal care (n = 578) found that 35.2% of respondents reported screening for client alcohol use, with 23.3% using a specific screening tool.¹⁴⁸¹ 11.6% reported screening "all of the time", 8.6% screened "most of the time", and 15.1% screened "some of the time".
- A survey of Norwegian midwives (n=103) found that 97% of respondents "mostly" or "always" asked pregnant women about their alcohol use at the first consultation, with 42% using a screening instrument.¹⁴⁸²

¹⁴⁷⁸ Angus C, Li J, Romero-Rodriguez et al. Cost-effectiveness of strategies to improve delivery of brief interventions for heavy drinking in primary care: Results from the ODHIN trial. *The European Journal of Public Health*. 2018: 29(2); 219-25.

¹⁴⁷⁷ McCarty D, Gu Y, Renfro S et al. Access to treatment for alcohol use disorders following Oregon's health care reforms and Medicaid expansion. *Journal of Substance Abuse Treatment*. 2018: 94; 24-8.

¹⁴⁷⁹ Bradley K, Williams E, Achtmeyer C et al. Implementation of evidence-based alcohol screening in the Veterans Health Administration. *The American Journal of Managed Care*. 2006: 12; 597-606.

¹⁴⁸⁰ Rehm J, Allamani A, Elekes Z et al. Alcohol dependence and treatment utilization in Europe – a representative cross-sectional study in primary care. *BMC Family Practice*. 2015: 16(90).

¹⁴⁸¹ Chiodo LM, Cosmian C, Pereira K et al. Prenatal Alcohol Screening During Pregnancy by Midwives and Nurses. *Alcoholism: Clinical and Experimental Research*. 2019; 43(8): 1747-58.

¹⁴⁸² Wangberg SC. Norwegian midwives' use of screening for and brief interventions on alcohol use in pregnancy. *Sexual & Reproductive Healthcare*. 2015; 6(3): 186-90.

• For modelling purposes, we assume that the *best in the world* screening rate for the general population is 93% (Table 14, row *ar*) based on results from the US Veterans Health Administration system¹⁴⁸³ and 97% (Table 14, row *ba*) for pregnant women based on the results from Norwegian midwives.¹⁴⁸⁴ Furthermore, we assume that the *best in the world* proportion with a positive screen result that receive a brief intervention is 41% (based on the Oregon Medicaid enrollees study¹⁴⁸⁵ – Table 14, row *at*). We reduce this number to 30% to compare and contrast with our previous analysis.

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with screening and behavioural counseling interventions to reduce unhealthy alcohol use in adults 18 years or older, including pregnant women, in a British Columbia birth cohort of 40,000.

In estimating CPB, we made the following assumptions:

• There are 2,419,325 life years lived between the ages of 18 and 84 in a BC birth cohort of 40,000 (see Table 1). Of the total life years, 1,242,083 are in females (Table 14, row *a*) and 1,177243 are in males (Table 14, row *b*).

	Table 1: Years of Life Lived									
	Betv	Between the Ages of 18 and 84								
	in a British Columbia Birth Cohort of 40,000									
	Individuo	als in Birth	Cohort							
Age	Enter	ing Age Gr	гоир	Life	e Years Liv	ed				
Group	Females	Males	Total	Females	Males	Total				
18-19	19,894	19,876	39,770	39,776	39,728	79,503				
20-24	19,881	19,851	39,732	99,314	99,024	198,338				
25-29	19,843	19,751	39,594	99,101	98,440	197,541				
30-34	19,796	19,621	39,417	98,834	97,745	196,580				
35-39	19,736	19,474	39,210	98,499	96,953	195,452				
40-44	19,661	19,303	38,964	98,068	96,011	194,079				
45-49	19,561	19,094	38,656	97,478	94,833	192,311				
50-54	19,422	18,827	38,249	96,645	93,269	189,913				
55-59	19,224	18,461	37,685	95,436	91,094	186,530				
60-64	18,932	17,947	36,879	93,628	87,997	181,625				
65-69	18,489	17,208	35,697	90,843	83,512	174,356				
70-74	17,799	16,132	33,930	86,461	76,965	163,426				
75-79	16,704	14,560	31,265	79,488	67,475	146,963				
80-84	14,963	12,306	27,269	68,513	54,198	122,710				
Total				1,242,083	1,177,243	2,419,325				

¹⁴⁸³ Bradley K, Williams E, Achtmeyer C et al. Implementation of evidence-based alcohol screening in the Veterans Health Administration. *The American Journal of Managed Care*. 2006: 12; 597-606.

¹⁴⁸⁴ Wangberg SC. Norwegian midwives' use of screening for and brief interventions on alcohol use in pregnancy. *Sexual & Reproductive Healthcare*. 2015; 6(3): 186-90.

¹⁴⁸⁵ McCarty D, Gu Y, Renfro S et al. Access to treatment for alcohol use disorders following Oregon's health care reforms and Medicaid expansion. *Journal of Substance Abuse Treatment*. 2018: 94; 24-8.
Defining the Population at Risk - General

- There is no firm consensus worldwide regarding the definition of risky drinking. Any alcohol use is considered unhealthy in pregnant women.¹⁴⁸⁶
- The categorization of alcohol exposure commonly used in Canadian research^{1487,1488} is abstainer, low alcohol use (less than 1.5 drinks [containing 13.6g of ethanol] a day for females and 3 drinks a day for males), hazardous alcohol use (1.5 to 3 drinks a day for females and 3 to 4.5 drinks per day for males) and harmful alcohol use (more than 3 drinks a day for females and 4.5 drinks a day for males).
- The proportion of the BC population with low alcohol use, hazardous alcohol use and harmful alcohol use by sex and age group is based on 2014 Canadian Community Health Survey (CCHS) data.¹⁴⁸⁹ Alcohol consumption rates are adjusted for underreporting.^{1490,1491,1492} Individuals who consume alcohol are grouped into these three categories based on their weekly consumption patterns.
- A significant proportion of individuals with low alcohol consumption levels consume their alcohol via binge drinking. A female binge drinker is defined as a female who consumes at least *four* drinks on one occasion at least once per month during the past 12 months. A male binge drinker is defined as a male who consumes at least *five* drinks on one occasion at least once per month during the past 12 months.
- For modelling purposes, unhealthy alcohol use in the general population is defined as any individuals with hazardous or harmful alcohol consumption levels *and* binge drinkers within the low consumption category.
- In a BC birth cohort of 40,000, an estimated 26.2% of life years lived between the ages of 18 and 84 (633,294 of 2,419,325) are lived with unhealthy alcohol use. The proportion is lower for females (21.5% or 266,833 of 1,242,083) than for males (31.1% or 366,461 of 1,177,243) (see Table 2).
- The life years lived with unhealthy alcohol use by category and sex as identified in Table 2 are used for modelling purposes.

¹⁴⁸⁶ O'Connor E, Perdue L, Senger C et al. Screening and behavioral counseling interventions to reduce unhealthy alcohol use in adolescents and adults: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2018: 320(18); 1910-28.

 ¹⁴⁸⁷ Taylor B, Rehm J, Patra J et al. Alcohol-attributable morbidity and resulting health care costs in Canada in
 2002: recommendations for policy and prevention. *Journal of Studies on Alcohol and Drugs*. 2007; 68(1): 36-47.
 ¹⁴⁸⁸ Krueger H, Koot J, Andres E. The economic benefits of fruit and vegetable consumption in Canada. *Canadian Journal of Public Health*. 2017: 108(2); e152-61.

 ¹⁴⁸⁹ This analysis is based on the Statistics Canada's Canadian Community Health 2014 Public Use Microdata
 File. All computations, use and interpretation of these data are entirely that of H. Krueger & Associates Inc.
 ¹⁴⁹⁰ Boniface S, Kneale J and Shelton N. Actual and perceived units of alcohol in a self-defined "usual glass" of alcoholic drinks in England. *Alcoholism: Clinical and Experimental Research*. 2013; 37(6): 978-83.

¹⁴⁹¹ Kerr WC and Stockwell T. Understanding standard drinks and drinking guidelines. *Drug and Alcohol Review*. 2012; 31(2): 200-5.

¹⁴⁹² White AM, Kraus CL, Flom JD et al. College students lack knowledge of standard drink volumes: implications for definitions of risky drinking based on survey data. *Alcoholism: Clinical and Experimental Research*. 2005; 29(4): 631-8.

in a British Columbia Birth Cohort of 40,000												
	% o	f BC Femal	e Pop by Alco	ohol Use Sta	itus	% of	BC Male I	Pop by Alco	hol Use Sta	itus		
Age		Low-					Low-					
iroup	Low	Binge	Hazardous	Harmful	Total	Low	Binge	Hazardo	Harmful	Total		
L8-19	52.3%	26.1%	5.1%	3.8%		55.4%	30.5%	7.0%	7.3%			
20-24	52.3%	26.1%	5.1%	3.8%		55.4%	30.5%	7.0%	7.3%			
5-29	52.3%	26.1%	5.1%	3.8%		55.4%	30.5%	7.0%	7.3%			
0-34	51.2%	13.0%	4.7%	3.0%		59.3%	21.4%	8.2%	7.9%			
5-39	51.2%	13.0%	4.7%	3.0%		59.3%	21.4%	8.2%	7.9%			
0-44	51.2%	13.0%	4.7%	3.0%		59.3%	21.4%	8.2%	7.9%			
5-49	51.9%	11.6%	6.0%	2.3%		58.5%	16.6%	6.7%	6.1%			
0-54	51.9%	11.6%	6.0%	2.3%		58.5%	16.6%	6.7%	6.1%			
5-59	51.9%	11.6%	6.0%	2.3%		58.5%	16.6%	6.7%	6.1%			
0-64	44.4%	4.0%	7.4%	2.0%		58.7%	10.5%	7.4%	5.5%			
5-69	44.4%	4.0%	7.4%	2.0%		58.7%	10.5%	7.4%	5.5%			
0-74	39.7%	2.3%	10.9%	2.2%		50.5%	4.5%	5.7%	3.9%			
5-79	39.7%	2.3%	10.9%	2.2%		50.5%	4.5%	5.7%	3.9%			
0-84	21.7%	2.2%	17.1%	2.3%		43.8%	1.0%	9.7%	5.7%			
8-19		10,395	2,020	1,506	13,921		12,122	2,782	2,896	17,8		
0-24		25,955	5,043	3,760	34,758		30,214	6,934	7,218	44,3		
5-29		25,899	5,032	3,752	34,684		30,036	6,893	7,176	44,1		
0-34		12,814	4,690	2,933	20,437		20,938	8,001	7,701	36,6		
5-39		12,770	4,674	2,923	20,368		20,768	7,936	7,639	36,3		
0-44		12,715	4,654	2,910	20,279		20,567	7,859	7,564	35,9		
5-49		11,312	5,801	2,224	19,337		15,696	6,325	5,771	27,7		
0-54		11,216	5,751	2,205	19,172		15,437	6,221	5,675	27,3		
5-59		11,076	5,679	2,177	18,932		15,077	6,076	5,543	26,6		
0-64		3,725	6,886	1,860	12,471		9,240	6,506	4,856	20,6		
5-69		3,615	6,681	1,804	12,101		8,769	6,174	4,608	19,5		
0-74		1,992	9,440	1,874	13,306		3,437	4,419	2,987	10,8		
5-79		1,832	8,678	1,723	12,233		3,013	3,874	2,619	9,5		
0-84		1,503	11,731	1,599	14,833		546	5,240	3,111	8,8		
otal		146,822	86,762	33,249	266,833		205,858	85,240	75,363	366,4		

- An alternate to calculating unhealthy alcohol consumption is to use the Canadian Centre on Substance Abuse (CCSA) low risk drinking guidelines, including both acute and chronic risk categories.¹⁴⁹³ The CCSA identifies a chronic risk when more than 10 (female) or 15 (male) drinks are consumed in one week or if an average in excess of 2 (female) or 3 (male) drinks are consumed per day. An acute risk (for injury, motor vehicle accident, etc.) presents itself when more than 3 (women) or 4 (men) drinks are consumed in a day.
- The CCHS asks a series of alcohol-related questions of respondents including drinking frequency, and whether alcohol was consumed in the past week or year. BC data also includes the number of drinks each day in the past week. Individual respondent data from the 2017/2018 cycle of the CCHS was weighted (using CCHS variable WTS_M) and categorized into three mutually exclusive unhealthy alcohol use categories: acute risk only, chronic risk only, and both acute and chronic risk.¹⁴⁹⁴
- Individuals were classified in the acute risk only category if they reported drinking in excess of 3 (women) or 4 (men) drinks in one day in the past week <u>or</u> if they reported drinking in excess of 3 (women) or 4 (men) drinks once a month or more in the previous 12 months, but did not meet the criteria for chronic risk.
- Individuals were classified in the chronic risk only category if the number of drinks they reported consuming in the past week was greater than 10 (women) or 15 (men), but they did not meet the criteria for acute risk.
- Individuals were classified in the acute and chronic risk category if they met the criteria for both.
- Using this alternative approach in a BC birth cohort of 40,000, an estimated 22.7% of life years lived between the ages of 18 and 84 (548,601 of 2,419,325) are lived with unhealthy alcohol use. The proportion is lower for females (18.1% or 224,668 of 1,242,083) than for males (27.5% or 323,933 of 1,177,243) (see Table 3). *Note that these proportions are not adjusted for underreporting of alcohol consumption.*

¹⁴⁹³ Butt P, Beirness D, Gliksman L et al. *Alcohol and health in Canada: A summary of evidence and guidelines for low risk drinking*. 2011. Ottawa, ON: Canadian Centre on Substance Abuse.

¹⁴⁹⁴ This analysis is based on the Statistics Canada's Canadian Community Health 2017/18 Public Use Microdata File. All computations, use and interpretation of these data are entirely that of H. Krueger & Associates Inc.

Table 3: Years of Life Lived with Unhealthy Alcohol Use												
			В	etween	the Age	es of 18 ar	nd 84					
			in a	a British C	olumbia Bi	irth Cohort o	of 40,000					
	%	of BC Femal e	e Pop by Alc	cohol Use S	Status	% (of BC Male i	Pop by Alcoh	nol Use Statı	us		
Age	Low	Acute Risk	Chronic	Acute &			Acute Risk	Chronic	Acute &			
Group	Risk	Only	Risk Only	Chronic	Total	Low Risk	Only	Risk Only	Chronic	Total		
18-19	81.3%	14.6%	0.0%	4.1%		77.8%	18.7%	0.0%	3.4%			
20-24	72.5%	22.5%	0.0%	5.1%		67.8%	25.7%	0.0%	6.5%			
25-29	63.4%	29.3%	0.0%	7.3%		55.9%	34.6%	0.0%	9.5%			
30-34	76.4%	15.7%	0.0%	7.9%		53.8%	37.8%	0.0%	8.4%			
35-39	77.9%	15.6%	0.1%	6.4%		67.1%	22.1%	0.0%	10.8%			
40-44	84.3%	11.5%	0.1%	4.1%		73.5%	17.5%	0.2%	8.8%			
45-49	82.3%	13.0%	0.4%	4.2%		72.4%	18.9%	0.9%	7.9%			
50-54	78.9%	16.2%	1.5%	3.5%		75.0%	16.4%	1.6%	7.1%			
55-59	85.2%	10.5%	0.8%	3.5%		70.7%	17.9%	1.6%	9.9%			
60-64	83.1%	11.5%	2.2%	3.3%		77.2%	15.8%	0.9%	6.1%			
65-69	88.0%	5.1%	4.6%	2.4%		81.3%	9.7%	1.5%	7.4%			
70-74	91.2%	2.5%	3.3%	3.0%		82.2%	9.6%	3.8%	4.4%			
75-79	92.9%	1.6%	3.8%	1.7%		87.7%	6.0%	2.5%	3.8%			
80-84	98.0%	0.3%	1.5%	0.2%		93.7%	3.5%	2.3%	0.5%			
18-10		5 81/	_	1 61/	7 / 28		7 /30	_	1 366	8 806		
20-24		27 225		5 018	7, 4 20 27 252		25 /130	_	6 /59	21 880		
20-24		22,333	_	7 216	36 255		23,430	_	9 345	A3 A33		
30-34		15 566	_	7,210	23 349		36 933	25	2,345 8 165	45 124		
35-39		15,300	74	6 298	23,343		21 467		10 425	31 891		
40-44		11 315	108	3 986	15,409		16 792	160	8 476	25,429		
45-49		12,719	370	4,119	17.208		17,902	860	7,457	26.219		
50-54		15.638	1.431	3.347	20.416		15.262	1.450	6.617	23.329		
55-59		10.041	738	3,383	14.161		16.273	1.454	8,974	26.701		
60-64		10.731	2.055	3.062	15.848		13.904	816	5.351	20.071		
65-69		4.632	4.157	2.137	10.926		8.133	1.293	6.189	15.615		
70-74		2.154	2.874	2.563	7.591		7.365	2.958	3.373	13.696		
75-79		1.268	3.027	1.364	5.659		4.032	1.695	2.594	8.321		
80-84		176	1.047	119	1.342		1.900	1.226	283	3.409		
Total		156,780	15,881	52,008	224,668	-	226,922	11,937	85,074	323,933		
						-						
		% of 1	Total Life Ye	ars Lived	18.1%		% of	f Total Life Y	ears Lived	27.5%		

Defining the Population at Risk – Pregnant Women

- While the majority of women of child-bearing age consume some level of alcohol, most appear to refrain from using alcohol while pregnant.
- An analysis of the 2005/06 Maternity Experience Survey suggests that 10.8% of Canadian women drank alcohol at some point during their pregnancies. Prevalence of drinking alcohol during pregnancy was 13.8% in Eastern-Central provinces, 7.8% in Western Provinces-British Columbia, 4.1% in Eastern-Atlantic provinces and 4.0% in Western-Prairie Provinces.¹⁴⁹⁵
- Based on 2007/8 CCHS self-reported data, an estimated 7.2% of pregnant women in B.C. reported consuming alcohol while pregnant.¹⁴⁹⁶ According to the 2017/18 CCHS, 3.0% of women who became pregnant in the last five years reported consuming alcohol after becoming aware that they were pregnant.¹⁴⁹⁷
- The prevalence of any alcohol use during pregnancy in Canada is estimated at 10.0% (95% CI of 5.2% to 16.2%). This is substantially lower than many others countries, including the US (14.8%), Australia (35.6%) and the UK (41.3%).¹⁴⁹⁸
- Using self-report data such as the CCHS likely represents an underestimate of a 'negative' behaviour, such as alcohol consumption during pregnancy. When responding to surveys, individuals tend to underestimate their actual alcohol consumption,¹⁴⁹⁹ particularly those who consume a higher volume of drinks.¹⁵⁰⁰ Furthermore, the CCHS excludes women who live in group shelters or on the streets and who are at a higher risk of consuming alcohol during pregnancy than the general population, thus underestimating overall prevalence.^{1501,1502}
- This underestimate of self-reported alcohol consumption in pregnant women is supported by the research of Ethan and colleagues.¹⁵⁰³ Based on eight telephone interviews spread over a 12-month period (from three months prior to conception to delivery), they found that 30.3% of women in their US-based study drank any alcohol during pregnancy and that 8.3% binge drank during pregnancy. This compares to other US surveys completed during the same time period (1997 2002) that enquired about alcohol consumption during the month prior to the interview which found that

 ¹⁴⁹⁵ Walker MJ, Al-Sahab B, Islam F et al. The epidemiology of alcohol utilization during pregnancy: an analysis of the Canadian Maternity Experiences Survey (MES). *BMC Pregnancy and Childbirth*. 2011; 11(1): 52.
 ¹⁴⁹⁶ Thanh NX and Jonsson E. Drinking alcohol during pregnancy: evidence from Canadian Community Health Survey 2007/2008. *Canadian Journal of Clinical Pharmacology*. 2010; 17(2): e302-7.

 ¹⁴⁹⁷ This analysis is based on the Statistics Canada's Canadian Community Health Survey 2017/18 Public Use Microdata File. All computations, use and interpretation is entirely that of H. Krueger & Associates Inc.
 ¹⁴⁹⁸ Popova S, Lange S, Probst C et al. Estimation of national, regional, and global prevalence of alcohol use during pregnancy and fetal alcohol syndrome: A systematic review and meta-analysis. *The Lancet*. 2017; 5: e290-9.

¹⁴⁹⁹ Stockwell T, Donath S, Cooper-Stanbury M et al. Under-reporting of alcohol consumption in household surveys: a comparison of quantity-frequency, graduated-frequency and recent recall. *Addiction*. 2004; 99(8): 1024-33.

 ¹⁵⁰⁰ Taylor B, Rehm J, Patra J et al. Alcohol-attributable morbidity and resulting health care costs in Canada in
 2002: recommendations for policy and prevention. *Journal of Studies on Alcohol and Drugs*. 2007; 68(1): 36-47.
 ¹⁵⁰¹ Thanh NX and Jonsson E. Drinking alcohol during pregnancy: evidence from Canadian Community Health
 Survey 2007/2008. *Canadian Journal of Clinical Pharmacology*. 2010; 17(2): e302-7

¹⁵⁰² Public Health Agency of Canada. *Alcohol Use and Pregnancy: An Important Canadian Public Health and Social Issue*. 2005. Available at http://www.addictionresearchchair.ca/wp-content/uploads/Alcohol-Use-and-Pregnancy-An-Important-Canadian-Health-and-Social-Issue.pdf. Accessed April 2020.

¹⁵⁰³ Ethen MK, Ramadhani TA, Scheuerle AE et al. Alcohol consumption by women before and during pregnancy. *Maternal and Child Health Journal*. 2009; 13(2): 274-85.

between 9.8% and 10.1% of women drank any alcohol during pregnancy and that between 1.9% and 4.1% binge drank during pregnancy.

- Alvik et al. used a longitudinal approach to ask about alcohol consumption at 17 and 30 weeks of pregnancy and 6 months after term.¹⁵⁰⁴ They found that concurrently reported alcohol consumption during pregnancy is just under half that retrospectively reported 6 months after term. That is, once the baby was six months old, women admitted to consuming almost twice as much alcohol during their pregnancy than they admitted to while pregnant. "A possible explanation is that the birth of a presumably healthy child may have diminished the feelings of anxiety and guilt caused by alcohol use during pregnancy."
- A recent Canadian study using an analysis based on meconium fatty acid ethyl esters (FAEE) found heavy fetal alcohol exposure (more than 2 standard drinks per week during pregnancy) in 1.16% to 2.40% of newborns. Based on self-reported alcohol consumption, only 0.24% of the women reported more than 2 standard drinks per week during pregnancy. That is, the analysis based on meconium FAEE found that heavy fetal alcohol exposure was 10 times that estimated by self-report.¹⁵⁰⁵
- For modelling purposes, we have assumed that the 2017/18 CCHS finding that 3.0% of BC women consume alcohol after becoming aware that they were pregnant is under-reported by a factor of 3. We therefore assume that 9.0% of pregnant women in BC consume some alcohol, and reduce this to 3.0% in the sensitivity analysis.

Prevalence of FASD / FAS

- "Alcohol consumed by a pregnant woman interferes with normal developmental progression of the fetus resulting in CNS and physical damage that subsequently has several lifelong health consequences. This damage leads to fetal alcohol spectrum disorder (FASD; an umbrella term used to describe individuals who experience disability as a result of prenatal alcohol exposure). FASD includes fetal alcohol syndrome (FAS), partial FAS, and alcohol-related neurodevelopmental disorder."¹⁵⁰⁶
- 428 comorbid conditions co-occurring in individuals with FASD, the most common of which are abnormal results of function studies of peripheral nervous system and special senses, conduct disorder, receptive language disorder, chronic serous otitis media and expressive language disorder.¹⁵⁰⁷
- Globally, the prevalence of FASD in children and youth is estimated at 7.7 per 1,000 population (or 0.77%), ranging to as high as 111.1 per 1,000 in South Africa. The estimated rate for Canada is 7.9 per 1,000 (95% CI of 2.8 to 14.5).¹⁵⁰⁸
- An estimated one of every 13 pregnant women who consumed alcohol during pregnancy delivered a child with FASD.¹⁵⁰⁹

 ¹⁵⁰⁴ Alvik A, Haldorsen T, Groholt B et al. Alcohol consumption before and during pregnancy comparing concurrent and retrospective reports. *Alcoholism: Clinical and Experimental Research*. 2006; 30(3): 510-5.
 ¹⁵⁰⁵ Delano K, Koren G, Zack M et al. Prevalence of fetal alcohol exposure by analysis of meconium fatty acid

ethyl esters: A national Canadian study. *Scientific Reports*. 2019; 9. ¹⁵⁰⁶ Popova S, Lange S, Shield K et al. Comorbidity of fetal alcohol spectrum disorder: A systematic review and meta-analysis. *The Lancet*. 2016.

¹⁵⁰⁷ Popova S, Lange S, Shield K et al. Comorbidity of fetal alcohol spectrum disorder: A systematic review and meta-analysis. *The Lancet*. 2016.

 ¹⁵⁰⁸ Lange S, Probst C, Gmel G et al. Global prevalence of fetal alcohol spectrum disorder among children and youth: A systematic review and meta-analysis. *JAMA Pediatrics*. 2017: 171(10): 948-56.
 ¹⁵⁰⁹ Ibid.

- Globally, the prevalence of FAS, the most severe and visibly identifiable form of FASD, in the general population is 14.6 per 10,000 population (or 0.146%). The prevalence of FAS in Canada is estimated at 10.5 per 10,000 (95% CI of 0.0 to 34.9).¹⁵¹⁰
- An estimated one out of every 67 women who consume alcohol during pregnancy will deliver a child with FAS.¹⁵¹¹
- Rates of FASD tend to be 10 40 times higher in specific subpopulations, such as children in care, correctional institutions, special education, specialized clinical and Aboriginal population compared with the general population.¹⁵¹²
- In a recent **population-based study using active case ascertainment** of students ages 7 9 years of age in the Greater Toronto school system, Popova and colleagues found a prevalence of FASD of between 18.1 and 29.3 per 1,000 (or 1.81% to 2.93%). This is approximately two to three times higher than their previous crude estimates for Canada.¹⁵¹³
- To estimate the prevalence of FASD and FAS in the birth cohort, we first need to estimate the number of potential births in the cohort. Based on population and birth data from 2013 to 2015 in BC, we calculated the fertility rate per 1,000 females by age cohort (see Table 4).
- The calculated fertility rate from Table 4 was used to estimate that there would be approximately 27,034 births in a BC birth cohort of 20,000 females (see Table 5).
- The number of births in the birth cohort were multiplied by 1.81% and 2.93%¹⁵¹⁴ to estimate the number of children born with FASD, with the 1.81% used in our base model and the 2.93% used in the sensitivity analysis. The results in Table 5 suggest 489 of the 27,034 (1.81%) births would have FASD.
- Globally, the prevalence of FASD in children and youth is estimated at 0.77%¹⁵¹⁵ while the prevalence of FAS is estimated at 0.146%,¹⁵¹⁶ suggesting that approximately 19.0% of children born with FASD have the more severe FAS (0.77% / 0.146%). The results in Table 5 suggest that 93 of the 489 births with FASD would have FAS.
- For modelling purposes, we assumed that 1.81% (Table 14, row *af*) of births in the birth cohort would have FASD (and ranged this to 2.93% in the sensitivity analysis), with 19% of births with FASD having the more severe FAS (Table 14, row *ag*).

¹⁵¹⁰ Popova S, Lange S, Probst C et al. Estimation of national, regional, and global prevalence of alcohol use during pregnancy and fetal alcohol syndrome: A systematic review and meta-analysis. *The Lancet*. 2017; 5: e290-9.

¹⁵¹¹ Ibid.

¹⁵¹² Popova S, Lange S, Shield K et al. Prevalence of fetal alcohol spectrum disorder among special populations: A systematic review and meta-analysis. *Addiction*. 2019; 114: 1150-72.

¹⁵¹³ Popova S, Lange S, Poznyak V et al. Population-based prevalence of fetal alcohol spectrum disorder in Canada. *BMC Public Health*. 2019.

¹⁵¹⁴ Ibid.

¹⁵¹⁵ Lange S, Probst C, Gmel G et al. Global prevalence of fetal alcohol spectrum disorder among children and youth: A systematic review and meta-analysis. *JAMA Pediatrics*. 2017: 171(10): 948-56.

¹⁵¹⁶ Popova S, Lange S, Probst C et al. Estimation of national, regional, and global prevalence of alcohol use during pregnancy and fetal alcohol syndrome: A systematic review and meta-analysis. *The Lancet*. 2017; 5: e290-9.

Table 4	able 4: Number of Births and Fertility Rates of Women Aged 15-49														
		Br	ritish Col	umbia, 2	013 to 2	015									
	Number of Women*														
Year	15-19	20-24	25-29	30-34	35-39	40-44	45-49	Total							
2013	131,378	152,798	159,870	158,541	150,258	165,004	173,233	1,091,082							
2014	130,517	153,991	162,005	163,346	152,477	163,392	172,241	1,097,969							
2015	130,179	152,108	163,734	166,612	155,270	161,338	173,302	1,102,543							
Mean	130,691	152,966	161,870	162,833	152,668	163,245	172,925	1,097,198							
			Fertilit	y Rate pe	r 1,000										
2013	7.6	30.8	73.5	98.6	56.7	11.9	0.8	10.3							
2014	6.8	29.6	72.2	100.0	57.2	11.7	0.8	11.1							
2015	6.2	28.8	69.3	100.0	57.3	12.3	0.8	10.9							
Mean	6.8	29.7	71.6	99.5	57.1	12.0	0.8	40.1							
			Annua	l # of Live	Births										
2013**	993	4,711	11,747	15,628	8,515	1,966	130	43,690							
2014***	889	4,553	11,702	16,336	8,725	1,915	141	44,261							
2015****	802	4,385	11,339	16,654	8,894	1,984	137	44,195							
Mean	895	4,550	11,596	16,206	8,711	1,955	136	44,049							

*BC Stats. Population Estimates 2019. Available at https://bcstats.shinyapps.io/popApp/. Accessed April 2020.

** BC Vital Statistics Agency. Annual Report 2013 - Table 3. Available online athttps://www2.gov.bc.ca/assets/gov/birth-adoptiondeath-marriage-and-divorce/statistics-reports/annual-reports/2013/pdf/annual-report-2013.pdf. Accessed April 2020.

*** BC Vital Statistics Agency. Annual Report 2014 - Table 3. Available online at https://www2.gov.bc.ca/assets/gov/birthadoption-death-marriage-and-divorce/statistics-reports/annual-reports/2014/pdf/annual-report-2014.pdf. Accessed April 2020.
**** BC Vital Statistics Agency. Annual Report 2015 - Table 3. Available online at https://www2.gov.bc.ca/assets/gov/birthadoption-death-marriage-and-divorce/statistics-reports/annual-reports/2015/pdf/annual-report-2015.pdf. Accessed April 2020.

Table 5: Expected Live Births and Births with FASD/FASin the Birth Cohort of 40,000

Age	# of Life Years Lived	Fertility Rate /	Expected	Expecte with	d Births FASD	Expected Births with		
Group	Females	1,000	Births	1.81%	2.93%	F/	AS	
18-19	39,776	6.85	272	4.9	8.0	0.9	1.5	
20-24	99,314	29.74	2,954	53.5	86.5	10.1	16.4	
25-29	99,101	71.64	7,099	128.5	208.0	24.4	39.4	
30-34	98,834	99.53	9,837	178.0	288.2	33.8	54.6	
35-39	98,499	57.06	5,620	101.7	164.7	19.3	31.2	
40-44	98,068	11.98	1,174	21.3	34.4	4.0	6.5	
45-49	97,478	0.79	77	1.4	2.2	0.3	0.4	
Total	631,069		27,034	489	792	93	150	

- Alcohol misuse results in life years lost due to both chronic and acute (binge drinking) conditions. Solberg and colleagues estimated that life years lost due to acute conditions are 2.14 times that of chronic conditions.¹⁵¹⁷
- Stahre et al. reported similar results. Between 2006 and 2010, 33% of the years of potential life lost were due to chronic conditions while 67% were due to acute conditions. In terms of deaths, 44% of alcohol attributable deaths are due to chronic conditions while 56% are due to acute conditions.¹⁵¹⁸
- The Global Burden of Disease 2016 Alcohol Collaborators released a systematic analysis of alcohol use and burden in 195 countries, including Canada. The proportion of deaths attributable to alcohol use by age and sex are shown in Table 6.¹⁵¹⁹

Table 6: Propo	ortion of Death	s Attributable										
to Alcohol Use												
	By Age and Sex											
	Canada, 2016											
Age Group	Females	Males										
15-19	3.0%	5.9%										
20-24	5.0%	12.0%										
25-29	4.6%	11.0%										
30-34	4.4%	9.8%										
35-39	4.3%	8.8%										
40-44	4.6%	8.5%										
45-49	4.8%	8.1%										
50-54	4.7%	7.6%										
55-59	4.1%	6.4%										
60-64	3.1%	4.9%										
65-69	2.3%	3.6%										
70-74	1.5%	2.4%										
75-79	0.9%	1.4%										
80-84	0.6%	0.8%										

• Applying the proportions from Table 6 to the expected annual deaths by age and sex in the BC birth cohort of 40,000 results in an estimated 11,814 life years lost (3,016 in females [Table 14, row *o*] and 8,798 in males [Table 14, row *p*]) due to unhealthy alcohol use (see Table 7).

¹⁵¹⁷ Solberg M, Maciosek M, Edwards N. Primary care interventions to reduce alcohol misuse: Ranking its health impact and cost-effectiveness. *American Journal of Preventive Medicine*. 2008; 34(2): 143-152.

¹⁵¹⁸ Stahre M, Roeber J, Kanny D et al. Contribution of excessive alcohol consumption to deaths and years of potential life lost in the United States. *Preventing Chronic Disease*. 2014; 11.

¹⁵¹⁹ GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. *Lancet*. 2018; 392: 1015-35.

	Table	7: Life Year	s Lost Res	sulting from	ing from Deaths Attributable to Alcohol Use								
			Betw	een the Age	s of 18 a	nd 84							
			in a Brit	ish Columbia Bi	Birth Cohort of 40,000								
		Fen	nales		_	M	ales						
	Dooths in	Proportion of		Life Vears Lost	Dooths in	Proportion of		Life Vears Lest					
	Birth	Attributable to	Life	Attributable to	Birth	Attributable to	Life	Attributable to					
Age	Cohort	Alcohol Use	Expectancy	Alcohol Use	Cohort	Alcohol Use	Expectancy	Alcohol Use					
18	6.2	3.0%	67.4	12.5	11.4	5.9%	62.4	42.0					
19	6.6	3.0%	66.4	13.1	13.6	5.9%	61.4	49.3					
20	7.0	5.0%	65.4	22.9	16.0	12.0%	60.5	116.1					
21	7.4	5.0%	64.4	23.8	18.2	12.0%	59.5	130.0					
22	7.6	5.0%	63.5	24.1	20.2	12.0%	58.6	142.0					
23	8.0	5.0%	62.5	25.0	22.0	12.0%	57.7	152.2					
24	8.6	4.6%	60.5	23.9	23.2	11.0%	55.8	148.5					
26	9.0	4.6%	59.6	24.7	25.2	11.0%	54.8	152.0					
27	9.4	4.6%	58.6	25.3	26.0	11.0%	53.9	154.2					
28	9.8	4.6%	57.6	26.0	26.8	11.0%	53.0	156.2					
29	10.4	4.6%	56.6	27.1	27.6	11.0%	52.1	158.0					
30	10.8	4.4% 4.4%	55.7 54.7	26.4	28.2	9.8%	51.1	141.3 141 7					
32	12.0	4.4%	53.7	28.4	29.4	9.8%	49.3	142.0					
33	12.6	4.4%	52.8	29.3	30.2	9.8%	48.4	143.1					
34	13.2	4.4%	51.8	30.1	31.0	9.8%	47.4	144.1					
35	13.6	4.3%	50.8	29.7	32.0	8.8%	46.5	130.9					
36	14.2	4.3%	49.9	30.4	33.0	8.8%	45.6	132.3					
37	14.8 15 6	4.3%	48.9	31.1	34.2	8.8%	44.7 12 7	134.4					
30	15.0	4.3%	47.9	33.1	36.8	8.8%	43.7	138.6					
40	17.6	4.6%	46.0	37.2	38.2	8.5%	41.9	136.0					
41	18.6	4.6%	45.1	38.5	39.6	8.5%	41.0	137.9					
42	19.8	4.6%	44.1	40.2	41.4	8.5%	40.1	140.9					
43	21.2	4.6%	43.1	42.1	43.4	8.5%	39.1	144.4					
44	22.6	4.6%	42.2	43.9	45.4	8.5%	38.2	147.5					
45	24.2	4.8%	41.2	47.9	47.8	8.1%	37.3	144.5					
40	25.6	4.8%	39.3	52.1	53.2	8.1%	35.5	153.0					
48	29.6	4.8%	38.4	54.5	56.4	8.1%	34.6	158.1					
49	31.8	4.8%	37.4	57.1	60.0	8.1%	33.7	163.8					
50	34.0	4.7%	36.5	58.3	63.8	7.6%	32.8	159.1					
51	36.6	4.7%	35.6	61.2	68.0	7.6%	31.9	165.0					
52	39.4	4.7%	34.6	64.1	72.6	7.6%	31.0	1/1.2					
54	45.8	4.7%	32.8	70.6	83.0	7.6%	29.3	184.6					
55	49.4	4.1%	31.9	64.5	89.0	6.4%	28.4	161.8					
56	53.6	4.1%	30.9	68.0	95.4	6.4%	27.5	168.1					
57	58.0	4.1%	30.0	71.4	102.2	6.4%	26.7	174.5					
58	62.8	4.1%	29.1	75.0	109.8	6.4%	25.8	181.5					
59 60	68.2 74.2	4.1%	28.2	78.9	118.0	6.4%	25.0	188.6					
61	80.6	3.1%	26.4	66.0	136.4	4.9%	23.3	155.8					
62	87.8	3.1%	25.5	69.5	147.0	4.9%	22.5	162.0					
63	95.8	3.1%	24.6	73.2	158.2	4.9%	21.7	168.0					
64	104.6	3.1%	23.8	77.0	170.6	4.9%	20.9	174.4					
65	114.2	2.3%	22.9	60.1	184.0	3.6%	20.1	132.9					
66 67	125.0	2.3%	22.0	63.3 66.6	198.4	3.6%	19.3 19 E	137.7					
68	149 R	2.3%	20.3	70.1	214.0	3.6%	10.5	142.5					
69	164.2	2.3%	19.5	73.6	249.2	3.6%	17.0	152.2					
70	180.2	1.5%	18.7	50.5	268.8	2.4%	16.2	104.7					
71	197.6	1.5%	17.9	52.9	290.0	2.4%	15.5	107.8					
72	217.0	1.5%	17.1	55.5	312.8	2.4%	14.8	110.9					
73	238.2	1.5%	16.3	58.1	337.0	2.4%	14.1 12 4	113.8					
74	201.0 287 N	0.9%	13.5	35.9	390.2	2.4%	12.4	69.3					
76	315.0	0.9%	14.0	37.4	419.2	1.4%	12.0	70.6					
77	345.6	0.9%	13.2	38.9	449.6	1.4%	11.4	71.6					
78	378.8	0.9%	12.5	40.3	481.2	1.4%	10.8	72.4					
79	414.6	0.9%	11.8	41.6	513.8	1.4%	10.1	72.9					
80	453.0	0.6%	11.1	28.2	547.0	0.8%	9.5	43.8					
81	494.2	0.6%	10.5	28.9	580.6	0.8%	9.0	43.6					
83	583.4	0.6%	9.0 9.2	30.0	645.6	0.8%	8.4 7.9	42.6					
84	630.6	0.6%	8.6	30.3	675.8	0.8%	7.3	41.6					
Tata	J			2 016				9 709					
1000	u i			5,010				0,130					

Calculating Life Years Lost - FASD

- The life expectancy at birth of people with FAS (in Alberta) is 34 years (95% CI, 31 37) or about 42% of that of the general population. The leading causes of death for people with FAS are "external causes" (44%), which include suicide (15%), accidents (14%) and poisoning by illegal drugs or alcohol (7%).¹⁵²⁰
- A review of 55 deaths in individuals with FASD found that 54.5% (30 of 55) of the deaths occurred in the first year of life. The most common causes of death were due to malformations of the heart and brain.¹⁵²¹
- Life years lost attributable to any intellectual disability (ID) are higher for females than males. Research evidence suggests a range of 8.6 to 32.0 life years lost for females with ID and a range from 6.4 to 23.0 life years lost for males with ID.^{1522,1523,1524,1525,1526,1527,1528}
- For modelling purposes, we assumed an average of 17.5 life years lost associated with all FASD but excluding FAS, calculated based on the mean of the midpoint for females and males with ID noted above; ((8.6 + 32.0)/2)+((6.4 + 23.0)/2)/2). FAS is associated with 48.2 life years lost (i.e., 82.2, the average life expectancy at birth in BC 34.0, the average life expectancy at birth of people with FAS in Alberta).
- Based on the estimated 489 births with FASD (of whom 93 would have FAS) born to a BC birth cohort of 40,000 (see Table 5 and Table 14, rows *ah* and *ai*), we estimate that 11,411 life years would be lost, 4,472 in children born with FAS (Table 14, row *ak*) and 6,939 in all other children born with FASD (see Table 8 and Table 14, row *al*).

¹⁵²⁰ Thanh NX and Jonsson E. Life expectancy of people with fetal alcohol syndrome. *Journal of Population Therapeutics and Clinical Pharmacology*. 2016; 23(1):

¹⁵²¹ Thompson A, Hackman D, Burd L. Mortality in fetal alcohol spectrum disorder. *Open Journal of Paediatrics*. 2014; 4: 21-33.

¹⁵²² Heslop P, Blair P, Fleming P et al. The Confidential Inquiry into premature deaths of people with intellectual disabilities in the UK: A population-based study. *Lancet*. 2014; 383: 889-895.

¹⁵²³ McCarron M, Carroll R, Kelly C et al. Mortality rates in the general Irish population compared to those with an intellectual disability from 2003 to 2012. *Journal of Applied Research in Intellectual Disabilities*. 2015; 28: 406-413.

¹⁵²⁴ Lauer E & McCallion P. Mortality of people with intellectual and developmental disabilities from select US state disability service systems and medical claims data. *Journal of Applied Research in Intellectual Disabilities*. 2015; 28: 394-405.

¹⁵²⁵ Trollor J, Srasuebkul P, Xu H et al. Cause of death and potentially avoidable deaths in Australian adults with intellectual disability using retrospective linked data. *BMJ Open.* 2017; 7: e013489.

¹⁵²⁶ Ng N, Flygare Wallén E & Ahlström G. Mortality patterns and risk among older men and women with intellectual disability: a Swedish national retrospective cohort study. *BMC Geriatrics*. 2017; 17: 269-269.

¹⁵²⁷ Glover G, Williams R, Heslop P et al. Mortality in people with intellectual disabilities in England. *Journal of Intellectual Disability Research*. 2017; 61: 62-74.

¹⁵²⁸ Arvio M, Salokivi T & Bjelogrlic-Laakso N. Age at death in individuals with intellectual disabilities. *Journal of Applied Research in Intellectual Disabilities*. 2017; 30: 782-785.

Table 8: Life Years Lost Resulting from FASD											
	In Child	dren Born to	Women	betweer	n the Ages o	of 18 and	49				
			n a BC Birth	n Cohort of	40.000						
	Life Vears	Average		Births with	Births with	Life Vears					
	for	Fertility Rate /	Expected	FASD	FAS (19.0% of		Life Years				
Δσρ	Females	1 000	Births	(1.81%)	FASD)		Lost FAS				
12	10 201	6.85	126	2.5	0.5	25.0	22.5				
10	10 885	6.85	136	2.5	0.5	33.0 34 Q	22.5				
20	19,885	29.74	591	2.J 10 7	2.0	151 S	97.8				
20	19 871	29.74	591	10.7	2.0	151.0	97.8				
21	19 863	29.74	591	10.7	2.0	151.7	97.0				
22	19 855	29.74	591	10.7	2.0	151.7	97.7				
23	19,847	29.74	590	10.7	2.0	151.5	97.6				
25	19.839	71.64	1.421	25.7	4.9	364.8	235.1				
26	19.830	71.64	1.421	25.7	4.9	364.6	235.0				
27	19.821	71.64	1.420	25.7	4.9	364.5	234.9				
28	19.811	71.64	1.419	25.7	4.9	364.3	234.8				
29	19,801	71.64	1,418	25.7	4.9	364.1	234.6				
30	19,790	99.53	1,970	35.7	6.8	505.6	325.8				
31	19,779	99.53	1,969	35.6	6.8	505.3	325.6				
32	19,767	99.53	1,967	35.6	6.8	505.0	325.4				
33	19,755	99.53	1,966	35.6	6.7	504.7	325.2				
34	19,742	99.53	1,965	35.6	6.7	504.4	325.0				
35	19,729	57.06	1,126	20.4	3.9	289.0	186.2				
36	19,715	57.06	1,125	20.4	3.9	288.8	186.1				
37	19,700	57.06	1,124	20.3	3.9	288.6	186.0				
38	19,685	57.06	1,123	20.3	3.9	288.3	185.8				
39	19,669	57.06	1,122	20.3	3.9	288.1	185.7				
40	19,652	11.98	235	4.3	0.8	60.4	38.9				
41	19,634	11.98	235	4.3	0.8	60.4	38.9				
42	19,615	11.98	235	4.3	0.8	60.3	38.9				
43	19,594	11.98	235	4.2	0.8	60.2	38.8				
44	19,572	11.98	234	4.2	0.8	60.2	38.8				
45	19,549	0.79	15	0.3	0.1	3.9	2.5				
46	19,524	0.79	15	0.3	0.1	3.9	2.5				
47	19,497	0.79	15	0.3	0.1	3.9	2.5				
48	19,469	0.79	15	0.3	0.1	3.9	2.5				
49	19,438	0.79	15	0.3	0.1	3.9	2.5				
Total		-	27,034	489	93	6,939	4,472				

Estimating the Quality of Life Reduction - General

- Based on using the time trade-off (TTO) and standard gamble (SG) approaches to assessing QoL with 200 adults, Kraemer and colleagues found that at-risk drinking,¹⁵²⁹ alcohol abuse¹⁵³⁰ and alcohol dependence¹⁵³¹ were associated with a reduction in quality of life of 13.4% (TTO)/11.8% (SG), 25.8% (TTO)/19.4% (SG) and 44.3% (TTO)/28.0% (SG), respectively.¹⁵³²
- Based on feedback from 300 adults in Spain, researchers estimated changes in QoL using the four dimensions of family, physical health, psychological and social consequences associated with unhealthy alcohol use. For example, "moderate family problems such as frequent arguments, distrust, verbal abuse, and/or cohabitation problems" but no physical health, psychological and social consequences was associated with a reduction in QoL of 14.4%. "Moderate family problems" together with "moderate health problems such as falls and/or liver inflammation", "moderate psychological problems such as guilt or shame, low self-esteem, minor depression, and/or memory problems" and "moderate social problems such as difficulty relating to other persons and/or loss of interest in hobbies" was associated with a reduction in QoL of 37.0%.¹⁵³³
- The GBD study found that a very mild alcohol use disorder¹⁵³⁴ is associated with a *disutility* of 0.123 (95% CI of 0.082 to 0.177), a mild alcohol use disorder¹⁵³⁵ is associated with a *disutility* of 0.235 (95% CI of 0.160 to 0.327), a moderate alcohol use disorder¹⁵³⁶ is associated with a disutility of 0.373 (95% CI of 0.248 to 0.508) and

¹⁵²⁹ **At-risk drinker** – "Imagine that you drink alcohol. Although you don't drink very often at home, when you go out with your friends, you have about 5 or 6 drinks. Usually you drink on weekend nights, but in the summer you drink about 3 times per week. Drinking has never harmed your health, mood, social life or family life. You have taken a few chances that you would not take if you were sober, such as getting rides home from friends who have been drinking. You haven't missed any work, although you are less productive at work the days after you have been drinking."

¹⁵³⁰ **Alcohol abuse** – "Imagine that you drink alcohol. Your friend thinks you drink too much and the two of you argue about your drinking frequently. Sometimes you have driven drunk, and several times you have been late for work the morning after you've been drinking. Sometimes after drinking you feel a burning in your stomach that lasts for days. You continue to drink even though you think alcohol might be causing some problems for you."

¹⁵³¹ **Alcohol dependence** – "Imagine you drink alcohol. You need to drink to get rid of the shakes, to calm your nerves, and to get any sleep. You need to drink a lot just to feel the effects. Even though you know alcohol is hurting you, you can't seem to stop. You miss important family events because of your drinking. Your doctor has told you that drinking has damaged your liver. Several times in the past year drinking has caused indigestion, upper stomach pain, nausea, and vomiting."

¹⁵³² Kraemer K, Roberts M, Horton N et al. Health utility ratings for a spectrum of alcohol-related health states. *Medical Care*. 2005; 43(6): 541-50.

¹⁵³³ Rodriguez-Miguez E and Nogueira J. Measuring the impact of alcohol-related disorders on quality of life through general population preferences. *Gaceta Sanitaria*. 2017; 31(2): 89-94.

¹⁵³⁴ Very mild alcohol use disorder – "Drinks alcohol daily and has difficulty controlling the urge to drink. When sober, the person functions normally."

¹⁵³⁵ **Mild alcohol use disorder** – "Drinks a lot of alcohol and sometimes has difficulty controlling the urge to drink. While intoxicated, the person has difficulty performing daily activities."

¹⁵³⁶ **Moderate alcohol use disorder** – "Drinks a lot, gets drunk almost every week and has great difficulty controlling the urge to drink. Drinking and recovering cause great difficulty in daily activities, sleep loss and fatigue."

a severe alcohol use disorder 1537 is associated with a disutility of 0.570 (95% CI of 0.396 to 0.732). 1538

- While the goal for most alcohol use disorder treatment programs may be abstinence, numerous studies have indicated a significant improvement in health and quality of life of a reduction in alcohol consumption that may not achieve abstinence (e.g. moving from the harmful to the hazardous or low drinking categories or from the hazardous to the low drinking category).^{1539,1540}
- Binge drinking (BD) is associated with a reduced quality of life. Using a recently developed and validated scale specifically exploring alcohol-related quality of life (the Alcohol Quality of Life Scale or AQoLS), Dormal et al assessed the QoL of 15,020 European students (mean age of 21.9 years). They found that the presence of BD was positively associated with a reduced QoL, regardless of the intensity of the BD experiences.¹⁵⁴¹

• For modelling purposes, we have assumed the following QoL reductions:

- **Binge drinking** equivalent to the GBD very mild alcohol use disorder (0.123 with a 95% CI of 0.082 to 0.177). (Table 14, row q)
- **Hazardous** consumption equivalent to the midpoint between the GBD very mild and mild alcohol use disorder (0.179 with a 95% CI of 0.121 to 0.252). (Table 14, row *r*)
- **Harmful** consumption equivalent to the midpoint between the GBD mild and moderate alcohol use disorder (0.304 with a 95% CI of 0.204 to 0.418). (Table 14, row *s*)
- Table 9 provides information on the estimated number of life years lived with lowbinge, hazardous or harmful alcohol use in the BC birth cohort of 40,000, for both females and males. In total, unhealthy alcohol use is associated with 126,584 QALYs lost, with 51,996 QALYs lost in females (Table 14, row *w*) and 74,587 QALYs lost in males (Table 14, row *aa*).

¹⁵³⁷ **Severe alcohol use disorder** – "Gets drunk almost every day and is unable to control the urge to drink. Drinking and recovering replace most daily activities. The person has difficulty thinking, remembering and communicating, and feels constant pain and fatigue."

¹⁵³⁸ Institute for Health Metrics and Evaluation. *GBD 2016 sequelae, health states, health state lay descriptions, and disability weights*. Available online at <u>http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights</u>. Accessed April 2020.

¹⁵³⁹ Witkiewitz K, Roos C, Pearson M et al. How much is too much? Patterns of drinking during alcohol treatment and associations with post-treatment outcomes across three alcohol clinical trials. *Journal of Studies on Alcohol and Drugs*. 2017; 78: 59-69.

¹⁵⁴⁰ Witkiewitz K, Kranzler H, Hallgren K et al. Drinking risk level reductions associated with improvements in physical health and quality of life among individuals with alcohol use disorder. *Alcoholism: Clinical and Experimental Research*. 2018; 42(12): 2453-65.

¹⁵⁴¹ Dormal V, Bremhorst V, Lannoy S et al. Binge drinking is associated with reduced quality of life in young students: A pan-European study. *Drug and Alcohol Dependence*. 2018; 193: 48-54.

Between the Ages of 13 and 34. between the Ages of 13 and 34. between the Ages of 13 and 34. between the Ages of 14 and 34.	Table 9: Quality Adjusted Life Years Lost Living with Unhealthy Alcohol Use																
International and antical and antical antital antical antical antical antical antical antical a							Betv	veen th	ne Ages	of 18 ar	nd 84						
Image Image <t< th=""><th></th><th></th><th></th><th></th><th>Femal</th><th>ρ</th><th>In a Brit</th><th>tish Colui</th><th>nbia Birt</th><th>h Cohort o</th><th>† 40,000</th><th></th><th>Male</th><th></th><th></th><th></th><th></th></t<>					Femal	ρ	In a Brit	tish Colui	nbia Birt	h Cohort o	† 40,000		Male				
18 29.20 5.38 1.000 7.33 070 198 290 1.147 193.05 6.600 1.290 1.448 185 7.27 481 1.590 10 128.77 5.131 1.000 7.33 198 1.69 1.280 6.290 1.280 1.444 1.81 1.27 4.84 1.55 1.27 4.84 1.85 7.2 4.84 1.55 1.280 1.280 1.280 1.444 1.81 1.280	Age	Total Life Years	Life Years by Low-Binge	Unhealthy Hazardous	Alcohol Use Harmful	QALYs Lost Low-Binge	Due to Unl Hazardous	healthy Alc Harmful	ohol Use Total	Total Life Years	Life Years by Low-Binge	Unhealthy Hazardous	Alcohol Use Harmful	QALYs Lost Low-Binge	Due to Unl Hazardous	healthy Alc Harmful	ohol Use Total
10 1	18	19,891	5,198	1,010	753	700	198	250	1,148	19,870	6,063	1,391	1,448	816	273	482	1,570
1 1	19 20	19,885	5,197	1,010	753	699	198	250	1,147	19,858	6,059	1,391	1,448	815	272	481	1,569
12 1.968 5.191 1.009 7.22 0.69 1.98 2.00 1.146 1.900 0.001 3.88 1.441 2.12 1.140 1.900 13 13.847 5.147 1.008 7.31 668 1.37 2.00 1.145 1.320 1.401 4.11 2.71 470 1.530 13 1.310 1.300 7.00 666 1.37 2.00 1.144 1.360 5.00 1.405 1.400 1.301 1.405 1.400 1.301 1.405 1.400 1.401 1.400	20	19,878	5,195	1,009	752	699	198	250	1,147	19,845	6,034	1,390	1,445	815	272	481	1,568
31 9 95 5.18 1.00 772 648 1.47 200 1.46 1.77 6.03 1.88 1.44 81 721 649 1.52 12 32.33 5.137 1.000 753 649 1.77 2.00 1.44 1.84 1.47 1.84 1.44 1.84 1.44 1.84 1.44 1.84 1.44 1.84 1.44 1.84 1.84 1.80 2.00 7.	22	19,863	5,191	1,009	752	699	198	250	1,146	19,807	6,043	1,387	1,444	813	272	480	1,565
3 3 13 1,000	23	19,855	5,189	1,008	752	698	197	250	1,146	19,786	6,037	1,386	1,442	812	271	480	1,563
15 9.3.00 1.3.01 1.0.07 7.10 67.70 19.71 19.714 10.714 <th10.714< th=""> 10.714 10.714</th10.714<>	24 25	19,847 19,839	5,187 5,185	1,008	751 751	698 698	197 197	250 250	1,145	19,763	6,030 6,023	1,384 1 382	1,441 1 439	811 811	271	479 479	1,562 1,560
12 5,12.1 5,12.0 5,10.0 7.00 677 127 12.40 1378 1.43 16.80 2.07 1.77 1.43 16.80 2.00 4.77 1.554 13 15.01 5.178 1.065 7.00 666 127 2.04 1.040 1.040 1.041 1.66 1.441 1.66 1.441 1.66 1.441 1.66 1.441 1.66 1.441 1.66 1.441 1.66 1.441 1.66 1.441 1.66 1.441 1.66 1.441 1.66 1.445 1.66 1.441 1.66 1.441 1.66 1.441 1.66 1.441 1.66 1.441	26	19,830	5,182	1,007	751	697	197	250	1,144	19,714	6,015	1,381	1,437	809	270	478	1,558
28 19311 5.178 1.086 700 677 197 248 1.143 1966 5.999 1.377 1.431 888 207 1.43 31 19377 2.244 193 200 1.44 1.537 1.441 1.600 1.540 250 1.94 1.957 1.441 1.600 1.540 250 1.94 1.957 1.441 1.500 1.540 250 1.94 1.957 1.441 1.540	27	19,821	5,180	1,006	750	697	197	250	1,144	19,689	6,007	1,379	1,435	808	270	477	1,556
5 10 2.56 1.59 10 10 10 10.579 4.10 1.56 90 20 10.57 11 15.797 2.58 93 935 190 7.6 15.59 4.18 1.60 1.50 5.70 322 325 1.55 7.7 321 5.55 7.7 321 5.55 7.7 321 5.55 7.7 321 5.54 1.58 5.75 321 5.54 1.55 5.77 321 5.54 1.62 5.55 5.77 321 5.54 1.62 5.55 5.77 321 5.54 1.62 5.77 321 5.54 1.62 5.77 321 5.55 5.77 321 5.51 5.77 321 5.16 5.55 5.77 321 5.51 5.77 321 5.51 5.56 331 5.51 5.77 7.91 3.232 4.14 1.52 5.51 5.96 331 5.11 5.51 5.56	28	19,811	5,178	1,006	750	697	197	249	1,143	19,662	5,999 5.001	1,377	1,433	807	270	477	1,554
11 19,779 2,64 99 577 334 199 200 744 15,50 4,184 1,600 1,503 599 322 327 1,627 38 19,755 2,561 988 586 584 189 200 743 19,504 4,181 1,588 1,588 578 321 575 321 524 1,425 36 19,729 2,586 986 585 384 188 200 742 13,488 4,156 1,528 577 321 4,141 37 19,700 2,546 945 585 531 188 200 741 13,232 4,144 1,559 1,528 571 331 148 200 741 13,232 4,131 1,528 571 331 341 149 1,528 1,519 571 331 148 200 741 13,234 4,131 1,528 1,519 571 341 343 341 1,414 1,528 1,519 594 330 340 1,414 1,528	29 30	19,801	2,566	939	750 587	355	197	249	744	19,635	5,991 4,200	1,375	1,431	580	323	476 528	1,552
12 19,707 2,546 988 586 514 198 200 743 1550 4,188 1,500 778 212 525 1,427 34 19,742 2,560 957 586 586 584 188 200 742 19,484 4,165 1,535 577 20 521 4,412 36 19,712 2,565 956 586 531 188 200 741 19,424 4,464 1,551 1,530 577 20 521 4,413 36 19,055 2,524 951 535 188 200 741 19,324 4,414 1,555 572 39 511 4,414 19,656 2,524 931 363 366 156 777 19 12,424 4,141 1572 1531 984 4,414 1572 1,531 594 4,84 1,464 19,547 2,548 1,56 1,566 1,56	31	19,779	2,564	939	587	354	189	200	744	19,579	4,194	1,603	1,543	580	322	527	1,429
31 33 35,75 2,260 937 386 334 188 200 743 19,489 4,137 1,585 1,535 577 321 524 4,42 35 13,729 2,568 939 886 344 128 200 741 11,468 4,138 1,539 1,575 1,535 577 320 524 1,435 36 13,566 2,552 934 944 333 188 200 740 13,397 4,146 1,537 1,515 573 339 501 1,410 38 13,666 2,550 934 934 337 195 208 770 19,234 4,114 1,575 1,515 594 330 540 1,440 41 15,547 2,458 931 846 155 207 769 1,240 4,114 1,575 1,516 591 330 540 1,443 143 15,472 2,48	32	19,767	2,563	938	587	354	189	200	743	19,550	4,188	1,600	1,540	579	322	526	1,427
55 59.75 5.56 35.64 35.64 35.64 35.64 35.64 35.64 35.64 35.64 35.64 35.64 35.64 35.64 35.74 35.94 35.	33	19,755	2,561	938	586	354	189	200	743	19,520	4,181	1,598	1,538	578	321	525	1,425
15 19,715 2,568 935 533 198 200 741 19,792 1,570 1,520 1,575 1,520 1,575 1,525 1,575 1,525 1,575 1,525 1,575 1,525 1,525 1,525 1,525 1,525 1,525 1,525 1,525 1,525 1,525 1,525 1,525 1,525 1,525 1,525 1,525 1,525 1,525 1,535	34 35	19,742	2,560	937 936	585	354	188	200	742	19,489	4,175	1,595	1,535	577	321	524 524	1,422
37 19,700 2,554 935 985 835 188 200 740 19,392 4,146 1,587 1,528 574 319 522 1,413 38 18,669 2,550 933 584 332 188 199 740 19,327 4,138 1,525 573 318 550 1,414 14 18,614 2,544 933 583 366 155 207 709 19,245 4,124 1,515 513 994 330 540 1,444 14 15,524 2,543 931 541 366 135 207 708 1,31,14 4,105 1,510 591 329 531 4,441 14 15,524 2,364 1,50 31,56 1,500 1,510 3111 4,105 1,510 312 4,44 1,514 4,42 1,514 4,42 1,514 4,44 1,514 4,54 1,514 4,54 1,514 4,54 1,514 1,514 4,54 1,514 1,514 1,514 1,514	36	19,715	2,556	936	585	353	188	200	741	19,425	4,161	1,590	1,530	575	320	523	1,418
38 10,485 2,552 934 984 333 188 200 700 19,377 4,146 1,555 573 319 521 1,410 40 19,652 2,564 933 584 367 195 200 770 19,284 4,131 1,525 573 319 520 1,410 41 19,642 2,546 932 581 366 135 207 769 19,244 4,114 1,545 1,510 931 2,26 328 531 1,467 41 19,572 2,286 1,181 446 326 135 207 767 13,111 4,055 1,506 90 328 537 4,145 41 19,572 2,269 1,151 443 1,151 445 1,151 441 1,151 41 19,472 2,465 1,152 443 336 272 1,161 445 1,151 441 1,111	37	19,700	2,554	935	585	353	188	200	741	19,392	4,154	1,587	1,528	574	319	522	1,415
39 13 13 33 33 33 34 35 140 150 141 1,52 1,52 311 541 1,447 14 13634 2,546 932 533 346 155 207 76 20,315 4.111 1,575 1,556 294 330 546 1,447 14 13,544 2,146 931 541 346 155 207 768 20,152 4.114 1,575 1,556 294 330 543 1,441 14 13,554 2,158 1,556 1,50 297 331 541 1,556 1,50 297 441 1,514 445 256 441 1,111 1,111 1,157 443 1,151 445 256 341 159 777 31,071 3,146 1,157 443 1,151 14 14,947 2,76 1,151 453 3,252 1,151 1,151 1,141	38	19,685	2,552	934	584	353	188	200	740	19,357	4,146	1,585	1,525	573	319	521	1,413
14 19,64 5.26 912 583 367 195 207 799 19,246 4,114 1,575 1,516 594 330 640 1,64 42 19,554 2543 393 581 366 195 207 788 19,162 4,105 1,500 591 329 531 467 44 19,574 2,583 929 581 366 195 207 778 19,101 4,055 1,500 532 267 413 1,544 45 12,647 2,263 1,162 445 326 244 159 779 19,107 3,148 1,260 1,515 451 264 410 1,125 49 19,469 2,259 1,157 443 335 252 164 753 3,131 1,226 1,154 465 273 423 1,155 30 19,405 2,223 1,154 442 337 252 1,647 753 1,857 3,111 1,254 1,464 445 1,126	39 40	19,652	2,550	933	583	367	100	208	740	19,321	4,139	1,582	1,522	595	331	520 541	1,410
42 19,615 2,583 931 582 166 155 207 768 19,704 4,157 1,510 592 329 539 1,461 44 19,572 2,588 209 581 166 155 207 767 19,117 4,055 1,565 1,566 5,065 5,065 5,065 5,07 4,471 44 19,574 2,268 1,162 445 326 244 159 728 15,027 3,484 1,265 1,154 452 266 412 1,131 47 19,497 2,283 1,150 443 325 242 1,58 766 18,875 3,112 1,284 1,44 467 274 424 1,125 19,405 2,228 1,155 443 338 252 164 759 18,59 3,010 1,244 1,435 463 272 421 1,155 19,405 2,230 1,414 4335 <th>41</th> <th>19,634</th> <th>2,546</th> <th>932</th> <th>583</th> <th>367</th> <th>195</th> <th>207</th> <th>769</th> <th>19,245</th> <th>4,122</th> <th>1,575</th> <th>1,516</th> <th>594</th> <th>330</th> <th>540</th> <th>1,464</th>	41	19,634	2,546	932	583	367	195	207	769	19,245	4,122	1,575	1,516	594	330	540	1,464
43 19,594 2,580 930 581 366 195 207 768 19,102 4,105 1,509 1,510 590 328 536 1,454 45 19,549 2,266 1,162 446 327 244 159 728 19,071 3,165 1,272 1,160 455 266 412 1,111 47 19,477 2,266 1,159 444 325 243 158 776 18,970 3,144 1,225 1,151 451 246 410 1,125 48 19,468 2,255 1,157 443 325 242 158 775 18,877 3,111 1,124 414 467 274 424 1,164 51 19,488 2,252 1,154 433 3252 164 751 18,877 3,111 1,124 1,144 467 274 424 1,165 51 19,492 2,228 1,144 440 336 251 163 750 18,863 3,062 1,224 1	42	19,615	2,543	931	582	366	195	207	769	19,204	4,114	1,572	1,513	592	329	539	1,461
44 19,372 2,38 290 38.1 390 133 207 670 19,171 4,380 1,311 1,314 1,320 1,151 453 266 411 1,131 46 19,592 2,268 1,157 443 325 243 158 726 18,915 3,131 1,222 1,151 451 266 411 1,131 48 19,405 2,725 1,157 443 332 222 1,64 753 18,975 3,111 1,224 1,144 467 244 1,151 19,405 2,724 1,144 337 251 163 750 18,863 3076 1,224 1,114 461 271 419 1,151 453 1,214 4151 <th>43</th> <th>19,594</th> <th>2,540</th> <th>930</th> <th>581</th> <th>366</th> <th>195</th> <th>207</th> <th>768</th> <th>19,162</th> <th>4,105</th> <th>1,569</th> <th>1,510</th> <th>591</th> <th>329</th> <th>537</th> <th>1,457</th>	43	19,594	2,540	930	581	366	195	207	768	19,162	4,105	1,569	1,510	591	329	537	1,457
46 19,224 2,266 1,152 445 3,26 2,44 159 778 19,022 3,148 1,299 1,157 443 2,266 411 1,128 47 19,469 2,259 1,159 444 325 243 158 776 18,915 3,131 1,265 1,154 451 264 400 1,155 48 19,465 2,252 1,157 443 325 242 158 775 18,815 3,111 1,224 1,144 467 2,774 443 1,165 51 19,370 2,248 1,153 442 337 252 164 753 18,775 3,100 1,244 1,415 467 274 413 1,166 51 19,292 2,248 1,144 440 336 251 163 750 18,669 3,068 1,224 1,115 451 1,416 53 19,492 2,228 1,448 440 336 251 163 760 18,863 3,062 1,224 1,115	44 45	19,572	2,538	929 1.163	581 446	365	195 244	207	767	19,117	4,095	1,565	1,506	590 455	328 267	536 413	1,454
47 19.497 2.263 1.160 445 326 243 158 776 18.970 3.131 1.262 1.151 441 1.125 48 19.438 2.256 1.157 443 335 2.42 158 775 18.875 3.131 1.262 1.151 441 400 1.125 49 19.372 2.248 1.153 442 337 252 154 753 18.759 3.111 1.254 1.144 467 273 421 1.156 51 19.392 2.248 1.154 444 337 251 163 751 18.658 3.076 1.224 1.131 461 272 411 1.156 51 19.492 2.228 1.144 443 334 2.91 1.318 464 3.33 2.90 1.33 3.02 1.244 1.125 459 2.86 411 1.141 55 19.902 2.228 1.144 438 334 2.90 1.33 430 335 2.90 1.360	46	19,524	2,266	1,162	445	326	244	159	728	19,022	3,148	1,269	1,157	453	266	412	1,131
48 19,469 2,259 1,159 444 325 243 158 726 18,857 3,131 1,262 1,151 451 264 410 1,125 49 19,405 2,252 1,155 443 338 252 164 754 18,729 3,100 1,249 1,140 465 273 424 1,165 51 19,370 2,248 1,150 441 337 251 163 750 18,583 3,006 1,239 1,131 461 277 421 1,156 53 19,237 2,238 1,145 439 335 250 163 760 18,503 3,062 1,234 1,126 459 268 417 1,146 54 19,247 2,224 1,143 438 334 249 162 746 18,417 3,131 1,226 1,125 453 413 1,135 55 19,032 2,209 1,133 444 331 247 161 749 18,202 3,017 1,216 <t< th=""><th>47</th><th>19,497</th><th>2,263</th><th>1,160</th><th>445</th><th>326</th><th>243</th><th>158</th><th>727</th><th>18,970</th><th>3,140</th><th>1,265</th><th>1,154</th><th>452</th><th>265</th><th>411</th><th>1,128</th></t<>	47	19,497	2,263	1,160	445	326	243	158	727	18,970	3,140	1,265	1,154	452	265	411	1,128
9 19,438 2,250 1,157 443 343 242 128 1,257 3,121 1,284 1,144 450 264 408 1,124 51 19,370 2,248 1,153 442 337 252 164 753 18,779 3,100 1,249 1,144 465 273 423 1,160 52 19,332 2,243 1,148 440 336 251 163 750 18,859 3,006 1,234 1,126 450 269 443 1,145 19,291 2,228 1,143 488 334 249 162 746 18,403 3,036 1,228 1,121 455 266 413 1,135 56 19,148 2,2216 1,136 436 331 247 161 742 18,226 3,017 1,266 1,019 452 265 411 1,129 58 19,032 2,216 1,133 434	48	19,469	2,259	1,159	444	325	243	158	726	18,915	3,131	1,262	1,151	451	264	410	1,125
51 19,370 2,248 1,153 442 337 252 164 753 18,729 3,100 1,249 1,140 465 273 423 1,160 52 19,332 2,243 1,150 441 337 251 163 751 18,683 3,006 1,244 1,133 461 271 419 1,151 54 19,247 2,224 1,148 440 336 255 163 760 18,543 3,062 1,224 1,126 459 269 417 1,414 55 19,199 2,222 1,139 437 333 249 162 744 18,25 3,031 1,222 1,115 455 267 413 1,129 57 19,092 2,216 1,136 436 332 248 162 744 18,226 3,031 1,222 1,115 450 266 411 1,129 433 1,310 42 162 18,64 1,201 1,006 447 262 406 1,112 50 18,8	49 50	19,438	2,250	1,157	443 443	325	242	158	725	18,857	3,121	1,258	1,147	450 467	264	408	1,122
52 99.332 2.243 1.150 441 337 251 163 751 18.583 3.008 1.244 1.135 463 272 421 1.156 53 19.247 2.234 1.145 449 335 250 163 748 18.533 3.062 1.234 1.126 459 269 417 1.46 55 19.194 2.228 1.134 438 334 249 162 746 18.477 3.03 1.228 1.115 455 267 413 1.135 56 19.092 2.216 1.136 436 332 248 161 742 18.202 3.017 1.216 1.109 452 265 411 1.125 57 19.092 2.201 1.129 433 330 246 160 737 18.006 2.990 1.201 1.066 447 262 406 1.115 60 18.897 733 1.374 113 144 307 144 505 1.7.01 1.484 1.312 93	51	19,370	2,248	1,153	442	337	252	164	753	18,729	3,100	1,249	1,140	465	273	423	1,160
53 19,291 2,239 1,148 440 336 251 163 750 11,853 3,076 1,239 1,131 461 271 419 1,151 54 19,197 2,228 1,143 438 334 249 162 746 18,417 3,046 1,222 1,115 455 268 411 1,125 57 19,092 2,216 1,136 436 332 248 161 742 18,225 3,017 1,216 1,109 452 265 411 1,129 58 19,032 2,209 1,133 434 331 247 161 749 18,210 2,999 1,200 1,103 450 264 409 1,129 59 18,666 2,011 1,239 3,37 116 311 143 570 1,784 1,874 1,322 980 220 1,006 447 262 406 1,115 64 1,321 890 287 224 375 661 18,431 772 1,337 354 </th <th>52</th> <th>19,332</th> <th>2,243</th> <th>1,150</th> <th>441</th> <th>337</th> <th>251</th> <th>163</th> <th>751</th> <th>18,659</th> <th>3,088</th> <th>1,244</th> <th>1,135</th> <th>463</th> <th>272</th> <th>421</th> <th>1,156</th>	52	19,332	2,243	1,150	441	337	251	163	751	18,659	3,088	1,244	1,135	463	272	421	1,156
is js js <th< th=""><th>53</th><th>19,291</th><th>2,239</th><th>1,148</th><th>440</th><th>336</th><th>251</th><th>163</th><th>750</th><th>18,583</th><th>3,076</th><th>1,239</th><th>1,131</th><th>461</th><th>271</th><th>419</th><th>1,151</th></th<>	53	19,291	2,239	1,148	440	336	251	163	750	18,583	3,076	1,239	1,131	461	271	419	1,151
10 10 <th< th=""><th>54 55</th><th>19,247</th><th>2,234</th><th>1,145</th><th>439 438</th><th>335</th><th>250</th><th>163</th><th>748</th><th>18,503</th><th>3,062</th><th>1,234</th><th>1,126</th><th>459 457</th><th>269</th><th>417</th><th>1,146</th></th<>	54 55	19,247	2,234	1,145	439 438	335	250	163	748	18,503	3,062	1,234	1,126	459 457	269	417	1,146
57 19,092 2,216 1,136 436 332 248 161 742 18,226 3,017 1,216 1,109 452 265 411 1,129 58 19,032 2,209 1,113 434 331 247 161 737 18,006 2,999 1,201 1,006 447 262 406 1,115 60 18,895 752 1,300 375 116 311 143 570 1,688 1,322 987 289 296 375 961 61 18,817 749 1,384 374 115 310 142 565 17,610 1,849 1,302 972 285 292 370 946 63 18,641 742 1,371 370 114 307 141 552 17,650 1,483 1,279 954 280 286 633 929 286 633 929 285 163 921 136 141 300 137 552 16,171 1,777 1,235 934 <th>56</th> <th>19,148</th> <th>2,222</th> <th>1,139</th> <th>437</th> <th>333</th> <th>249</th> <th>162</th> <th>744</th> <th>18,325</th> <th>3,033</th> <th>1,222</th> <th>1,115</th> <th>455</th> <th>267</th> <th>413</th> <th>1,135</th>	56	19,148	2,222	1,139	437	333	249	162	744	18,325	3,033	1,222	1,115	455	267	413	1,135
58 19,032 2,209 1,133 434 331 247 161 739 18,120 2,999 1,209 1,103 450 264 409 1,115 60 18,895 752 1,390 375 116 311 143 570 17,884 1,878 1,322 987 289 226 375 961 61 18,895 752 1,330 375 116 311 142 565 17,610 1,849 1,312 980 287 284 373 954 62 18,841 742 1,371 370 114 307 141 562 17,458 1,833 1,291 963 282 289 367 938 64 18,641 742 1,371 370 114 306 140 559 17,713 1,816 1,279 954 220 286 363 929 919 966 1,818 733 1,35 310 291 355 910 267 273 346 886 808	57	19,092	2,216	1,136	436	332	248	161	742	18,226	3,017	1,216	1,109	452	265	411	1,129
35 16,200 2,201 1,123 133 330 246 160 737 16,210 1,211 1,203 1,411 1,203 147 262 400 1,115 60 18,895 752 1,384 374 115 310 142 568 17,752 1,864 1,312 980 287 294 373 954 61 18,817 749 1,378 372 115 309 142 565 17,610 1,849 1,302 972 285 292 370 954 63 18,641 742 1,371 370 114 306 140 559 17,283 1,816 1,279 954 280 286 363 929 913 956 18,312 729 1,347 364 112 302 138 552 16,925 1,777 1,251 934 274 280 355 909 97 314 898 66 637 154 66,446 1,777 1,251 934 274 280 355	58	19,032	2,209	1,133	434	331	247	161	739	18,120	2,999	1,209	1,103	450	264	409	1,122
61 18,817 749 1,384 374 115 310 142 568 17,752 1,864 1,312 980 287 294 373 954 62 18,733 745 1,378 372 115 309 142 565 17,610 1,849 1,302 972 285 292 370 946 63 18,641 742 1,371 370 114 307 141 562 17,458 1,383 1,279 954 280 286 363 929 64 18,541 733 1,356 366 113 304 139 552 16,715 1,777 1,251 944 277 283 399 919 66 18,121 723 1,337 361 111 300 137 548 16,719 1,755 1,236 923 270 277 351 898 68 18,038 718 1,327 358 110 295 135 539 16,256 1,707 1,202 897	59 60	18,900	752	1,129	455 375	550 116	240 311	160	570	17,884	2,980	1,201	987	289	202	375	961
62 18,733 745 1,378 372 115 309 142 565 17,610 1,849 1,302 972 285 292 370 946 63 18,641 742 1,371 370 114 307 141 562 17,488 1,833 1,291 963 282 289 367 938 64 18,541 738 1,356 366 113 304 139 556 17,116 1,797 1,255 944 277 283 359 919 66 18,312 729 1,337 364 111 300 137 548 16,719 1,255 944 277 283 355 909 68 18,038 718 1,327 358 110 297 136 544 16,466 1,722 1,200 910 267 273 346 886 69 17,818 711 1,315 355 110 295 135 539 16,526 1,707 1,202 897 263	61	18,817	749	1,384	374	115	310	142	568	17,752	1,864	1,312	980	287	294	373	954
63 18,641 742 1,371 370 114 307 141 562 17,458 1,833 1,291 963 282 289 367 988 64 18,541 738 1,356 366 113 304 140 556 17,116 1,279 954 280 286 363 929 65 18,432 733 1,356 366 113 304 139 556 17,116 1,777 1,251 934 274 280 355 909 66 18,312 723 1,337 361 111 300 137 548 16,719 1,755 1,236 923 270 277 351 898 68 18,088 718 1,327 358 110 295 135 539 16,256 1,707 1,202 897 263 269 341 873 70 17,709 408 1,933 384 66 457 154 678 15,978 714 919 621 116 <td< th=""><th>62</th><th>18,733</th><th>745</th><th>1,378</th><th>372</th><th>115</th><th>309</th><th>142</th><th>565</th><th>17,610</th><th>1,849</th><th>1,302</th><th>972</th><th>285</th><th>292</th><th>370</th><th>946</th></td<>	62	18,733	745	1,378	372	115	309	142	565	17,610	1,849	1,302	972	285	292	370	946
65 16,942 733 1,356 366 114 300 139 556 17,156 1,255 944 277 283 355 919 66 18,312 729 1,347 364 112 302 138 552 16,925 1,777 1,251 934 274 280 355 909 67 18,181 723 1,337 361 111 300 137 548 16,719 1,725 1,226 923 270 277 351 898 68 18,038 718 1,327 358 110 297 136 544 16,496 1,732 1,220 910 267 273 346 886 69 17,709 408 1,933 384 66 457 154 678 15,997 714 919 621 116 217 249 583 71 17,709 4004 1,913 380 66 452 152 670 15,718 702 902 610 114 213	63 64	18,641 18 541	742	1,3/1	370	114	307	141 140	562	17,458	1,833	1,291	963	282	289	367	938
66 18,312 729 1,347 364 112 302 138 552 16,925 1,777 1,251 934 274 280 355 909 67 18,181 723 1,337 361 111 300 137 548 16,719 1,755 1,236 923 270 277 351 898 68 18,038 718 1,327 358 110 297 135 534 16,256 1,707 1,202 910 267 273 346 886 69 17,709 408 1,933 384 66 457 154 678 15,997 714 919 621 116 217 249 583 71 17,502 404 1,913 380 66 452 152 670 15,718 702 902 610 114 213 245 572 73 17,085 394 1,865 370 64 441 149 654 15,916 687 586 110 205 <th>65</th> <th>18,432</th> <th>733</th> <th>1,356</th> <th>366</th> <th>113</th> <th>304</th> <th>139</th> <th>556</th> <th>17,116</th> <th>1,797</th> <th>1,265</th> <th>944</th> <th>200</th> <th>283</th> <th>359</th> <th>919</th>	65	18,432	733	1,356	366	113	304	139	556	17,116	1,797	1,265	944	200	283	359	919
67 18,181 723 1,337 361 111 300 137 548 16,719 1,755 1,236 923 270 277 351 898 68 18,038 718 1,327 358 110 295 136 544 16,496 1,732 1,220 910 267 273 346 886 69 17,881 711 1,315 355 110 295 135 539 16,256 1,707 1,202 897 263 269 341 873 70 17,709 404 1,913 380 66 452 152 670 15,718 702 902 610 114 213 245 572 72 17,313 399 1,800 375 65 447 151 662 15,416 688 885 598 112 209 240 561 73 17,085 394 1,865 370 64 441 14,742 658 846 572 104 195 224 <th>66</th> <th>18,312</th> <th>729</th> <th>1,347</th> <th>364</th> <th>112</th> <th>302</th> <th>138</th> <th>552</th> <th>16,925</th> <th>1,777</th> <th>1,251</th> <th>934</th> <th>274</th> <th>280</th> <th>355</th> <th>909</th>	66	18,312	729	1,347	364	112	302	138	552	16,925	1,777	1,251	934	274	280	355	909
68 18,038 718 1,327 358 110 297 136 544 16,496 1,722 1,220 910 267 273 346 886 69 17,881 711 1,315 355 110 295 135 539 16,256 1,707 1,202 897 263 269 341 873 70 17,709 408 1,913 380 66 452 152 670 15,718 702 902 610 114 213 245 572 72 17,313 399 1,800 375 65 447 151 662 15,416 688 885 598 110 205 235 550 74 16,835 388 1,838 365 63 435 147 644 14,742 658 846 572 107 200 230 537 75 16,561 382 1,808 359 62 428 144 634 14,745 644 14,742 658 846	67	18,181	723	1,337	361	111	300	137	548	16,719	1,755	1,236	923	270	277	351	898
0.5 17,001 710 17,013 333 84 66 457 154 678 15,997 714 919 61 116 217 249 583 70 17,709 408 1,933 384 66 452 152 670 15,718 702 902 610 114 213 245 572 72 17,313 399 1,890 375 65 447 151 662 15,416 688 885 598 112 209 240 561 73 17,085 394 1,865 370 64 441 149 654 15,092 674 867 586 110 205 235 550 74 16,835 388 1,838 365 63 435 147 644 14,742 658 846 572 107 200 230 537 75 16,561 382 1,808 359 62 428 144 634 14,365 641 825 557 104	68 69	18,038 17 881	718 711	1,327	358	110 110	297	136 135	544	16,496	1,732	1,220	910 897	267	273	346 341	886 873
71 17,520 404 1,913 380 66 452 152 670 15,718 702 902 610 114 213 245 572 72 17,313 399 1,890 375 65 447 151 662 15,416 688 885 598 112 209 240 561 73 17,085 394 1,865 370 64 441 149 654 15,092 674 867 586 110 205 235 550 74 16,835 388 1,838 365 63 435 147 644 14,742 658 846 572 107 200 230 537 75 16,561 382 1,808 359 62 428 144 634 14,365 641 825 557 104 195 224 523 76 16,561 382 1,775 352 61 420 142 622 13,960 623 802 542 101 190	70	17,709	408	1,933	384	66	457	155	678	15,997	714	919	621	116	205	249	583
72 17,313 399 1,890 375 65 447 151 662 15,416 688 885 598 112 209 240 561 73 17,085 394 1,865 370 64 441 149 654 15,092 674 867 586 110 205 235 550 74 16,835 388 1,888 365 63 435 147 644 14,742 658 846 572 107 200 230 537 75 16,561 382 1,808 359 62 428 144 634 14,365 641 825 557 104 195 224 523 76 16,560 375 1,775 352 61 420 142 622 13,960 623 802 542 104 190 218 508 77 15,929 367 1,739 345 60 411 139 610 13,61 583 750 507 95 177 </th <th>71</th> <th>17,520</th> <th>404</th> <th>1,913</th> <th>380</th> <th>66</th> <th>452</th> <th>152</th> <th>670</th> <th>15,718</th> <th>702</th> <th>902</th> <th>610</th> <th>114</th> <th>213</th> <th>245</th> <th>572</th>	71	17,520	404	1,913	380	66	452	152	670	15,718	702	902	610	114	213	245	572
73 17,085 394 1,865 370 64 441 149 654 15,092 674 867 586 110 205 235 550 74 16,835 388 1,808 359 62 428 144 644 14,742 658 846 572 107 200 230 537 75 16,561 382 1,808 359 62 428 144 634 14,365 641 825 557 104 195 224 523 76 16,260 375 1,775 352 61 420 142 622 13,960 623 802 525 98 184 211 493 78 15,567 359 1,700 337 58 402 135 596 13,061 583 750 507 95 177 204 476 79 15,171 350 1,656 329 57 392 132 580 12,563 561 721 488 91 171 <th>72</th> <th>17,313</th> <th>399</th> <th>1,890</th> <th>375</th> <th>65</th> <th>447</th> <th>151</th> <th>662</th> <th>15,416</th> <th>688</th> <th>885</th> <th>598</th> <th>112</th> <th>209</th> <th>240</th> <th>561</th>	72	17,313	399	1,890	375	65	447	151	662	15,416	688	885	598	112	209	240	561
74 10,033 303 1,03 03 403 147 044 147,72 035 040 572 104 120 230 357 75 16,561 382 1,808 359 62 428 144 634 14,365 641 825 557 104 195 224 523 76 16,260 375 1,775 352 61 420 142 622 13,960 623 802 542 101 190 218 508 77 15,929 367 1,739 345 60 411 139 610 13,526 604 777 525 98 184 211 493 78 15,567 359 1,700 337 58 402 135 596 13,061 583 750 507 95 177 204 476 79 15,171 350 1,656 329 57 392 132 580 12,663 561 721 488 91 171 196 <th>73 74</th> <th>17,085</th> <th>394</th> <th>1,865</th> <th>370</th> <th>64 63</th> <th>441</th> <th>149 147</th> <th>654 644</th> <th>15,092</th> <th>674 658</th> <th>867 846</th> <th>586 572</th> <th>110 107</th> <th>205</th> <th>235</th> <th>550 537</th>	73 74	17,085	394	1,865	370	64 63	441	149 147	654 644	15,092	674 658	867 846	586 572	110 107	205	235	550 537
76 16,260 375 1,775 352 61 420 142 622 13,960 623 802 542 101 190 218 508 77 15,929 367 1,739 345 60 411 139 610 13,526 604 777 525 98 184 211 493 78 15,567 359 1,700 337 58 402 135 596 13,061 583 750 507 95 177 204 476 79 15,171 350 1,656 329 57 392 132 580 12,563 561 721 488 91 171 196 458 80 14,737 323 2,523 344 57 648 150 855 12,033 121 1,163 691 21 299 301 621 81 14,263 313 2,442 333 55 627 145 828 11,469 116 1,109 658 20 285<	75	16,561	382	1,808	359	62	428	147	634	14,365	641	825	557	107	195	230	523
77 15,929 367 1,739 345 60 411 139 610 13,526 604 777 525 98 184 211 493 78 15,567 359 1,700 337 58 402 135 596 13,061 583 750 507 95 177 204 476 79 15,171 350 1,656 329 57 392 132 580 12,563 561 721 488 91 171 196 458 80 14,737 323 2,523 344 57 648 150 855 12,033 121 1,163 691 21 299 301 621 81 14,263 313 2,442 333 55 627 145 828 11,469 116 1,109 658 20 285 287 592 82 13,747 302 2,354 321 53 604 140 798 10,872 109 1,051 624 19 270	76	16,260	375	1,775	352	61	420	142	622	13,960	623	802	542	101	190	218	508
78 15,567 359 1,700 337 58 402 135 596 13,061 583 750 507 95 177 204 476 79 15,171 350 1,656 329 57 392 132 580 12,563 561 721 488 91 171 196 458 80 14,737 323 2,523 344 57 648 150 855 12,033 121 1,163 691 21 299 301 621 81 14,263 313 2,442 333 55 627 145 828 11,469 116 1,109 658 20 285 287 592 82 13,747 302 2,354 321 53 604 140 798 10,872 109 1,051 624 19 270 272 561 83 13,186 289 2,258 308 51 580 134 765 10,242 103 990 588 18 254	77	15,929	367	1,739	345	60	411	139	610	13,526	604	777	525	98	184	211	493
7.5 1.5,171 3.50 1,600 3.25 57 3.52 1.52 3.60 12,503 361 721 466 91 171 196 458 80 14,737 323 2,523 344 57 648 150 855 12,033 121 1,163 691 21 299 301 621 81 14,263 313 2,442 333 55 627 145 828 11,469 116 1,109 658 20 285 287 592 82 13,747 302 2,354 321 53 604 140 798 10,872 109 1,051 624 19 270 272 561 83 13,186 289 2,258 308 51 580 134 765 10,242 103 990 588 18 254 256 529 84 12,579 276 2,154 294 49 553 128 730 9,582 96 926 550 17 <t< th=""><th>78 70</th><th>15,567</th><th>359</th><th>1,700</th><th>337</th><th>58</th><th>402</th><th>135</th><th>596</th><th>13,061</th><th>583</th><th>750 721</th><th>507 48°</th><th>95 01</th><th>177</th><th>204</th><th>476</th></t<>	78 70	15,567	359	1,700	337	58	402	135	596	13,061	583	750 721	507 48°	95 01	177	204	476
81 14,263 313 2,442 333 55 627 145 828 11,469 116 1,109 658 20 285 287 592 82 13,747 302 2,354 321 53 604 140 798 10,872 109 1,051 624 19 270 272 561 83 13,186 289 2,258 308 51 580 134 765 10,242 103 990 588 18 254 256 529 84 12,579 276 2,154 294 49 553 128 730 9,582 96 926 550 17 238 240 495	80	14,737	323	2,523	344	57	648	152	855	12,003	121	1,163	-+00 691	21	299	301	438 621
82 13,747 302 2,354 321 53 604 140 798 10,872 109 1,051 624 19 270 272 561 83 13,186 289 2,258 308 51 580 134 765 10,242 103 990 588 18 254 256 529 84 12,579 276 2,154 294 49 553 128 730 9,582 96 926 550 17 238 240 495	81	14,263	313	2,442	333	55	627	145	828	11,469	116	1,109	658	20	285	287	592
83 13,186 289 2,258 308 51 580 134 765 10,242 103 990 588 18 254 256 529 84 12,579 276 2,154 294 49 553 128 730 9,582 96 926 550 17 238 240 495 Total 12,279 276 2,154 294 49 553 128 730 9,582 96 926 550 17 238 240 495	82	13,747	302	2,354	321	53	604	140	798	10,872	109	1,051	624	19	270	272	561
Total 1 242 002 146 020 06 763 22 240 20 724 10 275 11 007 61 005 11 177 243 20 250 250 250 11/ 258 240 495	83 94	13,186	289 276	2,258	308 204	51 10	580	134 129	765	10,242	103	990 976	588	18 17	254 239	256	529 205
	Total	1 242 002	1/15 070	2,104 86 767	22 240	20 724	10 275	11 007	51 000	1 177 343	205 050	ge 3/0	75 263	20 220	19 767	270	7/ 507

Estimating the Quality of Life Reduction - FASD

- FASD can have a significant impact on the day to day activities and quality of life of those living with the diagnosis.¹⁵⁴² Stade et al. attempted to quantify this impact by receiving input from 126 Canadian children and adolescents with FASD. A high proportion (44.4%) of the children/adolescents participating were diagnosed with FAS. The mean health related quality of life for this group was 0.47 (95% CI of 0.42 0.52), compared to 0.93 (95% CI of 0.92 0.94) for the general Canadian population of children and adolescents. Children/adolescents with FAS demonstrated a lower mean QoL score (0.44, 95% CI of 0.37 0.52) than those with FASD (excluding FAS) (0.50, 95% CI of 0.44 0.57) although the difference was not statistically significant.¹⁵⁴³
- The GBD study found that **mild fetal alcohol syndrome**¹⁵⁴⁴ is associated with a disutility of 0.016 (95% CI of 0.008 to 0.030), **moderate fetal alcohol syndrome**¹⁵⁴⁵ is associated with a disutility of 0.056 (95% CI of 0.035 to 0.083) and **severe fetal alcohol syndrome**¹⁵⁴⁶ is associated with a disutility of 0.179 (95% CI of 0.119 to 0.257).¹⁵⁴⁷
- Lamsal and colleagues recently published a review of literature on the QoL in children with a variety of neurodevelopmental disorders.¹⁵⁴⁸ The study by Stade et al was the only one identified for FASD.¹⁵⁴⁹ The review found, however, that the QoL associated with attention deficit hyperactivity disorder was 0.79,¹⁵⁵⁰ autism spectrum disorder was 0.60¹⁵⁵¹ and neurodevelopmental impairment ranged from 0.87 for a mild impairment, 0.80 for a moderate impairment and 0.63 for a severe impairment.
- For modelling purposes, we assume an absolute reduction in QoL of 0.43 (0.93 0.50) for those with FASD, excluding FAS, and an absolute reduction in QoL of 0.49 (0.93 0.44) for those with FAS. (Table 10)
- In total, 12,578 QALYs are lost due to a reduction in the QoL of living with FASD, 1,548 in those living with FAS (Table 14, row *am*) and 11,032 in those living with FASD, excluding FAS (see Table 10 and Table 14, row *an*).

¹⁵⁴² Stade B, Beyene J, Buller K et al. Feeling different: the experience of living with fetal alcohol spectrum disorder. *Canadian Journal of Clinical Pharmacology*. 2011; 18(3): e475-85.

¹⁵⁴³ Stade BC, Stevens B, Ungar WJ et al. Health-related quality of life of Canadian children and youth prenatally exposed to alcohol. *Health and Quality of Life Outcomes*. 2006; 4: 81.

¹⁵⁴⁴ **Mild fetal alcohol syndrome** – "is a little slow in developing physically and mentally, which causes some difficulty in learning but no other difficulties in daily activities."

¹⁵⁴⁵ **Moderate fetal alcohol syndrome** – "is slow in developing physically and mentally, which causes some difficulty in daily activities."

¹⁵⁴⁶ **Severe fetal alcohol syndrome** – "is very slow in developing physically and mentally, which causes great difficulty in daily activities."

¹⁵⁴⁷ Institute for Health Metrics and Evaluation. *GBD 2016 sequelae, health states, health state lay descriptions, and disability weights*. Available online at <u>http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights</u>. Accessed April 2020.

¹⁵⁴⁸ Lamsal R, Finlay B, Whitehurst D et al. Generic preference-based health-related quality of life in children with neurodevelopmental disorders: A scoping review. *Developmental Medicine & Child Neurology*. 2020; 62: 169-177.

¹⁵⁴⁹ Stade BC, Stevens B, Ungar WJ et al. Health-related quality of life of Canadian children and youth prenatally exposed to alcohol. *Health and Quality of Life Outcomes*. 2006; 4: 81.

¹⁵⁵⁰ Based on a weighted average of identified studies.

¹⁵⁵¹ Based on a weighted average of identified studies.

		Table 10: Quality Adjusted Life Years Lost Resulting from FASD														
		In Ch	ildren Bor	rn to Wor	nen betwe	en the Age	s of 18 and	d 49								
				In a BC	Birth Cohort	of 40,000										
				Life		Absolute QoL	Absolute QoL	,								
	Life Years	Births	Births with	Expectency	Life	Decrement	Decrement	QALYs Lost								
	for	with FASD	FAS (19.0%	FASD (excl	Expectency	FASD (excl	FASD (excl	FASD (excl	QALYs Lost							
Age	Females	(1.81%)	of FASD)	FAS)	FAS	FAS)	FAS)	FAS)	FAS							
18	19,891	2.5	0.5	64.7	34.0	0.43	0.49	55.6	7.8							
19	19,885	2.5	0.5	64.7	34.0	0.43	0.49	55.5	7.8							
20	19,878	10.7	2.0	64.7	34.0	0.43	0.49	241.3	33.8							
21	19,871	10.7	2.0	64.7	34.0	0.43	0.49	241.2	33.8							
22	19,863	10.7	2.0	64.7	34.0	0.43	0.49	241.1	33.8							
23	19,855	10.7	2.0	64.7	34.0	0.43	0.49	241.0	33.8							
24	19,847	10.7	2.0	64.7	34.0	0.43	0.49	240.9	33.8							
25	19,839	25.7	4.9	64.7	34.0	0.43	0.49	580.0	81.3							
26	19,830	25.7 4.9 64.7 34.0 0.43 0.49 579.7 81 25.7 4.9 64.7 34.0 0.43 0.49 579.4 81														
27	19,821	25.7	25.7 4.9 64.7 34.0 0.43 0.49 579.4 81 25.7 4.9 64.7 34.0 0.43 0.49 579.4 81													
28	19,811	25.7	25.7 4.9 64.7 34.0 0.43 0.49 579.2 8 25.7 4.9 64.7 34.0 0.43 0.49 579.2 8													
29	19,801	25.7	25.7 4.9 64.7 34.0 0.43 0.49 578.9 25.7 4.9 64.7 34.0 0.43 0.49 578.9													
30	19,790	35.7	6.8	64.7	34.0	0.43	0.49	803.8	112.6							
31	19,779	35.6	6.8	64.7	34.0	0.43	0.49	803.3	112.6							
32	19,767	35.6	6.8	64.7	34.0	0.43	0.49	802.8	112.5							
33	19,755	35.6	6.7	64.7	34.0	0.43	0.49	802.3	112.4							
34	19,742	35.6	6.7	64.7	34.0	0.43	0.49	801.8	112.3							
35	19,729	20.4	3.9	64.7	34.0	0.43	0.49	459.4	64.4							
36	19,715	20.4	3.9	64.7	34.0	0.43	0.49	459.1	64.3							
37	19,700	20.3	3.9	64.7	34.0	0.43	0.49	458.7	64.3							
38	19,685	20.3	3.9	64.7	34.0	0.43	0.49	458.4	64.2							
39	19,669	20.3	3.9	64.7	34.0	0.43	0.49	458.0	64.2							
40	19,652	4.3	0.8	64.7	34.0	0.43	0.49	96.0	13.5							
41	19,634	4.3	0.8	64.7	34.0	0.43	0.49	96.0	13.4							
42	19,615	4.3	0.8	64.7	34.0	0.43	0.49	95.9	13.4							
43	19,594	4.2	0.8	64.7	34.0	0.43	0.49	95.8	13.4							
44	19,572	4.2	0.8	64.7	34.0	0.43	0.49	95.7	13.4							
45	19,549	0.3	0.1	64.7	34.0	0.43	0.49	6.3	0.9							
46	19,524	0.3	0.1	64.7	34.0	0.43	0.49	6.3	0.9							
47	19,497	0.3	0.1	64.7	34.0	0.43	0.49	6.3	0.9							
48	19,469	0.3	0.1	64.7	34.0	0.43	0.49	6.2	0.9							
49	19,438	0.3	0.1	64.7	34.0	0.43	0.49	6.2	0.9							
Total	ł	490	93					11,032	1,546							

Annual Visits to a General Practitioner

• The Canadian Community Health Survey includes questions related to access to primary care providers (PCP). Table 11 presents weighted data for BC in 2015/16¹⁵⁵² on the proportion of those surveyed who had consulted with a general practitioner or family doctor in the last 12 months. On average, 67.2% of males have visited a PCP in the past 12 months, compared with 79.9% of females. The proportion also varies by age, with a higher proportion of the population seeing a PCP with increasing age.

Table 11: Consultations with General Practitioner or Family Doctor in Last 12 Months												
British (Columbia,	by Sex and <i>i</i>	Age Group									
Age Group 18 - 19	Female % 65.0%	Male % 53.0%	Total <u>%</u> 59.1%									
20 - 24 25 - 29 30 - 34	66.0% 79.5% 81.7%	45.8% 52.4% 51.7%	54.8% 66.6% 67.0%									
35 - 39 40 - 44 45 - 49	79.8% 76.4% 78.3%	63.1% 62.8% 68.5%	71.7% 69.9% 73.2%									
50 - 54 55 - 59 60 - 64	81.5% 82.0% 80.9% 86.7%	65.6% 72.8% 82.5% 84.7%	73.4% 77.5% 81.6% 85.7%									
70 - 74 75 - 79 80+	84.8% 85.8% 85.7%	85.9% 90.4% 86.7%	85.3% 88.0% 86.1%									
	79.9%	67.2%	73.7%									

Source: Canadian Community Health Survey 2015/16 Public Use Microdata File (PUMF). All data interpretation by H. Krueger & Associates Inc.

• We assume that all females who are pregnant consult with a primary care provider. That is, the consultation rate for pregnant women is assumed to be 100%.

Effectiveness of the Intervention - Screening

• The USPSTF determined that 1-item to 3-item screening instruments have the best accuracy for assessing unhealthy alcohol use in adults 18 years and older. This includes the abbreviated Alcohol Use Disorders Identification Test - Consumption (AUDIT-C) and the Single Alcohol Screening Question (SASQ). The AUDIT-C has 3 questions about frequency of alcohol use, typical amount of alcohol use, and occasions of heavy use, and takes 1 to 2 minutes to administer. The SASQ requires less than 1 minute to administer, asking "How many times in the past year have you

¹⁵⁵² The question regarding consultations with care providers in the last 12 months was not included in the 2017/18 CCHS survey. The age- and sex-specific rates of individuals with a primary care provider were similar between the 2015/16 survey and the 2017/18 survey.

had 5 [for men] or 4 [for women and all adults older than 65 years] or more drinks in a day?"¹⁵⁵³

- The SASQ had a sensitivity (true positives) range of 0.73 0.88 (95% CI, 0.65 0.89) and a specificity (true negatives) range of 0.74 1.00 (95% CI, 0.69 1.00), while other one or two question instruments generally showed a sensitivity of 0.70 or higher. ¹⁵⁵⁴
- The AUDIT-C had similar sensitivity, ranging from 0.73 0.97 (95% CI, 0.62 0.99) for females and 0.82 1.00 (95% CI, 0.75 1.00) for males, but a much wider range of specificity, ranging from 0.28 0.91 (95% CI, 0.21 0.93) and 0.34 0.89 (95% CI, 0.25 0.92) for females and males respectively.¹⁵⁵⁵
- The BC Provincial Guideline for the Clinical Management of High-Risk Drinking and Alcohol Use Disorder endorses the SASQ for screening of adults for risky drinking.¹⁵⁵⁶
- The Cut down, Annoyed, Guilty, Eyeopener (CAGE) tool is well known but only detects alcohol dependence rather than the full spectrum of unhealthy alcohol use.¹⁵⁵⁷
- When patients screen positive on a brief screening instrument, primary care providers should ensure follow-up with a more in-depth risk assessment such as the full, 10 question AUDIT, requiring approximately 2 to 5 minutes to administer.¹⁵⁵⁸
- Screening instruments specifically for pregnant women include Tolerance, Worried, Eye-opener, Amnesia, Kut down (TWEAK); Tolerance, Annoyed, Cut down, Eye-opener (T-ACE); Parents, Partner, Past, Present Pregnancy (4P's Plus); and Normal drinker, Eye-opener, Tolerance (NET).¹⁵⁵⁹
- There is no evidence that screening by itself leads to reduced unhealthy alcohol use.¹⁵⁶⁰
- We assume that the AUDIT-C and SASQ are representative of verified short screening instruments for unhealthy alcohol use and model a sensitivity of 0.84 (Table 14, rows *as* & *bb*) and a specificity of 0.74 (the weighted average of AUDIT C and SASQ results). In our sensitivity analysis we consider the most optimistic scenario to be a sensitivity of 0.94 and a specificity of 0.88 and the most pessimistic scenario to be a sensitivity of 0.67 and a specificity of 0.46 (based on the weighted average of the 95% CIs).

¹⁵⁵³ O'Connor E, Perdue L, Senger C et al. Screening and behavioral counseling interventions to reduce unhealthy alcohol use in adolescents and adults: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2018: 320(18); 1910-28.

¹⁵⁵⁴ Curry SJ, Krist AH, Owens DK et al. Screening and behavioral counseling interventions to reduce unhealthy alcohol use in adolescents and adults: US Preventive Services Task Force recommendation statement. *Journal of the American Medical Association*. 2018; 320(18): 1899-909.
¹⁵⁵⁵ Ibid.

¹⁵⁵⁶ British Columbia Centre on Substance Use (BCCSU), B.C. Ministry of Health and B.C. Ministry of Mental Health and Addictions. *Provincial Guideline for the Clinical Management of High-Risk Drinking and Alcohol Use*

Disorder. 2019. Available at https://www.bccsu.ca/aud-guideline/ Accessed April 2020.

¹⁵⁵⁷ O'Connor E, Perdue L, Senger C et al. Screening and behavioral counseling interventions to reduce unhealthy alcohol use in adolescents and adults: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2018: 320(18); 1910-28.

¹⁵⁵⁸ Ibid.

¹⁵⁵⁹ Ibid. ¹⁵⁶⁰ Ibid.

Screening Frequency

- The USPSTF did not find adequate evidence to recommend an optimal screening interval.¹⁵⁶¹
- In the absence of this evidence, the British Columbia Centre on Substance Use (BCCSU) recommends annual screening. This is at least partially for "reasons of convenience alcohol screening can be combined with other components of a routine medical exam or preventive health screening and to detect changes, as an individual's alcohol use can shift from low- to high-risk over a one-year period." ¹⁵⁶² They cite a US study which found that 3.4% of patients who screened **negative** for high-risk alcohol use, screened **positive** a year later. ¹⁵⁶³
- Economic evaluations have assumed that screening would occur anywhere from at least once a year to at least once every 10 years.^{1564,1565,1566}
- For modelling purposes, we assumed that screening for unhealthy alcohol use would occur annually and modified this to once every 5 years in the sensitivity analysis (Table 14, row *ap*).
- We assume that changing the frequency of screening has no impact on CPB, since the benefits come from participating in a brief intervention, which we model as recurring on a regular basis (see Effectiveness of the Intervention below).

Effectiveness of the Intervention – Brief Counselling

- Most interventions involve one or two sessions (90% involved 4 or fewer sessions) with a median contact time of 30 minutes (88% involved 2 hours of contact or less) that include basic information such as how the participant's drinking compared with recommended limits and how to reduce alcohol use. Motivational techniques are also commonly used.¹⁵⁶⁷
- For modelling purposes, we assumed that 3 10-minute sessions would be required, for a total contact time of 30 minutes per brief intervention. (Table 23, row *ai*)
- The meta-analysis for the USPSTF found an absolute increase of 13.9% more participants drinking within recommended limits. A total of 7 adults would need to be

¹⁵⁶¹ Ibid.

¹⁵⁶² British Columbia Centre on Substance Use (BCCSU), B.C. Ministry of Health and B.C. Ministry of Mental Health and Addictions. *Provincial Guideline for the Clinical Management of High-Risk Drinking and Alcohol Use Disorder*. 2019. Available at <u>https://www.bccsu.ca/aud-guideline/</u> Accessed April 2020.

¹⁵⁶³ Alford D, Almeida A, Saitz R et al. Should adults who screen negative for unhealthy substance use be rescreened annually? *Journal of General Internal Medicine*. 2009: 24: 169-170.

¹⁵⁶⁴ Purshouse R, Brennan A, Rafia R et al. Modelling the cost-effectiveness of alcohol screening and brief interventions in primary care in England. *Alcohol and Alcoholism*. 2012; 48(2): 180-8.

¹⁵⁶⁵ Angus C, Scafato E, Ghirini S et al. Cost-effectiveness of a programme of screening and brief interventions for alcohol in primary care in Italy. *BioMed Central Family Practice*. 2014; 15(1): 1-26.

¹⁵⁶⁶ Zur R and Zaric G. A microsimulation cost–utility analysis of alcohol screening and brief intervention to reduce heavy alcohol consumption in Canada. *Addiction*. 2016; 111(5): 817-31.

¹⁵⁶⁷ O'Connor E, Perdue L, Senger C et al. Screening and behavioral counseling interventions to reduce unhealthy alcohol use in adolescents and adults: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2018: 320(18); 1910-28.

treated to achieve 1 adult drinking within the recommended limits. (Number needed to treat, 7.2 [95% CI, 6.2 - 11.5]).¹⁵⁶⁸

- Brief counselling is associated with a reduction in alcohol consumption of 1.6 drinks per week (95% CI of 1.0 to 2.2).¹⁵⁶⁹
- Brief counselling is associated with a 40% reduction in the proportion of individuals exceeding recommended drinking levels (OR of 0.60; 95% CI of 0.53 to 0.67).¹⁵⁷⁰
- Brief counselling is associated with a 33% reduction in the proportion of individuals reporting a heavy use episode (OR of 0.67; 95% CI of 0.58 to 0.77).¹⁵⁷¹
- For **pregnant women**, brief counselling increased the proportion of pregnant women reporting abstinence (odds ratio 2.26 [95% CI, 1.43 3.56]). The number needed to treat was 6.0 (95% CI, 4.3 12.5).¹⁵⁷²
- For modelling purposes, we assumed that 7.2 adults would need to receive a brief intervention for one adult to shift from unhealthy to lower risk alcohol use. That is, 1 in every 7.2 (13.9%) individuals in the general treated would cease unhealthy alcohol use (Table 14, row *au*). We range this number from 8.7% (1 in 11.5) to 16.1% (1 in 6.2) in our sensitivity analysis.
- We also assumed that 6.0 pregnant women would need to receive a brief intervention for one pregnant woman to shift from alcohol use to no alcohol use. That is, 1 in every 6.0 (16.7%) pregnant women treated would cease unhealthy alcohol use (Table 14, row *bd*). We range this number from 8.0% (1 in 12.5) to 23.3% (1 in 4.3) in our sensitivity analysis.
- The benefits of brief counselling continued to 24 months (or beyond) in 4 of 7 trials reporting longer-term outcomes, with "very limited" data suggesting benefits from alcohol interventions can be maintained over 2 4 years.¹⁵⁷³
- For modelling purposes, we assumed that a brief intervention would be required every three years (ranging this from two to four years in the sensitivity analysis) to maintain the benefits associated with the brief intervention. (Table 23, row *ae*)

¹⁵⁶⁸ Curry SJ, Krist AH, Owens DK et al. Screening and behavioral counseling interventions to reduce unhealthy alcohol use in adolescents and adults: US Preventive Services Task Force recommendation statement. *Journal of the American Medical Association*. 2018; 320(18): 1899-909.

¹⁵⁶⁹ O'Connor E, Perdue L, Senger C et al. Screening and behavioral counseling interventions to reduce unhealthy alcohol use in adolescents and adults: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2018: 320(18); 1910-28.

¹⁵⁷⁰ O'Connor E, Perdue L, Senger C et al. Screening and behavioral counseling interventions to reduce unhealthy alcohol use in adolescents and adults: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2018: 320(18); 1910-28.

¹⁵⁷¹ Ibid.

 ¹⁵⁷² Curry SJ, Krist AH, Owens DK et al. Screening and behavioral counseling interventions to reduce unhealthy alcohol use in adolescents and adults: US Preventive Services Task Force recommendation statement. *Journal of the American Medical Association*. 2018; 320(18): 1899-909.
 ¹⁵⁷³ Ibid.

Estimating QALYs Gained Due to Screening and Brief Intervention

- We calculate the potential QALYs gained due to screening and behavioural counseling interventions to reduce unhealthy alcohol use in adults 18 years or older in a British Columbia birth cohort of 40,000 for both females (Table 12) and males (Table 13).
- The results in Table 12 and 13 are based on the following calculations for each age group. An estimated 19,891 of the 20,000 females in the birth cohort would survive to age 18, generating 19,891 life years for this cohort (see Table 12). Of these 19,891 18-year olds, 65.0% would see a PCP that year, or 12,931. Of the 12,931 who see a PCP, 93% or 12,026 would be screened for unhealthy alcohol use. Given the sensitivity of the screening test, 84% of 18-year olds with unhealthy alcohol use would be identified as (true) positives, or 10,102 (at this point we are basing our calculation using the assumption that the entire cohort has unhealthy alcohol use but are doing so to generate a proportion for use a bit further along in the table). Of the 10,102, 41% (4,142) would accept a brief intervention. The brief intervention would result in a reduction in unhealthy alcohol use in 1 of every 7.2 individuals, or 13.9%. Multiplying 4,142 by 13.9% indicates that 575 of the 19,981 life years lived in the cohort would no longer have unhealthy alcohol use. If we divide 575 life years by the total (19,981) we get a proportion of 2.9%. That is, screening and behavioural counseling interventions to reduce unhealthy alcohol use in 18 years females would reduce unhealthy alcohol use by 2.9% that year. This 2.9% is then applied to our previous calculation (see Table 7) of 12.5 life years lost due to unhealthy alcohol use in female 18-year olds in the cohort for a gain of 0.36(2.9% * 12.5) life years associated with the brief intervention. In addition, the 2.9% is also applied to our previous calculation (see Table 9) of 1,148 QALYs lost due to unhealthy alcohol use in the female 18-year olds in the cohort for a gain of 33 (2.9% * 1,148) QALYs associated with the brief intervention. This process is repeated for each age group.
- Based on this approach, we calculated that screening and behavioural counseling interventions to reduce unhealthy alcohol use in a British Columbia birth cohort of 40,000 for females would result in 109 life years gained and an additional 1,832 QALYs gained (Table 12 and Table 14, rows *av* and *aw*) and males would result in 266 life years gained and an additional 2,161 QALYs gained (Table 13 and Table 14, rows *ax* and *ay*).

Table 12: Quality Adjusted Life Years Gained Through Brief Interventions																
					F	emale	es, bet	wee	n the	Ages of	18 and 8	4				
						In a l Sensiti	British C ivity of	olum	bia Birt	h Cohort o Reduction i	of 40,000 in Unhealthy	Benefit of	Total Life	Life Years	Total	OALYs
	Total Life	Annual GF	Visits	Screen	ed at GP	Scr	een	Acce	pting Bl	Alcohol L	Jse with Bl	Screening	Years Lost	Gained	QALYs Lost	Gained
Age	Years	% (Table 11)	#	%	#	%	#	%	#	%	#	and Bl	(Table 7)	via Bl	(Table 9)	via Bl
18 19	19,891 19 885	65.0%	12,931 12 927	93% 93%	12,026 12,022	84% 84%	10,102	41% 41%	4,142 4 140	13.9% 13.9%	575 575	2.9%	12.5 13 1	0.4	1,148 1 147	33 33
20	19,878	66.0%	13,117	93%	12,022	84%	10,050	41%	4,201	13.9%	584	2.9%	22.9	0.7	1,147	34
21	19,871	66.0%	13,113	93%	12,195	84%	10,244	41%	4,200	13.9%	583	2.9%	23.8	0.7	1,147	34
22	19,863	66.0%	13,108	93% 93%	12,190	84% 84%	10,240	41% 41%	4,198 4,197	13.9%	583	2.9%	24.1 25.0	0.7	1,146	34 34
24	19,847	66.0%	13,097	93%	12,180	84%	10,231	41%	4,195	13.9%	583	2.9%	25.8	0.8	1,145	34
25 26	19,839 19.830	79.5% 79.5%	15,767 15,760	93% 93%	14,664 14.657	84% 84%	12,317 12.312	41% 41%	5,050 5.048	13.9% 13.9%	701 701	3.5% 3.5%	23.9 24.7	0.8 0.9	1,145 1.144	40 40
27	19,821	79.5%	15,753	93%	14,650	84%	12,306	41%	5,046	13.9%	701	3.5%	25.3	0.9	1,144	40
28	19,811	79.5%	15,745 15 727	93% 02%	14,643	84%	12,300	41%	5,043	13.9%	700	3.5%	26.0	0.9	1,143	40 40
30	19,801	81.7%	16,168	93%	15,036	84%	12,234	41%	5,179	13.9%	700	3.6%	26.4	1.0	744	27
31	19,779	81.7%	16,159	93%	15,028	84%	12,623	41%	5,176	13.9%	719	3.6%	27.4	1.0	744	27
32	19,767 19,755	81.7% 81.7%	16,149 16,139	93% 93%	15,019 15.010	84% 84%	12,616 12.608	41% 41%	5,173 5,169	13.9% 13.9%	718 718	3.6% 3.6%	28.4 29.3	1.0 1.1	743 743	27 27
34	19,742	81.7%	16,129	93%	15,000	84%	12,600	41%	5,166	13.9%	717	3.6%	30.1	1.1	742	27
35	19,729	79.8%	15,751	93%	14,648	84%	12,305	41%	5,045	13.9%	701	3.6%	29.7	1.1	742	26 26
37	19,713	79.8%	15,740	93% 93%	14,638	84%	12,290	41% 41%	5,041	13.9%	700	3.6%	31.1	1.1	741	26
38	19,685	79.8%	15,716	93%	14,616	84%	12,277	41%	5,034	13.9%	699	3.6%	32.2	1.1	740	26
39 40	19,669 19,652	79.8% 76.4%	15,703 15,006	93% 93%	14,604 13 955	84% 84%	12,267 11 722	41% 41%	5,030 4 806	13.9% 13.9%	699 668	3.6% 3.4%	33.1 37.2	1.2 1 3	740 770	26 26
41	19,634	76.4%	14,992	93%	13,942	84%	11,712	41%	4,802	13.9%	667	3.4%	38.5	1.3	769	26
42	19,615	76.4%	14,977	93%	13,929	84%	11,700	41%	4,797	13.9%	666	3.4%	40.2	1.4	769	26
43 44	19,594 19.572	76.4% 76.4%	14,961 14.945	93% 93%	13,914 13.898	84% 84%	11,688 11.675	41% 41%	4,792 4.787	13.9% 13.9%	665	3.4% 3.4%	42.1 43.9	1.4 1.5	768 767	26 26
45	19,549	78.3%	15,300	93%	14,229	84%	11,952	41%	4,900	13.9%	681	3.5%	47.9	1.7	729	25
46	19,524	78.3%	15,280	93%	14,211	84%	11,937	41%	4,894	13.9%	680 670	3.5%	49.9	1.7	728	25
47	19,497	78.3%	15,239	93% 93%	14,191 14,170	84%	11,921	41% 41%	4,880	13.9%	679	3.5%	54.5	1.8	727	25
49	19,438	78.3%	15,213	93%	14,148	84%	11,884	41%	4,873	13.9%	677	3.5%	57.1	2.0	725	25
50 51	19,405 19 370	81.5% 81 5%	15,814 15 785	93% 93%	14,707 14 680	84% 84%	12,354 12 331	41% 41%	5,065 5,056	13.9% 13.9%	703 702	3.6% 3.6%	58.3 61.2	2.1	754 753	27 27
52	19,332	81.5%	15,754	93%	14,651	84%	12,307	41%	5,046	13.9%	701	3.6%	64.1	2.3	751	27
53	19,291	81.5%	15,721	93%	14,620	84%	12,281	41%	5,035	13.9%	699	3.6%	67.2	2.4	750	27
54 55	19,247	81.5% 82.0%	15,685	93% 93%	14,587 14.633	84% 84%	12,253	41% 41%	5,024 5.040	13.9% 13.9%	698 700	3.6%	70.6 64.5	2.6	748 746	27 27
56	19,148	82.0%	15,692	93%	14,594	84%	12,259	41%	5,026	13.9%	698	3.6%	68.0	2.5	744	27
57	19,092	82.0%	15,647	93% 02%	14,552	84%	12,223	41%	5,012	13.9%	696	3.6%	71.4	2.6	742	27 27
59	18,966	82.0%	15,544	93%	14,300	84%	12,185	41%	4,978	13.9%	691	3.6%	78.9	2.9	737	27
60	18,895	80.9%	15,282	93%	14,212	84%	11,938	41%	4,895	13.9%	680	3.6%	62.8	2.3	570	21
61 62	18,817 18 733	80.9% 80.9%	15,219 15 151	93% 93%	14,154 14 090	84% 84%	11,889 11,836	41% 41%	4,875 4 853	13.9% 13.9%	677 674	3.6% 3.6%	66.0 69.5	2.4 2.5	568 565	20 20
63	18,641	80.9%	15,077	93%	14,021	84%	11,778	41%	4,829	13.9%	671	3.6%	73.2	2.6	562	20
64 CF	18,541	80.9%	14,996	93%	13,946	84%	11,715	41%	4,803	13.9%	667	3.6%	77.0	2.8	559	20
66	18,432	86.7% 86.7%	15,986	93% 93%	14,867	84% 84%	12,489	41% 41%	5,120 5,087	13.9%	711 707	3.9%	63.3	2.3	550	21
67	18,181	86.7%	15,769	93%	14,665	84%	12,319	41%	5,051	13.9%	701	3.9%	66.6	2.6	548	21
68 69	18,038 17 881	86.7% 86.7%	15,645 15 509	93% 93%	14,550 14 423	84% 84%	12,222 12 115	41% 41%	5,011 4 967	13.9% 13.9%	696 690	3.9%	70.1 73.6	2.7	544 539	21 21
70	17,709	84.8%	15,015	93%	13,964	84%	11,730	41%	4,809	13.9%	668	3.8%	50.5	1.9	678	26
71	17,520	84.8%	14,855	93%	13,815	84%	11,605	41%	4,758	13.9%	661	3.8%	52.9	2.0	670	25
72	17,313	84.8% 84.8%	14,679 14,486	93% 93%	13,652	84% 84%	11,467	41% 41%	4,702 4,640	13.9% 13.9%	653 644	3.8%	55.5 58.1	2.1 2.2	654	25 25
74	16,835	84.8%	14,274	93%	13,275	84%	11,151	41%	4,572	13.9%	635	3.8%	60.8	2.3	644	24
75	16,561	85.8%	14,215	93% 02%	13,220	84%	11,105	41%	4,553	13.9%	632 631	3.8%	35.9	1.4	634	24
70	15,929	85.8%	13,673	93% 93%	12,979	84%	10,903	41% 41%	4,470 4,379	13.9%	608	3.8%	38.9	1.4	610	24
78	15,567	85.8%	13,362	93%	12,427	84%	10,438	41%	4,280	13.9%	594	3.8%	40.3	1.5	596	23
79 80	15,171 14,737	85.8% 85.7%	13,022 12.627	93% 93%	12,110 11.743	84% 84%	10,172 9,864	41% 41%	4,171 4.044	13.9% 13.9%	579 562	3.8% 3.8%	41.6 28 2	1.6 1.1	580 855	22 33
81	14,263	85.7%	12,221	93%	11,366	84%	9,547	41%	3,914	13.9%	544	3.8%	28.9	1.1	828	32
82	13,747	85.7%	11,779	93%	10,955	84%	9,202	41%	3,773	13.9%	524	3.8%	29.5	1.1	798	30
83 84	13,186 12,579	85.7%	10,779	93% 93%	10,508 10,024	84%	0,827 8,420	41% 41%	3,452	13.9% 13.9%	503 479	3.8% 3.8%	30.0 30.3	1.1 1.2	730	29 28
Total	1,242,083		992,443		922,972		775,296		317,872		44,149		3,016	109	51,996	1,832

	Table 13: Quality Adjusted Life Years Gained Through Brief Interventions															
						Mal	es, bet	wee	n the A	Ages of 1	.8 and 84					
						In	a British	Colun	nbia Birt	h Cohort c	of 40,000	Demofit of	Tabal Life		Tatal	OALVa
	Total Life	Annual GP	Visits	Screer	ned at GP	Sensi	tivity of reen	Acce	pting Bl	Alcohol L	n Unhealthy Jse with Bl	Benefit of Screening	Total Life Years Lost	Life Years Gained	Total QALYs	QALYs Gained
Age	Years	% (Table 11)	#	%	#	%	#	%	#	%	#	and BI	(Table 7)	via Bl	(Table 9)	via Bl
18	19,870	53.0%	10,535	93%	9,797	84%	8,230	41%	3,374	13.9%	469	2.4%	42.0	1.0	1,570	37
19	19,858	53.0%	10,528	93%	9,791	84%	8,224	41%	3,372	13.9%	468	2.4%	49.3	1.2	1,569	37
20	19,843	45.8%	9,080	93%	8,445	84% 84%	7,094	41%	2,908	13.9%	404	2.0%	116.1	2.4	1,568	32
21	19,820	45.8%	9,073 9,064	93%	8,437	84%	7,087	41%	2,900	13.9%	404	2.0%	142.0	2.0	1,565	32
23	19,786	45.8%	9,054	93%	8,420	84%	7,073	41%	2,900	13.9%	403	2.0%	152.2	3.1	1,563	32
24	19,763	45.8%	9,044	93%	8,411	84%	7,065	41%	2,897	13.9%	402	2.0%	157.9	3.2	1,562	32
25 26	19,739	52.4% 52.4%	10,338	93% 93%	9,614	84% 84%	8,076	41% 41%	3,311	13.9%	460	2.3%	148.5 152.0	3.5	1,560	36
27	19,689	52.4%	10,311	93%	9,589	84%	8,055	41%	3,303	13.9%	459	2.3%	154.2	3.6	1,556	36
28	19,662	52.4%	10,297	93%	9,576	84%	8,044	41%	3,298	13.9%	458	2.3%	156.2	3.6	1,554	36
29 30	19,635	52.4% 51.7%	10,283	93% 93%	9,563	84% 84%	8,033	41% /1%	3,294	13.9%	457	2.3%	158.0 141 3	3.7	1,552	36
31	19,579	51.7%	10,115	93%	9,406	84%	7,901	41%	3,239	13.9%	450	2.3%	141.7	3.3	1,429	33
32	19,550	51.7%	10,099	93%	9,392	84%	7,889	41%	3,235	13.9%	449	2.3%	142.0	3.3	1,427	33
33	19,520	51.7%	10,083	93%	9,378	84%	7,877	41%	3,230	13.9%	449	2.3%	143.1	3.3	1,425	33
34 35	19,489 19,458	51.7% 63.1%	10,068	93% 93%	9,363 11.426	84% 84%	7,865	41% 41%	3,225	13.9% 13.9%	448 547	2.3%	144.1 130.9	3.3 3.7	1,422	33 40
36	19,425	63.1%	12,265	93%	11,407	84%	9,582	41%	3,928	13.9%	546	2.8%	132.3	3.7	1,418	40
37	19,392	63.1%	12,244	93%	11,387	84%	9,565	41%	3,922	13.9%	545	2.8%	134.4	3.8	1,415	40
38	19,357	63.1%	12,222	93%	11,366	84% 84%	9,548	41%	3,915	13.9%	544	2.8%	136.2	3.8	1,413	40
39 40	19,321	62.8%	12,199	93% 93%	11,345	84%	9,550	41%	3,907	13.9%	545 538	2.8%	136.0	3.9	1,410	40 41
41	19,245	62.8%	12,079	93%	11,234	84%	9,436	41%	3,869	13.9%	537	2.8%	137.9	3.9	1,464	41
42	19,204	62.8%	12,054	93%	11,210	84%	9,416	41%	3,861	13.9%	536	2.8%	140.9	3.9	1,461	41
43	19,162	62.8%	12,027	93% 93%	11,185 11 159	84% 84%	9,396	41% /1%	3,852	13.9%	535	2.8%	144.4 147.5	4.0	1,457	41
45	19,071	68.5%	13,057	93%	12,143	84%	10,200	41%	4,182	13.9%	581	3.0%	144.5	4.4	1,134	35
46	19,022	68.5%	13,024	93%	12,112	84%	10,174	41%	4,171	13.9%	579	3.0%	148.6	4.5	1,131	34
47	18,970	68.5%	12,988	93%	12,079	84%	10,146	41%	4,160	13.9%	578	3.0%	153.0	4.7	1,128	34
48 49	18,915 18 857	68.5% 68.5%	12,950 12 911	93% 93%	12,044	84% 84%	10,117	41% 41%	4,148	13.9% 13.9%	576 574	3.0%	158.1 163.8	4.8 5.0	1,125	34 34
50	18,795	65.6%	12,333	93%	11,470	84%	9,635	41%	3,950	13.9%	549	2.9%	159.1	4.6	1,164	34
51	18,729	65.6%	12,290	93%	11,430	84%	9,601	41%	3,936	13.9%	547	2.9%	165.0	4.8	1,160	34
52	18,659	65.6%	12,244	93%	11,387	84%	9,565	41%	3,922	13.9%	545	2.9%	171.2	5.0	1,156	34
53 54	18,583	65.6%	12,195	93% 93%	11,341	84% 84%	9,527	41% 41%	3,906	13.9%	542 540	2.9%	177.8	5.2	1,151	34 33
55	18,417	72.8%	13,416	93%	12,477	84%	10,480	41%	4,297	13.9%	597	3.2%	161.8	5.2	1,141	37
56	18,325	72.8%	13,348	93%	12,414	84%	10,428	41%	4,275	13.9%	594	3.2%	168.1	5.4	1,135	37
57	18,226	72.8%	13,276	93% 93%	12,347 12 275	84% 84%	10,372	41% /1%	4,252	13.9%	591 587	3.2%	174.5 181 5	5.7	1,129	37
59	18,006	72.8%	13,116	93%	12,275	84%	10,246	41%	4,201	13.9%	583	3.2%	181.5	6.1	1,115	36
60	17,884	82.5%	14,750	93%	13,718	84%	11,523	41%	4,724	13.9%	656	3.7%	150.0	5.5	961	35
61	17,752	82.5%	14,642	93%	13,617	84%	11,438	41%	4,690	13.9%	651	3.7%	155.8	5.7	954	35
62 63	17,610	82.5% 82.5%	14,525 14 399	93% 93%	13,508 13 391	84% 84%	11,347 11 249	41% 41%	4,652	13.9% 13.9%	646 641	3.7%	162.0 168.0	5.9 6.2	946 938	35
64	17,293	82.5%	14,264	93%	13,265	84%	11,143	41%	4,568	13.9%	635	3.7%	174.4	6.4	929	34
65	17,116	84.7%	14,492	93%	13,478	84%	11,321	41%	4,642	13.9%	645	3.8%	132.9	5.0	919	35
66	16,925	84.7%	14,330	93%	13,327	84%	11,195	41%	4,590	13.9%	637	3.8%	137.7	5.2	909	34
67 68	16,719	84.7% 84.7%	14,156 13 967	93% 93%	13,165	84% 84%	11,058	41% 41%	4,534 4 474	13.9% 13.9%	630	3.8%	142.5 147 4	5.4	898 886	34
69	16,256	84.7%	13,764	93%	12,801	84%	10,752	41%	4,409	13.9%	612	3.8%	152.2	5.7	873	33
70	15,997	85.9%	13,738	93%	12,776	84%	10,732	41%	4,400	13.9%	611	3.8%	104.7	4.0	583	22
71	15,718	85.9%	13,498	93%	12,553	84%	10,544	41%	4,323	13.9%	600	3.8%	107.8	4.1	572	22
72	15,416	85.9% 85.9%	13,239	93% 93%	12,312	84% 84%	10,342	41% 41%	4,240	13.9%	589	3.8%	110.9	4.2	550	21
74	14,742	85.9%	12,659	93%	11,773	84%	9,890	41%	4,055	13.9%	563	3.8%	116.4	4.4	537	21
75	14,365	90.4%	12,980	93%	12,071	84%	10,140	41%	4,157	13.9%	577	4.0%	69.3	2.8	523	21
76 77	13,960	90.4%	12,614	93%	11,731	84%	9,854	41%	4,040	13.9%	561	4.0%	70.6	2.8	508	20
78	13,526	90.4% 90.4%	12,222	93% 93%	10,975	84%	9,547 9,219	41% 41%	3,914 3,780	13.9%	544 525	4.0%	72.4	2.9 2.9	493	20 19
79	12,563	90.4%	11,352	93%	10,557	84%	8,868	41%	3,636	13.9%	505	4.0%	72.9	2.9	458	18
80	12,033	86.7%	10,437	93%	9,706	84%	8,153	41%	3,343	13.9%	464	3.9%	43.8	1.7	621	24
81 82	11,469	86.7%	9,948	93%	9,251	84%	7,771	41%	3,186	13.9%	443	3.9%	43.6	1.7	592	23
₀∠ 83	10,872	86.7%	9,430 8,884	93% 93%	8,262	84%	6,940	41% 41%	5,020 2,845	13.9%	419 395	5.9% 3.9%	43.2 42.6	1.7	529	22
84	9,582	86.7%	8,311	93%	7,729	84%	6,492	41%	2,662	13.9%	370	3.9%	41.6	1.6	495	19
Total	1 177 2/13		700 751		7/13 769		624 766		256 154		25 577		8 798	266	7/ 587	2 161

Potential Harms Associated with the Intervention

- Possible harms of screening for unhealthy alcohol use include stigma, anxiety, labeling, discrimination, privacy concerns, and interference with the patient-clinician relationship.¹⁵⁷⁴ The USPSTF notes that "more direct evidence is needed on the harms associated with screening and behavioral interventions."¹⁵⁷⁵
- The USPSTF found no evidence of any unintended harmful effects associated with brief counselling interventions.¹⁵⁷⁶

Summary of CPB

• Other assumptions used in assessing CPB are detailed in the Reference Document.

Based on these assumptions, the CPB associated with screening and behavioural counseling interventions to reduce unhealthy alcohol use in adults 18 years or older, including pregnant women, in a British Columbia birth cohort of 40,000 is 5,703 QALYs, 3,276 QALYs in females and 2,427 QALYs in males (Table 14, row *bg, bh, bi*). The CPB of 5,703 represents the gap between no coverage and the 'best in the world' screening coverage estimated at 93%. In addition, it assumes that 41% of individuals identified with unhealthy alcohol use with receive a brief intervention.

¹⁵⁷⁴ O'Connor E, Perdue L, Senger C et al. Screening and behavioral counseling interventions to reduce unhealthy alcohol use in adolescents and adults: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2018: 320(18); 1910-28.

¹⁵⁷⁵ US Preventive Services Task Force. Screening and Behavioral Counseling Interventions to Reduce Unhealthy Alcohol Use in Adolescents and Adults: US Preventive Services Task Force Recommendation Statement. JAMA. 2018: 320(18); 1899-1909.

¹⁵⁷⁶ O'Connor E, Perdue L, Senger C et al. Screening and behavioral counseling interventions to reduce unhealthy alcohol use in adolescents and adults: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2018: 320(18); 1910-28.

Table 14: CPB of Screening for Unhealthy Alcohol Use and Brief Intervention													
Ages 18 - 84													
	In a BC Birth Cohort of 40,000												
Row Label	Variable	Base case	Data Source										
	Total Burden (QALYs) in Birth Cohort												
а	Life years lived between the ages of 18 and 84 - Females	1,242,083	Table 1										
b	Life years lived between the ages of 18 and 84 - Males	1,177,243	Table 1										
с	Proportion of life years with unhealthy alcohol use (low-binge) - Females	11.8%	Tables 1 & 2										
d	Proportion of life years with unhealthy alcohol use (hazardous) - Females	7.0%	Tables 1 & 2										
e	Proportion of life years with unhealthy alcohol use (harmful) - Females	2.7%	Tables 1 & 2										
f	Proportion of life years with unhealthy alcohol use (low-binge) - Males	17.5%	Tables 1 & 2										
g	Proportion of life years with unhealthy alcohol use (hazardous) - Males	7.2%	Tables 1 & 2										
h	Proportion of life years with unhealthy alcohol use (harmful) - Males	6.4%	Tables 1 & 2										
i	Life years with unhealthy alcohol use (low-binge) - Females	146,822	= a * c										
j	Life years with unhealthy alcohol use (hazardous) - Females	86,762	= a * d										
k	Life years with unhealthy alcohol use (harmful) - Females	33,249	= a * e										
	Life years with unhealthy alcohol use (low-binge) - Males	205,858	= b * f										
m	Life years with unhealthy alcohol use (hazardous) - Males	85,240	= b * g										
n	Life years with unhealthy alcohol use (harmful) - Males	75,363	= b * h										
0	Life years lost attributable to unhealthy alcohol use - Females	3,016	Table 7										
р	Life years lost attributable to unhealthy alcohol use - Males	8,798	Table 7										
q	QoL reduction with unhealthy alcohol use - Low-binge	0.123	V										
r	QoL reduction with unhealthy alcohol use - Hazardous	0.179	V										
S	QoL reduction with unhealthy alcohol use - Harmful	0.304	V										
t	QALYs lost with unhealthy alcohol use (low-binge) - Females	20,734	Table 9										
u	QALYs lost with unhealthy alcohol use (hazardous) - Females	19,275	Table 9										
v	QALYs lost with unhealthy alcohol use (harmful) - Females	11,987	Table 9										
w	QALYs lost with unhealthy alcohol use - Total females	51,996	= t + u + v										
х	QALYs lost with unhealthy alcohol use (low-binge) - Males	29,220	Table 9										
У	QALYs lost with unhealthy alcohol use (hazardous) - Males	18,263	Table 9										
Z	QALYs lost with unhealthy alcohol use (harmful) - Males	27,105	Table 9										
аа	QALYs lost with unhealthy alcohol use - Total males	74,587	= x + y + z										
ab	Total QALYs lost - Females	55,013	= 0 + W										
ас	Total QALYs lost - Males	83,386	= p + aa										
ad	Total QALYs lost in general population	138,398	= ab + ac										
	Total Burden of FASD in Children Born to Females in the Birth Cohort												
ae	Expected births to females in birth cohort	27,034	Table 5										
af	Proportion with FASD	1.8%	V										
ag	Proportion of FASD with FAS	19.0%	V										
ah	Number of births with FASD	489	Table 8										
ai	Number of births with FAS	93	Table 8										
aj	Number of births with FASD, excluding FAS	397	Table 8										
ak	Life years lost due to FAS	4,472	Table 8										
al	Life years lost due to FASD, excluding FAS	6,939	Table 8										
am	QALYs lost due to FAS	1,546	Table 10										
an	QALYs lost due to FASD, excluding FAS	11,032	Table 10										
ao	Total QALYs lost, FASD	23,989	= ak + al + am + an										

Table 14 (continued) : CPB of Screening for Unhealthy Alcohol Use and Brief														
	Ages 18 - 84													
	In a BC Birth Cohort of 40,000													
Row Label	Variable	Base case	Data Source											
	Screening and Brief Intervention, General Population													
ар	Screening frequency (in years)	1	V											
aq	Average proportion visiting primary care provider each year, both sexes	74.1%	Tables 12 & 13											
ar	Proportion screened	93%	V											
as	Screening Sensitivity	84%	V											
at	Proportion of positive screens accepting treatment	41%	V											
au	Reduction in unhealthy alcohol use in those receiving intervention	13.9%	V											
av	Life-years lost, avoided, females	109	Table 12											
aw	QALYs recovered (gained), females	1,832	Table 12											
ах	Life-years lost, avoided, males	266	Table 13											
ay	QALYs recovered (gained), males	2,161	Table 13											
az	Total QALYs gained, general population	4,368	= av + aw + ax + ay											
	Screening and Brief Intervention, Pregnant Women													
ba	Proportion screened, pregnant women	97%	V											
bb	Screening Sensitivity	84%	V											
bc	Proportion of positive screens accepting treatment	41%	V											
bd	Reduction in unhealthy alcohol use in those receiving intervention	16.7%	V											
be	Proportion of QALYs lost that could be recovered with screening and brief	5.6%	= ba * bb * bc * bd											
	Intervention	1.220	*											
	Total QALYS gained, FASD avoided	1,330	= ao * be											
	Clinically Preventable Buraen (CPB)	2.270	- av t av t bf											
by by	QALIS gameu - remaies	3,270												
bn bi	UALYS gamed - Iviales	2,427	= ax + ay											
ומ	I OTAI QALYS gained (CPB)	5,703	= bg + bh											

∨ = Estimates from the literature

Sensitivity Analysis

We also modified several major assumptions and recalculated the CPB as follows:

- Reduced QoL impact. Assume that the QoL reduction for binge drinking changes from 0.123 to 0.082 (Table 14, row *q*), the QoL reduction for hazardous drinking changes from 0.179 to 0.121 (Table 14, row *r*), and the QoL reduction for harmful drinking changes from 0.304 to 0.204 (Table 14, row *s*): CPB = 4,390
- Increased QoL impact. Assume that the QoL reduction for binge drinking changes from 0.123 to 0.177 (Table 14, row *q*), the QoL reduction for hazardous drinking changes from 0.179 to 0.252 (Table 14, row *r*), and the QoL reduction for harmful drinking changes from 0.304 to 0.418 (Table 14, row *s*): **CPB** = **7,337**
- Assume that the proportion of births with FASD increases from 1.81% to 2.93% (Table 14, row *af*): CPB = 6,530
- Assume that the screening sensitivity decreases from 84% to 67% (Table 14, row *as*): CPB = 4,549
- Assume that the screening sensitivity increases from 84% to 94% (Table 14, row *as*): CPB = 6,382

- Assume that the proportion benefitting from treatment in the general population is decreased from 13.9% to 8.7% (Table 14, row *au*) and is decreased from 16.7% to 8.0% in pregnant women (Table 14, row *bd*): **CPB = 3,376**
- Assume that the proportion benefitting from treatment in the general population is increased from 13.9% to 16.1% (Table 14, row *au*) and is increased from 16.7% to 23.3% in pregnant women (Table 14, row *bd*): CPB = 6,936
- Assume that the impacts of FASD are excluded (Table, row bf): CPB = 4,368

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with screening and behavioural counseling interventions to reduce unhealthy alcohol use in adults 18 years or older, including pregnant women, in a British Columbia birth cohort of 40,000.

In estimating CE, we made the following assumptions:

Cost of Screening

- For modelling purposes, we assumed that screening for unhealthy alcohol use would occur annually and modified this to once every 5 years in the sensitivity analysis (Table 23, row *a*). That is, in the base case, the 93% screening rate is applied to all individuals. In the sensitivity analysis, the 93% screening rate is applied to 1 in 5 individuals (20%) in each year.
- In Tables 15 and 16, we calculate the number of lifetime screens and behavioural interventions conducted for females and males respectively. There would be 922,972 lifetime screens conducted on females and 743,769 lifetime screens conducted on males in the cohort.
- In Table 17 we calculate the number of lifetime screens and behavioural interventions conducted for pregnant females. We assume that pregnant females are screened with each pregnancy and that these screens are in addition to the screens conducted on the general female population. There would be 26,223 screens of pregnant females.
- As noted earlier, the proportion of pregnant females with unhealthy alcohol use is difficult to determine. Evidence from 2005/06 suggest that 7.8% of BC females drank alcohol at some point during their pregnancies.¹⁵⁷⁷ Another source from 2007/08 suggests 7.2%.¹⁵⁷⁸ 2017/18 CCHS data suggests that 3.0% of women consumed alcohol after finding out they were pregnant.¹⁵⁷⁹ As noted earlier, self-report of alcohol consumption during pregnancy tends to be under-reported.
- For modelling purposes, we have assumed that the 2017/18 CCHS finding that 3.0% of BC females consume alcohol after becoming aware that they were pregnant is under-reported by a factor of 3. We therefore assume that 9.0% of pregnant females in BC consume some alcohol, and reduce this to 3.0% in the sensitivity analysis (Table 17).

 ¹⁵⁷⁷ Walker MJ, Al-Sahab B, Islam F et al. The epidemiology of alcohol utilization during pregnancy: an analysis of the Canadian Maternity Experiences Survey (MES). *BMC Pregnancy and Childbirth*. 2011; 11(1): 52.
 ¹⁵⁷⁸ Thanh NX and Jonsson E. Drinking alcohol during pregnancy: evidence from Canadian Community Health Survey 2007/2008. *Canadian Journal of Clinical Pharmacology*. 2010; 17(2): e302-7.
 ¹⁵⁷⁹ This analysis is based on the Statistics Canada's Canadian Community Health Survey 2017/18 Public Use Microdata File. All computations, use and interpretation is entirely that of H. Krueger & Associates Inc.

²⁰²⁴

	Table 15: Number Screened and Accepting Behavioural Intervention															
	Females, between the Ages of 18 and 84															
	In a British Columbia Birth Cohort of 40,000 GP Unhealthy															
				Screening	Proportion	Screening	Screens	Alcohol Use	Screens	Sens	itivity of			Frequency	Proportion	ו BI
Age	Total Life Years	Annual GI % (Table 11)	P Visits #	Frequency Years	Annually %	Rate %	Conducted #	(UAU) % (Table 2)	Conducted #(UAU)	S %	creen #(UAU)	Acce %	pting BI # (UAU)	of BI Years	Annually %	Conducted # (UAU)
18	19 891	65.0%	12 931	1	100%	93%	12 026	35%	4 209	84%	3 535	41%	1 449	3	33%	483
19	19,885	65.0%	12,927	1	100%	93%	12,022	35%	4,207	84%	3,534	41%	1,449	3	33%	483
20	19,878	66.0%	13,117	1	100%	93%	12,199	35%	4,269	84%	3,586	41%	1,470	3	33%	490
21	19,871	66.0%	13,113	1	100%	93% 93%	12,195	35%	4,268	84% 84%	3,585	41% 41%	1,470	3	33%	490 490
23	19,855	66.0%	13,102	1	100%	93%	12,185	35%	4,265	84%	3,582	41%	1,469	3	33%	490
24	19,847	66.0%	13,097	1	100%	93%	12,180	35%	4,263	84%	3,581	41%	1,468	3	33%	489
25	19,839 19.830	79.5% 79.5%	15,767 15,760	1	100%	93% 93%	14,664 14.657	35%	5,132 5,130	84% 84%	4,311 4.309	41% 41%	1,767 1.767	3	33%	589 589
27	19,821	79.5%	15,753	1	100%	93%	14,650	35%	5,127	84%	4,307	41%	1,766	3	33%	589
28	19,811	79.5%	15,745	1	100%	93%	14,643	35%	5,125	84%	4,305	41%	1,765	3	33%	588
29 30	19,801 19,790	79.5% 81.7%	15,737	1	100%	93% 93%	14,636 15,036	35% 21%	5,122 3 109	84% 84%	4,303 2 612	41% 41%	1,764 1 071	3	33%	588 357
31	19,779	81.7%	16,159	1	100%	93%	15,028	21%	3,108	84%	2,610	41%	1,070	3	33%	357
32	19,767	81.7%	16,149	1	100%	93%	15,019	21%	3,106	84%	2,609	41%	1,070	3	33%	357
33	19,755 19 742	81.7% 81.7%	16,139 16,129	1	100%	93% 93%	15,010 15,000	21% 21%	3,104	84% 84%	2,607	41% 41%	1,069	3	33%	356
35	19,729	79.8%	15,751	1	100%	93%	14,648	21%	3,029	84%	2,544	41%	1,043	3	33%	348
36	19,715	79.8%	15,740	1	100%	93%	14,638	21%	3,027	84%	2,543	41%	1,042	3	33%	347
37	19,700 19,685	79.8% 79.8%	15,728	1	100%	93% 93%	14,627 14,616	21% 21%	3,025	84% 84%	2,541	41% 41%	1,042	3	33%	347 347
39	19,669	79.8%	15,703	1	100%	93%	14,604	21%	3,022	84%	2,535	41%	1,041	3	33%	347
40	19,652	76.4%	15,006	1	100%	93%	13,955	21%	2,886	84%	2,424	41%	994	3	33%	331
41	19,634	76.4%	14,992	1	100%	93%	13,942	21%	2,883	84%	2,422	41%	993 002	3	33%	331
42	19,615	76.4%	14,977	1	100%	93% 93%	13,929	21%	2,880	84% 84%	2,419	41% 41%	992 991	3	33%	331
44	19,572	76.4%	14,945	1	100%	93%	13,898	21%	2,874	84%	2,414	41%	990	3	33%	330
45	19,549	78.3%	15,300	1	100%	93%	14,229	20%	2,823	84%	2,371	41%	972	3	33%	324
46	19,524 19 497	78.3% 78.3%	15,280 15,259	1	100%	93% 93%	14,211 14 191	20%	2,819	84% 84%	2,368	41% 41%	971 970	3	33%	324
48	19,469	78.3%	15,237	1	100%	93%	14,170	20%	2,811	84%	2,361	41%	968	3	33%	323
49	19,438	78.3%	15,213	1	100%	93%	14,148	20%	2,807	84%	2,358	41%	967	3	33%	322
50	19,405 19.370	81.5% 81.5%	15,814	1	100%	93% 93%	14,707	20%	2,917	84% 84%	2,451	41% 41%	1,005	3	33% 33%	335 334
52	19,332	81.5%	15,754	1	100%	93%	14,651	20%	2,906	84%	2,441	41%	1,001	3	33%	334
53	19,291	81.5%	15,721	1	100%	93%	14,620	20%	2,900	84%	2,436	41%	999	3	33%	333
54	19,247 19 199	81.5% 82.0%	15,685	1	100%	93% 93%	14,587 14 633	20%	2,894	84% 84%	2,431 2 438	41% 41%	997 1.000	3	33%	332
56	19,133	82.0%	15,692	1	100%	93%	14,594	20%	2,895	84%	2,432	41%	997	3	33%	332
57	19,092	82.0%	15,647	1	100%	93%	14,552	20%	2,887	84%	2,425	41%	994	3	33%	331
58	19,032	82.0%	15,597	1	100%	93%	14,506	20%	2,877	84% 84%	2,417	41%	991	3	33%	330
60	18,895	80.9%	15,282	1	100%	93%	14,212	13%	1,893	84%	1,590	41%	652	3	33%	217
61	18,817	80.9%	15,219	1	100%	93%	14,154	13%	1,885	84%	1,584	41%	649	3	33%	216
62	18,733	80.9%	15,151	1	100%	93%	14,090 14,021	13%	1,877	84% 84%	1,577	41%	646	3	33%	215
64	18,541	80.9%	14,996	1	100%	93%	13,946	13%	1,808	84%	1,560	41%	640	3	33%	214
65	18,432	86.7%	15,986	1	100%	93%	14,867	13%	1,980	84%	1,664	41%	682	3	33%	227
66	18,312	86.7%	15,883	1	100%	93%	14,771	13%	1,968	84%	1,653	41%	678	3	33%	226
68	18,038	86.7%	15,645	1	100%	93% 93%	14,550	13%	1,953	84%	1,628	41% 41%	667	3 3	53% 33%	224
69	17,881	86.7%	15,509	1	100%	93%	14,423	13%	1,921	84%	1,614	41%	662	3	33%	221
70	17,709	84.8%	15,015	1	100%	93%	13,964	15%	2,149	84%	1,805	41%	740 722	3	33%	247
71	17,313	84.8%	14,855 14,679	1	100%	93% 93%	13,815	15%	2,126 2,101	84% 84%	1,765	41% 41%	732 724	3 3	33% 33%	244 241
73	17,085	84.8%	14,486	1	100%	93%	13,472	15%	2,073	84%	1,742	41%	714	3	33%	238
74	16,835	84.8%	14,274	1	100%	93%	13,275	15%	2,043	84%	1,716	41%	704	3	33%	235
75 76	16,561 16.260	85.8%	14,215 13.956	1 1	100%	93% 93%	13,220 12.979	15% 15%	2,034 1.997	84% 84%	1,709 1.678	41% 41%	701 688	3	33% 33%	234 229
77	15,929	85.8%	13,673	1	100%	93%	12,716	15%	1,957	84%	1,644	41%	674	3	33%	225
78	15,567	85.8%	13,362	1	100%	93%	12,427	15%	1,912	84%	1,606	41%	659	3	33%	220
79 80	15,171 14 727	85.8% 85.7%	13,022 12 627	1 1	100% 100%	93% 93%	12,110 11 7/12	15% 22%	1,864 2 542	84% 84%	1,566 2 136	41% 41%	642 876	3	33% 33%	214 292
81	14,263	85.7%	12,221	1	100%	93%	11,366	22%	2,461	84%	2,067	41%	847	3	33%	282
82	13,747	85.7%	11,779	1	100%	93%	10,955	22%	2,372	84%	1,992	41%	817	3	33%	272
83 84	13,186 12 579	85.7% 85.7%	11,299 10 779	1	100% 100%	93% 93%	10,508	22% 22%	2,275	84% 84%	1,911 1 873	41% 41%	784 747	3	33% 33%	261 2/0
Total	1 242 002	55.770	007 447	-	20070	5370	072 072	22/0	10/ 697	5470	162 527	.1/0	67.050	5	5570	27.5
10101	1,242,003		JJZ,443				322,312		134,00/		103,337		07,050			22,330

	Table 16: Number Screened and Accepting Behavioural Intervention															
	Males, between the Ages of 18 and 84															
	In a British Columbia Birth Cohort of 40,000															
	GP Unhealthy															
				Screening	Proportion	Screening	Screens	Alcohol Use	Screens	Sens	itivity of			Frequency	Proportion	BI
	Total Life	Annual G	P Visits	Frequency	Annually	Rate	Conducted	(UAU)	Conducted	S	creen	Acce	pting Bl	of BI	Annually	Conducted
Age	Years	% (Table 11) #	Years	%	%	#	% (Table 2)	#(UAU)	%	# (UAU)	%	# (UAU)	Years	%	# (UAU)
18	19,870	53.0%	10,535	1	100%	93%	9,797	45%	4,390	84%	3,687	41%	1,512	3	33%	504
19	19,858	53.0%	10,528	1	100%	93%	9,791	45%	4,387	84%	3,685	41%	1,511	3	33%	504
20	19,843	45.8%	9,080	1	100%	93%	8,445	45%	3,784	84%	3,178	41%	1,303	3	33%	434
21	19,826	45.8%	9,073	1	100%	93%	8,437	45%	3,780 2 777	84% 9 <i>4</i> %	3,175	41%	1,302	3	33%	434
22	19,607	45.8%	9,064	1	100%	93%	8,429	45%	3,773	84%	3,172	41%	1,501	3	33%	454
24	19,763	45.8%	9.044	1	100%	93%	8.411	45%	3,768	84%	3.165	41%	1,298	3	33%	433
25	19,739	52.4%	10,338	1	100%	93%	9,614	45%	4,307	84%	3,618	41%	1,483	3	33%	494
26	19,714	52.4%	10,325	1	100%	93%	9,602	45%	4,302	84%	3,614	41%	1,482	3	33%	494
27	19,689	52.4%	10,311	1	100%	93%	9,589	45%	4,296	84%	3,609	41%	1,480	3	33%	493
28	19,662	52.4%	10,297	1	100%	93%	9,576	45%	4,291	84%	3,604	41%	1,478	3	33%	493
29	19,635	52.4%	10,283	1	100%	93%	9,563	45%	4,285	84%	3,599	41%	1,476	3	33%	492
30	19,607	51.7%	10,129	1	100%	93%	9,420	37%	3,531	84%	2,966	41%	1,216	3	33%	405
31	19,579	51.7%	10,114	1	100%	93%	9,406	37%	3,520	84% 84%	2,962	41% /1%	1,214	3	33%	405
32	19,550	51.7%	10,099	1	100%	93%	9 378	37%	3,521	84%	2,957	41%	1,212	3	33%	404
34	19,489	51.7%	10,068	1	100%	93%	9,363	37%	3,510	84%	2,948	41%	1,209	3	33%	403
35	19,458	63.1%	12,286	1	100%	93%	11,426	37%	4,283	84%	3,598	41%	1,475	3	33%	492
36	19,425	63.1%	12,265	1	100%	93%	11,407	37%	4,276	84%	3,592	41%	1,473	3	33%	491
37	19,392	63.1%	12,244	1	100%	93%	11,387	37%	4,268	84%	3,585	41%	1,470	3	33%	490
38	19,357	63.1%	12,222	1	100%	93%	11,366	37%	4,261	84%	3,579	41%	1,467	3	33%	489
39	19,321	63.1%	12,199	1	100%	93%	11,345	37%	4,253	84%	3,572	41%	1,465	3	33%	488
40	19,283	62.8%	12,104	1	100%	93%	11,256	37%	4,220	84%	3,544	41%	1,453	3	33%	484
41	19,245	62.8%	12,079	1	100%	93%	11,234	37%	4,211	84%	3,537	41%	1,450	3	33%	483
42	19,204	62.8%	12,054	1	100%	93%	11,210	37%	4,202	84%	3,530	41%	1,447	3	33%	482
43	19,162	62.8%	12,027	1	100%	93%	11,185	37%	4,193	84%	3,522	41%	1,444	3	33%	481
44	19,117	62.8%	11,999	1	100%	93%	11,159	3/%	4,183	84%	3,514	41%	1,441	3	33%	480
45	19,071	08.5%	12,057	1	100%	93%	12,143	29%	3,559	84% 94%	2,989	41%	1,220	3	33%	409
40	19,022	68.5%	12,024	1	100%	93%	12,112	29%	3,549	0470 84%	2,302	41/0	1,222	3	33%	407
48	18,915	68.5%	12,950	1	100%	93%	12,075	29%	3,540	84%	2,965	41%	1,215	3	33%	405
49	18.857	68.5%	12,911	1	100%	93%	12.007	29%	3.519	84%	2,956	41%	1.212	3	33%	404
50	18,795	65.6%	12,333	1	100%	93%	11,470	29%	3,361	84%	2,824	41%	1,158	3	33%	386
51	18,729	65.6%	12,290	1	100%	93%	11,430	29%	3,350	84%	2,814	41%	1,154	3	33%	385
52	18,659	65.6%	12,244	1	100%	93%	11,387	29%	3,337	84%	2,803	41%	1,149	3	33%	383
53	18,583	65.6%	12,195	1	100%	93%	11,341	29%	3,324	84%	2,792	41%	1,145	3	33%	382
54	18,503	65.6%	12,142	1	100%	93%	11,292	29%	3,309	84%	2,780	41%	1,140	3	33%	380
55	18,417	72.8%	13,416	1	100%	93%	12,477	29%	3,656	84%	3,071	41%	1,259	3	33%	420
56	18,325	72.8%	13,348	1	100%	93%	12,414	29%	3,638	84%	3,056	41%	1,253	3	33%	418
57	18,226	72.8%	13,276	1	100%	93%	12,347	29%	3,618	84%	3,039	41%	1,246	3	33%	415
58	18,120	72.8%	13,199	1	100%	93%	12,275	29%	3,597	84%	3,022	41%	1,239	3	33%	413
59	17 884	72.6% 82.5%	14 750	1	100%	93%	12,196	29%	3,373	84%	2,005	41%	1,251	3	33%	369
61	17,004	82.5%	14,730	1	100%	93%	13,710	23%	3 188	84%	2,030	41%	1,100	3	33%	366
62	17.610	82.5%	14.525	1	100%	93%	13,508	23%	3,162	84%	2,656	41%	1.089	3	33%	363
63	17,458	82.5%	14,399	1	100%	93%	13,391	23%	3,135	84%	2,633	41%	1,080	3	33%	360
64	17,293	82.5%	14,264	1	100%	93%	13,265	23%	3,105	84%	2,609	41%	1,070	3	33%	357
65	17,116	84.7%	14,492	1	100%	93%	13,478	23%	3,155	84%	2,650	41%	1,087	3	33%	362
66	16,925	84.7%	14,330	1	100%	93%	13,327	23%	3,120	84%	2,621	41%	1,075	3	33%	358
67	16,719	84.7%	14,156	1	100%	93%	13,165	23%	3,082	84%	2,589	41%	1,061	3	33%	354
68	16,496	84.7%	13,967	1	100%	93%	12,990	23%	3,041	84%	2,554	41%	1,047	3	33%	349
69	16,256	84.7%	13,764	1	100%	93%	12,801	23%	2,997	84%	2,517	41%	1,032	3	33%	344
70	15,997	85.9%	13,738	1	100%	93%	12,776	14%	1,800	84%	1,512	41%	620	3	33%	207
71	15,718	85.9%	13,498	1	100%	93%	12,553	14%	1,708	84% 0.40/	1,480	41%	509	3	33%	203
72	15,410	85.9%	12,239	1	100%	95%	12,512	14%	1,755	04%	1,457	41%	585	3	33%	199
74	14 742	85.9%	12,500	1	100%	93%	11 773	14%	1 659	84%	1 393	41%	571	3	33%	190
75	14.365	90.4%	12,980	1	100%	93%	12.071	14%	1.701	84%	1.429	41%	586	3	33%	195
76	13,960	90.4%	12,614	1	100%	93%	11,731	14%	1,653	84%	1,388	41%	569	3	33%	190
77	13,526	90.4%	12,222	1	100%	93%	11,366	14%	1,601	84%	1,345	41%	551	3	33%	184
78	13,061	90.4%	11,801	1	100%	93%	10,975	14%	1,546	84%	1,299	41%	532	3	33%	177
79	12,563	90.4%	11,352	1	100%	93%	10,557	14%	1,487	84%	1,249	41%	512	3	33%	171
80	12,033	86.7%	10,437	1	100%	93%	9,706	16%	1,593	84%	1,338	41%	549	3	33%	183
81	11,469	86.7%	9,948	1	100%	93%	9,251	16%	1,519	84%	1,276	41%	523	3	33%	174
82	10,872	86.7%	9,430	1	100%	93%	8,770	16%	1,440	84%	1,209	41%	496	3	33%	165
83	10,242	86.7%	8,884	1	100%	93%	8,262	16%	1,356	84%	1,139	41%	467	3	33%	156
84	9,582	ð0./%	8,311	1	100%	93%	1,129	10%	1,269	84%	1,066	41%	437	3	55%	140
Total	1,177,243		799,751				743,769		216,573		181,922		74,588			24,863

	Table 17: Number Screened and Accepting Behavioural Intervention													
Females Giving Birth, between the Ages of 18 and 49														
	In a British Columbia Birth Cohort of 40,000													
	Expected	GP		Any										
	Birthing	Screening	Screens	Alcohol	Frequency	Proportion	BI							
	Mothers	Rate	Conducted	Use (AAU)	Conducted	S	creen	Acce	epting BI	of BI	Annually	Conducted		
Age	(Table 8)	%	#	%	# (AAU)	%	# (AAU)	%	# (AAU)	Years	%	# (AAU)		
18	136	97%	132	9.0%	12	84%	10	41%	4	3	33%	1		
19	136	97%	132	9.0%	12	84%	10	41%	4	3	33%	1		
20	591	97%	573	9.0%	52	84%	43	41%	18	3	33%	6		
21	591	97%	573	9.0%	52	84%	43	41%	18	3	33%	6		
22	591	97%	573	9.0%	52	84%	43	41%	18	3	33%	6		
23	591	97%	573	9.0%	52	84%	43	41%	18	3	33%	6		
24	590	97%	573	9.0%	52	84%	43	41%	18	3	33%	6		
25	1,421	97%	1,379	9.0%	124	84%	104	41%	43	3	33%	14		
26	1,421	97%	1,378	9.0%	124	84%	104	41%	43	3	33%	14		
27	1,420	97%	1,377	9.0%	124	84%	104	41%	43	3	33%	14		
28	1,419	97%	1,377	9.0%	124	84%	104	41%	43	3	33%	14		
29	1,418	97%	1,376	9.0%	124	84%	104	41%	43	3	33%	14		
30	1,970	97%	1,911	9.0%	172	84%	144	41%	59	3	33%	20		
31	1,969	97%	1,909	9.0%	172	84%	144	41%	59	3	33%	20		
32	1,967	97%	1,908	9.0%	172	84%	144	41%	59	3	33%	20		
33	1,966	97%	1,907	9.0%	172	84%	144	41%	59	3	33%	20		
34	1,965	97%	1,906	9.0%	172	84%	144	41%	59	3	33%	20		
35	1,126	97%	1,092	9.0%	98	84%	83	41%	34	3	33%	11		
36	1,125	97%	1,091	9.0%	98	84%	82	41%	34	3	33%	11		
37	1,124	97%	1,090	9.0%	98	84%	82	41%	34	3	33%	11		
38	1,123	97%	1,090	9.0%	98	84%	82	41%	34	3	33%	11		
39	1,122	97%	1,089	9.0%	98	84%	82	41%	34	3	33%	11		
40	235	97%	228	9.0%	21	84%	17	41%	7	3	33%	2		
41	235	97%	228	9.0%	21	84%	17	41%	7	3	33%	2		
42	235	97%	228	9.0%	21	84%	17	41%	7	3	33%	2		
43	235	97%	228	9.0%	20	84%	17	41%	7	3	33%	2		
44	234	97%	227	9.0%	20	84%	17	41%	7	3	33%	2		
45	15	97%	15	9.0%	1	84%	1	41%	0	3	33%	0		
46	15	97%	15	9.0%	1	84%	1	41%	0	3	33%	0		
47	15	97%	15	9.0%	1	84%	1	41%	0	3	33%	0		
48	15	97%	15	9.0%	1	84%	1	41%	0	3	33%	0		
49	15	97%	15	9.0%	1	84%	1	41%	0	3	33%	0		
Total	27,034		26,223		2,360		1,982		813			271		

- For modelling purposes, we assumed that 2 minutes of a 10 minute primary care provider appointment (20%) is used for the quick screen (Table 23, row *e*). If patients screen positive, we assume a more in-depth screening test is applied and assume that this test takes the remainder of the 10 minute appointment (i.e. 80%).
- We assume that the false positives identified during the short screen are either correctly identified as healthy alcohol users or do not participate in treatment after the second (more in-depth) screen.

- For modelling purposes, we assumed that a brief intervention would be required every three years (ranging this from two to four years in the sensitivity analysis) to maintain the benefits associated with the brief intervention (Table 23, row *ae*). We model this by assuming that 33% (1 in 3) receive a brief intervention in any given year (Tables 15, 16 and 17).
- We assume that the benefits of the behavioural intervention are ongoing for each individual that received benefits, regardless of whether the screening takes place every year or once every five years.
- For modelling purposes, we assumed that 3 10-minute sessions would be required, for a total contact time of 30 minutes per brief intervention (Table 23, row *ai*). For costing purposes, we assumed that all of the brief interventions would take place in a primary care provider's office (Table 23, row *aj*).
- Patient time costs resulting from receiving, as well as travelling to and from, a service are valued based on the average hourly wage rate in BC in 2022 (\$31.49¹⁵⁸⁰) plus 18% benefits for an average cost per hour of \$37.16. In the absence of specific data on the amount of time required, we assume two hours per service (see Reference Document).
- The estimated cost of a visit to a GP of \$35.97 is based on the average cost of an office visit between the ages of 2 and 79 (see Reference Document).

Costs Avoided Due to a Reduction in Unhealthy Alcohol Use

- In addition to a reduced life expectancy and quality of life, alcohol use is also associated with higher *annual medical care costs* (e.g., hospitalization, physician, drug, etc.) than no alcohol use. In BC, any alcohol use is associated with an annual economic burden of \$1,462 million in 2015. Of this amount, \$487.4 million is for direct medical care costs (the remaining is for indirect costs associated with premature mortality and short and long-term disability).¹⁵⁸¹
- The Canadian Institute for Substance Use Research (CISUR) and the Canadian Centre on Substance Use and Addiction (CCSUA) estimated the annual costs of alcohol use in Canada to be \$14,641.1 million in 2014. Of this amount, \$4,230.2 million (29%) was for healthcare costs, \$5,916.4 million (40%) for indirect costs, \$3,154.2 million (22%) for criminal justice costs and \$1,340.3 million (9%) for 'other' costs (primarily fire and motor vehicle damage).¹⁵⁸²
- The CISUR and CCSUA analysis also estimated the annual costs of alcohol use in BC to be \$1,936 million in 2014. Of this amount, \$673 million (35%) was for

¹⁵⁸⁰ BC Stats. *Earning & Employment Trends – August 2022*. Available at https://www2.gov.bc.ca/assets/gov/data/statistics/people-population-

community/income/earnings_and_employment_trends_data_tables.pdf. Accessed September 2022.

¹⁵⁸¹ H. Krueger & Associates Inc. *The Economic Burden of Risk Factors in British Columbia: Excess Weight, Tobacco Smoking, Alcohol Use, Physical Inactivity and Low Fruit and Vegetable Consumption.* 2018. Vancouver, B.C.: Provincial Health Services Authority, Population and Public Health Program.

¹⁵⁸² Canadian Substance Use Costs and Harms Scientific Working Group. *Canadian substance use costs and harms* (2007 – 2014). 2018. Prepared by the Canadian Institute for Substance Use Research and the Canadian Centre on Substance Use and Addiction. Ottawa, Ontario.

healthcare costs, \$744 million (38%) for indirect costs, \$349 million (18%) for criminal justice costs and \$169 million (9%) for 'other' costs.¹⁵⁸³

- The economic burden attributable to alcohol use increases with the amount consumed. Low alcohol use (less than 3 drinks per day for males and less than 1.5 drinks per day for females) is associated with excess annual medical care costs per female of \$36 and per male of \$77 (in 2013 CAD). Hazardous alcohol use (3 to 4.5 drinks per day for males and 1.5 to 3 drinks per day for females) is associated with excess annual medical care costs per female of \$279 and per male of \$488. Harmful alcohol use (>4.5 drinks per day for males and >3 drinks per day for females) is associated with excess annual medical care costs per female of \$1,153 and per male of \$1,235.¹⁵⁸⁴
- We increased the above annual economic burden attributable to alcohol use by sex and consumption level by 38% to take into account higher estimate of healthcare costs for BC in the CISUR / CCSUA analysis (\$673 million) compared with the previous BC analysis (\$487.4 million).
- In addition to direct medical care costs, alcohol use is associated with criminal justice costs and 'other' costs, primarily fire and motor vehicle damage. In BC, the CISUR / CCSUA analysis indicates that the criminal justice costs are equivalent to 51% of the direct medical care costs while other costs are equivalent to 25% of the direct medical care costs.¹⁵⁸⁵

Table 18: Su	Table 18: Summary of Annual Cost of Unhealthy Alcohol UseBritish Columbia, 2022 CAD												
Direct Healthcare Criminal													
	Cos	sts	'Other'	Costs	Total	Costs							
	Female	Male	Female	Male	Female	Male	Female	Male					
Low Alcohol Use	\$57	\$122	\$29	\$62	\$14	\$31	\$101	\$215					
Hazardous Alcohol Use	\$443	\$774	\$226	\$395	\$111	\$194	\$779	\$1,362					
Harmful Alcohol Use	\$1,829	\$1,959	\$933	\$999	\$457	\$490	\$3,219	\$3,448					

• The adjusted excess annual medical care costs (direct costs), criminal justice costs and other costs (both calculated as a proportion of direct medical care costs) are shown in Table 18 below, inflated to 2022 CAD.

Sources: Canadian Substance Use Costs and Harms Scientific Working Group (2018) and Krueger et al. (2017)

• Table 2 shows the proportion of the total population in the low-binge, hazardous and harmful drinking categories by age and sex. Tables 15 and 16 show the number of individuals in the general population accepting a brief intervention (BI). Combining this information with the annual cost information in Table 18, we can calculate the cost avoided as a result of brief interventions that work. The results are shown in Tables 19 and 20.

¹⁵⁸³ Canadian Substance Use Costs and Harms Scientific Working Group. *Canadian substance use costs and harms in the provinces and territories (2007 – 2014)*. 2018. Prepared by the Canadian Institute for Substance Use Research and the Canadian Centre on Substance Use and Addiction. Ottawa, Ontario.

¹⁵⁸⁴ Krueger H, Koot J, Andres E. The economic benefits of fruit and vegetable consumption in Canada. *Canadian Journal of Public Health.* 2017; 108(2): e152-61.

¹⁵⁸⁵ Canadian Substance Use Costs and Harms Scientific Working Group. *Canadian substance use costs and harms in the provinces and territories (2007 – 2014)*. 2018. Prepared by the Canadian Institute for Substance Use Research and the Canadian Centre on Substance Use and Addiction. Ottawa, Ontario.

• For example, an estimated 1,449 18 year-old females with unhealthy alcohol use would accept a brief intervention. Of these, 75% are in the low-binge category (26.1% [18 year-old females in low-binge category]/ 35.0% [18 year-old females in any unhealthy alcohol use category]). Of these, 150 (13.9%) would cease unhealthy alcohol use at the low-binge level which has an excess annual cost of \$101 (see Table 18). This results in total cost avoided of \$15,109 for low-binge 18 year-old females who have ceased unhealthy alcohol use (see Table 19).

Table 19: Costs Avoided Due to Reduction in Unhealthy Alcohol Use

Females, between the Ages of 18 and 84 In a British Columbia Birth Cohort of 40,000

	A seconding DI	Duou outio		utine DI	Reduc	tion in U	Unhealthy Alcohol Use		TOTAL Costs Avoided Annually per			Costs Avoided				
	# with UAU	% Low-Binge	% Hazardous	р ting ві % Harmful	w	Low-	Hazardous	оп (ВІ) Harmful		Individual			Costs A	volded		
Age	(Table 15)	(Table 2)	(Table 2)	(Table 2)	%	Binge #	#	#	Low-Binge \$	Hazardous \$	Harmful \$	Low-Binge \$	Hazardous \$	Harmful \$	Total \$	
18	1 449	75%	15%	11%	13.9%	150	29	22	\$101	\$779	\$3 219	\$15 109	\$22 752	\$70 101	\$107 962	
19	1,449	75%	15%	11%	13.9%	150	29	22	\$101	\$779	\$3,219	\$15,103	\$22,745	\$70,078	\$107,927	
20	1,470	75%	15%	11%	13.9%	153	30	22	\$101	\$779	\$3,219	\$15,327	\$23,080	\$71,112	\$109,520	
21	1,470	75%	15%	11%	13.9%	152	30	22	\$101	\$779	\$3,219	\$15,322	\$23,072	\$71,086	\$109,480	
22	1,469	75%	15%	11%	13.9%	152	30	22	\$101	\$779	\$3,219	\$15,316	\$23,063	\$71,060	\$109,439	
23	1,469	75%	15%	11%	13.9%	152	30	22	\$101 ¢101	\$779 ¢770	\$3,219	\$15,310	\$23,054	\$71,031	\$109,395	
24	1,400	75%	15%	11%	13.9%	192	36	22	\$101	\$779	\$3,219	\$15,505	\$25,045 \$27 743	\$71,002 \$85,479	\$109,550 \$131 646	
26	1,767	75%	15%	11%	13.9%	183	36	27	\$101	\$779	\$3,219	\$18,416	\$27,731	\$85,441	\$131,587	
27	1,766	75%	15%	11%	13.9%	183	36	27	\$101	\$779	\$3,219	\$18,407	\$27,718	\$85,401	\$131,526	
28	1,765	75%	15%	11%	13.9%	183	36	27	\$101	\$779	\$3,219	\$18,398	\$27,705	\$85,360	\$131,463	
29	1,764	75%	15%	11%	13.9%	183	36	27	\$101	\$779	\$3,219	\$18,389	\$27,690	\$85,316	\$131,395	
30	1,071	63%	31%	6%	13.9%	93	46	9	\$101	\$779	\$3,219	\$9,372	\$36,139	\$29,644	\$75,155	
31	1,070	63%	31%	6%	13.9%	93	46	9	\$101 \$101	\$779 \$779	\$3,219	\$9,367	\$36,119 \$36,097	\$29,628 \$29,610	\$75,113 \$75,068	
33	1,070	63%	31%	6%	13.9%	93	40	9	\$101 \$101	\$779	\$3,219	\$9,356	\$36.075	\$29,510	\$75.022	
34	1,068	63%	31%	6%	13.9%	93	46	9	\$101	\$779	\$3,219	\$9,349	\$36,051	\$29,572	\$74,973	
35	1,043	63%	31%	6%	13.9%	91	45	9	\$101	\$779	\$3,219	\$9,130	\$35,206	\$28,879	\$73,215	
36	1,042	63%	31%	6%	13.9%	91	45	9	\$101	\$779	\$3,219	\$9,124	\$35,181	\$28,858	\$73,163	
37	1,042	63%	31%	6%	13.9%	91	45	9	\$101	\$779	\$3,219	\$9,117	\$35,155	\$28,837	\$73,109	
38	1,041	63%	31%	6%	13.9%	91	45	9	\$101	\$779	\$3,219	\$9,110	\$35,128	\$28,815	\$73,053	
39	1,040	63%	31%	6% 6%	13.9%	91 97	45	9	\$101 \$101	\$779	\$3,219	\$9,103	\$35,099	\$28,791 \$27 512	\$72,993	
40	994	63%	31%	6%	13.9%	87 86	45 43	9	\$101	\$779	\$3,219	\$8,690	\$33,540 \$33,510	\$27,515 \$27,487	\$69,687	
42	992	63%	31%	6%	13.9%	86	43	9	\$101	\$779	\$3,219	\$8,682	\$33,476	\$27,460	\$69,618	
43	991	63%	31%	6%	13.9%	86	43	9	\$101	\$779	\$3,219	\$8,673	\$33,442	\$27,432	\$69,546	
44	990	63%	31%	6%	13.9%	86	43	9	\$101	\$779	\$3,219	\$8,663	\$33,404	\$27,401	\$69,468	
45	972	59%	30%	11%	13.9%	79	41	16	\$101	\$779	\$3,219	\$7,939	\$31,548	\$49,978	\$89,464	
46	971	59%	30%	11%	13.9%	79	40	16	\$101	\$779	\$3,219	\$7,928	\$31,508	\$49,914	\$89,350	
47	970	59%	30%	11%	13.9%	79	40	15	\$101 ¢101	\$779 ¢770	\$3,219	\$7,918	\$31,465	\$49,845 ¢40,772	\$89,227 \$89,007	
40 49	967	59%	30%	11%	13.9%	79	40	15	\$101	\$779	\$3,219	\$7,900	\$31,419 \$31 369	\$49,772 \$49,694	\$88 957	
50	1.005	59%	30%	11%	13.9%	82	42	16	\$101	\$779	\$3.219	\$8,205	\$32,608	\$51.657	\$92.471	
51	1,003	59%	30%	11%	13.9%	81	42	16	\$101	\$779	\$3,219	\$8,190	\$32,549	\$51,563	\$92,302	
52	1,001	59%	30%	11%	13.9%	81	42	16	\$101	\$779	\$3,219	\$8,174	\$32,485	\$51,462	\$92,121	
53	999	59%	30%	11%	13.9%	81	42	16	\$101	\$779	\$3,219	\$8,157	\$32,417	\$51,353	\$91,927	
54	997	59%	30%	11%	13.9%	81	42	16	\$101	\$779	\$3,219	\$8,138	\$32,342	\$51,235	\$91,716	
55	1,000	59%	30%	11%	13.9%	81	42	16	\$101 ¢101	\$779	\$3,219	\$8,164	\$32,445 ¢22.259	\$51,398 ¢51,360	\$92,007	
57	997	59%	30%	11%	13.9%	81	42 41	16	\$101	\$779	\$3,219	\$8,142 \$8,119	\$32,556 \$32,264	\$51,200 \$51 111	\$91,700 \$91,493	
58	991	59%	30%	11%	13.9%	81	41	16	\$101	\$779	\$3.219	\$8.093	\$32,162	\$50,949	\$91.204	
59	988	59%	30%	11%	13.9%	80	41	16	\$101	\$779	\$3,219	\$8,065	\$32,051	\$50,774	\$90,889	
60	652	30%	55%	15%	13.9%	27	50	14	\$101	\$779	\$3,219	\$2,719	\$38,945	\$43,467	\$85,131	
61	649	30%	55%	15%	13.9%	27	50	13	\$101	\$779	\$3,219	\$2,707	\$38,786	\$43,289	\$84,782	
62	646	30%	55%	15%	13.9%	27	50	13	\$101	\$779	\$3,219	\$2,695	\$38,612	\$43,095	\$84,403	
63	643 640	30%	55%	15%	13.9%	27	49	13	\$101 \$101	\$779 \$770	\$3,219	\$2,682	\$38,423	\$42,884 \$42,654	\$83,989 \$83 538	
65	682	30%	55%	15%	13.9%	27	49 52	15	\$101	\$779	\$3,219	\$2,000	\$30,210 \$40 741	\$42,654 \$45,472	\$89.057	
66	678	30%	55%	15%	13.9%	28	52	14	\$101	\$779	\$3,219	\$2,825	\$40,477	\$45,176	\$88,479	
67	673	30%	55%	15%	13.9%	28	52	14	\$101	\$779	\$3,219	\$2,805	\$40,188	\$44,854	\$87,847	
68	667	30%	55%	15%	13.9%	28	51	14	\$101	\$779	\$3,219	\$2,783	\$39,871	\$44,500	\$87,154	
69	662	30%	55%	15%	13.9%	27	51	14	\$101	\$779	\$3,219	\$2,759	\$39,524	\$44,113	\$86,395	
70	740	15%	71%	14%	13.9%	15	73	14	\$101	\$779	\$3,219	\$1,547	\$56,804	\$46,595	\$104,946	
/1	732	15%	/1%	14%	13.9%	15	72	14	\$101 ¢101	\$779	\$3,219	\$1,531	\$56,198 ¢FF F22	\$46,098 \$45,552	\$103,827 \$103 500	
72	724	15%	71%	14%	13.9%	15	70	14	\$101	\$779	\$3,219	\$1,512	\$54 803	\$43,333 \$44 954	\$102,599	
74	704	15%	71%	14%	13.9%	15	69	14	\$101	\$779	\$3,219	\$1,471	\$54,001	\$44,296	\$99,768	
75	701	15%	71%	14%	13.9%	15	69	14	\$101	\$779	\$3,219	\$1,465	\$53,776	\$44,112	\$99,353	
76	688	15%	71%	14%	13.9%	14	68	13	\$101	\$779	\$3,219	\$1,438	\$52,798	\$43,310	\$97,546	
77	674	15%	71%	14%	13.9%	14	66	13	\$101	\$779	\$3,219	\$1,409	\$51,726	\$42,430	\$95,565	
78	659	15%	71%	14%	13.9%	14	65	13	\$101	\$779	\$3,219	\$1,377	\$50,550	\$41,465	\$93,392	
79	642	15%	71%	14%	13.9%	13	63 0C	13	\$101	\$779 \$770	\$3,219	\$1,342	\$49,262	\$40,409	\$91,013	
6U 81	0/0 847	10%	79%	11%	13.9%	12 17	92	13 13	\$101 \$101	\$779 \$779	\$3,219 \$3,219	\$1,239 \$1,100	\$72 506	242,207 \$40 850	\$114 555	
82	817	10%	79%	11%	13.9%	11	90	12	\$101	\$779	\$3,219	\$1.156	\$69.883	\$39.373	\$110,411	
83	784	10%	79%	11%	13.9%	11	86	12	\$101	\$779	\$3,219	\$1,109	\$67,033	\$37,767	\$105,908	
84	747	10%	79%	11%	13.9%	11	82	11	\$101	\$779	\$3,219	\$1,058	\$63,947	\$36,028	\$101,033	
Total	67,050										_	\$503,481	\$2,581,527	\$3,188,900	\$6,273,909	

Table 20: Costs Avoided Due to Reduction in Unhealthy Alcohol Use

Males, between the Ages of 18 and 84 In a British Columbia Birth Cohort of 40,000

		.			Redu	ction in U	nhealthy Alc	ohol Use	TOTAL Cost	s Avoided An	nually per	Costs Ausidad			
	Accepting Bl	Proportion	of those Acce	epting Bl	```	with Brief	Intervention	(BI)		Individual			Costs A	voided	
Age	# with UAU (Table 16)	% Low-Binge (Table 2)	% Hazardous (Table 2)	% Harmful (Table 2)	%	Low- Binge #	Hazardous #	Harmful #	Low-Binge \$	Hazardous \$	Harmful \$	Low-Binge \$	Hazardous \$	Harmful \$	Total \$
10	1 512	699/	16%	16%	12 0%	1/12	22	24	¢215	¢1 262	¢2 119	\$20,729	\$44 700	¢117 704	¢102 222
18	1,512	68%	16%	16%	13.9%	143	33	34 34	\$215	\$1,302 \$1,362	\$3,448 \$3,448	\$30,738	\$44,709 \$44,681	\$117,784 \$117,710	\$193,232
20	1,303	68%	16%	16%	13.9%	143	28	29	\$215	\$1,362	\$3,448	\$26,495	\$38,537	\$101.524	\$166.556
21	1.302	68%	16%	16%	13.9%	123	28	29	\$215	\$1.362	\$3,448	\$26,472	\$38,504	\$101.437	\$166.413
22	1,301	68%	16%	16%	13.9%	123	28	29	\$215	\$1,362	\$3,448	\$26,446	\$38,467	\$101,339	\$166,252
23	1,299	68%	16%	16%	13.9%	123	28	29	\$215	\$1,362	\$3,448	\$26,418	\$38,426	\$101,231	\$166,075
24	1,298	68%	16%	16%	13.9%	123	28	29	\$215	\$1,362	\$3,448	\$26,388	\$38,382	\$101,116	\$165,886
25	1,483	68%	16%	16%	13.9%	140	32	34	\$215	\$1,362	\$3,448	\$30,163	\$43,873	\$115,581	\$189,616
26	1,482	68%	16%	16%	13.9%	140	32	33	\$215	\$1,362	\$3,448	\$30,125	\$43,818	\$115,436	\$189,378
27	1,480	68%	16%	16%	13.9%	140	32	33	\$215	\$1,362	\$3,448	\$30,086	\$43,761	\$115,286	\$189,132
28	1,478	68%	16%	16%	13.9%	140	32	33	\$215	\$1,362	\$3,448	\$30,046	\$43,702	\$115,131	\$188,879
29	1,476	68%	16%	16%	13.9%	140	32	33	\$215	\$1,362	\$3,448	\$30,004	\$43,642	\$114,972	\$188,617
30	1,216	57%	22%	21%	13.9%	97	37	35	\$215	\$1,362	\$3,448	\$20,748	\$50,249	\$122,396	\$193,393
31	1,214	57%	22%	21%	13.9%	96	3/	35	\$215	\$1,362	\$3,448	\$20,718	\$50,176	\$122,217	\$193,111
32	1,212	57%	22%	21%	13.9%	96	3/	35	\$215	\$1,362 ¢1,262	\$3,448	\$20,687	\$50,101	\$122,036	\$192,825
33	1,211	57%	22%	21%	12.9%	96	37	35	\$215	\$1,302 \$1,262	\$3,448 \$2,448	\$20,050	\$50,025 \$40.047	\$121,850 \$121,650	\$192,531
34	1,205	57%	22/8	21/0	13.9%	117	/5	/3	\$215	\$1,302 \$1,362	\$3,440 \$3,440	\$20,023	\$49,947 \$60.950	\$1/18 /161	\$132,223
36	1,473	57%	22%	21%	13.9%	117	45	43	\$215	\$1,302	\$3,440	\$25,107	\$60,330	\$148,401	\$234,378
37	1,470	57%	22%	21%	13.9%	117	45	43	\$215	\$1.362	\$3,448	\$25,081	\$60,744	\$147,958	\$233.783
38	1,467	57%	22%	21%	13.9%	116	45	43	\$215	\$1.362	\$3,448	\$25.036	\$60.634	\$147.692	\$233.363
39	1,465	57%	22%	21%	13.9%	116	44	43	\$215	\$1,362	\$3,448	\$24,990	\$60,521	\$147,416	\$232,927
40	1,453	57%	22%	21%	13.9%	115	44	42	\$215	\$1,362	\$3,448	\$24,794	\$60,048	\$146,263	\$231,105
41	1,450	57%	22%	21%	13.9%	115	44	42	\$215	\$1,362	\$3,448	\$24,744	\$59,927	\$145,969	\$230,640
42	1,447	57%	22%	21%	13.9%	115	44	42	\$215	\$1,362	\$3,448	\$24,692	\$59,801	\$145,661	\$230,154
43	1,444	57%	22%	21%	13.9%	115	44	42	\$215	\$1,362	\$3,448	\$24,637	\$59,669	\$145,339	\$229,645
44	1,441	57%	22%	21%	13.9%	114	44	42	\$215	\$1,362	\$3,448	\$24,580	\$59,530	\$145,003	\$229,113
45	1,226	56%	23%	21%	13.9%	96	39	35	\$215	\$1,362	\$3,448	\$20,667	\$52,779	\$121,864	\$195,310
46	1,222	56%	23%	21%	13.9%	96	39	35	\$215	\$1,362	\$3,448	\$20,614	\$52,643	\$121,551	\$194,808
47	1,219	56%	23%	21%	13.9%	96	39	35	\$215	\$1,362	\$3,448	\$20,557	\$52,500	\$121,218	\$194,275
48	1,216	56%	23%	21%	13.9%	95	38	35	\$215	\$1,362	\$3,448	\$20,498	\$52,348	\$120,868	\$193,714
49	1,212	56%	23%	21%	13.9%	95	38	35	\$215	\$1,362 ¢1.262	\$3,448	\$20,435	\$52,187 ¢40.054	\$120,496 ¢115,100	\$193,118
50	1,158	50%	23%	21%	13.9%	91	3/	33	\$215	\$1,30Z	\$3,448 ¢2,449	\$19,521	\$49,854 \$40,670	\$115,109 \$114 705	\$184,484
52	1,154	56%	23%	21%	13.9%	90	36	33	\$215	\$1,302 \$1,362	\$3,440 \$3,440	\$19,455	\$49,079 \$49,079	\$114,705 \$114,705	\$103,030 \$183 1/17
53	1,145	56%	23%	21%	13.9%	90	36	33	\$215	\$1,302	\$3 448	\$19,300	\$49,452	\$113 815	\$182,409
54	1,140	56%	23%	21%	13.9%	89	36	33	\$215	\$1.362	\$3,448	\$19,218	\$49.080	\$113.322	\$181.620
55	1,259	56%	23%	21%	13.9%	99	40	36	\$215	\$1,362	\$3,448	\$21,234	\$54,228	\$125,209	\$200,671
56	1,253	56%	23%	21%	13.9%	98	40	36	\$215	\$1,362	\$3,448	\$21,128	\$53,957	\$124,582	\$199,667
57	1,246	56%	23%	21%	13.9%	98	39	36	\$215	\$1,362	\$3,448	\$21,014	\$53,666	\$123,911	\$198,590
58	1,239	56%	23%	21%	13.9%	97	39	36	\$215	\$1,362	\$3,448	\$20,892	\$53,354	\$123,190	\$197,435
59	1,231	56%	23%	21%	13.9%	97	39	36	\$215	\$1,362	\$3,448	\$20,760	\$53,018	\$122,415	\$196,193
60	1,106	45%	32%	24%	13.9%	69	49	36	\$215	\$1,362	\$3,448	\$14,811	\$66,093	\$124,838	\$205,742
61	1,098	45%	32%	24%	13.9%	68	48	36	\$215	\$1,362	\$3,448	\$14,702	\$65,607	\$123,919	\$204,228
62	1,089	45%	32%	24%	13.9%	68	48	36	\$215	\$1,362	\$3,448	\$14,585	\$65,083	\$122,929	\$202,597
63	1,080	45%	32%	24%	13.9%	6/	47	35	\$215	\$1,362	\$3,448	\$14,458	\$64,519	\$121,864	\$200,841
64	1,0/0	45%	32%	24%	13.9%	6/ 69	4/	35	\$215 \$215	\$1,362 \$1,262	\$3,448 \$2,448	\$14,322	\$63,911 \$64.025	\$120,/16	\$198,950 \$202 127
60	1,08/	43%	5∠% 270/	24% 2/%	13.9%	08 67	48 17	35	⇒215 ¢21⊑	Ş1,302 \$1,262	>>,448 \$2,110	\$14,552 \$17,200	204,935 \$61 211	٦٢٢٢, ٢٢٦ \$121, 201	3202,137 \$100 001
67	1 061	45%	32%	24%	13.9% 13.9%	66	47	35	\$215 \$215	\$1,302 \$1,362	\$3,440 \$3,448	\$14,309	\$63 478	\$119 804	\$197,001
68	1,047	45%	32%	24%	13.9%	65	46	34	\$215	\$1,362	\$3,448	\$14.025	\$62,584	\$118.209	\$194.817
69	1,032	45%	32%	24%	13.9%	64	45	34	\$215	\$1,362	\$3,448	\$13.821	\$61,673	\$116.489	\$191.983
70	620	32%	41%	28%	13.9%	27	35	24	\$215	\$1,362	\$3,448	\$5,867	\$47,805	\$81,771	\$135,442
71	609	32%	41%	28%	13.9%	27	34	23	\$215	\$1,362	\$3,448	\$5,764	\$46,970	\$80,343	\$133,077
72	597	32%	41%	28%	13.9%	26	34	23	\$215	\$1,362	\$3,448	\$5,654	\$46,069	\$78,802	\$130,525
73	585	32%	41%	28%	13.9%	26	33	22	\$215	\$1,362	\$3,448	\$5,534	\$45,098	\$77,142	\$127,775
74	571	32%	41%	28%	13.9%	25	32	22	\$215	\$1,362	\$3,448	\$5,406	\$44,052	\$75,353	\$124,812
75	586	32%	41%	28%	13.9%	26	33	22	\$215	\$1,362	\$3,448	\$5,543	\$45,167	\$77,260	\$127,971
76	569	32%	41%	28%	13.9%	25	32	22	\$215	\$1,362	\$3,448	\$5,387	\$43,895	\$75,083	\$124,365
77	551	32%	41%	28%	13.9%	24	31	21	\$215	\$1,362	\$3,448	\$5,219	\$42,529	\$72,747	\$120,495
78	532	32%	41%	28%	13.9%	23	30	20	\$215	\$1,362	\$3,448	\$5,040	\$41,065	\$70,244	\$116,349
/9	512	32%	41%	28%	13.9%	23 5	29	20	\$215 \$215	\$1,362	\$3,448	\$4,848	\$39,502 \$61,150	\$67,569	\$111,918
8U 91	549	6%	59%	35% 35%	13.9% 13.0%	5	45 12	27	\$215 \$215	\$1,362 \$1,262	\$3,448 \$3,448	\$1,005 \$050	201,150 558 205	221,880 \$82 E01	\$154,041 \$176 934
22	JZ5 206	6%	50%	35%	13.9%	+ 1	45 ⊿1	20 24	\$215 \$215	\$1,302 \$1,362	\$3,440 \$3,440	9005 2005	\$J0,20J \$55 751	201,201 \$83 U22	\$130 191
83	467	6%	59%	35%	13.9%	→ 4	38	24	\$215 \$215	\$1,362	\$3,448	\$856	\$52,051	\$78 212	\$131,119
84	437	6%	59%	35%	13.9%	4	36	21	\$215	\$1,362	\$3,448	\$800	\$48,693	\$73.168	\$122.662
Total	7/ 590											\$1 202 715	\$3 101 272	\$7 576 005	\$12 271 102
10101	/ 4 ,300											ş1,203,715	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	250,010,14	201,11,2,217
• The estimated average annual direct costs per individual with FASD is detailed in Table 21. From a societal perspective, annual costs total \$18,780 in 2007. Of this amount, \$4,785 (25%) are patient out-of-pocket costs.¹⁵⁸⁶ Inflated to 2022, the equivalent costs are \$23,959 and \$7,077.

	eanaaa) = e		
		Ministry of Health/Socia	I
Component	Societal Cost (\$)	Services Cost (\$)	Patient Cost (\$
Direct Costs: Medical			
Hospitalization	\$1,445	\$1,445	N/A
Emergency Room/Clinic Visits	\$661	\$661	N/A
	\$2,106	\$2,106	
/isits to Health Professionals			
amily Doctor	\$301	\$301	N/A
Orthopedic Surgery	\$68	\$68	N/A
Jrologist	\$46	\$46	N/A
Allergist	\$6	\$6	N/A
Pediatrician	\$242	\$242	N/A
Psychiatrist	\$892	\$892	N/A
Compational Therapist	\$444	\$352	\$92
Physiotherapist	\$91	\$91	\$0
Speech Therapist	\$59	\$28	\$30
Psychologist	\$737	\$122	\$615
	\$2,886	\$2,148	\$738
Aedical Devices	\$416	\$282	\$134
Aedication Dispensing Fees	\$56	\$48	\$9
Prescription Medications	\$800	\$592	\$208
Ion-Prescription Medication	\$218	N/A	\$218
Diagnostic Tests	\$148	\$148	N/A
-	\$1,638	\$1,070	\$569
Total	\$6,630	\$5,324	\$1,306
Direct Costs: Education			
Iome Schooling	\$199	\$199	N/A
Special Schooling	\$3,238	\$3,238	N/A
Residential Program	\$1,600	\$1,000	\$600
Post-Secondary Education - Tutor	\$64	N/A	\$64
ob Education	\$160	\$160	N/A
otal	\$5,260	\$4,596	\$664
Direct Costs: Social Services			
Respite Care	\$152	\$152	N/A
Foster Care	\$2,000	\$2,000	N/A
nstitutionalization	\$1,655	\$1,655	N/A
DDSP	\$143	\$143	N/A
egal Aid	\$125	\$125	N/A
otal	\$4,076	\$4,076	
Out-of-Pocket			
Fransportation Per Visit	\$152	N/A	\$152
Parking	\$162	, N/A	\$162
Externalizing Behaviours	\$2,500	, N/A	\$2,500
Total	\$2,814	N/A	\$2,814
Total Direct Costs	\$18,780	\$13,995	\$4,785

Source: Stade B, Ali A, Bennett D et al. The burden of prenatal exposure to alcohol: revised measurement of cost. Canadian Journal of Clinical Pharmacology. 2009; 16(1): e91-102

¹⁵⁸⁶ Stade B, Ali A, Bennett D et al. The burden of prenatal exposure to alcohol: revised measurement of cost. *Canadian Journal of Clinical Pharmacology*. 2009; 16(1): e91-e102.

- Stade and colleagues provide additional information on costs by severity of FASD, with adjusted annual costs of \$10,009 for mild (n = 122), \$17,345 for moderate (n = 84) and \$31,235 for severe (n = 44) FASD.¹⁵⁸⁷ Stade and colleagues included individuals up to age 53 in their study and presented adjusted annual costs by age group.
- To calculate the lifetime costs of an individual living with FASD (see Table 22), we took the age-specific breakdown from Stade et al. and made the following adjustments:
 - assumed that "severe FASD" was equivalent to FAS and that mild and moderate FASD cases would be proportionally distributed in our FASD without FAS population
 - calculated that the annual cost of FAS ("severe FASD") would be 1.93 times the average annual cost of FASD and that the combination of mild and moderate FASD would be 0.80 times the average annual cost of FASD
 - \circ assumed that the annual cost from 54 65 years of age was equivalent to the average of the 36 45 and 46 53 year age groups reported by Stade et al.

	Table 22: Lifetime Cost of FAS / FASD Canada, 2022											
Annual Cost (2007 CAD) Severity Adjustment Annual Cost (2022 CAD) Years										Lifetime Cost	per Individual	
Age Range	Mean	95%	% CI	Inflation	FASD	FAS	FASD	FAS	#	FASD ¹	FAS ²	
0 - 2	\$30,222	\$26,302	\$38,222	1.28	0.80	1.93	\$30,924	\$74,296	3	\$92,771	\$222,887	
3 - 6	\$26,544	\$23,666	\$30,328	1.28	0.80	1.93	\$27,160	\$65,254	4	\$108,641	\$261,016	
7 - 12	\$28,666	\$25,446	\$32,832	1.28	0.80	1.93	\$29,332	\$70,471	6	\$175,990	\$422,823	
13 - 17	\$20,201	\$16,997	\$24,885	1.28	0.80	1.93	\$20,670	\$49,661	5	\$103,350	\$248,304	
18 - 21	\$16,544	\$14,888	\$18,234	1.28	0.80	1.93	\$16,928	\$40,671	4	\$67,713	\$162,683	
22 - 25	\$16,232	\$14,666	\$18,002	1.28	0.80	1.93	\$16,609	\$39,904	4	\$66,436	\$159,615	
26 - 35	\$15,998	\$14,021	\$18,112	1.28	0.80	1.93	\$16,369	\$39,328	10	\$163,695	\$353,956	
36 - 45	\$14,689	\$12,888	\$16,681	1.28	0.80	1.93	\$15,030	\$36,110	10	\$150,301		
46 - 53	\$14,810	\$12,664	\$16,988	1.28	0.80	1.93	\$15,154	\$36,408	8	\$121,231		
54 - 65	\$14,750	n/a	n/a	1.28	0.80	1.93	\$15,092	\$36,259	12	\$181,104		
										\$1,231,232	\$1,831,283	

inflated the 2007 CAD costs to 2022 CAD costs

Source: Stade et al. (2009). Adjustments by H. Krueger & Associates Inc.

¹ From birth to 65 years old. ² From birth to 34 years old.

• The lifetime cost of FASD without FAS is \$1,231,232 per individual (Table 23, row *be*). The lifetime cost of FAS is \$1,831,283 per individual (Table 23, row *bf*).

¹⁵⁸⁷ Stade B, Ali A, Bennett D et al. The burden of prenatal exposure to alcohol: revised measurement of cost. *Canadian Journal of Clinical Pharmacology*. 2009; 16(1): e91-e102.

Summary of CE

- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with screening and behavioural counseling interventions to reduce unhealthy alcohol use in adults 18 years or older, including pregnant women, in a British Columbia birth cohort of 40,000 is \$10,575 (Table 23, row *bx*). The CE of \$10,575 represents the gap between no coverage and the 'best in the world' screening coverage estimated at 93%. In addition, it assumes that 41% of individuals identified with unhealthy alcohol use would receive a brief intervention.

	Table 23: CE of Screening for Unhealthy Alcohol Us	e and Brief Inte	rvention
	Ages 18 - 84		
	In a BC Birth Cohort of 40,000		
Row Label	Variable	Base case	Data Source
	Cost of Screening		
а	Screening frequency (in years)	1	√ V
b	Lifetime short screens conducted, females	922,972	Table 15
с	Lifetime short screens conducted, males	743,769	Table 16
d	Lifetime short screens conducted, pregnant females	26,223	Table 17
e	Proportion of office visit required for short screen	20.0%	√
f	Cost of 10-minute office visit	\$35.97	Ref. Doc.
g	Patient time costs / office visit	\$74.32	Ref. Doc.
h	Lifetime cost of short screens	\$37,343,381	= (b + c + d) * e * (f + g)
i	Lifetime short screens, females with unhealthy alcohol use	194,687	Table 15
j	Lifetime short screens, males with unhealthy alcohol use	216,573	Table 16
k	Lifetime short screens, pregnant females with unhealthy alcohol use	2,360	Table 17
	Screening sensitivity	84%	√
m	Lifetime short screen true positives, female	163,537	= i * l
n	Lifetime short screen true positives, male	181,922	= j * l
0	Lifetime short screen true positives, pregnant females	1,982	= k * l
р	Lifetime short screens, females without unhealthy alcohol use	728,285	= b - i
q	Lifetime short screens, males <i>without</i> unhealthy alcohol use	527,195	= c - j
r	Lifetime short screens, pregnant females <i>without</i> unhealthy alcohol use	23,863	= d - k
S	Screening specificity	74.0%	٧
t	Lifetime short screen false positives, female	189,354	= (1 - s) * p
u	Lifetime short screen false positives, male	137,071	= (1 - s) * q
v	Lifetime short screen false positives, pregnant females	6,204	= (1 - s) * r
w	Lifetime in-depth screens delivered, female	352,891	= m + t
x	Lifetime in-depth screens delivered, male	318,992	= n + u
у	Lifetime in-depth screens delivered, pregnant females	8,187	= 0 + V
z	Proportion of office visit required for in-depth screen	80.0%	√
aa	Cost of 10-minute office visit	\$35.97	Ref. Doc.
ab	Patient time costs / office visit	\$74.32	Ref. Doc.
ac	Lifetime cost of in-depth screen	\$60,003,968	= (w + x + y) * z * (aa + ab)
ad	Total cost of lifetime screening	\$97,347,349	= h + ac
	Cost of Brief Intervention		
ae	Frequency of brief intervention, years	3	√
af	Lifetime number of brief interventions, female	22,350	Table 15
ag	Lifetime number of brief interventions, male	24,863	Table 16
ah	Lifetime number of brief interventions, pregnant females	271	Table 17
ai	Number of 10-minute sessions, per brief intervention	3	√
aj	Proportion of office visit required for short screen	100.0%	٧
ak	Cost of 10-minute office visit	\$35.97	Ref. Doc.
al	Patient time costs / office visit	\$74.32	Ref. Doc.
am	Lifetime cost of office-based interventions	\$15,710,914	= (af + ag + ah) * ai * aj * (ak + al)
an	Total lifetime cost of screening and brief interventions, cohort	\$113,058,263	= ad + am

Table 23 (continued): CE of Screening for Unhealthy Alcohol Use and Brief Intervention										
	Ages 18 - 84									
	In a BC Birth Cohort of 40.000									
	Costs Avoided due to Brief Intervention - General Population									
ао	Cost avoided, low-binge drinking, female	\$503,481	Table 19							
ар	Cost avoided, hazardous drinking, female	\$2,581,527	Table 19							
aq	Cost avoided, harmful drinking, female	\$3,188,900	Table 19							
ar	Cost avoided, total, female	\$6,273,909	= ao + ap + aq							
as	Cost avoided, low-binge drinking, male	\$1,203,715	Table 20							
at	Cost avoided, hazardous drinking, male	\$3,491,373	Table 20							
au	Cost avoided, harmful drinking, male	\$7,576,095	Table 20							
av	Cost avoided, total, male	\$12,271,183	= as + at + au							
aw	Total cost avoided, general population	\$18,545,092	= ar + av							
	Costs Avoided due to Brief Intervention - FASD									
ax	Number of births with FASD	489	Table 8							
ay	Number of births with FASD, excluding FAS	397	Table 8							
az	Number of births with FAS	93	Table 8							
ba	Proportion of FASD births avoided through brief intervention	5.6%	Table 14, row be							
bb	Number of births with FASD avoided, excluding FAS	22	= ay * ba							
bc	Number of births with FAS avoided	5	= az * ba							
bd	Proportion of FASD costs that are patient costs	25%	V							
be	Lifetime cost, FASD excluding FAS	\$1,231,232	Table 22							
bf	Lifetime cost, FAS	\$1,831,283	Table 22							
bg	Lifetime patient cost, FASD excluding FAS	\$313,684	bd * be							
bh	Lifetime health care and social services cost, FASD excluding FAS	\$917,548	= be - bg							
bi	Cost avoided, patient cost, FASD excluding FAS	\$6,925,502	= bb * bg							
bj	Cost avoided, health care and social services, FASD excluding FAS	\$20,257,609	= bb * bh							
bk	Total cost avoided, FASD excluding FAS	\$27,183,110	= bi + bj							
bl	Lifetime patient cost, FAS	\$466,560	= bd * bf							
bm	Lifetime health care and social services cost, FAS	\$1,364,723	= bf * bl							
bn	Cost avoided, patient cost, FAS	\$2,410,101	= bc * bl							
bo	Cost avoided, health care and social services, FAS	\$7,049,726	= bc * bm							
bp	Total cost avoided, FAS	\$9,459,828	= bn + bo							
bq	Total cost avoided, all FASD	\$36,642,938	= bk + bp							
br	Lifetime cost avoided, brief intervention	\$55,188,030	= aw + bq							
	Net Cost of Screening and Brief Intervention									
bs	Net Cost of Screening and Brief Intervention	\$57,870,233	= an - br							
bt	QALYs saved	5,703	Table 14							
bu	CE (\$/QALY Saved)	\$10,147	= bs / bt							
bv	Net Cost of Brief Intervention, 1.5% Discount	\$39,900,057	Calculated							
bw	QALYs saved, 1.5% Discount	3,773	Calculated							
bx	CE (\$/QALY Saved), 1.5% Discount	\$10,575	= bv / bw							

√ = Estimates from the literature

Sensitivity Analysis

We also modified several major assumptions and recalculated the CE as follows:

- Assume that screening frequency is changed from one time each year to one time every five (5) years (Table 23, row *a*): CE = **\$3**
- Reduced QoL impact. Assume that the QoL reduction for binge drinking changes from 0.123 to 0.082 (Table 14, row *q*), the QoL reduction for hazardous drinking changes from 0.179 to 0.121 (Table 14, row *r*), and the QoL reduction for harmful drinking changes from 0.304 to 0.204 (Table 14, row *s*): CE = \$13,733
- Increased QoL impact. Assume that the QoL reduction for binge drinking changes from 0.123 to 0.177 (Table 14, row *q*), the QoL reduction for hazardous drinking changes from 0.179 to 0.252 (Table 14, row *r*), and the QoL reduction for harmful drinking changes from 0.304 to 0.418 (Table 14, row *s*): CE = \$8,220
- Assume that the proportion of births with FASD increases from 1.81% to 2.93% (Table 14, row *af*): CE = \$6,091

- Assume that the number of pregnant women with any alcohol use decreases from 9.0% to 3.0% (Table 17): CE = \$10,554
- Assume that the screening sensitivity decreases from 84% to 67% (Table 14, row *as*): CE = \$13,397
- Assume that the screening sensitivity increases from 84% to 94% (Table 14, row *as*): CE = \$9,392
- Assume that the screening specificity decreases from 74% to 46% (Table 23, row *s*): CE = \$15,771
- Assume that the screening sensitivity increases from 74% to 88% (Table 23, row *s*): CE = \$7,977
- Assume that the frequency of the brief intervention changes from once every 3 years to once every 2 years (Table 23, row *ae*): CE = \$12,002
- Assume that the frequency of the brief intervention changes from once every 3 years to once every 4 years (Table 23, row *ae*): CE = \$9,862
- Assume that the proportion benefitting from treatment in the general population is decreased from 13.9% to 8.7% (Table 14, row *au*) and is decreased from 16.7% to 8.0% in pregnant women (Table 14, row *bd*): CE = **\$25,002**
- Assume that the proportion benefitting from treatment in the general population is increased from 13.9% to 16.1% (Table 14, row *au*) and is increased from 16.7% to 23.3% in pregnant women (Table 14, row *bd*): CE = \$6,386
- Assume that the impacts of FASD are excluded (Table, row bf): CE = \$21,550

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with behavioural counselling for the prevention of alcohol misuse is estimated to be 3,773 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$10,575 per QALY (see Table 24).

Table	Table 24: Screening for Unhealthy Alcohol Use and BriefIntervention in a Birth Cohort of 40,000											
		Summary										
		Base										
		Case	Rang	ge								
СРВ	(Potential QALYs Gaine	d)										
	As	sume No Curren	t Service									
:	1.5% Discount Rate	3,773	2,229	4,854								
	3% Discount Rate	2,696	1,590	3,469								
	0% Discount Rate	5,703	3,376	7,337								
CE (\$	/QALY) including patie	nt time costs										
:	1.5% Discount Rate	\$10,575	\$3	\$25,002								
	3% Discount Rate	\$10,939	\$650	\$25,111								
	0% Discount Rate	\$10,147	Cost-saving	\$24,842								
CE (\$	S/QALY) excluding patie	ent time costs										
;	1.5% Discount Rate	Cost-saving	Cost-saving	\$3,909								
	3% Discount Rate	Cost-saving	Cost-saving	\$4,176								
(0% Discount Rate	Cost-saving	Cost-saving	\$2,616								

Screening and Interventions to Reduce Unhealthy Drug Use

United States Preventive Services Task Force Recommendations (2020)¹⁵⁸⁸

An estimated 12% of adults 18 years or older and 8% of adolescents aged 12 to 17 years report unhealthy use of prescription or illegal drugs in the US.

The USPSTF recommends screening by asking questions about unhealthy drug use in adults age 18 years or older. Screening should be implemented when services for accurate diagnosis, effective treatment, and appropriate care can be offered or referred. (Screening refers to asking questions about unhealthy drug use, not testing biological specimens.) (B recommendation)

The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of screening for unhealthy drug use in adolescents. (I statement)

Best in the World

- In the US, paediatricians' self-reported rates of screening adolescents for routine unhealthy drug use vary from less than 50% to 86%, although few physicians report using a validated screening tool, and most rely on clinical impressions.¹⁵⁸⁹
- In the survey in which 86% of paediatricians self-reported rates of screening adolescents for routine unhealthy drug use, 46.5% reported using a validated screening tool.¹⁵⁹⁰
- Based on the US National Survey on Drug Use and Health (noninstitutionalized individuals aged 12 years and older), the percentage of individuals with ≥1 health care visit who reported screening by a health care provider ("During the past 12 months, did any doctor or other health care professional ask, in person or on a form, if you use marijuana or other illegal drugs?") increased from 48.5% in 2013 to 54.3% in 2015.¹⁵⁹¹
- There were 21,505 individuals in the 2015-17 US National Survey on Drug Use and Health who were 18 years or older, had at least one health care visit during the past 12 months **and** who reported any past-year drug use. Of these individuals, 34.5% (7,042) reported no drug use screening or discussion, 44.5% (9,703) reported screening only and 21.0% (4,760) reported drug use discussions with their providers.¹⁵⁹²

¹⁵⁸⁸ US Preventive Services Task Force. Screening for Unhealthy Drug Use: US Preventive Services Task Force Recommendation Statement. *JAMA*. 2020; 323(22): 2301-2309.

¹⁵⁸⁹ Levy S, Williams J; Committee on Substance Use and Prevention. Substance use screening, brief intervention, and referral to treatment. *Pediatrics*. 2016; 138(1): e20161211.

¹⁵⁹⁰ Harris S, Herr-Zaya K, Weinstein Z et al. Results of a statewide survey of adolescent substance use screening rates and practices in primary care. *Substance Abuse*. 2012; 33: 321-6.

¹⁵⁹¹ Scialli, A & Terplan, M. Rates of and factors associated with patient-reported illicit drug use screening by health care professionals in the United States from 2013 to 2015. *Journal of Addiction Medicine*. 2020; 14(1): 63-68.

¹⁵⁹² Mauro P, Samples H, Klein K et al. Discussing drug use with health care providers is associated with perceived need and receipt of drug treatment among adults in the United States: We need to talk. *Medical Care*. 2020; 58(7): 617-624.

• For modelling purposes, we assume that the *best in the world* screening rate is 54.3% of those who have had a health care visit in the past year, based on results from the 2015 US National Survey on Drug Use and Health.¹⁵⁹³

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with screening and brief behavioural interventions to reduce unhealthy drug use in adults 18 to 69 years of age in a British Columbia birth cohort of 40,000.

In estimating CPB, we made the following assumptions:

Defining and Estimating the Population at Risk

- Unhealthy drug use is defined by the USPSTF as "the use of illegal drugs and the nonmedical use of prescription psychoactive medications (i.e., use of medications for reasons, for duration, in amounts, or with frequency other than prescribed or use by persons other than the prescribed individual)."¹⁵⁹⁴ Unhealthy drug use does not include tobacco or alcohol use.
- In the United States in 2018/2019, an estimated 12.73% of the adult population (ages 18 and older) had unhealthy drug use in the past month (Table 1).¹⁵⁹⁵ The majority of this usage was for marijuana (11.17% of the adult population). In the past year, 3.69% of the US adult population misused pain relievers, 2.16% used cocaine, 0.76% used methamphetamines and 0.31% used heroin at least once (Table 1).
- The proportion of the US adult population with unhealthy drug use in the **past month** other than marijuana was estimated at 3.41% (Table 1).

Tab	Table 1: Unhealthy Drug Use in the Past Month / YearUnited States, 2018 and 2019By Age Group and Drug Category													
	18-25 26+ 18+													
Drug Category	Time Frame	Estimate	95%	6 CI	Estimate	95%	% CI	Estimate	95%	6 CI				
Marijuana	Past Month	22.54%	21.90%	23.19%	9.39%	9.08%	9.70%	11.17%	10.88%	11.47%				
Marijuana	Past Year	35.09%	34.33%	35.85%	14.27%	13.88%	14.67%	17.10%	16.72%	17.47%				
Pain Reliever Misuse	Past Year	5.33%	5.03%	5.65%	3.43%	3.26%	3.61%	3.69%	3.53%	3.85%				
Cocaine	Past Year	5.54%	5.19%	5.92%	1.63%	1.52%	1.75%	2.16%	2.05%	2.28%				
Methamphetamine	Past Year	0.81%	0.70%	0.94%	0.75%	0.67%	0.83%	0.76%	0.69%	0.83%				
Heroin	Past Year	0.36%	0.28%	0.45%	0.30%	0.25%	0.37%	0.31%	0.26%	0.37%				
All Unhealthy Drug Use	Past Month	24.40%	23.74%	25.07%	10.90%	10.57%	11.24%	12.73%	12.42%	13.05%				
All Unhealthy Drug Use excluding	Past Month	6.07%	5.73%	6.43%	2.99%	2.82%	3.16%	3.41%	3.25%	3.57%				

Note: Unhealthy Drug Use includes the misuse of prescription psychotherapeutics or the use of marijuana, cocaine (including crack), heroin, hallucinogens, inhalants, or methamphetamine. Misuse of prescription psychotherapeutics is defined as use in any way not directed by a doctor, including use without a prescription of one's own; use in greater amounts, more often, or longer than told; or use in any other way not directed by a doctor. Prescription psychotherapeutics do not include over-the-counter drugs.

¹⁵⁹⁵ Substance Abuse and Mental Health Services Administration (SAMHSA), Center for Behavioral Health Statistics and Quality. 2018-2019 National Survey on Drug Use and Health: Model-Based Prevalence Estimates. Available online at <u>https://www.samhsa.gov/data/report/2018-2019-nsduh-state-prevalence-estimates</u>. Accessed August 2021.

¹⁵⁹³ Scialli, A & Terplan, M. Rates of and factors associated with patient-reported illicit drug use screening by health care professionals in the United States from 2013 to 2015. *Journal of Addiction Medicine*. 2020; 14(1): 63-68.

¹⁵⁹⁴ US Preventive Services Task Force. Screening for Unhealthy Drug Use: US Preventive Services Task Force Recommendation Statement. *JAMA*. 2020; 323(22): 2301-2309.

- Based on responses in the 2015/16 Canadian Community Health Survey, Bragazzi et al estimated the **past year** unhealthy drug use (including cannabis) in Canada to be 10.4% (95% CI 10.1% 10.8%) in the **population ages 12 and older**.¹⁵⁹⁶ The results for BC were 12.6% (95% CI 11.7% 13.5%). The past year unhealthy drug use by females in Canada was 7.4% (95% CI 7.1% 7.8%) and for males was 13.6% (95% CI 13.0 14.1%). The past year unhealthy drug use by age group in Canada was as follows:
 - ➤ 12 to 19 10.1% (95% CI 9.2% 11.0%)
 - ➤ 20 to 29 23.5% (95% CI 22.1% 24.8%)
 - ➤ 30 to 39 15.9% (95% CI 15.0% 16.9%)
 - > 40 to 49 8.0% (95% CI 7.4% 8.7%)
 - > 50 to 59 7.3% (95% CI 6.8% 8.0%)
 - ➢ 60 to 69 − 4.1% (95% CI 3.7% 4.6%)
 - \succ ≥ 70 1.0% (95% CI 0.8% 1.3%)
- Based on data from the 2017 Canadian Tobacco, Alcohol and Drugs Survey (CTADS), 15.2% of Canadians **ages 15 and older** had unhealthy drug use, **including cannabis** (see Table 2).¹⁵⁹⁷ **Excluding cannabis**, 3.3% of Canadians ages 15 and older reported using cocaine/crack, speed/methamphetamine/crystal meth, ecstasy, hallucinogens and/or heroin. A further 1.2% reported the unhealthy use of pharmaceuticals, although these individuals may also have had other unhealthy drug use.
- The proportion of Canadians ages 15 and older with unhealthy drug use (excluding cannabis) is higher in males (4.9%) than females (1.8%). The proportion of male Canadians ages 15 and older with unhealthy drug use (including cannabis) is 71% higher than in females (19.3% vs 11.3%) (Table 2).

	Table 2: Unhealthy Drug Use in the Past Year Canada, 2017 By Age Group and Drug Category											
Drug Category	15-19 20-24 25+ 15 and older 15+ Female Drug Category Estimate 95% CI Estimate 95% CI Estimate 95% CI											
Including Cannabis* Excluding Cannabis**	19.9% 17.8% 21.9 4.1% 3.1% 5.1	% 34.9% 31.9% 37.9% % 10.3% 8.3% 12.3%	13.0% 11.1% 14.9% 2.6% 1.5% 3.8%	15.2% 13.6% 16.9% 3.3% 2.4% 4.3%	11.3% 9.5% 13.1% 1.8% 1.1% 2.4%	19.3% 16.6%22.0% 4.9% 3.1%6.8%						
Pharmaceuticals***	2.1% 1.4% 2.7	% 3.6% 2.3% 4.9%	#	1.2% 0.6% 1.7%	#	1.1% 0.7% 1.5%						

* Cannabis, cocaine/crack, speed/methamphetamine/crystal meth, ecstasy, hallucinogens, heroin.

** Cocaine/crack, speed/methamphetamine/crystal meth, ecstasy, hallucinogens, heroin.

***Unhealthy use of pharmaceuticals including pain relievers, stimulants and sedatives. Unhealthy use includes drugs used for reasons other than for prescribed therapeutic purposes including use for the experience, for the feeling they caused, to get high, to feel better (improve mood) or to cope with stress or problems. Those with unhealthy use of pharmaceuticals may also have unhealthy use of other drugs.

Not reported due to high sampling variability.

• The 2017 CTADS sample size is insufficient to provide detailed information for BC.¹⁵⁹⁸ Of note, however, is that past year use of **cannabis**, cocaine/crack, speed/methamphetamine/crystal meth, ecstasy, hallucinogens and/or heroin in the BC population ages 15 and older is estimated at 24.4%, 9.2 percentage points higher than

¹⁵⁹⁶ Bragazzi N, Beamish D, Kong J et al. Illicit drug use in Canada and implications for suicidal behaviours, and household food insecurity: Findings from a large, nationally representative survey. *International Journal of Environmental Research and Public Health*. 2021; 18: 6425.

¹⁵⁹⁷ Statistics Canada. Canadian Tobacco, Alcohol and Drugs Survey (CTADS): 2017 detailed tables. Available online at <u>https://www.canada.ca/en/health-canada/services/canadian-tobacco-alcohol-drugs-survey/2017-summary/2017-detailed-tables.html#t13</u>. Accessed August 2021.
¹⁵⁹⁸ Ibid.

the Canadian average of 15.2% (or +60.5%). The province with the second highest rate is Nova Scotia at 19.0%.

- Bragazzi et al estimated the past year unhealthy drug use (including cannabis) in the population ages 12 and older in BC at 12.6% (95% CI of 11.7% to 13.5%), 2.2 percentage points higher than the Canadian average of 10.4% (or +21.2%).¹⁵⁹⁹
- The systematic review and meta-analysis by Leung et al calculated that 22% (95% CI of 20% 24%) of individuals who used cannabis in the past month/year had a cannabis use disorder.¹⁶⁰⁰ See footnote for a definition of cannabis use disorder.¹⁶⁰¹

For modelling purposes, we estimated the prevalence of unhealthy drug use in British Columbians ages 18 and older as follows:

- Start with the 3.3% of Canadians ages 15 and older who reported using cocaine/crack, speed/methamphetamine/crystal meth, ecstasy, hallucinogens and/or heroin in 2017.¹⁶⁰²
- Increase this by 0.5% to take into account unhealthy use of pharmaceuticals by those who may not have used any of the above drugs and the fact that 15, 16 and 17 year-olds are included in the 3.3%.

There is a persistent desire or unsuccessful efforts to cut down or control cannabis use.

• Withdrawal, as manifested by either (1) the characteristic withdrawal syndrome for cannabis or (2) cannabis is taken to relieve or avoid withdrawal symptoms."

¹⁵⁹⁹ Bragazzi N, Beamish D, Kong J et al. Illicit drug use in Canada and implications for suicidal behaviours, and household food insecurity: Findings from a large, nationally representative survey. *International Journal of Environmental Research and Public Health.* 2021; 18: 6425.

¹⁶⁰⁰ Leung J, Chan G, Hides L et al. What is the prevalence and risk of cannabis use disorders among people who use cannabis? A systematic review and meta-analysis. *Addictive Behaviors*. 2020; 109: 106479.

¹⁶⁰¹ Patel J and Marwaha R. *Cannabis Use Disorder*. StatPearls Publishing, 2021. Available online at <u>https://www.ncbi.nlm.nih.gov/books/NBK538131/</u>. Accessed August 2021.

[&]quot;Cannabis abuse and dependence were combined in the DSM-5 into a single entity capturing the behavioral disorder that can occur with chronic cannabis use and named Cannabis Use Disorder; it is defined as:

A problematic pattern of cannabis use leading to clinically significant impairment or distress, as manifested by at least two of the following, occurring within a 12-month period:

[•] Cannabis is often taken in larger amounts or over a longer period than was intended.

[•] A great deal of time is spent in activities necessary to obtain cannabis, use cannabis, or recover from its effects.

[•] Craving, or a strong desire or urge to use cannabis.

[•] Recurrent cannabis use results in failure to fulfill role obligations at work, school, or home.

Continued cannabis use despite having persistent or recurrent social or interpersonal problems caused or exacerbated by the effects of cannabis.

Important social, occupational, or recreational activities are given up or reduced because of cannabis use.

[•] Recurrent cannabis use in situations in which it is physically hazardous.

Cannabis use continues despite knowledge of having a persistent or recurrent physical or psychological problem that is likely to have been caused or exacerbated by cannabis.

Tolerance, as defined by either: (1) a need for markedly increased cannabis to achieve intoxication or desired effect or (2) a markedly diminished effect with continued use of the same amount of the substance.

¹⁶⁰² Statistics Canada. *Canadian Tobacco, Alcohol and Drugs Survey (CTADS): 2017 detailed tables*. Available online at https://www.canada.ca/en/health-canada/services/canadian-tobacco-alcohol-drugs-survey/2017-summary/2017-detailed-tables.html#t13. Accessed August 2021.

- Adjust the resulting 3.8% upward by 40.8% (the midpoint of 21.2%¹⁶⁰³ and 60.5%¹⁶⁰⁴) to take into account the higher than average unhealthy drug use in BC compared with other Canadian provinces. The result is an estimated prevalence for unhealthy drug use (excluding cannabis) in BC of 5.35%.
- To estimate the prevalence of cannabis use disorder, we started with the 23.8%¹⁶⁰⁵ of British Columbians ages 15 and older with unhealthy drug use (including cannabis) and reduced this by the 5.35% estimated above for 18.45% of the BC population who used cannabis (but no other unhealthy drug use) in the past year. Of the 18.45%, we assumed that 22%¹⁶⁰⁶ had a cannabis use disorder, or 4.06% of BC adults.
- In summary, we estimated that 5.35% of the BC adult population had unhealthy drug use (excluding cannabis) and a further 4.06% had cannabis use disorder.
- We proportionally distributed unhealthy drug use (excluding cannabis) and cannabis use disorder by sex based on evidence from the 2017 CTADS.¹⁶⁰⁷
- We proportionally distributed unhealthy drug use by age group using the evidence from the 2015/16 CCHS.¹⁶⁰⁸
- By comparison, a review of the first 7 screening, brief intervention, and referral to treatment (SBIRT) programs funded by the US Substance Abuse and Mental Health Services Administration (SAMHSA) found a mean positive screening rate for unhealthy drug use in the past 30 days of 9.4%, ranging from 7.0% in a health centre to 17.9% in an emergency department.¹⁶⁰⁹ This positive screening rate for unhealthy drug use of 9.4% compares favourably with our estimate of a prevalence of 9.41% unhealthy drug use in BC adults.
- By another comparison, the USPSTF estimated that 12% of adults 18 years or older report unhealthy drug use in the US¹⁶¹⁰ while SAMHSA's estimate is 12.73% (Table 1).¹⁶¹¹ Both of these estimates, however, include all adults who use cannabis, while our estimate for BC of 9.41% only includes those with cannabis use disorder (or 22% of those who use cannabis).

¹⁶⁰³ Bragazzi N, Beamish D, Kong J et al. Illicit drug use in Canada and implications for suicidal behaviours, and household food insecurity: Findings from a large, nationally representative survey. *International Journal of Environmental Research and Public Health.* 2021; 18: 6425.

¹⁶⁰⁴ Statistics Canada. *Canadian Tobacco, Alcohol and Drugs Survey (CTADS): 2017 detailed tables*. Available online at <u>https://www.canada.ca/en/health-canada/services/canadian-tobacco-alcohol-drugs-survey/2017-summary/2017-detailed-tables.html#t13</u>. Accessed August 2021.

¹⁶⁰⁵ Ibid.

¹⁶⁰⁶ Leung J, Chan G, Hides L et al. What is the prevalence and risk of cannabis use disorders among people who use cannabis? A systematic review and meta-analysis. *Addictive Behaviors*. 2020; 109: 106479.

¹⁶⁰⁷ Statistics Canada. *Canadian Tobacco, Alcohol and Drugs Survey (CTADS): 2017 detailed tables*. Available online at https://www.canada.ca/en/health-canada/services/canadian-tobacco-alcohol-drugs-survey/2017-summary/2017-detailed-tables.html#t13. Accessed August 2021.

¹⁶⁰⁸ Bragazzi N, Beamish D, Kong J et al. Illicit drug use in Canada and implications for suicidal behaviours, and household food insecurity: Findings from a large, nationally representative survey. *International Journal of Environmental Research and Public Health.* 2021; 18: 6425.

¹⁶⁰⁹ Bray J, Mallonee E, Dowd W et al. Program- and service-level costs of seven screening, brief intervention, and referral to treatment programs. *Substance Abuse and Rehabilitation*. 2014; 5: 63-73.

¹⁶¹⁰ US Preventive Services Task Force. Screening for Unhealthy Drug Use: US Preventive Services Task Force Recommendation Statement. *JAMA*. 2020; 323(22): 2301-2309.

¹⁶¹¹ Substance Abuse and Mental Health Services Administration (SAMHSA), Center for Behavioral Health Statistics and Quality. 2018-2019 National Survey on Drug Use and Health: Model-Based Prevalence Estimates. Available online at <u>https://www.samhsa.gov/data/report/2018-2019-nsduh-state-prevalence-estimates</u>. Accessed August 2021.

Calculating Life Years Lived with Unhealthy Drug Use

- Based on the above assumptions of the prevalence and distribution (by age and sex) of unhealthy drug use in BC, we calculated the number of life years lived with unhealthy drug use between the ages of 18 and 59/69/79 in a BC birth cohort of 40,000. Of the 1,986,226 life years lived between the ages of 18 and 69 in a BC birth cohort of 40,000, an estimated 121,403 (6.11%) would be years lived with unhealthy drug use (excluding cannabis use disorder) and a further 92,065 (4.64%) would be life years lived with cannabis use disorder (Table 3).
- For the base model, we assumed that screening would stop at age 69 and modified this to age 59 and 79 in the sensitivity analysis.

	Table 3: Life Years Lived with Unhealthy Drug Use														
				В	etwee	n the Ag	ges of 1	8 and !	59/69,	/79					
			Tomalo		In a Bri	tish Colum	ibia Birth	Cohort	of 40,00	00		Total	Domulation		
		ہ Unhealth	/ Drug Use	Cannal	bis Use		Unhealth	y Drug Use	Cannat	ois Use		Unhealth	y Drug Use	Cannal	bis Use
_	Total Life	(excluding	Cannabis)	Disc	rder	Total Life	(excluding	(Cannabis)	Diso	rder	Total Life	(excluding	g Cannabis)	Disc	rder
Age	Years	%	#	%	#	Years	%	#	%	#	Years	%	#	%	#
18	19,891 19 885	2.79%	554 554	2.77% 2.77%	551 551	19,870 19,858	7.59% 7.59%	1,508 1,508	5.10% 5.10%	1,013	39,761 39,742	5.19% 5.19%	2,063	3.93%	1,564 1 563
20	19,878	6.48%	1,288	6.44%	1,281	19,843	17.67%	3,506	11.87%	2,354	39,721	12.07%	4,794	9.15%	3,635
21	19,871	6.48%	1,287	6.44%	1,280	19,826	17.67%	3,504	11.87%	2,353	39,696	12.07%	4,791	9.15%	3,633
22	19,863	6.48%	1,286	6.44%	1,279	19,807	17.68%	3,502	11.87%	2,351	39,670	12.07%	4,788	9.15%	3,631
23	19,855 19 847	6.47% 6.47%	1,285	6.44% 6.44%	1,279	19,786	17.68% 17.69%	3,499 3,496	11.88%	2,350	39,641 39,610	12.07%	4,784 4 781	9.15%	3,628
25	19,839	6.47%	1,283	6.43%	1,276	19,739	17.70%	3,493	11.88%	2,346	39,578	12.07%	4,777	9.15%	3,622
26	19,830	6.47%	1,282	6.43%	1,275	19,714	17.71%	3,491	11.89%	2,344	39,544	12.07%	4,773	9.15%	3,619
27	19,821	6.46%	1,281	6.43%	1,274	19,689	17.71%	3,487	11.89%	2,342	39,509	12.07%	4,769	9.15%	3,616
28	19,811	6.46% 6.46%	1,280 1 279	6.43% 6.42%	1,273	19,662	17.72%	3,484 3 481	11.90%	2,340	39,473	12.07%	4,764 4 760	9.15% 9.15%	3,613
30	19,790	4.37%	864	4.34%	860	19,607	12.00%	2,353	8.06%	1,580	39,398	8.17%	3,217	6.19%	2,440
31	19,779	4.37%	863	4.34%	859	19,579	12.01%	2,351	8.06%	1,578	39,358	8.17%	3,214	6.19%	2,437
32	19,767	4.36%	863	4.34%	858	19,550	12.01%	2,348	8.07%	1,577	39,317	8.17%	3,211	6.19%	2,435
33	19,755 19,742	4.36% 4.36%	862 861	4.34% 4 34%	857	19,520	12.02%	2,346	8.07% 8.07%	1,575	39,275	8.17% 8.17%	3,207	6.19% 6.19%	2,432 2.429
35	19,729	4.36%	860	4.33%	855	19,458	12.02%	2,340	8.08%	1,572	39,187	8.17%	3,200	6.19%	2,427
36	19,715	4.36%	859	4.33%	854	19,425	12.03%	2,338	8.08%	1,570	39,140	8.17%	3,196	6.19%	2,424
37	19,700	4.35%	858	4.33%	853	19,392	12.04%	2,335	8.08%	1,568	39,092	8.17%	3,192	6.19%	2,421
38	19,685	4.35%	857	4.33%	852	19,357	12.05%	2,332	8.09%	1,566	39,042	8.17% 8.17%	3,188	6.19% 6.19%	2,418
40	19,652	2.19%	430	2.18%	427	19,283	6.07%	1,170	4.07%	786	38,936	4.11%	1,600	3.12%	1,213
41	19,634	2.19%	429	2.17%	427	19,245	6.07%	1,168	4.08%	785	38,879	4.11%	1,597	3.12%	1,211
42	19,615	2.18%	428	2.17%	426	19,204	6.07%	1,166	4.08%	783	38,819	4.11%	1,595	3.12%	1,210
43	19,594	2.18%	428	2.17%	426	19,162	6.08%	1,165	4.08%	782	38,756	4.11%	1,592	3.12%	1,208
44	19,549	2.18%	427	2.17%	423	19,071	6.09%	1,163	4.08%	779	38,630	4.11%	1,590	3.12%	1,203
46	19,524	2.18%	425	2.17%	423	19,022	6.09%	1,158	4.09%	778	38,546	4.11%	1,584	3.12%	1,201
47	19,497	2.18%	425	2.17%	422	18,970	6.09%	1,156	4.09%	776	38,467	4.11%	1,580	3.12%	1,199
48	19,469	2.18%	424	2.16%	421	18,915	6.10%	1,153	4.09%	775	38,384	4.11%	1,577	3.12%	1,196
49 50	19,438	1.98%	425 385	1.97%	383	18,857	5.57%	1,131	4.10% 3.74%	703	38,295	4.11% 3.75%	1,373	2.84%	1,195
51	19,370	1.98%	384	1.97%	382	18,729	5.58%	1,045	3.75%	702	38,099	3.75%	1,428	2.84%	1,083
52	19,332	1.98%	383	1.97%	381	18,659	5.58%	1,042	3.75%	700	37,990	3.75%	1,424	2.84%	1,080
53	19,291	1.98%	381	1.97%	379	18,583	5.59%	1,038	3.75%	697 695	37,874	3.75%	1,420	2.84%	1,077
55	19,247	1.98%	379	1.96%	378	18,303	5.60%	1,035	3.76%	693	37,730	3.75%	1,415	2.84%	1.069
56	19,148	1.97%	377	1.96%	375	18,325	5.61%	1,027	3.77%	690	37,472	3.75%	1,405	2.84%	1,065
57	19,092	1.97%	376	1.96%	374	18,226	5.61%	1,023	3.77%	687	37,318	3.75%	1,399	2.84%	1,061
58	19,032	1.97%	374	1.96%	372	18,120	5.62%	1,019	3.78%	684 681	37,152	3.75%	1,393	2.84%	1,056
Total to Age 59	823,150	3.72%	30,602	3.70%	30,439	807,096	10.32%	83,305	6.93%	55,941	1,630,246	6.99%	1,380 113,907	5.30%	86,380
60	18,895	1.10%	208	1.10%	207	17,884	3.17%	566	2.13%	380	36,778	2.11%	774	1.60%	587
61	18,817	1.10%	207	1.09%	206	17,752	3.17%	563	2.13%	378	36,569	2.11%	770	1.60%	584
62	18,733 18 6/1	1.10% 1.10%	206	1.09%	205	17,610 17.459	3.18% 3.18%	560 556	2.13% 2.14%	376	36,343	2.11% 2.11%	765	1.60%	580 576
64	18,541	1.09%	204	1.09%	203	17,293	3.19%	550	2.14%	371	35,834	2.11%	755	1.60%	570
65	18,432	1.09%	201	1.09%	200	17,116	3.20%	547	2.15%	368	35,548	2.11%	749	1.60%	568
66	18,312	1.09%	199	1.08%	198	16,925	3.21%	543	2.15%	364	35,237	2.11%	742	1.60%	563
67	18,181	1.09%	197 105	1.08%	196	16,719	3.21%	537	2.16%	361	34,900	2.11%	735	1.60%	557
69	17,881	1.08%	193	1.08%	194	16,496	3.22%	526	2.10%	353	34,334	2.11%	719	1.60%	545
Total to Age 69	1,007,621	3.24%	32,616	3.22%	32,442	978,605	9.07%	88,787	6.09%	59,623	1,986,226	6.11%	121,403	4.64%	92,065
70	17,709	0.26%	47	0.26%	46	15,997	0.79%	127	0.53%	85	33,706	0.51%	173	0.39%	131
71	17,520	0.26%	46 45	0.26%	46 45	15,718	0.79%	125	0.53%	84 82	33,238	0.51%	171	0.39%	129
72	17.085	0.26%	45 44	0.26%	45 44	15,416	0.80%	123	0.54%	81	32,729	0.51%	165	0.39%	127
74	16,835	0.26%	44	0.26%	43	14,742	0.80%	119	0.54%	80	31,577	0.51%	162	0.39%	123
75	16,561	0.26%	43	0.26%	42	14,365	0.81%	116	0.54%	78	30,926	0.51%	159	0.39%	120
76	16,260	0.26%	42	0.26%	41	13,960	0.81%	114	0.55%	76	30,220	0.51%	155	0.39%	118
78	15,929 15 567	0.26%	41 40	0.25% 0.25%	40 39	13,526 13.061	0.82% 0.82%	111 108	0.55% 0.55%	74 72	29,455 28 628	0.51%	151 147	0.39% 0.39%	115 111
79	15,171	0.25%	38	0.25%	38	12,563	0.83%	104	0.56%	70	27,734	0.51%	142	0.39%	108
Total to Age 79	1,173,570	2.82%	33,044	2.80%	32,868	1,123,045	8.01%	<i>89,953</i>	5.38%	60,406	2,296,615	5.36%	122,997	4.06%	93,273

Estimating the Quality of Life Reduction

- Disability weights assigned by the Global Burden of Diseases (GBD) study for unhealthy drug use are as follows:¹⁶¹²
 - Mild opioid dependence ("uses heroin or methadone daily and has difficulty controlling the habit. When not using, the person functions normally") 0.335 with a 95% CI of 0.221 to 0.473.
 - Severe opioid dependence ("uses heroin daily and has difficulty controlling the habit. When the effects wear off, the person feels severe nausea, agitation, vomiting and fever. The person has a lot of difficulty in daily activities") – 0.697 with a 95% CI of 0.510 to 0.843.
 - Mild cocaine dependence ("uses cocaine at least once a week and has some difficulty controlling the habit. When not using, the person functions normally") 0.116 with a 95% CI of 0.074 to 0.165.
 - Severe cocaine dependence ("uses cocaine and has difficulty controlling the habit. The person sometimes has mood swings, anxiety, paranoia, hallucinations and sleep problems, and has some difficulty in daily activities") 0.479 with a 95% CI of 0.324 to 0.634.
 - Mild amphetamine dependence ("uses stimulants at least once a week and has some difficulty controlling the habit. When not using, the person functions normally") 0.079 with a 95% CI of 0.051 to 0.114.
 - Severe amphetamine dependence ("uses stimulants and has difficulty controlling the habit. The person sometimes has depression, hallucinations and mood swings, and has difficulty in daily activities") – 0.486 with a 95% CI of 0.329 to 0.637.
 - Mild cannabis dependence ("uses marijuana at least once a week and has some difficulty controlling the habit. When not using, the person functions normally") – 0.039 with a 95% CI of 0.024 to 0.060.
 - Severe cannabis dependence ("uses marijuana daily and has difficulty controlling the habit. The person sometimes has mood swings, anxiety and hallucinations, and has some difficulty in daily activities") 0.266 with a 95% CI of 0.178 to 0.364.
- In estimating the QoL reduction associated with unhealthy drug use (excluding cannabis), we assumed a distribution in the population with unhealthy drug use of 59% opioid use, 28% cocaine use and 13% amphetamine use, based on estimates calculated by the GBD for high income North America (Canada and the US).^{1613,1614}
- In a study including 201 untreated opioid drug users in Vancouver, Fischer and colleagues found that 6.1% received legal paid work income, 25.4% had permanent housing, 53.3% rated their health as fair or poor and 74.1% were under judicial

¹⁶¹² Institute for Health Metrics and Evaluation. GBD 2016 sequelae, health states, health state lay descriptions, and disability weights. Available online at http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-disability-weights. Accessed August 2021.

¹⁶¹³ GBD 2016 Alcohol and Drug Use Collaborators. The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. *Lancet Psychiatry*. 2018; 5: 987-1012.

¹⁶¹⁴ Peacock A, Leung J, Larney S et al. Global statistics on alcohol, tobacco and illicit drug use: 2017 status report. *Addiction*. 2018; 113: 1905-26.

restraint.¹⁶¹⁵ In a further study using this same data, Monga et al found that 64.3% of untreated opioid drug users in Vancouver were in the group of injection drug users of heroin exhibiting the highest levels of HIV and Hepatitis C infections.¹⁶¹⁶

- Based on data from the US National Epidemiologic Survey on Alcohol and Related Conditions III, Grant and colleagues found that between 34% (lifetime prevalence) and 49% (12-month prevalence) of those with a drug use disorder were in the 'mild' category (3 or less of the 11 criteria used in the DSM-V to diagnose a substance use disorder).¹⁶¹⁷
- Data from SAMHSA indicates that of those who had used cocaine at any time during the past year, 37% used cocaine during the past month. Similarly, of those who had used amphetamine at any time during the past year, 32% used amphetamine during the past month.¹⁶¹⁸
- Based on this information, we calculated disability weights for unhealthy drug use assuming that 34% of those with opioid and cannabis use disorder (CUD) would be in the 'mild' category and 66% would be in the 'severe' category. For cocaine and amphetamine use we assumed the severe use would be 37% and 32% respectively (after SAMHSA). Life years lived with unhealthy drug use (excluding CUD) are associated with an average disability weight of 0.436. Life years lived with CUD are associated with an average disability weight of 0.189 (Table 4).

Table 4: Disability Weights Associated with Unhealthy Drug Use												
	User Pro	oportion	9	6 of Use	ers	Disability Weight						
	Mild	Severe	Mild	Severe	Total	Mild	Severe	Total				
Opioid Use	34%	66%	20.1%	38.9%	59.0%	0.335	0.697	0.574				
Cocaine Use	63%	37%	17.6%	10.4%	28.0%	0.116	0.479	0.250				
Amphetamine Use	68%	32%	8.8%	4.2%	13.0%	0.079	0.486	0.209				
Sub-total			46.5%	53.5%	100.0%	0.240	0.609	0.436				
Cannabis Use Disorder	34%	66%	34.0%	66.0%	100.0%	0.039	0.266	0.189				

• We then multiplied the life years lived with unhealthy drug use (Table 3) by the appropriate disability weight (Table 4). For example, in our birth cohort of 40,000, an estimated 554 18-year old females would have unhealthy drug use (excluding CUD) while a further 551 18-year old females would have CUD (Table 5). Calculating QALYs lost for 18-year old females meant multiplying the 554 first by 0.914 (the average QoL of an 18-year old, see the *Reference Document* for details) and then by 0.436 (the disability weight for unhealthy drug use [excluding CUD]) for a calculated 221 QALYs lost. This is followed by multiplying the 553 by 0.914 and then by 0.191 for a calculated 95 QALYs lost, for a total of 316 QALYs lost (Table 5). This process is repeated for each age year and sex.

¹⁶¹⁵ Fischer B, Rehm J, Brissette S et al. Illicit opioid use in Canada: Comparing social, health, and drug use characteristics of untreated users in five cities (OPICAN study). *Journal of Urban Health*. 2005; 82: 250 – 66. ¹⁶¹⁶ Monga N, Rehm J, Fischer B et al. Using latent class analysis (LCA) to analyze patterns of drug use in a population of illegal opioid users. *Drug and Alcohol Dependence*. 2007; 88: 1–8.

 ¹⁶¹⁷ Grant B, Saha T, Ruan W et al. Epidemiology of DSM-5 Drug Use Disorder: Results from the National Epidemiologic Survey on Alcohol and Related Conditions–III. *JAMA Psychiatry*. 2016; 73(1): 39-47.
 ¹⁶¹⁸ Substance Abuse and Mental Health Services Administration (SAMHSA), Center for Behavioral Health Statistics and Quality. *Results from the 2020 National Survey on Drug Use and Health: Detailed Tables*. Table 1.1A. Available online at https://www.samhsa.gov/data/report/2020-nsduh-detailed-tables. Accessed December 2021.

- In total, unhealthy drug use in a BC birth cohort of 40,000 is expected to result in 62,692 QALYs lost between the ages of 18 and 69, 18,140 (28.9%) in females and 44,551 (71.1%) in males (Table 5).
- While the prevalence of unhealthy drug use is lower in women than men, unhealthy drug use is increasing more rapidly among women than men.^{1619,1620} Substance use among women generally begins later in life, with consumption increasing more rapidly, 'telescoping' the time between initiation, a substance use disorder (SUD) and potential entry into treatment.¹⁶²¹
- Relative to men, women in SUD treatment consistently report more severe functional impairment in domains such as employment, social/family, medical and psychiatric functioning, as well as a poorer overall quality of life.¹⁶²² This impairment is intensified by contextual factors such as exposure to intimate partner violence, trauma, homelessness and social expectations (e.g. as caretakers).¹⁶²³
- Women are also more sensitive to the long-term effects of alcohol and drugs than men, resulting in a greater susceptibility to alcohol- and drug-related diseases and organ damage. Women with unhealthy drug use also have physiological consequences, health issues, and medical needs related to gynecology.¹⁶²⁴

¹⁶¹⁹ McHugh R, Votaw V, Sugarman D et al. Sex and gender differences in substance use disorders. *Clinical Psychology Review*. 2018; 66: 12-23.

¹⁶²⁰ Erol A, Karpyak V. Sex and gender-related differences in alcohol use and its consequences: Contemporary knowledge and future research considerations. *Drug and Alcohol Dependence*. 2015; 156: 1-13.

¹⁶²¹ Fonseca F, Robles-Martinez M, Tirado-Munoz J et al. A gender perspective on addictive disorders. *Current Addiction Reports*. 2021; 8: 89-99.

¹⁶²² McHugh R, Votaw V, Sugarman D et al. Sex and gender differences in substance use disorders. *Clinical Psychology Review*. 2018; 66: 12-23.

¹⁶²³ Meyer J, Isaacs K, El-Shahawy O et al. Research on women with substance use disorders: Reviewing progress and developing a research and implementation roadmap. *Drug and Alcohol Dependence*. 2019; 197: 158-63.

¹⁶²⁴ Center for Substance Abuse Treatment. *Substance Abuse Treatment: Addressing the Specific Needs of Women*. Treatment Improvement Protocol (TIP) Series 51. HHS Publication No. (SMA) 09-4426. Rockville, MD: Substance Abuse and Mental Health Services Administration, 2009.

Between the Ages of 18 and 59/69/79 In a British Columbia Birth Cohord of 40,000 Mole Mole Total Mole Mole Colspan="2">Colspan="2" Age Mole OALYs Colspan="2">Colspan="2" 18 0194 State of the second	Table 5: QALYs Lost Living with Unhealthy Drug Use												
In a Britsh Columbia Birth Cohort of 40,000 Fenale Male Total Mean Unheality Drug GALYs Mean Unheality Drug GALYs QALYs 041 554 551 316 0914 1508 1012 775 1029 20 0.914 1.288 1.221 734 0.914 3.56 2.534 1831 2.535 21 0.914 1.285 1.277 733 0.914 3.502 2.331 1.801 2.531 23 0.914 1.285 1.277 733 0.914 3.496 2.484 1.778 7.52 25 0.914 1.281 1.272 723 0.914 3.484 2.348 1.778 7.52 2.526 27 0.914 1.281 1.272 729 0.914 3.484 2.348 1.779 1.555 28 0.914 1.278 7.771 1.566 1.568 1.777 1.565			Betwee	en the A	ages of	18 and 5	59/69/79)					
Fermale Versi Lived with Versi Lived with Mean Versi Lived with Colspan="2">Colspan="2">Colspan="2" Age Quit Std Std Std Std Loss Quit Loss Loss Loss 19 0.914 554 551 316 0.914 1,508 1.012 775 1.091 20 0.914 1.287 1,280 734 0.914 3,504 2,331 1,800 2,531 21 0.914 1.285 1,275 733 0.914 3,409 2,340 1,708 2,530 25 0.914 1,283 1,275 731 0.914 3,441 2,441 1,792 2,522 26 0.914 1,280 1,273 730 0.914 3,440 2,441 1,792 2,522 29 0.914 1,280 1,273 730 0.914 3,440 2,340 1,792 2,522 29			In a Briti	sh Colur	nbia Bir	th Cohori	t of 40,00	0					
Hear Unbealty Drug (b) OALYS Mean Unbealty Drug (b) OALYS Colver Excl CUD CUD Loss 18 0.914 554 551 316 0.914 1,508 1,012 776 1,002 19 0.914 1,288 1,221 734 0.914 3,504 2,535 1,803 2,537 21 0.914 1,282 1,279 733 0.914 3,904 2,380 1,803 2,535 22 0.914 1,281 1,275 733 0.914 3,491 2,446 1,798 2,552 25 0.914 1,281 1,273 730 0.914 3,481 2,440 1,794 2,522 26 0.914 1,280 1,273 730 0.914 3,481 2,346 1,797 2,522 29 0.914 1,280 880 880 429 0.914 3,481 2,346 1,797 1,75 1,176 1,553 <t< th=""><th></th><th></th><th>Female</th><th></th><th></th><th>_</th><th>Male</th><th>e</th><th></th><th>F</th><th>Total</th></t<>			Female			_	Male	e		F	Total		
Age Opt Excl CUD Lock Opt Excl CUD Lost Opt Excl CUD Lost Iont 18 0.914 554 551 316 0.914 1.508 1.012 7.76 1.002 20 0.914 1.288 1.281 734 0.914 3.504 2.351 1.803 2.557 21 0.914 1.286 1.279 733 0.914 3.494 2.351 1.800 2.552 23 0.914 1.285 1.279 731 0.914 3.494 2.484 1.797 2.528 25 0.914 1.281 1.273 730 0.914 3.481 2.381 1.794 2.525 27 0.914 1.279 1.773 0.914 3.481 2.381 1.794 2.552 28 0.914 1.277 730 0.914 3.481 2.346 1.774 1.553 30 0.890 863 859 479		Mean	Years Liv	ed with	ΟΔΙΥς	Mean	Years Liv	ed with	OALVS		ΟΔΙΥς		
18 0.914 554 551 316 0.914 1,508 1.013 776 1.092 19 0.914 1,288 1,281 1,281 744 0.914 3,506 2,331 1,802 2,557 21 0.914 1,286 1,279 733 0.914 3,502 2,351 1,802 2,554 23 0.914 1,285 1,279 733 0.914 3,496 2,380 1,800 2,553 24 0.914 1,283 1,275 732 0.914 3,496 2,344 1,778 2,528 25 0.914 1,281 1,273 730 0.914 3,487 2,342 1,744 2,524 28 0.914 1,280 1,273 730 0.914 3,484 2,342 1,744 2,524 29 0.914 1,280 1,273 730 0.914 3,484 2,342 1,744 1,575 1,175 1,575 1,575 1,57	Age	QoL*	Excl CUD	CUD	Lost	QoL*	Excl CUD	CUD	Lost		Lost		
19 0.914 1.584 551 316 0.914 1.508 1.022 775 1.091 20 0.914 1.287 1.281 724 0.914 3.500 2.535 1.803 2.537 21 0.914 1.285 1.279 733 0.914 3.500 2.531 1.801 2.534 22 0.914 1.285 1.279 733 0.914 3.495 2.381 1.787 2.552 24 0.914 1.281 1.276 732 0.914 3.496 2.346 1.797 2.552 25 0.914 1.282 1.273 700 0.914 3.441 2.340 1.792 2.522 29 0.914 1.279 1.272 729 0.914 3.441 2.340 1.792 2.522 29 0.914 1.279 1.271 700 0.914 3.441 2.340 1.792 2.522 30 0.890 663 858	18	0.914	554	551	316	0.914	1.508	1.013	776	Г	1.092		
20 0.914 1.288 1.281 7.34 0.914 3.506 2.353 1.803 2.537 21 0.914 1.285 1.279 733 0.914 3.502 2.331 1.801 2.536 23 0.914 1.284 1.276 732 0.914 3.493 2.346 1.797 2.528 24 0.914 1.281 1.276 732 0.914 3.493 2.344 1.797 2.528 25 0.914 1.282 1.277 730 0.914 3.491 2.343 1.798 2.551 27 0.914 1.280 1.277 700 0.914 3.481 2.333 1.680 1.578 1.177 1.556 33 0.890 863 889 479 0.890 2.348 1.575 1.175 1.553 34 0.890 850 855 477 0.890 2.348 1.575 1.177 1.661 35 0.890	19	0.914	554	551	316	0.914	1,508	1,012	775		1,091		
21 0.914 1,287 1,280 733 0.914 3,504 2,235 1,800 2,535 23 0.914 1,285 1,279 733 0.914 3,499 2,350 1,800 2,532 24 0.914 1,283 1,275 733 0.914 3,495 2,348 1,797 2,526 25 0.914 1,281 1,274 730 0.914 3,481 2,344 1,797 2,526 26 0.914 1,281 1,274 730 0.914 3,481 2,344 1,797 2,522 29 0.914 1,280 1,273 730 0.914 3,481 2,341 1,774 1,565 31 0.890 863 886 479 0.890 2,341 1,575 1,175 1,553 33 0.890 861 856 477 0.890 2,343 1,570 1,171 1,647 33 0.890 855 851	20	0.914	1,288	1,281	734	0.914	3,506	2,354	1,803		2,537		
122 0.914 1.268 1.279 733 0.914 3.502 2.350 1.800 2.534 24 0.914 1.285 1.278 773 0.914 3.496 2.350 1.800 2.530 25 0.914 1.283 1.275 731 0.914 3.491 2.342 1.792 2.526 26 0.914 1.280 1.273 730 0.914 3.481 2.342 1.792 2.524 28 0.914 1.280 1.273 730 0.914 3.444 2.343 1.790 2.519 30 0.890 863 859 479 0.890 2.343 1.577 1.175 1.653 31 0.890 861 856 478 0.890 2.343 1.573 1.172 1.663 34 0.890 857 851 475 0.890 2.333 1.573 1.172 1.643 35 0.890 855 851 <	21	0.914	1,287	1,280	734	0.914	3,504	2,353	1,802		2,536		
1 1	22	0.914	1,286	1,279	/33 733	0.914	3,502	2,351	1,801		2,534		
25 0.914 1.282 1.275 731 0.914 3.493 2.346 1.797 2.528 26 0.914 1.281 1.272 731 0.914 3.447 2.344 1.795 2.526 27 0.914 1.281 1.272 727 0.914 3.447 2.344 1.794 2.522 29 0.914 1.278 727 729 0.914 3.444 2.333 1.790 2.519 30 0.890 864 860 480 0.890 2.333 1.580 1.777 1.176 1.653 33 0.890 861 866 478 0.890 2.343 1.577 1.175 1.663 34 0.890 859 854 477 0.890 2.333 1.566 1.168 1.643 38 0.890 855 851 475 0.890 2.332 1.566 1.664 40 0.854 420 427 229<	24	0.914	1,284	1,278	732	0.914	3,496	2,348	1,798		2,532		
26 0.914 1.281 1.275 731 0.914 3.481 2.344 1.795 2.526 27 0.914 1.281 1.273 730 0.914 3.484 2.342 1.794 2.521 28 0.914 1.279 1.272 729 0.914 3.484 2.338 1.790 1.575 30 0.890 863 859 479 0.890 2.351 1.555 1.175 1.655 33 0.890 863 855 477 0.890 2.346 1.575 1.175 1.653 34 0.890 860 855 477 0.890 2.346 1.575 1.171 1.663 35 0.890 858 851 475 0.890 2.322 1.566 1.168 1.647 37 0.890 855 851 475 0.890 2.322 1.566 1.168 1.643 38 0.890 855 851 475 <td>25</td> <td>0.914</td> <td>1,283</td> <td>1,276</td> <td>732</td> <td>0.914</td> <td>3,493</td> <td>2,346</td> <td>1,797</td> <td></td> <td>2,528</td>	25	0.914	1,283	1,276	732	0.914	3,493	2,346	1,797		2,528		
27 0.914 1.281 1.274 730 0.914 3.487 2.342 1.794 2.524 28 0.914 1.270 1.272 729 0.914 3.484 2.340 1.792 2.521 29 0.914 1.279 1.272 729 0.914 3.484 2.343 1.792 2.521 30 0.890 863 859 479 0.890 2.345 1.575 1.175 1.655 32 0.890 861 856 478 0.890 2.345 1.577 1.175 1.651 35 0.890 859 854 477 0.890 2.333 1.570 1.171 1.647 36 0.890 855 851 475 0.890 2.332 1.566 1.168 1.643 39 0.890 855 851 475 0.890 2.329 1.564 1.164 1.643 39 0.890 855 851 475 <td>26</td> <td>0.914</td> <td>1,282</td> <td>1,275</td> <td>731</td> <td>0.914</td> <td>3,491</td> <td>2,344</td> <td>1,795</td> <td></td> <td>2,526</td>	26	0.914	1,282	1,275	731	0.914	3,491	2,344	1,795		2,526		
23 0.914 1.273 7.30 0.914 3.484 2.380 1.790 2.512 30 0.890 864 860 480 0.890 2.513 1.580 1.178 1.658 31 0.890 863 858 479 0.890 2.351 1.578 1.177 1.656 32 0.890 862 857 478 0.890 2.348 1.575 1.175 1.651 33 0.890 861 855 477 0.890 2.348 1.575 1.171 1.661 35 0.890 859 854 477 0.890 2.335 1.556 1.169 1.643 39 0.890 855 851 475 0.890 2.332 1.566 1.641 40 0.854 429 427 229 0.854 1.166 783 561 790 41 0.854 426 228 0.854 1.166 783 <t< td=""><td>27</td><td>0.914</td><td>1,281</td><td>1,274</td><td>730</td><td>0.914</td><td>3,487</td><td>2,342</td><td>1,794</td><td></td><td>2,524</td></t<>	27	0.914	1,281	1,274	730	0.914	3,487	2,342	1,794		2,524		
30 0.880 864 860 480 0.890 2,353 1,580 1,178 1,658 31 0.890 863 859 479 0.890 2,351 1,578 1,175 1,655 32 0.890 863 858 478 0.890 2,346 1,575 1,175 1,653 34 0.890 860 855 477 0.890 2,344 1,572 1,171 1,643 35 0.890 858 853 475 0.890 2,332 1,566 1,168 1,647 36 0.890 857 852 475 0.890 2,322 1,566 1,168 1,643 39 0.890 855 851 475 0.890 2,322 1,564 1,661 40 0.854 428 426 228 0.854 1,165 782 561 789 41 0.854 428 426 224 0.854 1,1	28	0.914	1,280	1,275	729	0.914	3,484 3.481	2,340	1,792		2,522		
31 0.890 863 859 479 0.890 2,351 1,578 1,177 1,655 32 0.890 862 857 478 0.890 2,348 1,577 1,175 1,653 34 0.890 862 855 477 0.890 2,346 1,572 1,171 1,649 35 0.890 859 854 477 0.890 2,338 1,570 1,171 1,643 36 0.890 855 851 475 0.890 2,332 1,566 1,68 1,643 39 0.890 855 851 475 0.890 2,322 1,566 1,66 1,643 41 0.854 427 229 0.854 1,160 782 561 790 42 0.854 426 228 0.854 1,160 783 561 799 43 0.854 427 425 227 0.854 1,163 781 <td>30</td> <td>0.890</td> <td>864</td> <td>860</td> <td>480</td> <td>0.890</td> <td>2,353</td> <td>1,580</td> <td>1,178</td> <td></td> <td>1,658</td>	30	0.890	864	860	480	0.890	2,353	1,580	1,178		1,658		
32 0.890 862 858 479 0.890 2,348 1,577 1,175 1,653 33 0.890 861 856 478 0.890 2,346 1,575 1,173 1,1631 35 0.890 860 855 477 0.890 2,340 1,572 1,171 1,647 37 0.890 857 852 477 0.890 2,332 1,566 1,168 1,643 39 0.890 855 851 475 0.890 2,332 1,566 1,166 1,641 40 0.854 429 427 229 0.854 1,166 783 561 789 41 0.854 428 426 228 0.854 1,165 782 560 787 43 0.854 426 228 0.854 1,160 779 558 785 46 0.854 426 222 0.854 1,153 775	31	0.890	863	859	479	0.890	2,351	1,578	1,177		1,656		
33 0.890 861 856 478 0.890 2,346 1,573 1,173 1,651 35 0.890 860 855 477 0.890 2,340 1,572 1,172 1,649 36 0.890 858 853 476 0.890 2,335 1,566 1,645 38 0.890 855 851 475 0.890 2,332 1,566 1,164 40 0.854 429 427 229 0.854 1,170 766 562 791 41 0.854 428 426 228 0.854 1,165 782 561 799 42 0.854 428 426 228 0.854 1,165 783 57 783 44 0.854 428 426 228 0.854 1,155 778 555 782 45 0.854 425 422 227 0.854 1,156 775 5	32	0.890	863	858	479	0.890	2,348	1,577	1,176		1,655		
3-4 0.000 6.243 4.243 4.273 4.173 1.1631 35 0.890 860 855 477 0.890 2,338 1,570 1,171 1,649 36 0.890 858 853 476 0.890 2,335 1,566 1,668 1,643 39 0.890 855 851 475 0.890 2,332 1,566 1,168 1,641 40 0.854 420 427 229 0.854 1,168 785 561 790 42 0.854 428 426 228 0.854 1,165 782 560 787 43 0.854 426 424 227 0.854 1,163 781 559 785 46 0.854 422 226 0.854 1,150 775 555 782 480 0.854 424 421 225 0.854 1,151 773 783 778	33	0.890	862	857	478	0.890	2,346	1,575	1,175		1,653		
36 0.225 2.36 2.37 2.37 1.71 1.647 37 0.890 858 853 475 0.890 2,338 1.568 1.169 1.647 38 0.890 855 852 475 0.890 2,332 1.564 1.169 1.643 40 0.854 420 427 229 0.854 1.170 786 562 791 41 0.854 428 426 228 0.854 1.165 782 560 787 44 0.854 428 426 228 0.854 1.165 782 556 787 44 0.854 425 422 227 0.854 1.163 781 557 783 46 0.854 425 422 226 0.854 1.153 775 554 780 49 0.854 423 420 225 0.854 1.151 773 553 778 <td>34</td> <td>0.890</td> <td>860</td> <td>ەכە 855</td> <td>478 477</td> <td>0.890</td> <td>2,343 2.340</td> <td>1,573 1.572</td> <td>1,172</td> <td></td> <td>1,649</td>	34	0.890	860	ەכە 855	478 477	0.890	2,343 2.340	1,573 1.572	1,172		1,649		
37 0.890 858 853 476 0.890 2,335 1,566 1,169 1,643 38 0.890 855 852 475 0.890 2,322 1,566 1,168 1,641 40 0.854 430 427 229 0.854 1,168 785 561 791 41 0.854 429 427 229 0.854 1,168 785 561 790 42 0.854 428 426 228 0.854 1,163 781 559 785 43 0.854 424 4227 0.854 1,163 781 559 785 44 0.854 424 422 226 0.854 1,150 776 555 782 46 0.854 424 421 226 0.854 1,151 775 554 783 47 0.820 383 381 197 0.820 1,047 703 483 680 50 0.820 383 381 196 <td< td=""><td>36</td><td>0.890</td><td>859</td><td>854</td><td>477</td><td>0.890</td><td>2,338</td><td>1,570</td><td>1,171</td><td></td><td>1,647</td></td<>	36	0.890	859	854	477	0.890	2,338	1,570	1,171		1,647		
38 0.890 857 852 475 0.890 2,332 1,566 1,168 1,641 39 0.890 855 851 475 0.890 2,332 1,564 1,168 1,641 40 0.884 430 427 229 0.854 1,166 785 561 790 41 0.854 428 426 228 0.854 1,166 783 561 789 43 0.854 428 426 228 0.854 1,165 776 558 785 46 0.854 425 422 226 0.854 1,158 776 554 780 47 0.854 425 422 226 0.854 1,151 775 554 780 48 0.854 423 222 0.854 1,151 775 554 780 50 0.820 383 381 196 0.820 1,045 702	37	0.890	858	853	476	0.890	2,335	1,568	1,169		1,645		
39 0.890 855 851 475 0.890 2,329 1,564 1,166 1,661 40 0.854 429 427 229 0.854 1,170 786 562 791 41 0.854 428 426 228 0.854 1,165 782 561 789 42 0.854 428 426 228 0.854 1,165 782 560 787 43 0.854 426 424 227 0.854 1,166 778 557 783 45 0.854 425 422 226 0.854 1,156 776 555 782 46 0.854 423 420 225 0.854 1,151 773 553 778 50 0.820 383 381 196 0.820 1,047 700 481 676 51 0.820 383 381 196 0.820 1,031	38	0.890	857	852	475	0.890	2,332	1,566	1,168		1,643		
40 0.834 420 427 229 0.834 1,110 780 502 791 42 0.854 428 426 228 0.854 1,166 785 561 789 43 0.854 428 426 228 0.854 1,165 782 560 787 44 0.854 426 422 227 0.854 1,165 782 560 787 45 0.854 426 424 227 0.854 1,156 776 555 782 46 0.854 425 422 226 0.854 1,156 776 555 782 48 0.854 423 420 225 0.854 1,151 773 483 680 51 0.820 384 381 196 0.820 1,045 702 482 678 52 0.820 377 375 193 0.820 1,013 <td< td=""><td>39</td><td>0.890</td><td>855</td><td>851 427</td><td>475</td><td>0.890</td><td>2,329</td><td>1,564</td><td>1,166</td><td></td><td>1,641</td></td<>	39	0.890	855	851 427	475	0.890	2,329	1,564	1,166		1,641		
42 0.854 4.28 4.26 2.28 0.854 1,166 783 561 789 43 0.854 4.28 426 228 0.854 1,165 782 560 787 44 0.854 4.27 4.25 227 0.854 1,165 782 550 787 45 0.854 4.25 4.22 227 0.854 1,165 778 557 783 46 0.854 4.25 4.22 226 0.854 1,151 776 555 782 48 0.854 4.23 420 225 0.854 1,151 775 553 778 50 0.820 383 381 197 0.820 1,042 700 481 676 53 0.820 381 379 195 0.820 1,042 700 481 676 53 0.820 377 375 193 0.820 1,012	40	0.854	430 429	427	229	0.854	1,170	785	561		791		
43 0.854 428 426 228 0.854 1,165 782 560 787 44 0.854 427 425 227 0.854 1,160 779 558 785 45 0.854 425 423 227 0.854 1,160 779 558 782 46 0.854 425 423 227 0.854 1,150 776 555 782 47 0.854 423 420 226 0.854 1,151 773 554 780 49 0.854 423 420 225 0.854 1,151 773 554 780 50 0.820 383 381 196 0.820 1,047 703 483 680 51 0.820 383 381 196 0.820 1,045 702 482 678 52 0.820 383 379 195 0.820 1,013 693 476 670 54 0.820 377 375 193	42	0.854	428	426	228	0.854	1,166	783	561		789		
44 0.854 427 425 227 0.854 1,163 781 559 785 45 0.854 426 424 227 0.854 1,160 779 558 785 46 0.854 425 422 226 0.854 1,151 776 555 782 48 0.854 423 420 225 0.854 1,151 773 553 778 50 0.820 383 381 197 0.820 1,045 702 482 678 51 0.820 383 381 196 0.820 1,045 702 482 678 52 0.820 383 378 194 0.820 1,035 695 478 672 53 0.820 377 375 193 0.820 1,031 693 476 6670 55 0.820 374 372 191 0.820 1,014 681 468 658 55 0.820 374 372 191	43	0.854	428	426	228	0.854	1,165	782	560		787		
45 0.854 426 424 227 0.854 1,160 779 558 785 46 0.854 425 422 226 0.854 1,158 778 557 783 47 0.854 425 422 226 0.854 1,153 775 554 780 49 0.854 423 420 225 0.854 1,151 773 553 778 50 0.820 383 381 196 0.820 1,047 703 483 680 51 0.820 383 381 196 0.820 1,045 702 481 676 53 0.820 380 379 195 0.820 1,035 697 479 674 54 0.820 377 375 193 0.820 1,027 690 474 667 55 0.820 377 375 193 0.820 1,027 690 474 667 59 0.820 377 370 190	44	0.854	427	425	227	0.854	1,163	781	559		786		
40 0.834 425 423 227 0.854 1,156 778 557 782 44 0.854 424 421 226 0.854 1,155 776 555 782 49 0.854 423 420 225 0.854 1,151 773 553 778 50 0.820 385 383 197 0.820 1,047 703 483 680 51 0.820 384 382 196 0.820 1,045 702 482 678 52 0.820 383 381 196 0.820 1,045 702 482 676 53 0.820 380 378 194 0.820 1,035 695 478 672 55 0.820 377 375 193 0.820 1,027 690 474 667 56 0.820 377 375 193 0.820 1,019 684 470 661 59 0.820 377 370 190	45	0.854	426	424	227	0.854	1,160	779	558		785		
48 0.854 424 421 226 0.854 1,153 775 554 780 49 0.854 423 420 225 0.854 1,151 773 553 778 50 0.820 385 383 197 0.820 1,047 703 483 680 51 0.820 384 382 196 0.820 1,047 702 482 678 52 0.820 381 379 195 0.820 1,035 695 478 672 53 0.820 380 378 194 0.820 1,031 693 476 670 56 0.820 377 375 193 0.820 1,023 687 472 664 57 0.820 374 372 191 0.820 1,014 681 468 658 59 0.799 206 205 102 0.799 563 378 253 356 61 0.799 206 205 102	46	0.854	425	423	227	0.854	1,158	776	555		783 782		
49 0.854 423 420 225 0.854 1,151 773 553 778 50 0.820 385 383 197 0.820 1,047 703 483 680 51 0.820 384 382 196 0.820 1,045 702 482 678 52 0.820 381 379 195 0.820 1,038 697 479 674 53 0.820 380 378 194 0.820 1,031 693 476 670 56 0.820 377 375 193 0.820 1,021 690 474 6661 57 0.820 374 372 191 0.820 1,014 681 468 658 59 0.820 374 372 191 0.820 1,014 681 468 658 60 0.799 206 205 102 0.799 563	48	0.854	424	421	226	0.854	1,153	775	554		780		
50 0.820 385 383 197 0.820 1,047 703 483 680 51 0.820 384 382 196 0.820 1,045 702 482 678 52 0.820 383 381 196 0.820 1,045 702 482 674 53 0.820 380 378 194 0.820 1,035 695 478 672 55 0.820 377 375 193 0.820 1,013 693 476 667 56 0.820 376 374 192 0.820 1,019 684 470 661 59 0.820 374 372 191 0.820 1,014 681 468 658 59 0.820 372 370 190 0.820 1,014 681 448 658 60 0.799 206 205 102 0.799 566 3	49	0.854	423	420	225	0.854	1,151	773	553		778		
51 0.820 384 382 196 0.820 1,045 702 482 678 52 0.820 383 381 396 0.820 1,045 700 481 676 53 0.820 381 379 195 0.820 1,035 695 479 674 54 0.820 377 375 193 0.820 1,013 693 476 670 56 0.820 377 375 193 0.820 1,023 687 472 666 59 0.820 374 372 191 0.820 1,014 681 468 658 59 0.820 372 370 190 0.820 1,014 681 468 658 59 0.820 376 232 191 0.820 1,014 681 468 658 60 0.799 206 205 102 0.799 556 3	50	0.820	385	383	197	0.820	1,047	703	483		680		
52 0.220 363 361 196 0.220 1,042 7,00 461 676 53 0.820 381 379 195 0.820 1,038 697 479 674 54 0.820 379 377 194 0.820 1,031 693 476 670 56 0.820 377 375 193 0.820 1,023 687 472 664 57 0.820 374 372 191 0.820 1,019 684 470 661 59 0.820 372 370 190 0.820 1,014 681 41,590 58,525 60 0.799 208 207 104 0.799 566 380 255 358 61 0.799 206 205 102 0.799 566 373 250 352 63 0.799 203 202 101 0.799 556 <t< td=""><td>51</td><td>0.820</td><td>384</td><td>382</td><td>196</td><td>0.820</td><td>1,045</td><td>702</td><td>482</td><td></td><td>678</td></t<>	51	0.820	384	382	196	0.820	1,045	702	482		678		
54 0.820 380 378 194 0.820 1,035 695 478 672 55 0.820 379 377 194 0.820 1,031 693 476 670 56 0.820 377 375 193 0.820 1,027 690 474 667 57 0.820 374 372 191 0.820 1,023 687 472 664 58 0.820 372 370 190 0.820 1,014 681 468 658 70tal to Age 59 30,602 30,439 16,935 83,305 55,941 41,590 58,525 60 0.799 206 205 102 0.799 566 373 250 358 61 0.799 204 203 102 0.799 556 373 250 352 63 0.799 201 200 100 0.799 543 364 <t< td=""><td>52</td><td>0.820</td><td>381</td><td>379</td><td>196</td><td>0.820</td><td>1,042</td><td>697</td><td>481</td><td></td><td>674</td></t<>	52	0.820	381	379	196	0.820	1,042	697	481		674		
55 0.820 379 377 194 0.820 1,031 693 476 670 56 0.820 377 375 193 0.820 1,027 690 474 667 57 0.820 376 374 192 0.820 1,023 687 472 664 58 0.820 372 370 190 0.820 1,014 681 468 658 59 0.820 3709 203 30,439 16,935 83,055 55,941 41,590 58,525 60 0.799 206 205 102 0.799 566 378 253 356 62 0.799 204 203 102 0.799 556 373 250 352 63 0.799 201 200 100 0.799 543 364 244 343 65 0.799 193 192 96 0.799 533	54	0.820	380	378	194	0.820	1,035	695	478		672		
56 0.820 377 375 193 0.820 1,027 690 474 667 57 0.820 376 374 192 0.820 1,023 687 472 664 58 0.820 372 370 190 0.820 1,013 684 470 661 59 0.820 370 190 0.820 1,014 681 446 658 Total to Age 59 30,602 30,439 16,935 83,305 55,941 41,590 58,525 60 0.799 206 205 102 0.799 566 376 252 354 61 0.799 206 205 102 0.799 556 373 250 352 63 0.799 201 200 100 0.799 547 358 246 349 65 0.799 193 192 96 0.799 537 361 242 3	55	0.820	379	377	194	0.820	1,031	693	476		670		
57 0.820 376 374 192 0.820 1,023 687 472 664 58 0.820 374 372 191 0.820 1,019 684 470 661 59 0.820 372 370 190 0.820 1,014 681 468 658 Total to Age 59 30,602 30,439 16,935 83,305 55,941 41,590 58,525 60 0.799 206 205 102 0.799 566 380 255 358 61 0.799 206 205 102 0.799 556 373 250 352 63 0.799 203 202 101 0.799 552 371 248 349 65 0.799 201 200 100 0.799 543 364 244 343 66 0.799 197 196 98 0.799 537 361 242	56	0.820	377	375	193	0.820	1,027	690	474		667		
38 0.220 374 372 371 191 0.220 1,013 364 470 301 59 0.820 372 370 190 0.820 1,014 681 468 658 Total to Age 59 30,602 30,439 16,935 83,055 55,941 41,590 58,525 358 61 0.799 206 205 102 0.799 566 380 255 358 62 0.799 206 205 102 0.799 566 373 250 352 64 0.799 201 200 100 0.799 556 373 250 352 64 0.799 201 200 100 0.799 543 364 244 343 65 0.799 197 196 98 0.799 537 361 242 340 68 0.799 193 192 96 0.799 526 <td>57</td> <td>0.820</td> <td>3/6</td> <td>3/4</td> <td>192</td> <td>0.820</td> <td>1,023</td> <td>687</td> <td>472</td> <td></td> <td>664 661</td>	57	0.820	3/6	3/4	192	0.820	1,023	687	472		664 661		
Total to Age 59 $30,602$ $30,439$ $16,935$ $83,305$ $55,941$ $41,590$ $58,525$ 60 0.799 208 207 104 0.799 566 380 255 358 61 0.799 207 206 103 0.799 566 378 253 356 62 0.799 206 205 102 0.799 566 376 252 354 63 0.799 204 203 102 0.799 556 373 250 352 64 0.799 201 200 100 0.799 552 371 248 349 65 0.799 201 200 100 0.799 543 364 244 343 66 0.799 197 196 98 0.799 537 361 242 340 68 0.799 193 192 96 0.799 533 361 242 340 68 0.799 193 192 96 0.799 526 353 236 333 70 0.757 47 46 22 0.757 125 84 53 75 72 0.757 45 45 21 0.757 125 84 53 75 72 0.757 44 43 21 0.757 115 81 51 71 73 0.757 44 43 21 0.757	59	0.820	372	370	190	0.820	1,019	681	468		658		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total to Age 59		30,602	30,439	16,935		83,305	55,941	41,590		58,525		
61 0.799 207 206 103 0.799 563 378 253 356 62 0.799 206 205 102 0.799 560 376 252 354 63 0.799 204 203 102 0.799 556 373 250 352 64 0.799 203 202 101 0.799 552 371 248 349 65 0.799 201 200 100 0.799 547 368 246 346 66 0.799 197 196 98 0.799 537 361 242 340 68 0.799 193 192 96 0.799 532 353 236 333 69 0.799 193 192 96 0.799 526 353 236 61993 70 0.757 47 46 22 0.757 125 84 5	60	0.799	208	207	104	0.799	566	380	255	ſ	358		
62 0.757 200 203 102 0.759 556 373 252 354 63 0.799 204 203 102 0.799 556 373 250 352 64 0.799 203 202 101 0.799 552 371 248 349 65 0.799 201 200 100 0.799 547 368 246 346 66 0.799 199 198 99 0.799 537 361 242 340 67 0.799 197 196 98 0.799 537 361 242 340 68 0.799 193 192 96 0.799 532 357 239 336 69 0.799 193 192 96 0.799 526 353 266 1933 70 0.757 47 46 22 0.757 125 84 53<	61	0.799	207	206	103	0.799	563	378 276	253		356		
640.7992032021010.799552371248349650.7992012001000.799547368246346660.799199198990.799543364244343670.799197196980.799537361242340680.799195194970.799532357239336690.799193192960.799526353236333690.7574746220.757127855476710.7574746220.757127855476710.7574545210.757123835274730.7574444210.757111815172740.7574342200.757116784970760.7574140190.757111744766	63	0.799	200	203	102	0.799	556	373	250		354		
65 0.799 201 200 100 0.799 547 368 246 346 66 0.799 199 198 99 0.799 543 364 244 343 67 0.799 197 196 98 0.799 537 361 242 340 68 0.799 195 194 97 0.799 532 357 239 336 69 0.799 193 192 96 0.799 526 353 236 333 7otal to Age 69 32,616 32,442 17,938 88,787 59,623 44,055 61,993 70 0.757 47 46 22 0.757 127 85 54 76 71 0.757 45 45 21 0.757 123 83 52 74 73 0.757 44 43 21 0.757 113 81 51 71	64	0.799	203	202	101	0.799	552	371	248		349		
66 0.799 199 198 99 0.799 543 364 244 343 67 0.799 197 196 98 0.799 537 361 242 340 68 0.799 195 194 97 0.799 532 357 239 336 69 0.799 193 192 96 0.799 526 353 246 333 Total to Age 69 32,616 32,442 17,938 88,787 59,623 44,055 61,993 70 0.757 47 46 22 0.757 127 85 54 75 71 0.757 45 45 21 0.757 123 83 52 74 73 0.757 44 44 21 0.757 121 81 51 72 74 0.757 43 42 20 0.757 119 80 51 71 </td <td>65</td> <td>0.799</td> <td>201</td> <td>200</td> <td>100</td> <td>0.799</td> <td>547</td> <td>368</td> <td>246</td> <td></td> <td>346</td>	65	0.799	201	200	100	0.799	547	368	246		346		
6/ 0.799 197 196 98 0.799 537 361 242 340 68 0.799 195 194 97 0.799 532 357 239 336 69 0.799 193 192 96 0.799 526 353 246 333 Total to Age 69 32,616 32,442 17,938 88,787 59,623 44,055 61,993 70 0.757 47 46 22 0.757 127 85 54 76 71 0.757 45 45 21 0.757 123 83 52 74 73 0.757 44 44 21 0.757 123 83 51 72 74 0.757 43 42 20 0.757 119 80 51 71 75 0.757 43 42 20 0.757 116 78 49 70	66	0.799	199	198	99	0.799	543	364	244		343		
60 0.759 1.53 1.54 57 0.759 522 537 2.39 336 69 0.799 193 192 96 0.799 526 353 2.36 333 Total to Age 69 32,616 32,442 17,938 88,787 59,623 40,555 61,993 70 0.757 47 46 22 0.757 127 85 54 76 71 0.757 45 45 21 0.757 123 83 52 74 73 0.757 44 44 21 0.757 123 83 52 74 74 0.757 43 42 20 0.757 110 80 51 71 75 0.757 43 42 20 0.757 116 78 49 70 76 0.757 41 40 19 0.757 111 74 47 66 </td <td>67</td> <td>0.799</td> <td>197 105</td> <td>196 104</td> <td>98 97</td> <td>0.799</td> <td>537 522</td> <td>361</td> <td>242</td> <td></td> <td>340 336</td>	67	0.799	197 105	196 104	98 97	0.799	537 522	361	242		340 336		
Total to Age 69 32,616 32,442 17,938 88,787 59,623 44,055 61,993 70 0.757 47 46 22 0.757 127 85 54 76 71 0.757 45 45 21 0.757 125 84 53 75 72 0.757 45 45 21 0.757 123 83 52 74 73 0.757 44 44 21 0.757 121 81 51 72 74 0.757 43 42 20 0.757 119 80 51 71 75 0.757 42 41 20 0.757 116 78 49 70 76 0.757 41 40 19 0.757 111 74 47 66	69	0.799	193	194	96	0.799	526	353	235		333		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total to Age 69		<u>32,6</u> 16	32,442	17,938	555	88,787	<u>59,6</u> 23	44,055	ľ	61,993		
71 0.757 46 46 22 0.757 125 84 53 75 72 0.757 45 45 21 0.757 123 83 52 74 73 0.757 44 44 21 0.757 121 81 51 72 74 0.757 44 43 21 0.757 119 80 51 71 75 0.757 43 42 20 0.757 116 78 49 70 76 0.757 41 40 19 0.757 111 74 47 66	70	0.757	47	46	22	0.757	127	85	54	Γ	76		
1/2 0.757 45 45 21 0.757 123 83 52 74 73 0.757 44 44 21 0.757 121 81 51 72 74 0.757 44 43 21 0.757 119 80 51 71 75 0.757 43 42 20 0.757 119 80 51 71 76 0.757 42 41 20 0.757 114 76 48 68 77 0.757 41 40 19 0.757 111 74 47 66	71	0.757	46	46	22	0.757	125	84	53		75		
74 0.757 44 43 21 0.757 121 81 51 72 74 0.757 44 43 21 0.757 119 80 51 71 75 0.757 43 42 20 0.757 116 78 49 70 76 0.757 42 41 20 0.757 114 76 48 68 77 0.757 41 40 19 0.757 111 74 47 66	72	0.757 ∩ 7⊑7	45 44	45 14	21	0.757	123	83 91	52 51		/4 72		
75 0.757 43 42 20 0.757 116 78 49 70 76 0.757 42 41 20 0.757 114 76 48 68 77 0.757 41 40 19 0.757 111 74 47 66	73	0.757	44	44	21	0.757	119	80	51		72		
76 0.757 42 41 20 0.757 114 76 48 68 77 0.757 41 40 19 0.757 111 74 47 66	75	0.757	43	42	20	0.757	116	78	49		70		
77 0.757 41 40 19 0.757 111 74 47 66	76	0.757	42	41	20	0.757	114	76	48		68		
	77	0.757	41	40	19	0.757	111	74	47		66		
78 0.757 40 39 19 0.757 108 72 46 64 79 0.757 38 39 19 0.757 108 72 46 64	78	0.757	40	39 20	19 10	0.757	108	72 70	46		64 62		
	/9	0.757		50	10	0.757	104	70	44	ŀ	02		
I otal to Age /9 33,044 32,868 18,140 89,953 60,406 44,551 62,692 * See Reference document "Calculating Changes in Quality of Life". CUD=cannabis use disorder	Iotal to Age 79 * See Reference of	document "	33,044 Calculating	32,868 Chanaes i	18,140 n Quality	of Life". CU	89,953 D=cannahi	60,406 use diso	44,551 rder		62,692		

Calculating Life Years Lost

- In addition to a reduction in QoL associated with living with unhealthy drug use, unhealthy drug use contributes to life years lost.
- Deaths due to unhealthy drug use¹⁶²⁵ in BC increased from 295 in 2011 to 2,232 in 2021 (an increase of 657%) (Table 6).¹⁶²⁶

Table 6: Unhealthy Drug Use Deaths by Age Group												
British Columbia, 2011 - 2021												
Calendar Year												% of Total
Age Group	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2019-21
<19	4	5	6	3	5	12	25	18	13	18	29	1.2%
19-29	75	61	94	83	117	204	273	300	170	309	326	16.2%
30-39	75	61	77	101	137	261	400	396	274	415	539	24.7%
40-49	77	67	74	85	130	233	355	348	216	409	487	22.3%
50-59	54	56	62	73	110	230	314	363	214	405	558	23.6%
60-69	10	19	21	24	29	50	121	127	91	195	263	11.0%
70-79	0	1	0	0	1	3	7	8	4	16	30	1.0%
Total	295	270	334	369	529	993	1,495	1,560	982	1,767	2,232	100%

- Between 2019 and 2021, 70.6% of deaths were in adults ages 30-59 (Table 6). The top drugs involved among unhealthy drug use deaths between 2019 and 2021 include illicit fentanyl and its analogues (85.1% of deaths), cocaine (46.2%), methamphetamine/amphetamine (41.6%), other opioids (23.2%) and ethyl alcohol (26.9%).¹⁶²⁷
- Table 7 provides data on the rate / 100,000 population for unhealthy drug use deaths by month for the 12 months between February 2021 and January 2022 in BC by age and sex.¹⁶²⁸ The death rate in males (5.70 / 100,000) is 3.7 times as high as the death rate in females (1.55 / 100,000) (Table 7).

¹⁶²⁵ The unhealthy drug use category includes street drugs (controlled and illegal drugs: heroin, cocaine, MDMA, methamphetamine, illicit fentanyl etc.), medications not prescribed to the decedent but obtained/purchased on the street, from unknown means or where origin of drug not known, or combinations of the above with prescribed medications.

¹⁶²⁶ BC Coroners Service, *Illicit Drug Toxicity Deaths in BC; January 1, 2011 – January 31, 2022*. Available online at <u>https://www2.gov.bc.ca/assets/gov/birth-adoption-death-marriage-and-divorce/deaths/coroners-service/statistical/illicit-drug.pdf</u>. Accessed March 2022.

¹⁶²⁷ Ibid.

¹⁶²⁸ BC Centre for Disease Control. *Overdose Response Indicator Report*. December 2021. Available online at <u>http://www.bccdc.ca/health-professionals/data-reports/overdose-response-indicators</u>. Accessed March 2022.

Table 7: Unhealthy Drug Use Deaths in British Columbia														
			R	ate pe	er 100	,000	Popula	ation I	by Ag	e and	Sex			
February 2021 to January 2022														
	Month and Year													Mean
	2021 2022													Feb '21 -
Sex	Age	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Jan '22
Female	0-18	-	0.45	0.67	-	0.22	0.90	0.22	-		0.45	0.22	-	0.28
	19-39	2.56	2.02	2.42	1.88	2.42	1.75	2.15	2.69	2.69	3.77	2.42	2.27	2.42
	40-59	2.56	2.70	1.71	2.42	2.13	2.99	2.42	2.13	3.42	3.27	3.27	1.70	2.56
	60+	0.54	0.54	0.54	0.27	-	0.41	0.54	0.41	0.68	0.27	0.54	0.92	0.47
	All	1.56	1.52	1.41	1.26	1.29	1.56	1.45	1.45	1.87	2.09	1.75	1.35	1.55
Male	0-18	0.64	-	0.21	0.64	0.43	0.21	0.21	0.21	0.21	-	0.21	-	0.25
	19-39	5.42	7.10	6.20	6.59	5.29	7.36	8.14	5.29	6.97	7.75	10.33	6.78	6.94
	40-59	8.98	8.38	11.67	10.18	10.03	11.52	10.18	8.83	11.22	11.22	10.33	14.35	10.57
	60+	4.12	3.36	3.05	2.44	3.81	3.05	3.66	2.14	3.20	3.20	3.36	2.96	3.20
	All	5.14	5.18	5.73	5.38	5.26	6.04	6.08	4.48	5.88	6.08	6.70	6.50	5.70
All	0-18	0.33	0.22	0.44	0.33	0.33	0.55	0.22	0.11	0.11	0.22	0.22	-	0.26
	19-39	4.02	4.61	4.35	4.28	3.89	4.61	5.21	4.02	4.88	5.80	6.46	4.57	4.73
	40-59	5.69	5.47	6.56	6.20	5.98	7.15	6.20	5.40	7.22	7.15	6.71	7.89	6.47
	60+	2.23	1.87	1.72	1.29	1.80	1.65	2.01	1.22	1.87	1.65	1.87	1.88	1.76
	All	3.33	3.33	3.54	3.29	3.25	3.77	3.73	2.95	3.85	4.06	4.20	3.89	3.60

• Applying the unhealthy drug use death rate / 100,000 population from Table 7 to our BC birth cohort of 40,000 indicates that we would expect to see approximately 100 deaths (22 in females and 78 in males) due to unhealthy drug use between the ages of 18 to 69 resulting in 3,966 life years lost (974 in females and 2,992 in males [Table 8]).

Table 8: Life Years Lost Due to Unhealthy Drug Use Deaths													
	Between the Ages of 18 and 59/69/79												
			Female		rcolumbi		11011 01 40	Male			Total Po	pulation	
Age	Total Life Years	Death Rate / 100.000	Estimated Deaths	Life Years Lost / Death	Life Years Lost	Total Life Years	Death Rate / 100.000	Estimated Deaths	Life Years Lost / Death	Life Years Lost	Estimated Deaths	Life Years Lost	
18	19 891	0.28	0.06	67.4	3.8	19 870	0.25	0.05	62.4	31	0.1	7	
19	19,885	2.42	0.48	66.4	31.9	19,858	6.94	1.38	61.4	84.6	1.9	117	
20	19,878	2.42	0.48	65.4	31.5	19,843	6.94	1.38	60.5	83.2	1.9	115	
21	19,871	2.42	0.48	64.4	31.0	19,826	6.94	1.37	59.5	81.8	1.9	113	
22	19,863	2.42	0.48	63.5	30.5	19,807	6.94	1.37	58.6	80.5	1.9	111	
23	19,855	2.42	0.48	62.5	30.0	19,786	6.94	1.37	57.7	79.1	1.9	109	
24	19,847	2.42	0.48	61.5	29.5	19,763	6.94	1.37	56.7	77.7	1.9	107	
25	19,839	2.42	0.48	50.5	29.1	19,739	6.94	1.37	55.8	75.0	1.8	105	
20	19,830	2.42	0.48	58.6	28.0	19,714	6.94	1.37	53.9	73.6	1.8	104	
28	19.811	2.42	0.48	57.6	27.6	19,662	6.94	1.36	53.0	72.2	1.8	100	
29	19,801	2.42	0.48	56.6	27.1	19,635	6.94	1.36	52.1	70.9	1.8	98	
30	19,790	2.42	0.48	55.7	26.7	19,607	6.94	1.36	51.1	69.5	1.8	96	
31	19,779	2.42	0.48	54.7	26.2	19,579	6.94	1.36	50.2	68.2	1.8	94	
32	19,767	2.42	0.48	53.7	25.7	19,550	6.94	1.36	49.3	66.8	1.8	92	
33	19,755	2.42	0.48	52.8	25.2	19,520	6.94	1.35	48.4	65.5	1.8	91	
34	19,742	2.42	0.48	51.8	24.7	19,489	6.94	1.35	47.4	64.1	1.8	89	
35	19,729	2.42	0.48	50.8	24.3	19,458	6.94	1.35	46.5	62.7	1.8	87	
30	19,715	2.42	0.48	49.9	23.8	19,425	6.94	1.35	45.6	61.4	1.8	85	
38	19,700	2.42	0.46	40.9	25.5	19,392	6.94	1.54	44.7	58.7	1.0	82 82	
39	19,085	2.42	0.48	47.9	22.8	19,337	6.94	1.34	43.7	57.3	1.8	80	
40	19,652	2.56	0.50	46.0	23.1	19,283	10.57	2.04	41.9	85.4	2.5	109	
41	19,634	2.56	0.50	45.1	22.6	19,245	10.57	2.03	41.0	83.4	2.5	106	
42	19,615	2.56	0.50	44.1	22.1	19,204	10.57	2.03	40.1	81.3	2.5	103	
43	19,594	2.56	0.50	43.1	21.6	19,162	10.57	2.03	39.1	79.3	2.5	101	
44	19,572	2.56	0.50	42.2	21.1	19,117	10.57	2.02	38.2	77.3	2.5	98	
45	19,549	2.56	0.50	41.2	20.6	19,071	10.57	2.02	37.3	75.2	2.5	96	
46	19,524	2.56	0.50	40.3	20.1	19,022	10.57	2.01	36.4	73.2	2.5	93	
47	19,497	2.56	0.50	39.3	19.6	18,970	10.57	2.01	35.5	71.2	2.5	91	
48	19,469	2.56	0.50	38.4	19.1	18,915	10.57	2.00	34.6	69.2	2.5	88	
49	19,438	2.50	0.50	37.4	18.0	18,857	10.57	1.99	33.7	65.2	2.5	80 92	
50	19,405	2.50	0.50	35.6	17.6	18,795	10.57	1.99	32.0	63.2	2.5	65 81	
52	19,332	2.56	0.49	34.6	17.1	18,659	10.57	1.90	31.0	61.2	2.5	78	
53	19,291	2.56	0.49	33.7	16.6	18,583	10.57	1.97	30.2	59.2	2.5	76	
54	19,247	2.56	0.49	32.8	16.2	18,503	10.57	1.96	29.3	57.3	2.4	73	
55	19,199	2.56	0.49	31.9	15.7	18,417	10.57	1.95	28.4	55.3	2.4	71	
56	19,148	2.56	0.49	30.9	15.2	18,325	10.57	1.94	27.5	53.4	2.4	69	
57	19,092	2.56	0.49	30.0	14.7	18,226	10.57	1.93	26.7	51.4	2.4	66	
58	19,032	2.56	0.49	29.1	14.2	18,120	10.57	1.92	25.8	49.5	2.4	64	
59	18,966	2.56	0.49	28.2	13.7	18,006	10.57	1.90	25.0	4/.6	2.4	61	
FOTAL TO Age 59	19 905	2.43	20	27.2	942	17 994	2 20	0.57	24.1	12.9	0.7	3,760	
61	18,855	0.47	0.09	27.3	2.4	17,884	3.20	0.57	24.1	13.8	0.7	16	
62	18,733	0.47	0.09	25.5	2.3	17.610	3.20	0.56	22.5	12.7	0.7	15	
63	18,641	0.47	0.09	24.6	2.2	17,458	3.20	0.56	21.7	12.1	0.6	14	
64	18,541	0.47	0.09	23.8	2.1	17,293	3.20	0.55	20.9	11.5	0.6	14	
65	18,432	0.47	0.09	22.9	2.0	17,116	3.20	0.55	20.1	11.0	0.6	13	
66	18,312	0.47	0.09	22.0	1.9	16,925	3.20	0.54	19.3	10.4	0.6	12	
67	18,181	0.47	0.09	21.2	1.8	16,719	3.20	0.53	18.5	9.9	0.6	12	
68	18,038	0.47	0.09	20.3	1.7	16,496	3.20	0.53	17.7	9.3	0.6	11	
59 Total to Are 69	17,881	2.09	0.08	19.5	1.6	16,256	3.20	0.52	20.7	8.8 2 021	0.6	2 902	
70	17.709	0.47	0.08	18.7	1.6	15,997	3.20	0.51	16.2	8.3	0.6	10	
71	17,520	0.47	0.08	17.9	1.5	15,718	3.20	0.50	15.5	7.8	0.6	9	
72	17,313	0.47	0.08	17.1	1.4	15,416	3.20	0.49	14.8	7.3	0.6	9	
73	17,085	0.47	0.08	16.3	1.3	15,092	3.20	0.48	14.1	6.8	0.6	8	
74	16,835	0.47	0.08	15.5	1.2	14,742	3.20	0.47	13.4	6.3	0.6	8	
75	16,561	0.47	0.08	14.7	1.2	14,365	3.20	0.46	12.7	5.8	0.5	7	
76	16,260	0.47	0.08	14.0	1.1	13,960	3.20	0.45	12.0	5.4	0.5	6	
77	15,929	0.47	0.08	13.2	1.0	13,526	3.20	0.43	11.4	4.9	0.5	6	
/8 70	15,50/ 15 171	0.47	0.07	12.5 11 9	0.9	13,001	3.20	0.42	10.8 10.1	4.5 // 1	0.5	5	
13	13,1/1	0.47	0.07	11.0	0.0	12,303	5.20	0.40	10.1	7.1	0.5		
Total to Age 79	1,173,570	1.55	22	44.9	974	1,123,045	5.31	78	38.2	2,992	100	3,966	

Annual Visits to a General Practitioner

- We noted previously that our model would use the best in the world screening rate of 54.3% *of those who have had a health care visit in the past year*. Not all of the population ages 18 and older will have an annual health care visit.
- The Canadian Community Health Survey includes questions related to access to primary care providers (PCP). Table 9 presents weighted data for BC in 2015/16¹⁶²⁹ on the proportion of those surveyed who had consulted with a general practitioner or family doctor in the last 12 months. On average, 73.7% of the BC population ages 18 and older visited a PCP in the past 12 months (79.9% of females and 67.2% of males). The proportion also varies by age, with a higher proportion of the population seeing a PCP with increasing age.

Table 9: Consultations with General Practitioner												
or Family Doctor in Last 12 Months												
British Columbia, by Sex and Age Group												
	Female	Male	Total									
Age Group	%	%	%									
18 - 19	65.0%	53.0%	59.1%									
20 - 24	66.0%	45.8%	54.8%									
25 - 29	79.5%	52.4%	66.6%									
30 - 34	81.7%	51.7%	67.0%									
35 - 39	79.8%	63.1%	71.7%									
40 - 44	76.4%	62.8%	69.9%									
45 - 49	78.3%	68.5%	73.2%									
50 - 54	81.5%	65.6%	73.4%									
55 - 59	82.0%	72.8%	77.5%									
60 - 64	80.9%	82.5%	81.6%									
65 - 69	86.7%	84.7%	85.7%									
70 - 74	84.8%	85.9%	85.3%									
75 - 79	85.8%	90.4%	88.0%									
80+	85.7%	86.7%	86.1%									
	79.9%	67.2%	73.7%									

Source: Canadian Community Health Survey 2015/16 Public Use Microdata File (PUMF). All data interpretation by H. Krueger & Associates Inc.

¹⁶²⁹ The question regarding consultations with care providers in the last 12 months was not included in the 2017/18 CCHS survey. However, the age- and sex-specific rates of individuals who reported they had a primary care provider were similar between the 2015/16 survey and the 2017/18 survey.

Effectiveness of the Intervention - Screening

- The USPSTF evidence review found that a number of screening instruments, including single-item drug frequency questions, the Substance Use Brief Screen, the Tobacco, Alcohol, Prescription Medication, and Other Substance Use tool and the Drug Abuse Screening Test (10 items) all had a sensitivity of greater than 0.80 and a specificity of greater than 0.85 for identifying unhealthy drug use. "Based on the range in test accuracy estimates and a prevalence of drug use among adults of 11%, the positive predictive value (PPV) of screening instruments is approximately 40%."¹⁶³⁰ That is, 40% of patients who screen positive for unhealthy drug use actually have unhealthy drug use (i.e. 60% of positive screens are false positive results).
- The PPV of 40% is based on the use of a single screening tool. If we apply the USPSTF sensitivity of 0.80 and specificity of 0.85 to a population with an expected unhealthy drug use prevalence of 9.41% (as in BC), then we get a PPV of 35.7%. The modelled screening approach, however, uses a brief screen followed by a more detailed screen for those who test positive on the brief screen.
- Tiet et al assessed a two-item screening tool for unhealthy drug use in a primary care population, "How many days in the past 12 months have you used drugs other than alcohol?" followed by ""How many days in the past 12 months have you used drugs more than you meant to?" When compared with the results of the Inventory of Drug Use Consequences (InDUC), this two-item tool had a sensitivity of 90.1% and a specificity of 92.4%.¹⁶³¹ If we use this sensitivity and specificity with a prevalence of 9.41%, we get a PPV of 55.1%.
- Smith et al assessed the more detailed 10-item Drug Abuse Screening Test (DAST-10) and found it to have a sensitivity of 80.0% and a specificity of 93.9%.¹⁶³² If we assume this screening test would be used for all those who initially screened positive on the brief two-item screening tool, we get an overall PPV of 94.2% (i.e. a false positive rate of 5.8%)
- For modelling purposes, we assume that the overall sensitivity of the brief screen followed by a detail screen is 72.1% (0.721 = 0.901 * 0.80). We further assume that 94.2% of patients with both a brief and a more detailed positive screen for unhealthy drug use are true positives and 5.8% are false positives.
- Whatever screening tests are ultimately chosen for use in BC, the screening (and intervention) process must be trauma-informed. Many individuals with unhealthy drug use have experienced trauma. Trauma-informed care has been defined as care "that is grounded in an understanding of and responsiveness to the impact of trauma, that emphasizes physical, psychological, and emotional safety for both providers and survivors, and that creates opportunities for survivors to rebuild a sense of control and empowerment.... It also involves vigilance in anticipating and avoiding

¹⁶³⁰ Patnode C, Perdue L, Rushkin M et al. Screening for Unhealthy Drug Use: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2020: 323(22); 2310-2328.

¹⁶³¹ Tiet Q, Leyva Y, Moos R et al. Screen of drug use: Diagnostic accuracy of a new brief tool for primary care. *JAMA Internal Medicine*. 2015:175(8); 1371-7.

¹⁶³² Smith P, Schmidt S, Allensworth-Davies D et al. A single-question screening test for drug use in primary care. *Archives of Internal Medicine*. 2010:170(13);1155-60

institutional processes and individual practices that are likely to retraumatize individuals who already have histories of trauma...¹⁶³³

• Pregnant women and women with children face specific challenges when it comes to screening and treatment. Foremost among these barriers is the stigmatization of women who use substances during pregnancy and/or while parenting and a child welfare policy that makes it difficult for substance-using mothers to disclose that they need help, for fear of losing custody of their children.^{1634,1635} Specific screening tests may be considered when screening for unhealthy drug use during pregnancy.¹⁶³⁶

Screening Frequency / Outcomes

- "There is little evidence about ... the optimal interval for screening in adults older than 18 years."¹⁶³⁷
- In their model assessing the costs and revenues associated with SBIRT for both alcohol and unhealthy drug use, Cowell et al assumed that one full screen would be required for every 3.14 pre-screens and that an average of 30.8% of full screens would lead to a brief intervention (ranging from 24.2% to 37.3%) and 8.1% of full screens would lead to a referral for treatment (ranging from 6.4% to 9.8%).¹⁶³⁸
- In a cohort of 16,419 primary care patients eligible for unhealthy drug use screening studied by Hargraves et al, 5,581 received a pre-screen, 7,303 received a full screen (the 10 item Drug Abuse Screening Test or DAST-10) of which 1,335 scored positive on the full screen and 442 received a brief intervention (33.1% of positive screens). 172 were referred on for further treatment.¹⁶³⁹ Of all patients screened, 34.0% received a pre-screen only and 66.0% received a brief intervention and 2.4% were referred on for further treatment.
- D'Onoforio and Degutis report on the integration of an SBIRT-style program in an urban emergency department. They found that 3,530 of the screened patients had unhealthy drug use in the previous twelve months. Of the patients with unhealthy drug use, 2,315 (65.5%) received a brief intervention.¹⁶⁴⁰

¹⁶³³ Center for Substance Abuse Treatment. *Trauma-informed Care in Behavioral Health Services*. Treatment Improvement Protocol (TIP) Series 57. HHS Publication No. (SMA) 13-4801. Rockville, MD: Substance Abuse and Mental Health Services Administration, 2014.

¹⁶³⁴ Dawson A, Jackson D, Cleary M. Mothering on the margins: Homeless women with an SUD and complex mental health co-morbidities. *Issues in Mental Health Nursing*. 2013; 34: 288-93.

¹⁶³⁵ Schamp J, van Havere T, Simonis S et al. Women's views on barriers and facilitators for seeking alcohol and drug treatment in Belgium. *Nordic Studies on Alcohol and Drugs*. 2021; 38(2): 175-89.

¹⁶³⁶ Chang G. Maternal substance use: Consequences, identification, and interventions. *Alcohol Research*. 2020; 40(2):

¹⁶³⁷ US Preventive Services Task Force. Screening for Unhealthy Drug Use: US Preventive Services Task Force Recommendation Statement. *JAMA*. 2020: 323(22); 2301-9.

¹⁶³⁸ Cowell A, Dowd W, Mills M et al. Sustaining SBIRT in the wild: Simulating revenues and cost for Screening, Brief Intervention and Referral to Treatment programs. *Addiction*. 2017: 112 (Suppl. 2); 101-9.

¹⁶³⁹ Hargraves D, White C, Frederick R et al. Implementing SBIRT (screening, brief intervention and referral to treatment) in primary care: Lessons learned from a multi-practice evaluation portfolio. *Public Health Reviews*. 2017: 38(31).

¹⁶⁴⁰ D'Onofrio G and Degutis LC. Integrating Project ASSERT: a screening, intervention, and referral to treatment program for unhealthy alcohol and drug use into an urban emergency department. *Academic Emergency Medicine*. 2010; 17(8): 903-11.

- There are key differences in the SBIRT interventions modelled by Cowell et al¹⁶⁴¹ and those identified by Hargraves et al.¹⁶⁴² This difference may be due to dissimilarities in SBIRT intervention rates for unhealthy alcohol versus unhealthy drug use. In the same study by Hargraves et al, in the cohort of 22,360 primary care patients eligible for unhealthy alcohol use screening, 12,697 received a pre-screen, 7,361 received a full screen of which 1,840 scored positive on the full screen and 1,009 received a brief intervention. 209 were referred on for further treatment. That is, 13.7% of full screens would lead to a brief intervention (more than double the 6.1% for unhealthy drug use screening) and 2.8% of full screens would lead to a referral for treatment.
- For modelling purposes, we assume that 54.3% of individuals who visit a GP or family physician in a given year would receive a brief screen (as noted previously). Of those screened, 15.4% would have a positive screen (both true and false positive) and would thus require a more detailed screen. Of those receiving a positive result on the detailed screen, 33.1% would receive a brief intervention.¹⁶⁴³ We use the emergency department number of 65.5%¹⁶⁴⁴ receiving a brief intervention as the upper bound in our sensitivity analysis.

Effectiveness of the Intervention – Brief Intervention

- Are pharmacotherapy and/or psychosocial interventions effective at reducing unhealthy drug use in populations whose unhealthy drug use was identified through primary care-based screening with questions about drug use or drug-related risks (*screen-detected populations*)? Evidence from studies of persons seeking or referred for treatment for substance use (*treatment-seeking populations*) might also be useful for informing assessments regarding screening in primary care settings.¹⁶⁴⁵
- "Many drug use disorders are chronic, relapsing conditions, and many persons who start treatment do not complete treatment. Therefore, treatment must often be repeated to stabilize current drug use, reduce relapse, and achieve abstinence or other treatment goals."¹⁶⁴⁶
- "Most brief interventions consisted of a single, personalized counselling session with in-person or computer-based feedback, with or without a telephone or in-person booster session."¹⁶⁴⁷
- For example, in the study by Bernstein et al¹⁶⁴⁸ a trained peer interventionist initiated a motivational interview which involved the following steps: establishing rapport,

¹⁶⁴¹ Cowell A, Dowd W, Mills M et al. Sustaining SBIRT in the wild: Simulating revenues and cost for Screening, Brief Intervention and Referral to Treatment programs. *Addiction*. 2017: 112 (Suppl. 2); 101-9.

¹⁶⁴² Hargraves D, White C, Frederick R et al. Implementing SBIRT (screening, brief intervention and referral to treatment) in primary care: Lessons learned from a multi-practice evaluation portfolio. *Public Health Reviews*. 2017: 38(31).

¹⁶⁴³ Ibid.

¹⁶⁴⁴ D'Onofrio G and Degutis LC. Integrating Project ASSERT: a screening, intervention, and referral to treatment program for unhealthy alcohol and drug use into an urban emergency department. *Academic Emergency Medicine*. 2010; 17(8): 903-11.

¹⁶⁴⁵ Chou R, Dana T, Blazina I et al. *Interventions for Drug Use—Supplemental Report: A Systematic Review for the U.S. Preventive Services Task Force*. Evidence Synthesis No. 187. AHRQ Publication No. 19-05255-EF-2. Rockville, MD: Agency for Healthcare Research and Quality; 2020.

 ¹⁶⁴⁶ US Preventive Services Task Force. Screening for Unhealthy Drug Use: US Preventive Services Task Force Recommendation Statement. *JAMA*. 2020: 323(22); 2301-2309.
 ¹⁶⁴⁷ Ibid.

¹⁶⁴⁸ Bernstein J, Bernstein E, Tassiopoulos K et al. Brief motivational intervention at the clinic visit reduces cocaine and heroin use. *Drug and Alcohol Dependence*. 2005: 77; 49-59.

asking permission to discuss drugs, exploring the pros and cons of drug use, eliciting the gap between real and desired quality of life, and assessing readiness to change on a ruler scaled from 1 (not ready) to 10 (ready). The peer interventionist negotiated an action plan based on examples of the enrollee's past successes in making behavior change. Finally, a handout is given to the patient by the interventionist stating that "based on your screening responses, you would benefit from help with your drug use." This form included a list of treatment options including detox, AA/NA, acupuncture, residential treatment facilities, and harm reduction information about safe sex and needle exchange. This part of the intervention averages 20 min (range 10–45 min), and is completed during the course of clinical care for the problem that initiated the clinic visit, while the patient is waiting for the doctor or for lab results or medications. In a subsequent 5 - 10 minute "booster" call, which occurs ten days later, the original interventionist reviews the action plan and negotiates alternative referrals if necessary.

- In the study by Bogenschutz et al¹⁶⁴⁹ participants were provided with an in-person manual-guided brief intervention based on motivational interviewing principles, including feedback based on screening information and the development of a change plan, while in the emergency department waiting to be seen. The BI lasted an average of 30 minutes and was provided by members of the study staff cross trained as research assistants conducting screening and assessments for the study as well as providing the intervention. In addition to the initial brief intervention, all participants who could be reached received 2 telephone "booster" sessions in which the interventionist checked to see whether they had engaged in treatment, reviewed and reinforced change plans, and sought a commitment from them. Each of these booster calls were approximately 20 minutes long.
- In the study by Ondersma et al¹⁶⁵⁰ females participated in a single 20-minute postpartum computer-based intervention session. No keyboarding was required; all answers were provided by choosing responses from a list or by touching a visual analogue scale. The overall intervention was broken down into components broadly focusing on (a) eliciting the participant's thoughts about change and their perceived advantages of doing so, if any; (b) reviewing feedback regarding how the participant's drug use compares to that of others, and of possible benefits of changing; and (c) optional goal-setting, including a menu of change options.
- Brief interventions are associated with an increased likelihood of abstinence at 3-4 months (RR of 1.46, 95% CI of 1.11 to 2.09) and at 6-12 months (RR of 1.22, 95% CI of 1.08 to 1.42) compared with controls receiving usual care. The effect size of psychosocial interventions is bigger in treatment-seeking populations (RR of 2.08, 95% CI of 1.51 to 3.07) than in screen-detected populations (RR of 1.28, 95% CI of 0.97 to 1.84).¹⁶⁵¹
- For all psychosocial interventions with a follow-up at 6 12 months, the absolute risk difference (ARD) for abstinence is 6% (CI of 2% to 10%). That is, 6% more individuals will be abstinent in the treatment group compared to the control group. The ARD of 6% is based on 14 studies referenced by the USPSTF. In 9 of these

¹⁶⁴⁹ Bogenschutz M, Donovan D, Adinoff B et al. Design of NIDA CTN Protocol 0047: Screening, motivational assessment, referral, and treatment in emergency departments (SMART-ED). *American Journal of Drug and Alcohol Abuse*. 2011: 37(5); 417 - 25.

¹⁶⁵⁰ Ondersma S, Svikis D, Thacker L et al. Computer-delivered screening and brief intervention (e-SBI) for postpartum drug use: A randomized trial. *Journal of Substance Abuse Treatment*. 2014: 46(1); doi:10.1016/j.jsat.2013.07.013.

¹⁶⁵¹ Patnode C, Perdue L, Rushkin M et al. Screening for Unhealthy Drug Use: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2020: 323(22); 2310-2328.

studies (representing 85% of the pooled participants), the psychosocial intervention included just one session, with the remaining five studies including 2, 2, 3, 4 and up to 6 sessions.¹⁶⁵²

- For modelling purposes, we assumed that a brief intervention would be associated with a 6% increase in abstinence. We use 2% to 10% in our sensitivity analysis. To maintain this benefit, we assumed that screening and a brief intervention would need to occur annually. We modified this second assumption for screening and a brief intervention to once every 3 and 5 years in the sensitivity analysis.
- Tables 10 and 11 show the QALYs gained associated with screening and brief behavioural interventions to reduce unhealthy drug use in females (113 QALYs) and males (212 QALYs) between the ages of 18 and 69 in a British Columbia birth cohort of 40,000.
- For each sex we started by displaying the total life years for each age, then the estimated number of those life years lived with unhealthy drug use (from Table 5). We multiplied the life years lived with unhealthy drug use by the proportion of that age group that sees a general practitioner (GP) each year, and then multiplied by the proportion of those seeing their GP who would be screened in depth. This number is then multiplied by the sensitivity of the screening instrument(s), to determine how many of those screened with unhealthy drug use received a positive result. We multiply the number receiving a positive result by the proportion who receive a brief intervention, and multiply that number by the proportion of those receiving a brief intervention who remain abstinent at 12 months. This results in a number for each age and sex of the number of life years lived with unhealthy drug use is associated with a brief intervention. Each year lived with unhealthy drug use is associated with a reduced quality of life and the possibility of a premature death. These consequences of unhealthy drug use would be avoided by those who benefit from a brief intervention.
- For example, for 20-year-old females, 2,569 life years are lived with unhealthy drug use (from Table 5). About 66% of 20-year-old females see a GP in a given year, resulting in 1,695 life years that could be impacted due to GP screening. Primary screens are given to 54.3% of those visiting a GP, so 921 life years can be potentially impacted by a brief intervention. The sensitivity of the first screen (90.4%), correctly identifies 832 life years to advance to the in-depth screen. The in-depth screen sensitivity (80%) correctly identifies 666 life years to offer a brief intervention. The brief intervention is offered to and accepted by 33.1% (or 220) of the 666 20-year-olds identified and 6% of these 220 would cease unhealthy drug use, or 13.2. The 13.2 who ceased unhealthy drug use that year would gain 3.80 QALYs due to not living with unhealthy drug use and 0.16 QALYs due to a reduced risk of a death due to unhealthy drug use. The total QALYs gained in 20-year-old females is thus 3.94.

¹⁶⁵² Chou R, Dana T, Blazina I, et al. *Interventions for Unhealthy Drug Use—Supplemental Report: A Systematic Review for the U.S. Preventive Services Task Force*. Evidence Synthesis, No. 187. 2020. Rockville (MD): Agency for Healthcare Research and Quality.

Table 10: QALYs Gained Through Brief Interventions (BI) for Unhealthy Drug Use (UDU)																	
Females, between the Ages of 18 and 59/69/79																	
	In a British Columbia Birth Cohort of 40,000													Tatal			
	Total Life	# with UDU	Annual GI	P Visits	Basic Se	creen at iP	Positive	Basic	Positive D Scree	etailed en	Accept	ea & ing Bl	from	n a Bl	Living	Death	l otal QALYs
Age	Years	(Table 5)	% (Table 9)	#	%	#	Sensitivity	#	Sensitivity	#	%	#	%	#	With UDU	Avoided	Gained
18	19,891	1,105	65.0%	719	54.3%	390	90.4%	353	80.0%	282	33.1%	93	6.0%	5.6	1.602	0.019	1.62
19	19,885	1,105	65.0%	718	54.3%	390	90.4%	353	80.0%	282	33.1%	93	6.0%	5.6	1.601	0.162	1.76
20	19,878	2,569	66.0%	1,695	54.3%	921	90.4%	832	80.0%	666	33.1%	220	6.0%	13.2	3.779	0.162	3.94
21	19,8/1	2,567	66.0%	1,694	54.3%	920 010	90.4%	832	80.0%	665	33.1%	220	6.0%	13.2	3.776	0.159	3.94
22	19,805	2,560	66.0%	1,693	54.3%	919	90.4% 90.4%	831	80.0%	664	33.1%	220	6.0%	13.2	3.774	0.157	3.93
24	19,847	2,562	66.0%	1,691	54.3%	918	90.4%	830	80.0%	664	33.1%	220	6.0%	13.2	3.768	0.152	3.92
25	19,839	2,560	79.5%	2,034	54.3%	1,105	90.4%	999	80.0%	799	33.1%	264	6.0%	15.9	4.535	0.180	4.71
26	19,830	2,558	79.5%	2,033	54.3%	1,104	90.4%	998	80.0%	798	33.1%	264	6.0%	15.9	4.531	0.177	4.71
27	19,821	2,555	79.5%	2,031	54.3%	1,103	90.4%	997	80.0%	798	33.1%	264	6.0%	15.8	4.527	0.174	4.70
28	19,811	2,555	79.5%	2,029	54.5%	1,102	90.4% 90.4%	990 995	80.0%	796	33.1%	264	6.0%	15.0	4.525	0.171	4.69
30	19,790	1,724	81.7%	1,409	54.3%	765	90.4%	691	80.0%	553	33.1%	183	6.0%	11.0	3.057	0.170	3.23
31	19,779	1,722	81.7%	1,407	54.3%	764	90.4%	691	80.0%	553	33.1%	183	6.0%	11.0	3.054	0.167	3.22
32	19,767	1,721	81.7%	1,406	54.3%	763	90.4%	690	80.0%	552	33.1%	183	6.0%	11.0	3.051	0.164	3.21
33	19,755	1,719	81.7%	1,404	54.3%	762	90.4%	689	80.0%	551	33.1%	183	6.0%	11.0	3.048	0.161	3.21
34	19,742 19,729	1,717	81.7% 79.8%	1,403	54.3% 54.3%	762	90.4% 90.4%	672	80.0% 80.0%	551	33.1%	182	6.0%	10.9	3.044 2 971	0.158	3.20
36	19,715	1,713	79.8%	1,367	54.3%	743	90.4%	671	80.0%	537	33.1%	178	6.0%	10.7	2.968	0.131	3.12
37	19,700	1,711	79.8%	1,366	54.3%	742	90.4%	670	80.0%	536	33.1%	178	6.0%	10.7	2.964	0.145	3.11
38	19,685	1,709	79.8%	1,364	54.3%	741	90.4%	670	80.0%	536	33.1%	177	6.0%	10.6	2.960	0.142	3.10
39	19,669	1,706	79.8%	1,362	54.3%	740	90.4%	669	80.0%	535	33.1%	177	6.0%	10.6	2.956	0.139	3.10
40	19,652	857	76.4%	655	54.3%	355	90.4%	321	80.0%	257	33.1%	85	6.0%	5.1 5 1	1.363	0.138	1.50
41	19,634	855	76.4%	653	54.3%	354	90.4% 90.4%	320	80.0%	257	33.1%	85	6.0%	5.1	1.351	0.133	1.30
43	19,594	853	76.4%	652	54.3%	354	90.4%	320	80.0%	256	33.1%	85	6.0%	5.1	1.357	0.129	1.49
44	19,572	852	76.4%	650	54.3%	353	90.4%	319	80.0%	255	33.1%	85	6.0%	5.1	1.355	0.126	1.48
45	19,549	850	78.3%	665	54.3%	361	90.4%	327	80.0%	261	33.1%	87	6.0%	5.2	1.386	0.126	1.51
46	19,524	849	78.3%	664	54.3%	361	90.4%	326	80.0%	261	33.1%	86	6.0%	5.2	1.383	0.123	1.51
47	19,497 19 469	847 845	78.3% 78.3%	661	54.3% 54.3%	360	90.4% 90.4%	325	80.0% 80.0%	260	33.1%	86 86	6.0%	5.2 5.2	1.380	0.120	1.50
49	19,438	843	78.3%	660	54.3%	358	90.4%	324	80.0%	259	33.1%	86	6.0%	5.1	1.374	0.117	1.49
50	19,405	767	81.5%	625	54.3%	340	90.4%	307	80.0%	246	33.1%	81	6.0%	4.9	1.251	0.115	1.37
51	19,370	765	81.5%	624	54.3%	339	90.4%	306	80.0%	245	33.1%	81	6.0%	4.9	1.247	0.112	1.36
52	19,332	763	81.5%	622	54.3%	338	90.4%	305	80.0%	244	33.1%	81	6.0%	4.9	1.244	0.109	1.35
53	19,291	761	81.5% 81.5%	620 619	54.3%	337	90.4%	304	80.0%	244	33.1%	81	6.0%	4.8	1.240	0.106	1.35
55	19,247	756	81.5%	619	54.3%	336	90.4%	303	80.0%	243	33.1%	80 81	6.0%	4.8	1.230	0.103	1.34
56	19,148	753	82.0%	617	54.3%	335	90.4%	303	80.0%	242	33.1%	80	6.0%	4.8	1.234	0.097	1.33
57	19,092	750	82.0%	614	54.3%	334	90.4%	302	80.0%	241	33.1%	80	6.0%	4.8	1.229	0.094	1.32
58	19,032	746	82.0%	612	54.3%	332	90.4%	300	80.0%	240	33.1%	80	6.0%	4.8	1.223	0.091	1.31
59 Total to Age 59	18,966	/43	82.0%	609	54.3%	331	90.4%	299	80.0%	239	33.1%	/9 6 066	6.0%	4./	1.21/	0.088	1.30
60	18.895	415	80.9%	336	54.3%	182	90.4%	165	80.0%	132	33.1%	44	6.0%	2.6	0.654	0.015	0.67
61	18,817	413	80.9%	334	54.3%	181	90.4%	164	80.0%	131	33.1%	43	6.0%	2.6	0.650	0.015	0.67
62	18,733	410	80.9%	332	54.3%	180	90.4%	163	80.0%	130	33.1%	43	6.0%	2.6	0.646	0.014	0.66
63	18,641	407	80.9%	329	54.3%	179	90.4%	162	80.0%	129	33.1%	43	6.0%	2.6	0.642	0.014	0.66
64 65	18,541	404	80.9%	327	54.3%	178	90.4%	161 171	80.0%	128 127	33.1%	43 ⊿⊏	6.0%	2.6	0.637	0.013	0.65
66	18.312	398	86.7%	340 345	54.3%	187	90.4%	169	80.0%	135	33.1%	45	6.0%	2.7	0.672	0.013	0.68
67	18,181	394	86.7%	342	54.3%	185	90.4%	168	80.0%	134	33.1%	44	6.0%	2.7	0.666	0.012	0.68
68	18,038	390	86.7%	338	54.3%	184	90.4%	166	80.0%	133	33.1%	44	6.0%	2.6	0.659	0.012	0.67
69	17,881	385	86.7%	334	54.3%	181	90.4%	164	80.0%	131	33.1%	43	6.0%	2.6	0.651	0.011	0.66
Total to Age 69	1,007,621	65,057	76.9%	50,034	54.3%	27,169	QO /10/	24,560	<u>80 0%</u>	19,648	33.1%	6,504	6.0%	390	<u>107.4</u>	5.8 0.010	<u>113.2</u>
70	17.520	95 91	84.8%	78	54.3%	45 42	90.4%	38	80.0%	30	33.1%	10	6.0%	0.6	0.143	0.010	0.15
72	17,313	90	84.8%	76	54.3%	41	90.4%	37	80.0%	30	33.1%	10	6.0%	0.6	0.141	0.009	0.15
73	17,085	89	84.8%	75	54.3%	41	90.4%	37	80.0%	29	33.1%	10	6.0%	0.6	0.139	0.009	0.15
74	16,835	87	84.8%	74	54.3%	40	90.4%	36	80.0%	29	33.1%	10	6.0%	0.6	0.136	0.008	0.14
75	16,561	85	85.8%	73	54.3%	40	90.4%	36	80.0%	29	33.1%	9	6.0%	0.6	0.135	0.008	0.14
/6 77	16,260 15 070	୪3 ହୀ	85.8% 85.8%	/1 70	54.3% 54.3%	39 38	90.4% 90.4%	35 34	80.0% 80.0%	28 27	33.1% 33.1%	9	ь.0% 6.0%	0.6 0.5	0.132	0.007	0.14
78	15,567	79	85.8%	68	54.3%	37	90.4%	33	80.0%	27	33.1%	9	6.0%	0.5	0.125	0.006	0.14
79	15,171	76	85.8%	66	54.3%	36	90.4%	32	80.0%	26	33.1%	9	6.0%	0.5	0.121	0.006	0.13
Total to Age 79	1,173,570	65,912	77.0%	50,763	54.3%	27,564		24,918		19,934	33.1%	6,598	6.0%	396	108.7	5.9	114.6
															·		

Table 11: QALYs Gained Through Brief Interventions (BI) for Unhealthy Drug Use (UDU)																	
	Males, between the Ages of 18 and 59/69/79																
	# with Screened In Positive Rasic Positive Detailed Offered & Renefitting OALYs Gained														Total		
	Total Life	UDU	Annual G	P Visits	Depth	at GP	Scree	n	Scree	n	Accep	ting BI	from	n a Bl	Living with	Death	QALYs
Age	Years	(Table 5)	% (Table 9)	#	%	#	Sensitivity	#	Sensitivity	#	%	#	%	#	UDU	Avoided	Gained
18	19,870	2,521	53.0%	1,337	54.3%	726	90.4%	656	80.0%	525	33.1%	174	6.0%	10	3.208	0.013	3.22
19	19,858	2,520	53.0%	1,336	54.3%	726	90.4%	656	80.0%	525	33.1%	174	6.0%	10 21	3.206	0.350	3.56
20	19,845	5,857	45.8%	2,680	54.3%	1,455	90.4% 90.4%	1,316	80.0%	1,055	33.1%	349 348	6.0%	21	6.432	0.297	6.73
22	19,807	5,853	45.8%	2,678	54.3%	1,454	90.4%	1,315	80.0%	1,052	33.1%	348	6.0%	21	6.427	0.287	6.71
23	19,786	5,849	45.8%	2,676	54.3%	1,453	90.4%	1,314	80.0%	1,051	33.1%	348	6.0%	21	6.422	0.282	6.70
24	19,763	5,844	45.8%	2,674	54.3%	1,452	90.4%	1,313	80.0%	1,050	33.1%	348	6.0%	21	6.418	0.277	6.69
25	19,739	5,839	52.4%	3,058	54.3%	1,661	90.4%	1,501	80.0%	1,201	33.1%	398	6.0%	24	7.338	0.312	7.65
26	19,714 19,689	5,834 5,829	52.4% 52.4%	3,055	54.3% 54.3%	1,659	90.4% 90.4%	1,500	80.0% 80.0%	1,200	33.1%	397	6.0%	24 24	7.332	0.306	7.64
28	19,662	5,824	52.4%	3,050	54.3%	1,656	90.4%	1,497	80.0%	1,198	33.1%	396	6.0%	24	7.319	0.295	7.61
29	19,635	5,818	52.4%	3,047	54.3%	1,655	90.4%	1,496	80.0%	1,197	33.1%	396	6.0%	24	7.312	0.289	7.60
30	19,607	3,933	51.7%	2,032	54.3%	1,103	90.4%	997	80.0%	798	33.1%	264	6.0%	16	4.747	0.280	5.03
31	19,579	3,929	51.7%	2,030	54.3%	1,102	90.4%	996	80.0%	797	33.1%	264	6.0%	16	4.742	0.275	5.02
32	19,550	3,925	51.7% 51.7%	2,027	54.3%	1,101	90.4%	995	80.0%	796	33.1%	264	6.0%	16 16	4.737	0.269	5.01
34	19,520	3,921	51.7%	2,025	54.3%	1,100	90.4% 90.4%	994 993	80.0%	795	33.1%	263	6.0%	16	4.732	0.254	4.99
35	19,458	3,912	63.1%	2,470	54.3%	1,341	90.4%	1,212	80.0%	970	33.1%	321	6.0%	19	5.771	0.309	6.08
36	19,425	3,907	63.1%	2,467	54.3%	1,340	90.4%	1,211	80.0%	969	33.1%	321	6.0%	19	5.765	0.302	6.07
37	19,392	3,902	63.1%	2,464	54.3%	1,338	90.4%	1,210	80.0%	968	33.1%	320	6.0%	19	5.757	0.296	6.05
38	19,357	3,897	63.1%	2,461	54.3%	1,336	90.4%	1,208	80.0%	966	33.1%	320	6.0%	19	5.750	0.289	6.04
39	19,321	3,892	63.1% 62.8%	2,458	54.3% 54.3%	1,334	90.4%	1,206	80.0% 80.0%	965 482	33.1%	319 160	6.0%	19	5.742	0.282	6.02 3.17
40	19,285	1,950	62.8%	1,227	54.3%	666	90.4%	602	80.0%	481	33.1%	159	6.0%	10	2.732	0.408	3.16
42	19,204	1,950	62.8%	1,224	54.3%	665	90.4%	601	80.0%	481	33.1%	159	6.0%	10	2.744	0.398	3.14
43	19,162	1,947	62.8%	1,222	54.3%	663	90.4%	600	80.0%	480	33.1%	159	6.0%	10	2.739	0.388	3.13
44	19,117	1,943	62.8%	1,220	54.3%	662	90.4%	599	80.0%	479	33.1%	159	6.0%	10	2.735	0.378	3.11
45	19,071	1,940	68.5%	1,328	54.3%	721	90.4%	652	80.0%	522	33.1%	173	6.0%	10	2.978	0.402	3.38
46	19,022 18 970	1,936	68.5%	1,326	54.3% 54.3%	720	90.4% 90.4%	651 649	80.0% 80.0%	521 519	33.1%	172	6.0%	10	2.972	0.391	3.30
48	18,915	1,928	68.5%	1,320	54.3%	717	90.4%	648	80.0%	518	33.1%	172	6.0%	10	2.960	0.370	3.33
49	18,857	1,923	68.5%	1,317	54.3%	715	90.4%	646	80.0%	517	33.1%	171	6.0%	10	2.953	0.359	3.31
50	18,795	1,751	65.6%	1,149	54.3%	624	90.4%	564	80.0%	451	33.1%	149	6.0%	9	2.473	0.334	2.81
51	18,729	1,746	65.6%	1,146	54.3%	622	90.4%	562	80.0%	450	33.1%	149	6.0%	9	2.467	0.324	2.79
52	18,659	1,741	65.6%	1,143	54.3%	620	90.4%	561	80.0%	449	33.1%	149	6.0%	9	2.460	0.313	2.77
53	18,503	1,730	65.6%	1,139	54.5%	617	90.4%	557	80.0%	447	33.1%	140	6.0%	9	2.452	0.303	2.70
55	18,417	1,724	72.8%	1,256	54.3%	682	90.4%	616	80.0%	493	33.1%	163	6.0%	10	2.704	0.314	3.02
56	18,325	1,717	72.8%	1,251	54.3%	679	90.4%	614	80.0%	491	33.1%	163	6.0%	10	2.693	0.303	3.00
57	18,226	1,710	72.8%	1,246	54.3%	677	90.4%	612	80.0%	489	33.1%	162	6.0%	10	2.682	0.292	2.97
58	18,120	1,703	72.8%	1,240	54.3%	674	90.4%	609	80.0%	487	33.1%	161	6.0%	10	2.670	0.281	2.95
59 Total to Age 59	18,006	1,695	72.8%	1,234	54.3%	6/0	90.4%	606 38 512	80.0%	485	33.1%	160	6.0%	10 612	2.657 181 9	13.0	2.93
60	17.884	947	82.5%	781	54.3%	424	90.4%	383	80.0%	307	33.1%	10,138	6.0%	6	1.638	0.089	1.73
61	17,752	941	82.5%	776	54.3%	422	90.4%	381	80.0%	305	33.1%	101	6.0%	6	1.629	0.085	1.71
62	17,610	936	82.5%	772	54.3%	419	90.4%	379	80.0%	303	33.1%	100	6.0%	6	1.619	0.081	1.70
63	17,458	929	82.5%	766	54.3%	416	90.4%	376	80.0%	301	33.1%	100	6.0%	6	1.608	0.078	1.69
64 65	17,293	922	82.5% 81 7%	/61 77⊑	54.3% 54.2%	413 421	90.4% 90.4%	3/3 280	80.0% 80.0%	299 204	33.1% 32.1%	99 101	ь.0% 6.0%	6	1.596	0.0/4 0.072	1.6/ 1.70
66	16.925	907	84.7%	768	54.3%	417	90.4%	377	80.0%	304	33.1%	101	6.0%	6	1.611	0.072	1.68
67	16,719	898	84.7%	761	54.3%	413	90.4%	373	80.0%	299	33.1%	99	6.0%	6	1.596	0.065	1.66
68	16,496	889	84.7%	753	54.3%	409	90.4%	369	80.0%	296	33.1%	98	6.0%	6	1.579	0.062	1.64
69	16,256	879	84.7%	744	54.3%	404	90.4%	365	80.0%	292	33.1%	97	6.0%	6	1.561	0.058	1.62
Total to Age 69	978,605	148,410	58.0%	86,112	54.3%	46,759	00 49/	42,270	80.00/	33,816	33.1%	11,193	6.0%	672	198.0	13.8	211.7
70	15,997 15 718	212	65.9% 85.9%	182 179	54.3% 54 3%	99 97	90.4% 90.4%	89 88	80.0%	71 70	53.1% 33.1%	24 23	0.0% 6.0%	1 1	0.361	0.050	0.42
72	15,416	205	85.9%	176	54.3%	96	90.4%	87	80.0%	69	33.1%	23	6.0%	1	0.351	0.049	0.40
73	15,092	202	85.9%	173	54.3%	94	90.4%	85	80.0%	68	33.1%	23	6.0%	1	0.345	0.045	0.39
74	14,742	198	85.9%	170	54.3%	92	90.4%	84	80.0%	67	33.1%	22	6.0%	1	0.338	0.042	0.38
75	14,365	194	90.4%	175	54.3%	95	90.4%	86	80.0%	69	33.1%	23	6.0%	1	0.349	0.041	0.39
76	13,960	190	90.4%	171	54.3%	93	90.4%	84 82	80.0%	67 66	33.1%	22	6.0%	1	0.341	0.038	0.38
78	13,520 13.061	180	90.4%	162	54.3%	88	90.4% 90.4%	o∠ 80	80.0%	64	33,1%	22 21	6.0%	1	0.332	0.035	0.37
79	12,563	174	90.4%	157	54.3%	85	90.4%	77	80.0%	62	33.1%	20	6.0%	1	0.313	0.029	0.34
Total	1.123.045	150.359	58.4%	87,827	54.3%	47,690		43,112		34,489	33,1%	11.416	6.0%	685	201.4	14.2	215.6
10101	_,,040		20.4/0	21,021	- 1.3/0	,000				, - 0J	/0	,-10	210/0		202.7	-716	

Potential Harms Associated with the Interventions

- The USPSTF notes that their recommendation statement applies to "settings and populations for which services for accurate diagnosis, effective treatment, and appropriate care can be offered or referred. The net benefit assessment does not apply to settings and populations for which treatment is not provided or the result of screening is punitive."¹⁶⁵³
- Four studies of psychosocial interventions reported no adverse events, in either the experimental of control groups.¹⁶⁵⁴

Summary of CPB – Males and Females

• Other assumptions used in assessing CPB are detailed in the Reference Document.

Based on these assumptions, the CPB associated with screening and brief behavioural interventions to reduce unhealthy drug use in adults 18 years to 69 years old in a British Columbia birth cohort of 40,000 is 325 QALYs, 113 QALYs in females and 212 QALYs in males (Table 12, rows *w*, *x*, *y*). The CPB of 325 represents the gap between no coverage and the 'best in the world' screening coverage estimated at 54.3% of those with an annual visit to a primary care provider. In addition, it assumes that 33.1% of individuals identified with unhealthy drug use would receive a brief intervention.

Т	Table 12: CPB of Screening for Unhealthy Drug Use and Brief Intervention											
	Ages 18 - 69											
	In a BC Birth Cohort of 40.000											
Row Label	Variable	Base case	Data Source									
	Total Burden (QALYs) in Birth Cohort											
а	Upper age limit used in analysis	69	V									
b	Life years lived between the ages of 18 and 69 - Females	1,007,621	Table 3									
С	Life years lived between the ages of 18 and 69 - Males	978,605	Table 3									
d	Life years with unhealthy drug use (excluding cannabis) - Females	32,616	Table 3									
е	Life years with cannabis use disorder - Females	32,442	Table 3									
f	Life years with unhealthy drug use (excluding cannabis) - Males	88,787	Table 3									
g	Life years with cannabis use disorder - Males	59,623	Table 3									
h	Disability weight unhealthy drug use (excluding cannabis)	0.436	Table 4									
i	Disability weight cannabis use disorder	0.189	Table 4									
j	QALYs lost with unhealthy drug use - Females	17,938	Table 5									
k	QALYs lost with unhealthy drug use - Males	44,055	Table 5									
	Life years lost attributable to unhealthy drug use - Females	962	Table 8									
m	Life years lost attributable to unhealthy drug use - Males	2,931	Table 8									
n	Total QALYs lost - Females	18,900	= j + l									
0	Total QALYs lost - Males	46,986	= k + m									
р	Total QALYs lost	65,886										
	Clinically Preventable Burden (CPB)											
q	Screening frequency (in years)	1	V									
r	Proportion screened with basic screen	54.3%	V									
S	Sensitivity of basic screen	90%	V									
t	Sensitivity of detailed screen	80.0%	V									
u	Proportion of positive in depth screens accepting behavioural intervention	33.1%	V									
v	Cessation of unhealthy drug use in those receiving behavioural intervention	6.0%	V									
w	QALYs gained - Females	113	Table 10									
х	QALYs gained - Males	212	Table 11									
у	Total QALYs gained (CPB)	325	= w + x									

v = Estimates from the literature

¹⁶⁵³ US Preventive Services Task Force. Screening for Unhealthy Drug Use: US Preventive Services Task Force Recommendation Statement. *JAMA*. 2020: 323(22); 2301-2309.

¹⁶⁵⁴ Patnode C, Perdue L, Rushkin M et al. Screening for Unhealthy Drug Use: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2020: 323(22); 2310-2328.

Sensitivity Analysis – Males and Females

We also modified several major assumptions and recalculated the CPB as follows:

- Reduced QoL impact. Use the lower limit of the disability weights from the GBD Study for opioid use (mild = .221, severe = .510), cocaine use (mild = .074, severe = .324), amphetamine use (mild = .051, severe = .329), and cannabis use disorder (mild = .024, severe = .178). (Aggregate weights calculated in Table 4 and shown in Table 12, rows *h* & *i*): CPB = 232
- Increased QoL impact. Use the upper limit of the disability weights from the GBD Study for opioid use (mild = .473, severe = .843), cocaine use (mild = .165, severe = .634), amphetamine use (mild = .114, severe = .637), and cannabis use disorder (mild = .060, severe = .364). (Aggregate weights calculated in Table 4 and shown in Table 12, rows *h* & *i*): CPB = 416
- Assume that the proportion of positively screened individuals receiving behavioural intervention increases from 33.1% to 65.5% (Table 12, row u): CPB = **643**
- Assume that the drug use cessation rate resulting from behavioural intervention decreases from 6% to 2% (Table 12, row *v*): CPB = **108**
- Assume that the drug use cessation rate resulting from behavioural intervention increases from 6% to 10% (Table 12, row v): CPB = 542
- Model from ages 18 through 79 (an additional 10 years modelled above the baseline age of 69 Table 12, row *a*): CPB = 330
- Model from ages 18 through 59 (a reduction of 10 years modelled compared to baseline age of 69 Table 12, row *a*): CPB = 301

Summary of CPB – Females Only

We ran the same analyses, with the same assumptions as above, but for females only. The CPB associated with screening and brief behavioural interventions to reduce unhealthy drug use in females 18 years to 69 years old in a British Columbia birth cohort of 40,000 is 113 QALYs. (Table 13, row *p*). The CPB of 113 represents the gap between no coverage and the 'best in the world' screening coverage estimated at 54.3% of those with an annual visit to a primary care provider. In addition, it assumes that 33.1% of individuals identified with unhealthy drug use would receive a brief intervention.

	Table 13: CPB of Screening for Unhealthy Drug Use and Brief Intervention											
	Females, Ages 18 - 69											
	In a BC Birth Cohort of 40,000											
Row Label	Variable	Base case	Data Source									
	Total Burden (QALYs) in Birth Cohort											
а	Upper age limit used in analysis	69	V									
b	Life years lived between the ages of 18 and 69 - Females	1,007,621	Table 3									
с	Life years with unhealthy drug use (excluding cannabis) - Females	32,616	Table 3									
d	Life years with cannabis use disorder - Females	32,442	Table 3									
e	Disability weight unhealthy drug use (excluding cannabis)	0.436	Table 4									
f	Disability weight cannabis use disorder	0.189	Table 4									
g	QALYs lost with unhealthy drug use - Females	17,938	Table 5									
h	Life years lost attributable to unhealthy drug use - Females	962	Table 8									
i	Total QALYs lost - Females	18,900	= g + h									
	Clinically Preventable Burden (CPB)											
j	Screening frequency (in years)	1	V									
k	Proportion screened with basic screen	54.3%	V									
I	Sensitivity of basic screen	90%	V									
m	Sensitivity of detailed screen	80.0%	V									
n	Proportion of positive in depth screens accepting behavioural intervention	33.1%	V									
0	Cessation of unhealthy drug use in those receiving behavioural intervention	6.0%	V									
р	QALYs gained - Females	113	Table 10									
q	Total QALYs gained (CPB)	113	= p									

√ = *Estimates from the literature*

Sensitivity Analysis - Females Only

We also modified several major assumptions and recalculated the CPB for females only as follows:

- Reduced QoL impact. Use the lower limit of the disability weights from the GBD Study for opioid use (mild = .221, severe = .510), cocaine use (mild = .074, severe = .324), amphetamine use (mild = .051, severe = .329), and cannabis use disorder (mild = .024, severe = .178). (Aggregate weights calculated in Table 4 and shown in Table 13, rows *e* & *f*): CPB = 80
- Increased QoL impact. Use the upper limit of the disability weights from the GBD Study for opioid use (mild = .473, severe = .843), cocaine use (mild = .165, severe = .634), amphetamine use (mild = .114, severe = .637), and cannabis use disorder (mild = .060, severe = .364). (Aggregate weights calculated in Table 4 and shown in Table 13, rows *e* & *f*): CPB = 146
- Assume that the proportion of positively screened individuals receiving behavioural intervention increases from 33.1% to 65.5% (Table 13, row *n*): CPB = 224
- Assume that the drug use cessation rate resulting from behavioural intervention decreases from 6% to 2% (Table 13, row *o*): CPB = **38**
- Assume that the drug use cessation rate resulting from behavioural intervention increases from 6% to 10% (Table 13, row *o*): CPB = 189
- Model from ages 18 through 79 (an additional 10 years modelled above the baseline age of 69 Table 13, row *a*): CPB = 115

• Model from ages 18 through 59 (a reduction of 10 years modelled compared to baseline age of 69 – Table 13, row *a*): CPB = 106

Summary of CPB – Males Only

We ran the same analyses, with the same assumptions as above, but for males only. The CPB associated with screening and brief behavioural interventions to reduce unhealthy drug use in males 18 years to 69 years old in a British Columbia birth cohort of 40,000 is 212 QALYs. (Table 14, row *p*). The CPB of 212 represents the gap between no coverage and the 'best in the world' screening coverage estimated at 54.3% of those with an annual visit to a primary care provider. In addition, it assumes that 33.1% of individuals identified with unhealthy drug use would receive a brief intervention.

	Table 14: CPB of Screening for Unhealthy Drug Use and Brief Intervention											
	Males, Ages 18 - 69											
	In a BC Birth Cohort of 40,000											
Row Label	Variable	Base case	Data Source									
	Total Burden (QALYs) in Birth Cohort											
а	Upper age limit used in analysis	69	V									
b	Life years lived between the ages of 18 and 69 - Males	978,605	Table 3									
с	Life years with unhealthy drug use (excluding cannabis) - Males	88,787	Table 3									
d	Life years with cannabis use disorder - Males	59,623	Table 3									
e	Disability weight unhealthy drug use (excluding cannabis)	0.436	Table 4									
f	Disability weight cannabis use disorder	0.189	Table 4									
g	QALYs lost with unhealthy drug use - Males	44,055	Table 5									
h	Life years lost attributable to unhealthy drug use - Males	2,931	Table 8									
i	Total QALYs lost - Males	46,986	= g + h									
	Clinically Preventable Burden (CPB)											
j	Screening frequency (in years)	1	V									
k	Proportion screened with basic screen	54.3%	V									
I	Sensitivity of basic screen	90%	V									
m	Sensitivity of detailed screen	80.0%	V									
n	Proportion of positive in depth screens accepting behavioural intervention	33.1%	V									
0	Cessation of unhealthy drug use in those receiving behavioural intervention	6.0%	V									
р	QALYs gained - Males	212	Table 11									
q	Total QALYs gained (CPB)	212	= p									

√ = Estimates from the literature

Sensitivity Analysis – Males Only

We also modified several major assumptions and recalculated the CPB for males only as follows:

- Reduced QoL impact. Use the lower limit of the disability weights from the GBD Study for opioid use (mild = .221, severe = .510), cocaine use (mild = .074, severe = .324), amphetamine use (mild = .051, severe = .329), and cannabis use disorder (mild = .024, severe = .178). (Aggregate weights calculated in Table 4 and shown in Table 14, rows *e* & *f*): CPB = 152
- Increased QoL impact. Use the upper limit of the disability weights from the GBD Study for opioid use (mild = .473, severe = .843), cocaine use (mild = .165, severe = .634), amphetamine use (mild = .114, severe = .637), and cannabis use disorder (mild = .060, severe = .364). (Aggregate weights calculated in Table 4 and shown in Table 14, rows *e* & *f*): CPB = 270

- Assume that the proportion of positively screened individuals receiving behavioural intervention increases from 33.1% to 65.5% (Table 14, row *n*): CPB = **419**
- Assume that the drug use cessation rate resulting from behavioural intervention decreases from 6% to 2% (Table 14, row *o*): CPB = **71**
- Assume that the drug use cessation rate resulting from behavioural intervention increases from 6% to 10% (Table 14, row *o*): CPB = 353
- Model from ages 18 through 79 (an additional 10 years modelled above the baseline age of 69 Table 14, row *a*): CPB = 216
- Model from ages 18 through 59 (a reduction of 10 years modelled compared to baseline age of 69 Table 14, row *a*): CPB = 195

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with screening and brief behavioural interventions to reduce unhealthy drug use in adults 18 to 69 years of age in a British Columbia birth cohort of 40,000.

In estimating CE, we made the following assumptions:

Number of Screens and Brief Behavioural Interventions

- We assume that brief interventions are given based on a positive in-depth screen, which includes individuals with both true- and false-positive screen results.
- Tables 15 and 16 provide an estimate of the number of basic and full screens required • between the ages of 18 and 69 in a BC birth cohort of 40,000 as well as the total number of positive screen results. To calculate this we first multiply the GP screening rate (54.3%) by annual GP visits. We then take the true positive basic screen results from Tables 10 and 11 and divide by the positive predictive value of the basic screen (55.1%) to get the number of positive basic screens (including false positives). This gives us the total number of detailed screens that would be administered. We perform a similar calculation on the true positives from the detailed screen (see Tables 10 and 11) using a positive predictive value of 94.2%. The result is the total number of positive detailed screens (including false positives). Furthermore, we assume that patients are offered and accept a brief intervention at a rate of 33.1%, regardless of whether their screen was a true- or false-positive. On the other hand, the benefits of a brief intervention are only realized when the individual is truly positive for unhealthy drug use. That is, there are costs associated with providing a brief intervention to an individual who is false-positive but no benefits.
- Based on these assumptions, between the ages of 18 and 69 in a BC birth cohort of 40,000 430,165 basic screens would be completed in females and 339,745 in males followed by 24,560 detailed screens in females and 42,270 in males. The detailed screening would result in 20,858 positive (both true- and false-positive) screens in females and 35,898 in males. The positive screens would be followed by 7,761 brief interventions in females and 11,882 in males (Tables 15 & 16).

	Table	15: Nun	nber S	creene	d and A	ccepti	ing Beh	aviou	ral Inte	ervent	ion		
			Female	es, betwe	en the A	Ages of	18 and	59/69/	79				
				n a British	Columbia I	Birth Coh	ort of 40,0	000 Total	True		Total		
				GP Basic	Basic	Positive	Value	Positive	Positive	Detailed	Detailed		
				Screening	Screens	Basic	Basic	Basic	Detailed	Screen	Positive	т	otal
Age	Total Life Vears	Annual GI % (Table 9)	P Visits #	Rate %	Conducted #	Screens # (Table	Screen %	Screens #	Screens #(Table	PPV %	Screens #	Acce %	pting BI #
18	19 891	65.0%	12 931	54%	7 021	353	55%	640	282	94%	300	33%	99
19	19,885	65.0%	12,931	54%	7,019	353	55%	640	282	94%	299	33%	99
20	19,878	66.0%	13,117	54%	7,123	832	55%	1,510	666	94%	707	33%	234
21	19,871	66.0%	13,113	54%	7,120	832	55%	1,509	665	94%	706	33%	234
22	19,863	66.0%	13,108	54%	7,117	831	55%	1,508	665	94%	706	33%	234
23	19,855	66.0%	13,102	54%	7,115	831	55%	1,507	664	94%	705	33%	233
24	19,847	55.0%	13,097	54%	7,112 8 562	83U 999	55%	1,506	554 799	94%	705 848	33%	233 281
25	19,839	79.5%	15,760	54%	8,558	998	55%	1,812	798	94%	847	33%	281
27	19,821	79.5%	15,753	54%	8,554	997	55%	1,809	798	94%	847	33%	280
28	19,811	79.5%	15,745	54%	8,550	996	55%	1,808	797	94%	846	33%	280
29	19,801	79.5%	15,737	54%	8,545	995	55%	1,806	796	94%	845	33%	280
30	19,790	81.7%	16,168	54%	8,779	691	55%	1,255	553	94%	587	33%	194
31	19,779	81.7%	16,159	54%	8,774	691	55%	1,254	553	94%	587	33%	194
32	19,767	81.7%	16,149	54%	8,769	690	55%	1,252	552	94%	586	33%	194
33	19,755	81.7%	16,139	54%	8,764	689	55%	1,251	551	94%	585	33%	194
34	19,742	81.7% 79.8%	15,129	54%	8,758 8,553	672	55%	1,250	538	94% 94%	585	33% 33%	194
36	19,725	79.8%	15,740	54%	8,535	671	55%	1,220	537	94%	570	33%	189
37	19,700	79.8%	15,728	54%	8,540	670	55%	1,217	536	94%	569	33%	188
38	19,685	79.8%	15,716	54%	8,534	670	55%	1,215	536	94%	569	33%	188
39	19,669	79.8%	15,703	54%	8,527	669	55%	1,214	535	94%	568	33%	188
40	19,652	76.4%	15,006	54%	8,148	321	55%	583	257	94%	273	33%	90
41	19,634	76.4%	14,992	54%	8,141	321	55%	582	257	94%	272	33%	90
42	19,615	76.4%	14,977	54%	8,133	320	55%	581	256	94%	272	33%	90
43	19,594	76.4%	14,961	54%	8,124	320	55%	580	256	94%	272	33%	90
44	19,572	70.4%	14,945	54%	8,115	319	55%	5/9	255	94% 94%	271	33% 33%	90
45	19,549	78.3%	15,300	54%	8,308	326	55%	592	201	94%	277	33%	92
47	19,497	78.3%	15.259	54%	8.286	325	55%	591	260	94%	276	33%	91
48	19,469	78.3%	15,237	54%	8,274	325	55%	589	260	94%	276	33%	91
49	19,438	78.3%	15,213	54%	8,261	324	55%	588	259	94%	275	33%	91
50	19,405	81.5%	15,814	54%	8,587	307	55%	557	246	94%	261	33%	86
51	19,370	81.5%	15,785	54%	8,571	306	55%	556	245	94%	260	33%	86
52	19,332	81.5%	15,754	54%	8,555	305	55%	554	244	94%	259	33%	86
53	19,291	81.5%	15,721	54%	8,536	304	55%	552	244	94%	259	33%	86
54	19,247	81.5%	15,685	54%	8,517	303	55%	551	243	94%	258	33% 22%	85
56	19,199	82.0%	15,735	54%	8 521	304	55%	550	243	94%	258	33%	85 85
50	19.092	82.0%	15.647	54%	8,496	302	55%	547	241	94%	256	33%	85
58	19,032	82.0%	15,597	54%	8,469	300	55%	545	240	94%	255	33%	84
59	18,966	82.0%	15,544	54%	8,440	299	55%	542	239	94%	254	33%	84
Total to Age 59	823,150		637,684		346,263	22,909		41,577	18,327		19,456		6,440
60	18,895	80.9%	15,282	54%	8,298	165	55%	299	132	94%	140	94%	132
61	18,817	80.9%	15,219	54%	8,264	164	55%	297	131	94%	139	94%	131
62	18,733	80.9%	15,151	54%	8,227	163	55%	295	130	94%	138	94%	130
64	18,041	80.9%	14 006	54%	8,187 9 1 <i>1</i> 2	161	55%	293	129	94%	137	94% 04%	129
65	18,341	86.7%	15 986	54%	8 681	101	55%	310	120	94%	130	94%	120
66	18,312	86.7%	15,883	54%	8,624	169	55%	307	135	94%	144	94%	135
67	18,181	86.7%	15,769	54%	8,563	168	55%	304	134	94%	142	94%	134
68	18,038	86.7%	15,645	54%	8,495	166	55%	301	133	94%	141	94%	133
69	17,881	86.7%	15,509	54%	8,421	164	55%	298	131	94%	139	94%	131
Total to Age 69	1,007,621		792,200		430,165	24,560		44,574	19,648		20,858		7,761
70	17,709	84.8%	15,015	54%	8,153	39	55%	70	31	94%	33	94%	31
/1 72	17,520	84.8%	14,855	54% E 494	8,066	38 27	55%	69	30	94%	32	94%	30
72	17,313 17 0⁰⊑	84.8%	14,679 14 496	54% 5 <i>4</i> %	7,971	3/ 27	55% 55%	67	3U 20	94% 0/%	32 21	94% Q/%	3U 20
73	16 835	84.8%	14 774	54%	7,000	36	55%	66	29	94%	21	J+⁄0 94%	29 29
75	16,561	85.8%	14,215	54%	7,719	36	55%	65	29	94%	30	94%	29
76	16,260	85.8%	13,956	54%	7,578	35	55%	64	28	94%	30	94%	28
77	15,929	85.8%	13,673	54%	7,424	34	55%	62	27	94%	29	94%	27
78	15,567	85.8%	13,362	54%	7,256	33	55%	60	27	94%	28	94%	27
79	15,171	85.8%	13,022	54%	7,071	32	55%	58	26	94%	27	94%	26
Total to Age 79	1,173,570		933, 738		507,020	24,918		45,223	19,934		21,162		8,047

Malles, between the Ages of 18 and 59/69/79 In BRIGH Columba BRIGH Columba BRIG COLUMBRA BRIG COLUMBA BRIG COLUMBA BRIG COLUMBA BRIG COLUMBA BR	Table 16: Number Screened and Accepting Behavioural Intervention													
Interaction of the protein of the prote protein of the protein of the protein of the protei	Males, between the Ages of 18 and 59/69/79													
CP Base Total Pas. Per. Break Total Total Total Total Total Are Total M Annual GP Vints None of Control Screen in Screen	In a British Columbia Birth Cohort of 40,000													
Low Sciencing State Basic Basic Deal Control Screen Science Screen Screen <th></th> <th></th> <th></th> <th></th> <th>CD Pacia</th> <th>Pasia</th> <th>True</th> <th>Pos. Pred.</th> <th>Total</th> <th>True</th> <th>Detailed</th> <th>Total</th> <th></th> <th></th>					CD Pacia	Pasia	True	Pos. Pred.	Total	True	Detailed	Total		
Acc Total Line Annual OP Vuits Rute Conducts Screent					Screening	Screens	Basic	Basic	Basic	Detailed	Screen	Positive	т	otal
App Years S (Table 9) B Y B B (Table 7) S (B) S (Table 7) 13 19,805 3,006 10,335 544 5,710 656 5954 1,100 525 9445 557 358 184 20 19,844 5,845 5,020 544 4,814 1,315 5954 2,388 1,023 9445 1,117 338 370 21 19,826 4,846 0,924 544 4,912 1,315 5954 2,384 1,021 9445 1,117 388 370 21 19,778 4,648 0,024 544 4,911 1,113 5954 2,384 1,021 9445 1,117 388 422 21 19,670 2,444 10,123 544 5,561 1,467 5594 2,777 1,149 9445 1,278 384 420 21 19,670 1,747 10,129 544 5564 1,467 <th></th> <th>Total Life</th> <th>Annual G</th> <th>iP Visits</th> <th>Rate</th> <th>Conducted</th> <th>Screens</th> <th>Screen</th> <th>Screens</th> <th>Screens</th> <th>PPV</th> <th>Screens</th> <th>Acce</th> <th>pting Bl</th>		Total Life	Annual G	iP Visits	Rate	Conducted	Screens	Screen	Screens	Screens	PPV	Screens	Acce	pting Bl
18 19,270 51.00 10,528 54.00 57.77 65.66 55.01 11.00 52.55 94.84 57.77 35.84 14.4 19 19,843 54.86 50.08 54.94 4.926 1,315 55.95 2.388 1.033 94.84 1.171 338. 370 21 19,804 45.86 3.024 544. 4.926 1.315 55.95 2.388 1.033 94.84 1.112 338. 370 21 19,807 45.86 3.044 544. 4.911 1.133 55.95 2.328 1.033 94.84 1.112 388. 323 21 19,778 4.544 54.94 5.994 1.049 55.95 2.777 1.149 94.42 1.233 347.422 28 19,625 2.474 10.233 544. 5.991 1.049 544.433 319.730 348.43 339.720 21 19,520 1.774.10.1129 544.54 55.94 </th <th>Age</th> <th>Years</th> <th>% (Table 9)</th> <th>#</th> <th>%</th> <th>#</th> <th>#(Table</th> <th>%</th> <th>#</th> <th># (Table</th> <th>%</th> <th>#</th> <th>%</th> <th>#</th>	Age	Years	% (Table 9)	#	%	#	#(Table	%	#	# (Table	%	#	%	#
19 19,888 51,06 10,02 54% 57.7 666 55% 1,100 575 94% 57.7 38% 340 20 19,864 6.85% 0,003 54% 4,926 1,315 55% 2.388 1,023 94% 1,117 35% 370 21 19,866 6.45.8% 0,044 54% 4,916 1,111 55% 2.386 1,023 94% 1,113 35% 2.384 1,023 94% 1,113 35% 2.384 1,227 35% 2.707 1,159 94% 1,113 35% 2.384 1,227 35% 2.727 1,159 94% 1,717 35% 2.707 1,159 94% 1,727 35% 2.707 1,159 94% 4.727 35% 2.707 1,159 94% 84,03 35% 2.707 1,159 94% 84,03 35% 2.707 1,159 94% 84,03 35% 2.707 316,33 30,35%	18	19,870	53.0%	10,535	54%	5,720	656	55%	1,191	525	94%	557	33%	184
1 1	19	19,858	53.0%	10,528	54%	5,717	656	55%	1,190	525	94%	557	33%	184
12 1387 458% 5024 56% 4315 1314 55% 2386 1002 946 1117 335 359 24 13765 458% 9044 566 4316 1314 55% 2384 1003 946 1153 35% 492 25 1374 52.44 10.335 54% 5.066 1.500 55% 2.724 1.200 94% 1.274 33% 422 26 15,655 52.44 10.287 55% 5.591 1.497 55% 2.771 1.198 94% 4.727 33% 420 31 15,557 5.17% 10.128 54% 5.561 1.495 55% 1.808 795 94% 846 33% 280 32 15,550 5.17% 10.088 54% 5.647 1.928 55% 1.802 794 94% 846 33% 280 33 15,650 5.17% 10.08	20	19,843	45.8%	9,080	54%	4,931	1,316	55%	2,389	1,053	94%	1,118	33%	370
13 13 15 13 55% 2.384 1.051 94% 1.116 34% 390 24 13,73 45.84 10,32 55% 2.748 1.201 94% 1.115 35% 329 25 13,73 45.24 10,325 55% 5.06 1.402 55% 2.722 1.200 94% 1.273 37% 422 26 15,625 52.44 10.297 55.85 1.497 55% 2.717 1.198 94% 4.727 3.78 421 23 15,675 5.74 10.129 54% 5.50 1.497 55% 2.715 1.197 94% 846 33% 280 34 13,579 5.77 10.129 54% 5,461 949 55% 1.808 797 94% 846 33% 280 34 13,520 5.77 10.088 54% 5,467 944 1.008 38% 280 38<	21	19,820	45.8%	9.064	54%	4,920	1,315	55%	2,386	1,053	94%	1,117	33%	370
24 19,763 52.44 10,783 52.44 10,383 54% 56.33 15.01 55% 2.724 1.201 95% 1.274 33% 422 26 19,714 52.44 10.335 54% 5.506 1.500 55% 2.720 1.209 94% 1.274 33% 422 29 15,625 52.44 10.283 55% 5.55% 1.449 55% 2.715 1.179 95% 4.202 33% 420 30 15,507 5.17% 10.128 54% 5.664 1.469 55% 1.808 797 94% 846 33% 220 31 15,505 5.17% 10.088 54% 5.467 931 55% 1.808 796 94% 846 33% 220 33 13,485 6.117 1.226 54% 6.660 1.211 55% 1.804 756 94% 847 33% 30 34	23	19,786	45.8%	9,054	54%	4,916	1,314	55%	2,384	1,051	94%	1,116	33%	369
25 19,79 52,44 10,138 54% 5,603 1,501 55% 2,722 1,200 94% 1,275 33% 422 26 15,714 52,44 10,325 54% 5,500 55% 2,720 1,199 94% 1,273 33% 421 28 15,652 52,44 10,287 54% 5,501 4,407 55% 2,771 1,199 94% 1,270 33% 420 30 15,675 51,74 10,112 54% 5,802 996 55% 1,808 797 94% 846 38% 280 33 13,520 51,77 10,088 54% 55% 1,804 755 94% 846 38% 297 34 13,456 61,75 1,008 54% 55% 1,804 755 94% 846 38 297 34 13,456 61,35% 1,224 54% 64,66 1,2112 55%	24	19,763	45.8%	9,044	54%	4,911	1,313	55%	2,383	1,050	94%	1,115	33%	369
25 13,74 52.4% 10,21 54% 5,606 1,500 55% 2,722 1,209 94% 1,27 33% 421 28 13,665 52.4% 10,237 54% 5,591 1.497 55% 2,717 1,138 94% 1,272 33% 421 29 13,655 52.4% 10,283 54% 5,500 997 55% 1,100 738 94% 5.28 2,717 1,138 94% 5.28 2,717 1,139 94% 6.47 33 28 280 31 13,505 51.7% 10,048 54% 5,467 991 55% 1,800 796 94% 6.43 33% 340 35 13,426 63.1% 1,226 55% 1,020 55% 1,102 35% 4.100 33% 340 36 13,426 63.1% 1,220 54% 6,667 1,212 55% 1,102 481 94%	25	19,739	52.4%	10,338	54%	5,613	1,501	55%	2,724	1,201	94%	1,275	33%	422
1 1 2 3 2 3 2 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 3 1	26	19,714	52.4%	10,325	54%	5,606	1,500	55%	2,722	1,200	94%	1,274	33%	422
19 19 52 24 1023 54% 5.584 1049 55% 2.105 1.197 94% 4.20 33% 280 31 19,575 51.7% 10.103 54% 5.402 996 55% 1.808 797 94% 646 33% 280 32 19,525 51.7% 10.003 54% 5.475 994 55% 1.806 796 94% 644 33% 270 34 19,405 51.7% 10.003 54% 6.666 1.211 55% 2.100 790 94% 61.30 38% 401 37 13,226 6.31% 1.226 54% 6.668 1.211 55% 2.109 949 94% 1.028 38% 301 39 13,216 6.31% 1.226 6.637 1.205 55% 1.001 441 31.37 51% 33% 109 441 13,237 631% 33% 103 <td>27</td> <td>19,662</td> <td>52.4%</td> <td>10,311</td> <td>54%</td> <td>5,599</td> <td>1,499</td> <td>55%</td> <td>2,720</td> <td>1,199</td> <td>94% 94%</td> <td>1,275</td> <td>33%</td> <td>421</td>	27	19,662	52.4%	10,311	54%	5,599	1,499	55%	2,720	1,199	94% 94%	1,275	33%	421
30 19,070 51.7* 10,129 54% 5,500 996 55% 1.808 798 94% 847 33% 280 31 19,505 51.7* 10,009 54% 5,444 995 55% 1.806 796 944 843 33% 280 33 19,520 51.7* 10,068 54% 5,477 994 55% 1.804 705 944 843 33% 279 35 19,456 6.11% 12,226 54% 6,660 1,711 55% 2.108 596 944 1.028 334 330 36 19,326 6.11% 12,226 54% 6,660 1,711 55% 2.109 565 944 1.028 334 330 39 19,324 6.21% 12,024 54% 6,555 602 55% 1,002 481 944 510 338 169 41 19,345 6,264 12,0	29	19,635	52.4%	10,283	54%	5,584	1,496	55%	2,715	1,197	94%	1,270	33%	420
1 19,79 51,7% 10,140 54% 5,482 996 55% 1,808 776 94% 846 338 280 32 19,500 51,7% 10,008 54% 5,475 994 55% 1,804 756 94% 844 338 279 34 19,489 51,7% 10,008 54% 5,475 994 55% 1,804 756 94% 844 338 279 35 19,488 61,1% 12,266 54% 6,671 1,712 55% 2,195 966 94% 1,028 33% 30 38 19,327 62,31% 12,244 54% 6,664 1,210 55% 2,193 966 94% 1,028 33% 30 40 19,328 62,76% 12,008 6556 601 55% 1,089 481 94% 511 33% 169 42 19,326 62,76% 14,016 55%	30	19,607	51.7%	10,129	54%	5,500	997	55%	1,810	798	94%	847	33%	280
32 19,500 51.7% 10,099 54% 5,484 995 55% 1.806 795 94% 845 338 220 34 19,489 51.7% 10,088 54% 6,671 1,212 55% 1,802 794 94% 843 338 279 35 19,425 6.31% 12,245 54% 6,660 1,211 55% 2,108 968 94% 1,028 338 30 36 19,327 6.31% 12,222 54% 6,667 1,008 55% 2,189 965 94% 1,024 338 30 39 19,321 6.31% 12,004 54% 6,575 602 55% 1,004 482 94% 510 338 109 41 19,245 6.28% 12,079 54% 6,516 569 102 55% 1,080 480 94% 510 338 108 41 19,107 6.28%<	31	19,579	51.7%	10,114	54%	5,492	996	55%	1,808	797	94%	846	33%	280
34 19,489 5,178 10,083 5,475 994 555 1,804 795 984 538 279 35 19,648 63,176 10,083 544 5,476 993 555 1,804 794 984 338 279 36 19,425 63,176 12,226 544 6,667 1,211 555 2,125 986 994 1,020 338 340 37 19,527 63,116 12,224 544 6,664 1,210 555 2,129 966 944 1,020 338 340 40 19,283 6,284 12,004 544 6,555 601 555 1,080 481 946 511 338 169 42 19,170 62,854 12,064 544 5,556 601 5555 1,080 481 946 511 338 183 43 19,170 62,854 12,020 544 5,557	32	19,550	51.7%	10,099	54%	5,484	995	55%	1,806	796	94%	845	33%	280
35 19,458 65,171 1,223 250 250 250 770 974 10,20 334 341 36 19,425 63,144 12,265 544 6,660 1,111 555 2,120 966 9445 1.020 334 340 37 19,322 63,134 12,222 544 6,662 1,203 555 2,129 966 9445 1.020 334 340 38 19,321 63,134 12,222 544 6,657 1.020 5555 1.024 348 339 40 19,245 62,854 12,007 644 6,555 601 5555 1.020 481 9445 501 335 169 42 19,026 62,854 12,007 653 13,027 649 5555 1,037 479 9445 503 337 183 44 19,117 62,854 12,900 544 7,900 652 15355<	33	19,520	51.7% 51.7%	10,083	54% 54%	5,475	994	55%	1,804	795	94%	844 843	33% 33%	279
36 19.425 61.1% 12.265 54% 6,660 1.211 55% 2.198 998 94% 1.022 33% 340 37 19.327 63.1% 12.223 54% 6,637 1.208 55% 2.192 966 94% 1.026 33% 340 39 19.221 63.1% 12.19 54% 6,627 1.208 55% 2.193 966 94% 512 33% 169 40 19.243 62.8% 12.04 54% 6,559 602 55% 1.069 481 94% 510 33% 169 42 19.04 62.8% 12.027 54% 6,531 600 55% 1.089 481 94% 500 33% 183 44 19.17 62.5% 13.057 54% 7.070 652 55% 1.183 521 94% 551 33% 183 45 19.071 68.5% 12.99<	35	19,458	63.1%	12,286	54%	6,671	1,212	55%	2,200	970	94%	1,030	33%	341
37 19.32 63.1% 12.244 54% 6,648 1,210 55% 2,159 968 94% 1,026 33% 340 38 19.337 63.1% 12.299 54% 6,624 1,066 55% 2,189 956 94% 1,024 33% 339 40 19.283 62.28% 12.019 54% 6,559 602 55% 1,094 482 94% 510 33% 169 41 19.204 62.8% 12.027 54% 6,511 601 55% 1,099 480 94% 500 33% 169 44 19.107 62.8% 13.024 54% 7,072 651 55% 1,131 521 94% 553 33% 183 46 19.022 65.5% 1.295 54% 7,072 651 55% 1,111 844 18.94% 550 33% 183 47 18.687 65.5% 1.	36	19,425	63.1%	12,265	54%	6,660	1,211	55%	2,198	969	94%	1,028	33%	340
38 19,327 63,11% 12,222 54% 6,637 1,208 55% 2,129 966 94% 1,026 33% 339 40 19,231 63,11% 12,104 54% 6,672 2,005 55% 1,092 441 94% 511 33% 199 41 19,245 62,88% 12,027 54% 6,535 601 55% 1,092 441 94% 510 33% 199 43 19,162 62,88% 12,027 54% 6,516 599 55% 1,087 479 94% 500 33% 183 44 13,117 62,85% 13,057 54% 7,072 651 55% 1,178 513 33% 183 45 13,027 68,5% 12,305 54% 7,072 654 55% 1,176 518 94% 551 33% 183 46 18,857 68,5% 12,315 54% <t< td=""><td>37</td><td>19,392</td><td>63.1%</td><td>12,244</td><td>54%</td><td>6,648</td><td>1,210</td><td>55%</td><td>2,195</td><td>968</td><td>94%</td><td>1,027</td><td>33%</td><td>340</td></t<>	37	19,392	63.1%	12,244	54%	6,648	1,210	55%	2,195	968	94%	1,027	33%	340
39 13,321 63,1% 12,139 5,4% 6,524 6,72 6,637 6,617 5,567 1,183 522 94% 553 33% 183 44 13,071 66,857 12,930 54% 7,002 648 55% 1,173 518 94% 550 33% 182 44 13,857 66,857 12,333 54% 6,667 55% 1,1021 451 94% 473 <td< td=""><td>38</td><td>19,357</td><td>63.1%</td><td>12,222</td><td>54%</td><td>6,637</td><td>1,208</td><td>55%</td><td>2,192</td><td>966</td><td>94%</td><td>1,026</td><td>33%</td><td>340</td></td<>	38	19,357	63.1%	12,222	54%	6,637	1,208	55%	2,192	966	94%	1,026	33%	340
41 12,235 62,286 12,079 54% 6,559 602 55% 1,092 481 94% 511 33% 199 42 13,245 62,286 12,057 54% 6,515 601 55% 1,092 481 94% 510 33% 169 43 13,125 62,286 12,027 54% 6,516 599 55% 1,087 448 94% 508 33% 169 44 13,117 62,885 13,067 54% 7,070 652 55% 1,183 522 94% 551 33% 183 46 13,007 68,5% 12,980 54% 7,070 652 55% 1,173 513 94% 550 33% 183 47 18,891 68,5% 12,980 54% 7,022 648 55% 1,173 518 94% 550 33% 182 50 18,75 65,6% 12,244 <td>39</td> <td>19,321</td> <td>63.1%</td> <td>12,199</td> <td>54%</td> <td>6,624</td> <td>1,206</td> <td>55%</td> <td>2,189</td> <td>965</td> <td>94%</td> <td>1,024</td> <td>33%</td> <td>339</td>	39	19,321	63.1%	12,199	54%	6,624	1,206	55%	2,189	965	94%	1,024	33%	339
42 19,204 62.8% 12,054 54% 6,545 601 55% 1,090 481 94% 510 33% 169 43 19,127 62.8% 12,027 54% 6,516 559 55% 1,087 440 94% 500 33% 169 44 19,177 66.5% 13,057 54% 7,090 652 55% 1,181 521 94% 551 33% 183 45 19,022 66.5% 12,988 54% 7,072 651 55% 1,176 518 94% 550 33% 183 46 18,915 66.5% 12,921 54% 7,020 646 55% 1,021 450 94% 549 33% 182 50 18,795 66.6% 12,333 54% 6,674 551 1,018 449 94% 476 33% 158 51 18,795 66.6% 12,205 54%	40	19,265	62.8%	12,104	54%	6 559	602	55%	1,094	481	94%	512	33%	169
43 19,162 62.8% 12,027 54% 6,531 600 55% 1.087 449 94% 508 33% 169 44 19,071 62.8% 11,057 54% 6,516 599 55% 1.087 479 94% 558 33% 183 46 19,021 68.5% 13,024 54% 7,020 651 55% 1,181 522 94% 551 33% 183 47 18,870 68.5% 12,980 54% 7,052 649 55% 1,173 517 94% 550 33% 182 49 18,857 66.5% 12,291 54% 6,647 562 55% 1,021 451 94% 478 33% 155 51 18,795 65.6% 12,240 54% 6,642 55% 1,021 451 94% 478 33% 155 52 18,633 65.6% 12,244 54% 6,649 55% 1,011 446 94% 472 33% 157	42	19,204	62.8%	12,054	54%	6,545	601	55%	1,090	481	94%	510	33%	169
44 19,117 62.8% 11,099 54% 6,516 599 55% 1,183 522 94% 558 33% 183 46 19,002 68.5% 12,088 54% 7,072 651 55% 1,181 521 94% 553 33% 183 47 18,970 68.5% 12,968 54% 7,052 649 55% 1,178 519 94% 551 33% 183 48 18,957 68.5% 12,950 54% 7,012 648 55% 1,127 517 94% 549 33% 182 50 18,755 65.6% 12,240 54% 6,674 552 155% 1,013 449 94% 476 33% 157 51 18,533 65.6% 12,142 54% 6,649 561 55% 1,011 446 94% 478 33% 157 54 18,503 65.6% 12,142 54% 7,248 6,44 55% 1,111 446 94% 517 <t< td=""><td>43</td><td>19,162</td><td>62.8%</td><td>12,027</td><td>54%</td><td>6,531</td><td>600</td><td>55%</td><td>1,089</td><td>480</td><td>94%</td><td>509</td><td>33%</td><td>169</td></t<>	43	19,162	62.8%	12,027	54%	6,531	600	55%	1,089	480	94%	509	33%	169
45 19,071 68.5% 13,067 54% 7,072 651 55% 1,181 522 94% 554 33% 183 47 18,970 68.5% 12,985 54% 7,072 649 55% 1,176 518 94% 551 33% 183 48 18,970 68.5% 12,950 54% 7,032 648 55% 1,176 518 94% 550 33% 182 49 18,875 65.6% 12,231 54% 6,667 554 1,021 450 94% 478 33% 158 51 18,790 65.6% 12,240 54% 6,622 559 55% 1,011 447 94% 476 33% 157 54 18,030 65.6% 12,142 54% 6,593 557 55% 1,111 449 94% 517 33% 157 55 18,202 72.8% 13,136 54%	44	19,117	62.8%	11,999	54%	6,516	599	55%	1,087	479	94%	508	33%	168
460 19,022 66.5% 19,024 537 1,101 521 537 1,101 521 547 553 337 183 47 18,970 66.5% 12,980 54% 7,032 648 55% 1,176 518 94% 550 33% 182 49 18,857 66.5% 12,333 54% 6,667 554 55% 1,021 450 94% 479 33% 182 50 18,795 65.6% 12,244 54% 6,667 552 55% 1,011 449 94% 476 33% 158 51 18,503 65.6% 12,142 54% 6,523 557 55% 1,011 446 94% 475 33% 157 54 18,205 72.8% 13,146 54% 7,026 612 55% 1,110 491 94% 517 33% 173 56 18,325 72.8% 13,116	45	19,071	68.5%	13,057	54%	7,090	652	55%	1,183	522	94%	554	33%	183
47. 11,075 66,5% 12,050 54% 7,052 648 55% 1,176 518 94% 550 33% 182 49 18,857 66,5% 12,911 54% 7,010 646 55% 1,173 517 94% 549 33% 182 50 18,795 65,6% 12,290 54% 6,674 552 150 94% 478 33% 158 52 18,659 65,6% 12,244 54% 6,669 555 1,011 446 94% 476 33% 158 53 18,133 65.6% 12,142 54% 6,593 557 55% 1,011 446 94% 473 33% 173 56 18,325 72.8% 13,146 54% 7,209 612 55% 1,110 487 94% 513 33% 173 57 18,226 72.8% 13,116 54% 7,010 383	40	19,022	68.5%	13,024	54% 54%	7,072	649	55%	1,181	521	94%	553	33%	183
49 18,857 68.5% 12,911 54% 7,010 646 55% 1,173 517 94% 549 33% 182 50 18,795 65.6% 12,230 54% 6,667 564 55% 1,024 451 94% 479 33% 159 51 18,795 65.6% 12,240 54% 6,664 55% 1,011 440 94% 476 33% 158 52 18,630 65.6% 12,142 54% 6,633 557 1,011 446 94% 473 33% 157 54 18,030 65.6% 12,142 54% 6,533 557 55% 1,011 446 94% 473 33% 157 55 18,417 72.8% 13,133 56 7,248 614 55% 1,110 489 94% 517 33% 172 58 18,207 72.8% 13,116 54% 7,167 609 55% 1,100 487 94% 515 33% 107	48	18,915	68.5%	12,950	54%	7,032	648	55%	1,176	518	94%	550	33%	185
50 18,795 65,6% 12,333 54% 6,697 564 55% 1,021 450 94% 478 33% 159 51 18,659 65,6% 12,244 54% 6,649 561 55% 1,021 450 94% 476 33% 158 53 18,650 65,6% 12,142 54% 6,622 559 55% 1,011 447 94% 475 33% 157 54 18,503 65,6% 12,142 54% 6,593 557 55% 1,119 493 94% 524 33% 173 56 18,325 72.8% 13,248 54% 7,228 612 55% 1,110 4489 94% 517 33% 171 59 18,026 72.8% 13,116 54% 7,122 606 55% 1,100 485 94% 517 33% 107 60 17,848 82.5% 14,750 54% 8,010 383 55% 696 307 94% 322 3	49	18,857	68.5%	12,911	54%	7,010	646	55%	1,173	517	94%	549	33%	182
51 18,729 65.6% 12,290 54% 6,674 562 55% 1,021 450 94% 478 33% 158 52 18,639 65.6% 12,244 54% 6,649 561 55% 1,013 447 94% 476 33% 157 54 18,503 65.6% 12,142 54% 6,523 55% 1,011 446 94% 473 33% 157 55 18,417 72.8% 13,448 54% 7,285 616 55% 1,110 449 94% 522 33% 173 56 18,225 72.8% 13,146 54% 7,122 606 55% 1,110 489 94% 515 33% 171 59 18,006 72.8% 13,116 54% 7,122 606 55% 1,100 485 94% 515 33% 107 60 17,844 82.5% 14,502 54% 7,951 381 55% 687 30.3 94% 326 33% 1	50	18,795	65.6%	12,333	54%	6,697	564	55%	1,024	451	94%	479	33%	159
52 18,659 65,6% 12,244 54% 6,649 561 55% 1,018 449 94% 476 33% 157 53 18,653 65,6% 12,142 54% 6,593 55% 1,011 446 94% 473 33% 157 54 18,503 65,6% 12,142 54% 6,593 55% 1,011 446 94% 473 33% 157 55 18,417 72.8% 13,448 54% 7,248 614 55% 1,110 489 94% 519 33% 172 58 18,120 72.8% 13,116 54% 7,167 609 55% 1,100 485 94% 515 33% 172 59 18,006 72.8% 13,116 54% 7,167 609 55% 1,00 485 94% 515 33% 107 60 17,784 82.5% 14,625 54% 7,951	51	18,729	65.6%	12,290	54%	6,674	562	55%	1,021	450	94%	478	33%	158
53 11,3,33 61,03 51,44 6,022 533 5,74 1,011 44,74 94,78 44,73 53,78 1,173 55 18,417 72,8% 13,416 54% 7,285 616 55% 1,119 493 94% 522 33% 173 56 18,325 72,8% 13,246 54% 7,209 612 55% 1,110 449 94% 522 33% 173 57 18,226 72,8% 13,276 54% 7,167 609 55% 1,100 487 94% 517 33% 171 59 18,006 72,8% 13,116 54% 7,167 609 55% 1,105 487 94% 515 33% 107 60 17,884 82,5% 14,750 54% 8,010 383 55% 692 305 94% 327.06 10,825 61 17,752 82,5% 14,525 54%	52	18,659	65.6%	12,244	54%	6,649	561	55%	1,018	449	94%	476	33%	158 157
55 18,417 72,8% 13,416 54% 7,285 616 55% 1,119 493 94% 524 33% 173 56 18,325 72,8% 13,348 54% 7,285 616 55% 1,115 491 94% 522 33% 173 57 18,226 72,8% 13,129 54% 7,167 609 55% 1,110 489 94% 517 33% 171 59 18,006 72.8% 13,116 54% 7,122 606 55% 1,100 485 94% 515 33% 170 59 18,006 72.8% 13,116 54% 7,122 606 55% 1,100 485 94% 515 33% 170 61 17,752 82.5% 14,642 54% 7,951 381 55% 696 307 94% 324 33% 107 62 17,610 82.5% 14,325 54% 7,887 379 55% 687 303 94% 322 33%<	55	18 503	65.6%	12,195	54%	6 593	557	55%	1,015	447	94% 94%	473	33%	157
56 18,325 72.8% 13,348 54% 7,248 614 55% 1,115 491 94% 522 33% 173 57 18,226 72.8% 13,179 54% 7,120 609 55% 1,110 489 94% 519 33% 172 58 18,120 72.8% 13,116 54% 7,122 606 55% 1,100 485 94% 515 33% 170 59 18,006 72.8% 14,750 54% 8,010 383 55% 696 307 94% 326 33% 107 60 17,784 82.5% 14,750 54% 7,817 381 55% 692 305 94% 326 33% 107 61 17,751 82.5% 14,325 54% 7,817 373 55% 683 301 94% 320 33% 106 63 17,458 82.5% 14,326 54% 7,867 373 55% 678 299 94% 317 33%	55	18,417	72.8%	13,416	54%	7,285	616	55%	1,119	493	94%	524	33%	173
57 18,226 72.8% 13,276 54% 7,209 612 55% 1,110 489 94% 519 33% 172 58 18,120 72.8% 13,115 54% 7,127 606 55% 1,105 487 94% 517 33% 171 59 18,006 72.8% 13,116 54% 7,122 606 55% 1,100 485 94% 515 33% 170 Total to Age 59 807,096 482,392 261,939 38,512 69,894 30,809 32,706 10,826 60 17,782 82.5% 14,642 54% 7,951 381 55% 696 307 94% 322 33% 106 61 17,752 82.5% 14,642 54% 7,819 376 55% 683 301 94% 320 33% 106 63 17,458 82.5% 14,320 54% 7,781 377 55% 683 301 94% 317 33% 105 665 16,106	56	18,325	72.8%	13,348	54%	7,248	614	55%	1,115	491	94%	522	33%	173
S8 18,120 72.8% 13,199 54% 7,167 609 55% 1,105 487 94% 517 33% 171 59 18,006 72.8% 13,116 54% 7,122 606 55% 1,100 485 94% 515 33% 170 60 17,884 82.5% 14,750 54% 8,010 383 55% 696 307 94% 32.6 33% 108 61 17,752 82.5% 14,642 54% 7,951 381 55% 696 307 94% 32.6 33% 106 63 17,458 82.5% 14,320 54% 7,887 379 55% 683 301 94% 32.2 33% 106 64 17,293 82.5% 14,264 54% 7,745 373 55% 678 299 94% 317 33% 107 65 17,116 84.7% 14,492 54% 7,869 380 55% 678 299 94% 317 33% <td>57</td> <td>18,226</td> <td>72.8%</td> <td>13,276</td> <td>54%</td> <td>7,209</td> <td>612</td> <td>55%</td> <td>1,110</td> <td>489</td> <td>94%</td> <td>519</td> <td>33%</td> <td>172</td>	57	18,226	72.8%	13,276	54%	7,209	612	55%	1,110	489	94%	519	33%	172
59 18,006 72.8% 13,116 54% 7,122 000 55% 1,100 485 94% 515 33% 1/0 Total to Age 59 607 77,884 82.5% 14,750 54% 8,010 383 55% 69,894 30,809 32,706 10,826 61 17,752 82.5% 14,642 54% 7,951 381 55% 692 30,809 32,706 33% 108 62 17,610 82.5% 14,399 54% 7,817 379 55% 687 303 94% 322 33% 106 63 17,458 82.5% 14,399 54% 7,819 376 55% 687 303 94% 322 33% 105 64 17,293 82.5% 14,464 54% 7,869 380 55% 678 299 94% 317 33% 105 65 17,116 84.7% 13,367 55%	58	18,120	72.8%	13,199	54%	7,167	609	55%	1,105	487	94%	517	33%	171
Norm Ox/DO Display Ox/DO Display Ox/DO Display Display <thdisplay< th=""> <thdisplay< <="" th=""><th>59 Total to Age 59</th><th>18,006 807 096</th><th>72.8%</th><th>13,116 482 392</th><th>54%</th><th>7,122 261 939</th><th>38 512</th><th>55%</th><th>1,100 69 894</th><th>485 30 809</th><th>94%</th><th>32 706</th><th>33%</th><th>10 826</th></thdisplay<></thdisplay<>	59 Total to Age 59	18,006 807 096	72.8%	13,116 482 392	54%	7,122 261 939	38 512	55%	1,100 69 894	485 30 809	94%	32 706	33%	10 826
61 17,752 82.5% 14,642 54% 7,951 381 55% 692 305 94% 324 33% 107 62 17,610 82.5% 14,525 54% 7,887 379 55% 687 303 94% 322 33% 106 63 17,458 82.5% 14,399 54% 7,819 376 55% 683 301 94% 320 33% 106 64 17,293 82.5% 14,264 54% 7,869 380 55% 678 299 94% 317 33% 105 65 17,116 84.7% 14,420 54% 7,867 373 55% 678 299 94% 317 33% 105 66 16,925 84.7% 14,156 54% 7,687 373 55% 671 296 94% 310 33% 104 69 16,256 84.7% 13,764 54% 7,474 365 55% 162 71 94% 76 33% <	60	17,884	82.5%	14,750	54%	8,010	383	55%	696	307	94%	326	33%	108
62 17,610 82.5% 14,525 54% 7,887 379 55% 687 303 94% 322 33% 106 63 17,458 82.5% 14,399 54% 7,819 376 55% 683 301 94% 320 33% 106 64 17,293 82.5% 14,264 54% 7,745 373 55% 678 299 94% 317 33% 105 65 17,116 84.7% 14,492 54% 7,867 373 55% 678 299 94% 317 33% 105 66 16,925 84.7% 14,300 54% 7,781 377 55% 678 299 94% 317 33% 106 67 16,719 84.7% 13,967 54% 7,584 369 55% 671 296 94% 314 33% 103 68 16,496 84.7% 13,738 54% 7,474 365 55% 663 292 94% 310 33%	61	17,752	82.5%	14,642	54%	7,951	381	55%	692	305	94%	324	33%	107
63 17,458 82.5% 14,399 54% 7,819 376 55% 663 301 94% 320 33% 106 64 17,293 82.5% 14,264 54% 7,745 373 55% 678 299 94% 317 33% 105 65 17,116 84.7% 14,492 54% 7,869 380 55% 678 299 94% 320 33% 107 66 16,925 84.7% 14,330 54% 7,781 377 55% 664 302 94% 317 33% 105 67 16,719 84.7% 13,967 54% 7,687 373 55% 671 296 94% 314 33% 105 68 16,496 84.7% 13,967 54% 7,474 365 55% 663 292 94% 310 33% 103 70 15,978 85.7% 13,738 54% 7,460 89 55% 162 71 94% 75 33% <t< td=""><td>62</td><td>17,610</td><td>82.5%</td><td>14,525</td><td>54%</td><td>7,887</td><td>379</td><td>55%</td><td>687</td><td>303</td><td>94%</td><td>322</td><td>33%</td><td>106</td></t<>	62	17,610	82.5%	14,525	54%	7,887	379	55%	687	303	94%	322	33%	106
D+ 17,253 62.5% 14,204 54% 7,745 57% 678 299 94% 317 33% 105 65 17,116 84.7% 14,492 54% 7,869 380 55% 690 304 94% 323 33% 107 66 16,925 84.7% 14,330 54% 7,781 377 55% 684 302 94% 323 33% 106 67 16,719 84.7% 13,967 54% 7,687 373 55% 671 296 94% 311 33% 105 68 16,496 84.7% 13,967 54% 7,687 373 55% 663 292 94% 310 33% 103 69 16,256 84.7% 13,764 54% 7,474 365 55% 163 292 94% 310 33% 103 70 15,997 85.9% 13,738 54%	63	17,458	82.5%	14,399	54%	7,819	376	55%	683	301	94%	320	33%	106
63 17,110 64.7% 14,422 54.% 7,687 350 55% 664 302 94.% 323 33% 106 66 16,255 84.7% 14,330 54% 7,781 377 55% 684 302 94.% 320 33% 106 67 16,719 84.7% 13,967 54% 7,687 373 55% 671 296 94.% 314 33% 104 68 16,496 84.7% 13,967 54% 7,687 373 55% 663 292 94.% 310 33% 103 69 16,256 84.7% 13,764 54% 7,474 365 55% 663 292 94.% 310 33% 103 Total to Age 69 978,605 625,681 339,745 42,270 76,715 33,816 35,898 11,882 70 15,997 85.9% 13,738 54% 7,429 88 55% 160 70 94.% 75 33% 24 71	64	17,293	82.5%	14,264	54%	7,745	3/3	55%	6/8	299	94%	31/	33% 22%	105
67 16,719 84.7% 14,156 54% 7,687 373 55% 678 299 94% 317 33% 105 68 16,496 84.7% 13,967 54% 7,584 369 55% 671 296 94% 314 33% 104 69 16,256 84.7% 13,764 54% 7,474 365 55% 663 292 94% 310 33% 103 Total to Age 69 978,605 625,681 339,745 42,270 76,715 33,816 35,898 11,882 70 15,997 85.9% 13,738 54% 7,329 88 55% 162 71 94% 75 33% 25 71 15,718 85.9% 13,239 54% 7,189 87 55% 157 69 94% 74 33% 24 73 15,092 85.9% 12,960 54% 7,037 85 55% 155 68 94% 71 33% 23 75 14,3	66	16.925	84.7%	14,330	54%	7,781	377	55%	684	304	94%	320	33%	107
68 16,496 84.7% 13,967 54% 7,584 369 55% 671 296 94% 314 33% 104 69 16,256 84.7% 13,764 54% 7,474 365 55% 663 292 94% 310 33% 103 Total to Age 69 978,605 625,681 339,745 42,270 76,715 33,816 35,898 11,882 70 15,997 85.9% 13,738 54% 7,420 88 55% 162 71 94% 76 33% 25 71 15,718 85.9% 13,239 54% 7,189 87 55% 157 69 94% 74 33% 24 73 15,092 85.9% 12,659 54% 7,037 85 55% 155 68 94% 71 33% 24 74 14,742 85.9% 12,659 54% 6,874 84 55% 15	67	16,719	84.7%	14,156	54%	7,687	373	55%	678	299	94%	317	33%	105
69 16,256 84.7% 13,764 54% 7,474 365 55% 663 292 94% 310 33% 103 Total to Age 69 978,605 625,681 339,745 42,270 76,715 33,816 35,898 11,882 70 15,997 85.9% 13,738 54% 7,460 89 55% 162 71 94% 76 33% 25 71 15,718 85.9% 13,498 54% 7,329 88 55% 160 70 94% 76 33% 25 72 15,416 85.9% 13,239 54% 7,037 85 55% 155 68 94% 72 33% 24 73 15,092 85.9% 12,960 54% 7,048 86 55% 155 68 94% 72 33% 24 74 14,742 85.9% 12,614 54% 6,849 84 55% 155 <td>68</td> <td>16,496</td> <td>84.7%</td> <td>13,967</td> <td>54%</td> <td>7,584</td> <td>369</td> <td>55%</td> <td>671</td> <td>296</td> <td>94%</td> <td>314</td> <td>33%</td> <td>104</td>	68	16,496	84.7%	13,967	54%	7,584	369	55%	671	296	94%	314	33%	104
Otal to Age by 978,605 625,681 339,745 42,270 76,715 33,816 35,898 11,882 70 15,997 85.9% 13,738 54% 7,460 89 55% 162 71 94% 76 33% 25 71 15,718 85.9% 13,498 54% 7,329 88 55% 160 70 94% 75 33% 25 72 15,416 85.9% 13,239 54% 7,139 87 55% 155 68 94% 72 33% 24 73 15,092 85.9% 12,960 54% 7,037 85 55% 155 68 94% 72 33% 24 74 14,742 85.9% 12,659 54% 6,874 84 55% 156 69 94% 73 33% 24 75 14,365 90.4% 12,980 54% 7,048 86 55% 153	69	16,256	84.7%	13,764	54%	7,474	365	55%	663	292	94%	310	33%	103
7.0 1.5,738 53.5% 1.5,736 54% 7,400 65 55% 1.62 71 94% 76 33% 25 71 15,718 85.9% 13,498 54% 7,329 88 55% 160 70 94% 75 33% 25 72 15,416 85.9% 13,239 54% 7,189 87 55% 157 69 94% 74 33% 24 73 15,092 85.9% 12,659 54% 7,037 85 55% 155 68 94% 72 33% 24 74 14,722 85.9% 12,659 54% 6,874 84 55% 152 67 94% 71 33% 24 75 14,365 90.4% 12,614 54% 6,849 84 55% 153 67 94% 71 33% 24 76 13,960 90.4% 12,614 54% 6,849 84 55% 153 67 94% 71 33% 24	Total to Age 69	978,605	85 D0/	625,681	5/10/	339,745	42,270	55%	76,715	33,816	Q/10/	35,898	220/	11,882 25
72 15,416 85.9% 13,239 54% 7,189 87 55% 157 69 94% 74 33% 24 73 15,092 85.9% 12,960 54% 7,037 85 55% 155 68 94% 72 33% 24 74 14,742 85.9% 12,960 54% 7,037 85 55% 155 68 94% 72 33% 24 74 14,742 85.9% 12,659 54% 6,874 84 55% 152 67 94% 71 33% 24 75 14,365 90.4% 12,980 54% 7,048 86 55% 156 69 94% 71 33% 24 76 13,960 90.4% 12,614 54% 6,849 84 55% 153 67 94% 71 33% 24 77 13,526 90.4% 12,222 54% 6,636 82 55% 149 66 94% 70 33% 23	70	15,718	85.9%	13,738 13,498	54%	7,400	88	55%	162	70	94%	75	33%	25 25
73 15,092 85.9% 12,960 54% 7,037 85 55% 155 68 94% 72 33% 24 74 14,742 85.9% 12,659 54% 6,874 84 55% 152 67 94% 71 33% 23 75 14,365 90.4% 12,980 54% 7,048 86 55% 156 69 94% 73 33% 24 76 13,960 90.4% 12,614 54% 6,849 84 55% 153 67 94% 71 33% 24 76 13,960 90.4% 12,214 54% 6,849 84 55% 153 67 94% 71 33% 24 77 13,526 90.4% 12,222 54% 6,636 82 55% 149 66 94% 70 33% 23 78 13,061 90.4% 11,801 54% 6,164 77 55% 140 62 94% 66 33% 22	72	15,416	85.9%	13,239	54%	7,189	87	55%	157	69	94%	74	33%	24
74 14,742 85.9% 12,659 54% 6,874 84 55% 152 67 94% 71 33% 23 75 14,365 90.4% 12,980 54% 7,048 86 55% 156 69 94% 73 33% 24 76 13,960 90.4% 12,614 54% 6,849 84 55% 153 67 94% 71 33% 24 76 13,960 90.4% 12,614 54% 6,849 84 55% 153 67 94% 71 33% 24 77 13,526 90.4% 12,222 54% 6,636 82 55% 149 66 94% 70 33% 23 78 13,061 90.4% 11,801 54% 6,408 80 55% 145 64 94% 68 33% 22 79 12,563 90.4% 11,352 54% 6,164 77 55% 140 62 94% 66 33% 22	73	15,092	85.9%	12,960	54%	7,037	85	55%	155	68	94%	72	33%	24
75 14,365 90.4% 12,980 54% 7,048 86 55% 156 69 94% 73 33% 24 76 13,960 90.4% 12,614 54% 6,849 84 55% 153 67 94% 71 33% 24 77 13,526 90.4% 12,222 54% 6,636 82 55% 149 66 94% 70 33% 23 78 13,061 90.4% 11,801 54% 6,408 80 55% 145 64 94% 68 33% 22 79 12,563 90.4% 11,352 54% 6,164 77 55% 140 62 94% 66 33% 22 Total 1,123,045 752,743 408,739 43,112 78,243 34,489 36,613 12,119	74	14,742	85.9%	12,659	54%	6,874	84	55%	152	67	94%	71	33%	23
7b 13,900 90.4% 12,614 54% 6,849 84 55% 153 67 94% 71 33% 24 77 13,526 90.4% 12,222 54% 6,636 82 55% 149 66 94% 70 33% 23 78 13,061 90.4% 11,801 54% 6,408 80 55% 145 64 94% 68 33% 22 79 12,563 90.4% 11,352 54% 6,164 77 55% 140 62 94% 66 33% 22 Total 1,123,045 752,743 408,739 43,112 78,243 34,489 36,613 12,119	75	14,365	90.4%	12,980	54%	7,048	86	55%	156	69	94%	73	33%	24
78 13,061 90.4% 11,801 54% 6,408 80 55% 145 64 94% 68 33% 22 79 12,563 90.4% 11,352 54% 6,164 77 55% 140 62 94% 66 33% 22 Total 1,123,045 752,743 408,739 43,112 78,243 34,489 36,613 12,119	/6 77	13,960 13 526	90.4% 90.4%	12,614 12 222	54% 54%	6,849 6,636	84 82	55% 55%	153 1/10	6/ 66	94% 94%	/1 70	১ ১% ২২%	24 23
79 12,563 90.4% 11,352 54% 6,164 77 55% 140 62 94% 66 33% 22 Total 1,123,045 752,743 408,739 43,112 78,243 34,489 36,613 12,119	78	13,061	90.4%	11,801	54%	6,408	80	55%	145	64	94%	68	33%	22
Total 1,123,045 752,743 408,739 43,112 78,243 34,489 36,613 12,119	79	12,563	90.4%	11,352	54%	6,164	77	55%	140	62	94%	66	33%	22
	Total	1,123,045		752,743		408,739	43,112		78,243	34,489		36,613		12,119

Cost of Screening and Interventions

- A time and motion study of SBIRT activities found that a pre-screen (1-4 questions about substance use) took on average of 1:19 minutes, a full-screen (e.g. *Alcohol, Smoking and Substance Involvement Screening Test* [ASSIST]) took an average of 4:28 minutes in direct patient contact with an additional 9:30 minutes in support time and a brief intervention took an average of 6:51 minutes in direct patient contact with an additional 10:08 minutes in support time. Referral to treatment took an average of 4:38 minutes in direct patient contact and 19:19 minutes in support time.
- A cost analysis of the first 7 SBIRT programs funded by SAMHSA in the US found a mean cost per screen of \$69 (in 2007 USD), ranging from \$46 to \$87 per screen (\$77 [2022 CAD], ranging from \$51 to \$96). Costs included service delivery, quality assurance, program administration, space, materials/equipment and contracted services. Services costs for each program included screening, brief intervention and referral to treatment for both alcohol and unhealthy drug use.¹⁶⁵⁶
- Zarkin et al estimated direct service delivery costs (e.g. not including support service or overhead costs) for drug screening to be \$2.30 (in 2011 USD, taking an average of 4 minutes to complete) and a brief intervention to be \$6.16 (taking 15 minutes to complete).¹⁶⁵⁷
- Barbosa and colleagues took a unit cost approach, which included labour, materials and space cost, to estimate the average cost of SBIRT components in emergency department and out-patient settings. They determined the cost of a screen to be \$5.29 and a brief intervention to be \$9.15 (2012 USD). This equates to \$5.42 and \$9.37 respectively in 2022 CAD.
- "The management of patients who screen positive is usually accompanied by other interventions, including testing for blood-borne pathogens; assessment of misuse of, abuse of, or dependence on alcohol or tobacco; assessment of potentially coexisting mental health disorders; and pain management for patients with pain who are abusing opioids."¹⁶⁵⁸
- We use the time estimates by Cowell et al¹⁶⁵⁹ to estimate the costs of screening and the brief intervention.
- A basic screening test would take 1:19 minutes.
- If the basic screening is followed by an in-depth screen, an additional 13:58 minutes are required (4:28 in direct contact and 9:30 in support time) for a total screening time of 15:17 minutes.
- A brief intervention would require 16:59 minutes (6:51 in direct contact and 10:08 in support time). We assume that this intervention would take place at a subsequent visit.

¹⁶⁵⁵ Cowell A, Dowd W, Landwehr J et al. A time and motion study of Screening, Brief Interventions and Referral to Treatment implementation in health-care settings. *Addiction*. 2017: 112 (Suppl. 2); 65-72.

¹⁶⁵⁶ Bray J, Mallonee E, Dowd W et al. Program- and service-level costs of seven screening, brief intervention, and referral to treatment programs. *Substance Abuse and Rehabilitation*. 2014; 5: 63-73.

¹⁶⁵⁷ Zarkin G, Bray J, Hinde J et al. Costs of screening and brief interventions for illicit drug use in primary care settings. *Journal of Studies on Alcohol and Drugs*. 2015: 76(2); 222-8.

¹⁶⁵⁸ US Preventive Services Task Force. Screening for Unhealthy Drug Use: US Preventive Services Task Force Recommendation Statement. *JAMA*. 2020: 323(22); 2301- 09.

¹⁶⁵⁹ Cowell A, Dowd W, Landwehr J et al. A time and motion study of Screening, Brief Interventions and Referral to Treatment implementation in health-care settings. *Addiction*. 2017: 112 (Suppl. 2); 65-72.

- The estimated cost of a visit to a GP of \$35.97 is based on the average cost of an office visit between the ages of 2 and 79 (see Reference Document). We assume 10 minutes for the average GP visit with a cost of \$3.597 per minute.
- Patient time costs resulting from receiving, as well as travelling to and from, a service are valued based on the average hourly wage rate in BC in 2022 (\$31.49¹⁶⁶⁰) plus 18% benefits for an average cost per hour of \$37.16. In the absence of specific data on the amount of time required, we assume two hours per service for both the indepth screening and the brief intervention. If just a basic screening test is required (lasting approximately 1:19 minute), then we assume that 20% of the visit is for the basic screening and that other 'interventions' will occur during the 10-minute visit.

Costs Avoided Due to a Reduction in Unhealthy Drug Use

- In addition to a reduced life expectancy and quality of life, unhealthy drug use is also associated with higher *annual medical care costs* (e.g., hospitalization, physician, drug, etc.) and *criminal justice costs* than no unhealthy drug use.
- The Canadian Institute for Substance Use Research (CISUR) and the Canadian Centre on Substance Use and Addiction (CCSUA) estimated the annual costs of unhealthy drug use in Canada to be \$11,811 million in 2014. Of this amount, \$990 million (8.4%) was for healthcare costs, \$3,899 million (33%) for indirect costs (short- and long-term disability, premature mortality), \$5,802 million (49%) for criminal justice costs and \$1,120 million (9.5%) for 'other' costs (primarily motor vehicle damage).¹⁶⁶¹
- In Belgium, Lievens et al estimated the annual health care (including prevention) and crime costs associated with unhealthy drug use to be €731 million (in 2012 Euros or \$1,257 million in 2022 C\$).¹⁶⁶² Of the total €731 million, €259 million (35%) was for health care costs and €473 million (65%) was for crime costs.
- In Spain, Rivera et al estimated the annual health care and crime costs (including prevention) associated with unhealthy drug use to be between €1,206 and €1,420 million (in 2012 Euros or between \$2,511 and \$2,958 million in 2022 C\$).¹⁶⁶³ Of this total, between 57% and 63% was for health care costs.
- In France, Kopp & Ogrodnik estimated the annual health care, law enforcement and prevention costs associated with unhealthy drug use to be €7,903 per user (in 2010 Euros or \$13,879 in 2022 C\$).¹⁶⁶⁴ Of the total, €4,860 (61% or \$8,535 in 2022 C\$) was for excess healthcare costs and €3,043 (39% or \$5,344 in 2012 C\$) for law enforcement and prevention.
- The CISUR and CCSUA analysis also estimated the annual costs of unhealthy drug use in BC to be \$1,671 million in 2014. Of this amount, \$227 million (14%) was for

¹⁶⁶⁰ BC Stats. *Earning & Employment Trends – August 2022*. Available at https://www2.gov.bc.ca/assets/gov/data/statistics/people-population-

community/income/earnings_and_employment_trends_data_tables.pdf. Accessed September 2022.

¹⁶⁶¹ Canadian Substance Use Costs and Harms Scientific Working Group. *Canadian substance use costs and harms (2007 – 2014)*. 2018. Prepared by the Canadian Institute for Substance Use Research and the Canadian Centre on Substance Use and Addiction. Ottawa, Ontario.

¹⁶⁶² Lievens D, Laenen F, Verhaeghe N et al. Economic consequences of legal and illegal drugs: The case of social cost in Belgium. *International Journal of Drug Policy*. 2017; 44: 50-57.

¹⁶⁶³ Rivera B, Casal B, Currais L. The social cost of illicit drug use in Spain. *International Journal of Drug Policy*. 2017; 44: 92-104.

¹⁶⁶⁴ Kopp P & Ogrodnik M. The social cost of drugs in France in 2010. *The European Journal of Health Economics*. 2017; 18: 883-92.
healthcare costs, \$718 million (43%) for criminal justice costs, \$147 million (8.8%) for motor vehicle damage and \$580 million (35%) for indirect costs.¹⁶⁶⁵

- Earlier we estimated that 5.28% of the BC adult population had unhealthy drug use (excluding cannabis) and a further 4.07% had cannabis use disorder, or 9.35% of BC adults ages 18 and older. If this proportion holds for 2014, then we would expect approximately 361,000 BC adults with unhealthy drug use in BC in 2014.¹⁶⁶⁶ The direct cost estimate from the CISUR and CCSUA analysis for BC in 2014 is \$1,092 million or \$3,022 per unhealthy drug user (\$3,405 in 2022 C\$). This \$3,405 annual excess cost consists of \$715 (21%) for healthcare costs, \$2,247 (66%) for criminal justice costs and \$443 (13%) for motor vehicle damage costs.
- For modelling purposes, we assume that a year without unhealthy drug use is associated with \$8,642 ((\$3,405 + \$13,879¹⁶⁶⁷)/2) in direct costs avoided, including healthcare and criminal justice costs. We modify this to \$3,405 and \$13,879 in the sensitivity analysis.
- A specific area in which both short- and long-term health care costs may be avoided is in the care of children exposed to substances in utero.
- As an example of potential short-term health care costs, infants born to opioiddependent women have historically been separated from their mothers and admitted to a higher care nursery or neonatal intensive care unit (NICU), primarily to provide treatment for neonatal abstinence syndrome. Separation of the mother-infant dyad in the early postpartum period, however, is detrimental to the development of motherinfant bonding and attachment and the long term health of the infant, especially for substance-exposed infants. Rooming-in, the practice of caring for mother and newborn in the same room immediately after birth, has been shown to increase the likelihood of breastfeeding during the hospital stay, reduce admissions to the NICU while also reducing the use of pharmacotherapy for the infant, and increasing the odds of the baby being discharged home with the mother, all while improving the experience of the early post-partum period for the mother.^{1668,1669}
- The existence of long-term health effects (and thus costs) in children exposed to substances in utero is more controversial (with the exception of tobacco and alcohol use).¹⁶⁷⁰ When adverse birth outcomes are observed, questions arise as to whether these outcomes result from the substances used or from the context within which the pregnancy occurs and the child is raised.^{1671,1672}

¹⁶⁷² Louw K. Substance use in pregnancy: The medical challenge. *Obstetric Medicine*. 2018; 11(2): 54 - 66.

¹⁶⁶⁵ Canadian Substance Use Costs and Harms Scientific Working Group. *Canadian Substance Use Costs and Harms in the Provinces and Territories (2007 – 2014)*. 2018. Prepared by the Canadian Institute for Substance Use Research and the Canadian Centre on Substance Use and Addiction. Ottawa, Ontario.

¹⁶⁶⁶ The estimated population of BC adults ages 18 and older as of July 1, 2014 is 3,864,319 as per BC Stats. Available online at <u>https://bcstats.shinyapps.io/popApp/</u>. Accessed November 2021.

¹⁶⁶⁷ Kopp P & Ogrodnik M. The social cost of drugs in France in 2010. *The European Journal of Health Economics*. 2017; 18: 883-92.

¹⁶⁶⁸ Abrahams R, MacKay-Dunn M, Nevmerjitskaia V et al. An evaluation of rooming-in among substanceexposed newborns in British Columbia. *Journal of Obstetrics and Gynaecology Canada*. 2010; 32(9): 866-71. ¹⁶⁶⁹ Newman A, Davies G, Dow K et al. Rooming-in care for infants of opioid-dependent mothers:

Implementation and evaluation at a tertiary care hospital. *Canadian Family Physician*. 2015; 61: e555-61. ¹⁶⁷⁰ Dr. Nancy Poole. Director, BC Centre of Excellence for Women's Health and Prevention Lead, CanFASD Research Network. Personal communication. January 2022.

¹⁶⁷¹ Schempf A and Strobino D. Illicit drug use and adverse birth outcomes: Is it drugs or context? *Journal of Urban Health*. 2008; 85(6): 858-73.

- For modelling purposes, we have assumed that any potential short- and long-term health care costs associated with the care of children exposed to substances in utero is included in the annual costs avoided calculated above.
- Table 17 shows the costs avoided for females and males as a result of a 'successful' brief intervention.

Table 17: Costs Avoided Due to a Reduction in Unhealthy Drug Use						
	Be	tween the Ag	es of 18 an	d 59/69/79)	
	Ins	a British Columb	oia Birth Coho	ort of 40,000		
	Benefitting	Female Costs Avoided		Benefitting	Male Costs Avoided	
	from a BI	Annually per	Total Cost	from a Bl	Annually per	Total Cost
Age	# (Table 10)	Individual	Avoided	# (Table 11)	Individual	Avoided
18	5.6	\$8,642	\$48,427	10.4	\$8,642	\$90,095
19	5.6	\$8,642	\$48,403	10.4	\$8,642	\$90,052
20	13.2	\$8,642	\$114,261	20.9	\$8,642	\$180,752
21	13.2	\$8,642	\$114,191	20.9	\$8,642	\$180,642 \$180 E21
22	13.2	\$8,642 \$8,642	\$114,115	20.9	\$8,642 \$8,642	\$180,521 \$180 389
24	13.2	\$8,642	\$113,943	20.9	\$8,642	\$180,248
25	15.9	\$8,642	\$137,121	23.9	\$8,642	\$206,114
26	15.9	\$8,642	\$137,005	23.8	\$8,642	\$205,940
27	15.8	\$8,642	\$136,884	23.8	\$8,642	\$205,758
28	15.8	\$8,642 \$8,642	\$136,760	23.8	\$8,642	\$205,571 \$205,276
30	15.8	\$8,642 \$8,642	\$94 932	25.0 15.8	\$8,642 \$8,642	\$205,570 \$136 929
31	11.0	\$8,642	\$94,836	15.8	\$8,642	\$136,792
32	11.0	\$8,642	\$94,738	15.8	\$8,642	\$136,650
33	11.0	\$8,642	\$94,637	15.8	\$8,642	\$136,504
34	10.9	\$8,642	\$94,532	15.8	\$8,642	\$136,352
35	10.7	\$8,642	\$92,272	19.3	\$8,642	\$166,472
30	10.7	\$8,042 \$8,642	\$92,103	19.2	\$8,042 \$8,642	\$166,275
38	10.6	\$8,642	\$91,932	19.2	\$8.642	\$165.857
39	10.6	\$8,642	\$91,809	19.2	\$8,642	\$165,636
40	5.1	\$8,642	\$44,118	9.6	\$8,642	\$82,732
41	5.1	\$8,642	\$44,053	9.6	\$8,642	\$82,611
42	5.1	\$8,642	\$43,985	9.5	\$8,642	\$82,484
43	5.1	\$8,642	\$43,914	9.5	\$8,642	\$82,350
44	5.1	\$8,642	\$43,839	9.5	\$8,642	\$82,209 \$80,513
45	5.2	\$8,642	\$44,767	10.4	\$8,642	\$89.341
47	5.2	\$8,642	\$44,676	10.3	\$8,642	\$89,159
48	5.2	\$8,642	\$44,579	10.3	\$8,642	\$88,965
49	5.1	\$8,642	\$44,476	10.3	\$8,642	\$88,760
50	4.9	\$8,642	\$42,155	9.0	\$8,642	\$77,434
51	4.9	\$8,642	\$42,043	8.9	\$8,642	\$77,229
52	4.9	\$8,042 \$8,642	\$41,923 \$41 795	8.9	\$8,042 \$8,642	\$77,010
54	4.8	\$8,642	\$41,658	8.9	\$8.642	\$76.522
55	4.8	\$8,642	\$41,745	9.8	\$8,642	\$84,643
56	4.8	\$8,642	\$41,586	9.8	\$8,642	\$84,319
57	4.8	\$8,642	\$41,415	9.7	\$8,642	\$83,972
58	4.8	\$8,642	\$41,230	9.7	\$8,642	\$83,598
59 Total to Ago E0	4.7	\$8,642	\$41,031	9.6	\$8,642	\$83,193
60	2.6	\$8.642	\$22.623	6.1	\$8.642	\$52.630
61	2.6	\$8,642	\$22,494	6.1	\$8,642	\$52,331
62	2.6	\$8,642	\$22,355	6.0	\$8,642	\$52,007
63	2.6	\$8,642	\$22,205	6.0	\$8,642	\$51,657
64	2.6	\$8,642	\$22,042	5.9	\$8,642	\$51,279
65	2.7	\$8,642	\$23,449	6.0	\$8,642	\$52,218
67	2.7	\$8,642	\$23,021	5.9	\$8,642	\$51,762
68	2.6	\$8,642	\$22,780	5.9	\$8,642	\$50,729
69	2.6	\$8,642	\$22,518	5.8	\$8,642	\$50,146
Total to Age 69	390		\$3,372,242	672		\$5,803,837
70	0.6	\$8,642	\$5,301	1.4	\$8,642	\$12,248
71	0.6	\$8,642	\$5,228	1.4	\$8,642	\$12,078
72	0.6	30,042 \$8,647	əə, 148 \$5 061	1.4	20,042 58 642	۶11,893 \$11,693
74	0.6	\$8,642	\$4.966	1.3	\$8.642	\$11,475
75	0.6	\$8,642	\$4,924	1.4	\$8,642	\$11,825
76	0.6	\$8,642	\$4,812	1.3	\$8,642	\$11,555
77	0.5	\$8,642	\$4,690	1.3	\$8,642	\$11,262
78	0.5	\$8,642	\$4,558	1.3	\$8,642	\$10,946
/9	0.5	\$8,642	\$4,416	1.2	Ş8,642	\$10,604
Total to Age 79	396		\$3,421,346	685		\$5,919,415

Summary of CE – Males and Females

- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with screening and a brief behavioural intervention to reduce unhealthy drug use in adults 18 to 69 years old in a British Columbia birth cohort of 40,000 is 62,440 / QALY (Table 18, row *ai*).

Table 18: CE of Screening for Unhealthy Drug Use and Brief Intervention						
Ages 18 - 69						
In a BC Birth Cobort of 40,000						
Row Label	Variable	Base case	Data Source			
now Luber	Cost of Screening		Data Source			
а	Screening frequency (in years)	1	V			
b	Lifetime basic screens conducted, females	430,165	Table 15			
С	Lifetime basic screens conducted, males	339,745	Table 16			
d	Lifetime detailed screens conducted, females	24,560	Table 15			
e	Lifetime detailed screens conducted, males	42,270	Table 16			
f	Cost of 10-minute office visit	\$35.97	Ref. Doc.			
g	Cost per minute of GP time	\$3.60	= f / 10			
h	Patient time costs / hour	\$37.16	Ref. Doc.			
i	Lifetime basic screens only, females	405,604	= b - d			
j	Lifetime basic screens only, males	297,475	= c - e			
k	Total lifetime basic screens only	703,079	= i + j			
I	GP time for basic screen only (in minutes)	1.32	V			
m	Patient time, basic screen only (in hours)	0.4	V			
n	Total cost of basic screen only	\$13,780,384	=(k*l*g)+(k*m*h)			
0	GP time for basic and detailed screen (in minutes)	15.28	V			
р	Total lifetime detailed screens	66,830	= d + e			
q	Patient time, detailed screen (in hours)	2	V			
r	Total cost of basic and detailed screens	\$8,640,772	=(p*o*g)+(p*q*h)			
S	Total cost of screening, lifetime	\$22,421,155	= n + r			
	Cost of Brief Intervention					
t	Lifetime brief interventions, female	7,761	Table 15			
u	Lifetime brief interventions, male	11,882	Table 16			
v	Total lifetime brief interventions	19,643	= t + u			
w	GP time for brief intervention (in minutes)	16.98	٧			
x	Patient time, brief intervention (in hours)	2	V			
у	Total cost of brief intervention	\$2,659,857	= (v * w * g) + (v * x * h)			
	Costs Avoided due to Brief Intervention					
Z	Annual Cost of Unhealthy Drug Use	\$8,642	٧			
аа	Lifetime cost savings, female	\$3,372,242	Table 17			
ab	Lifetime cost savings, male	\$5,803,837	Table 17			
ас	Lifetime cost savings, total	\$9,176,079	= aa + ab			
	Net Cost of Screening and Brief Intervention					
ad	Net Cost of Screening and Brief Intervention	\$15,904,933	= s + y - ac			
ae	QALYs saved	325	Table 12			
af	CE (\$/QALY Saved)	\$48,951	= ad / ae			
ag	Net Cost of Screening and Brief Intervention, 1.5% Discount	\$15,709,676	Calculated			
ah	QALYs saved, 1.5% Discount	252	Calculated			
ai	CE (\$/QALY Saved), 1.5% Discount	\$62,440	= ag / ah			

√ = Estimates from the literature

Sensitivity Analysis – Males and Females

We also modified several major assumptions and recalculated the CE as follows:

- Reduced QoL impact. Use the lower limit of the disability weights from the GBD Study for opioid use (mild = .221, severe = .510), cocaine use (mild = .074, severe = .324), amphetamine use (mild = .051, severe = .329), and Cannabis Use Disorder (mild = .024, severe = .178). (Aggregate weights calculated in Table 4 and shown in Table 12, rows g & h): CE = \$81,539
- Increased QoL impact. Use the upper limit of the disability weights from the GBD Study for opioid use (mild = .473, severe = .843), cocaine use (mild = .165, severe = .634), amphetamine use (mild = .114, severe = .637), and Cannabis Use Disorder (mild = .060, severe = .364). (Aggregate weights calculated in Table 4 and shown in Table 12, rows g & h): CE = \$48,699
- Assume that the proportion of positively screened individuals receiving a brief behavioural intervention increases from 33.1% to 65.5% (Table 12, row *u*): CE = **\$21,441**
- Assume that the drug use cessation rate resulting from a brief behavioural intervention decreases from 6% to 2% (Table 12, row *v*): CE = **\$243,536**
- Assume that the drug use cessation rate resulting from a brief behavioural intervention increases from 6% to 10% (Table 12, row v): CE = \$26,221
- Assume that the annual costs avoided as a result of a 'successful' brief intervention decreases from \$8,642 to \$3,405 (Table 18, row *z*): CE = \$79,473
- Assume that the annual costs avoided as a result of a 'successful' brief intervention increases from \$8,642 to \$13,879 (Table 18, row *z*): CE = \$45,407
- Model from ages 18 through 79 (an additional 10 years modelled above the baseline age of 69 Table 12, row *a*): CE = \$67,175
- Model from ages 18 through 59 (a reduction of 10 years modelled compared to the baseline age of 69 Table 12, row *a*): CE = \$57,372
- Assume screening and intervention occur every three years rather than every year (Table 18, row *a*): CE = \$29,244
- Assume screening and intervention occur every five years rather than every year (Table 18, row *a*): CE = \$22,605

Summary of CE – Females Only

We ran the same analyses, with the same assumptions as above, but for females only. The CE associated with screening and a brief behavioural intervention to reduce unhealthy drug use in females 18 to 69 years old in a British Columbia birth cohort of 40,000 is \$88,908 / QALY (Table 19, row *aa*).

Table 19: CE of Screening for Unhealthy Drug Use and Brief Intervention							
	Females, Ages 18 - 69						
In a BC Birth Cohort of 40 000							
Row Label	Variable	Base case	Data Source				
	Cost of Screening						
а	Screening frequency (in years)	1	V				
b	Lifetime basic screens conducted, females	430,165	Table 15				
С	Lifetime in depth screens conducted, females	24,560	Table 15				
d	Cost of 10-minute office visit	\$34.85	Ref. Doc.				
е	Cost per minute of GP time	\$3.49	= d / 10				
f	Patient time costs / hour	\$37.16	Ref. Doc.				
g	Lifetime basic screens only, females	405,604	= b - c				
h	GP time for basic screen only (in minutes)	1.32	V				
i	Patient time, basic screen only (in hours)	0.4	V				
j	Total cost of basic screen only	\$7,890,049	=(g*h*e)+(g*i*f)				
k	GP time for basic and in-depth screen (in minutes)	15.28	V				
I	Total lifetime in-depth screens	24,560	= C				
m	Patient time, in depth screen (in hours)	2	V				
n	Total cost of basic and in depth screens	\$3,133,474	=(*k*e)+(*m*f)				
0	Total cost of screening, lifetime	\$11,023,523	= j + n				
	Cost of Brief Intervention						
р	Lifetime brief interventions, female	7,761	Table 15				
q	GP time for brief intervention (in minutes)	16.98	V				
r	Patient time, brief intervention (in hours)	2	V				
S	Total cost of brief intervention	\$1,036,131	=(p*q*e)+(p*r*f)				
	Costs Avoided due to Brief Intervention						
t	Annual Cost of Unhealthy Drug Use	\$8,642	V				
u	Lifetime cost savings, female	\$3,372,242	Table 17				
	Net Cost of Screening and Brief Intervention						
v	Net Cost of Screening and Brief Intervention	\$8,687,411	= o + s - u				
w	QALYs saved	113	Table 13				
х	CE (\$/QALY Saved)	\$76,761	= v / w				
у	Net Cost of Screening and Brief Intervention, 1.5% Discount	\$7,900,199	Calculated				
z	QALYs saved, 1.5% Discount	89	Calculated				
aa	CE (\$/QALY Saved), 1.5% Discount	\$88,908	= y / z				

∨ = Estimates from the literature

Sensitivity Analysis – Females Only

We also modified several major assumptions and recalculated the CE as follows:

- Reduced QoL impact. Use the lower limit of the disability weights from the GBD Study for opioid use (mild = .221, severe = .510), cocaine use (mild = .074, severe = .324), amphetamine use (mild = .051, severe = .329), and Cannabis Use Disorder (mild = .024, severe = .178). (Aggregate weights calculated in Table 4 and shown in Table 13, rows *e* & *f*): CE = \$125,396
- Increased QoL impact. Use the upper limit of the disability weights from the GBD Study for opioid use (mild = .473, severe = .843), cocaine use (mild = .165, severe = .634), amphetamine use (mild = .114, severe = .637), and Cannabis Use Disorder (mild = .060, severe = .364). (Aggregate weights calculated in Table 4 and shown in Table 13, rows *e* & *f*): CE = \$68,947
- Assume that the proportion of positively screened individuals receiving a brief behavioural intervention increases from 33.1% to 65.5% (Table 13, row *n*): CE = **\$34,159**
- Assume that the drug use cessation rate resulting from a brief behavioural intervention decreases from 6% to 2% (Table 13, row *o*): CE = **\$325,968**
- Assume that the drug use cessation rate resulting from a brief behavioural intervention increases from 6% to 10% (Table 13, row *o*): CE = \$41,496
- Assume that the annual costs avoided as a result of a 'successful' brief intervention decreases from \$8,642 to \$3,405 (Table 19, row *t*): CE = \$106,859
- Assume that the annual costs avoided as a result of a 'successful' brief intervention increases from \$8,642 to \$13,879 (Table 19, row *t*): CE = \$70,958
- Model from ages 18 through 79 (an additional 10 years modelled above the baseline age of 69 Table 13, row *a*): CE = \$96,141
- Model from ages 18 through 59 (a reduction of 10 years modelled compared to the baseline age of 69 Table 13, row *a*): CE = \$80,896
- Assume screening and intervention occur every three years rather than every year (Table 19, row *a*): CE = \$38,521
- Assume screening and intervention occur every five years rather than every year (Table 19, row *a*): CE = \$28,444

Summary of CE – Males Only

We ran the same analyses, with the same assumptions as above, but for males only. The CE associated with screening and a brief behavioural intervention to reduce unhealthy drug use in males 18 to 69 years old in a British Columbia birth cohort of 40,000 is \$47,988 / QALY (Table 20, row *aa*).

Table 20: CE of Screening for Unhealthy Drug Use and Brief Intervention							
	Males Ages 18 - 69						
	In a BC Birth Cobort of 40,000						
Row Label	Variable	Base case	Data Source				
	Cost of Screening						
а	Screening frequency (in years)	1	V				
b	Lifetime basic screens conducted, males	339,745	Table 16				
С	Lifetime in depth screens conducted, males	42,270	Table 16				
d	Cost of 10-minute office visit	\$34.85	Ref. Doc.				
е	Cost per minute of GP time	\$3.49	= d / 10				
f	Patient time costs / hour	\$37.16	Ref. Doc.				
g	Lifetime basic screens only, males	297,475	= b - c				
h	GP time for basic screen only (in minutes)	1.32	V				
i	Patient time, basic screen only (in hours)	0.4	V				
j	Total cost of basic screen only	\$5,786,654	=(g*h*e)+(g*i*f)				
k	GP time for basic and in-depth screen (in minutes)	15.28	V				
I	Total lifetime in-depth screens	42,270	= C				
m	Patient time, in depth screen (in hours)	2	V				
n	Total cost of basic and in depth screens	\$5,392,902	=(l*k*e)+(l*m*f)				
0	Total cost of screening, lifetime	\$11,179,556	= j + n				
	Cost of Brief Intervention						
р	Lifetime brief interventions, male	11,882	Table 16				
q	GP time for brief intervention (in minutes)	16.98	V				
r	Patient time, brief intervention (in hours)	2	V				
S	Total cost of brief intervention	\$1,586,363	=(p*q*e)+(p*r*f)				
	Costs Avoided due to Brief Intervention						
z	Annual Cost of Unhealthy Drug Use	\$8,642	V				
ab	Lifetime cost savings, male	\$5,803,837	Table 17				
	Net Cost of Screening and Brief Intervention						
v	Net Cost of Screening and Brief Intervention	\$6,962,082	= o + s - u				
w	QALYs saved	212	Table 14				
х	CE (\$/QALY Saved)	\$32,881	= v / w				
у	Net Cost of Screening and Brief Intervention, 1.5% Discount	\$7,809,477	Calculated				
Z	QALYs saved, 1.5% Discount	163	Calculated				
аа	CE (\$/QALY Saved), 1.5% Discount	\$47,988	= y / z				

v = Estimates from the literature

Sensitivity Analysis - Males Only

We also modified several major assumptions and recalculated the CE as follows:

- Reduced QoL impact. Use the lower limit of the disability weights from the GBD Study for opioid use (mild = .221, severe = .510), cocaine use (mild = .074, severe = .324), amphetamine use (mild = .051, severe = .329), and Cannabis Use Disorder (mild = .024, severe = .178). (Aggregate weights calculated in Table 4 and shown in Table 14, rows *e* & *f*): CE = \$67,059
- Increased QoL impact. Use the upper limit of the disability weights from the GBD Study for opioid use (mild = .473, severe = .843), cocaine use (mild = .165, severe = .634), amphetamine use (mild = .114, severe = .637), and Cannabis Use Disorder (mild = .060, severe = .364). (Aggregate weights calculated in Table 4 and shown in Table 14, rows *e* & *f*): CE = \$37,545
- Assume that the proportion of positively screened individuals receiving a brief behavioural intervention increases from 33.1% to 65.5% (Table 14, row *n*): CE = **\$14,497**
- Assume that the drug use cessation rate resulting from a brief behavioural intervention decreases from 6% to 2% (Table 14, row *o*: CE = **\$198,526**
- Assume that the drug use cessation rate resulting from a brief behavioural intervention increases from 6% to 10% (Table 12, row *o*): CE = \$17,881
- Assume that the annual costs avoided as a result of a 'successful' brief intervention decreases from \$8,642 to \$3,405 (Table 20, row *z*): CE = \$64,520
- Assume that the annual costs avoided as a result of a 'successful' brief intervention increases from 8,642 to 13,879 (Table 20, row *z*): CE = 31,456
- Model from ages 18 through 79 (an additional 10 years modelled above the baseline age of 69 Table 14, row *a*): CE = \$51,412
- Model from ages 18 through 59 (a reduction of 10 years modelled compared to the baseline age of 69 Table 14, row *a*): CE = \$44,331
- Assume screening and intervention occur every three years rather than every year (Table 20, row *a*): CE = \$24,179
- Assume screening and intervention occur every five years rather than every year (Table 20, row *a*): CE = \$19,417

Summary – Males and Females

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening and a brief behavioural intervention for the prevention of unhealthy drug use is estimated to be 252 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be \$62,440 / QALY (see Table 21).

Table 21: Screening for Unhealthy Drug Use and BriefIntervention in a Birth Cohort of 40,000					
	Summary				
	Base				
	Case	Ran	ge		
CPB (Potential QALYs Gain	ed)				
Д	ssume No Curren	t Service			
1.5% Discount Rate	252	84	498		
3% Discount Rate	200	67	396		
0% Discount Rate	325	108	643		
CE (\$/QALY) including patie	ent time costs				
1.5% Discount Rate	\$62,440	\$21,441	\$243,536		
3% Discount Rate	\$58,322	\$19,423	\$230,963		
0% Discount Rate	\$48,951	\$14,544	\$203,337		
CE (\$/QALY) excluding patient time costs					
1.5% Discount Rate	\$4,271	Cost-saving	\$69,029		
3% Discount Rate	\$3,299	Cost-saving	\$65,896		
0% Discount Rate	Cost-saving	Cost-saving	\$47,505		

Summary – Females Only

Applying a 1.5% discount rate, the CPB associated with screening and a brief behavioural intervention for the prevention of unhealthy drug use is estimated to be 89 QALYs while the CE is estimated to be \$88,908 / QALY (see Table 22).

Table 22: Screening for Unhealthy Drug Use and BriefIntervention in a Birth Cohort of 40,000					
Sui	mmary, Fer	nales			
	Base				
	Case	Ran	ge		
CPB (Potential QALYs Gaine	d)				
As	sume No Curre	nt Service			
1.5% Discount Rate	89	30	176		
3% Discount Rate	71	24	141		
0% Discount Rate	113	38	224		
CE (\$/QALY) including patie	nt time costs				
1.5% Discount Rate	\$88,908	\$34,159	\$325,968		
3% Discount Rate	\$82,083	\$30,831	\$305,204		
0% Discount Rate	\$76,761	\$27,804	\$289,875		
CE (\$/QALY) excluding patient time costs					
1.5% Discount Rate	\$10,173	Cost-saving	\$89,761		
3% Discount Rate	\$8,525	Cost-saving	\$84,529		
0% Discount Rate	\$2,265	Cost-saving	\$66,390		

Summary – Males Only

Applying a 1.5% discount rate, the CPB associated with screening and a brief behavioural intervention for the prevention of unhealthy drug use is estimated to be 163 QALYs while the CE is estimated to be \$47,988 / QALY (see Table 23).

Table 23: Screening for Unhealthy Drug Use and BriefIntervention in a Birth Cohort of 40,000						
S	ummary, Ma	ales				
	Base					
	Case	Ran	ge			
CPB (Potential QALYs Gaine	ed)					
A	ssume No Curren	t Service				
1.5% Discount Rate	163	54	322			
3% Discount Rate	129	43	254			
0% Discount Rate	212	71	419			
CE (\$/QALY) including patie	ent time costs					
1.5% Discount Rate	\$47,988	\$14,497	\$198,526			
3% Discount Rate	\$45,107	\$13,078	\$189,674			
0% Discount Rate	\$32,881	\$6,763	\$153,463			
CE (\$/QALY) excluding patient time costs						
1.5% Discount Rate	\$1,049	Cost-saving	\$57,709			
3% Discount Rate	\$393	Cost-saving	\$55,533			
0% Discount Rate	Cost-saving	Cost-saving	\$33,792			

Screening for and Management of Obesity

Canadian Task Force on Preventive Health Care (2015)

We recommend measuring height and weight and calculating BMI at appropriate primary care visits. (Strong recommendation; very low-quality evidence)

We recommend that practitioners not offer formal, structured interventions aimed at preventing weight gain in normal-weight adults. (Weak recommendation; very low-quality evidence)

For adults who are obese (BMI 30–39.9) and are at high risk of diabetes, we recommend that practitioners offer or refer to structured behavioural interventions aimed at weight loss. (Strong recommendation; moderate-quality evidence)

For adults who are overweight or obese, we recommend that practitioners offer or refer to structured behavioural interventions aimed at weight loss. (Weak recommendation; moderate-quality evidence)

For adults who are overweight or obese, we recommend that practitioners not routinely offer pharmacologic interventions (orlistat or metformin) aimed at weight loss. (Weak recommendation; moderate-quality evidence)¹⁶⁷³

United States Preventive Services Task Force Recommendations (2012)

The USPSTF recommends screening all adults for obesity. Clinicians should offer or refer patients with a body mass index (BMI) of 30 kg/m^2 or higher to intensive, multicomponent behavioral interventions. This is a B recommendation.

Intensive, multicomponent behavioral interventions for obese adults include the following components:

- Behavioral management activities, such as setting weight-loss goals
- Improving diet or nutrition and increasing physical activity
- Addressing barriers to change
- Self-monitoring
- Strategizing how to maintain lifestyle changes

The USPSTF found that the most effective interventions were comprehensive and of high intensity (12 to 26 sessions in a year).

Behavioral intervention participants lost an average of 6% of their baseline weight (4 to 7 kg [8.8 to 15.4 lb]) in the first year with 12 to 26 treatment sessions compared with little or no weight loss in the control group participants. A weight loss of 5% is considered clinically important by the U.S. Food and Drug Administration (FDA).¹⁶⁷⁴

¹⁶⁷³ Canadian Task Force on Preventive Health Care. Recommendations for prevention of weight gain and use of behavioural and pharmacologic interventions to manage overweight and obesity in adults in primary care. *Canadian Medical Association Journal*. 2015; 187(3): 184-95.

¹⁶⁷⁴ Moyer VA. Screening for and management of obesity in adults: US Preventive Services Task Force recommendation statement. *Annals of Internal Medicine*. 2012; 157(5): 373-8.

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with screening for and management of obesity in adults aged 18 or older in a British Columbia birth cohort of 40,000.

In modelling CPB, we made the following assumptions:

• Based on 2014 prevalence rates of obesity (based on self-reported height and weight) by age group and sex in BC,¹⁶⁷⁵ a total of 343,441 life years lived between the ages of 18 and 79 in a birth cohort of 40,000 individuals are in the obese class I or II category (Tables 1 & 2, Table 3, row *a*).

Table 1: Prevalence of Excess Weight in a <i>Male</i> Birth Cohort of 20,000										
	Individuals	Years of								
Age	in Birth	Life in Birth	Prevaler	ice of Ex	cess We	eight	# of Yea	rs with Ex	cess Wei	ght
Group	Cohort	Cohort	Overweight	Class I	Class II	Class III	Overweight	Class I	Class II	Class III
18-19	19,870	39,740	19.3%	4.8%	0.3%	0.2%	7,654	1,903	118	61
20-24	19,815	99,073	31.2%	7.7%	0.7%	0.2%	30,916	7,629	660	211
25-29	19,701	98,505	36.6%	9.3%	2.4%	0.8%	36,021	9,176	2,368	745
30-34	19,564	97,819	42.7%	14.4%	4.6%	0.0%	41,727	14,069	4,471	0
35-39	19,408	97,038	27.8%	21.0%	3.6%	0.1%	27,022	20,414	3,472	117
40-44	19,223	96,115	37.4%	20.2%	3.5%	0.1%	35,903	19,450	3,361	56
45-49	18,993	94,967	45.4%	10.4%	5.5%	0.2%	43,117	9,862	5,236	193
50-54	18,690	93,451	37.1%	25.8%	1.3%	0.3%	34,665	24,111	1,213	286
55-59	18,270	91,351	47.3%	11.4%	2.0%	1.6%	43,247	10,394	1,825	1,452
60-64	17,673	88,366	41.2%	15.8%	3.1%	1.7%	36,384	13,992	2,776	1,541
65-69	16,810	84,050	44.9%	16.2%	4.2%	0.2%	37,712	13,622	3,515	155
70-74	15,550	77,750	47.7%	17.4%	3.6%	0.4%	37,060	13,530	2,780	305
75-79	13,720	68,602	34.3%	8.0%	3.0%	0.7%	23,554	5,481	2,088	482
Total Ag	es 18-79	1,126,829	38.6%	14.5%	3.0%	0.5%	434,983	163,633	33,884	5,605

Table 2: Prevalence of Excess Weight in a <i>Female</i> Birth Cohort of 20,000										
	Individuals	Years of								
Age	in Birth	Life in Birth	Prevaler	ice of Ex	cess W	eight	# of Year	's with Ex	cess Wei	ght
Group	Cohort	Cohort	Overweight	Class I	Class II	Class III	Overweight	Class I	Class II	Class III
18-19	19,891	39,782	10.2%	3.5%	0.0%	0.0%	4,050	1,403	0	0
20-24	19,867	99 <i>,</i> 333	17.7%	3.5%	1.0%	0.0%	17,583	3,489	957	0
25-29	19,825	99,124	15.2%	4.0%	4.2%	0.2%	15,076	3,926	4,116	150
30-34	19,773	98,864	20.2%	5.7%	3.7%	1.9%	19,940	5,639	3,671	1,916
35-39	19,707	98,536	21.7%	11.0%	5.5%	2.0%	21,426	10,831	5,426	2,017
40-44	19,624	98,118	23.9%	10.7%	1.2%	4.0%	23,484	10,479	1,213	3,939
45-49	19,509	97,547	29.4%	6.2%	0.5%	0.9%	28,717	6,072	515	917
50-54	19,349	96,744	30.3%	15.4%	2.2%	1.3%	29,346	14,851	2,163	1,262
55-59	19,116	95,582	28.1%	8.2%	3.1%	2.1%	26,882	7,853	2,944	2,008
60-64	18,770	93,850	27.3%	14.4%	6.0%	3.0%	25,632	13,523	5,643	2,783
65-69	18,238	91,189	34.5%	11.6%	5.0%	1.2%	31,437	10,554	4,548	1,067
70-74	17,402	87,008	24.6%	9.4%	5.9%	1.9%	21,385	8,175	5,146	1,649
75-79	16,072	80,358	28.0%	14.3%	1.6%	0.9%	22,496	11,484	1,302	723
Total Ag	es 18-79	1,176,036	24.4%	9.2%	3.2%	1.6%	287,454	108,279	37,644	18,432

¹⁶⁷⁵ Statistics Canada. *Canadian Community Health Survey Public Use Microdata File 2014*. All computations, use and interpretation of these data are entirely that of H. Krueger & Associates Inc.

- Research for the USPSTF found that behavioral intervention participants lost an average of 6% or 3 kg (6.6 lb) of their baseline weight (95% CI of 4 to 7 kg [8.8 to 15.4 lb]) in the first year with 12 to 26 treatment sessions, compared with little or no weight loss in the control group participants.¹⁶⁷⁶ Research for the CTFPHC found similar results with an average weight loss of 3.02 kg (95% CI of 2.52 to 3.52).¹⁶⁷⁷ In addition, waist circumference was reduced by an average of 2.78 cm (95% CI of 2.22 to 3.34) and BMI was reduced by 1.11kg/m² (95% CI of 0.84 to 1.39). On average, one out of every five participants (95% CI of 4 to 7) lost at least 5% of their body weight (Table 3, row *c*) and one out of nine (95% CI of 7 to 12) lost more than 10% of their body weight. A weight loss of 5% is considered clinically important.
- Other assumptions used in assessing the clinically preventable burden are detailed in the Reference Document.

Based on these assumptions, the CPB associated with screening for and management of obesity is 2,278 QALYs (Table 3, row *i*).

Table 3: CPB of Screening for and Management of Obesity in Adults in a Birth Cohort of 40.000

Row			
Label	Variable	Base Case	Data Source
а	Years of life lived with Class I or II obesity	343,441	Tables 1 and 2
b	Adherence with an intensive, multicomponent behavioral intervention	33%	Ref Doc
с	Number needed to treat to achieve a clinically important reduction in weight (≥5% of body weight)	5	V
d	Reduced years of life lived with Class I or II obesity due to intervention	22,667	= (a * b) / c
	Benefits Associated with Screening and Management		
е	Reduction in quality of life - Class I / II obesity vs. overweight	6.96%	Ref Doc
f	QALYs gained	1,578	= d * e
g	Reduction in years of life lived - Class I / II obesity vs. overweight	3.09%	Ref Doc
h	QALYs gained	700	= d * g
i	Potential QALYs gained, management increasing from 0% to 33%	2,278	= f + h

√ = *Estimates from the literature*

We also modified a major assumption and recalculated the CPB as follows:

- Assume that one out of every four participants lost at least 5% of their body weight after completing an intensive, multicomponent behavioral intervention, rather than one out of every five participants (Table 3, row *c*): **CPB = 2,848 QALYs**.
- Assume that one out of every seven participants lost at least 5% of their body weight after completing an intensive, multicomponent behavioral intervention, rather than one out of every five participants (Table 3, row *c*): **CPB = 1,627 QALYs**.

¹⁶⁷⁶ LeBlanc ES, O'Connor E, Whitlock EP et al. Effectiveness of primary care–relevant treatments for obesity in adults: a systematic evidence review for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2011; 155(7): 434-47.

¹⁶⁷⁷ Peirson L, Douketis J, Ciliska D et al. Treatment for overweight and obesity in adult populations: a systematic review and meta-analysis. *Canadian Medical Association Open Access Journal*. 2014; 2(4): e306-e17.

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with screening for and management of obesity in adults aged 18 or older in a British Columbia birth cohort of 40,000.

In modelling CE, we made the following assumptions:

- **Frequency of screening** We assumed that a general practitioner would measure a patient's height and weight in order to calculate BMI and discuss physical activity and healthy eating once every two years (Table 4, row g).
- **Cost of an intensive, multicomponent behavioral intervention** The per person costs of such interventions in the literature vary substantially, ranging from \$301 to \$3,646 (converted to 2022 CAD).^{1678,1679,1680,1681} The difference in costs is largely attributable to the ratio of facilitators to clients. The intervention costing \$3,646 per person involved case managers teaching a 16-week curriculum on a one-to-one basis.¹⁶⁸² The intervention costing \$301 per person was set up for 16 group sessions of up to 18 persons.¹⁶⁸³ We used the mean cost of three of the four interventions (excluding the \$3,646 per person intervention) for an estimated cost of \$680 per person per intervention (Table 4, row *m*).
- **Patient time costs for intensive, multicomponent behavioral intervention** We assumed three hours of patient time would be required (including travel to and from the session) for an average of 18 sessions, the mid-point between 12 and 24 sessions (Table 4, rows *q*).
- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with screening for and management of obesity is \$14,510 per QALY (Table 4, row *ff*).

¹⁶⁷⁸ Gustafson A, Khavjou O, Stearns SC et al. Cost-effectiveness of a behavioral weight loss intervention for lowincome women: the Weight-Wise Program. *Preventive Medicine*. 2009; 49(5): 390-5.

¹⁶⁷⁹ Krukowski RA, Tilford JM, Harvey-Berino J et al. Comparing behavioral weight loss modalities: incremental cost-effectiveness of an internet-based versus an in-person condition. *Obesity*. 2011; 19(8): 1629-35.

¹⁶⁸⁰ Neumann A, Schwarz P and Lindholm L. Estimating the cost-effectiveness of lifestyle intervention programmes to prevent diabetes based on an example from Germany: Markov modelling. *Cost-effectiveness and Resource Allocation*. 2011; 9(1): 17.

 ¹⁶⁸¹ Group DPPR. Costs associated with the primary prevention of type 2 diabetes mellitus in the diabetes prevention program. *Diabetes Care*. 2003; 26(1): 36-47.
 ¹⁶⁸² Ibid.

¹⁶⁸³ Gustafson A, Khavjou O, Stearns SC et al. Cost-effectiveness of a behavioral weight loss intervention for lowincome women: the Weight-Wise Program. *Preventive Medicine*. 2009; 49(5): 390-5.

Table 4	: CE of Screening for and Management of Obesit	y in Adult	s in a Birth
	Cohort of 40.000		
Row			
Label	Variable	Base Case	Data Source
a	Individuals in birth cohort at age 40	38.847	Tables 1 & 2
b	Total life years between age 18 and 70	1.989.145	Tables 1 & 2
c	Proportion of years with Class I / II obesity without intervention	14.9%	Tables 1 & 2
d	Years with Class I / II obesity without intervention	343.441	Tables 1 & 2
e	Adherence with screening in primary care	73%	Ref Doc
	Adherence with an intensive, multicomponent behavioral		
f	intervention	33%	Ref Doc
	Costs of intervention		
	Erequency of measuring height and weight and asking about		
g	nhysical activity and digt between age 18 and 70 (eveny x years)	2	Assumed
h	Total number of screens	726.028	-(h*o)/a
i	Cost of 10-minute office visit	\$25.07	- (b e)/g
:	Value of nationt time and travel for office visit	\$53.97	Ref Doc
J	Portion of 10 minute office visit for screen	574.32	Ref Doc
ĸ	Cost of screening	50%	
	Cost of screening	\$40,037,309	= f1 * (1 + J) * K
m	intervention	\$680	V
	Intervention		
n	individuals eligible for an intensive, multicomponent behavioral	5,793	= a * c
	Intervention		
о	individuals enrolled in an intensive, multicomponent behavioral	1,912	= n * f
		64,200,220	Ψ
р	Costs of an intensive, multicomponent behavioral intervention	\$1,299,238	= 0 * m
	# of treatments per intensive, multicomponent behavioral	18	V
q	Intervention	4444.40	
r	Value of patient time and travel for per intervention treatment	\$111.48	V
S	Value of patient time and travel for intervention	\$3,836,362	= o * q * r
	Cost avoided		
t	Number needed to treat to achieve a clinically important	5	V
	reduction in weight (≥5% of body weight)		
u	Individuals achieving a clinically important reduction in weight	382	= o / t
	(≥5% of body weight)		- / -
v	Years with Class I / II obesity avoided with intervention	22,667	= (u / n) * d
w	Excess direct costs per year attributable to obesity	\$915	Ref Doc
х	Excess direct costs per year attributable to overweight	\$258	Ref Doc
w	Costs avoided	\$14,892,280	=(w - x) *v
	CE calculation		
z	Cost of intervention over lifetime of birth cohort	\$45,172,970	= l + p + s
аа	Costs avoided	\$14,892,280	= w
bb	QALYs saved	2,278	Table 3, row i
сс	Cost of intervention over lifetime of birth cohort (1.5% discount)	\$31,318,607	Calculated
dd	Costs avoided (1.5% discount)	\$10,324,880	Calculated
ee	QALYs saved (1.5% discount)	1,447	Calculated
ff	CE (\$/QALY saved)	\$14,510	=(cc-dd)/ee

∨ = Estimates from the literature

We also modified several major assumptions and recalculated the cost per QALY as follows:

- Assume that one out of every four participants lost at least 5% of their body weight after completing an intensive, multicomponent behavioral intervention rather than one out of every five participants (Table 3, row *c*): CE =\$10,181 per QALY.
- Assume that one out of every seven participants lost at least 5% of their body weight after completing an intensive, multicomponent behavioral intervention rather than one out of every five participants (Table 3, row *c*): CE = \$23,168 per QALY.
- Assume that the frequency of measuring height and weight and asking about physical activity and diet would occur every year rather than once every two years (Table 4, row g): CE = **\$33,694 per QALY**.
- Assume that the frequency of measuring height and weight and asking about physical activity and diet would occur every three years rather than once every two years (Table 4, row g): CE = \$8,115 per QALY.
- Assume the proportion of an office visit required for screening/referral is reduced from 50% to 33% (Table 4, row *k*): **CE** = **\$7,987 per QALY**.
- Assume the proportion of an office visit required for screening/referral is increased from 50% to 67% (Table 4, row *k*): CE = \$21,033 per QALY.
- Assume that the costs per person of an intensive, multicomponent behavioral intervention are reduced from \$680 to \$301 (Table 4, row *m*): CE = \$14,163 per QALY.
- Assume that the costs per person of an intensive, multicomponent behavioral intervention are increased from \$680 to \$3,646 (Table 4, row *m*): CE = \$17,227 per QALY.

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening for and management of obesity is estimated to be 1,447 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to result in cost-savings of \$14,510 per QALY (see Table 5).

Table 5: Screening for and Management of Obesity inAdults in a Birth Cohort of 40,000					
Sur	nmary				
	Base				
	Case	Rang	ge		
CPB (Potential QALYs Gained)					
Gap between 0% and Best in th	e World (33%)				
1.5% Discount Rate	1,447	1,033	1,809		
3% Discount Rate	955	682	1,194		
0% Discount Rate	2,278	1,627	2,848		
CE (\$/QALY) including patient time	costs				
1.5% Discount Rate	\$14,510	\$7,987	\$33,694		
3% Discount Rate	\$15,773	\$8,682	\$36,629		
0% Discount Rate	\$13,292	\$7,317	\$30,868		
CE (\$/QALY) excluding patient time costs					
1.5% Discount Rate	Cost-saving	Cost-saving	\$6,000		
3% Discount Rate	Cost-saving	Cost-saving	\$6,523		
0% Discount Rate	Cost-saving	Cost-saving	\$5,497		

Falls in Community–Dwelling Elderly

United States Preventive Service Task Force Recommendations (2012)

Falls are the leading cause of injury in adults aged 65 years or older. Between 30% and 40% of community dwelling adults aged 65 years or older fall at least once per year.

The USPSTF recommends exercise or physical therapy and vitamin D supplementation to prevent falls in community-dwelling adults aged 65 years or older who are at increased risk for falls. (Grade B recommendation)

The USPSTF does not recommend automatically performing an in-depth multifactorial risk assessment in conjunction with comprehensive management of identified risks to prevent falls in community-dwelling adults aged 65 years or older because the likelihood of benefit is small. In determining whether this service is appropriate in individual cases, patients and clinicians should consider the balance of benefits and harms on the basis of the circumstances of prior falls, comorbid medical conditions, and patient values. (Grade C recommendation)¹⁶⁸⁴

More specifically, the USPSTF suggests annual screening for risk using "a pragmatic, expert-supported approach to identifying high risk persons (based on) a history of falls and mobility problems and the results of a timed Get-Up-and-Go test. The test is performed by observing the time it takes a person to rise from an armchair, walk 3 meters (10 feet), turn, walk back, and sit down again." Exercise should consist of at least 150 minutes of moderate intensity activity per week while Vitamin D supplementation of 800 IU per day should occur for at least one year.¹⁶⁸⁵

Note that the 2003 recommendations from the CTFPHC apply only to individuals living in long-term care facilities, rather than the general population of community-dwelling elderly.¹⁶⁸⁶

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with preventing falls in the communitydwelling elderly.

In estimating CPB, we made the following assumptions:

• We first estimated the number of life years lived in a BC cohort of 40,000 from age 65 to death as well as the average life expectancy for this cohort (see Table 1). The 778,475 life years lived was used to populate row *a* of Table 2 while the average life expectancy of 12.9 years was used to populate row *c* of Table 2.

 ¹⁶⁸⁴ Moyer VA. Prevention of falls in community-dwelling older adults: U.S. Preventive Services Task Force recommendation statement. *Annals of Internal Medicine*. 2012; 157(3): 197-204.
 ¹⁶⁸⁵ Ibid

¹⁶⁸⁶ Canadian Task Force on Preventive Health Care. *Prevention of Falls in Long-Term Care Facilities: Systematic Review and Recommendations* 2003. Available at http://canadiantaskforce.ca/wp-content/uploads/2012/09/CTF_FallsPrevn_TR_Jun03.pdf?0136ff. Accessed November 2013.

Table 1: Deaths and Years of Life Lived											
Between the Ages of 65 and Death											
in a British Columbia Birth Cohort of 40,000											
Individuals											
Age	in Birth	Life Years	Life								
Group	Cohort	Lived	Expectancy								
60-64	36,435										
65-69	35,035	175,175	19.9								
70-74	32,929	164,644	16.0								
75-79	29,753	148,766	12.4								
80-84	25,060	125,300	9.2								
85-89	18,546	92,728	6.5								
90+	13,927	71,862	5.2								
Total		778,475	12.9								

- An estimated 94.3% of life years in this cohort are lived in the community (Table 1, row *b*).¹⁶⁸⁷
- Fall-related hospitalizations occur at a rate of 14.19 per 1,000 elderly in BC (Table 1, row *d*).¹⁶⁸⁸
- An estimated 30% of individuals die within one year after a fall-related hospitalization (Table 1, row f).¹⁶⁸⁹
- Individuals who survive a fall-related hospitalization have a 20% reduced life expectancy (Table 1, row *h*).¹⁶⁹⁰
- Individuals who survive a fall-related hospitalization have a .20 reduction in quality of life in year 1 following the hospitalization (Table 1, row k) and 0.06 reduction per year thereafter (Table 1, row m).¹⁶⁹¹
- Interventions involving exercise or physical therapy in reducing falls in communitydwelling elderly have an effectiveness rate of 13% (RR of 0.87: 95% CI of 0.81 to 0.94) (Table 1, row *p*).¹⁶⁹²
- Current delivery of screening and counselling regarding exercise interventions is assumed to be 18% (Table 1, row *r*) (see Reference Document).
- Adherence with exercise intervention is assumed to be 30% (Table 1, row *s*).
- Other assumptions used in assessing the clinically preventable burden are detailed in the Reference Document.

7a6dfc7699f7/LivingArrangementofSeniorsinBritishColumbia.pdf. Accessed February 2018. ¹⁶⁸⁸ Scott V, Wagar L and Elliot S. *Falls & Related Injuries Among Older Canadians: Fall Related Hospitalizations & Prevention Initiatives*. 2010. Available at

¹⁶⁸⁷ BC Stats. 2006 Census Fast Facts: Living Arrangements of Seniors in British Columbia. 2008. Available at http://www.bcstats.gov.bc.ca/Files/ac5baf3d-1490-437c-bc2c-

http://www.hiphealth.ca/media/research_cemfia_phac_epi_and_inventor_20100610.pdf. Accessed February 2018. ¹⁶⁸⁹ Ibid.

¹⁶⁹⁰ Frick KD, Kung JY, Parrish JM et al. Evaluating the cost-effectiveness of fall prevention programs that reduce fall-related hip fractures in older adults. *Journal of the American Geriatrics Society*. 2010; 58(1): 136-41. ¹⁶⁹¹ Ibid.

¹⁶⁹² Michael YL, Whitlock EP, Lin JS et al. Primary care-relevant interventions to prevent falling in older adults: a systematic evidence review for the U.S. Preventive Services Task Force. *Annals of Internal Medicine*. 2010; 153(12): 815-25.

The role of vitamin D in fracture prevention is contentious.^{1693,1694,1695} The 2012 USPSTF review noted above, for example, has suggested that vitamin D supplementation reduced the risk of falling by 17% (RR of 0.83 [95% CI of 0.77 to 0.89]).¹⁶⁹⁶ The Cochrane review, on the other hand, found no reduction in the risk of falling associated with vitamin D supplementation ((RR of 0.96 [95% CI of 0.89 to 1.03]) although the reviewers did acknowledge that vitamin D supplementation may lower this risk in "people with lower vitamin D levels before treatment."¹⁶⁹⁷ Both groups agree, however, that group and home based exercise as well as home safety interventions reduce the rate of falls and the risk of falls.

Since the 2012 USPSTF review and recommendations regarding the prevention of falls in the community-dwelling elderly, the USPSTF has released (in May 2013) an updated assessment of the use of vitamin D and calcium supplementation to prevent fractures in adults.^{1698,1699} The updated recommendations include the following:

The USPSTF concludes that the current evidence is insufficient to assess the balance of the benefits and harms of combined vitamin D and calcium supplementation for the primary prevention of fractures in premenopausal women or in men. (Grade I recommendation)

The USPSTF concludes that the current evidence is insufficient to assess the balance of the benefits and harms of daily supplementation with greater than 400 IU of vitamin D_3 and greater than 1,000 mg of calcium for the primary prevention of fractures in noninstitutionalized postmenopausal women. (Grade I recommendation)

The USPSTF recommends against daily supplementation with 400 IU or less of vitamin D_3 and 1,000 mg or less of calcium for the primary prevention of fractures in noninstitutionalized postmenopausal women. (Grade D recommendation).

We have therefore focused on the role of exercise in the prevention of falls in the communitydwelling elderly.

Based on these assumptions, the CPB associated with screening and interventions to reduce falls in community-dwelling elderly is 450 (see Table 2, row t). The CPB of 429 represents the gap between no coverage and the 'best in the world' coverage estimated at 18% for screening for risk and 30% for adherence with recommended exercise regimen.

 ¹⁶⁹³ Rosen CJ. Vitamin D supplementation: bones of contention. *The Lancet*. 2014; 383(9912): 108-10.
 ¹⁶⁹⁴ Reid IR, Bolland MJ and Grey A. Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis. *The Lancet*. 2014; 383(9912): 146-55.

¹⁶⁹⁵ Bischoff-Ferrari HA, Willett WC, Orav EJ et al. A pooled analysis of vitamin D dose requirements for fracture prevention. *New England Journal of Medicine*. 2012; 367: 40-9.

¹⁶⁹⁶ Michael YL, Whitlock EP, Lin JS et al. Primary care-relevant interventions to prevent falling in older adults: a systematic evidence review for the U.S. Preventive Services Task Force. *Annals of Internal Medicine*. 2010; 153(12): 815-25.

¹⁶⁹⁷ Gillespie LD, Robertson MC, Gillespie WJ et al. Interventions for preventing falls in older people living in the community. Cochrane Database of Systematic Reviews. 2012

¹⁶⁹⁸ U.S. Preventive Services Task Force. *Vitamin D and Calcium Supplementation to Prevent Fractures, Topic Page*. 2013. Available at http://www.uspreventiveservicestaskforce.org/uspstf/uspsvitd.htm. Accessed February 2018.

¹⁶⁹⁹ Moyer VA. Vitamin D and calcium supplementation to prevent fractures in adults: U.S. Preventive Services Task Force Recommendation Statement. *Annals of Internal Medicine*. 2013; 158: 691-6.

Table 2: CPB of Screening and Intervention to Reduce Falls in a Birth								
	Cohort of 40,000 (B.C.)							
Row								
Label	Variable	Base Case	Data Source					
а	Years lived ages 65+	778,475	Table 1					
b	Adjusted for community-dwelling elderly	0.943	V					
с	Average life expectancy	12.9	Table 1					
d	Fall-related hospitalizations /1,000	14.19	V					
e	Fall-related hospitalizations	10,417	= (a*b)/1000*d					
f	Deaths in year following hospital admission	0.30	V					
g	Fall-related hospitalization LYs lost due to deaths	40,433	=e*f*c					
h	Reduced life expectancy for survivors of fall-related							
n	hospitalization	0.20	V					
i	Fall-related hospitalization LYs lost in survivors	18,869	=e*(1-f)*c*h					
j	Fall-related hospitalization LYs lived in survivors	75,474	=e*(1-f)*c-i					
k	Reduction in QoL associated with surviving a fall-related	0.20	21					
ĸ	hospitalization - Year 1	0.20	v					
.	QALYs lost associated with surviving a fall-related	1 / 50	-o*(1_f)*k					
-	hospitalization - Year 1	1,430	-e (1-1) K					
	Reduction in QoL associated with surviving a fall-related	0.06	N					
	hospitalization - subsequent years	0.00	v					
n	QALYs lost associated with surviving a fall-related	2 206	-(i(1 f)i)*m					
	hospitalization - subsequent years	5,590	-()-(1-1)-1) 111					
0	Total QALYs lost	64,156	=g+i+k+n					
р	Effectiveness of exercise at reducing falls	13.0%	V					
q	QALYs gained based on 100% adherence	8,340	= o * p					
r	Delivery of screening and counseling	18.0%	Ref Doc					
S	Adherence with exercise	30.0%	Assumed					
t	QALYs gained, CPB	450	= q * r * s					

√ = Estimates from the literature

We also modified a number of major assumptions and recalculated the CPB as follows:

- Assume that the proportion of the elderly who die within one year following their falls-related hospitalization is decreased from 30% to 25% (Table 2, row f): CPB = 415.
- Assume that the proportion of the elderly who die within one year following their • falls-related hospitalization is increased from 30% to 35% (Table 2, row f): CPB = 486.
- Assume the effectiveness of exercise interventions is decreased from 13% to 6% • (Table 2, row *p*): **CPB = 208**.
- Assume the effectiveness of exercise interventions is increased from 13% to 19% • (Table 2, row *p*): **CPB = 658**.

Modelling Cost-Effectiveness

In this section, we will calculate the CPB associated with preventing falls in the communitydwelling elderly.

In estimating CE, we made the following assumptions:

- **Cost per hour of exercise** This is easily the most significant cost and thus drives the estimate of CE (Table 3, row *m*). We have estimated the cost of \$5.00 per hour (e.g., the approximate cost of admission to a community exercise facility), but have also included a sensitivity analysis from \$0 (e.g., walking) to \$25 (e.g., the estimated cost per hour for a commercially-based group exercise program).¹⁷⁰⁰
- **Falls-related hospitalization** The cost of a falls-related hospitalization is taken from the Canadian Institute of Health Information Patient Cost Estimator.¹⁷⁰¹ We used the average cost in British Columbia in 2021/22 associated with a hospitalization for a primary procedure of case-mix group 727 *Fixation/repair hip/femur* of \$15,029 (Table 3, row *o*).
- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with screening and interventions to reduce falls in community-dwelling elderly are estimated at \$35,998/QALY (see Table 3, row z).

 $^{^{1700}}$ This cost is based on a monthly fee of \$299 divided by 12 one hour exercise sessions (approximately 3 per week).

¹⁷⁰¹ Canadian Institute for Health Information. *Patient Cost Estimator*. 2023. Available at https://apps.cihi.ca/mstrapp/asp/Main.aspx. Accessed December 2023.

Table 3: CE of Screening and Intervention to Reduce Falls in a Birth Cohort of								
	40.000 (B.C.)							
Row								
Label	Variable	Base Case	Data Source					
			Table 2, row a * Table					
а	Years lived ages 65+ as community dwelling elderly	734,102	2, row b					
	Costs of screening							
b	Cost of 10-minute office visit	\$35.97	Ref Doc					
с	Value of patient time and travel for office visit	\$74.32	Ref Doc					
d	Portion of 10-minute office visit for screen	50%	Ref Doc					
е	Delivery of screening and counseling	18%	Table 2, row r					
f	Cost of screening over lifetime of birth cohort	\$7,286,774	= (a * e) * (b + c) * d					
	Costs of interventions							
g	Proportion of elderly with falls in previous year	0.30	√					
h	Portion of 10-minute office visit for referral to exercise	50%	Ref Doc					
	program	5078	Rei Doc					
i	Cost of referrals	\$2,186,032	= (a * f) * e * ((b + c) * d)					
j	Adherence with exercise recommendation	30%	Table 2, row s					
k	Life years lived with exercise in at risk individuals	11,892	= a * e * g * j					
	Hours of exercise (3 times per week for 1 hour)	1,855,224	= k * 52 * 3					
m	Cost per hour of exercise	\$5.00	٧					
n	Cost of intervention (exercise)	\$9,276,118	= l * m					
	Costs avoided							
0	Reduction in fall-related hospitalizations	169	= (k / a) * Table 2, row e					
р	Cost of a fall-related hospitalization	\$15,029	٧					
q	Cost avoided	\$2,536,204	= o * p					
	CE calculation							
r	Cost of initial screen	\$7,286,774	= f					
s	Costs of referral and intervention	\$11,462,150	= i + n					
t	Costs avoided	\$2,536,204	= q					
u	QALYs saved	450	Table 2, row t					
v	Cost of initial screen (1.5% discount rate)	\$6,222,922	Calculated					
w	Costs of referral and intervention (1.5% discount rate)	\$9,788,703	Calculated					
х	Costs avoided (1.5% discount rate)	\$2,165,924	Calculated					
у	QALYs saved (1.5% discount rate)	385	Calculated					
Z	CE (\$/QALY saved)	\$35,998	= (v + w - x) / y					

∨ = Estimates from the literature

We also modified a number of major assumptions and recalculated the CE as follows:

- Assume that the proportion of the elderly who die within one year following their falls-related hospitalization is decreased from 30% to 25% (Table 2, row *f*): CE =\$35,970 / QALY.
- Assume that the proportion of the elderly who die within one year following their falls-related hospitalization is increased from 30% to 35% (Table 2, row *f*): CE =\$33,374 / QALY.
- Assume the effectiveness of exercise interventions is decreased from 13% to 6% (Table 2, row *p*): CE = \$77,996 / QALY.
- Assume the effectiveness of exercise interventions is increased from 13% to 19% (Table 2, row *p*): CE = \$24,630 / QALY.
- Assume the cost of an hour of exercise is decreased from \$5 to \$0 (Table 3, row *m*): CE = \$15,402 / QALY.
- Assume the cost of an hour of exercise is increased from \$5 to \$25 (Table 3, row *m*): CE = \$118,384 / QALY.

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with screening and interventions to reduce falls in community-dwelling elderly is estimated to be 385 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to result in cost-savings of \$35,998 per QALY (see Table 4).

Table 4: Screening and Intervention to Reduce Falls in theCommunity-Dwelling Elderly									
	Summary								
	Base								
	Case	Ra	nge						
CPB (Potential QALYs Gained)									
Gap between 0% and 'Best in t	he World' (18% scr	eening / 30% e	xercise adherence)						
1.5% Discount Rate	385	178	562						
3% Discount Rate	331	153	483						
0% Discount Rate	450	208	658						
CE (\$/QALY) including patient time	e costs								
1.5% Discount Rate	\$35,998	\$15,402	\$118,384						
3% Discount Rate	\$35,998	\$15,402	\$118,384						
0% Discount Rate	\$35,998	\$15,402	\$118,384						
CE (\$/QALY) excluding patient time	e costs								
1.5% Discount Rate	\$21,825	\$1,228	\$104,211						
3% Discount Rate	\$21,825	\$1,228	\$104,211						
0% Discount Rate	\$21,825	\$1,228	\$104,211						

Preventive Medication / Devices

Routine Aspirin Use for the Prevention of Cardiovascular Disease and Colorectal Cancer – Evidence Update

Background

In 2007, the U.S. Preventive Services Task Force (USPSTF) recommended "against the routine use of aspirin... to prevent colorectal cancer in individuals at average risk for colorectal cancer" with a D recommendation.¹⁷⁰² In 2009, the USPSTF recommended "the use of aspirin for men age 45 to 79 years when the potential benefit due to a reduction in myocardial infarctions outweighs the potential harm due to an increase in gastrointestinal hemorrhage." The USPSTF also recommended "the use of aspirin for women age 55 to 79 years when the potential benefit of a reduction in ischemic strokes outweighs the potential harm of an increase in gastrointestinal hemorrhage." Both of these 2009 recommendations were A recommendations.¹⁷⁰³

The 2014 LPS Review

In a 2014 update of the BC LPS, members of the Lifetime Prevention Schedule Expert Committee (LPSEC) reviewed key research that had been published since the 2009 USPSTF recommendations^{1704,1705,1706} calling into question the clinical effectiveness of low-dose aspirin in primary prevention.^{1707,1708,1709} A major concern of this new research was that the evidence used for the 2009 USPSTF recommendations appeared to overestimate the benefits of the use of aspirin in primary prevention (e.g. a reduction in cardiovascular disease) and to underestimate the harms (e.g. gastrointestinal bleeding and hemorrhagic stroke).

More specifically, a 2009 meta-analysis of results from randomised trials by the Antithrombotic Trialists' Collaboration found that the use of aspirin in primary prevention resulted in a 12% reduction in serious vascular events (RR of 0.88, 95% CI of 0.82-0.94), mainly due to a reduction in non-fatal myocardial infarction.¹⁷¹⁰ No net effect on stroke was observed (RR of 0.95, 95% CI of 0.85-1.06). In addition, vascular mortality did not differ in those with long-term aspirin use (RR of 0.97, 95% CI of 0.87-1.09). This lack of a mortality effect compares to the LPS assumption at the time (based on the original Health Partners model) of a 30% mortality benefit associated with aspirin chemoprophylaxis. The limited

¹⁷⁰² U.S. Preventive Services Task Force. Routine aspirin or nonsteroidal anti-inflammatory drugs for the primary prevention of colorectal cancer. *Annals of Internal Medicine*. 2007; 146(5): 361-4.

¹⁷⁰³ U.S. Preventive Services Task Force. Aspirin for the prevention of cardiovascular disease: U.S. Preventive Services Task Force recommendation statement. *Annals of Internal Medicine*. 2009; 150(6): 396-404.

¹⁷⁰⁴ Baigent C, Blackwell L, Collins R et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. *The Lancet*. 2009; 373(9678): 1849-60.

¹⁷⁰⁵ Seshasai SR, Wijesuriya S, Sivakumaran R et al. Effect of aspirin on vascular and nonvascular outcomes: meta-analysis of randomized controlled trials. *Archives of Internal Medicine*. 2012; 172(3): 209-16.

¹⁷⁰⁶ Sutcliffe P, Connock M, Gurung T et al. Aspirin for prophylactic use in the primary prevention of cardiovascular disease and cancer: a systematic review and overview of reviews. *Health Technology Assessment*. 2013; 17(43): 1-253.

¹⁷⁰⁷ Selak V, Elley CR, Wells S et al. Aspirin for primary prevention: yes or no? *Journal of Primary Health Care*. 2010; 2(2): 92-9.

¹⁷⁰⁸ Raju NC and Eikelboom JW. The aspirin controversy in primary prevention. *Current Opinion in Cardiology*. 2012; 27(5): 499-507.

¹⁷⁰⁹ Patrono C. Low-dose aspirin in primary prevention: cardioprotection, chemoprevention, both, or neither? *European Heart Journal*. 2013; 34(44): 3403-11.

¹⁷¹⁰ Baigent C, Blackwell L, Collins R et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. *The Lancet*. 2009; 373(9678): 1849-60.

benefits of long-term aspirin use are offset by a significant 54% *increase* in major gastrointestinal and other extracranial bleeds (RR of 1.54, 95% CI of 1.30-1.82).

A 2012 meta-analysis of randomized controlled trials by Seshasai et al. came to similar conclusions.¹⁷¹¹ Aspirin treatment reduced total cardiovascular disease (CVD) events by 10% (OR of 0.90; 95% CI of 0.85-0.96), driven primarily by a reduction in nonfatal myocardial infarction (OR of 0.80; 95% CI of 0.67-0.96). They also found no significant reduction in CVD death (OR of 0.99; 95% CI of 0.85-1.15) or cancer mortality (OR of 0.93; 95% CI of 0.84-1.03). On the other hand, there was an increased risk of nontrivial bleeding events (OR of 1.31; 95% CI of 1.14-1.50). The authors conclude that "despite important reductions in nonfatal MI, aspirin prophylaxis in people without prior CVD does not lead to reductions in either cardiovascular death or cancer mortality. Because the benefits are further offset by clinically important bleeding events, routine use of aspirin for primary prevention is not warranted and treatment decisions need to be considered on a case-by-case basis." (p. 209)

A 2013 health technology assessment by the U.K. National Institute for Health Research came to the following conclusions:¹⁷¹²

- The benefits of aspirin use in primary prevention include a possible 6% reduction in relative risk (RR) for all-cause mortality (RR of 0.94, 95% CI of 0.88-1.00)
- The benefits of aspirin use in primary prevention include a 10% reduction in major cardiovascular events (RR of 0.90, 95% CI of 0.85-0.96)
- The benefits of aspirin use in primary prevention with respect to a reduction in cancer incidence and mortality are inconclusive
- The harms of aspirin use in primary prevention include a 37% increased risk of gastrointestinal bleeding (RR of 1.37, 95% CI of 1.15-1.62)
- The harms of aspirin use in primary prevention include an overall risk of major bleeds of between 54% (RR of 1.54, 95% CI of 1.30-1.82) and 62% (RR of 1.62, 95% CI of 1.31-2.00)
- The harms of aspirin use in primary prevention include an increased risk for haemorrhagic stroke of between 32% (RR of 1.32, 95% CI of 1.00-1.74) and 38% (RR of 1.38, 95% CI of 1.01-1.82)

The authors conclude that the

benefits of aspirin for primary prevention of cancer or CVD are relatively modest, remain statistically uncertain, and are an order of magnitude less than that observed in secondary prevention for CVD. In contrast, harms (especially bleeding) occur at relatively higher frequency (apparently very high frequency in some populations) and are statistically based on strong evidence [...].There are several guidelines that propose the widespread employment of aspirin for individuals at increased risk for CVD, based on an assessment of the balance between CV benefits (e.g. reduced MI and stroke) and various harms (especially bleeding). Definitions of 'high' risk vary according to country and guideline. However, as we have indicated in this short report, opinion and evidence have shifted over time. At a population level, aspirin for primary prevention of CVD is associated with net harm due to increased potential for bleeding, while the results for benefits are not persuasive. (pg. 74-5)

 ¹⁷¹¹ Seshasai SR, Wijesuriya S, Sivakumaran R et al. Effect of aspirin on vascular and nonvascular outcomes: meta-analysis of randomized controlled trials. *Archives of Internal Medicine*. 2012; 172(3): 209-16.
 ¹⁷¹² Sutcliffe P, Connock M, Gurung T et al. Aspirin for prophylactic use in the primary prevention of

cardiovascular disease and cancer: a systematic review and overview of reviews. *Health Technology Assessment*. 2013; 17(43): 1-253.

Based on this updated evidence on clinical effectiveness, the LPSEC found that the routine use of low-dose aspirin in primary prevention no longer passed the initial test for inclusion on the BC LPS, namely that the maneuver is not clinically effective (i.e. benefits do not significantly outweigh harms).¹⁷¹³

The 2016 USPSTF Recommendations

In the process of updating both their 2007 and 2009 recommendation on the routine use of aspirin to prevent colorectal cancer and cardiovascular diseases, the USPSTF commissioned three systematic evidence reviews^{1714,1715,1716} and one decision analysis using simulation modelling.¹⁷¹⁷

The systematic review by Guirguis-Blake and colleagues noted that very-low dose aspirin use (≤ 100 mg daily) for primary prevention reduced the risk of nonfatal myocardial infarction by 17% (RR of 0.83, 95% CI of 0.74 – 0.94) and nonfatal stroke by 14% (RR of 0.86, 95% CI of 0.76 – 0.98) but they found no reduction in all-cause or cardiovascular mortality.¹⁷¹⁸

The systematic review by Chubak and co-authors noted that using aspirin (in dosages ranging from 50 to 500mg daily) for primary prevention reduced the incidence of colorectal cancer by 40% (RR of 0.60, 95% CI of 0.47 - 0.76) but only in secondary studies which followed individuals for at least 10 years. In addition, the use of aspirin for approximately 5 years reduced the risk of death from CRC about 20 years later by 33% (RR of 0.67, 95% CI of 0.52 - 0.86). Aspirin's effect on *total cancer* mortality and incidence was not clearly established.¹⁷¹⁹

The systematic review by Whitlock et al. found that very-low dose aspirin use (≤ 100 mg daily or every other day) increased the risk of major gastrointestinal bleeding by 58% (RR of 1.58, 95% CI of 1.29 – 1.95) and the risk of haemorrhagic stroke by a non-significant 27% (RR of 1.27, 95% CI of 0.96 – 1.68).¹⁷²⁰

To help disentangle the "uncertain relationship between the benefits and harms of long-term aspirin use", the USPSTF commissioned the decision analysis by Dehmer and colleagues.¹⁷²¹

¹⁷¹⁶ Whitlock E, Burda B, Williams S et al. Bleeding risks with aspirin use for primary prevention in adults: a systematic review for the U.S. Preventive Services Task Force. *Annals of Internal Medicine*. 2016; 164(12): 826-35.

¹⁷¹⁷ Dehmer S, Maciosek M, Flottemesch T et al. Aspirin for the primary prevention of cardiovascular disease and colorectal cancer: a decision analysis for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2016; 164(12): 777-86.

¹⁷¹⁸ Guirguis-Blake J, Evans C, Senger C et al. Aspirin for the primary prevention of cardiovascular events: a systematic evidence review for the U.S. Preventive Services Task Force. *Annals of Internal Medicine*. 2016; 164(12): 804-13.

¹⁷¹⁹ Chubak J, Whitlock E, Williams S et al. Aspirin for the prevention of cancer incidence and mortality: systematic evidence reviews for the U.S. Preventive Services Task Force. *Annals of Internal Medicine*. 2016; 164(12): 814-25.

¹⁷²⁰ Whitlock E, Burda B, Williams S et al. Bleeding risks with aspirin use for primary prevention in adults: a systematic review for the U.S. Preventive Services Task Force. *Annals of Internal Medicine*. 2016; 164(12): 826-35.

¹⁷²¹ Dehmer S, Maciosek M, Flottemesch T et al. Aspirin for the primary prevention of cardiovascular disease and colorectal cancer: a decision analysis for the US Preventive Services Task Force. *Annals of Internal Medicine*. 2016; 164(12): 777-86.

¹⁷¹³ H. Krueger & Associates Inc. *Establishing Priorities among Effective Clinical Prevention Services in British Columbia: Summary and Technical Report.* July 16, 2014.

¹⁷¹⁴ Guirguis-Blake J, Evans C, Senger C et al. Aspirin for the primary prevention of cardiovascular events: a systematic evidence review for the U.S. Preventive Services Task Force. *Annals of Internal Medicine*. 2016; 164(12): 804-13.

¹⁷¹⁵ Chubak J, Whitlock E, Williams S et al. Aspirin for the prevention of cancer incidence and mortality: systematic evidence reviews for the U.S. Preventive Services Task Force. *Annals of Internal Medicine*. 2016; 164(12): 814-25.

The decision analysis found that the results of net gains (as measured by QALYs) were quite sensitive to all assumptions about the relative risks of both benefits and harms, including baseline risks for GI bleeding. In addition, the results are highly sensitive to assumptions made about the potential disutility associated with regular aspirin use. Their base-case scenario assumed no disutility associated with regular aspirin use.

The collation of this evidence resulted in the following recommendations by the USPSTF.¹⁷²²

The USPSTF recommends initiating low dose aspirin use for the primary prevention of cardiovascular disease (CVD) and colorectal cancer (CRC) in adults aged 50 to 59 years who have a 10% or greater 10-year CVD risk, are not at increased risk for bleeding, have a life expectancy of at least 10 years, and are willing to take low-dose aspirin daily for at least 10 years. (B recommendation)

The decision to initiate low-dose aspirin use for the primary prevention of CVD and CRC in adults aged 60 to 69 years who have a 10% or greater 10-year CVD risk should be an individual one. Persons who are not at increased risk for bleeding, have a life expectancy of at least 10 years, and are willing to take low-dose aspirin daily for at least 10 years are more likely to benefit. Persons who place a higher value on the potential benefits than the potential harms may choose to initiate low-dose aspirin. (C recommendation)

Risk factors for gastrointestinal (GI) bleeding with aspirin use include higher dose and longer duration of use, history of GI ulcers or upper GI pain, bleeding disorders, renal failure, severe liver disease, and thrombocytopenia. Other factors that increase risk for GI or intracranial bleeding with low-dose aspirin use include concurrent anticoagulation or nonsteroidal anti-inflammatory drug (NSAID) use, uncontrolled hypertension, male sex, and older age.

The current LPS modelling for *Routine Aspirin Use for the Prevention of Cardiovascular Disease and Colorectal Cancer* is based on this 2016 USPSTF recommendation.

The 2022 USPSTF Recommendations

To update its 2016 recommendation,¹⁷²³ the USPSTF commissioned a systematic review on the effectiveness of aspirin to reduce the risk of CVD events (myocardial infarction and stroke), cardiovascular mortality, and all-cause mortality in persons without a history of CVD. The systematic review also investigated the effect of aspirin use on CRC incidence and mortality in primary CVD prevention populations, as well as the harms (particularly bleeding) associated with aspirin use.¹⁷²⁴ The USPSTF also commissioned an update of the previous microsimulation modeling study to assess the net balance of benefits and harms from aspirin use for primary prevention of CVD and CRC, stratified by age, sex, and CVD risk level.¹⁷²⁵

The systematic review found that low dose aspirin use was associated with a 12% decreased risk of nonfatal myocardial infarction (OR of 0.88 [95% CI, 0.80-0.96]) and a 12% decreased risk of nonfatal ischemic stroke (OR of 0.88 [95% CI, 0.78-1.00]). They note that fatal

¹⁷²² Bibbins-Domingo K. Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: US Preventive Services Task Force recommendation statement. *Annals of Internal Medicine*. 2016; 164(12): 836-45.

¹⁷²³ U.S. Preventive Services Task Force. Aspirin use to prevent cardiovascular disease: US Preventive Services Task Force recommendation statement. *JAMA*. 2022; 327(16): 1577-84.

¹⁷²⁴ Guirguis-Blake J, Evans C, Perdue L et al. Aspirin use to prevent cardiovascular disease and colorectal cancer. Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2022; 327(16): 1585-97.

¹⁷²⁵ Dehmer S, O'Keefe l, Evans C et al. Aspirin use to prevent cardiovascular disease and colorectal cancer. Updated modeling study for the US Preventive Services Task Force. *JAMA*. 2022; 327(16):1598-1607.

cardiovascular events are less common, so pooled analyses showed that low-dose aspirin use was not associated with a statistically significant effect on fatal myocardial infarction, fatal stroke, cardiovascular mortality, or all-cause mortality.¹⁷²⁶ The 12% decreased risk is marginally (but not significantly) lower than the 17% (RR of 0.83, 95% CI of 0.74 - 0.94) observed for nonfatal myocardial infarction and the 14% (RR of 0.86, 95% CI of 0.76 - 0.98) observed for nonfatal stroke in the 2016 evidence review.¹⁷²⁷

The previous (2016) USPSTF evidence review assessing aspirin's effect on the risk of CRC incidence and mortality leaned heavily on results from the Women's Health Study (WHS), an RCT involving 33,682 females aged 45 and over with 17.5 years of follow-up.¹⁷²⁸ This study observed an 18% reduction in the *incidence* of CRC (OR of 0.82, 95% CI of 0.69-0.98) with this effect emerging only after 10 years of follow-up. The authors of the 2022 USPSTF evidence review requested an additional follow-up analysis, with 26 years of follow-up now available. WHS follow-up data from 17.5 to 26 years showed no significant difference in CRC incidence between the group initially randomized to aspirin for 10 years of usage and the control group (OR of 1.16, 95% CI of 0.78-1.72]). The updated analysis also indicated no statistically significant reduction in the incidence of CRC at 26 years of follow-up (OR of 0.87, 95% CI of 0.74-1.02).¹⁷²⁹

The combined results from four other RCTs included in the 2022 evidence review indicated no statistically significant association with CRC incidence at 5 to 10 years of follow-up (OR of 1.07 [(95% CI, 0.92-1.24]).¹⁷³⁰

Results for CRC *mortality* were highly variable with longer term observational studies suggesting a benefit (OR of 0.77, 95% CI of 0.61-0.98]).¹⁷³¹ Two RCTs, however, suggested either no benefit or perhaps even an increased risk associated with aspirin use. The WHS found no statically significant association at 10 years (OR of 1.14, 95% CI of 0.73-1.78)¹⁷³² while a more recent RCT (**Asp**irin in **R**educing Events in the Elderly or ASPREE) reported that aspirin use was associated with statistically significantly higher CRC mortality at 4.7 years follow-up (OR of 1.77, 95% CI of 1.02-3.07) in adults ages 70 and older.¹⁷³³

Based on the available evidence on the association between aspirin use and CRC, the authors of the 2022 USPSTF evidence review conclude that "there was limited trial evidence on benefits for colorectal cancer, with the findings highly variable by length of follow-up and statistically significant only when considering long-term observational follow-up beyond randomized trial periods."¹⁷³⁴

¹⁷²⁶ Guirguis-Blake J, Evans C, Perdue L et al. Aspirin use to prevent cardiovascular disease and colorectal cancer. Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2022; 327(16): 1585-97.

¹⁷²⁷ Guirguis-Blake J, Evans C, Senger C et al. Aspirin for the primary prevention of cardiovascular events: a systematic evidence review for the U.S. Preventive Services Task Force. *Annals of Internal Medicine*. 2016; 164(12): 804-13.

¹⁷²⁸ Cook N, Lee I, Zhang S et al. Alternate-day, low-dose aspirin and cancer risk: Long-term observational follow-up of a randomized trial. *Annals of Internal Medicine*. 2013; 159(2): 77-85.

¹⁷²⁹ Guirguis-Blake J, Evans C, Perdue L et al. Aspirin use to prevent cardiovascular disease and colorectal cancer. Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2022; 327(16): 1585-97.

¹⁷³⁰ Ibid.

¹⁷³¹ Ibid.

¹⁷³² Ibid.

¹⁷³³ McNeil J, Nelson M, Woods R et al; ASPREE Investigator Group. Effect of aspirin on all-cause mortality in the healthy elderly. *New England Journal of Medicine*. 2018; 379(16): 1519-28.

¹⁷³⁴ Guirguis-Blake et al. JAMA. 2022.

The systematic review also found that low dose aspirin use increased the risk of major gastrointestinal bleeding by 58% (OR of 1.58, 95% CI of 1.38 - 1.80) and the risk of a non-fatal haemorrhagic stroke by 38% (OR of 1.38, 95% CI of 1.01 - 1.85).¹⁷³⁵

The microsimulation modeling study estimated that lifetime net QALYs were positive for both men and women at 5% or greater 10-year CVD risk when starting between ages 40 and 59 years. For persons starting aspirin between ages 60 and 79 years, however, lifetime net life-years were negative in most cases.¹⁷³⁶

The 2022 USPSTF evidence review and updated microsimulation modeling study led to the following USPSTF recommendations:¹⁷³⁷

The decision to initiate low-dose aspirin use for the primary prevention of CVD in adults aged 40 to 59 years who have a 10% or greater 10-year CVD risk should be an individual one. Evidence indicates that the net benefit of aspirin use in this group is small. Persons who are not at increased risk for bleeding and are willing to take lowdose aspirin daily are more likely to benefit. (C recommendation)

The USPSTF recommends against initiating low-dose aspirin use for the primary prevention of CVD in adults 60 years or older. (D recommendation)

The 2022 USPSTF recommendations exclude a reference to CRC as "the evidence is unclear whether aspirin use reduces the risk of colorectal cancer incidence or mortality."¹⁷³⁸

Summary

Based on the information summarized above, current evidence no longer supports routine aspirin use for the prevention of CVD and CRC. Therefore, this maneuver will no longer be included on the LPS, as it does not meet the LPS criteria for clinical effectiveness (the first step of the LPS process).

¹⁷³⁵ Ibid.

¹⁷³⁶ Dehmer S, O'Keefe I, Evans C et al. Aspirin use to prevent cardiovascular disease and colorectal cancer.
Updated modeling study for the US Preventive Services Task Force. *JAMA*. 2022; 327(16):1598-1607.
¹⁷³⁷ U.S. Preventive Services Task Force. Aspirin use to prevent cardiovascular disease: US Preventive Services Task Force recommendation statement. *JAMA*. 2022; 327(16): 1577-84.
¹⁷³⁸ Ibid.

Folic Acid Supplementation in Reproductive-age Women for the Prevention of Neural Tube Defects (NTDs)

United States Preventive Services Task Force Recommendations (2017)¹⁷³⁹

The USPSTF recommends that all women who are planning or capable of pregnancy take a daily supplement containing 0.4 to 0.8 mg (400-800 μ g) of folic acid (Grade A recommendation).

The critical period of supplementation starts at least 1 month before conception and continues through the first 2 to 3 months.

Modelling the Clinically Preventable Burden

In this section, we will calculate the CPB associated with advising all women of reproductive age to take a daily supplement containing 0.4 to 0.8 mg (400-800µg) of folic acid.

In estimating CPB, we made the following assumptions:

What are Neural Tube Defects?

- "NTDs are major birth defects of the brain and spine that occur early in pregnancy as a result of improper closure of the embryonic neural tube, which can lead to death or varying degrees of disability. The two most common NTDs are anencephaly and spina bifida."¹⁷⁴⁰
- An encephaly is a serious birth defect in which a baby is born without parts of the brain and skull.
- "Spina bifida is a congenital malformation in which the spinal column is split (bifid) as a result of failed closure of the embryonic neural tube, during the fourth week post-fertilization."¹⁷⁴¹
- NTDs are caused by a variety of genetic and non-genetic factors, although the contributing role of each is not fully known. Between 10% and 60% of NTDs have a genetic component. Lack of folic acid is perhaps the best known risk factor but there are a number of potential behavioural and environmental risk factors, such as alcohol use, smoking, poor nutrition, valproic acid use and indoor air pollution. Consequently, some women who take folic acid supplements in the periconceptional period still experience NTD-affected pregnancies.¹⁷⁴²
- The WHO has wrestled with determining what proportion of NTDs are preventable given optimal (<906 nmol/L) red blood cell folate concentrations in the population. If

¹⁷³⁹ Bibbins-Domingo K, Grossman D, Curry S et al. Folic acid supplementation for the prevention of neural tube defects: US Preventive Services Task Force recommendation statement. *Journal of American Medical Association*. 2017; 317(2): 183-9.

¹⁷⁴⁰ Williams J, Mai C, Mulinare J et al. Updated estimates of neural tube defects prevented by mandatory folic acid fortification - United States, 1995–2011. *Morbidity and Mortality Weekly Report*. 2015; 64(1): 1-5.
¹⁷⁴¹ Copp A, Adzick N, Chitty L et al. Spina bifida. *Nature Reviews Disease Primers*. 2015; 1: 1-45.
¹⁷⁴² Ibid.

these levels are uniformly achieved, the rate of NTDs could fall somewhere within the range of 4 to 9 per 10,000 live births.^{1743, 1744}

Prevalence of Neural Tube Defects

• Between 1993 and 2002, a total of 2,446 NTDs were among live births, still births and terminations of pregnancies in seven Canadian Provinces.¹⁷⁴⁵ Of the 2,446 neural tube defects identified in seven Canadian provinces between 1993 and 2002, 1,466 (60%) were terminations of pregnancy, 112 (5%) were stillbirth and 868 (35%) were live birth. The majority of NTDs were either spina bifida (53%) or anencephaly (34%) (see Table 1).¹⁷⁴⁶

Table 1: NTDS by Diagnostic Category and Pregnancy OutcomeIn Seven Canadian Provinces, 1993 to 2002.											
Pregnancy Outcome											
Diagnostic	Diagnostic Induced										
Category	Abortion	Stillbirth	Live Birth	Total	Total						
Spina bifida	595	35	656	1,286	53%						
Anencephaly	668	67	95	830	34%						
Encephalocele	160	8	115	283	12%						
Unspecified NTD	24	0	0	24	1%						
Iniencephaly	19	2	2	23	1%						
All NTDs	1,466	112	868	2,446							
% of Total	60%	5%	35%								

• Based on data from these seven provinces between January 1, 1993 and September 30, 1997, the prevalence of NTDs among live births, still births and terminations of pregnancies was 15.8 per 10,000 live births.¹⁷⁴⁷ BC's rate, at 9.6 per 10,000, was the lowest of the seven provinces (see Table 2).

Table 2: Prevalance of NTDS / 10,000 BirthsIn Seven Canadian Provinces											
January 1,	January 1, 1993 to September 30, 1997										
<u> </u>	rovince	Rate									
	N/L	45.6									
	NS	27.2									
	PEI	20.8									
	PQ	17.7									
	MB	15.4									
	AB	11.2									
	BC	9.6									
Co	ombined	15.8									

¹⁷⁴³ World Health Organization. *Guideline: Optimal Serum and Red Blood Cell Folate Concentrations in Women of Reproductive Age for Prevention of Neural Tube Defects*. 2015. World Health Organization. Available at http://www.who.int/iris/handle/10665/161988. Accessed February 2017.

¹⁷⁴⁴ Tinker S, Hamner H, Qi Y et al. US women of childbearing age who are at possible increased risk of a neural tube defect-affected pregnancy due to suboptimal red blood cell folate concentrations, National Health and Nutrition Examination Survey 2007 to 2012. *Birth Defects Research Part A: Clinical and Molecular Teratology*. 2015; 103(6): 517-26.

¹⁷⁴⁵ The seven provinces include Newfoundland & Labrador, Prince Edward Island, Nova Scotia, Quebec, Manitoba, Alberta and British Columbia.

 ¹⁷⁴⁶ De Wals P, Tairou F, Van Allen M et al. Reduction in neural-tube defects after folic acid fortification in Canada. *New England Journal of Medicine*. 2007; 357(2): 135-42.
 ¹⁷⁴⁷ Ibid.

Evidence of the Effectiveness of Folic Acid Supplementation in Reducing the Prevalence of NTDs

- In Hungary in the mid-1980s, 7,540 women planning to conceive were randomly assigned to receive a prenatal vitamin supplement (including 0.8 mg of folic acid) or a trace element supplement, starting one month prior to conception and for three months after conception. In the evaluation of 4,704 pregnancies and 4,122 live births, 28 congenital malformations were observed in the experimental group vs. 47 in the control group. Six of the congenital malformations in the control group were neural-tube defects (NTDs) vs. none in the experimental group.¹⁷⁴⁸ Given the results of this trial, RCTs are no longer considered ethically possible because of the clear benefits of folic acid supplementation.¹⁷⁴⁹
- Other cohort and case control studies completed between 1976 and 1998 consistently found evidence of a protective effect associated with folic acid supplementation.¹⁷⁵⁰
- Case control studies since 1998 have not consistently demonstrated a protective association with folic acid supplementation, but these studies tend to be weakened by misclassification and recall bias.¹⁷⁵¹

Fortification of Grain Products with Synthetic Folic Acids

- The evidence of the effectiveness of folic acid supplementation in reducing the prevalence of NTDs noted above led to a 1992 recommendation by the US Public Health Service that all women of childbearing age consume 400µg (0.4 mg) of folic acid daily, followed by the US Food and Drug Administration authorization to add synthetic folic acid to grain products in March of 1996 with mandatory compliance by January of 1998.¹⁷⁵²
- In Canada, the milling industry began fortification early in 1997 to meet US requirements for imported flour. On November 11, 1998, fortification of all types of white flour, enriched pasta and cornmeal became mandatory in Canada.^{1753, 1754}
- The prevalence of NTDs among live births, still births and terminations of pregnancies declined from 10.7 cases per 10,000 live births before the implementation of food fortification in the US (1995 to 1996) to 7.0 cases per 10,000 live births after fortification.¹⁷⁵⁵
- In Canada, the prevalence of neural tube defects among live births, still births and terminations of pregnancies decreased from 15.8 to 8.6 per 10,000 live births between January 1, 1993 and December 31, 2002 (see Table 3).¹⁷⁵⁶ The time period was divided into three 'fortification' periods. The pre-fortification period ran from January 1, 1993 to September 30, 1997 to coincide with the beginning of flour

¹⁷⁵⁶ De Wals P, Tairou F, Van Allen M et al. Reduction in neural-tube defects after folic acid fortification in Canada. *New England Journal of Medicine*. 2007; 357(2): 135-42.

¹⁷⁴⁸ Czeizel A and Dudás I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. *New England Journal of Medicine*. 1992; 327(26): 1832-5.

¹⁷⁴⁹ Viswanathan M, Treiman K, Kish-Doto J et al. Folic acid supplementation for the prevention of neural tube defects: an updated evidence report and systematic review for the US Preventive Services Task Force. *Journal of American Medical Association*. 2017; 317(2): 190-203.

¹⁷⁵⁰ Ibid.

¹⁷⁵¹ Ibid.

¹⁷⁵² Williams L, Mai C, Edmonds L et al. Prevalence of spina bifida and anencephaly during the transition to mandatory folic acid fortification in the United States. *Teratology*. 2002; 66(1): 33-9.

¹⁷⁵³ De Wals P, Tairou F, Van Allen M et al. Reduction in neural-tube defects after folic acid fortification in Canada. *New England Journal of Medicine*. 2007; 357(2): 135-42.

 ¹⁷⁵⁴ Ray J. Efficacy of Canadian folic acid food fortification. *Food and Nutrition Bulletin*. 2008; 29(2): S225-30.
 ¹⁷⁵⁵ Williams J, Mai C, Mulinare J et al. Updated estimates of neural tube defects prevented by mandatory folic acid fortification - United States, 1995–2011. *Morbidity and Mortality Weekly Report*. 2015; 64(1): 1-5.

fortification in Canada. The partial fortification period ran from October 1, 1997 to March 31, 2000 based on evidence from Ontario that red-cell folate levels in the population started to increase in April 1997 and reached a plateau in February 1999.¹⁷⁵⁷ The full fortification period ran from April 1, 2000 to December 31, 2002. The biggest reduction between the pre-fortification and full fortification periods was observed in Newfoundland and Labrador (from 45.6 to 7.6 per 10,000) while the smallest reduction was observed in BC (from 9.6 to 7.5 per 10,000). BC already had the lowest prevalence of NTDs (at 9.6 per 10,000) in the country before fortification (see Table 3).

Table 3: Prevalance of NTDS / 10,000 Births													
In Seven Canadian Provinces													
According to Fortification Period													
	Fortification Period												
	Partial Full												
Province	Prefortification	Fortification	Fortification										
N/L	45.6	14.2	7.6										
NS	27.2	13.2	12.6										
PEI	20.8	10.6	0.0										
PQ	17.7	12.7	9.7										
MB	15.4	8.8	9.3										
AB	11.2	7.3	6.7										
BC	9.6	10.8	7.5										
Combined	15.8	10.9	8.6										

• The prevalence of neural tube defects among live births, still births and terminations of pregnancies declined from 11.3 cases per 10,000 live births before the implementation of food fortification in Ontario (1994 to 1997) to 5.8 cases per 10,000 live births after fortification (1998 to 2000).¹⁷⁵⁸ Ontario's data was not included in Tables 1 to 3 because the review by De Wals et al. focussed on seven provinces rather than all of Canada.

Modelling in a BC Birth Cohort of 40,000

- Based on BC life tables for 2018 to 2020, an estimated 19,624 females would survive through to age 44 in a BC birth cohort of 40,000 (see Table 4). Note that the birth cohort includes both males and females. Our analysis focusses on just the females of reproductive age in this cohort. Based on age specific fertility rates,¹⁷⁵⁹ an estimated 21,958 live births would occur between the ages of 15 and 44 in this cohort of females (see Table 4).
- For modelling purposes, we have assumed that the pre-fortification rate of NTDs in BC would be approximately 11 / 10,000 live births, followed by a rate of 7.5 / 10,000 live births post-fortification (see Table 3). We have chosen the higher rate of 10.8 (rounded to 11) seen during the partial fortification period in BC (see Table 3) rather than the 9.6 seen during prefortification as a conservative approach (recognizing that the lower 9.6 seen during prefortification in BC may be an anomaly as the rate was reduced from prefortification to partial fortification in all provinces except BC). Furthermore, we have assumed that this could be further reduced to 5.8 / 10,000 live

¹⁷⁵⁷ Ray J, Vermeulen M, Boss S et al. Declining rate of folate insufficiency among adults following increased folic acid food fortification in Canada. *Canadian Journal of Public Health*. 2002; 93(4): 249-53. ¹⁷⁵⁸ Pay J, Majar C, Vermeulen M et al. Association of neural type defects and folio acid food fortification in

¹⁷⁵⁸ Ray J, Meier C, Vermeulen M et al. Association of neural tube defects and folic acid food fortification in Canada. *The Lancet*. 2002; 360(9350): 2047-8.

¹⁷⁵⁹ Statistics Canada. *Fertility indicators, provinces and territories: Interactive dashboard*. See https://www150.statcan.gc.ca/n1/pub/71-607-x/71-607-x2022003-eng.htm. Accessed December 2023.

births based on Ontario's full fortification rate noted above.¹⁷⁶⁰ In the sensitivity analysis, we modelled the effect of reducing this rate to 4.0 / 10,000, the lowest range considered achievable by the WHO given optimal red blood cell folate concentrations in the population.¹⁷⁶¹

• We have also assumed that 39% (830 of 2,116) of pregnancies with NTD would be anencephaly and 61% (1,286 of 2,116) spina bifida (see Table 1). Furthermore, 11.4% of pregnancies with anencephaly and 51% of pregnancies with spina bifida would result in a live birth (see Table 1). Based on these assumptions, an estimated 7.5 live births with spina bifida would have occurred in the birth cohort prefortification. The estimated post-fortification status would be 5.1 live births with spina bifida if Ontario's rate of 5.8 / 10,000 were achieved (see Table 4). Likewise, an estimated 0.74 live births with anencephaly would occur post-fortification with the potential to reduce this to 0.57 live births with anencephaly if Ontario's rate of 5.8 / 10,000 were achieved (see Table 4).

	Table 4: Females Ages 15-44, Live Births and Pregnancies with Neural Tube Defects																	
in a British Columbia Birth Cohort of 40,000																		
	Estimated Prefortification Status Estimated Current Status Estimated Potential Status																	
Age	Females	Life	#of				Live Birt	h with				Live Birt	h with				Live Birt	h with
Group	in Birth	Years	Live	Est. # of	Anen-	Spina	Anen-	Spina	Est. # of	Anen-	Spina	Anen-	Spina	Est. # of	Anen-	Spina	Anen-	Spina
	Cohort	Lived	Births	NTDs	cephaly	Bifida	cephaly	Bifida	NTDs	cephaly	Bifida	cephaly	Bifida	NTDs	cephaly	Bifida	cephaly	Bifida
15-19	19,899	99,493	270	0.3	0.1	0.2	0.0	0.1	0.2	0.1	0.1	0.0	0.1	0.2	0.1	0.1	0.0	0.0
20-24	19,867	99,333	1,576	1.7	0.7	1.1	0.1	0.5	1.2	0.5	0.7	0.1	0.4	0.9	0.4	0.6	0.0	0.3
25-29	19,825	99,124	4,978	5.5	2.1	3.3	0.2	1.7	3.7	1.5	2.3	0.2	1.2	2.9	1.1	1.8	0.1	0.9
30-34	19,773	98,864	8,281	9.1	3.6	5.5	0.4	2.8	6.2	2.4	3.8	0.3	1.9	4.8	1.9	2.9	0.2	1.5
35-39	19,707	98,536	5,503	6.1	2.4	3.7	0.3	1.9	4.1	1.6	2.5	0.2	1.3	3.2	1.3	1.9	0.1	1.0
40-44	19,624	98,118	1,350	1.5	0.6	0.9	0.1	0.5	1.0	0.4	0.6	0.0	0.3	0.8	0.3	0.5	0.0	0.2
Total		593,469	21,958	24.2	9.5	14.7	1.08	7.5	16.5	6.5	10.0	0.74	5.1	12.7	5.0	7.7	0.57	3.9

- A 2015 Cochrane Review found that there is high quality evidence that daily folic acid supplementation (alone or in combination with other vitamins and minerals) prevents NTDs when compared with no intervention/placebo or vitamins and minerals without folic acid (RR of 0.31, 95% CI of 0.17 to 0.58). The review also found no evidence of an increase in cleft palate, cleft lip, congenital cardiovascular defects, miscarriages or any other birth defects associated with daily folic acid supplementation.¹⁷⁶²
- The 2017 USPSTF review found no significant evidence of potential harms associated with folic acid supplementation.¹⁷⁶³

¹⁷⁶⁰ Ray J, Meier C, Vermeulen M et al. Association of neural tube defects and folic acid food fortification in Canada. *The Lancet*. 2002; 360(9350): 2047-8.

¹⁷⁶¹ World Health Organization. *Guideline: Optimal Serum and Red Blood Cell Folate Concentrations in Women of Reproductive Age for Prevention of Neural Tube Defects*. 2015. World Health Organization. Available at http://www.who.int/iris/handle/10665/161988. Accessed February 2017.

¹⁷⁶² De-Regil L, Peña-Rosas J, Fernández-Gaxiola A et al. Effects and safety of periconceptional oral folate supplementation for preventing birth defects. *Cochrane Database of Systematic Reviews*. 2015.

¹⁷⁶³ Bibbins-Domingo K, Grossman D, Curry S et al. Folic acid supplementation for the prevention of neural tube defects: US Preventive Services Task Force recommendation statement. *Journal of American Medical Association*. 2017; 317(2): 183-9.
- "Spina bifida results from the incomplete closure of the tissue and bone surrounding the spinal cord. Children born with spina bifida can have mild to severe disabilities depending on the location of the lesion along the spinal cord."¹⁷⁶⁴
- The mortality rate is substantially higher for individuals with moderate to severe spina bifida than for less severe cases. Oakeshott and colleagues have followed a cohort of individuals with spina bifida for 50 years and found that just 12% with moderate to severe spina bifida survived to age 50, while 54% of those with less severe spina bifida survived to age 50.^{1765, 1766}
- We used this survival data to compare life expectancy in the general population vs. a population with a sacral lesion (least severe) or a lumbar lesion (moderate to severe) (see Table 5). If we use 100% to represent the normal life-span of the general population, a person with a sacral lesion will have a life expectancy of 61.1% (or a loss of 38.9% of a normal life expectancy, Table 6, row *m*) and a person with a lumbar lesion will have a life expectancy of 25.1% (or a loss of 74.9% of a normal life expectancy, Table 6, row *n*).

				Individuals with Spina Bifida						
	General Population			Lower	Lower Lesion (less severe)			Higher Lesion (more severe)		
	Mean	Individuals	Years of	Mean	Individuals	Years of	Mean	Individuals	Years of	
Age	Surviva	in Birth	Life in	Survival	in Birth	Life in	Survival	in Birth	Life in	
Group	l Rate	Cohort	Birth	Rate	Cohort	Birth	Rate	Cohort	Birth	
0-4	0.997	39,875	199,377	0.818	32,727	163,636	0.649	25,965	129,825	
5-9	0.996	39,826	199,132	0.764	30,545	152,727	0.526	21,053	105,263	
10-14	0.995	39,813	199,065	0.745	29,818	149,091	0.491	19,649	98,246	
15-19	0.994	39,779	198,894	0.691	27,636	138,182	0.456	18,246	91,228	
20-24	0.992	39,677	198,385	0.673	26,909	134,545	0.368	14,737	73,684	
25-29	0.988	39,518	197,592	0.655	26,182	130,909	0.333	13,333	66,667	
30-34	0.983	39,327	196,633	0.618	24,727	123,636	0.298	11,930	59,649	
35-39	0.978	39,103	195,517	0.600	24,000	120,000	0.211	8,421	42,105	
40-44	0.971	38,835	194,174	0.545	21,818	109,091	0.175	7,018	35,088	
45-49	0.962	38,492	192,462	0.545	21,818	109,091	0.123	4,912	24,561	
50-54	0.951	38,031	190,154	0.534	21,356	106,782	0.111	4,451	22,253	
55-59	0.934	37,379	186,897	0.518	20,705	103,526	0.095	3,799	18,996	
60-64	0.911	36,435	182,174	0.494	19,761	98,803	0.071	2,855	14,273	
65-69	0.876	35,035	175,175	0.459	18,361	91,803	0.036	1,455	7,274	
70-74	0.823	32,929	164,644	0.406	16,255	81,273		0	0	
75-79	0.744	29,753	148,766	0.327	13,079	65,395		0	0	
80+	0.627	25,060	125,300	0.210	8,386	41,929		0	0	
Total		-	3,144,342			1,920,419		-	789,112	
% Compared to General Population					61.1%		-	25.1%		

Table 5: Survival and Year of Life in a Birth Cohort of 40,000 The General Population Compared to Individuals with Spina Bifida

¹⁷⁶⁴ Tilford J, Grosse S, Robbins J et al. Health state preference scores of children with spina bifida and their caregivers. *Quality of Life Research*. 2005; 14(4): 1087-98.

¹⁷⁶⁵ Oakeshott P, Hunt G, Poulton A et al. Expectation of life and unexpected death in open spina bifida: a 40-year complete, non-selective, longitudinal cohort study. *Developmental Medicine & Child Neurology*. 2009; 52(8): 749-53.

¹⁷⁶⁶ Oakeshott P, Reid F, Poulton A et al. Neurological level at birth predicts survival to the mid-40s and urological deaths in open spina bifida: a complete prospective cohort study. *Developmental Medicine & Child Neurology*. 2015; 57(7): 634-8.

- The research by Oakeshott and colleagues was based on 117 consecutive infants born with spina bifida between 1963 and 1971 in the UK who have been followed until 2013. Of these 117 infants, 40 (34%) died before the age of $5^{.1767}$ The 1-year survival of infants born with spina bifida in the US has improved from 87.1% during 1983 to 1987 to 93.6% during 1998 to 2002.¹⁷⁶⁸ To take into account the possibility of better long-term survival of infants currently born with spina bifida, we increased the calculated life expectancy of infants with both a sacral (Table 6, row *m*) and lumbar lesion (Table 6, row *n*) by 25% in the sensitivity analysis.
- Based on a consecutive cohort of 117 children with spina bifida in the UK, the distribution of children were 33.9% (Table 6, row *g*) with a sacral lesion, 28.6% (Table 6, row *h*) with a lower lumbar lesion and 37.5% (Table 6, row *i*) with a higher lumbar lesion.¹⁷⁶⁹
- Based on a study of 98 children with spina bifida in Arkansas, the average loss in QoL associated with spina bifida was 41%, ranging from 34% (6% to 62%) for the sacral lesion (Table 6, row *j*), 42% (22% to 62%) for the lower lumbar lesion (Table 6, row *k*) and 52% (25% to 78%) for the upper lumbar lesion (Table 6, row *l*). We used plus or minus one standard deviation provided by Tilford et al. in the sensitivity analysis.¹⁷⁷⁰ There was also a modest 5% reduction in the QoL of caregivers. This reduction, however, was only significantly different from control caregivers for the group of parents caring for the most severe children (10% reduction in QoL). A subsequent, more in depth analysis of these caregivers identified less sleep and less frequent engagement in leisure and social activities as key differences compared with a sample of control caregivers.¹⁷⁷¹
- Verhoef and colleagues used the SF-36 to compare the QoL in 164 young adults (ages 16 to 25) with spina bifida in Holland. Compared to the average Dutch population ages 16-25, young adults with spina bifida experienced a significant decrement in physical functioning (51%), role limitations due to physical health problems (22%), bodily pain (9%) and general health (17%). No significant differences were observed in vitality, social functioning and role limitations due to emotional health problems or mental health.¹⁷⁷²
- The life expectancy of an infant born in BC of 82.4 years (Table 6, row *o*) is based on life tables for 2018 to 2020 for BC.
- De Wals and colleagues found that there were 656 live births with spina bifida in seven Canadian provinces between 1993 and 2002. At the same time, 1,466 pregnancies with a diagnosed NTD resulted in an induced abortion (see Table 1).¹⁷⁷³

¹⁷⁶⁷ Oakeshott P, Reid F, Poulton A et al. Neurological level at birth predicts survival to the mid-40s and urological deaths in open spina bifida: a complete prospective cohort study. *Developmental Medicine & Child Neurology*. 2015; 57(7): 634-8.

¹⁷⁶⁸ Shin M, Kucik J, Siffel C et al. Improved survival among children with spina bifida in the United States. *Journal of Pediatrics*. 2012; 161(6): 1132-7.e3.

¹⁷⁶⁹ Oakeshott P, Hunt G, Poulton A et al. Expectation of life and unexpected death in open spina bifida: a 40-year complete, non-selective, longitudinal cohort study. *Developmental Medicine & Child Neurology*. 2009; 52(8): 749-53.

¹⁷⁷⁰ Tilford J, Grosse S, Robbins J et al. Health state preference scores of children with spina bifida and their caregivers. *Quality of Life Research*. 2005; 14(4): 1087-98.

¹⁷⁷¹ Grosse S, Flores A, Ouyang L et al. Impact of spina bifida on parental caregivers: findings from a survey of Arkansas families. *Journal of Child and Family Studies*. 2009; 18(5): 574-81.

¹⁷⁷² Verhoef M, Post M, Barf H et al. Perceived health in young adults with spina bifida. *Developmental Medicine* & *Child Neurology*. 2007; 49(3): 192-7.

¹⁷⁷³ De Wals P, Tairou F, Van Allen M et al. Reduction in neural-tube defects after folic acid fortification in Canada. *New England Journal of Medicine*. 2007; 357(2): 135-42.

We have assumed that for every live birth with spina bifida avoided, an estimated 2.23 abortions (1,466 / 656) would be avoided.

• Other assumptions used in assessing the clinically preventable burden are detailed in the Reference Document.

Based on these assumptions, the CPB associated with advising all women who are planning or capable of pregnancy to take a daily supplement containing 0.4 to 0.8 mg (400-800 μ g) of folic acid is 74 QALYs (see Table 6, row *ac*). The 74 QALYs is based on moving from the current NTD rate in BC of 7.5 per 10,000 births to 5.8 per 10,000 births, the post fortification rate observed in Ontario.

Table 6: CPB Associated with Advising Women Ages 15 to 44 to Take a Daily SupplementContaining 0.4 to 0.8 mg of Folic Acid in a Birth Cohort of 40,000

Row			
Label	Variable	Base Case	Data Source
а	Average # of females ages 15-44 in birth cohort	19,782	Table 4
b	Life years lived between the ages of 15 and 44	593,469	Table 4
с	Live births between the ages of 15 and 44	21,958	Table 4
d	Estimated live births with spina bifida prefortification	7.5	Table 4
e	Estimated live births with spina bifida currently	5.1	Table 4
f	Estimated potential live births with spina bifida post fortification	3.9	Table 4
g	Proportion of children with spina bifida with a sacral lesion (least severe)	33.9%	V
h	Proportion of children with spina bifida with a lower lumbar lesion	28.6%	V
i	Proportion of children with spina bifida with a higher lumbar lesion (most severe)	37.5%	V
j	Loss in QoL with a sacral lesion	34.0%	V
k	Loss in QoL with a lower lumbar lesion	42.0%	V
I	Loss in QoL with a upper lumbar lesion	52.0%	V
m	Reduction in life expectancy with a sacral lesion	39.4%	V
n	Reduction in life expectancy with a lumbar lesion	74.9%	V
0	Average life expectancy in BC at birth (in years)	82.4	V
р	Births with sacral lesion spina bifida avoided (7.5 to 3.9)	1.2	= (d - f) * g
q	Births with lumbar lesion spina bifida avoided (7.5 to 3.9)	2.3	= (d - f) - p
r	Life years gained due to sacral lesion spina bifida avoided	39.0	= m * o * p
S	Life years gained due to lumbar lesion spina bifida avoided	144.4	= n * o * q
t	QALYs gained due to sacral lesion spina bifida avoided	20.4	= p * (1 - m) * o * j
u	QALYs gained due to lumbar lesion spina bifida avoided	22.7	= q * (1 - n) * o * (k +) / 2
v	Total QALYs gained due to spina bifida avoided (7.5 to 3.9)	226	=r+s+t+u
w	Births with sacral lesion spina bifida avoided (5.1 to 3.9)	0.4	= (e - f) * g
x	Births with lumbar lesion spina bifida avoided (5.1 to 3.9)	0.8	= (e - f) - w
v	Life years gained due to sacral lesion spina bifida avoided	12.7	= m * o * w
z	Life years gained due to lumbar lesion spina bifida avoided	47.2	= n * o * x
aa	QALYs gained due to sacral lesion spina bifida avoided	6.7	= w * (1 - m) * o * j
ab	QALYs gained due to lumbar lesion spina bifida avoided	7.4	= x * (1 -n) * o * (k + l) / 2
ас	Total QALYs gained due to spina bifida avoided (5.1 to 3.9)	74	= y + z + aa + ab

√ = Estimates from the literature

For our sensitivity analysis, we modified a number of major assumptions and recalculated the CPB as follows:

- Assume that the loss in QoL associated with a sacral lesion is reduced from 34% to 6% (Table 6, row *j*), the loss in QoL associated with a lower lumbar lesion is reduced from 42% to 22% (Table 6, row *k*) and the loss in QoL associated with an upper lumbar lesion is reduced from 52% to 25% (Table 6, row *l*): **CPB = 65**.
- Assume that the loss in QoL associated with a sacral lesion is increased from 34% to 62% (Table 6, row *j*), the loss in QoL associated with a lower lumbar lesion is increased from 42% to 62% (Table 6, row *k*) and the loss in QoL associated with an upper lumbar lesion is increased from 52% to 78% (Table 6, row *l*): CPB = 83.
- Assume that the reduction in life expectancy with either a sacral and lumbar lesion is increased by 25%, giving people with spina bifida a longer lifespan. (Table 6, rows *m* & *n*): CPB = 82.
- Reduce the incidence of NTDs from 5.8 to 4.0 / 10,000 live births: **CPB = 152**.

Modelling Cost-Effectiveness

In this section, we will calculate the CE associated with advising all women of reproductive age to take a daily supplement containing 0.4 to 0.8 mg $(400-800\mu g)$ of folic acid.

In estimating CE, we made the following assumptions:

- Approximately half of all pregnancies are unplanned. Therefore clinicians should advise all women who are capable of pregnancy to take daily folic acid supplements.¹⁷⁷⁴
- In a survey of 499 women, the majority (95%) indicated that they prefer to receive information about preconception health from their primary care physician. Only 39% of these women, however, could recall their physician ever discussing this topic.¹⁷⁷⁵
- Mazza and colleagues in Australia found that low levels of engagement between primary care providers and women regarding preconception care are due to a number of perceived barriers, including "time constraints, the lack of women presenting at the preconception stage, the numerous competing preventive priorities within the general practice setting, issues relating to the cost of and access to preconception care, and the lack of resources for assisting in the delivery of preconception care guidelines."¹⁷⁷⁶
- Does a clinician's advice increase the uptake of daily folic acid supplements during the periconceptional period? In a study of 1,173 women with a median age of 32 in the UK, 51% reported receiving advice on issues such as smoking, alcohol use, healthy diet and folic acid intake from a health professional prior to becoming

¹⁷⁷⁴ Bibbins-Domingo K, Grossman D, Curry S et al. Folic acid supplementation for the prevention of neural tube defects: US Preventive Services Task Force recommendation statement. *Journal of American Medical Association*. 2017; 317(2): 183-9.

¹⁷⁷⁵ Frey K and Files J. Preconception healthcare: what women know and believe. *Maternal and Child Health Journal*. 2006; 10(1): 73-7.

¹⁷⁷⁶ Mazza D, Chapman A and Michie S. Barriers to the implementation of preconception care guidelines as perceived by general practitioners: a qualitative study. *BioMed Central Health Services Research*. 2013; 13(36): 1-8.

pregnant. Women who received this advice were significantly more likely to take folic acid supplements (76%) than women who did not receive this advice (37%).¹⁷⁷⁷

- For modelling purposes, we assumed that 70% (ranging from 60% to 80% in the sensitivity analysis) (Table 7, row *b*) of clinicians would advise women ages 15 to 44 to take a daily supplement containing 0.4 to 0.8 mg of folic acid and that 76% (ranging from 66% to 86%) (Table 7, row *e*) of women would follow this advice.
- For modelling purposes, we assumed this advice would need to be given every three years (Table 7, row *c*) and modified this from every one to five years in the sensitivity analysis.
- **Cost of folic acid supplements** The cost of folic acid supplements averages \$0.044 per tablet at London Drugs.¹⁷⁷⁸ We assumed an annual cost of \$16.06 (Table 7, row g).
- **Costs avoided** Average incremental medical expenditures comparing patients with spina bifida and those without are \$41,460 (in 2003 USD) in the first year of life, \$14,070 per year from ages 1 -17, \$13,339 per year from ages 18-44 and \$10,134 per year from ages 45-64.¹⁷⁷⁹
- Based on a study of the same 98 children and their caregivers, the caregivers worked an average of 7.5 to 11.3 hours less per week (depending on their children's disability severity) than matched control caregivers.¹⁷⁸⁰
- Grosse and co-authors estimated the lifetime costs associated with spina bifida to be \$791,900 (in 2014 USD). This includes \$513,500 in medical costs, \$63,500 in special education and developmental service costs and \$214,900 in parental time costs.¹⁷⁸¹ We converted the medical costs to equivalent 2022 Canadian costs; \$507,186 in medical costs (Table 7, row *r*), \$88,337 in special education and developmental service costs (Table 7, row *s*) and \$298,955 in parental time costs (Table 7, row *t*).¹⁷⁸²
- Parental time costs are excluded from the base model (Table 7, row *t*) but included in the sensitivity analysis. The literature on 'spillover effects' (e.g. when the illness of a child or family member has an economic or quality of life impact on the broader family or caregiver(s) is nascent and further work is required before these effects can be relied upon with confidence.^{1783,1784}

 ¹⁷⁷⁷ Stephenson J, Patel D, Barrett G et al. How do women prepare for pregnancy? Preconception experiences of women attending antenatal services and views of health professionals. *Plos One*. 2014; 9(7): e103085.
 ¹⁷⁷⁸ See https://www.londondrugs.com/wellness-by-london-drugs-folic-acid---1mg---180s/L0904156.html.

Accessed December 2023.

¹⁷⁷⁹ Ouyang L, Grosse S, Armour B et al. Health care expenditures of children and adults with spina bifida in a privately insured US population. *Birth Defects Research Part A: Clinical and Molecular Teratology*. 2007; 79(7): 552-8.

¹⁷⁸⁰ Tilford J, Grosse S, Goodman A et al. Labor market productivity costs for caregivers of children with spina bifida: a population-based analysis. *Medical Decision Making*. 2009; 29(1): 23-32.

¹⁷⁸¹ Grosse S, Berry R, Tilford J et al. Retrospective assessment of cost savings from prevention: folic acid fortification and spina bifida in the US. *American Journal of Preventive Medicine*. 2016; 50(5S1): S74-S80.

¹⁷⁸² Campbell and Cochrane Economics Methods Group. *CCEMG – EPPI-Centre Cost Converter*. 2016. Available at https://eppi.ioe.ac.uk/costconversion/. Accessed December 2016.

¹⁷⁸³ Wittenberg E and Prosser L. Disutility of illness for caregivers and families: a systematic review of the literature. *Pharmacoeconomics*. 2013; 31(6): 489-500.

¹⁷⁸⁴ Wittenberg E, Ritter G and Prosser L. Evidence of spillover of illness among household members EQ-5D scores from a US sample. *Medical Decision Making*. 2013; 33(2): 235-43.

- For every live birth with spina bifida avoided, an estimated 2.23 abortions would be avoided (Table 7, row *v*). The cost of an abortion is estimated at \$609 (in 2010 CAD or \$744 in 2022 CAD) (Table 7, row *w*).¹⁷⁸⁵
- An encephaly is uniformly fatal. However, an estimated 11.4% of pregnancies with an encephaly result in live births (Table 1). These infants survive an average of 2.11 days.¹⁷⁸⁶ According to the Canadian Institute for Health Information's *Patient Cost Estimator*, the average cost per day in BC in 2022 for CMG 599 (Neonate 2500+ grams, ages 0-28 days, other major problem) was \$1,413.¹⁷⁸⁷ We therefore calculated an avoided cost of \$2,981 (2.11 * \$1,413) per anencephaly live birth avoided (Table 7, row *p*).
- Other costs incurred or avoided and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with advising all women of reproductive age to take a daily supplement containing 0.4 to 0.8 mg (400-800 μ g) of folic acid is \$398,537 / QALY (Table 7, row *ad*).

¹⁷⁸⁵ Black A, Guilbert E, Hassan F et al. The cost of unintended pregnancies in Canada: estimating direct cost, role of imperfect adherence, and the potential impact of increased use of long-acting reversible contraceptives. *Journal of Obstetrics and Gynaecology Canada*. 2015; 37(12): 1086-97.

¹⁷⁸⁶ Jaquier M, Klein A and Boltshauser E. Spontaneous pregnancy outcome after prenatal diagnosis of anencephaly. *British Journal of Obstetric and Gynaecology: An International Journal of Obstetrics & Gynaecology.* 2006; 113(8): 951-3.

¹⁷⁸⁷ Canadian Institute for Health Information. *Patient Cost Estimator*. Available online at https://www.cihi.ca/en/spending-and-health-workforce/spending/patient-cost-estimator. Accessed January 2017

Table 7: CE Associated with Advising Women Ages 15 to 44 to Take a Daily Supple	ment
Containing 0.4 to 0.8 mg of Folic Acid in a Birth Cohort of 40,000	

Row			
Label	Variable	Base Case	Data Source
а	Life years lived between the ages of 15 and 44	593,469	Table 6, row b
b	Clinician adherence in offering advice re: folic acid supplementation	70%	Assumed
с	Frequency of offering advice re: folic acid supplementation (every x years)	3	Assumed
d	Life years covered by advice re: folic acid supplementation	415,428	= a * b
е	Proportion of women taking folic acid supplementation after receiving advice	76%	V
f	Life years covered by folic acid supplementation	315,725	= d * e
g	Annual cost of folic acid supplementation	\$16.06	V
h	Cost of folic acid supplementation	\$5,070,548	= f * g
i	Cost of 10-minute office visit	\$35.97	V
j	Portion of 10-minute office visit for offering advice	50%	Assumed
k	Costs of office visits	\$2,490,491	= (d / c) * i * j
Ι	Patient time required per office visit (hours)	2	Assumed
m	Value of patient time (per hour)	\$74.32	V
n	Value of patient time and travel for intervention	\$10,291,537	= (d / c) * I * m * j
0	Estimated cost of the intervention	\$17,852,576	= h + k + n
р	Medical care costs avoided per anencephaly live birth avoided	-\$2,981	V
q	Cases of anencephaly live births avoided with intervention	0.17	Table 4
r	Medical care costs avoided per case of spina bifida avoided	-\$507,186	V
S	Special education and developmental service costs avoided per case of spina bifida avoided	-\$88,337	V
t	Parental time costs avoided per case of spina bifida avoided	\$0	V
u	Cases of spina bifida avoided with intervention	1.16	Table 6, row w + x
v	Abortions avoided per spina bifida live birth	2.23	V
w	Costs avoided per abortion avoided	-\$744	V
	CE Calculation		
х	Cost of intervention over lifetime of birth cohort	\$17,852,576	= 0
У	Costs avoided over lifetime of birth cohort	-\$691,604	= ((r + s + t) * u)+(u * v * w)+(p * q)
Z	QALYs saved	74	Table 6, row ac
аа	Cost of intervention over lifetime of birth cohort (1.5% discount)	\$17,852,576	Calculated
ab	Costs avoided over lifetime of birth cohort (1.5% discount)	-\$607,271	Calculated
ас	QALYs saved (1.5% discount)	43	Calculated
ad	CE (\$/QALY saved)	\$398,537	= (aa + ab) / ac

√ = Estimates from the literature

For our sensitivity analysis, we modified a number of major assumptions and recalculated the CE as follows:

- Assume that the loss in QoL associated with a sacral lesion is reduced from 34% to 6% (Table 6, row *j*), the loss in QoL associated with a lower lumbar lesion is reduced from 42% to 22% (Table 6, row *k*) and the loss in QoL associated with an upper lumbar lesion is reduced from 52% to 25% (Table 6, row *l*): CE = \$455,133.
- Assume that the loss in QoL associated with a sacral lesion is increased from 34% to 62% (Table 6, row *j*), the loss in QoL associated with a lower lumbar lesion is increased from 42% to 62% (Table 76 row *k*) and the loss in QoL associated with an upper lumbar lesion is increased from 52% to 78% (Table 6, row *l*): CE = \$354,815.

- Assume that the reduction in life expectancy with either a sacral and lumbar lesion is increased by 25% (Table 6, rows *m* & *n*): CE = \$358,118.
- Reduce the incidence of NTDs from 5.8 to 4.0 / 10,000 live births: CE = \$186,358.
- Assume that clinician adherence in offering advice re: folic acid supplementation is reduced from 70% to 60% (Table 7, row *b*): CE = \$339,598.
- Assume that clinician adherence in offering advice re: folic acid supplementation is increased from 70% to 80% (Table 7, row *b*): CE = \$457,475.
- Assume that the frequency of offering advice re: folic acid supplementation is increased from every 3 years to every year (Table 7, row *c*): **CE** = **\$989,319**.
- Assume that the frequency of offering advice re: folic acid supplementation is decreased from every 3 years to every 5 years (Table 7, row *c*): **CE** = **\$280,380**.
- Assume the proportion of women taking folic acid supplementation after receiving advice is decreased from 76% to 66% (Table 7, row *e*): CE = \$383,118.
- Assume the proportion of women taking folic acid supplementation after receiving advice is increased from 76% to 86% (Table 7, row e): CE = \$413,955.
- Assume that the portion of a 10-minute office visit required for offering advice is reduced from 50% to 33% (Table 7, row *j*): CE = \$298,104.
- Assume that the portion of a 10-minute office visit required for offering advice is increased from 50% to 66% (Table 7, row *j*): CE = \$493,062.
- Include parental time costs avoided per case of spina bifida avoided (Table 7, row *t*): CE = \$391,516.

Summary

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with advising all women of reproductive age to take a daily supplement containing 0.4 to 0.8 mg (400-800µg) of folic acid is estimated to be 43 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is \$398,537 per QALY (see Table 8).

Table 8: Advising Women Ages 15 to 44 to Take a Daily Supplement Containing 0.4 to 0.8 mg of Folic Acid in a						
Birth Cohort of 40.000						
Sum	imary					
	Base					
	Case	Range				
CPB (Potential QALYs Gained)						
1.5% Discount Rate	43	38	89			
3% Discount Rate	27	24	56			
0% Discount Rate	74	65	152			
CE (\$/QALY) including patient* tim	e costs					
1.5% Discount Rate	\$398,537	\$280,380	\$989,319			
3% Discount Rate	\$631,236	\$444,864	\$1,563,094			
0% Discount Rate	\$231,765	\$162,715	\$577,016			
CE (\$/QALY) excluding patient time	e costs					
1.5% Discount Rate	\$160,701	\$137,679	\$275,811			
3% Discount Rate	\$256,090	\$219,776	\$437,656			
0% Discount Rate	\$92,774	\$79,320	\$160,044			
* Patient time costs do not normally include this model, however, we have included care analysis and not in the base case analysis.	e caregiver time c egiver time costs i	osts (spillover but only in the	effects). In sensitivity			

While the approach modelled above involving regular clinic-based reminders for women ages 15 to 44 to take a daily supplement containing folic acid is not cost-effective, folic acid supplementation is still highly recommended before conception and throughout pregnancy. The BC Perinatal Health Program's *Maternity Care Pathway*, for example, recommends "supplementation with folic acid before conception and throughout pregnancy. Folic acid supplementation as per patient risk (0.4 mg – 5 mg per day per pregnancy)."¹⁷⁸⁸

¹⁷⁸⁸ BC Perinatal Health Program, *Maternity Care Pathway*, February 2010. Available online at <u>http://www.perinatalservicesbc.ca/Documents/Guidelines-Standards/Maternal/MaternityCarePathway.pdf</u>. Accessed July 2017.