

1

Province of British Columbia

 Guidelines to the
Indigenous Languages
Technology Standard

Version 1.1

January 21, 2025

Table of Contents
Guidelines to the Indigenous Languages Technology Standard ..1

Description ..3

Application ..3

Authority..3

Advice on these guidelines ..3

How to support Indigenous languages in IM/IT systems ..4

Assess your systems for Unicode readiness ..4

Four-step approach to assess your systems for Unicode-readiness4

Learn the foundational IM/IT terminology and concepts ..4

Understanding character sets and encodings ..4

Older character sets ..4

2

Unicode ..5

Modernizing: converting to Unicode...5

Understanding language processing ...5

Review the system components..6

Databases and Unicode ...7

Collation rules ...8

Keyboards...9

Mainframe systems ... 10

Web servers .. 10

File format .. 11

Identify potentially problematic string operations ... 12

String manipulation ... 12

String length ... 13

String comparison ... 13

Position in string ... 14

Substring .. 14

Encryption and decryption ... 14

Test dataflows and evaluate data exchanges for Unicode readiness 15

Investigate system data flow .. 15

Dataflow diagrams .. 15

Dataflow architecture .. 16

Entities (Actors)... 16

Processes.. 17

Data stores ... 17

Dataflows ... 17

File formats and transfer types... 17

Evaluate data exchanges.. 18

Update or replace your system ... 18

Developer resources.. 18

Procurement support .. 18

Revision history .. 19

3

Purpose

These guidelines outline how to support Indigenous languages in computer systems,
complementing the material in the Indigenous Languages Technology Standard.

Description

Action 3.15 of the Declaration Act Action Plan commits the Province to “adopt an inclusive
digital font that allows for Indigenous languages to be included in communication,
signage, services and official records.” To achieve this, the Province’s IM/IT systems need
to meet specific technical capabilities.

These guidelines help ministries to ensure IM/IT systems can support Indigenous
languages to deliver more inclusive government services to Indigenous people living in
B.C.

By supporting Indigenous languages in systems and services, government will be able to:

• Record Indigenous-language names for people, places, or businesses.
• Display Indigenous-language names in provincial applications, data, and mapping

systems.
• Print signs, correspondence, and documents that contain Indigenous languages.

Application
All entities (hereafter, “ministries”) identified in Core Policy and Procedures Manual
Chapter 1, section 1.2.4.

Authority
Core Policy and Procedures Manual Chapter 12

Advice on these guidelines
For questions or comments regarding these guidelines, please contact:

BC Data Service, Ministry of Citizens’ Services

https://declaration.gov.bc.ca/declaration-act-action-plan/
https://www2.gov.bc.ca/gov/content?id=01924EB5D0884E5EB00D32D3BD23CE1F
https://www2.gov.bc.ca/gov/content?id=01924EB5D0884E5EB00D32D3BD23CE1F
https://www2.gov.bc.ca/gov/content/governments/policies-for-government/core-policy/policies/im-it-management
https://dpdd.atlassian.net/servicedesk/customer/portal/1/group/76/create/175

4

How to support Indigenous languages in IM/IT systems

An important step to including Indigenous languages in government’s records, systems,
and services is ensuring government’s technology systems can support them.

This guide describes how to assess and update IM/IT systems so they can support
Indigenous languages.

Assess your systems for Unicode readiness

We suggest a four-step approach to assess your systems for Unicode-readiness:

1. Learn the foundational IM/IT terminology and concepts.
2. Review the system components.
3. Identify potentially problematic string operations.
4. Test data flows and evaluate data exchanges for Unicode-readiness.

These are described in the following sections.

Learn the foundational IM/IT terminology and concepts

Review important terminology and the history of language to make it easier to complete
your Unicode-readiness assessment.

Understanding character sets and encodings

A character set is a list of characters supported by a computer system, and an encoding
scheme describes how to store them on a computer system as ones and zeroes (binary
data). Character sets vary in the number of characters in the set (the size of the repertoire).
Encoding schemes vary in the number of bytes required to store a character and whether
this number varies.

Older character sets

Many older B.C. government IM/IT systems support just the characters available on the US
ASCII keyboard. Many systems are based on the z/OS® (mainframe) operating system;
these use a different character set/encoding scheme called EBCDIC. Some systems
support extended forms of ASCII: Windows-1252 and ISO-8859-1. These can store
accented characters found in North European languages. All these character sets have
encodings which require just one byte per character. Because of their limited size, they
cannot contain all characters used in Indigenous languages in B.C. Unicode is the
only character set large enough to support the Indigenous languages in B.C.

https://en.wikipedia.org/wiki/ASCII
https://www.ibm.com/docs/en/zos-basic-skills?topic=mainframe-ebcdic-character-set
https://home.unicode.org/

5

Unicode

Unicode is an international encoding standard created in the early 1990’s. Its goal was to
produce a single, unified standard that supports all the characters used in any of the
world’s living languages. Unicode contains over one million characters, including those
used by B.C. Indigenous languages.

The Unicode set is updated every year as new characters are added. For example, in the
2024 release (Unicode Version 16), three characters used in the B.C. west coast Haíɫzaqv
language were added.

To process Unicode data, all the system’s data stores need to be configured to store data
in Unicode's standard encodings. In B.C. government systems, the standard encoding is
UTF-8. UTF-8 is a varying-length encoding, requiring between 1 and 4 bytes of storage per
character. An advantage of UTF-8 is that all the characters in the ASCII repertoire take just
1 byte each when stored.

The Unicode character set enables systems to use B.C.’s inclusive font (BC Sans). BC Sans
can display text from multiple languages including every character used in Indigenous
languages in B.C.

Modernizing: converting to Unicode

Many B.C. government systems have not undergone modernization, due to their
complexity and the risk of service delivery issues like data loss, corruption or security risks.
For example, there may be parts of the code that assume characters always use just one
byte of storage; these programs will break when they encounter variable-length, multi-
byte characters.

Understanding language processing

There are many things that impact how IM/IT systems process languages. The following is
a data architecture entity relationship diagram showing how terms like "byte", "font",
"encoding", "grapheme", "glyph" and "character set" relate to one another:

https://home.unicode.org/
https://blog.unicode.org/2024/12/heiltsuk-revitalization-introducing-new.html
https://blog.unicode.org/2024/12/heiltsuk-revitalization-introducing-new.html
https://www2.gov.bc.ca/gov/content/governments/services-for-government/policies-procedures/bc-visual-identity/bc-sans
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

6

At the bottom of the diagram, note that what we see as a single character could actually
be many characters superimposed upon one another creating a grapheme. For example,
the character "c cédille" combines the Latin character 'c' with a superimposed cedilla
accent.

How a grapheme appears when displayed on the screen or paper is determined by the
font used. BC Sans, for example, is a font influencing the visual representation of
graphemes, referred to as glyphs.

Review the system components

The next step is to identify the technologies used in your systems to create a gap
assessment for Unicode-readiness. Systems will vary in how “unicode ready” they are and
what needs to be done to make the “unicode ready.”

Table 1: Characteristics of Unicode-ready systems

Characteristic Likely Unicode-Ready NOT likely Unicode-Ready

Programming
language

Java version18 ; Python 3.x;
JavaScript

C; C++; Python 2; PHP  

Database encoding UTF-8; UTF-16; UTF-32  iso-8859-1(Latin1); windows-1252
(Western European); ASCII

7

Characteristic Likely Unicode-Ready NOT likely Unicode-Ready

String handling
(system queries,
searching, sorting,
etc.)

Strings treated as sequence of
bytes, not individual
characters. Extra
space allocated for string
variables and database
columns.

Strings treated as sequences of
characters. Possibly needing to
know length of string in
characters. What is
the nth character, etc. No extra
space allocated for string
variables and database columns.

Data edit rules  Program logic does not restrict
inputs to a specific set or
range of characters.

Program logic restricts inputs to a
specific set or range of characters.

Web server and
associated files 

Web server configuration file
(e.g., httpd.conf) has a
directive recognizing Unicode,
or individual pages have a
UTF-8 meta tag.

Web server configuration file (e.g.,
httpd.conf) does not have a
directive recognizing Unicode,
and individual pages do not have
a UTF-8 meta tag.

Databases and Unicode

When building a database, the character set and encoding combination must be specified
for data storage. How this encoding is identified differs by database. The following table
lists the acceptable Unicode character set encodings for several popular database
management systems. These are all UTF-8 encodings.

UTF-8 is the preferred encoding for Unicode data as it is very space efficient – with UTF-8,
ASCII characters (letters, numbers, many punctuation characters) use just one byte each
to store. A Unicode database that contains just ASCII characters will consume the same
amount of space as an ASCII database.

8

Table 2: Preferred encodings for popular databases

Database Unicode encoding

Oracle AL32UTF8

PostgreSQL UTF8 (character_repertoire = UCS)

SQL Server ends in ‘_utf8’

MySQL utf8mb4

MongoDB UTF8 (This is standard for MongoDB)

Code samples and instructions on how to determine and set the encoding for a database
are available in DevHub.

Collation rules

Collation rules determine how characters are sorted, and strings are compared, impacting
factors like case sensitivity, accent relevance and character arrangement in sorting.

Different languages often have specific collations; for instance, French and English differ
as described in the Oracle Database Globalization and Support Guide. Binary comparison
and sorting, which rely on binary encodings, are frequently used. However, binary
comparison and sorting does not work well where there is a mixture of Latin (A-Z, 0-9) and
non-Latin Unicode data, as in B.C. Indigenous languages. For this reason, Unicode
provides a Unicode collation algorithm that can be incorporated into database systems
when setting system parameters.

https://developer.gov.bc.ca/docs/default/component/indigenous-languages-in-systems/databases/Readme/
https://docs.oracle.com/en/database/oracle/oracle-database/21/nlspg/linguistic-sorting-and-matching.html
https://www.unicode.org/reports/tr10/

9

The following table lists the preferred collation setting for some common database
management systems:

Table 3: Preferred collation rules for popular database management systems

Database Collation

Oracle UCA0700_ORADUCET

PostgreSQL unicode

SQL Server ends in ‘_utf8’

MySQL starts with ‘utf8mb4_’ (e.g., utf8mb4_0900_ai_ci)

MongoDB UTF8 (This is standard for MongoDB)

Further details are available in DevHub

Keyboards

Enabling the data search function in an application involves more than just setting the
collation rules correctly. You must also provide a way for the person using the application
to specify the text to be searched. This is more complicated when the text includes
characters not found on the US ASCII keyboard. The First Voices program provides
keyboards for enabling search, and smart phone apps for Apple and Android.

https://developer.gov.bc.ca/docs/default/component/indigenous-languages-in-systems/databases/Readme/
https://www.firstvoices.com/
https://firstvoices.atlassian.net/wiki/spaces/FIR1/pages/1705752/Install+fonts+and+keyboards+for+Indigenous+languages
https://apps.apple.com/ca/app/firstvoices-keyboards/id1066651145
https://play.google.com/store/apps/details?id=com.firstvoices.keyboards

10

Mainframe systems

Mainframe systems deserve special coverage, as their components may or may not
support Unicode. The following diagram illustrates some of the components present in
mainframe systems:

Some of these components were designed around a specific non-Unicode character set
(EBCDIC) and do not work with any other character set. These include:

• Green screen terminals (IBM 3270 terminals and emulators)
• Mainframe printers

The other mainframe components shown in the diagram, while originally designed for use
with EBCDIC, can now support Unicode. See DevHub for more information.

Web servers

Web servers can be configured to serve web pages that have Unicode content.

In Apache web servers, this configuration can be done by adding the following line to the
httpd.conf configuration file:

 ‘AddDefaultCharset utf-8’

https://en.wikipedia.org/wiki/IBM_3270
https://developer.gov.bc.ca/docs/default/component/indigenous-languages-in-systems/mainframe_systems/Readme/
https://httpd.apache.org/

11

When configured this way, a page with the following html will appear, correctly, as
Tk’emlúps te Secwe̓pemc.

 <html><body>

 <h1>Tk’emlúps te Secwe̓pemc </h1>

 </body></html>

If that line is missing from the configuration file, then the same page might appear like
Tkâ€™emlÃºps te SecweÌ“pemc.

Regardless of how the web server is configured, Unicode support can be ensured by
including a directive in the web page itself. For example, the following page will render
properly even if the web server has not been configured for Unicode support, since the
web page includes a meta charset directive:

 <html><body>

 <meta charset="UTF-8">

 <h1>Tk’emlúps te Secwe̓pemc </h1>

 </meta>

 </body></html>

File format

Data stored in files must be encoded in UTF-8. Specific guidance depends on the format of
the file:

i. CSV: Comma-separated value (CSV) files must include a byte order mark (BOM) at
the start of the file to render properly in Excel.

ii. DBF: The dBase File Format (DBF) is a file format used by older desktop databases
such as dBase, Clipper, and FoxPro. It is also used to store non-spatial data in Esri
shapefiles. Originally designed to store ASCII data, in more recent versions the
default encoding was changed to ISO-8859-1. DBF files can store Unicode data
encoded as UTF-8, but this is not the default.

iii. PDF: UTF-8 / BC Sans Microsoft Office documents converted to PDF through
Microsoft Office will retain their UTF-8 encoding, and the BC Sans font will be
embedded, allowing users to view the document even if they do not have BC Sans
installed on their system. No extra action is required.

iv. Microsoft Office: Unicode UTF-8 is the default encoding used in Microsoft Office
products (e.g., Word, Excel, PowerPoint); no extra action is required.

12

See DevHub for more information on how to make sure data files can properly support
Indigenous language characters.

Identify potentially problematic string operations

Once you have ensured your databases, programming languages and web servers can
support Unicode, the next step is to identify potentially problematic system (string)
operations.

Computer programs will need to be modified to support Unicode text if they perform
operations like:

• Sorting
• Searching
• Matching

Programs written to support strings with byte-sized constituent characters will produce
errors when dealing with multi-byte, varying-length UTF-8 encoded Unicode characters.

As described earlier, what might look like single characters in Indigenous languages are
sometimes compositions of multiple Unicode characters. For example, the symbol é is
made up of two Unicode characters:

• The Latin letter e
• An overlaid acute accent.

These compositions are called graphemes. To support the processing of Indigenous
language text, programs must be able to segment the text into graphemes. No common
programming language has built-in support for graphemes. Libraries for doing this are
available in most common programming languages.

Some Unicode characters with diacritics can have multiple UTF-8 encodings, making it
challenging to search for them. To address this issue, Unicode provides normalization
forms that can remove ambiguity during searching.

DevHub contains code samples illustrating how to work with Unicode characters and
graphemes in several common programming language.

String manipulation

There are several common operations that can be applied to text strings. These may
behave unexpectedly when applied to text strings that contain Unicode characters.

https://developer.gov.bc.ca/docs/default/component/indigenous-languages-in-systems/file_formats/Readme/
http://www.merriam-webster.com/dictionary/diacritic
https://unicode.org/reports/tr15/
https://unicode.org/reports/tr15/
https://developer.gov.bc.ca/docs/default/component/indigenous-languages-in-systems/programming_languages/Readme/

13

String length

With Unicode data, the number of characters can be less than the number of bytes
required for the encoding, which can be up to 4 bytes per character. The functionality you
are programming may need you to know the length of a text string in terms of the
number of:

• Bytes: to determine the amount of storage required when storage is allocated by
number of bytes

• Characters: to determine the amount of storage required when storage is allocated
by number of characters

• Graphemes: to allocate screen space

Some graphemes, such as the “e” combined with an acute accent (‘é’) are made up of
multiple characters. In such a case, the number of graphemes in a string is less than the
number of characters, and the number of characters is less than the number of bytes.

String comparison

With non-ASCII Unicode text strings, checking that two text strings are equal is
complicated because two logically identical strings might have different encodings, as
described above. The logical order of two text strings is also not always clear.

14

Position in string

For ASCII data, the position of a particular character in a text string does not depend on
whether the measurement is bytes or characters. The n th byte and the encoding of the
nth character in an ASCII text string are the same.

For non-ASCII Unicode data, this is not the case. In the image above, the position of ‘a’ is
the 6th grapheme, the 7th character, and the 8th byte.

Substring

The “substring” operation can be viewed as positioning in a text string, then extracting a
specific length of data. The complexities of performing the substring operation on non-
ASCII Unicode data are a combination of those in string length and position in string (see
above).

Encryption and decryption

There are various methods for encrypting data before storing or transmitting it and then
decrypting it upon retrieval. Encryption and decryption methods that work well when the
subject data can be viewed as a string of fixed-size, single-byte characters may not work
when the characters have multi-byte or varying length encodings as non-ASCII Unicode
characters do.

The Cryptography with International Character Sets guidance provides two principles to
keep in mind when encrypting/decrypting non-ASCII Unicode data:

1. Work with bytes, not text strings
2. Do not store encrypted data in a string type

Different encoding methods with Unicode can produce different binary representations of
the same text. Hence, any system decrypting data from another system must know the
encoding used in the original system.

https://www.di-mgt.com.au/cryptoInternational2.html

15

Test dataflows and evaluate data exchanges for Unicode readiness

Once you have ensured your string operations can support Unicode, the final step is
to test your dataflows for Unicode-readiness.

Examine how data moves through your system, from entry, processing, storage, and
output. Identify the other systems your system communicates with and check if they can
use Indigenous languages.

The next step provides guidelines on how to test and evaluate data exchanges for
Unicode-readiness. This is the last stage of how to assess your systems for Unicode-
readiness.

Investigate system data flow

The final task to confirm if your system is ready for Unicode is to investigate how a text
string that contains Unicode characters flows into, through, and beyond the system.

Consider a simple system that:

1. Inputs a name
2. Stores it in a database,
3. Does a query on the name to find related information,
4. Outputs this related information.

You can test this system by inputting a name containing Unicode characters, then
checking that the output is as expected and that no errors are generated.

Dataflow diagrams

Dataflow diagrams can be used to model the flow of data:

• Into and out of the system
• Into and out of the processes within the system
• Into and out of data stores such as files and databases

To access data flow diagrams or resources and standards for the creation of your
diagrams within B.C. government, contact the area within your organization responsible
for IM/IT system management (sometimes called the Information Management Branch,
Computing Services Branch or similar).

16

For a typical system that inputs and outputs “name” data, the data flow diagram might
look like this:

The system might guard against invalid input being entered, then do some processing on
the accepted data. It may store the data in a query-able database and/or make the data
available to consumers through an API. A dataflow diagram captures all these touchpoints
when data needs to be handled in a way that supports Indigenous languages.

Dataflows are useful in assessing whether a system will properly handle specific types of
data. View example dataflows.

Dataflow architecture

Dataflow architecture, typically expressed in data flow diagrams, have four types of
objects:

• Entities
• Internal processes
• Data stores
• Dataflows

Entities (Actors)

Entities, also known as actors, are the users or processes that input or output data to or
from a system. In a dataflow diagram these are indicated using a rectangle that includes
text describing what the user or process is doing.

https://developer.gov.bc.ca/docs/default/component/indigenous-languages-in-systems/data_flow_analysis/Readme/
https://en.wikipedia.org/wiki/Data-flow_diagram

17

To assess Unicode-readiness, you must identify all the ways that strings containing
Unicode characters can enter and leave the system. This includes checking Unicode
characters display correctly on output entities like:

• PDF documents
• Screen outputs
• Printed reports

Review test data and guidelines that can be used to test your systems for Indigenous
language capabilities.

Processes

A process is a sequence of actions performed on a data element as it moves from its input
to its destination. The end point determines whether the data will leave the system or be
stored in it. Data flow diagrams represent processes with circles.

To assess Unicode-readiness you must identify all the processes that can operate on
strings containing Unicode characters.

Data stores

Data stores are the places where data gets stored within a system. Data stores include:

• Files in a file system
• Tables in a database

Data stores are represented by parallel horizontal lines (a box with no sides).

Dataflows

Dataflows connect entities with processes and data stores. They are represented by
directed lines. In assessing Unicode-readiness, each dataflow needs to be tested.

File formats and transfer types

Where applicable, include notes to identify the types of files being read or written (e.g.,
PDF, CSV, Excel, etc.), and any file transfer protocols used (e.g., FTP, HTTPS, SFTP etc.)

https://developer.gov.bc.ca/docs/default/component/indigenous-languages-in-systems/test_data/Readme/

18

Evaluate data exchanges

Assess compatibility of other systems that exchange data with yours. If these systems are
not compatible with Unicode, take measures to ensure that data is exchanged correctly.

• Refer to W3C’s International Workgroup’s Creating a Roadmap for guidance

Assessment is the only way to know whether an existing system is Unicode-ready.
Assessing your systems will also help you understand which parts, if any, are problematic.

Update or replace your system

Depending on the results of your assessment, your system may need a simple fix to
support Indigenous languages, or it may need much larger upgrades.

Developer resources

We have set up a DevHub repository to assist in adapting existing systems or creating new
ones compatible with Unicode. The site contains resources to support assessment, testing
and other developer activities. Resources include:

• Test data

• Mapping of Unicode encodings

• Examples of data flow analysis

• Code samples and much more

Funding upgrades

If your system requires IM/IT capital funding to align with the ILTS and these guidelines,
you should review the Digital Investment Office's Digital Investment 101. Digital
Investment 101 will help you plan and submit requests for capital IM/IT funding.

Procurement support

If you are considering procuring IM/IT services and need support in ensuring vendors are
aware of the requirement to align with the ILTS please contact us.

https://www.w3.org/International/articles/unicode-migration/#roadmap
https://developer.gov.bc.ca/docs/default/component/indigenous-languages-in-systems
https://developer.gov.bc.ca/docs/default/component/indigenous-languages-in-systems/test_data/Readme/
https://github.com/bcgov/inclusive-names-service/blob/main/docs/test_data/fpcc_graphemes_encoded.csv
https://developer.gov.bc.ca/docs/default/component/indigenous-languages-in-systems/data_flow_analysis/Readme/
https://developer.gov.bc.ca/docs/default/component/indigenous-languages-in-systems/programming_languages/Readme/
https://developer.gov.bc.ca/docs/default/component/indigenous-languages-in-systems/programming_languages/Readme/
https://digital.gov.bc.ca/topics/funding/intro/
https://dpdd.atlassian.net/servicedesk/customer/portal/1/group/76/create/175

19

Revision history
Version Date Notes
1.0 July 2024 Web version
1.1 January 2025 PDF version

