

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 1 of 27

1. Purpose
To define the deliverables, and their associated roles and responsibilities, needed to
establish the minimum technical security requirements for secure government
applications, including web and mobile applications.

This document provides detailed security specifications to support the IMIT 6.14
Application and Web Security Standard. Both the standard requirements and these
specifications MUST be followed.

2. Resources
BC Government API Guidelines Province of British Columbia API guidelines.
Common Vulnerability Scoring
System

Standard used to score the severity of a software
vulnerability.

Defensible Security Framework Critical security controls (assessment and tools).
IMIT 6.11 Security Threat and
Risk Assessment Standard

Requirements to assess (identify, analyze, and
evaluate), define planned treatments, and report
security threats and risks in information systems.

IMIT 6.14 Application and Web
Security Standard

Corresponding standard for these specifications.

IMIT 6.23 Asset Management
Security Standard

Baseline security controls for managing physical IT
assets and information assets to protect B.C.
government information and information systems.

IMIT 6.27 Operations Security
Standard

Security framework for secure IT operations
management.

IMIT 6.29 System Acquisition,
Development, and
Maintenance Security Standard

Security guidance to preserve the integrity and
accuracy of information systems and information
systems’ lifecycle management.

Information Security Glossary List of information security terms and definitions.
Mobile App Development Province of British Columbia guidelines for in-house

app development for mobile devices.

https://www2.gov.bc.ca/assets/download/29237A3033824CCBAC0465939BFB2CEF
https://www2.gov.bc.ca/assets/download/29237A3033824CCBAC0465939BFB2CEF
https://classic.developer.gov.bc.ca/Data-and-APIs/BC-Government-API-Guidelines
http://www.first.org/cvss/
http://www.first.org/cvss/
https://www2.gov.bc.ca/gov/content/governments/services-for-government/information-management-technology/information-security/defensible-security
https://www2.gov.bc.ca/assets/download/F157B2C10F8F4279A6FF7228D2B31BC9
https://www2.gov.bc.ca/assets/download/F157B2C10F8F4279A6FF7228D2B31BC9
https://www2.gov.bc.ca/assets/download/29237A3033824CCBAC0465939BFB2CEF
https://www2.gov.bc.ca/assets/download/29237A3033824CCBAC0465939BFB2CEF
https://www2.gov.bc.ca/assets/download/F9BA3AFD52B34727BA261F052ADEAA0B
https://www2.gov.bc.ca/assets/download/F9BA3AFD52B34727BA261F052ADEAA0B
https://www2.gov.bc.ca/assets/download/0F4DF4FAC5214C6387B6B51DD538FF6E
https://www2.gov.bc.ca/assets/download/0F4DF4FAC5214C6387B6B51DD538FF6E
https://www2.gov.bc.ca/assets/download/5247F22C39D4487B8DD7D32A55C466A4
https://www2.gov.bc.ca/assets/download/5247F22C39D4487B8DD7D32A55C466A4
https://www2.gov.bc.ca/assets/download/5247F22C39D4487B8DD7D32A55C466A4
https://www2.gov.bc.ca/gov/content?id=D375BAE7F1094C6BA750F5E435B9DE76
https://developer.gov.bc.ca/docs/default/component/mobile-developer-guide

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 2 of 27

NIST 800-218 Secure Software Development Framework (SSDF)
Version 1.1. Recommendations for mitigating risk of
software vulnerabilities. Describes fundamental,
sound practices for the SSDF.

NIST 800-64 NIST Special Publication 800-64 Revision 2, Security
Considerations in the System Development Life Cycle
(SDLC). Focuses on the information security
components of the SDLC.

OCIO Patch Guidelines Current patching expectations for government assets
and ISB expected patch mitigation plan for vulnerable
systems based on risk rating.

OWASP API Security Project
Top 10 vulnerabilities

Guidance on top 10 API vulnerabilities and mitigation
measures for those vulnerabilities.

OWASP Cheat Sheet for
Database Security

Guidance on securely configuring and using the SQL
and NoSQL databases intended for application
developers responsible for managing the databases.

OWASP Code Review Guide Guidance on best practices in secure code review,
and how it can be used within a secure software
development lifecycle (S-SDLC).

OWASP Logging Cheat Sheet Guidance on building application logging
mechanisms, especially related to security logging.

Payment Card Industry Data
Security Standard (PCI DSS)
Version 4.0

Global standard that provides a baseline of technical
and operational requirements designated to protect
payment data.

3. Specifications
3.1 Secure software development Appendix C: 10 API security guidelines and

best practices

3.2 Secure software maintenance

Appendix D: Common coding
vulnerabilities

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://www.govinfo.gov/content/pkg/GOVPUB-C13-c18f06ebb5c8857612fedf8a31d95203/pdf/GOVPUB-C13-c18f06ebb5c8857612fedf8a31d95203.pdf
https://www2.gov.bc.ca/assets/download/A36988B8832D49198E5126C8DA9982D3
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/
https://cheatsheetseries.owasp.org/cheatsheets/Database_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Database_Security_Cheat_Sheet.html
https://owasp.org/www-project-code-review-guide/assets/OWASP_Code_Review_Guide_v2.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://listings.pcisecuritystandards.org/documents/PCI-DSS-v4_0.pdf
https://listings.pcisecuritystandards.org/documents/PCI-DSS-v4_0.pdf
https://listings.pcisecuritystandards.org/documents/PCI-DSS-v4_0.pdf

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 3 of 27

3.3 Protection of the production
environment

Appendix E: Web application and
application interface vulnerabilities

Appendix A: Secure software development
life cycle (SDLC)

Appendix F: Assessment guidelines

Appendix B: PWA security guidance

3.1 Secure software development
The OCIO (for enterprise systems) and ministries (for ministry systems) MUST ensure:

1. The custom-built application is protected against known attacks based on the
attack risk ratings identified during a security threat and risk assessment. See
IMIT 6.11 Security Threat and Risk Assessment Standard for details on how to
conduct a security threat and risk assessment and complete a Statement of
Acceptable Risks (SoAR).1

2. Per the IMIT 6.29 System Acquisition, Development, and Maintenance Security
Standard, security controls for the custom-built application are documented in
the system security plan for the custom-built application.

3. A software development life cycle (SDLC) process is followed regardless of
methodology adopted (for example, DevOps, Agile, Waterfall) for software
development. See Appendix A: Secure software development life cycle (SDLC) for
details.

4. Digital signatures are obtained from CITZ Digital Office DevOps and Cloud
Services – Platform Services for applications developed for mobile devices. See
Mobile App Development for details.

1 A SoAR is part of the system security plan for the application. See the IMIT 6.29 System Acquisition,
Development, and Maintenance Security Standard for details.

https://www2.gov.bc.ca/assets/download/F157B2C10F8F4279A6FF7228D2B31BC9
https://www2.gov.bc.ca/assets/download/5247F22C39D4487B8DD7D32A55C466A4
https://www2.gov.bc.ca/assets/download/5247F22C39D4487B8DD7D32A55C466A4
https://developer.gov.bc.ca/docs/default/component/mobile-developer-guide
https://www2.gov.bc.ca/assets/download/5247F22C39D4487B8DD7D32A55C466A4
https://www2.gov.bc.ca/assets/download/5247F22C39D4487B8DD7D32A55C466A4

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 4 of 27

3.1.1 Secure coding
1. An application is developed using one of the following secure coding practices:

• B.C. Government security best practices for apps
https://docs.developer.gov.bc.ca/security-best-practices-for-apps/#secure-
coding-guideline

• CERT – The Software Engineering Institute at Carnegie Mellon University
http://www.cert.org/

• NIST – The National Institute of Standards and Technology
http://csrc.nist.gov/

• OWASP – The Open Web Application Security Project
http://www.owasp.org/

• SANS Institute – Escal Institute of Advanced Technologies
http://www.sans.org/

Also, the guidance appropriate to the type of code being developed is followed:

• For Kubernetes-based custom code (for example, OpenShift), follow the
security context constraints (SCC)
https://docs.openshift.com/container-platform/4.13/security/seccomp-
profiles.html

• For WebAssembly (Wasm)-based custom code
https://webassembly.org/docs/security/

• For web-based custom code, follow the OWASP guidance
https://owasp.org/www-project-web-security-testing-guide/stable/

• For WebSocket-based custom code, follow the OWASP guidance
https://owasp.org/www-project-web-security-testing-guide/v41/4-
Web_Application_Security_Testing/11-Client_Side_Testing/10-
Testing_WebSockets

• For progressive web application (PWA)-based custom code, follow the
security guidance in Appendix B: PWA security guidance.

• For application programming interface (API)-based custom code, follow
the security guidance from BC Government API Guidelines.

https://docs.developer.gov.bc.ca/security-best-practices-for-apps/#secure-coding-guideline
https://docs.developer.gov.bc.ca/security-best-practices-for-apps/#secure-coding-guideline
http://www.cert.org/
http://csrc.nist.gov/
http://www.owasp.org/
http://www.sans.org/
https://docs.openshift.com/container-platform/4.13/security/seccomp-profiles.html
https://docs.openshift.com/container-platform/4.13/security/seccomp-profiles.html
https://webassembly.org/docs/security/
https://owasp.org/www-project-web-security-testing-guide/stable/
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/11-Client_Side_Testing/10-Testing_WebSockets
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/11-Client_Side_Testing/10-Testing_WebSockets
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/11-Client_Side_Testing/10-Testing_WebSockets
https://classic.developer.gov.bc.ca/Data-and-APIs/BC-Government-API-Guidelines

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 5 of 27

2. Insecure application programming interfaces (APIs) are not used in applications,
particularly for public-facing web applications. See Appendix C: 10 API security
guidelines and best practices.

3. Custom code accessing databases is configured to:
a. Connect to the database using TLSv1.2 or higher with modern ciphers like

AES-GCM or ChaCha20.
b. Verify that the digital certificate is correct.

4. Server-side application files that are accessible for downloading or inspection by
clients are authenticated.

5. Accounts, user IDs, and passwords are NOT embedded in the source code.

3.1.2 Secure code review requirements
1. Before release, the results of the security threat and risk assessment are used to

identify the appropriate mix of assessments and frequency of assessments on a
case-by-case basis for the custom code:
a. At minimum, the custom code is reviewed, tested, and remediated for

common coding vulnerabilities listed in Appendix D: Common coding
vulnerabilities.

b. If web applications and application interfaces are used, the custom-code is
tested and remediated for interface vulnerabilities listed in Appendix E: Web
application and application interface vulnerabilities.

2. Custom code is reviewed. Automated source code analysis is recommended,
although manual analysis is acceptable. The combination of both, however, can
provide the best results. When the review is:
a. Automated, the author of the custom code is NOT the author of the code

review scripts used to conduct the analysis.

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 6 of 27

b. Manual, the review is conducted by individuals2 who know the application
architecture—but are not the code author to provide maximum unbiased
insight.

3. The code review is conducted at the following frequency:
Risk to
application

Information
Sensitivity

Code Review Frequency

Low Public • After a significant change in application
or annually at minimum.

Low Confidential,
that is
Protected A,
B, or C

• After a significant change in application.

• Every 6–9 months at minimum if the
assessment is conducted manually.

• More frequently, if the assessment is
automated.

Medium,3 to High
or Critical

Public, or
Confidential
(Protected A,
B, or C)

• After a significant change in application.

• Every 6–9 months at minimum if the
assessment is conducted manually.

• More frequently, if the assessment is
automated.

4. A public-facing web application is reviewed:
a. At the frequency dictated by the sensitivity of the information that it will

collect, process, or transmit, or its criticality to business operations, or both.
b. After any significant change.

5. If automated scanning is performed on a public-facing application, the frequency
for the automated scans is equivalent to frequency for manual scans, or better.

2 These individuals need to have the necessary skills and secure coding knowledge to effectively evaluate the
code.
3 Applications and public-facing web applications implemented on shared infrastructure are considered to
be at medium or higher risk.

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 7 of 27

6. Various assessments are considered when deploying a new or significantly
changed application. See Appendix F: Assessment guidelines for information on
the types of assessments to be conducted.

3.2 Secure software maintenance
The OCIO (for enterprise systems) and ministries (for ministry systems) MUST ensure:

3.2.1 Security patches
1. To document a security threat and risk assessment in a Statement of Acceptable

Risks (SoAR) when the application of a security patch for a critical or high-risk
vulnerability is delayed for more than 5 weeks from the release of the patch. The
SoAR must include:
a. Reason for the delay
b. The planned timeline to apply the security patch
c. The mitigative risk controls that will be implemented

2. The criteria for risk ranking of security vulnerabilities is based on:
a. Common Vulnerability Scoring System (CVSS)
b. Vendor-supplied patch classification designation
c. Assessment of business risk

3.2.2 Security vulnerabilities management
1. A security vulnerability in the application that is known to result in critical or high

risks is identified, prioritized, and recorded in an appropriate tool4 to enable the
risks to be monitored and tracked.
a. Security vulnerabilities of third-party software applications used to develop

the custom-built application MUST also be identified and documented.
2. Patch management activities include (but are not limited to):

a. Ensuring patches are from authorized sources

4 The appropriate tool can be a risk register, or a security software tool adopted by the SDLC team to scan
code for vulnerabilities that is appropriate to the SDLC methodology adopted (for example, DevOps, Agile,
Waterfall).

http://www.first.org/cvss/

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 8 of 27

b. Assessing the business impact of implementing (or not implementing)
patches

c. Adequate testing of patches
d. Identifying appropriate timing and method of applying patches
e. Reporting on patch management activities
f. Making contingency plans for failures during patch management activities

3.3 Protection of the production environment
The OCIO (for enterprise systems) and ministries (for ministry systems) MUST ensure:

1. Per IMIT 6.27 Operations Security Standard, a security threat and risk
assessment is conducted to identify the security controls required to segregate
the production environment from non-production environments. The controls
MUST include, but are not limited to:
a. Separate access controls for the production and non-production

environments
b. Removal or disabling of accounts for an information system that are

dormant or inactive for more than 45 days so they cannot be used to login to
the system

c. Storing database connection configurations (also known as connection
strings), and database credentials separately and in encrypted format

2. Separation of duties per the IMIT 6.27 Operations Security Standard is achieved
by ensuring no individual is responsible for all the tasks in the different phases
of a SDLC. This is done by:
a. Fully automating5 the SDLC processes.

OR
b. Ensuring the development team has sufficient human resources to ensure

the review, testing, and approval of code is independent of the code author.

5 The scripts, rules, code, and configurations used to automate the SDLC processes MUST also be reviewed
independently of the author of the script, rule, code, or configuration to ensure their integrity.

https://www2.gov.bc.ca/assets/download/0F4DF4FAC5214C6387B6B51DD538FF6E
https://www2.gov.bc.ca/assets/download/0F4DF4FAC5214C6387B6B51DD538FF6E

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 9 of 27

3. New software, software modifications, and security patches are approved for
deployment and documented in the system security plan.

4. Production data that is classified as Protected B or Protected C is:
a. Approved via an appropriate approval process if use of production data is

required in a non-production environment.
b. Removed from the non-production environment once testing is complete

(per the IMIT 6.29 System Acquisition, Development, and Maintenance
Security Standard).

3.3.1 Attack prevention
1. Verification tests are conducted for automated scanning annually to ensure the

automated scans work as intended.
2. A web-application firewall is configured and implemented to protect and isolate

the back-end networks and production systems from known attacks on public-
facing web applications.

3. All services not essential for the function of the application are disabled to help
reduce the need to apply vendor-supplied security patches.

3.3.2 Attack detection
1. Per the IMIT 6.27 Operations Security Standard, applications log the following

events6 where possible:
a. Input validation failures, like protocol violations, unacceptable encodings,

invalid parameter names and values
b. Output validation failures, like database record set mismatch, invalid data

encoding
c. Authentication successes and failures
d. Authorization (access control) failures
e. Session management failures, like cookie session identification value

modification

6 Based on the OWASP Logging Cheat Sheet:
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html

https://www2.gov.bc.ca/assets/download/5247F22C39D4487B8DD7D32A55C466A4
https://www2.gov.bc.ca/assets/download/5247F22C39D4487B8DD7D32A55C466A4
https://www2.gov.bc.ca/assets/download/0F4DF4FAC5214C6387B6B51DD538FF6E
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 10 of 27

f. Application errors
g. System events like syntax and runtime errors
h. Connectivity problems
i. Performance issues
j. Third party service error messages
k. File system errors
l. File upload virus detection
m. Configuration changes
n. Application and related systems startups and shutdowns
o. Logging initialization (starting, stopping, or pausing)
p. Use of higher-risk functionality like:

i. Network connections
ii. Addition or deletion of users
iii. Changes to privileges
iv. Assigning users to tokens
v. Adding or deleting tokens
vi. Use of systems administrative privileges
vii. Access by application administrators
viii. All actions by users with administrative privileges
ix. Access to payment cardholder data
x. Use of data encryption keys or key changes
xi. Creation and deletion of system-level objects
xii. Data import and export including screen-based reports
xiii. Submission of user-generated content—especially file uploads

q. Legal and other opt-ins like:
i. Permissions for mobile phone capabilities
ii. Terms of use
iii. Terms and conditions
iv. Personal data usage content
v. Permission to receive marketing communications

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 11 of 27

2. The logs record, at minimum, the following event attributes:
a. Log date and time (international format)
b. Event date and time
c. Interaction identifier7
d. Application identifier like name and version
e. Application address like:

i. Cluster/hostname or server IP address and port number
ii. Workstation identity
iii. Local device identifier

f. Service name like name and protocol
g. Geolocation
h. Window/form/page like entry point URL and HTTP method for a web

application, dialogue box name
i. Code location like script name, module name
j. Source address like:

i. User’s device/machine identifier
ii. User’s IP address
iii. Cell/RF tower ID
iv. Mobile telephone number

k. User identity (if authenticated or otherwise known) like user database table
primary key value, username, licence number

l. Event type and severity8
m. Security relevant event flag (if the logs contain non-security event data too)
n. Description

7 The "Interaction identifier" is a method of linking all (relevant) events for a single user interaction (for
example, desktop application form submission, web page request, mobile app button click, web service
call).
8 The OCIO and ministries should have a consistent, and documented approach to classification of events
(type, confidence, severity), the syntax of descriptions, and field lengths and data types, including the
format used for dates/times.

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 12 of 27

4. Revision history
These specifications are reviewed annually and updated as needed.

Version Revision Date Author Description of Revisions

1.0 August 2024 S. Gopaldas
Johnston

New.

5. Contact
For questions regarding these specifications, contact:

Cybersecurity and Digital Trust Branch, Office of the Chief Information Officer
Ministry of Citizens’ Services
Email: InfoSecAdvisoryServices@gov.bc.ca

mailto:InfoSecAdvisoryServices@gov.bc.ca

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 13 of 27

Appendix A: Secure software development life cycle (SDLC)

In SDLC, the phases that are common regardless of the SDLC methodology9 adopted are
requirements, design, development, testing, and deployment. For each phase, security
processes MUST be integrated to ensure the software being developed meets the
security requirements of the B.C. government. The security processes for each SDLC
phase are described below.

1. Requirements
Identify and evaluate the security requirements based on the business and functional
requirements for the software. For example, if the business requirement is to protect the
confidentiality of the data that is handled by the software, the security requirements may
include incorporating digital signatures/encryption, access control, authentication, and

9 Examples of SDLC methodologies are DevOps, Agile, Waterfall, Spiral, Rapid Prototyping, Incremental,
and etc.

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 14 of 27

audit logging components into the software. Determine the security risks the software is
likely to face during operation by:

• Identifying the security classification label for the data the software will interact
with following the IMIT 6.18 Information Security Classification Standard.

• Performing a rigorous security threat and risk assessment for high-risk areas, such
as protecting sensitive data and safeguarding identification, authentication, and
access control, including credential management to assess preliminary
vulnerabilities and threats. See IMIT 6.11 Security Threat and Risk Assessment
Standard for details on how to conduct a security threat and risk assessment and
to complete an SoAR.

• Reviewing vulnerability reports on software components that will be integrated
into the software to inform the security threat and risk assessment.

• Recording the response to each risk, including how mitigations are to be achieved
and what the rationales are for approved exceptions to security requirements.

2. Design
In this phase, a threat modelling process is invoked to ensure threats are detected and a
mitigation plan is created to protect the software against those threats. The software
design is also reviewed to verify:

• Compliance with the security requirements to mitigate the risks identified in the
requirements phase.

• Effectiveness of the security controls by conducting iterative assessments.

Also verify that third party software that will be integrated into the software complies
with the security requirements by:

• Reviewing and evaluating third party software components in the context of their
expected use.

• Obtaining provenance information for each software component (for example,
software bill of materials (SBOM), source composition analysis, binary software
composition analysis) to analyze and assess the risk that the component may
introduce.

https://www2.gov.bc.ca/assets/download/A413DF01C3314436A608704A15FFC0D9
https://www2.gov.bc.ca/assets/download/F157B2C10F8F4279A6FF7228D2B31BC9
https://www2.gov.bc.ca/assets/download/F157B2C10F8F4279A6FF7228D2B31BC9

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 15 of 27

3. Development
In this phase of the SDLC, when the actual development starts, and the product is built,
check open-source libraries for vulnerabilities before using them. Identify programming
vulnerabilities to ensure common vulnerabilities identified in Appendix D: Common
coding vulnerabilities and Appendix E: Web application and application interface
vulnerabilities are not present in the software by conducting:

• Static analysis.
• Software composition analysis.

4. Testing
In modern SDLC methodologies, testing is part of the activities in all phases of the SDLC.
Security testing and code review is also conducted to identify security vulnerabilities. The
tests would include:

• Dynamic code scans.
• Interactive application security testing.
• Fuzz testing.

5. Deployment
Once the product is tested and ready to be deployed, conduct a security assessment
again before releasing it. Manage the configuration of the system. Institute processes
and procedures for assured operations and continuous monitoring of the application’s
security controls. Conduct periodic penetrating testing of the application’s security
controls based on the sensitivity of the information that is stored, processed, or
transmitted by the application.

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 16 of 27

Appendix B: PWA security guidance
Progressive web applications (PWAs) are emerging technology and there is no universally
accepted security framework to help secure them yet. To secure a PWA:

1. Follow the guidance provided by web browser providers (for example, Google,
Mozilla, Microsoft, Apple) on building secure PWAs.

2. Use the built-in browser security features (HTTPS) to protect the PWA.
3. Define a manifest10 for the PWA to make it less vulnerable to cross-site scripting

attacks.
4. Configure the PWA to prevent the service workers11:

a. From having access to:
i. Document object model (DOM).
ii. Local or session storage.

b. From reading and setting a set of forbidden headers.
5. Configure the PWA to automatically clear any cached data when it is closed or

upon logout.
6. Test the PWA for common web vulnerabilities.

10 A manifest is a JSON file within the PWA. It contains all the necessary information for the PWA to be
downloaded and presented.
11 Service workers are go-betweens the front end and back end of the PWA. They provide developers the
ability to add native-like features to the PWA.

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 17 of 27

Appendix C: 10 API security guidelines and best practices
Application programming interfaces (APIs) are a pivotal element in today's digital world,
thanks to the rise of cloud computing and a shift from monolithic applications to
microservices. As more businesses open up access to data and services through APIs,
these vectors present an attractive target for data theft and attacks on software. Insecure
APIs are a serious threat—they are commonly the most exposed component of a
network, predisposed to denial-of-service attacks, and easy to reverse-engineer.

The following best practices can help expand and elevate the security of APIs:

1. Understand the full scope of secure API consumption.
a. Understand how APIs work and the correct way to integrate them.
b. Read API documentation thoroughly and pay particular attention to the process

and security aspects of the API’s function and routines, such as required
authentication, call processes, data formats and any potential error messages to
expect.

c. Build a threat model for the API to understand the attack surface, identify
potential security issues and incorporate appropriate security mitigations from
the beginning.

2. Validate the data.
a. Never assume API data has been cleansed or correctly validated.
b. Implement data cleaning and validation routines to prevent standard injection

flaws and cross-site request forgery attacks.
c. Use debug tools to examine the API’s data flow and keep track of errors and

anomalies.
3. Choose the web service API: Simple Object Access Protocol (SOAP),

Representational State Transfer (REST), Remote Procedural Call (RPC), gRPC, or
GraphQL.
a. SOAP is a communications protocol and security is applied at the message level

via digital signatures and encrypted parts within the message itself.

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 18 of 27

b. REST is a set of architectural principles for data transmission and relies heavily on
access control rules associated with the API’s universal resource identifier (URI)12,
such as HTTP tags and the URL path.

c. RPC is a software communication protocol that one program can use to request a
service from a program located in another computer on a network without
having to understand the network’s details.

d. gRPC is a modern open-source high performance RPC framework that works
across different platforms.

e. GraphQL is an open-source language for querying data and provides a flexible
and intuitive syntax to describe data requirements and interactions.

4. Record APIs in an API registry.
a. An API is an information asset and MUST be documented in a registry to comply

with the IMIT 6.23 Asset Management Security Standard.
b. Register custom-built API by publishing it to the BC. Government API Registry.

5. Assess API risks.
a. Perform a risk assessment for all APIs in the registry to identify all systems and

data impacted if an API is compromised.
b. Define a treatment plan and the controls required to reduce the risks to an

acceptable level.
c. Document review dates and repeat assessments whenever new threats arise or

when an API is modified.
d. Establish measures to ensure they adequately meet security policies and are not

vulnerable to known risks as per the OWASP API Security Project Top 10
vulnerabilities.

12 URI is a character sequence that identifies a logical (abstract) or physical resource. It is usually, but not
always connected to the internet. It distinguishes one resource from another and enable internet protocols
to facilitate interactions between and among these resources.

https://www2.gov.bc.ca/assets/download/F9BA3AFD52B34727BA261F052ADEAA0B
https://catalogue.data.gov.bc.ca/group/bc-government-api-registry
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 19 of 27

6. Be diligent about API documentation.
a. Each API MUST have a document or manual that contains all technical API

requirements, including its functions, classes, return types, arguments, and
integration processes.

b. Follow the guidelines for API documentation in the BC Government API
Guidelines.

7. Lock down access to APIs.
a. Introduce and test controls to manage who can access internal data and systems

through the API.
b. Keep APIs behind a firewall, a web application firewall, or an API gateway.

8. Specify authentication and access.
a. Require client-side applications to include a token in the API call, so the service

can validate the client.
b. Use standards such as OAuth 2.0 and JSON web tokens to authenticate API traffic.
c. Define access control rules, or grant types, which determine which users, groups,

and roles can access specific API resources—always follow the principle of least
privilege.

9. Stash API keys.
a. Avoid embedding API keys directly in their code or in files within the application’s

source tree.
b. Store API keys in environment variables or in files outside of the application’s

source tree.
c. Use a secrets management service to protect and manage an application’s API

keys.
d. Delete unneeded keys to minimize exposure to attack.
e. Periodically regenerate keys, particularly if a breach is suspected to have

occurred.

https://classic.developer.gov.bc.ca/Data-and-APIs/BC-Government-API-Guidelines
https://classic.developer.gov.bc.ca/Data-and-APIs/BC-Government-API-Guidelines

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 20 of 27

10. Add Artificial Intelligence (AI) to API monitoring and threat detection.
a. AI-enabled behaviour analysis benchmarks normal API traffic and provides

visibility into how users access and consume APIs to help fine-tune threshold
settings for context security checks.

b. Create a plan to handle the alerts produced by threat detection and other
security controls that indicate an API attack.

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 21 of 27

Appendix D: Common coding vulnerabilities
The following coding vulnerabilities are based on the Payment Card Industry Data
Security Standard (PCI DSS) Version 4.0, Requirement 6. The vulnerabilities and testing
procedures are subject to change as secure coding techniques change.

Vulnerability Testing procedure

Injection flaw Validate input to verify user data. User data should
not be able to modify meaning of commands and
queries, or utilize parameterized queries to prevent
attacks like SQL injection attacks, operating system
(OS) command injection, lightweight directory
access protocol (LDAP), and XPath injection flaws.

Buffer overflow Validate buffer boundaries and truncate input
strings.

Insecure cryptographic
storage

Validate that cryptographic functions are used
properly when used to protect stored data.

Unsecured communication
channels

Validate that all authenticated and sensitive
communications are properly encrypted.

Incorrect error handling Validate that sensitive information is not leaked via
error messages.

https://listings.pcisecuritystandards.org/documents/PCI-DSS-v4_0.pdf
https://listings.pcisecuritystandards.org/documents/PCI-DSS-v4_0.pdf

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 22 of 27

Appendix E: Web application and application interface
vulnerabilities
The following coding vulnerabilities are based on the Payment Card Industry Data
Security Standard (PCI DSS) Version 4.0, Requirement 6. The vulnerabilities and testing
procedures are subject to change as secure coding techniques change.

Vulnerability Testing procedure

Injection flaw Validate input to verify user data. User data should
not be able to modify meaning of commands and
queries, or utilize parameterized to prevent attacks
like SQL injection attacks, operating system (OS)
command injection, lightweight directory access
protocol (LDAP), and XPath injection flaws.

Buffer overflow Validate buffer boundaries and truncate input
strings.

Insecure cryptographic
storage

Validate that cryptographic functions are used
properly when used to protect stored data.

Unsecured communication
channels

Validate that all authenticated and sensitive
communications are properly encrypted.

Incorrect error handling Validate that sensitive information is not leaked via
error messages.

https://listings.pcisecuritystandards.org/documents/PCI-DSS-v4_0.pdf
https://listings.pcisecuritystandards.org/documents/PCI-DSS-v4_0.pdf

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 23 of 27

Appendix F: Assessment guidelines
This appendix provides a list of the assessments, including the tests, scans, and reports,
that may be necessary and should be considered when developing and deploying
applications. Automated scanning tools may assist in the assessment of applications.

Network vulnerability scans to identify/report on:

• Assets inappropriately accessible from externally and internally connected network
devices.

Server vulnerability scans to identify/report on:

• Unauthorized software.
• Inappropriately opened server ports, enabled protocols, and enabled services.
• Misconfigured or inappropriately enabled high risk services (for example, ftp and

telnet).
• Inappropriate stored credentials within batch jobs, scripts, or plain text files.
• Inappropriate local accounts that exist with non-expiring passwords.
• Inadequate encryption methods and level used.
• Ability to gain unauthorized access to encryption keys.
• Weak server passwords that might be determined via password cracking.
• Missing patches.

Application tests to identify/report on:

• Insecure API calls or responses.
• Insecure cross application interfaces.
• Insecure coding of customized code within COTS products or code that use COTS

APIs.
• Insecure coding and functionality of sensitive application functions or of any

privileged access interfaces such as application administrator screens.
• Ability to execute commands or inject code (for example, OS commands, SQL

injection, Cross-site Scripting, LDAP injection).
• Inadequate session management controls.

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 24 of 27

• Ability to perform URL path traversal attacks.
• Ability to cause overflow conditions (for example, parameter overflow and buffer

overflow).
• Ability to perform character encoding attacks.
• Ability to compromise an application by supplying inappropriate input values (that

is, fuzz testing).
• Security flaws within Web Services (REST-based and SOAP) used by the application.

Static code analysis to identify/report on:

• The existence of Logic Bombs or Backdoors.
• Enabled debugging features.
• Credentials inappropriately stored within code.
• Use of weak encryption algorithms.
• Insecure use of client-provided data (lacking input validation).
• Use of language-specific coding standards.
• Potential for injection attacks.
• Insecure use of user sessions.
• Insecure handling of file uploads.
• Insecure configuration of SSL/TLS calls.

Middleware scans to identify/report on:

• Inappropriate configuration settings.
• Unauthorized directories that can be traversed or displayed (that is, directory

enumeration).
• Unauthorized server-side application files that are accessible for downloading or

inspection by clients (for example, viewing php, jsp, or asp file contents).
• Unnecessary product information displayed (for example, installed modules).
• Unnecessary accounts or features enabled.
• Missing patches.
• Default passwords.

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 25 of 27

Database scans to identify/report on:

• Inappropriate configuration settings.
• Unnecessary accounts or features enabled.
• Excessive privileges granted to database objects or to database OS files.
• Inappropriate local accounts with non-expiring passwords.
• Credentials inappropriately stored within batch jobs or scripts.
• Inadequate segregation of duties.
• Existence of privileged utilities or enabled debugging features in the production

environment.
• Inadequacy of encryption method and level used.
• Ability to gain unauthorized access to encryption keys.
• Weak strength database passwords that might be determined via password

cracking.
• Database replication over insecure channels.
• Ability to read, modify, copy, or remove configuration data, logs, and access

control information.
• Adequacy of controls for all entrance and exit points of an application.
• Missing patches.
• Default passwords.

Application penetration tests to identify/report on:

• Inappropriate configuration settings.
• Unnecessary accounts or features enabled.
• Excessive privileges.
• Ability to bypass normal application access paths.
• Inadequate session management controls.
• Inadequate segregation of infrastructure.
• Weak application passwords that might be determined via password cracking.
• Inadequate asset segregation by purpose and environment.
• Privileged access not via the administrative gateway.

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 26 of 27

• Ability to escalate privileges.
• Ability to infiltrate data.
• Ability to store malicious content.
• Ability to gain unauthorized access to data and to installed product files.
• Ability to gain unauthorized access to encryption keys.
• Ability to gain unauthorized access to administrative interfaces and tools.
• Ability to read, modify, copy, or remove configuration data, logs, and access

control information.
• Privileged utilities or enabled debugging features in the production environment.
• Inadequate encryption method and level used.
• Ability to gain unauthorized access to encryption keys.
• Vulnerability to common attacks, such as DDoS, and session replay.
• Inappropriate access or application functionality which is not restricted based on

accesses granted to user roles.
• Adequacy of controls for all entrance and exit points of an application.
• Default passwords.

Dependency Analysis to identify/report on:

• Third party libraries and dependencies used, and any vulnerabilities associated
with them.

• Licenses associated with third party libraries, and any legal exposure created by
them.

Application recovery exercises to identify/report on:

• Ability to perform full recoveries and point-in-time recoveries.
• Acceptable levels of business data loss for a point-in-time recovery.
• Length and severity of outage.
• Alignment of support contracts with recovery objectives.

IMIT 6.14 Application and Web
Security Specifications

Document Version: 1.0

Last Reviewed: August 2024

Information Security Classification: Public Page 27 of 27

Incident response exercises to identify/report on:

• Logging details and retention requirements as specified in the Province’s
ARCS/ORCS.

• Ability to generate and receive expected notifications and alerts.
• Ability to change application and infrastructure privileged access credentials in the

event of a breach.
• Internal and cross-government response procedures.

Audit exercise to identify/report on:

• Adequacy of security assessments.
• Missing evidence that is required to pass an audit.
• Adequacy of the application documentation.

	1. Purpose
	2. Resources
	3. Specifications
	3.1 Secure software development
	3.1.1 Secure coding
	3.1.2 Secure code review requirements

	3.2 Secure software maintenance
	3.2.1 Security patches
	3.2.2 Security vulnerabilities management

	3.3 Protection of the production environment
	3.3.1 Attack prevention
	3.3.2 Attack detection

	4. Revision history
	5. Contact
	Appendix A: Secure software development life cycle (SDLC)
	Appendix B: PWA security guidance
	Appendix C: 10 API security guidelines and best practices
	Appendix D: Common coding vulnerabilities
	Appendix E: Web application and application interface vulnerabilities
	Appendix F: Assessment guidelines

