WEB CONFERENCE

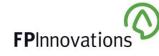
FOREST OPERATIONS PROGRAM 2019-2020

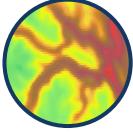
Climate Change Tools for Design Flood Calculations

February 6th 2020

With: MATT KUROWSKI, Researcher, Transportation Group

Notes:


- The webinar will start at 13:00 EST / 10:00 PST
- All lines are muted during the presentation
- Go to <u>slido.com</u> (smartphone or computer) to participate in live polls. code: fpi
- Audio connection: 1-844-630-9442; code: 736 173 621



An Overview of Climate Change Tools Applied to Small Watershed Design Flood Calculations

Webinar Series: Understanding Climate Change at a Small Watershed Scale Matt Kurowski, M.Sc., EIT | Feb 6, 2020

Webinar Series

Ministry of Forests, Lands, Natural Resource Operations and Rural Development

Understanding decision-making about climate change impacts at a small watershed scale

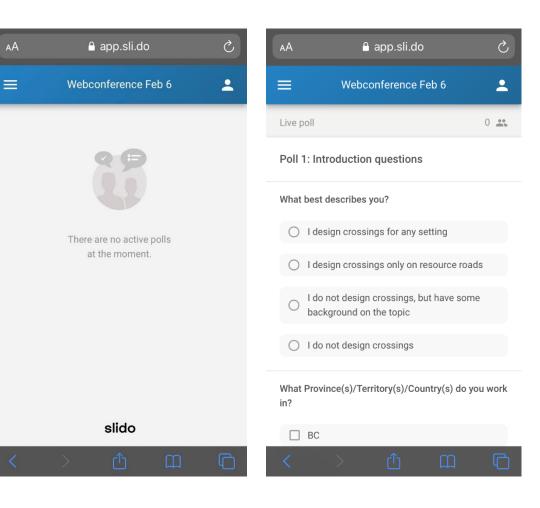
February 6

An Overview of Climate Change Tools Applied to Small Watershed Design Flood Calculations – Matt Kurowski, FPInnovations, Vancouver

February 13

Climate tools: What are they good for? Absolutely something... but you can't always get what you want – Kari Tyler, Pacific Climate Impacts Consortium, University of Victoria

February 27


Rainfall Intensity Duration Frequency Curves for Future Climate Scenarios: A Publicly Accessible Computer Tool – Dr. Simonovic, Institute for Catastrophic Loss Reduction, Western University

Poll # 1

Learning about who is here

go to: <u>slido.com</u> code: fpi

Panelists: Questions/Discussion

Brian Chow – Chief Engineer, FLNRORD, Victoria Matt Kurowski – Researcher, FPInnovations, Vancouver Mark Partington – Researcher, FPInnovations, Montreal Kari Tyler – User Engagement and Training Specialist, Pacific Climate Impacts Consortium, University of Victoria Dr. Slobodan Simonovic – Professor Emeritus, Institute for Catastrophic Loss Reduction, Western University Harshan Radhakrishnan – Manager, Climate Change and Sustainability Initiatives, Engineers and Geoscientists BC

Why this webinar series?

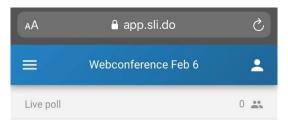
Ministry of Forests, Lands, Natural Resource Operations and Rural Development

Content of the Presentation

Context

- Trends in practices
- Overview: how CC models for BC inform available CC tools
- Limitations: CC models/tools at small watershed scale

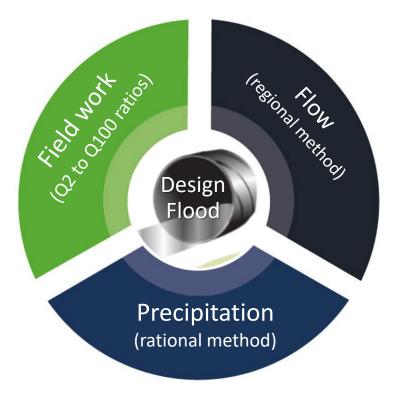
Using a CC tool


- 4 CC tools: focus on BC and small watershed flooding
 Example location
 - Comparing 4 CC tool interfaces and results

Summary

Some trends for BC from CC tools and overall conclusions

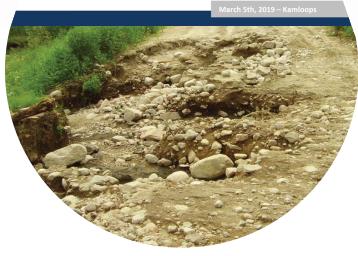
Poll # 2


Do you account for climate change in your resource road crossing designs?

Poll 2: Do you account for climate change in your resource road crossing designs?

0	No
0	Yes - 20% more flow
0	Yes - by an amount other than 20% more flow
0	Yes - 20% more flow, and I also use CC tools to refine this figure
0	Yes - I use CC tools
0	I don't design crossings
	SEND
<	

Trends in Practices – 2018 Survey


Interviews with 12 crossings designers in private and public sector:

- Field/Flow methods most trusted, rational method normally a check
- Limited modeling done/possible
- Consensus on biggest issue: not enough stream gauge stations - especially in smaller watersheds
- Majority not using CC tools but are using EGBC guidance: 20%

Trends in Practices – 2019 Workshop

Creating Climate Resilient Resource Roads Forest Practitioner Seminar

Mix of designers, foresters, planners in private and public sector (~50 people):

- Not all private sector had heard of all available CC tools
- Those that have used them previously (mostly private sector) exposed through bigger budget projects
- Most in public sector had not heard of any CC tools
- Clearer guidance on CC needed

Overview: GCMs and standards

General circulation models - first principles physics simulation

> Use global historical data to calibrate (model able to replicate past)

-	 \rightarrow	

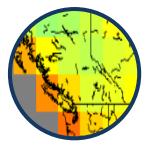
Many GCMs:

inmcm4-r1 HadGEM2-ES-r1 ACCESS1-0-r1 CanESM2-r1 MRI-CGCM3-r1 CNRM-CM5-r1 CCSM4-r2 MPI-ESM-LR-r3 MIROC5-r3 HadGEM2-CC-r1 CSIRO-Mk3-6-0-r1 GFDL-ESM2G-r1 ...

Standards

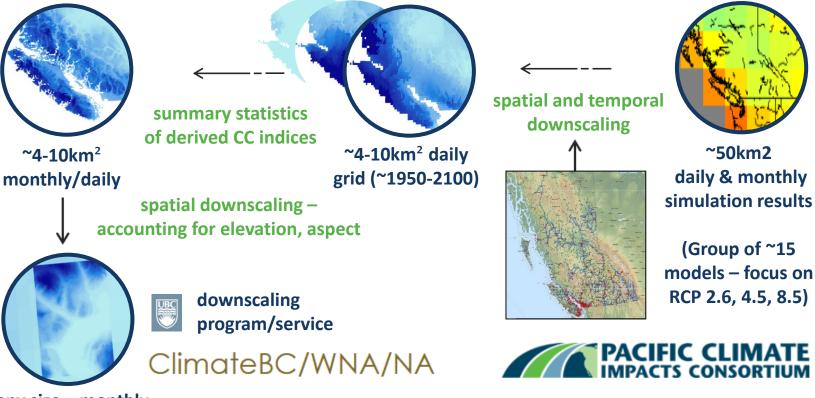
ipcc

Emissions scenarios: RCP 2.6, 4.5, 6.0, 8.5 Future periods (30y): 2025, 2055, 2085

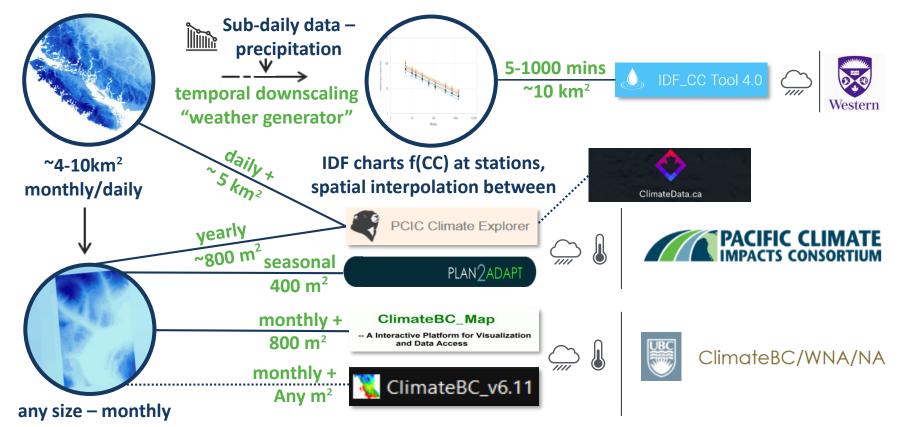

Historic periods

Example outputs for CanESM2 GCM:

CanESM2(2.6,2025) CanESM2(2.6,2055) CanESM2(2.6,2085)


CanESM2(4.5,2025) CanESM2(4.5,2055) ... etc

~50km2 daily & monthly simulation results


Basic CC indices: temperature, precipitation (past & future)

Overview: downscaling in BC

any size – monthly

Overview: CC models and resulting CC tools

Poll # 3

Which tools do you use to account for climate change in your crossing designs?

(select all that apply)

АА	ி app.sli.do උ
≡	Webconference Feb 6
Live p	oll 0 🕰
	Which tools do you use to account for climate ie in your crossing designs?
	Guidance documents from Engineers and Geoscientists of British Columbia
	Guidance documents from other professional orginizations
	Plan2Adapt
	PCIC Climate Explorer
	ClimateBC_Map
	IDF_CC
	climatedata.ca

Limitations: CC tools at small watershed scale

USING PRECIPITATION DATA: Q100 design flood change due to CC (given that rain is dominant flood)

engineers: "need to rely on projections of daily extremes and professional judgement"

Assumption: temporally downscaled sub → daily data will have the same relationship to daily data in the future as in the past

Limitations: CC tools at small watershed scale

USING PRECIPITATION DATA: Q100 design flood change due to CC (given that rain is dominant flood)

PLAN2ADAPT

"likely safe to assume": increases in short storm intensities

 proportional to magnitude and direction of averages (but consult CC specialist)

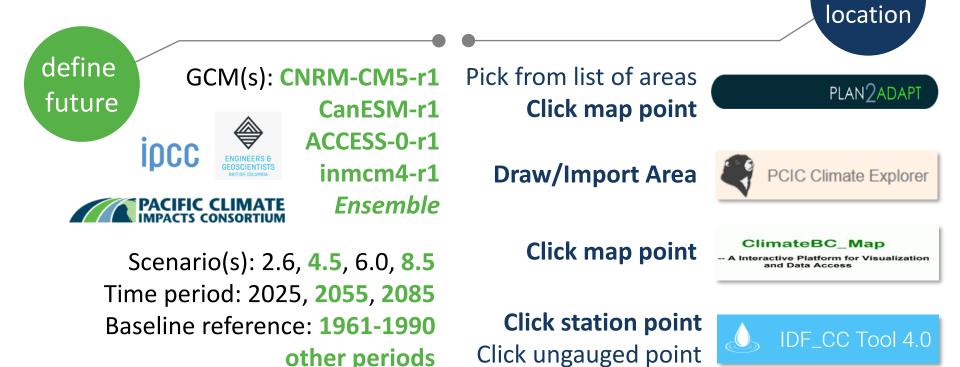
Should be "treated with caution" and as an exploratory tool

DEVELOPING CLIMATE CHANGE-RESILIENT DESIGNS FOR HIGHWAY INFRASTRUCTURE IN BRITISH COLUMBIA (INTERIM) APEGE PROFESSIONAL PRACTICE GUIDELINES

Limitations: CC tools at small watershed scale

USING PRECIPITATION DATA: Q100 design flood change due to CC (given that rain is dominant flood)

PLAN2ADAPT


ClimateBC Map

 Many "secondary" indices that may be useful for design flood hydrology (DFH) risk considerations...

Using 4 CC tools – inputs

define

PLAN2ADAPT

Pick from list of areas

Nanaimo

Peace River

Powell River

Stikine

Strathcona

Sunshine Coast

Regional Districts

Alberni-Clayoquot Bulklev-Nechako Capital Cariboo Central Coast Central Kootenav Central Okanagan Columbia-Shuswap Comox Valley Cowichan Valley East Kootenav Fraser-Fort George Fraser Valley Greater Vancouver Kitimat-Stikine Kootenav Boundary

Ecoprovinces Boreal Plains Kootenay Boundary Central Interior Mount Waddington Coast and Mountains Georgia Depression Northern Rockies Northern Boreal Mountains North Okanagan Southern Interior Okanagan-Similkameen Southern Interior Mountains Sub Boreal Mountains Taiga Plains Skeena-Oueen Charlotte Forestry Regions Squamish-Lillooet Cariboo Kootenay / Boundary Northeast Omineca Skeena Thompson-Nicola South Coast Thompson / Okanagan West Coast

\rightarrow Click map point

use CC indices

For small watershed flood: precipitation (rain and snow) seasonal. 400m²

Draw/Import area

PCIC Climate Explorer

or - Precipitation prsn - Precipitation as Snow tasmax - Daily Maximum Near-Surface Air Temperature tasmin - Daily Minimum Near-Surface Air Temperature altcddETCCDI - Maximum Number of Consecutive Days Per Year with Less Than 1mm of Precipitation altcsdiETCCDI - Cold Spell Duration Index Spanning Years altcwdETCCDI - Maximum Number of Consecutive Days Per Year with At Least 1mm of Precipitation altwsdiETCCDI - Warm Spell Duration Index Spanning Years cddETCCDI - Maximum Number of Consecutive Days with Less Than 1mm of Precipitation csdiETCCDI - Cold Spell Duration Index cwdETCCDI - Maximum Number of Consecutive Days with At Least 1mm of Precipitation dtrETCCDI - Mean Diurnal Temperature Range fdETCCDI - Frost Days gsIETCCDI - Growing Season Length idETCCDI - Number of Icing Days proptotETCCDI - Annual Total Precipitation in Wet Days r10mmETCCDI - Annual Count of Days with At Least 10mm of Precipitation r1mmETCCDI - Annual Count of Days with At Least 1mm of Precipitation r20mmETCCDI - Annual Count of Days with At Least 20mm of Precipitation r95pETCCDI - Annual Total Precipitation when Daily Precipitation Exceeds the 95th Percentile of Wet Day Precipitation r99pETCCDI - Annual Total Precipitation when Daily Precipitation Exceeds the 99th Percentile of Wet Day Precipitation x1davETCCDI - Maximum 1-day Precipitation rx5davETCCDI - Maximum 5-day Precipitation

sdiiETCCDI - Simple Precipitation Intensity Index suETCCDI - Number of Summer Days tn10pETCCDI - Percentage of Days when Daily Minimum Temperature is Below the 10th Percentile tn90pETCCDI - Percentage of Days when Daily Minimum Temperature is Above the 90th Percentile tnnETCCDI - Minimum of Daily Minimum Temperature tnxETCCDI - Maximum of Daily Minimum Temperature trETCCDI - Number of Tropical Nights tx10pETCCDI - Percentage of Days when Daily Maximum Temperature is Below the 10th Percentile tx90pETCCDI - Percentage of Days when Daily Maximum Temperature is Above the 90th Percentile txnETCCDI - Minimum of Daily Maximum Temperature txxETCCDI - Maximum of Daily Maximum Temperature wsdiETCCDI - Warm Spell Duration Index tx10pETCCDI - Percentage of Days when Daily Maximum Temperature is Below the 10th Percentile tx90pETCCDI - Percentage of Days when Daily Maximum Temperature is Above the 90th Percentile txnETCCDI - Minimum of Daily Maximum Temperature txxETCCDI - Maximum of Daily Maximum Temperature wsdiETCCDI - Warm Spell Duration Index cdd - Cooling Degree Days (Threshold: 18C) fdd - Freezing Degree Days (Threshold: 0C) gdd - Growing Degree Days (Threshold: 5C) hdd - Heating Degree Days (Threshold: 18C) rp20pr - 20-year annual maximum one day precipitation amount rp20tasmax - 20-vear annual maximum daily maximum temperature rp20tasmin - 20-year annual minimum daily minimum temperature rp50pr - 50-year annual maximum one day precipitation amount rp5pr - 5-year annual maximum one day precipitation amount rp5tasmax - 5-year annual maximum daily maximum temperature rp5tasmin - 5-year annual minimum daily minimum temperature

use CC indices

For small watershed flood: pr – Precipitation monthly ~ 4km²

rx1dayETCCDI – Max 1-day Precipitation daily ~ 4km²

ClimateBC_Map

-- A Interactive Platform for Visualization and Data Access

Click map point

For small watershed flood: precipitation monthly, 800 m²

3) Monthly variables

RH01-RH12

Primary monthly variables:

- January December mean temperatures (°C) Tave01 - Tave12 TMX01 - TMX12January - December maximum mean temper TMN01 - TMN12 January - December minimum mean tempera → PPT01 – PPT12 January - December precipitation (mm) RAD01 - RAD12 January - December solar radiation (MJ m-2 Derived monthly variables: January - December degree-days below 0°C DD 0 01-DD 0 12 DD5 01-DD5 12 January - December degree-days above 5°C DD 18 01 - DD 18 12 January - December degree-days below 18°C
 - DD18_01 = DD18_12
 January December degree-days below 18°C

 DD18_01 DD18_12
 January December degree-days above 18°C

 NFFD01 NFFD12
 January December number of frost-free days

 PAS01 PAS12
 January December precipitation as snow (mm)

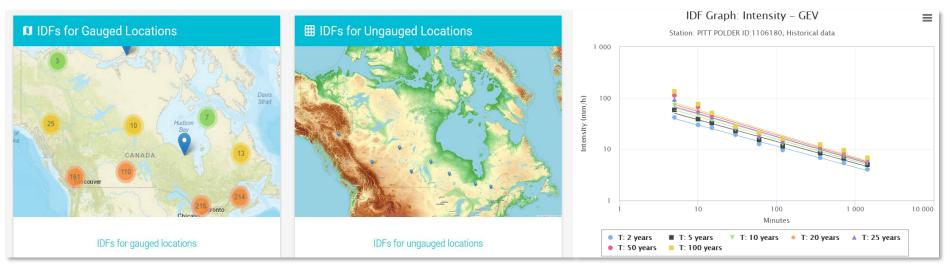
 Eref01 Eref12
 January December Hargreaves reference evaporation (

 CMD01 CMD12
 January December Hargreaves climatic moisture defice

January – December relative humidity (%)

	1) Annual	variables:	use
	Directly cal	lculated annual variables:	
small	MAT	mean annual temperature (°C),	Indi
flood	MWMT	mean warmest month temperature (°C),	
flood:	MCMT	mean coldest month temperature (°C),	
ation	TD	temperature difference between MWMT and MCMT, or continentality (°C),	
ation	MAP	mean annual precipitation (mm),	
00 m²	MSP	mean annual summer (May to Sept.) precipitation (mm),	
JU III	AHM	annual heat-moisture index (MAT+10)/(MAP/1000))	
	SHM	summer heat-moisture index ((MWMT)/(MSP/1000))	
	Derived anr	nual variables:	
	DD<0	degree-days below 0°C, chilling degree-days	
atures (°C)	DD>5	degree-days above 5°C, growing degree-days	
atures (°C)	DD<18	degree-days below 18°C, heating degree-days	
atures (C)	DD>18	degree-days above 18°C, cooling degree-days	
d-1)	NFFD	the number of frost-free days	
u)	FFP	frost-free period	
	bFFP	the Julian date on which FFP begins	
	eFFP	the Julian date on which FFP ends	
2	PAS	precipitation as snow (mm) between August in previous year and July in current year	
2	EMT	extreme minimum temperature over 30 years	
ys	EXT	extreme maximum temperature over 30 years	
nm)	Eref	Hargreaves reference evaporation (mm)	
vaporation (mm) Disture deficit (mm)	CMD	Hargreaves climatic moisture deficit (mm)	
fisture deficit (fiffil)	MAR	mean annual solar radiation (MJ m ⁻² d ^{.1})	
	RH	Relative humidity (%)	

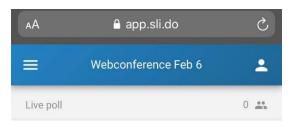
ces


Click station point ← Click ungauged point

。IDF_CC Tool 4.0

For small watershed flood: better to use collection of stations (especially in mountains)

use CC

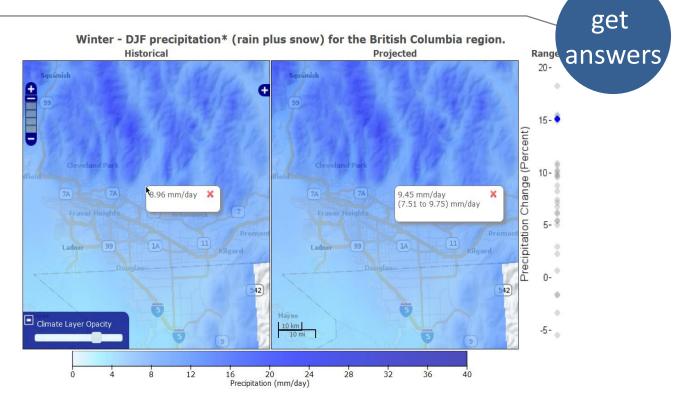

indices

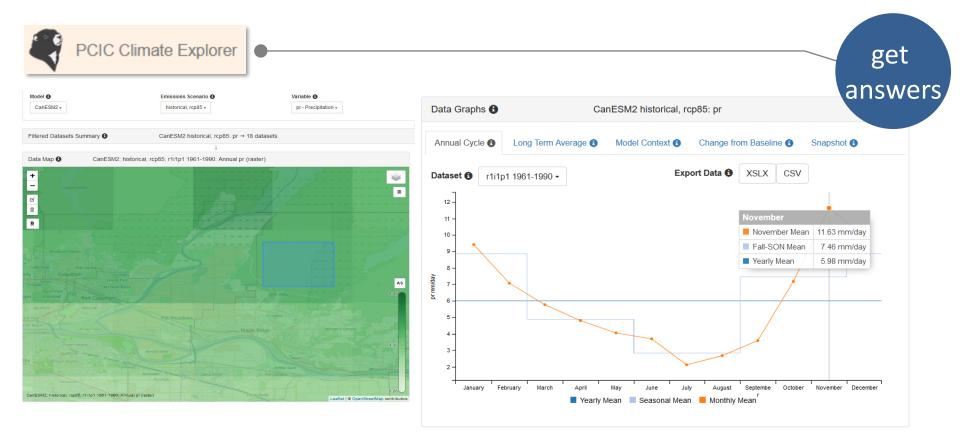
Poll # 4

What one component of design flood hydrology is most uncertain for small, remote watersheds? (leave empty if you do not

know enough on the topic)

Poll 4: What one component of design flood hydrology is most uncertain for small, remote watersheds? (climate change? debris? time of concentration? field methods? lack of data? etc...?)


Type your answer ...


EDIT RESPONSE

PLAN2ADAPT

- + quick to use + gives ranges
- older tool (2012) and RCP system
- comparative map
 could be more useful
- hard to place remote road

ClimateBC_Map

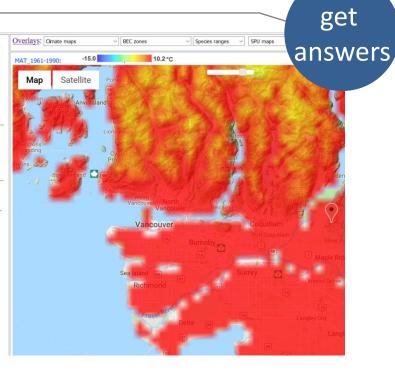
-- A Interactive Platform for Visualization and Data Access

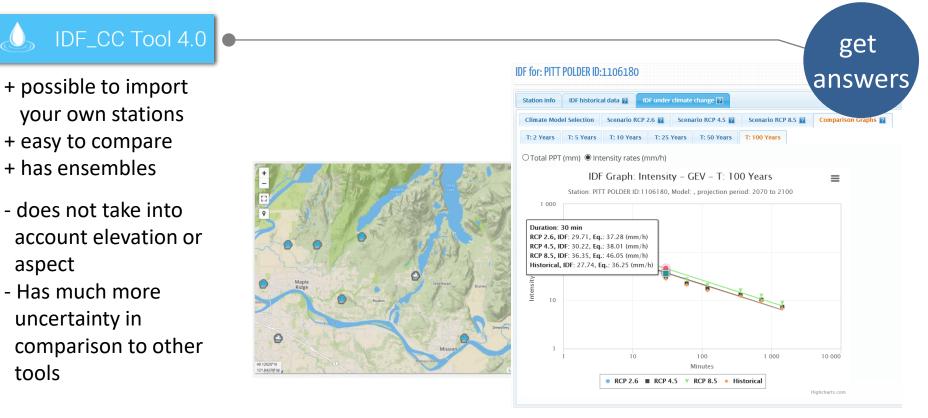
- + good tool for fetching data
- + has more advanced

desktop version

- + useful for historic
 estimation of precipitation
 in remote areas
- does not have the key GCMs or ensembles
- slow

Ouick Tutorial


ClimateBC_Map


Calculate

Coordinates Input (click on the map or type in coordinates)

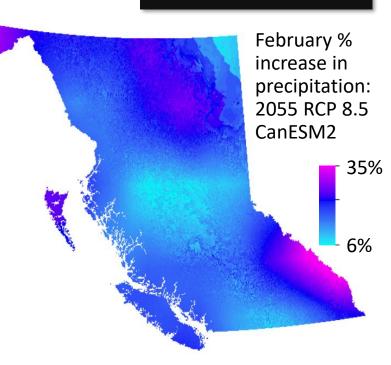
Latitude	49.285	Longitude	-122.602			
Elev (m)	95	Historical	Normal_1961_1990	5		
Future	Select a GCM and a period					

Annual Variable	S	Seasonal Variabl	les	Monthly Variables
MAT = 9.5 MWMT = 17.4 MCMT = 2 TD = 15.4 MAP = 1795 MSP = 396 AHM = 10.9 SHM = 44 DD<0 = 129	^	Tmax_wt = 5.7 Tmax_sp = 13.4 Tmax_sm = 21.9 Tmax_at = 14 Tmin_wt = 0 Tmin_sp = 4.2 Tmin_sm = 11.2 Tmin_at = 6 Tave_wt = 2.9	~	Tmax(01) = 4.7 ^ Tmax(02) = 7.6 Tmax(03) = 9.9 Tmax(04) = 13.2 Tmax(05) = 17 Tmax(05) = 17 Tmax(06) = 19.9 Tmax(07) = 22.7 Tmax(08) = 23 Tmax(08) = 19.7 (10)
DD>5 = 2017 DD<18 = 3170 DD>18 = 102 NFFD = 289 bFFP = 98 eFFP = 307	<	Tave_sp = 8.8 Tave_sm = 16.5 Tave_at = 10 PPT_wt = 680 PPT_sp = 382 PPT_sm = 199	*	$\begin{array}{l} {\sf Tmax}(10) = 14.1 \\ {\sf Tmax}(11) = 8.2 \\ {\sf Tmax}(12) = 4.9 \\ {\sf Tmin}(01) = -0.7 \\ {\sf Tmin}(02) = 0.8 \\ {\sf Tmin}(03) = 1.8 \\ \checkmark \end{array}$

Comparing resu	lts (
for UBC forest Percent increase Q100 according to 4 CC tools							
		Ensemble	Avg	CanESM	ACCESS-0	inmcm4	CNRM-CM5
Plan2Adapt	2055	9					
	2085	9					
PCEX-precip	2055		6	0		5	13
ΓΟΕΛ-ριετιρ	2085		18	17		9	29
	2055		16	10	24	18	13
PCEX rx1-day	2085		35	21	52	39	29
	2055		2	9			-5
ClimateBC_Map	2085		14	15			13
	2055	29					
IDF_CC	2085	34					

Poll # 5

How do you account for floating woody debris in culvert crossing designs?


(select all that apply)

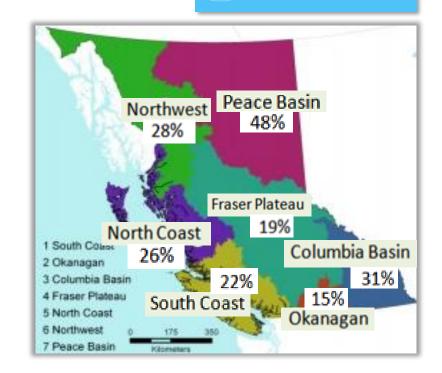
AА	app.sli.do	S
=	Webconference Feb 6	:
Live p	oll	0 🚉
	How do you account for floating woody vert crossing designs?	debris
	culvert diameter matches stream width	
	general decrease in Hw/D	
	site specific decrease in Hw/D	
	percentage increase in culvert diameter	
	experience from previous floods	
	other method	
	I don't design crossings	

Summary: BC trends



- Producing this map used new ClimateBC_Map version results post-processed using FME software to get monthly trend maps (as shown on right)
- Desktop version has more GCMs and can process batches of locations or raster inputs

ClimateBC_v6.11


Summary: BC trends

- Analysis for example small watershed area: 10 km², ToC = 15 mins, C = 0.15
- Incorporated at least 3 IDF stations in each climatic region to calculate increase in precipitation

Averages for 2068:

- 27% peak flow/precipitation increase
- 9% culvert diameter increase

IDF_CC Tool 4.0

Summary

LEGISLATED FLOOD ASSESSMENTS IN A CHANGING CLIMATE IN BC

Adjust expected flood magnitude and frequency according to the projected change in runoff during the life of the project, or by 20% in small drainage basins for which information of future local conditions is inadequate to provide reliable guidance. Consider potential effects of land use change in the drainage basin.

Summary

- Guidelines will not have a simple answer but clarify limitations and options for designers
- Best to compare answers from CC tools each has strengths and weaknesses
- Crossings designers need to judge these tools to rationalize CC in crossings designs
- Incorporating debris floods is another tricky task – CC may change this too
- Keep current with CC tool developments

Resource Roads - Climate Change Team

MARK PARTINGTON, R.P.F.

mark.partington@fpinnovations.ca

ALLAN BRADLEY, R.P.F., P.Eng. PRINCIPAL RESEARCHER

allan.bradley@fpinnovations.ca

MATT KUROWSKI, E.I.T. RESEARCHER

matt.kurowski@fpinnovations.ca

DAWSON MARKLE, E.I.T. RESEARCHER

dawson.markle@fpinnovations.ca

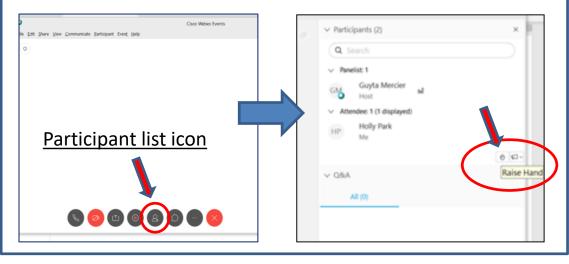
Thank you

Matt Kurowski

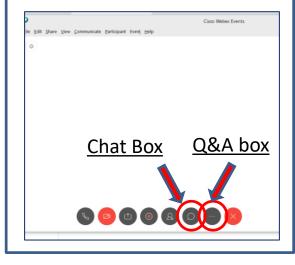
Researcher FPInnovations

matt.kurowski@fpinnovations.ca

Poll # 6


How can climate change tools be improved? (include your email if you would like)

ΑА	app.sli.do €	Ś
=	Webconference Feb 6	±
Live poll		0 🚢


Poll 6: How can climate change tools be improved?

Question Period

 Open the <u>participant list</u> at the <u>bottom of the</u> <u>screen</u> to open a new window. At the bottom right of this new window, use the <u>raise</u> <u>hand</u> icon to indicate that you would like to ask a question using audio.

2. You can also type your question in the <u>Chat Box</u> or the <u>Q&A Box</u>. Both are accessible at the bottom of your screen.

Panelists: Questions/Discussion

Brian Chow – Chief Engineer, FLNRORD, Victoria Matt Kurowski – Researcher, FPInnovations, Vancouver Mark Partington – Researcher, FPInnovations, Montreal Kari Tyler – User Engagement and Training Specialist, Pacific Climate Impacts Consortium, University of Victoria Dr. Slobodan Simonovic – Professor Emeritus, Institute for Catastrophic Loss Reduction, Western University Harshan Radhakrishnan – Manager, Climate Change and Sustainability Initiatives, Engineers and Geoscientists BC