info@fpinnovations.ca web.fpinnovations.ca



# NORTH ISLAND TIMBER SUPPLY AREA BIOMASS AVAILABILITY ESTIMATION

CONTRACT NUMBER: 1070-20/OT23FHQ191



Audrey Standish

March 2023



The biomass yield per hectare predicted for the North Island Timber Supply Area (TSA) is 26.8 oven-dried tonnes per hectare (odt/ha) from harvest residues. The biomass ratio, which is the ratio of recovered biomass to recovered merchantable roundwood, is estimated at 9.8%. Over the next 20 years a total of 5.69 million odt of available biomass are predicted to be generated by harvest in the North Island TSA, or approximately 284,987 odt/yr. Of this, approximately 20,896 odt in total, or 1,044 odt/yr, is expected to be available at the economic price of \$60 per oven-dried tonne. Approximately 30% of the total predicted volume is expected to be available at \$90/odt: a total of 726 thousand odt, or 36,341 odt/yr.

#### Project number: 301015539

ACKNOWLEDGEMENTS

This project was financially supported by the Ministry of Forests, Lands, and Natural Resource Operations, Innovation, Bioeconomy and Indigenous Opportunities Branch.

The author(s) would also like to thank Stefan Tack, William Bi and Qinglin Li.

APPROVER CONTACT INFORMATION Ryan Clark Manager, Forestry ryan.clark@fpinnovations.ca AUTHOR CONTACT INFORMATION Audrey Standish Researcher, Forestry audrey.standish@fpinnovations.ca (236) 989-9049

While every reasonable effort has been made to ensure the accuracy, correctness and/or completeness of the information presented, FPInnovations does not make any warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of, and/or reference to opinions, findings, conclusions, or recommendations included in this report.

## **EXECUTIVE SUMMARY**

Forest origin, harvest residue, and biomass estimates were made by FPInnovations for the North Island Timber Supply Area (TSA), largely following the process previously established for several BC TSAs using FPInterface<sup>™</sup> (2010-2023). The biomass inventory was based on 20-year harvest and road network plans for Crown land provided by the BC Ministry of Forests, Lands, Natural Resource Operations and Rural Development (FLNRORD) and excludes Tree Farm Licenses, Community Forest Agreements, and First Nations tenures.

The biomass yield per hectare predicted for the North Island TSA is 26.8 oven-dried tonnes per hectare (odt/ha) from harvest residues.

The biomass ratio, which is the ratio of recovered biomass to recovered merchantable roundwood, is estimated at 9.8%. Over the next 20 years a total of 5,699,743 odt of available biomass are predicted to be generated by harvest in the North Island TSA, or approximately 284,987 odt/yr. Of this, approximately 20,896 odt in total, or 1,044 odt/yr, is expected to be available at the economic price of \$60 per oven-dried tonne. Approximately 30% of the total predicted volume is expected to be available at \$90/odt: a total of 726,822 odt, or 36,341 odt/yr. (Table 6 from the text, follows.)

| Biomass Available (odt) |             |              |                   |
|-------------------------|-------------|--------------|-------------------|
| at \$60/odt             | at \$90/odt | At \$120/odt | total (\$180/odt) |
| 20,896                  | 726,822     | 2,202,429    | 2,393,892         |
| per year                | per year    | per year     | per year          |
| 1,044                   | 36,341      | 110,121      | 119,694           |

Most of the available biomass is not considered economically available (<= \$60/odt) (approximately 1%). This is most likely due to the fact that a large southeastern portion of the TSA has a high travel distance to the closest mill/transfer yard. The amount of economically available biomass decreases through time from approximately 16,325 odt in the first 10 years to 4,571 odt in the last 10 years. This decrease is likely due to a higher amount of available biomass in Period 1 (337,472 available odt/year) versus Period 2 (232,501 available odt/year).

## **Table of Contents**

| Eک | (ECU                                   | TIVE SI | JMMARYiii                              |  |  |
|----|----------------------------------------|---------|----------------------------------------|--|--|
| 1  | L INTRODUCTION                         |         |                                        |  |  |
| 2  | OI                                     | BJECTI  | VE1                                    |  |  |
| 3  | Μ                                      | IETHO   | DS 1                                   |  |  |
|    | 3.1                                    | Ove     | erall Process 1                        |  |  |
|    | 3.2                                    | Dat     | a Acquisition 2                        |  |  |
|    | 3.3                                    | Dat     | a Transformation                       |  |  |
|    | 3.4                                    | Bio     | mass Equations                         |  |  |
|    | 3.5                                    | FPI     | nterface Parameters                    |  |  |
|    | 3.                                     | 5.1     | Tree Species Associations              |  |  |
|    | 3.                                     | 5.2     | Road Classes                           |  |  |
|    | 3.                                     | 5.3     | General Parameters5                    |  |  |
|    | 3.                                     | 5.4     | Comminution Cost 5                     |  |  |
|    | 3.                                     | 5.5     | Topping Diameter                       |  |  |
|    | 3.                                     | 5.6     | Parameters as entered in FPInterface 5 |  |  |
|    | 3.6                                    | Del     | ivery Locations                        |  |  |
|    | 3.7                                    | Bio     | mass Calculations                      |  |  |
| 4  | RE                                     | ESULTS  | AND DISCUSSION                         |  |  |
|    | 4.1                                    | Sun     | nmary of Key Results                   |  |  |
|    | 4.1.1 Biomass Amounts                  |         |                                        |  |  |
|    | 4.                                     | 1.2     | Biomass Ratio                          |  |  |
|    | 4.                                     | 1.3     | Cost Availability                      |  |  |
|    | 4.1.4 Mapping                          |         |                                        |  |  |
|    | 4.1.5 Temporal Distribution of Harvest |         |                                        |  |  |
| 5  | CC                                     | ONCLU   | SION 15                                |  |  |
| A  | PPEN                                   | DIX: FF | PInterface Summary Reports 17          |  |  |

### **List of Figures**

| Figure 1. Inventory development process for economically available biomass                  | 2  |
|---------------------------------------------------------------------------------------------|----|
| Figure 2. Recoverable biomass at delivery locations.                                        | 8  |
| Figure 3. North Island biomass 'cost-availability' in base case.                            | 11 |
| Figure 4. North Island biomass 'cost-availability' in base case, displayed not cumulatively | 11 |
| Figure 5. Spatial distribution of cutblocks by delivered biomass cost per odt               | 13 |
| Figure 6. Biomass recoverable by period.                                                    | 14 |
| Figure 7. Economic biomass recoverable by 10-year grouping                                  | 14 |

### **List of Tables**

| Table 1. Species associations                | 4  |
|----------------------------------------------|----|
| Table 2. Road Class Associations             | 4  |
| Table 3. FPInterface <sup>™</sup> parameters | 5  |
| Table 4. Key availability amounts            | 9  |
| Table 5. Biomass ratio                       | 9  |
| Table 6. Cost availability by period         | 15 |
|                                              |    |

## **1 INTRODUCTION**

Forest origin, harvest residue, biomass estimates were made by FPInnovations for the North Island Timber Supply Area, largely following the process previously established for previous BC TSAs using FPInterface (2010-2022). The biomass inventory was based on 20-year harvest and road network plans for Crown land provided by the BC Ministry of Forests, Lands, Natural Resource Operations and Rural Development (FLNRORD) and excludes Tree Farm Licenses (TFLs), Community Forest Agreements (CFAs), and First Nations tenures. Detailed introductory statements applying to this project and the greater project, may be found in the report "Estimating Quesnel Biomass Supply Using FPInterface<sup>®</sup>." It is hoped that the information in this report will assist in understanding biomass availability for industrial proposals.

### **2 OBJECTIVE**

The objective of the project was to calculate the cost of forest-origin biomass as a feedstock in the North Island TSA.

Specific deliverables include:

- a. An analysis showing the delivered cost of biomass from point of origin; and
- b. An analysis showing the amount of biomass delivered at different price points. A value of \$60 for one oven-dried tonne (odt) is regarded as the market value for biomass, in accordance with the previous analyses.

### **3 METHODS**

#### **3.1 Overall Process**

The basic methodology for determining biomass supply in western Canada was established during analysis of the Quesnel and Williams Lake Timber Supply Areas (TSAs). It is reviewed below.

The analysis focused on the North Island TSA and was based on polygon data (tree characteristics) and a road data set supplied by the Ministry. It did not include any nearby woodlots, CFA's, or any First Nations tenures. Including some of these areas could alter the available supply of biomass.

Additionally, small piece size stands that are not considered merchantable were not included in the analysis. The analysis focused on recovering harvest residues from merchantable stands. Purpose-harvesting unmerchantable stand for biomass could add to the biomass supply and further analysis could be undertaken to determine its profitability. Recent analysis has shown that harvesting these stands is not yet profitable.

The following process map (Figure 1) graphically displays the steps taken to build the final inventory of economically available biomass for the Quesnel TSA. A similar process was used for the North Island TSA.



#### Economically Available Biomass Inventory - Development Process

Figure 1. Inventory development process for economically available biomass.

A note on this study: Some of the baseline costs used as defaults in the FPInterface system were deemed outdated and no longer aligned with present day inflation levels. Thus, the following changes were made:

- Fuel cost changed from a default of \$1.25 to \$2.05.
- Truck driver wage changed from a default of \$30 to \$42.
- Machine operator wage changed from a default of \$30 to \$38.

These new inputs were determined based on interviews with local foresters and fuel cost was informed federal data. Because of these very notable and impactful changes, the baseline for collecting and transiting biomass to transit points tended to be more expensive.

#### 3.2 Data Acquisition

Data layers were acquired from the Ministry for the North Island TSA (excluding woodlots, CFA areas, and any First Nations tenure areas), including VRI (Vegetation Resource Inventory) polygons with attributes, and road linework with attributes. The polygon data was for 20 years of harvest in two 10-year periods.

The total 20-year harvest raster is a point in time snapshot. It indicates which polygons are expected to be harvested in the next 20 years. No attempt was made to model possible growth or mortality during the 20-year horizon. Any projections of growth or mortality are already accounted for in the harvestable proportion contained in the harvest raster data.

#### **3.3 Data Transformation**

FPInterface requires two major inputs – a polygon layer of harvestable blocks with attributes, and a road layer. The polygon layer must also have a harvest raster built into it, indicating which polygons are to be cut in which period. To calculate biomass amounts, FPInterface requires both tree size data (or height and diameter at breast height (dbh)) and either stand density (stems per ha) or volume per ha by species in each polygon. When the polygon layer is uploaded it is necessary to tie species in the resultant to FPInterface species.

To speed calculations, polygons with little or no merchantable volume were targeted for elimination. Polygons with no volume were removed from the resultant. Some of these polygons resulted from the process of intersecting the VRI and the harvest raster layers. Aggregation rules meant some blocks were grouped if they had an identical harvest period.

FPInterface calculates cost in part by finding a transport route from product origin in a polygon (block) to the mill or delivery site. It relies on a continuous path along the road network. If digital road segments are not joined together (snapped), the program is not able to find a path between block and mill or may find a sub-optimal circuitous path.

Examination of the received data set showed that road snapping was required. A program was used to identify gaps in the road network and close them.

#### **3.4 Biomass Equations**

To perform the analysis, tree species indicated in the inventory are tied to single-tree biomass equations in FPInterface. For the Quesnel analysis in 2010-11, these equations were based on "Canadian national tree above ground biomass equations" by Lambert, M.C., C.H. Ung, and F. Raulier, 1996-2008. Although this equation set includes trees from across Canada including western and northern Canada, there were very few samples from BC. More recently, Lambert et al. have released tree equations for BC (accepted by the BC ministry) and these were incorporated into FPInterface for the Williams Lake and subsequent analyses, including this one.

#### **3.5 FPInterface Parameters**

#### 3.5.1 Tree Species Associations

Species associations were made as follows in Table 1.

| FPInterface species | System label | Named              | Original data set |
|---------------------|--------------|--------------------|-------------------|
| Trembling aspen     | AT           | Aspen              | ACT, AT, ACB      |
| Subalpine fir       | BL           | Subalpine fir      | B, BL             |
| Western redcedar    | CW           | WR Cedar           | CW                |
| White birch         | EP           | White Birch        | E, EP             |
| Douglas fir         | FD           | Doug Fir           | FD, FDI           |
| Western hemlock     | HW           | Western Hemlock    | H, HW, HM         |
| Western larch       | LW           | Western larch      | L, LW, LA         |
| Lodgepole pine      | PL           | LP Pine            | PL, PLI           |
| Western white pine  | PW           | Western White Pine | PW                |
| Hybrid spruce       | SX           | Hybrid Spruce      | S, SX, SB, SE, SW |
| Big leaf maple      | MB           | Bigleaf Maple      | MB                |
| Red alder           | DR           | Red Alder          | DR                |

Table 1. Species associations

#### 3.5.2 Road Classes

FPInterface assigns road classes based on the amount of volume hauled over each section of the road. The volume hauled is for merchantable volume as calculated by FPInterface. The volume and speeds associated with each road class were assigned according to Table 2. Empty and loaded trucks would travel at 95% and 85% of the posted speed respectively.

| FPInterface road class | Maximum volume (m₃) | Road speed (95% / 85%*) |
|------------------------|---------------------|-------------------------|
| Paved                  | 50,000,000          | 90 km/h (86 / 77)       |
| Class 1                | 10,000,000          | 70 km/h (67 / 60)       |
| Class 2                | 2,000,000           | 50 km/h (48 / 43)       |
| Class 3                | 1,000,000           | 40 km/h (38 / 34)       |
| Class 4                | 500,000             | 20 km/h (19 / 17)       |
| Class 5 (winter)       | 5,000               | 20 km/h (19 / 17)       |

Table 2. Road Class Associations

\* percent of posted speed

#### 3.5.3 General Parameters

The price of fuel can have significant impacts on model results. Some equipment in the model can use diesel and some is eligible for marked fuel. A price of \$2.05/litre was assigned which is slightly higher than current rates for diesel but approximates a medium-term average<sup>1</sup>.

The program's default values for productivities and costs of forestry equipment rely on FPInnovations studies and information. If a user has specific values or costs they wish to apply to any phase or machine, these can be used instead of the defaults. For this project, only the default values were used.

Average slope for the area was assigned to CPPA Class 3 (20-32%). Ground strength was rated CPPA Class 4 (poor), and ground roughness was rated CPPA Class 4 (rough). These assignments were based off interviews conducted with local foresters.

#### 3.5.4 Comminution Cost

Working time for BC conditions was based on previous base case studies and consists of one 12hour shift per day, 200 days per year. Grinder utilization was set at 60% and fuel used per productive machine-hour for the grinder was the standard 135 L/PMH (litres per productive machine hour). These are the standard base case parameters used in past FPInnovations studies and enable comparisons to those studies. Here, they produced a grinding cost of \$36.94/odt.

#### 3.5.5 Topping Diameter

Although BC regulations require a topping diameter of 10.0 cm for most merchantable species, this analysis used 12.5 cm to reflect more common industrial practise. Topping diameter can have a significant impact on the volume of a tree available for biomass use.

#### 3.5.6 Parameters as entered in FPInterface

A summary of some of the parameters as entered in FPInterface follows for the base case, which produces grinding costs of \$36.94/odt (Table 3).

| Run Descriptor | Base Case - Default Grinding Efficiency |
|----------------|-----------------------------------------|
| run name       | Main North Island                       |
| output name    | Biomass report- Main North Island       |
| block system   | BlocksNorthIslandFinal.shp              |
| road system    | NorthIsland Roads V6. shp               |

Table 3. FPInterface parameters

<sup>&</sup>lt;sup>1</sup> Government of Canada, N. R. C. (2006, June 1). *Daily average retail prices for diesel in 2023*.

https://www2.nrcan.gc.ca/eneene/sources/pripri/prices\_bycity\_e.cfm?priceYear=2023&productID=5&locationID=66, 8,39,17#priceGraph

| Run Descriptor                               | Base Case - Default Grinding Efficiency                                                                            |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| transfer yard(s)                             | Holberg, Koprino, Mahatta River,<br>Quatsino, Port McNeill, Lemare Group,<br>Cleagh Creek, Shushartie, Beaver Cove |
| cost per transfer yard, respectively         | 0                                                                                                                  |
| year(s) analyzed                             | All                                                                                                                |
| species attribute linking                    | BC                                                                                                                 |
| automatic assignment of road class by volume | Yes                                                                                                                |
| road maintenance                             | Yes                                                                                                                |
| haul speeds                                  | Graduated                                                                                                          |
| haul speeds at 95% / 85% of posted           | Yes                                                                                                                |
| transport shifts / day                       | 1                                                                                                                  |
| transport hours / shift                      | 12                                                                                                                 |
| transport days / year                        | 200                                                                                                                |
| transport fuel price / litre                 | \$1.25                                                                                                             |
| ground strength                              | 4 - poor                                                                                                           |
| ground roughness                             | 4 – rough                                                                                                          |
| average slope %                              | 20-32                                                                                                              |
| slash used for biomass                       | Yes                                                                                                                |
| full stem used for biomass                   | No                                                                                                                 |
| chip destination                             | Holberg, Koprino, Mahatta River,<br>Quatsino, Port McNeill, Lemare Group,<br>Cleagh Creek, Shushartie, Beaver Cove |
| topping diameter                             | 12.5 cm                                                                                                            |
| truck used for logs                          | Tridem Tractor B-train                                                                                             |
| truck used for chips                         | Semi Trailer with 3-axles                                                                                          |
| harvesting fuel price / litre (x3)           | \$2.05                                                                                                             |
| harvesting shifts / day (x3)                 | 1                                                                                                                  |
| harvesting hours / shift (x3)                | 12                                                                                                                 |
| harvesting days / year (x3)                  | 200                                                                                                                |
| harvesting system                            | full tree with roadside processing                                                                                 |
| felling & processing                         | mechanized and bunched                                                                                             |
| skid type                                    | skidder with grapple                                                                                               |

| Run Descriptor                         | Base Case - Default Grinding Efficiency |  |
|----------------------------------------|-----------------------------------------|--|
| type of roadside processing            | cut-to-length                           |  |
| on site biomass treatment (roadside)   | comminution                             |  |
| recovery season                        | Winter                                  |  |
| slash freshness                        | >3 months                               |  |
| slash pre-piled at roadside            | Yes                                     |  |
| grinder size type                      | horizontal 600 kW                       |  |
| biomass fuel price / litre (x2)        | \$2.05                                  |  |
| biomass hours / shift (x2)             | 12                                      |  |
| biomass shifts / day (x2)              | 1                                       |  |
| Biomass days / year (x2)               | 200                                     |  |
| grinder efficiency                     | 60%                                     |  |
| Grinder fuel use (L/PMH)               | 135                                     |  |
| indirect costs - biomass (\$ value)    | \$0.00                                  |  |
| indirect costs - harvesting (\$ value) | \$0.00                                  |  |

#### **3.6 Delivery Locations**

All harvest residues from in-woods operations (not from mills) were directed to large industrial areas in or near the North Island TSA. In this model the following locations were used as biomass destinations: Holberg, Koprino, Mahatta River, Quatsino, Port McNeill, Lemare Group, Cleagh Creek, Shushartie, and Beaver Cove. Initial comminution was set to take place at roadside, and costs are calculated for biomass delivered to the delivery locations.

#### **3.7 Biomass Calculations**

The biomass calculations in FPInterface produce a volume of total available biomass once merchantable roundwood has been removed. For this project, only biomass transported to roadside was considered recoverable and biomass likely to remain at the stump or dispersed on the cutblock was not. Once it is transported to roadside, some biomass becomes unavailable due to handling and technical losses. The remainder is considered recovered biomass. Figure 2 shows this breakdown with the numbers from the 20-year harvest of the base case with normal grinder utilization of 60% and fuel usage of 135 L/PMH.



Figure 2. Recoverable biomass at delivery locations.

### **4 RESULTS AND DISCUSSION**

#### 4.1 Summary of Key Results

All results from the different runs performed in FPInterface are summarized in Appendix. The FPInterface analysis of biomass supply in the North Island TSA, based on inventory information and the road network supplied by the Ministry, indicates an average biomass yield of 26.8 ovendried tonnes (odt) per hectare for the base case. This is in the form of comminuted hog fuel and comes from harvest residues only – tops, branches, and other roadside logging waste. Mill residues are not predicted by the model.

#### 4.1.1 Biomass Amounts

In total, there are predicted to be 2,393,892 odt that can be recovered from roadside and delivered to the delivery locations over the course of 20 years. The amount of available biomass decreases over time. The first 10-year period has the highest amount of available biomass, possibly due to a higher amount of available biomass being 337,472 odt/yr in Period 1 and 232,501 odt/yr in Period 2. The amount of biomass available each year works out to approximately 284,987 odt/yr, at any price point in the study area. (The economically available volume is estimated at 1,044 odt/year, as described below.) Key amounts of biomass availability are shown in Table 4.

Table 4. Key availability amounts

| Biomass Available (odt)      |                              |                              |
|------------------------------|------------------------------|------------------------------|
| Total available biomass      | Period 1 available biomass   | Period 2 available biomass   |
| 5,699,743                    | 3,374,729                    | 2,325,014                    |
| % of total available biomass | % of total available biomass | % of total available biomass |
| 100%                         | 59%                          | 41%                          |
| Total recovered biomass*     | Period 1 recovered biomass   | Period 2 recovered biomass   |
| 2,393,892                    | 1,417,386                    | 976,506                      |

\*note that the ratio of recovered/available biomass for both periods was 42%

Additionally, the model indicates that there are about 1,709,923 odt of biomass that would be left on the cutblock and would not make it to roadside. This is approximately 30% of the available biomass and includes material that falls off trees naturally and material that breaks off timber and is left on the ground during normal harvesting operations. This vast amount of material retained in the forest is much higher than that deemed necessary to replenish the forest floor and prevent nutrient degradation to the soil. Additionally, 1,595,928 odt of biomass material (or 28% of available biomass) that makes it to roadside is not recovered due to technical handling efficiencies, that is, the material is too small or large for machine handling or is incorrectly positioned for economic accessibility.

#### 4.1.2 Biomass Ratio

The biomass ratio (BR) is the ratio of recovered biomass to recovered merchantable roundwood. The BR is 9.8% for the base case scenario. In this case 24,361,569 odt of roundwood are expected along with 2,393,892 odt of recovered biomass. The BR is shown in Table 5.

| Biomass Ratio |                  |
|---------------|------------------|
| 2,393,892     | odt of biomass   |
| 24,361,569    | odt of roundwood |
| 9.8%          |                  |

Table 5. Biomass ratio

Knowing the biomass ratio for an area can be useful in making rough predictions of the amount of available harvest residue if the amount of merchantable timber harvest is known.

#### 4.1.3 Cost Availability

FPInterface conveniently breaks down the available supply into delivered cost in \$10 increments. At the presumed market rate of \$60/odt, the amount available over 20 years is predicted at 20,896 odt or about 1,044 odt per year. The complete results in \$10 increments for the entire 20-year period can be seen below in the following tables and figures.

| Biomass Available (odt) |             |              |                   |
|-------------------------|-------------|--------------|-------------------|
| at \$60/odt             | at \$90/odt | At \$120/odt | total (\$180/odt) |
| 20,896                  | 726,822     | 2,202,429    | 2,393,892         |
| per year                | per year    | per year     | per year          |
| 1,044                   | 36,341      | 110,121      | 119,694           |

Table 6. North Island TSA biomass 'cost-availability' at different prices for base case

Table 7. North Island TSA biomass 'cost-availability' at different prices for base case

| Base Case   |               |            |
|-------------|---------------|------------|
| Cost \$/odt | Odt Available | Odt/yr     |
| 10          | 0             | 0          |
| 20          | 0             | 0          |
| 30          | 0             | 0          |
| 40          | 2,459.50      | 122.97     |
| 50          | 2,459.50      | 122.97     |
| 60          | 20,896.90     | 1,044.84   |
| 70          | 206,378.60    | 10,318.93  |
| 80          | 472,153.70    | 23,607.68  |
| 90          | 726,822.80    | 36,341.14  |
| 100         | 986,686.90    | 49,334.34  |
| 110         | 1,819,386.80  | 90,969.34  |
| 120         | 2,202,429.00  | 110,121.45 |
| 130         | 2,304,488.10  | 115,224.40 |
| 140         | 2,338,102.90  | 116,905.14 |
| 150         | 2,369,554.60  | 118,477.73 |
| 160         | 2,388,147.50  | 119,407.37 |
| 170         | 2,393,892.40  | 119,694.62 |
| 180         | 2,393,892     | 119,694.60 |

The amounts are cumulative. So the amount available at \$60/odt, for example, includes all the biomass at \$50/odt and the additional biomass available between \$50 and \$60 per odt.



Figure 3. North Island biomass 'cost-availability' in base case.



Figure 4. North Island biomass 'cost-availability' in base case, displayed not cumulatively.

The average price for delivered biomass across the study area is shown in Table 8.

Table 8. Average cost of delivered biomass across entire study area

| Average cost of delivered |
|---------------------------|
| biomass (\$/odt)          |
| 103.83                    |

Adding delivery locations near high volume blocks can greatly reduce the overall average cost of delivered biomass. Differences to delivered costs can also be created by changes to equipment or practices that raise or lower operating costs. For example, if greater efficiency in grinding technology is realized, it can dramatically increase the amount of biomass that is economically available, especially, at the lower price points. In this scenario, the average cost of delivered biomass is low at \$103.83/odt due to a high volume of blocks being located far from delivery points, particularly in the south eastern region of the TSA.

#### 4.1.4 Mapping

The distribution of costs by cutblock is shown graphically in FPInterface with a colour scale ranging from green to red is shown in Figure 5. The blocks are coloured in colour increments with the greenest points being the ones with the lowest delivered biomass costs, and the reddest ones being the most expensive, with a yellow transition in the middle.



Figure 5. Spatial distribution of cutblocks by delivered biomass cost per odt.

Most of the low delivered-cost biomass (green) is located around the northwestern portion of the TSA, while the high delivered-cost biomass (red) is limited to the southeastern reaches of the TSA, far from any delivery points.

#### 4.1.5 Temporal Distribution of Harvest

The harvest data contains a temporal period assigned to each cutblock. There are two periods in the data representing 10-year periods. The first period covers the first 10 years of cutblocks, and the second period covers the last 10 years.

The harvest projection shows a decrease in supply of available biomass in the second period, as shown in Figure 6. The amount of economically available also biomass decreases through time from approximately 16,325 odt in the first 10 years to 4,571 odt in the last 10 years. This decrease is likely due to a higher amount of available biomass in Period 1 (3,374,729 available odt/year) versus Period 2 (2,325,014 available odt/year).



Figure 6. Biomass recoverable by period.

Looking at the economic harvest available (the amount of biomass priced at or below \$60/odt) in Figure 7, there is a similar discrepancy between overall available biomass and available economic biomass.



Figure 7. Economic biomass recoverable by 10-year grouping.

The data for cost availability by period at all price points in \$10 increments is shown in Table 9. You can see the differences in economically available biomass between periods is comparable with the total biomass available at any price point.

|             | Period 1      |            | Peri          | od 2      |
|-------------|---------------|------------|---------------|-----------|
| cost \$/odt | Odt available | odt/yr     | Odt available | odt/yr    |
| 10          | 0             | 0          | 0             | 0         |
| 20          | 0             | 0          | 0             | 0         |
| 30          | 0             | 0          | 0             | 0         |
| 40          | 1,710.00      | 171        | 749.5         | 74.95     |
| 50          | 1,710.00      | 171        | 749.5         | 74.95     |
| 60          | 16,325.00     | 1,632.5    | 4,571.90      | 457.19    |
| 70          | 121,307.70    | 12,130.77  | 85,070.80     | 8,507.08  |
| 80          | 268,606.40    | 26,860.64  | 203,547.30    | 20,354.73 |
| 90          | 382,319.30    | 38,231.93  | 344,503.50    | 34,450.35 |
| 100         | 513,109.00    | 51,310.9   | 473,577.90    | 47,357.79 |
| 110         | 1,074,176.00  | 107,417.6  | 745,210.80    | 74,521.08 |
| 120         | 1,316,343.30  | 131,634.33 | 886,085.70    | 88,608.57 |
| 130         | 1,372,724.80  | 137,272.48 | 931,763.20    | 93,176.32 |
| 140         | 1,389,177.10  | 138,917.71 | 948,925.80    | 94,892.58 |
| 150         | 1,401,451.40  | 140,145.14 | 968,103.20    | 96,810.32 |
| 160         | 1,414,386.40  | 141,438.64 | 973,761.10    | 97,376.11 |
| 170         | 1,415,141.10  | 141,514.11 | 976,506.20    | 97,650.62 |
| 180         | 1,417,386.20  | 141,738.62 |               |           |

Table 9. Cost availability by period

# **5 CONCLUSION**

The biomass yield per hectare predicted for the North Island TSA is 26.8 oven-dried tonnes per hectare (odt/ha) from harvest residues. Over the next 10 years a total of 5,699,743 odt of available biomass are predicted to be generated by harvest in the North Island TSA, or approximately, 284,987 odt/yr. Of this, approximately 20,896 odt in total, or 1,044 odt/yr, is expected to be available at the economic price of \$60 per oven-dried tonne. Approximately 76% of the available amount is expected to be available at \$100/odt: a total of 986,686 odt, or 49,334 odt/yr. The biomass ratio, which is the ratio of recovered biomass to recovered merchantable roundwood, is estimated at 9.8%.

Most biomass not considered economically available (<= \$60/odt), but rather has an average cost of \$103.83/odt. This is largely due to a substantial amount of the TSA having operations far

from delivery points, however there is more opportunity for biomass utilizations in the northwestern portion of the TSA where biomass collection is cheaper.

A note on the following Appendix: Because FPInterface does not easily integrate the cost of barging, the smaller islands surrounding this TSA were not included in the overall findings. However smaller TSA analyses were preformed for each Island. These additional analyses are attached in this report.

# APPENDIX: FPINTERFACE SUMMARY REPORTS



| Territoire:    | Unknown territory                  |                           |
|----------------|------------------------------------|---------------------------|
| Secteur:       | Unknown sector                     |                           |
| Cut block:     | <multiple selection=""></multiple> |                           |
|                | Selected Items                     |                           |
| Area           |                                    | 52,697.5 ha               |
| Number of cu   | t blocks                           | 579                       |
| Recovered bio  | omass                              | 1,417,386.2 odt           |
| Biomass yield  |                                    | 26.9 odt/ha               |
| Biomass odt /  | / Merchantable m <sup>3</sup>      | 0.0439 odt/m <sup>3</sup> |
| Delivered proc | ducts                              |                           |
| Chips          |                                    | 100 %                     |
| Bundles        | 5                                  | 0 %                       |
| • Trunks       | and Residues                       | 0 %                       |
| Energy balance | ce                                 | 29 : 1                    |
| Available ener | rgy                                | 5,608,445 MWh             |
| Fuel consump   | tion                               | 15.7 L/odt                |

| Harvesting                 | 0.00 \$/odt   |
|----------------------------|---------------|
| Biomass recovery           | 36.94 \$/odt  |
| Transfer yard              | 0.00 \$/odt   |
| Transportation             | 51.17 \$/odt  |
| Loading/unloading          | 10.56 \$/odt  |
| Stumpage fees              | 0.00 \$/odt   |
| Road network - Maintenance | 0.90 \$/odt   |
| Indirect costs             | 0.00 \$/odt   |
| Total                      | 99.57 \$/odt  |
| -Revenue                   |               |
| Sale value                 | 0.00 \$/odt   |
| Silvicultural discount     | 0.00 \$/odt   |
|                            |               |
| Net                        |               |
| Profit                     | -99.57 \$/odt |





| Products                      |             |                    |        |
|-------------------------------|-------------|--------------------|--------|
| Product name                  | odt         | odt/m <sup>3</sup> | odt/ha |
| Subalpine fir (residues)      | 129,383.6   | 0.0366             | 2.46   |
| Western Hemlock (residues)    | 455,947.9   | 0.0345             | 8.65   |
| WR Cedar (residues)           | 237,018.4   | 0.0375             | 4.50   |
| Hybrid spruce (residues)      | 50,310.9    | 0.1363             | 0.95   |
| Doug Fir (residues)           | 496,273.6   | 0.0617             | 9.42   |
| Red Alder (residues)          | 40,784.6    | 0.0667             | 0.77   |
| Bigleaf Maple (residues)      | 3,050.0     | 0.0875             | 0.06   |
| LP Pine (residues)            | 3,712.2     | 0.0279             | 0.07   |
| Western white pine (residues) | 618.8       | 0.0377             | 0.01   |
| Aspen (residues)              | 286.2       | 0.0502             | 0.01   |
|                               | 1,417,386.2 | 0.0439             | 26.90  |



| Recover y summary                          | Volume(odt) | Area(ha) | Number of cut blocks |
|--------------------------------------------|-------------|----------|----------------------|
| Biomass recovery location     At the stump | 0.0         | 0.0      | 0                    |
| Roadside                                   | 1,417,386.2 | 52,697.5 | 579                  |
| Recovery season                            |             |          |                      |
| Summer                                     | 0.0         | 0.0      | 0                    |
| Winter                                     | 1,417,386.2 | 52,697.5 | 579                  |
| Residue freshness                          |             |          |                      |
| Fresh                                      | 0.0         | 0.0      | 0                    |
| Brown                                      | 1,417,386.2 | 52,697.5 | 579                  |
| Brittle                                    | 0.0         | 0.0      | 0                    |
|                                            |             |          |                      |

| Supply summary       |          |                           |                |                    |
|----------------------|----------|---------------------------|----------------|--------------------|
| Recovered biomass to |          | Merchantable volume (odt) | Residues (odt) | Total biomass (odt |
| 1                    | 0 \$/odt | 0.0                       | 0.0            | 0.0                |
| 20                   | 0 \$/odt | 0.0                       | 0.0            | 0.0                |
| 30                   | 0 \$/odt | 0.0                       | 0.0            | 0.                 |
| 40                   | 0 \$/odt | 0.0                       | 1,710.0        | 1,710.             |
| 50                   | 0 \$/odt | 0.0                       | 1,710.0        | 1,710.             |
| 60                   | 0 \$/odt | 0.0                       | 16,325.0       | 16,325.            |
| 70                   | 0 \$/odt | 0.0                       | 121,307.7      | 121,307.           |
| 80                   | 0 \$/odt | 0.0                       | 268,606.4      | 268,606            |
| 90                   | 0 \$/odt | 0.0                       | 382,319.3      | 382,319.           |
| 10                   | 0 \$/odt | 0.0                       | 513,109.0      | 513,109            |
| 110                  | 0 \$/odt | 0.0                       | 1,074,176.0    | 1,074,176          |
| 120                  | 0 \$/odt | 0.0                       | 1,316,343.3    | 1,316,343          |
| 130                  | 0 \$/odt | 0.0                       | 1,372,724.8    | 1,372,724          |
| 14                   | 0 \$/odt | 0.0                       | 1,389,177.1    | 1,389,177.         |
| 150                  | 0 \$/odt | 0.0                       | 1,401,451.4    | 1,401,451          |
| 160                  | 0 \$/odt | 0.0                       | 1,414,386.4    | 1,414,386.         |
| 170                  | 0 \$/odt | 0.0                       | 1,415,141.1    | 1,415,141.         |
| 180                  | 0 \$/odt | 0.0                       | 1,417,386.2    | 1,417,386.         |
| Maximu               | m cost   | 0.00 \$/odt               | 174.93 \$/odt  |                    |



| -Delivery to mills                 |                            |        |         |                                    |
|------------------------------------|----------------------------|--------|---------|------------------------------------|
| Destination                        | Product                    | Format | odt     | Transport average<br>distance (Km) |
| <closest destination=""></closest> |                            |        |         |                                    |
|                                    | Bigleaf Maple (residues)   | Chips  | 345     | 0                                  |
|                                    | Doug Fir (residues)        | Chips  | 981     | 0                                  |
|                                    | Red Alder (residues)       | Chips  | 159     | 0                                  |
|                                    | Subalpine fir (residues)   | Chips  | 61      | 0                                  |
|                                    | Western Hemlock (residues) | Chips  | 127     | 0                                  |
|                                    | WR Cedar (residues)        | Chips  | 36      | 0                                  |
|                                    |                            | _      | 1,710   | 0                                  |
| Holberg                            |                            |        |         |                                    |
|                                    | Doug Fir (residues)        | Chips  | 494     | 25                                 |
|                                    | Hybrid spruce (residues)   | Chips  | 15,603  | 24                                 |
|                                    | LP Pine (residues)         | Chips  | 841     | 30                                 |
|                                    | Red Alder (residues)       | Chips  | 1,247   | 17                                 |
|                                    | Subalpine fir (residues)   | Chips  | 1,673   | 22                                 |
|                                    | Western Hemlock (residues) | Chips  | 30,964  | 26                                 |
|                                    | WR Cedar (residues)        | Chips  | 50,607  | 27                                 |
|                                    |                            | _      | 101,429 | 26                                 |
| Mahatta River                      |                            |        |         |                                    |
|                                    | Doug Fir (residues)        | Chips  | 3       | 36                                 |
|                                    | Hybrid spruce (residues)   | Chips  | 5,428   | 45                                 |
|                                    | Red Alder (residues)       | Chips  | 158     | 41                                 |
|                                    | Subalpine fir (residues)   | Chips  | 10,465  | 43                                 |
|                                    | Western Hemlock (residues) | Chips  | 35,627  | 43                                 |
|                                    | WR Cedar (residues)        | Chips  | 15,594  | 48                                 |
|                                    |                            |        | 67,275  | 44                                 |
| Quatsino                           |                            |        |         |                                    |
|                                    | Hybrid spruce (residues)   | Chips  | 261     | 4                                  |
|                                    | Red Alder (residues)       | Chips  | 446     | 4                                  |
|                                    | Subalpine fir (residues)   | Chips  | 159     | 4                                  |
|                                    | Western Hemlock (residues) | Chips  | 1,208   | 4                                  |





| Destination  | Product                    | Format | odt    | Transport average<br>distance (Km) |
|--------------|----------------------------|--------|--------|------------------------------------|
| Quatsino     |                            |        |        |                                    |
|              | WR Cedar (residues)        | Chips  | 201    | 3                                  |
|              |                            |        | 2,275  | 4                                  |
| Port McNeill |                            |        |        |                                    |
|              | Doug Fir (residues)        | Chips  | 42     | 48                                 |
|              | Hybrid spruce (residues)   | Chips  | 228    | 26                                 |
|              | LP Pine (residues)         | Chips  | 108    | 35                                 |
|              | Red Alder (residues)       | Chips  | 28     | 27                                 |
|              | Subalpine fir (residues)   | Chips  | 4,709  | 47                                 |
|              | Western Hemlock (residues) | Chips  | 12,558 | 41                                 |
|              | WR Cedar (residues)        | Chips  | 3,401  | 41                                 |
|              |                            |        | 21,075 | 42                                 |
| Cleagh Creek |                            |        |        |                                    |
|              | Doug Fir (residues)        | Chips  | 5,845  | 91                                 |
|              | Hybrid spruce (residues)   | Chips  | 11,886 | 90                                 |
|              | Red Alder (residues)       | Chips  | 1,691  | 84                                 |
|              | Subalpine fir (residues)   | Chips  | 11,648 | 84                                 |
|              | Western Hemlock (residues) | Chips  | 31,096 | 87                                 |
|              | WR Cedar (residues)        | Chips  | 17,715 | 84                                 |
|              |                            |        | 79,880 | 87                                 |
| Shushartie   |                            |        |        |                                    |
|              | Doug Fir (residues)        | Chips  | 169    | 41                                 |
|              | Hybrid spruce (residues)   | Chips  | 806    | 35                                 |
|              | LP Pine (residues)         | Chips  | 1,500  | 34                                 |
|              | Red Alder (residues)       | Chips  | 795    | 45                                 |
|              | Subalpine fir (residues)   | Chips  | 1,342  | 27                                 |
|              | Western Hemlock (residues) | Chips  | 20,766 | 29                                 |
|              | WR Cedar (residues)        | Chips  | 34,030 | 29                                 |
|              |                            |        | 59,407 | 29                                 |
| Beaver Cove  |                            |        |        |                                    |
|              | Hybrid spruce (residues)   | Chips  | 1,163  | 20                                 |





| Destination   | Product                       | Format | odt       | Transport average<br>distance (Km) |  |
|---------------|-------------------------------|--------|-----------|------------------------------------|--|
| Beaver Cove   |                               |        |           |                                    |  |
|               | Subalpine fir (residues)      | Chips  | 4,170     | 24                                 |  |
|               | Western Hemlock (residues)    | Chips  | 21,943    | 23                                 |  |
|               | Western white pine (residues) | Chips  | 1         | 23                                 |  |
|               | WR Cedar (residues)           | Chips  | 12,816    | 23                                 |  |
|               |                               |        | 40,093    | 23                                 |  |
| Beaver Cove 2 |                               |        |           |                                    |  |
|               | Aspen (residues)              | Chips  | 286       | 161                                |  |
|               | Bigleaf Maple (residues)      | Chips  | 2,705     | 198                                |  |
|               | Doug Fir (residues)           | Chips  | 488,739   | 173                                |  |
|               | Hybrid spruce (residues)      | Chips  | 14,937    | 124                                |  |
|               | LP Pine (residues)            | Chips  | 1,263     | 182                                |  |
|               | Red Alder (residues)          | Chips  | 36,261    | 167                                |  |
|               | Subalpine fir (residues)      | Chips  | 95,157    | 140                                |  |
|               | Western Hemlock (residues)    | Chips  | 301,658   | 154                                |  |
|               | Western white pine (residues) | Chips  | 618       | 171                                |  |
|               | WR Cedar (residues)           | Chips  | 102,618   | 145                                |  |
|               |                               |        | 1,044,243 | 161                                |  |
|               |                               |        | 1,417,386 | 130                                |  |









| Territoire:   | Unknown territory                  |                           |
|---------------|------------------------------------|---------------------------|
| Secteur:      | Unknown sector                     |                           |
| Cut block:    | <multiple selection=""></multiple> |                           |
| -Statistics   | - Selected Items                   |                           |
| Area          |                                    | 36,581.8 ha               |
| Number of c   | cut blocks                         | 698                       |
| Recovered bi  | biomass                            | 976,506.2 odt             |
| Biomass yield | ld                                 | 26.7 odt/ha               |
| Biomass odt   | / Merchantable m <sup>3</sup>      | 0.0456 odt/m <sup>3</sup> |
| Delivered pro | oducts                             |                           |
| • Chips       |                                    | 100 %                     |
| Bundle        | es                                 | 0 %                       |
| Trunks        | s and Residues                     | 0 %                       |
| Energy balar  | nce                                | 30 : 1                    |
| Available ene | ergy                               | 3,853,561 MWh             |
| Fuel consum   | nption                             | 15.2 L/odt                |
|               |                                    |                           |

| Harvesting                 | 0.00 \$/odt   |
|----------------------------|---------------|
| Biomass recovery           | 36.94 \$/odt  |
| Transfer yard              | 0.00 \$/odt   |
| Transportation             | 49.45 \$/odt  |
| Loading/unloading          | 10.71 \$/odt  |
| Stumpage fees              | 0.00 \$/odt   |
| Road network - Maintenance | 0.97 \$/odt   |
| Indirect costs             | 0.00 \$/odt   |
| Total                      | 98.07 \$/odt  |
| -Revenue                   |               |
| Sale value                 | 0.00 \$/odt   |
| Silvicultural discount     | 0.00 \$/odt   |
|                            |               |
| -Net                       |               |
| Profit                     | -98.07 \$/odt |

Profit

-Cost-







| Products                      |           |        |        |
|-------------------------------|-----------|--------|--------|
| Product name                  | odt       | odt/m³ | odt/ha |
| Western Hemlock (residues)    | 342,085.5 | 0.0373 | 9.35   |
| WR Cedar (residues)           | 175,376.7 | 0.0393 | 4.79   |
| Subalpine fir (residues)      | 99,996.6  | 0.0384 | 2.73   |
| Doug Fir (residues)           | 276,016.9 | 0.0648 | 7.55   |
| Red Alder (residues)          | 31,042.5  | 0.0698 | 0.85   |
| Hybrid spruce (residues)      | 47,291.9  | 0.1363 | 1.29   |
| LP Pine (residues)            | 1,709.9   | 0.0275 | 0.05   |
| Western white pine (residues) | 284.3     | 0.0370 | 0.01   |
| Bigleaf Maple (residues)      | 2,231.9   | 0.0943 | 0.06   |
| Aspen (residues)              | 470.0     | 0.0399 | 0.01   |
|                               | 976,506.2 | 0.0456 | 26.69  |



| Deeevery cummer                            |             |          |                      |
|--------------------------------------------|-------------|----------|----------------------|
| Recover y summary                          | Volume(odt) | Area(ha) | Number of cut blocks |
| Biomass recovery location     At the stump | 0.0         | 0.0      | 0                    |
| Roadside                                   | 976,506.2   | 36,581.8 | 698                  |
| Recovery season                            |             |          |                      |
| Summer                                     | 0.0         | 0.0      | 0                    |
| Winter                                     | 976,506.2   | 36,581.8 | 698                  |
| Residue freshness                          |             |          |                      |
| Fresh                                      | 0.0         | 0.0      | 0                    |
| Brown                                      | 976,506.2   | 36,581.8 | 698                  |
| Brittle                                    | 0.0         | 0.0      | 0                    |
|                                            |             |          |                      |

#### Supply summary Residues (odt) Recovered biomass to Merchantable volume (odt) Total biomass (odt) 10 \$/odt 0.0 0.0 0.0 20 \$/odt 0.0 0.0 0.0 30 \$/odt 0.0 0.0 0.0 40 \$/odt 0.0 749.5 749.5 749.5 50 \$/odt 0.0 749.5 60 \$/odt 0.0 4,571.9 4,571.9 70 \$/odt 0.0 85,070.8 85,070.8 80 \$/odt 0.0 203,547.3 203,547.3 344,503.5 90 \$/odt 0.0 344,503.5 100 \$/odt 0.0 473,577.9 473,577.9 110 \$/odt 745,210.8 745,210.8 0.0 120 \$/odt 0.0 886,085.7 886,085.7 130 \$/odt 0.0 931,763.2 931,763.2 948,925.8 140 \$/odt 0.0 948,925.8 150 \$/odt 0.0 968,103.2 968,103.2 160 \$/odt 0.0 973,761.1 973,761.1 170 \$/odt 976,506.2 0.0 976,506.2 0.00 \$/odt 160.25 \$/odt Maximum cost





| Delivery to mills                  |                            |        |        |                                    |
|------------------------------------|----------------------------|--------|--------|------------------------------------|
| Destination                        | Product                    | Format | odt    | Transport average<br>distance (Km) |
| <closest destination=""></closest> |                            |        |        |                                    |
|                                    | Bigleaf Maple (residues)   | Chips  | 36     | 0                                  |
|                                    | Doug Fir (residues)        | Chips  | 608    | 0                                  |
|                                    | Red Alder (residues)       | Chips  | 106    | 0                                  |
|                                    |                            |        | 750    | 0                                  |
| Holberg                            |                            |        |        |                                    |
|                                    | Doug Fir (residues)        | Chips  | 1,807  | 24                                 |
|                                    | Hybrid spruce (residues)   | Chips  | 10,109 | 20                                 |
|                                    | LP Pine (residues)         | Chips  | 239    | 30                                 |
|                                    | Red Alder (residues)       | Chips  | 525    | 17                                 |
|                                    | Subalpine fir (residues)   | Chips  | 1,745  | 20                                 |
|                                    | Western Hemlock (residues) | Chips  | 22,861 | 26                                 |
|                                    | WR Cedar (residues)        | Chips  | 30,318 | 31                                 |
|                                    |                            |        | 67,603 | 27                                 |
| Mahatta River                      |                            |        |        |                                    |
|                                    | Doug Fir (residues)        | Chips  | 66     | 11                                 |
|                                    | Hybrid spruce (residues)   | Chips  | 8,551  | 41                                 |
|                                    | LP Pine (residues)         | Chips  | 2      | 10                                 |
|                                    | Red Alder (residues)       | Chips  | 506    | 28                                 |
|                                    | Subalpine fir (residues)   | Chips  | 14,512 | 38                                 |
|                                    | Western Hemlock (residues) | Chips  | 47,769 | 40                                 |
|                                    | WR Cedar (residues)        | Chips  | 21,316 | 46                                 |
|                                    |                            |        | 92,721 | 41                                 |
| Quatsino                           |                            |        |        |                                    |
|                                    | Hybrid spruce (residues)   | Chips  | 173    | 6                                  |
|                                    | Red Alder (residues)       | Chips  | 130    | 3                                  |
|                                    | Subalpine fir (residues)   | Chips  | 130    | 6                                  |
|                                    | Western Hemlock (residues) | Chips  | 841    | 6                                  |
|                                    | WR Cedar (residues)        | Chips  | 317    | 6                                  |
|                                    |                            |        | 1,591  | 6                                  |





| Destination  | Product                    | Format | odt    | Transport average<br>distance (Km) |
|--------------|----------------------------|--------|--------|------------------------------------|
| Port McNeill |                            |        |        |                                    |
|              | Doug Fir (residues)        | Chips  | 274    | 54                                 |
|              | Hybrid spruce (residues)   | Chips  | 25     | 53                                 |
|              | LP Pine (residues)         | Chips  | 51     | 33                                 |
|              | Red Alder (residues)       | Chips  | 208    | 36                                 |
|              | Subalpine fir (residues)   | Chips  | 4,970  | 55                                 |
|              | Western Hemlock (residues) | Chips  | 9,807  | 49                                 |
|              | WR Cedar (residues)        | Chips  | 3,885  | 49                                 |
|              |                            |        | 19,220 | 50                                 |
| Cleagh Creek |                            |        |        |                                    |
|              | Doug Fir (residues)        | Chips  | 5,264  | 90                                 |
|              | Hybrid spruce (residues)   | Chips  | 14,238 | 80                                 |
|              | LP Pine (residues)         | Chips  | 12     | 113                                |
|              | Red Alder (residues)       | Chips  | 3,641  | 80                                 |
|              | Subalpine fir (residues)   | Chips  | 9,456  | 83                                 |
|              | Western Hemlock (residues) | Chips  | 32,453 | 85                                 |
|              | WR Cedar (residues)        | Chips  | 18,779 | 82                                 |
|              |                            |        | 83,843 | 83                                 |
| Shushartie   |                            |        |        |                                    |
|              | Doug Fir (residues)        | Chips  | 512    | 41                                 |
|              | Hybrid spruce (residues)   | Chips  | 131    | 24                                 |
|              | LP Pine (residues)         | Chips  | 808    | 33                                 |
|              | Red Alder (residues)       | Chips  | 101    | 41                                 |
|              | Subalpine fir (residues)   | Chips  | 1,003  | 16                                 |
|              | Western Hemlock (residues) | Chips  | 13,337 | 24                                 |
|              | WR Cedar (residues)        | Chips  | 20,776 | 29                                 |
|              |                            |        | 36,667 | 27                                 |
| Beaver Cove  | Hybrid spruce (residues)   | Chins  | 12     | 27                                 |
|              | Subalnine fir (residues)   | Chins  | 1 025  | 27                                 |
|              |                            | Chips  | 2 000  | 24                                 |
|              | western Hemiock (residues) | Cnips  | 3,808  | 24                                 |





| Destination   | Product                       | Format | odt     | Transport average<br>distance (Km) |  |
|---------------|-------------------------------|--------|---------|------------------------------------|--|
| Beaver Cove   |                               |        |         |                                    |  |
|               | WR Cedar (residues)           | Chips  | 1,739   | 24                                 |  |
|               |                               |        | 6,585   | 24                                 |  |
| Beaver Cove 2 |                               |        |         |                                    |  |
|               | Aspen (residues)              | Chips  | 470     | 200                                |  |
|               | Bigleaf Maple (residues)      | Chips  | 2,196   | 180                                |  |
|               | Doug Fir (residues)           | Chips  | 267,487 | 170                                |  |
|               | Hybrid spruce (residues)      | Chips  | 14,053  | 115                                |  |
|               | LP Pine (residues)            | Chips  | 598     | 182                                |  |
|               | Red Alder (residues)          | Chips  | 25,825  | 159                                |  |
|               | Subalpine fir (residues)      | Chips  | 67,157  | 134                                |  |
|               | Western Hemlock (residues)    | Chips  | 211,209 | 146                                |  |
|               | Western white pine (residues) | Chips  | 284     | 172                                |  |
|               | WR Cedar (residues)           | Chips  | 78,247  | 135                                |  |
|               |                               |        | 667,527 | 153                                |  |
|               |                               |        | 976,506 | 120                                |  |











| lerritoire:    | Unknown territory                  |                           |
|----------------|------------------------------------|---------------------------|
| Secteur:       | Unknown sector                     |                           |
| Cut block:     | <multiple selection=""></multiple> |                           |
|                | Selected Items                     |                           |
| Area           |                                    | 2,369.6 ha                |
| Number of cu   | It blocks                          | 15                        |
| Recovered bio  | omass                              | 59,985.4 odt              |
| Biomass yield  |                                    | 25.3 odt/ha               |
| Biomass odt /  | / Merchantable m <sup>3</sup>      | 0.0519 odt/m <sup>3</sup> |
| Delivered pro  | ducts                              |                           |
| Chips          |                                    | 100 %                     |
| Bundles        | 3                                  | 0 %                       |
| Trunks         | and Residues                       | 0 %                       |
| Energy balance | ce                                 | 59 : 1                    |
| Available ener | rgy                                | 230,365 MWh               |
| Fuel consump   | otion                              | 7.4 L/odt                 |

| Harvesting                 | 0.00 \$/odt   |
|----------------------------|---------------|
| Biomass recovery           | 34.27 \$/odt  |
| Transfer yard              | 0.00 \$/odt   |
| Transportation             | 13.52 \$/odt  |
| Loading/unloading          | 11.38 \$/odt  |
| Stumpage fees              | 0.00 \$/odt   |
| Road network - Maintenance | 0.01 \$/odt   |
| Indirect costs             | 0.00 \$/odt   |
| Total                      | 59.19 \$/odt  |
| -Revenue                   |               |
| Sale value                 | 0.00 \$/odt   |
| Silvicultural discount     | 0.00 \$/odt   |
| -Not                       |               |
|                            | 50 10 ¢ /odt  |
| FIUIL                      | -39.19 \$/00l |





| Toducts                    |          |        |        |
|----------------------------|----------|--------|--------|
| Product name               | odt      | odt/m³ | odt/ha |
| WR Cedar (residues)        | 23,152.1 | 0.0459 | 9.77   |
| Western Hemlock (residues) | 23,740.8 | 0.0438 | 10.02  |
| Hybrid spruce (residues)   | 12,367.2 | 0.1363 | 5.22   |
| LP Pine (residues)         | 427.0    | 0.0328 | 0.18   |
| Doug Fir (residues)        | 162.9    | 0.0674 | 0.07   |
| Red Alder (residues)       | 60.4     | 0.0734 | 0.03   |
| Subalpine fir (residues)   | 75.0     | 0.0463 | 0.03   |
|                            | 59,985.4 | 0.0519 | 25.31  |





| -Recovery summary         |             |          |                      |
|---------------------------|-------------|----------|----------------------|
| Necovery summary          | Volume(odt) | Area(ha) | Number of cut blocks |
| Biomass recovery location |             |          |                      |
| At the stump              | 0.0         | 0.0      | 0                    |
| Roadside                  | 59,985.4    | 2,369.6  | 15                   |
| Recovery season           |             |          |                      |
| Summer                    | 0.0         | 0.0      | 0                    |
| Winter                    | 59,985.4    | 2,369.6  | 15                   |
| Residue freshness         |             |          |                      |
| Fresh                     | 0.0         | 0.0      | 0                    |
| Brown                     | 59,985.4    | 2,369.6  | 15                   |
| Brittle                   | 0.0         | 0.0      | 0                    |
|                           |             |          |                      |

#### -Supply summary-

| Recovered biomass to | Merchantable volume (odt) | Residues (odt) | Total biomass (odt) |
|----------------------|---------------------------|----------------|---------------------|
| 10 \$/odt            | 0.0                       | 0.0            | 0.0                 |
| 20 \$/odt            | 0.0                       | 0.0            | 0.0                 |
| 30 \$/odt            | 0.0                       | 0.0            | 0.0                 |
| 40 \$/odt            | 0.0                       | 0.0            | 0.0                 |
| 50 \$/odt            | 0.0                       | 0.0            | 0.0                 |
| 60 \$/odt            | 0.0                       | 33,025.1       | 33,025.1            |
| 70 \$/odt            | 0.0                       | 58,356.1       | 58,356.1            |
| 80 \$/odt            | 0.0                       | 58,356.1       | 58,356.1            |
| 90 \$/odt            | 0.0                       | 58,356.1       | 58,356.1            |
| 100 \$/odt           | 0.0                       | 59,387.8       | 59,387.8            |
| 110 \$/odt           | 0.0                       | 59,985.4       | 59,985.4            |
| Maximum cost         | 0.00 \$/odt               | 104.11 \$/odt  |                     |





-Delivery to mills-

| Destination  | Product                    | Format | odt    | Transport average<br>distance (Km) |
|--------------|----------------------------|--------|--------|------------------------------------|
| Port McNeill |                            |        |        |                                    |
|              | Hybrid spruce (residues)   | Chips  | 1,102  | 53                                 |
|              | LP Pine (residues)         | Chips  | 4      | 52                                 |
|              | Western Hemlock (residues) | Chips  | 288    | 58                                 |
|              | WR Cedar (residues)        | Chips  | 236    | 57                                 |
|              |                            |        | 1,629  | 55                                 |
| FPI_2        |                            |        |        |                                    |
|              | Doug Fir (residues)        | Chips  | 163    | 4                                  |
|              | Hybrid spruce (residues)   | Chips  | 11,265 | 9                                  |
|              | LP Pine (residues)         | Chips  | 423    | 14                                 |
|              | Red Alder (residues)       | Chips  | 60     | 3                                  |
|              | Subalpine fir (residues)   | Chips  | 75     | 9                                  |
|              | Western Hemlock (residues) | Chips  | 23,453 | 8                                  |
|              | WR Cedar (residues)        | Chips  | 22,917 | 9                                  |
|              |                            |        | 58,356 | 9                                  |
|              |                            | :      | 59,985 | 10                                 |









| erritoire:<br>Secteur:<br>Cut block: | Unknown territory<br>Unknown sector<br><multiple selection=""></multiple> |                           |
|--------------------------------------|---------------------------------------------------------------------------|---------------------------|
| -Statistics -                        | Selected Items                                                            |                           |
| Area                                 |                                                                           | 7,995.4 ha                |
| Number of cut                        | t blocks                                                                  | 198                       |
| Recovered bio                        | omass                                                                     | 197,211.6 odt             |
| Biomass yield                        |                                                                           | 24.7 odt/ha               |
| Biomass odt /                        | Merchantable m <sup>3</sup>                                               | 0.0428 odt/m <sup>3</sup> |
| Delivered proc                       | ducts                                                                     |                           |
| Chips                                |                                                                           | 100 %                     |
| Bundles                              |                                                                           | 0 %                       |
| <ul> <li>Trunks a</li> </ul>         | and Residues                                                              | 0 %                       |
| Energy balanc                        | ce                                                                        | 47 : 1                    |
| Available ener                       | ду                                                                        | 749,295 MWh               |
| Fuel consumpt                        | tion                                                                      | 9.3 L/odt                 |

| Harvesting                 | 0.00 \$/odt   |
|----------------------------|---------------|
| Biomass recovery           | 34.27 \$/odt  |
| Transfer yard              | 0.00 \$/odt   |
| Transportation             | 23.27 \$/odt  |
| Loading/unloading          | 11.31 \$/odt  |
| Stumpage fees              | 0.00 \$/odt   |
| Road network - Maintenance | 0.30 \$/odt   |
| Indirect costs             | 0.00 \$/odt   |
| Total                      | 69.15 \$/odt  |
| Revenue                    |               |
| Sale value                 | 0.00 \$/odt   |
| Silvicultural discount     | 0.00 \$/odt   |
| Net                        |               |
| Profit                     | -69.15 \$/odt |

Profit







| Products                   |           |        |        |
|----------------------------|-----------|--------|--------|
| Product name               | odt       | odt/m³ | odt/ha |
| Subalpine fir (residues)   | 26,173.3  | 0.0377 | 3.27   |
| WR Cedar (residues)        | 58,196.0  | 0.0411 | 7.28   |
| Red Alder (residues)       | 10,450.3  | 0.0823 | 1.31   |
| Western Hemlock (residues) | 80,082.7  | 0.0375 | 10.02  |
| Hybrid spruce (residues)   | 10,471.0  | 0.1363 | 1.31   |
| LP Pine (residues)         | 310.2     | 0.0387 | 0.04   |
| Doug Fir (residues)        | 11,405.5  | 0.0754 | 1.43   |
| Bigleaf Maple (residues)   | 122.6     | 0.1297 | 0.02   |
|                            | 197,211.6 | 0.0428 | 24.67  |





| -Recovery summary         |             |          |                      |
|---------------------------|-------------|----------|----------------------|
|                           | Volume(odt) | Area(ha) | Number of cut blocks |
| Biomass recovery location |             |          |                      |
| At the stump              | 0.0         | 0.0      | 0                    |
| Roadside                  | 197,211.6   | 7,995.4  | 198                  |
| Recovery season           |             |          |                      |
| Summer                    | 0.0         | 0.0      | 0                    |
| Winter                    | 197,211.6   | 7,995.4  | 198                  |
| Residue freshness         |             |          |                      |
| Fresh                     | 0.0         | 0.0      | 0                    |
| Brown                     | 197,211.6   | 7,995.4  | 198                  |
| Brittle                   | 0.0         | 0.0      | 0                    |
|                           |             |          |                      |

#### -Supply summary-

| Recovered biomass to | Merchantable volume (odt) | Residues (odt) | Total biomass (odt) |
|----------------------|---------------------------|----------------|---------------------|
| 10 \$/odt            | 0.0                       | 0.0            | 0.0                 |
| 20 \$/odt            | 0.0                       | 0.0            | 0.0                 |
| 30 \$/odt            | 0.0                       | 0.0            | 0.0                 |
| 40 \$/odt            | 0.0                       | 0.0            | 0.0                 |
| 50 \$/odt            | 0.0                       | 0.0            | 0.0                 |
| 60 \$/odt            | 0.0                       | 43,688.6       | 43,688.6            |
| 70 \$/odt            | 0.0                       | 106,075.2      | 106,075.2           |
| 80 \$/odt            | 0.0                       | 167,917.5      | 167,917.5           |
| 90 \$/odt            | 0.0                       | 197,211.6      | 197,211.6           |
| Maximum cost         | 0.00 \$/odt               | 89.90 \$/odt   |                     |



#### Delivery to mills-Transport average distance (Km) Destination Product Format odt FPI\_1 Bigleaf Maple (residues) Chips 22 123 27 Doug Fir (residues) Chips 11,405 Hybrid spruce (residues) Chips 10,471 30 LP Pine (residues) Chips 310 36 Red Alder (residues) Chips 10,450 25 Subalpine fir (residues) Chips 26,173 31 Western Hemlock (residues) Chips 80,083 31 WR Cedar (residues) Chips 58,196 30 197,212 30 197,212 30











| Territoire:<br>Secteur:<br>Cut block: | Unknown territory<br>Unknown sector<br><multiple selection=""></multiple> |                           |
|---------------------------------------|---------------------------------------------------------------------------|---------------------------|
|                                       | Selected Items                                                            |                           |
| Area                                  |                                                                           | 296.8 ha                  |
| Number of cut                         | t blocks                                                                  | 12                        |
| Recovered bio                         | mass                                                                      | 7,543.9 odt               |
| Biomass yield                         |                                                                           | 25.4 odt/ha               |
| Biomass odt /                         | Merchantable m <sup>3</sup>                                               | 0.0520 odt/m <sup>3</sup> |
| Delivered proc                        | ducts                                                                     |                           |
| Chips                                 |                                                                           | 100 %                     |
| Bundles                               |                                                                           | 0 %                       |
| Trunks a                              | and Residues                                                              | 0 %                       |
| Energy balance                        | e                                                                         | 58 : 1                    |
| Available ener                        | ду                                                                        | 28,555 MWh                |
| Fuel consumpt                         | tion                                                                      | 7.4 L/odt                 |
| Cost                                  |                                                                           |                           |

| Harvesting                 | 0.00 \$/odt   |
|----------------------------|---------------|
| Biomass recovery           | 34.27 \$/odt  |
| Transfer yard              | 0.00 \$/odt   |
| Transportation             | 15.34 \$/odt  |
| Loading/unloading          | 10.66 \$/odt  |
| Stumpage fees              | 0.00 \$/odt   |
| Road network - Maintenance | 0.05 \$/odt   |
| Indirect costs             | 0.00 \$/odt   |
| Total                      | 60.32 \$/odt  |
| Revenue                    |               |
| Sale value                 | 0.00 \$/odt   |
| Silvicultural discount     | 0.00 \$/odt   |
| Net                        |               |
| Profit                     | -60.32 \$/odt |

Profit







| Troducts                   |         |                    |        |
|----------------------------|---------|--------------------|--------|
| Product name               | odt     | odt/m <sup>3</sup> | odt/ha |
| WR Cedar (residues)        | 1,239.2 | 0.0424             | 4.17   |
| Hybrid spruce (residues)   | 1,633.4 | 0.1363             | 5.50   |
| Western Hemlock (residues) | 3,650.3 | 0.0407             | 12.30  |
| Doug Fir (residues)        | 1,021.0 | 0.0720             | 3.44   |
|                            | 7,543.9 | 0.0520             | 25.42  |





| -Recovery summary         |             |          |                      |
|---------------------------|-------------|----------|----------------------|
|                           | Volume(odt) | Area(ha) | Number of cut blocks |
| Biomass recovery location |             |          |                      |
| At the stump              | 0.0         | 0.0      | 0                    |
| Roadside                  | 7,543.9     | 296.8    | 12                   |
| Recovery season           |             |          |                      |
| Summer                    | 0.0         | 0.0      | 0                    |
| Winter                    | 7,543.9     | 296.8    | 12                   |
| Residue freshness         |             |          |                      |
| Fresh                     | 0.0         | 0.0      | 0                    |
| Brown                     | 7,543.9     | 296.8    | 12                   |
| Brittle                   | 0.0         | 0.0      | 0                    |
|                           |             |          |                      |

#### -Supply summary-

| Recovered biomass to | Merchantable volume (odt) | Residues (odt) | Total biomass (odt) |
|----------------------|---------------------------|----------------|---------------------|
| 10 \$/odt            | 0.0                       | 0.0            | 0.0                 |
| 20 \$/odt            | 0.0                       | 0.0            | 0.0                 |
| 30 \$/odt            | 0.0                       | 0.0            | 0.0                 |
| 40 \$/odt            | 0.0                       | 0.0            | 0.0                 |
| 50 \$/odt            | 0.0                       | 0.0            | 0.0                 |
| 60 \$/odt            | 0.0                       | 3,399.6        | 3,399.6             |
| 70 \$/odt            | 0.0                       | 7,543.9        | 7,543.9             |
| Maximum cost         | 0.00 \$/odt               | 62.58 \$/odt   |                     |





11 9

| Dolivory to millo- |                            |        |       |                                    |
|--------------------|----------------------------|--------|-------|------------------------------------|
| Derivery to mins-  |                            |        |       |                                    |
| Destination        | Product                    | Format | odt   | Transport average<br>distance (Km) |
| FPI_3              |                            |        |       |                                    |
|                    | Doug Fir (residues)        | Chips  | 1,021 | 11                                 |
|                    | Hybrid spruce (residues)   | Chips  | 1,633 | 9                                  |
|                    | Western Hemlock (residues) | Chips  | 3,650 | 10                                 |
|                    | WR Cedar (residues)        | Chips  | 1,239 | 10                                 |
|                    |                            |        | 7,544 | 10                                 |
|                    |                            |        | 7,544 | 10                                 |









#### info@fpinnovations.ca web.fpinnovations.ca

#### **OUR OFFICES**

Pointe-Claire 570 Saint-Jean Blvd. Pointe-Claire, QC Canada H9R 3J9 (514) 630-4100 Vancouver 2665 East Mall Vancouver, BC Canada V6T 1Z4 (604) 224-3221

Québec 1055 rue du P.E.P.S. Québec, QC Canada G1V 4C7 (418) 659-2647