

GHGenius 5.02b User Guide Hydrogenation-Derived Renewable Diesel (HDRD)

Issued: July 2024 Revised: N/A

Issued: July 2024

Revised: N/A

GHGenius 5.02b User Guide

Hydrogenation-Derived Renewable Diesel (HDRD) RLCF-026

Executive Summary

This guide is intended to assist Hydrogenation-Derived Renewable Diesel (HDRD) producers and suppliers in determining the carbon intensity of fuel delivered to British Columbia (BC) using GHGenius 5.02b.

The guide covers the steps that a GHGenius user must use to model a specific HDRD pathway. This includes ensuring that Excel can properly run the model, setting up the model with correct region, year and using the Global Warming Potentials (GWPs) specified in the BC regulations, and inputting the plant specific data.

It covers running the model more than once for activities that occur in multiple regions and describes where the results are found.

Issued: July 2024

Revised: N/A

GHGenius 5.02b User Guide

Hydrogenation-Derived Renewable Diesel (HDRD) RLCF-026

Table of Contents

1	Int	rodu	ıction	.7
	1.1	Pro	cess Overview	. 7
2	Init	ializ	ing the Model	10
	2.1	Exc	el Macro Settings	10
	2.2	Res	et Model	11
	2.3	Pro	duction Region	11
	2.4	Mo	del Year	12
	2.5	GW	P	12
3	Fee	edsto	ock	13
	3.1	Fee	dstock Production	13
	3.2	Fee	dstock Transportation	14
	3.3	Oil	Extraction from Feedstocks	14
4	HD	rd f	Production	15
	4.1	Fee	dstock	15
	4.2	Mo	del Year	15
	4.3	Mas	ss and Energy	16
	4.3	.1	Electricity	16
	4.3	.2	Diesel Fuel	16
	4.3	.3	Natural Gas	16
	4.3	.4	Feedstock	16
	4.3	.5	Chemicals	16
	4.4	Сор	products	17
	4.4	.1	Renewable Naphtha Emissions	19
	4.4	.2	Renewable Propane Emissions	19
	4.4	.3	Alternative Jet Fuel Emissions	20
	4.5	Car	bon Capture and Sequestration	20
	4.6	HDI	RD Transportation	20
5	Soy	/bea	n Oil HDRD Example	21
	5.1	Soy	bean Oil Renewable Naphtha Example	24
	5.2	Soy	bean Oil Renewable Propane Example	25
	5.3	Soy	bean Oil HDRJ Example	26
6	Tal	low I	HDRD Example	28
	6.1	Tall	ow Renewable Naphtha Example	32
7	Car	nola	HDRD Example	34

Revised: N/A

GHGenius 5.02b User Guide

Hydrogenation-Derived Renewable Diesel (HDRD) RLCF-026

List of Tables

Table 1-1	HDRD Pathways in GHGenius	.7
Table 2-1	GHGenius Regions	12
Table 4-1	Chemical Inputs	17
Table 5-1	Model Inputs for US Central Emissions Run	22
Table 5-2	US Central Emissions 2023	23
Table 5-3	Model Inputs for BC Emissions Run	23
Table 5-4	BC Emissions 2023	23
Table 5-5	Total Emissions 2023	24
Table 5-6	Model Inputs for Renewable Naphtha BC Emissions Run	24
Table 5-7	Total Emissions 2023 Renewable Naphtha	25
Table 5-8	Model Inputs for Renewable Propane BC Emissions Run	26
Table 5-9	Total Emissions 2023 Renewable Propane	26
Table 5-10	Model Inputs for HDRJ BC Emissions Run	27
Table 5-11	Total Emissions 2023 HDRJ	27
Table 6-1	Model Inputs for US Central Emissions Run	28
Table 6-2	US Central Emissions 2023	29
Table 6-3	Model Inputs for US West Emissions Run	29
Table 6-4	US West Emissions 2023	30
Table 6-5	Out-of-model Energy Allocation Calculation	30
Table 6-6	Model Inputs for BC Emissions Run	31
Table 6-7	BC Emissions 2023	31
Table 6-8	Total Emissions 2023	32
Table 6-9	Model Inputs for Renewable Naphtha BC Emissions Run	33
Table 6-10	Total Emissions 2023 Renewable Naphtha	33
Table 7-1	Model Inputs for Alberta Emissions Run	34
Table 7-2	Alberta Emissions 2023	35
Table 7-3	Model Inputs for US West Emissions Run	35
Table 7-4	US West Emissions 2023	36
Table 7-5	Model Inputs for BC Emissions Run	36
Table 7-6	BC Emissions 2023	36
Table 7-7	Total Emissions 2023	37

Issued: July 2024

Revised: N/A

GHGenius 5.02b User Guide

Hydrogenation-Derived Renewable Diesel (HDRD) RLCF-026

List of Figures

Soybean HDRD System Boundary	8
Animal Fat Biodiesel	9
Basic HDRD Process Diagram	10
US Regions	11
Feedstock Production Region	13
Transportation Inputs	14
Oil Extraction Inputs	15
Feedstock Drop-down Menu	15
HDRD Coproduct Quantities	18
HDRD Coproduct Displacement method	19
	Soybean HDRD System Boundary Animal Fat Biodiesel Basic HDRD Process Diagram US Regions Feedstock Production Region Transportation Inputs Oil Extraction Inputs Feedstock Drop-down Menu HDRD Coproduct Quantities HDRD Coproduct Displacement method

Issued: July 2024

Revised: N/A

GHGenius 5.02b User Guide

Hydrogenation-Derived Renewable Diesel (HDRD) RLCF-026

Glossary

AJF	Alternative Jet Fuel
BC	British Columbia
CCS	Carbon Capture and Storage
CI	Carbon Intensity
CO ₂	Carbon Dioxide
EPA	Environmental Protection Agency
GJ	Giga Joule (10 ⁹ Joules)
GWP	Global Warming Potential
HDRD	Hydrogenation-Derived Renewable Diesel
HDRJ	Hydrogenation-Derived Renewable Jet Fuel
HDRP	Hydrogenation-Derived Renewable Propane
HVO	Hydrogenated Vegetable Oil
IPCC	Intergovernmental Panel on Climate Change
Kg	Kilogram
kWh	Kilowatt-hour
LCA	Lifecycle Analysis
LCFS	Low Carbon Fuel Standard
LNG	Liquified Natural Gas
LPG	Liquid Petroleum Gas
MJ	Mega Joule
NaOH	Sodium hydroxide, also know as caustic soda
PADD	Petroleum Administration for Defense Districts
UNFCCC	United Nations Framework Convention on Climate Change

Revised: N/A

GHGenius 5.02b User Guide

Hydrogenation-Derived Renewable Diesel (HDRD) RLCF-026

1 Introduction

This guide is intended to assist HDRD producers and suppliers in determining the carbon intensity of fuel delivered to BC using GHGenius 5.02b.

HDRD is also know as renewable diesel or hydrotreated vegetable oil (HVO).

GHGenius is an Excel based lifecycle assessment (LCA) model that has been developed over the past twenty years. It is available for download at www.ghgenius.ca.

The model has some unique features compared to some other models. In many instances it uses time series of data rather than single data points. The time series of data combined with the use of some government forecasts allows the model to be used to show how emissions have changed and could change in the future. These time series also allow the model to "refresh" itself as GHGenius users change the year. This has allowed the model to continually provide lifecycle emissions that are temporally relevant.

The model also has data for a number of countries and regions throughout the world. This allows the same process to be modelled in different regions to determine the impact of local conditions and allows the modelling of fuels that might be produced in one region of the world and used in another region.

1.1 Process Overview

HDRD is produced from fats and oils throughout the world. There are more than 15 HDRD plants located in North America that process vegetable oils, animal fats and used cooking oils. The list of HDRD pathways in GHGenius are shown in the following table.

HDRD Feedstock						
Algae Oil	Palm Sludge Oil					
Canola Oil	Soybean Oil					
Camelina Oil	Spent Bleaching Earth (SBE)					
Distillers Corn Oil (Corn Oil)	Tallow					
Fish Oil	Tall Oil					
Jatropha Oil	Yellow Grease (Used Cooking Oil)					
Palm Oil						

Table 1-1	HDRD Pathways in GHGenius
-----------	---------------------------

The lifecycle system boundary for soybean HDRD is shown in the following figure. Other crops have similar system boundaries.

Waste based HDRD can have different system boundaries. The animal fat to HDRD system is shown in the following figure.

BRITISH	Ministry of Energy, Mines and Low Carbon Innovation	Low Carbon Fuels Act GHGenius 5.02b User Guide
COLUMBIA	Issued: July 2024 Revised: N/A	Hydrogenation-Derived Renewable Diesel (HDRD) RLCF-026

Figure 1-2 Animal Fat Biodiesel

There are several process developers that offer this HDRD technology including Topsoe, UOP, Axens, Shell and others. Currently, Topsoe have more plants in North America than the other HDRD technology providers. There are plants that only process vegetable oils and plants that only process multi-feedstock. There are quality criteria for the feedstock, particularly the phosphorus content, and some plants include pre-treatment units to lower the contaminants and prolong catalyst life. The basic process is similar and is shown in the following figure.

Figure 1-3 Basic HDRD Process Diagram

2 Initializing the Model

GHGenius is available to download at <u>https://ghgenius.ca/index.php/downloads/74-ghgenius-5-02b</u>. There is no cost to download the model, but GHGenius users must register at the website to be able to access the model.

When the model is downloaded, and the file unzipped it is an .xls file. This provides maximum compatibility with older versions of Excel. While this .xls file is larger than if it was saved as a .xlsm file, it will run faster and it will zip to a smaller file size. The.xls file cannot be saved as a .xlsx file due to the macros included in the file. If the file is converted to a .xlsm file, it cannot be converted back to an .xls file or .xlsx file. Some of the macro buttons in a converted .xlsm file will lose their functionality unless they are manually reassigned. It is best to run the model as a .xls file.

Before any facility specific data is entered in the model there are certain selections that must be made in the model.

2.1 Excel Macro Settings

GHGenius relies on macros to set up appropriate Excel settings, calculate many output values, and provide additional tools for GHGenius users. The model will not function properly without macros enabled.

To make Microsoft Office more secure, macros have become more difficult to enable when a file is downloaded from the internet. After downloading the model, macros can be unblocked by navigating to the file in File Explorer, right-clicking on the file, choosing Properties, and selecting Unblock on the General tab.

More information about this change and alternative ways to unblock macros can be found at <u>https://learn.microsoft.com/en-us/deployoffice/security/internet-macros-blocked</u>.

2.2 Reset Model

Revised: N/A

The Reset Model macro will run a series of smaller macros in an attempt to return GHGenius to the state in which it was downloaded. It will run the Canada regional default, set the GWP settings to the 2013 100-year values and the short-lived gases to carbon weighted, run most default buttons on the Input sheet and the Chemical Defaults button on the Alt Fuel Prod sheet. It does not set the year for the model.

The Reset Model macro can not fix any broken formulas or changes made outside of those stated above.

The Reset Model macro does not make any changes to the Coprods sheet. Nor does it change any of the values on the Alt Fuel Prod sheet related to the emission intensity of the chemicals included on the sheet.

If the file is closed without saving, the next time it opens it will open to the last saved version of the file.

2.3 Production Region

The region in which a plant is in should be selected. This region should be the province in Canada or the region in the United States. The US regions are aligned with the Energy Information Administration PADDs as shown in the following figure and table.

Figure 2-1 **US Regions**

Source: US Energy Information Administration

The GHGenius regions are listed in the following table.

Table 2-1 GHGenius Regions

GHGenius Region	Province or PADD		
US East	1		
US Central	2 and 3		
US West	4 and 5		
Canada West	BC, Alberta, Saskatchewan,		
	Manitoba		
Canada Central	Ontario, Quebec		
Canada East	New Brunswick, Nova Scotia.		
	Prince Edward Island,		
	Newfoundland		

HDRD plants are different than ethanol and biodiesel plants in that they do not draw all of their feedstock from the same PADD that the plant is located in. Some HDRD plants move the feedstock a long distance or the feedstock is produced in one region and processed in another. Modelling this scenario is discussed later. The most carbon intensive region for electricity and petroleum products is the US Central region and so using that region can be a conservative option where feedstock comes from more than one region.

For plants that process soybean oil, canola oil or tallow in the US, the model should first be reset (~F4) and then choose the actual feedstock production region and the "Install Regional Defaults" button.

Check to ensure the appropriate region has a 1.00 in row 9.

2.4 Model Year

The model should be set up for the same year as the data entered into the model represents. When the data extends over two or more years the model should be set for the latest year in the data set. The year must be input in two places in the model, in cell Input B7 (Target Year) and in row 241 (Base year for Alt Fuel Production) on the Input sheet.

2.5 GWP

The default GWP values that are selected by the model are the IPCC 5th Assessment Report values (cell B11 (2013 100 years) and D11 "Carbon Weighted" on the Input sheet). These are also selected if the Reset Model button is pushed.

To change the GWP values used in the model a GHGenius user can select alternative values in the drop-down menus in cells B11 and D11(GWP Selector & Short-Lived Gases).

Issued: July 2024 Revised: N/A **GHGenius 5.02b User Guide**

Hydrogenation-Derived Renewable Diesel (HDRD) RLCF-026

3 Feedstock

If the plant processes more than one feedstock, the model must be run for each feedstock separately. Since it is unlikely that the plant will have separate data on the energy requirements, HDRD yield and chemical requirements, the same values should be used for each feedstock.

The feedstock weights are entered on an as received basis. There is no requirement to adjust them to dry weight.

3.1 Feedstock Production

If feedstock production data is not available, model defaults for feedstock production should be used. Currently, no HDRD plant is integrated with a crushing facility, therefore no change is required for the feedstock production parameters. If that changes in the future, then section 3.3 describes the changes.

Some feedstock producing regions are selected by the model when the range is selected but this is not the case for every feedstock. GHGenius users should ensure that the appropriate feedstock region is selected for modeling the specific feedstock. These values are found on the Input sheet in rows 153 to 236 and in columns B to Q. An example is shown in the following figure.

	А	В	С	D	E	F	G	
153	FERTILIZER MANUFACTURE, APPLICATION; NUTRIENT LOSS; LAND USE (heet: Fertilizer	s)					
		Canada	Canada	Canada				
154	Country data on yields and fertilizer use for:	East	Central	West	US East	US Central	US West	
155	Corn harvest vield, 1994 (tonne/hectare)	7.20	7.20	4.70	7.60	7.60	7.60	
156	Change in corn harvest yield (Exp)	1.50	1.50	2.10	1.60	1.60	1.60	
157	N rate, corn (kg/tonne)	13.00	13.00	13.00	19.20	19.20	19.20	
158	Corn Producing Region	0.00	0.00	0.00	0.00	1.00	0.00	
159	Wheat harvest yield, 2000 (tonne/hectare)	2.40	2.40	2.40	2.40	2.40	2.40	
160	Change in wheat harvest yield (Exp)	1.40	1.40	1.40	1.40	1.40	1.40	
161	N rate, wheat (kg/tonne)	20.00	20.00	20.00	20.00	20.00	20.00	
162	Wheat Producing Region	0.00	0.00	0.00	0.00	1.00	0.00	
163	Barley harvest yield, 1994 (tonne/hectare)	2.80	2.80	2.80	2.80	2.80	2.80	
164	Change in barley harvest yield (Exp)	1.10	1.10	1.10	1.10	1.10	1.10	
165	N rate, barley (kg/tonne)	23.00	23.00	23.00	23.00	23.00	23.00	
166	Barley Producing Region	0.00	0.00	0.00	0.00	0.00	1.00	
167	Peas harvest yield, 1994 (tonne/hectare)	2.00	2.00	2.00	2.00	2.00	2.00	
168	Change in peas harvest yield (Exp)	1.10	1.10	1.10	1.10	1.10	1.10	
169	N rate, peas (kg/tonne)	4.00	4.00	4.00	4.00	4.00	4.00	
170	Peas Producing Region	0.00	0.00	1.00	0.00	0.00	0.00	
171	Sey harvest yield 1994 (tonne/hectare)	2.50	2.50	2.50	2.40	2.40	2.40	
172	Change in soy harvest vield (Exp)	0.90	0.90	0.90	1.30	1.30	1.30	
173	N rate, Soybean (kg/tonne)	1.80	1.80	1.80	1.80	1.80	1.80	
174	Soybean Producing Region	0.00	0.00	0.00	0.00	1.00	0.00	
175	Canola harvest yield, 1994 (tonne/hectare)	1.40	1.40	1.40	1.40	1.40	1.40	
176	Change in Canola harvest yield (Exp)	1.60	1.60	1.60	1.60	1.60	1.60	
177	N rate, Canola (kg/tonne)	51.00	51.00	51.00	51.00	51.00	51.00	
178	Canola Producing Region	0.00	0.00	0.00	0.00	0.00	1.00	
179	Palm harvest yield, 2000 (tonne/hectare)	18.30	18.30	18.30	18.30	18.30	18.30	

Figure 3-1 Feedstock Production Region

3.2 Feedstock Transportation

Feedstock transportation is set on the Input sheet in rows 76 though 86. The one-way distance in kilometres is input in rows 76 to 80. The tonnes-shipped/tonnes-produced (rows 82 to 86) will add up to 1.00 or greater, but it should not be less than one. A sum greater than one would indicate a multi-modal route where the feedstock might be shipped by truck to a rail loading facility and then shipped by rail to the ethanol plant.

This area of the Input sheet is shown in the following figure.

Figure 3-2 Transportation Inputs

	A		E	F
73	TRANSPORTATION OF FEEDSTOCKS			
74			Coal	Corn
75	Average	km shipped	to H2	to Plant
76	By Rail		0	0
77	Domestic water		0	0
78	International water		0	0
79	Pipeline, tram, conveyor		10	0
80	Truck	Defaults	0	100
81	Tonnes-shipped/tonne-produced			
82	By Rail		0.00	0.00
83	Domestic water		0.00	0.00
84	International water		0.00	0.00
85	Pipeline, tram, conveyor		1.00	0.00
86	Truck		0.00	1.00
07				

3.3 Oil Extraction from Feedstocks

If primary data (data measured at the facility) is available for the extraction process, then this can be used in the modelling in place of using the default values. This information is added in rows 239 to 248 on the input sheet. The quantity of hexane (petroleum is used as a proxy for hexane) used in solvent extraction processes can be entered on the Alt Fuel Prod sheet in row 60 and the appropriate column for the feedstock (columns BB to CA).

The section of the Input sheet is shown in the following figure.

Figure 3-3 Oil Extraction Inputs

	А	AS	AT	AU
238	ALTERNATIVE FUEL PRODUCTION (Sheet: Alt Fuel Prod)			
239	Fuel>	Canola Oil	Soybean Oil	Palm oil
240	Feedstock>	Canola	Soybean	Palm
241	Base year>	2010	2008	2005
242	Inputs (below) per output>	litre	litre	litre
243	Net electricity purchased (kWh) (base year)	0.10	0.26	0.00
244	Diesel (litres) (base year)	0.00	0.00	0.00
245	Natural gas (MJ) (base year)	2.14	5.75	0.00
246	Coal (kg) (base year) Defaults	0.00	0.00	0.00
247	Wood, grass, crop residue, MSW, RDF (dry kg) (base year)	0.00	0.00	0.16
248	Corn/soybeans/Canola/wheat (base year), Rendering , Fish Oil (kg)	2.10	4.79	4.00
249				

4 HDRD Production

The input data for the HDRD pathway is input into the model on a per litre of HDRD basis. The volume should be before any diesel fuel is added to the HDRD to collect the US Blenders Tax Credit.

Note: the model labels HDRD as HRD.

4.1 Feedstock

While all the lipid feedstocks can be used for HDRD production there is only one output column on the Upstream Emissions HHV and BC LCFS sheet. The selection of the feedstock is made using the drop-down menu in cell B53 on the Input sheet, see figure below.

Figure 4-1 Feedstock Drop-down Menu

51	Deset - Lirea switch and concentration to meet low NOX requirements	0.00	01	or no SCR or 1 for SCR 0.05 W
52	Electrofuel fraction of biogenic CO2	0.00	Ŭ.	
53	HRD Feedstock	Canola Oil	-	
54	HRJ Feedstock	Canola Oil	^	
55	HRG Feedstock	Soybean Oil		
56	ETJ Feedstock (Ethanol from)	Palm Oil		Diesel Su
57	RFG Sulfur: Type 1 for low sulphur (30 ppm), 0 for no sulphur (1 ppm)	Jatropha Oil		Enter desired sulphur concentration (ppm)
58		Camelina Oil		rn stover (C) Vheat Straw (W) Hay (H)
59	Fraction of ag residue "grass" input for biofuels	Algae Oil		0.00 1.00 0.00
60		Tallow		
61	Canadian Crude Split (Sheet: Crude Production)	Yellow Grease		
62	Which region choose a crude split from	Tall Oil		
		Palm Sludge Oil		whitewale) affals and any beauty
	< > ··· Input BC LCFS Coprods Alt Fuel Prod Exhaust Emiss	SBE Oil Corn Oil	~	Sequestration Service Stations Energy E

4.2 Model Year

When modelling a specific plant, it is important to match the model year in B7, the base year in row 241, and the date that data was collected.

4.3 Mass and Energy

Revised: N/A

The main mass and energy inputs are on the Input sheet in rows 243 to 248. These values should be for the fuel's active year, as defined in row 241. Column CD is the column for a HDRD plant.

4.3.1 Electricity

The net electricity purchased is based on the generic power of the region in which the model is run. This value is entered in cell CD243. The input unit for electricity is kilowatt-hours (kWh) per litre of HDRD.

4.3.2 Diesel Fuel

There can be a small amount of diesel fuel used at some HDRD plants for rail car shuttles, front end loaders, etc. This value, litres of diesel/litre of HDRD, is entered in CD244.

4.3.3 Natural Gas

The natural gas carbon intensity is not strongly regional. The value is entered in cell CD245. The input unit for natural gas is megajoules per litre (MJ/litre) on a higher heating value basis. If the HDRD plant produced its own hydrogen, then the model input includes the gas used for the production of hydrogen as well as natural gas used for other purposes in the plant. If the hydrogen is purchased, the quantity of hydrogen is entered on the Alt Fuel Prod sheet and the natural gas value is just for those other applications in the plant.

4.3.4 Feedstock

The feedstock input for the HDRD pathway is in CD248. The input is kg of oil per litre of HDRD.

4.3.5 Chemicals

Chemical inputs into a HDRD pathway can be specified on the Alt Fuel Prod sheet. The HDRD Column is CM. The most common input is hydrogen. Plants may also use acids and bases for pretreatment of the feedstock.

All chemical inputs are based on 100% purity and input values may need to be adjusted based on their purity. For example, a 93% pure sulphuric acid should be multiplied by 0.93 before being input into the model.

Table 4-1Chemical Inputs

Chemical	Row on Alt Fuel Prod
Citric acid	36
Hydrogen	44
NaOH	53
Nitrogen - gaseous	56
Phosphoric acid	62

4.4 Coproducts

HDRD production produces several coproducts, which can be consumed in the plant as a fuel or a feedstock to produce hydrogen, sold as products, or sold as fuel to adjacent facilities. All three scenarios can be found in North American HDRD plants. GHGenius includes the following HDRD coproducts:

- LPG,
- Naphtha.
- Fuel gas (by mass), Fuel gas by energy can be modelled as RNG, and
- Hydrogenation-Derived Renewable Jet fuel (HDRJ)

The quantities of coproducts are entered on the Coprods sheet in column BC, rows 135 (LPG), 137 (naphtha), 138 (RNG), 141 (fuel gas), and 143 (HDRJ). See figure 4-2 below with modifiable cells' values bolded.

Note: The coproduct sponge gas is not a default modifiable cell (BC142) for this pathway and should not be highlighted yellow.

GHGenius 5.02b User Guide

Hydrogenation-Derived Renewable Diesel (HDRD) RLCF-026

Figure 4-2 HDRD Coproduct Quantities

Revised: N/A

134 LPG (displacing bio-LPG) (L)	0.00
135 LPG (displacing fossil-LPG) (L)	0.05
136 Naphtha (displacing bio-naphtha) (L)	0.00
137 Naphtha (displacing fossil-naphtha) (L)	0.00
138 Renewable Natural Gas (MJ)	0.00
139 Propylene Glycol (kg)	0.00
140 Xylitol (kg)	0.00
141 Fuel Gas (kg)	0.00
142 Sponge Gas (kg)	0.00
143 HRJ (L)	0.00

When the coproducts can be used as a drop-in fuel for transportation or can be upgraded and used as transportation fuels, their emissions should be allocated based on their energy content. This applies to naphtha, LPG (see below), and HDRJ.

GHGenius allocates emissions for LPG coproducts using the displacement method by default. However, applicants must choose the energy allocation method if the LPG meets specific criteria (Refer to the definition of Grade 1 Propane in CAN/CGSB-3.14-2023 for composition details):

- Propane volume percentage exceeding 90%, and
- Propene volume percentage less than 5%, and
- Butane and heavier hydrocarbons combined volume percentage less than 2.5%

If the LPG composition aligns with above specifications, you must manually change the allocation method in cells B189 and B190 of the Coprods sheet to "energy". For LPG composition which falls outside above limits, the displacement method remains the default approach in GHGenius. If an applicant has a compelling reason to use the displacement allocation method, they should submit an application for review by the LCFB. This application should be accompanied by evidence supporting the LPG's composition and justifying the use of the <u>alternative method</u>.

Figure 4-3 HDRD Coproduct Displacement method

189	LPG (displacing bio-LPG) (L)	Energy
190	LPG (displacing fossil-LPG) (L)	Energy
191	Naphtha (displacing bio-naphtha) (L)	Energy
192	Naphtha (displacing fossil-naphtha) (L)	Energy
193	Renewable Natural Gas	Energy
194	Propylene Glycol (kg)	Displacement
195	Xylitol (kg)	Displacement
196	Fuel Gas (kg)	Displacement
197	Sponge Gas (kg)	Displacement
198	HRJ (L)	Energy

LPG is entered in cell BC135 on a litre of LPG/litre of HDRD basis. The naphtha is entered in cell BC137 on a litres of naphtha per litre of HDRD basis. Fuel gas is usually available on an energy content basis, and it can be entered in cell BC138 (RNG) on a MJ/litre of HDRD basis. There is an entry for fuel gas on a mass basis (row 141), but this would assume that the fuel gas has the same energy density as natural gas, which may not be accurate. HDRJ is entered in cell BC143 on a litre of HDRJ/litre of HDRD basis.

4.4.1 Renewable Naphtha Emissions

The applicant has the option to receive a unique fuel code for the renewable naphtha coproduct, also referred to as Hydrogenation-Derived Renewable Gasoline (HDRG), to be used as a transportation fuel. The renewable naphtha will have the same carbon intensity (CI) as HDRD, except it will have higher exhaust emissions, and slightly different fuel distribution and storage, and fuel dispensing emissions.

These results are obtained during the model run for the BC region to calculate final distribution of 80 km, dispensing, and fuel use emissions. The results for renewable naphtha are found on the BC LCFS sheet, column AM, rows 16 to 18. Typically exhaust emissions for renewable naphtha are 0.5 gCO₂e/MJ higher than HDRD.

4.4.2 Renewable Propane Emissions

The applicant has the option to receive a separate unique fuel code for the LPG coproduct, also referred to as renewable propane or Hydrogenation-Derived Renewable Propane (HDRP), to be used as a transportation fuel. The renewable propane will have the same carbon intensity (CI) as HDRD, except it will have higher exhaust emissions, and slightly different fuel distribution and storage, and fuel dispensing emissions.

These results are obtained during the model run for the BC region to calculate final distribution of 80 km, dispensing, and fuel use emissions. The results for renewable propane are found on the BC LCFS sheet, column AN, rows 16 to 18. Typically exhaust emissions for renewable propane are 1.5 gCO₂e/MJ higher than HDRD.

4.4.3 Alternative Jet Fuel Emissions

Revised: N/A

The applicant has the option to receive a separate fuel code for the HDRJ (alternative jet fuel) coproduct to be used as a transportation fuel. The HDRJ will have the same carbon intensity (CI) as HDRD, except it will have lower exhaust emissions, and slightly different fuel distribution and storage, and fuel dispensing emissions.

RLCF-026

These results are obtained during the model run for the BC region to calculate final distribution of 80 km, dispensing, and fuel use emissions. The results for HDRJ are found on the BC LCFS sheet, column AL, rows 16 to 18. Typically exhaust emissions for HDRJ are 1 gCO₂e/MJ lower than HDRD.

4.5 Carbon Capture and Sequestration

The CO_2 emissions from HDRD plants are much lower than they are for ethanol plants because the energy use for the process is lower; and there is much less CO_2 released during the process and only if the hydrogen is being produced by the plant. GHGenius 5.02b does not have the capacity to model captured CO_2 as part of the carbon intensity modelling of HDRD.

4.6 HDRD Transportation

The HDRD transportation parameters are in column AZ on the Input sheet. On row 91 of the Input sheet is a dropdown asking if transloading should be included. Most modelled scenarios will include these emissions once, while some will include the emissions multiple times if there are multiple locations where the fuel is stored while awaiting a change of transportation mode.

In a typical HDRD plant, the dropdown will be set to "No" when running results in the production region and "Yes" when running results in BC for final distribution.

All fuels will have 80 km of truck transportation in the BC region, in addition to any other known transportation distances. When the BC distribution emissions are being modelled AZ91 should be set to "YES" to capture the energy used for blending and truck loading.

GHGenius 5.02b User Guide

Hydrogenation-Derived Renewable Diesel (HDRD) RLCF-026

5 Soybean Oil HDRD Example

Revised: N/A

Any fuels produced outside of BC will require at least two runs of the model to accurately calculate the results. In the case of HDRD, a common scenario is feedstock and fuels produced in US Central and moved via rail to BC. Below is an example of that using some assumptions. This HDRD is produced from soybean oil (SBO) with the feedstock and HDRD production in the same region.

The first run will be in the US Central region. Be sure to click the Apply Regional Defaults button after setting cell B4 to the appropriate region, as shown in the figure below.

The following table shows the values used for this modelling exercise. A GHGenius user would replace these values with their actual values. For this example, the HDRD plant operator will be buying SBO from a crusher. Only the transportation distances for the SBO will be known, while all other feedstock inputs will retain the model's defaults.

All HDRD pathways share the same inputs and output, with the feedstock selected via a dropdown. This exercise also details the steps of how to model renewable propane, naphtha and HDRJ coproducts which can receive a fuel code.

The output coproduct LPG/renewable propane/HDRP was tested and meets the specifications required for use as a transportation fuel under CAN/CGSB-3.14-2023 and must be allocated by energy.

Revised: N/A

GHGenius 5.02b User Guide

Hydrogenation-Derived Renewable Diesel (HDRD) RLCF-026

Table 5-1Model Inputs for US Central Emissions Run

Sheet	Cell	Description	Value
Input	B4	Region	US Central
Input	B7	Year	2023
Input	B53	HRD Feedstock	Soybean Oil
Input	N76	SBO Rail distance	300
Input	N80	SBO Truck distance	0
Input	N82	SBO Rail mode	1
Input	N86	SBO Truck mode	0
Input	AZ91	HRD Transloading	No
Input	AZ92	HRD Rail Distance	3000
Input	AZ96	HRD Truck distance	0
Input	AZ98	HRD Rail mode	1
Input	AZ102	HRD Truck mode	0
Input	CD241	Year	2023
Input	CD243	Electricity	0.05
Input	CD245	NG	0.2
Input	CD248	HRD Feedstock	0.95
Alt Fuel Prod	CM44	Hydrogen	0.03
Alt Fuel Prod	CM53	NaOH	0
Alt Fuel Prod	CM55	Nitrogen	0
Alt Fuel Prod	CM62	Phosphoric acid	0
Coprods	BC135	LPG (displacing	0.02
		fossil-LPG) (L)	
Coprods	BC137	Naphtha	0.015
		(displacing fossil-	
		naphtha) (L)	
Coprods	BC143	HRJ (L)	0.015
Coprods	A154	Order of	After displacement
		operations	
Coprods	B190	Allocation by	Energy

The results for the year 2023 are shown in the following table. These values are from the BC LCFS sheet. Column AK, rows 8 to 16. Note your results may differ slightly to the results below.

Table 5-2US Central Emissions 2023

Revised: N/A

Stage	Emissions, g CO₂eq/GJ (HHV)
Direct land use change	0
Feedstock production or cultivation	34,260
Feedstock upgrading	15,076
Feedstock transport	1,910
Feedstock coproducts production	-41,193
Avoided emissions	0
Fuel production	11,256
Fuel coproducts production	-848
Fuel distribution and storage	1,246

The second run will be in the BC region to calculate final distribution of 80 km, dispensing, and fuel use emissions. Most of the inputs can be left the same as the first US Central run. Changes are outlined in the following table.

Table 5-3Model Inputs for BC Emissions Run

Sheet	Cell	Description	Value
Input	B4	Region	BC
Input	AZ91	HRD Transloading	Yes
Input	AZ92	HRD Rail distance	0
Input	AZ96	HRD Truck Distance	80
Input	AZ98	HRD Rail mode	0
Input	AZ102	HRD Truck mode	1

The results for the BC region are below. These are again from the BC LCFS sheet, column AK rows 16 to18.

Table 5-4BC Emissions 2023

Stage	Emissions, g CO ₂ eq/GJ (HHV)
Fuel distribution and storage	395
Fuel dispensing	82
Vehicle or Vessel operation	1,524

The results from the two regions can be combined to produce a final CI of 23.71g CO₂eq/MJ. The values in the first two columns are summed to produce the values in the right-hand column.

GHGenius 5.02b User Guide

Hydrogenation-Derived Renewable Diesel (HDRD) RLCF-026

Table 5-5Total Emissions 2023

Revised: N/A

Stage	US Central	BC Emissions	Total
	Emissions		Emissions
	()	g CO₂eq/GJ (HHV))
Direct land use change	0		0
Feedstock production or	34,260		34,260
cultivation			
Feedstock upgrading	15,076		15,076
Feedstock transport	1,910		1,910
Feedstock coproducts	-41,193		-41,193
production			
Avoided emissions	0		0
Fuel production	11,256		11,256
Fuel coproducts production	-848		-848
Fuel distribution and storage	1,246	395	1,641
Fuel dispensing		82	82
Vehicle or Vessel operation		1,524	1,524
Total	21,706	2,000	23,706
Total, g CO₂eq/MJ			23.71

5.1 Soybean Oil Renewable Naphtha Example

Renewable naphtha is a coproduct of HDRD, because of this it will have the same CI as the HDRD it is produced with, except it will have higher exhaust emissions, and slightly different fuel distribution and storage, and fuel dispensing emissions. To model the renewable naphtha BC run, we use the inputs in the table below.

Table 5-6	Model Inputs for Renewable Naphtha BC Emissions Run

Sheet	Cell	Description	Value
Input	B4	Region	BC
Input	B55	HRG Feedstock	Soybean Oil
Input	BB91	HRG Transloading	Yes
Input	BB92	HRG Rail distance	0
Input	BB96	HRG Truck Distance	80
Input	BB98	HRG Rail mode	0
Input	BB102	HRG Truck mode	1

When doing the BC run, the results for renewable naphtha are found on the BC LCFS sheet, column AM (HRG), rows 16 to 18. Renewable naphtha produced from the same feedstock will have a CI of 24.19 gCO₂e/MJ in this example.

Table 5-7 Total Emissions 2023 Renewable Naphth

Stage	US Central	BC Emissions	Total
	Emissions		Emissions
		g CO₂eq/GJ (HHV)	
Direct land use change	0		0
Feedstock production or	34,260		34,260
cultivation			
Feedstock upgrading	15,076		15,076
Feedstock transport	1,910		1,910
Feedstock coproducts	-41,193		-41,193
production			
Avoided emissions	0		0
Fuel production	11,256		11,256
Fuel coproducts production	-848		-848
Fuel distribution and storage	1,246	409	1,655
Fuel dispensing		85	85
Vehicle or Vessel operation		1,993	1,993
Total	21,706	2,487	24,193
Total, g CO₂eq/MJ			24.19

5.2 Soybean Oil Renewable Propane Example

Renewable propane (LPG) is a coproduct of HDRD, because of this it will have the same CI as the HDRD it is produced with, except it will have higher exhaust emissions, and slightly different fuel distribution and storage, and fuel dispensing emissions. As mentioned previously, the renewable propane produced here meets the specifications for grade 1 propane under CAN/CGSB-3.14-2023, and therefore is modelled using energy allocation. To model the renewable propane BC run, we use the inputs in the table below.

Table 5-8Model Inputs for Renewable Propane BC Emissions Run

Sheet	Cell	Description	Value
Input	B4	Region	BC
Input	B53	HRD Feedstock	Soybean Oil
Input	BC91	HRP Transloading	Yes
Input	BC92	HRP Rail distance	0
Input	BC96	HRP Truck Distance	80
Input	BC98	HRP Rail mode	0
Input	BC102	HRP Truck mode	1

When doing the BC run, the results for renewable propane are found on the BC LCFS sheet, column AN, rows 16 to 18. Renewable propane produced from the same feedstock will have a CI of 25.15 gCO₂e/MJ in this example.

Table 5-9Total Emissions 2023 Renewable Propane

Stage	US Central	BC Emissions	Total
	Emissions		Emissions
		g CO₂eq/GJ (HHV)	
Direct land use change	0		0
Feedstock production or	34,260		34,260
cultivation			
Feedstock upgrading	15,076		15,076
Feedstock transport	1,910		1,910
Feedstock coproducts	-41,193		-41,193
production			
Avoided emissions	0		0
Fuel production	11,256		11,256
Fuel coproducts production	-848		-848
Fuel distribution and storage	1,246	457	1,703
Fuel dispensing		87	87
Vehicle or Vessel operation		2,896	2,896
Total	21,706	3,441	25,147
Total, g CO₂eq/MJ			25.15

5.3 Soybean Oil HDRJ Example

HDRJ (alternative jet fuel) is a coproduct of HDRD, because of this it will have the same CI as the HDRD it is produced with, except it will have lower exhaust emissions, and slightly

different fuel distribution and storage, and fuel dispensing emissions. To model the HDRJ BC run, we use the inputs in the table below.

Table 5-10	Model Inputs for HDRJ BC Emissions Run
------------	--

Sheet	Cell	Description	Value
Input	B4	Region	BC
Input	B54	HRJ Feedstock	Soybean Oil
Input	BA91	HRJ Transloading	Yes
Input	BA92	HRJ Rail distance	0
Input	BA96	HRJ Truck Distance	80
Input	BA98	HRJ Rail mode	0
Input	BA102	HRJ Truck mode	1

When doing the BC run, the results for HRJ are found on the BC LCFS sheet, column AL, rows 16 to 18. HRJ produced from the same feedstock will have a CI of 22.77 gCO₂e/MJ in this example.

Table 5-11Total Emissions 2023 HDRJ

Stage	US Central	BC Emissions	Total
	Emissions		Emissions
		g CO₂eq/GJ (HHV)	
Direct land use change	0		0
Feedstock production or	34,260		34,260
cultivation			
Feedstock upgrading	15,076		15,076
Feedstock transport	1,910		1,910
Feedstock coproducts	-41,193		-41,193
production			
Avoided emissions	0		0
Fuel production	11,256		11,256
Fuel coproducts production	-848		-848
Fuel distribution and storage	1,246	404	1,650
Fuel dispensing		84	84
Vehicle or Vessel operation		572	572
Total	21,706	1,059	22,765
Total, g CO₂eq/MJ			22.77

Revised: N/A

GHGenius 5.02b User Guide

Hydrogenation-Derived Renewable Diesel (HDRD) RLCF-026

6 Tallow HDRD Example

Any fuels produced outside of BC will require at least two runs of the model to accurately calculate the results. HDRD plants will not always be in the same region as where the feedstocks are produced. Below is an example of that, using the assumed inputs of tallow produced in US Central and HDRD produced in US West. This scenario requires three model runs.

The first run will be in the US Central region. Be sure to click the Apply Regional Defaults button after setting cell B4 to the appropriate region. The following table shows the values used for this modelling exercise. A GHGenius user would replace these values with their actual values. For this example, the HDRD plant operator will be buying tallow from a renderer. Only the transportation distances for the tallow will be known, while all other feedstock inputs will retain the model's defaults.

All HDRD pathways share the same inputs and outputs, with the feedstock selected via a dropdown. This exercise also details the steps of how to model naphtha coproducts which can receive a fuel code. The LPG produced was tested and does not meet the specifications for grade 1 propane under CAN/CGSB-3.14-2023, and as such, cannot receive a fuel code under the BC LCFS. As a result, LPG emissions are allocated based on displacement rather than energy as in the previous example.

Note: GHGenius labels HDRD as HRD

Sheet	Cell	Description	Value
Input	B4	Region	US Central
Input	B7	Year	2023
Input	B53	HRD Feedstock	Tallow
Input	X76	Tallow Rail distance	2,000
Input	X80	Tallow Truck distance	0
Input	X82	Tallow Rail mode	1
Input	X86	Tallow Truck mode	0
Input	CD241	Year	2023
Input	CD248	HRD Feedstock	0.95

Table 6-1Model Inputs for US Central Emissions Run

The results for the year 2023 are shown in the following table. These values are from the BC LCFS sheet. Column AK, rows 8 to 13.

Table 6-2 **US Central Emissions 2023**

Revised: N/A

Stage	Emissions, g CO₂eq/GJ (HHV)
Direct land use change	0
Feedstock production or cultivation	0
Feedstock upgrading	19,248
Feedstock transport	2,442
Feedstock coproducts production	-10,460
Avoided emissions	0

RLCF-026

The second region will be a US West run, that accounts for fuel production from the tallow. For now, the naphtha coproduct will be entered as zero (Coprods BC137) as this credit needs to be calculated outside of the model. Be sure to hit the Apply Regional Defaults button after setting cell B4 to the appropriate region (US West).

Model Inputs for US West Emissions Run Sheet Description Value Cell Input B4 Region US West Input B7 Year 2023 Input B53 Feedstock Tallow Input AZ91 HRD Transloading No Input AZ92 **HRD** Rail distance 2,000 Input AZ96 HRD Truck distance AZ98 HRD Rail mode Input AZ102 Input HRD Truck mode CD241 2023 Input Year Input CD243 Electricity 0.05 CD245 NG 0.2 Input HRD Feedstock 0.95 Input CD248 Alt Fuel Prod CM44 Hydrogen 0.03 Alt Fuel Prod CM53 NaOH Alt Fuel Prod CM55 Nitrogen Alt Fuel Prod CM62 Phosphoric acid Coprods BC135 LPG 0.02 Coprods BC137 Naphtha Coprods B190 Allocation by Displacement

Table 6-3

The results for the year 2023 are shown in the following table. These values are from the BC LCFS sheet. Column AK, rows 14 to 16.

0 1

0

0

0

0

0

Table 6-4US West Emissions 2023

Revised: N/A

Stage	Emissions, g CO ₂ eq/GJ (HHV)
Fuel production	11,285
Fuel coproducts production	-961
Fuel distribution and storage	838

RLCF-026

We want to model an additional 0.03 L of naphtha coproduct produced. Because this pathway is across multiple regions, any coproducts using energy allocation must be handled separately. By entering 0.03 in cell BC137 on Coprods, the fraction of energy coproducts can be found in cell BC163. The result is 0.026598683 (unitless). To calculate the naphtha coproduct emissions, use the fraction and multiply by the sum of emissions of all previous stages including the non-energy coproducts. Do not include fuel distribution, dispensing, or vehicle operation. This is shown in the following table with the bolded cells summed.

	USC	USW	Out of model energy allocation
Direct land use change	0		
Feedstock production or	0		
cultivation			
Feedstock upgrading	19,248		
Feedstock transport	2,442		
Feedstock coproducts	-10,460		
production			
Avoided emissions	0		
Fuel production		11,285	
Fuel coproducts		-961	-573 =
production			-0.026598683* (19,248 +
			2,442 + -10,460 +11,285-
			961)
Fuel distribution and		838	
storage			
Fuel dispensing			
Vehicle or Vessel			
operation			

The third run will be in the BC region to calculate final distribution of 80km, dispensing, and fuel use emissions. Most of the inputs can be left the same as the first US Central run. Changes are outlined in the following table.

Table 6-6Model Inputs for BC Emissions Run

Sheet	Cell	Description	Value
Input	B4	Region	BC
Input	AZ91	HRD Transloading	Yes
Input	AZ92	HRD Rail distance	0
Input	AZ96	HRD Truck Distance	80
Input	AZ102	HRD Truck mode	1

The results for the BC region are below. These are again from the BC LCFS sheet, column AK rows 16 to 18.

Table 6-7BC Emissions 2023

Stage	Emissions, g CO2eq/GJ (HHV)
Fuel distribution and storage	395
Fuel dispensing	82
Vehicle or Vessel operation	1,524

The results from the three regions can be combined to produce a final CI of 23.82 g CO_2eq/MJ . The values in the first four columns are summed to produce the values in the right-hand column.

Table 6-8 Total Emissions 2023

Revised: N/A

Stage	US	US West	Energy	BC	Total
	Central	Emission	Coproduc	Emission	Emission
	Emission	s	t	S	S
	s				
		g (CO₂eq/GJ (H⊦	HV)	
Direct land use change	0				0
Feedstock production	0				0
or cultivation					
Feedstock upgrading	19,248				19,248
Feedstock transport	2,442				2,442
Feedstock coproducts	-10,460				-10,460
production					
Avoided emissions	0				0
Fuel production		11,285			11,285
Fuel coproducts		-961	-573		-1,535
production					
Fuel distribution and		838		395	1,233
storage					
Fuel dispensing				82	82
Vehicle or Vessel				1,524	1,524
operation					
Total	11,231	11,162	-573	2,000	23,820
Total, g CO₂eq/MJ					23.82

6.1 Tallow Renewable Naphtha Example

Renewable naphtha is a coproduct of HDRD, because of this it will have the same CI as the HDRD it is produced with, except it will have higher exhaust emissions, and slightly different fuel distribution and storage, and fuel dispensing emissions. To model the renewable naphtha BC run, we use the inputs in the table below.

Table 6-9Model Inputs for Renewable Naphtha BC Emissions Run

Sheet	Cell	Description	Value
Input	B4	Region	BC
Input	B55	HRG Feedstock	Tallow
Input	BB91	HRG Transloading	Yes
Input	BB92	HRG Rail distance	0
Input	BB96	HRG Truck Distance	80
Input	BB98	HRG Rail mode	0
Input	BB102	HRG Truck mode	1

When doing the BC run, the results for renewable naphtha are found on the BC LCFS sheet, column AM, rows 16 to 18. Renewable naphtha produced from the same feedstock will have a CI of 24.31 gCO₂e/MJ in this example.

Table 6-10	Total Emissions 2023 Renewable Napht	ha
------------	--------------------------------------	----

Stage	US	US West	Energy	BC	Total
	Central	Emission	Coproduc	Emission	Emission
	Emission	S	t	S	S
	S				
		g (CO₂eq/GJ (H⊦	HV)	
Direct land use change	0				0
Feedstock production	0				0
or cultivation					
Feedstock upgrading	19,248				19,248
Feedstock transport	2,442				2,442
Feedstock coproducts	-10,460				-10,460
production					
Avoided emissions	0				0
Fuel production		11,285			11,285
Fuel coproducts		-961	-573		-1,535
production					
Fuel distribution and		838		409	1,248
storage					
Fuel dispensing				85	85
Vehicle or Vessel				1,993	1,993
operation					
Total	11,231	11,162	-573	2,487	24,307
Total, g CO₂eq/MJ					24.31

Revised: N/A

GHGenius 5.02b User Guide

Hydrogenation-Derived Renewable Diesel (HDRD) RLCF-026

7 Canola HDRD Example

Any fuels produced outside of BC will require at least two runs, and sometimes more, of the model to accurately calculate the results. HDRD plants will not always be in the same region as where the feedstocks are produced. Below is an example of that using assumed inputs. Three runs are required. This plant will consume the coproducts to produce hydrogen, causing a reduction in the amount of natural gas required to produce the hydrogen.

The first run will be in the Alberta region. Be sure to click the Apply Regional Defaults button after setting cell B4 to the appropriate region. The following table shows the values used for this modelling exercise. A GHGenius user would replace these values with their actual values.

In this example the HDRD plant operator will be buying canola oil from a crusher. Only the transportation distances for the canola oil will be known, while all other feedstock inputs will retain the model's defaults.

All HDRD pathways share the same inputs and output, with the feedstock selected via a dropdown.

Note: GHGenius labels HDRD as HRD

Sheet	Cell	Description	Value
Input	B4	Region	Alberta
Input	B7	Year	2023
Input	B53	HRD Feedstock	Canola Oil
Input	L76	Canola Oil Rail distance	2,500
Input	L80	Canola Oil Truck distance	0
Input	L82	Canola Oil Rail mode	1
Input	L86	Canola Oil Truck mode	0
Input	CD241	Year	2023
Input	CD248	HRD Feedstock	0.95

Table 7-1 Model Inputs for Alberta Emissions Run

The results for the year 2023 are shown in the following table. These values are from the BC LCFS sheet. Column AK, rows 8 to 13.

Table 7-2Alberta Emissions 2023

Issued: July 2024

Revised: N/A

Stage	Emissions, g CO₂eq/GJ (HHV)
Direct land use change	0
Feedstock production or cultivation	14,817
Feedstock upgrading	5,013
Feedstock transport	1,823
Feedstock coproducts production	-11,507
Avoided emissions	0

The second region will be a US West run, that accounts for fuel production from the canola oil. Instead of producing coproducts, they will be used internally to offset purchased hydrogen. If an output is used internally then it is not entered into GHGenius.

Sheet	Cell	Description	Value
Input	B4	Region	US West
Input	B7	Year	2023
Input	B53	Feedstock	Canola Oil
Input	AZ91	HRD Transloading	No
Input	AZ92	HRD Rail Distance	2,000
Input	AZ96	HRD Truck Distance	0
Input	AZ98	HRD Rail mode	1
Input	AZ102	HRD Truck mode	0
Input	CD241	Year	2023
Input	CD243	Electricity	0.05
Input	CD245	NG	0.2
Input	CD248	RD Feedstock	0.95
Alt Fuel Prod	CM44	Hydrogen	0.015
Alt Fuel Prod	CM53	NaOH	0
Alt Fuel Prod	CM55	Nitrogen	0
Alt Fuel Prod	CM62	Phosphoric acid	0
Coprods	BC135	LPG	0
Coprods	BC137	Naphtha	0
Coprods	B190	Allocation by	Energy

Table 7-3Model Inputs for US West Emissions Run

The results for the year 2023 are shown in the following table. These values are from the BC LCFS sheet. Column AK, rows 14 to 16.

Table 7-4US West Emissions 2023

Stage	Emissions, g CO ₂ eq/GJ (HHV)
Fuel production	6,067
Fuel coproducts production	0
Fuel distribution and storage	838

The third run will be in the BC region to calculate final distribution of 80km, dispensing, and fuel use emissions. Most of the inputs can be left the same as the other two runs. Changes are outlined in the following table.

Table 7-5Model Inputs for BC Emissions Run

Sheet	Cell	Description	Value
Input	B4	Region	BC
Input	AZ91	HRD Transloading	Yes
Input	AZ92	HRD Rail Distance	0
Input	AZ96	HRD Truck Distance	80
Input	AZ98	HRD Rail mode	0
Input	AZ102	HRD Truck mode	1

The results for the BC region are below. These are again from the BC LCFS sheet, column AK rows 16 to18.

Table 7-6BC Emissions 2023

Stage	Emissions, g CO ₂ eq/GJ (HHV)
Fuel distribution and storage	395
Fuel dispensing	82
Vehicle or Vessel operation	1,524

The results from the three regions can be combined to produce a final CI of 19.05 g CO_2eq/MJ . The values in the first three columns are summed to produce the values in the right-hand column.

GHGenius 5.02b User Guide

Hydrogenation-Derived Renewable Diesel (HDRD) RLCF-026

Table 7-7Total Emissions 2023

Revised: N/A

Stage	Alberta	US West	BC	Total
	Emissions	Emissions	Emissions	Emissions
		g CO₂eq/	′GJ (HHV)	
Direct land use change	0			0
Feedstock production or	14,817			14,817
cultivation				
Feedstock upgrading	5,013			5,013
Feedstock transport	1,823			1,823
Feedstock coproducts	-11,507			-11,507
production				
Avoided emissions	0			0
Fuel production		6,067		6,067
Fuel coproducts production		0		0
Fuel distribution and storage		838	395	1,233
Fuel dispensing			82	82
Vehicle or Vessel operation			1,524	1,524
Total	10,146	6,906	2,000	19,052
Total, g CO₂eq/MJ				19.05

Need more information?

Please see the Renewable and Low Carbon Fuel website at <u>http://gov.bc.ca/lowcarbonfuels</u> or email us at <u>lcfs@gov.bc.ca</u>

This information is for your convenience and guidance only and does not replace or constitute a legal interpretation of the legislation. It is recommended that parties who may be a Fuel Supplier review the Low Carbon Fuels Act (Act), the Low Carbon Fuels (General) Regulation and the Low Carbon Fuels (Technical) Regulation, and seek independent legal advice to confirm their status, legal obligations and opportunities. The Act and regulations can be found on the internet at: <u>http://www.bclaws.ca</u>.