MEAGER CREEK PROJECT RESOURCE CHARACTERISTICS AND 20 kW WELLHEAD TURBINE AND SEPARATOR TESTING

Research Project RP1196-90 Final Report, December 1985

Prepared by

B.C. HYDRO AND POWER AUTHORITY Vancouver, British Columbia

Principal Investigator J. Stauder, P.Eng.

Prepared for

Electric Power Research Institute 3412 Hillview Avenue Palo Alto, California 94304

> EPRI Project Manager E.E. Hughes

Geothermal Power Systems Program Advanced Power Systems Division

This report was prepared for the British Columbia Hydro and Power Authority ("BC Hydro"). BC Hydro does not:

- (a) represent, guarantee or warrant to any third party, either expressly or by implication: (i) the accuracy, completeness or usefulness of; (ii) the intellectual or other property rights of any person or party in; or (iii) the merchantability, safety or fitness for purpose of; any information, product or process disclosed, described or recommended in this report,
- (b) assume any liability of any kind arising in any way out of the use by a third party of any information, product or process disclosed, described or recommended in this report, or any liability arising out of reliance by a third party upon any information, statements or recommendations contained in this report.

Should third parties use or rely on any information, product or process disclosed, described or recommended in this report, they do so entirely at their own risk.

CONTENTS

<u>Se</u>	<u>ection</u>	<u>Pag</u>
1	INTRODUCTION	1-1
	Location and Access	1-1
	Previous Work	1-1
	Work Done in 1983/84	1-1
	EPRI Turbine Separator Installation	1-5
	EPRI Turbine Separator Testing	1-5
2	RESOURCE CHARACTERISTICS	2-1
	Geological Setting	2-1
	Discharge Assessment	2-1
	Well Status	2-2
3	WELL CHEMISTRY	3-1
4	TURBINE AND SEPARATOR TESTING	4-1
	Equipment Assembly	4-1
	Separator Rework	4-1
	Skid-mounted Turbine Generator Assembly	4-3
	Turbine Design and Manufacture	4-3
	Operation and Performance	4-4
	Separator	4-4
	Turbine	4-5
	Separator and Turbine Controllability	4-6
	Separator	4-6
	Turbine	4-6
	Turbine Performance	4-7
5	CONCLUSIONS	5-1
6	REFERENCES	6-1

ILLUSTRATIONS

Fig	ure 	<u>Page</u>
1	Locality Map and Plate Tectonic Setting of Cascade Range	1-2
2	Deep Exploration Drilling Programme Targets and Well Tracks	1-3
3	Summary Map of Drill Sites	1-4
4	MC-1 Temperature Surveys 1983/84	2-3
5	MC-2 Temperature Surveys 1983/84	2-4
6	MC-3 Temperature Surveys 1983/84	2-5
7	Silica-Temperature Correlation Surface and Thermal Waters of South Meager Area	3-2
8	Variation of Quartz, Na-K and Na-K-Ca Geothermometers with Time (Data from MC-1)	3-3
9	Sodium-Potassium Correlation	3-5
10	Sodium Lithium Correlation (South Meager Area)	3-6
11	Meager Creek Project Separator-Turbine Test Loop	4-2
12	Turbine Efficiency V.S. U/CO	4-8
13	Kato 60 kWe Generator Efficiency	4-10
14	Gearboy Rearing and Seal Power Losses	/-11

TABLES

<u>Table</u>									Page
1 L	ist of	Proposed	Test Runs	Meager	Creek	Project	- Well MC		1-6
			thermometr						3-8

APPENDIX A DATA F	ROM POWER SYSTEM TESTS 1-26 A-1
	경임 문화 (고양한 등일 명시) 시작하였는데 병사 시작을 받아 되었다.
APPENDIX B EPRI C	HEMISTRY DATA B-1
APPENDIX C GEOCHE	MICAL ANALYSIS RESULTS C-1

A fracture dominated geothermal resource with a reservoir temperature in excess of 195°C has been identified in the South Reservoir area of the Meager Creek Project. Geothermal fluids have been intersected in all three deep exploratory wells. although the host rocks are characterized by low overall permeability and porosity. The flash steam separator, originally designed and built for EPRI for testing at East Mesa, California, was reworked, installed and tested at Meager Creek. EPRI contracted Barber-Nichols to supply the skid-mounted turbine-generator module from existing equipment, with modifications for use with geothermal steam at Meager Creek. The test turbine-generator was installed in order to acquire initial operating experience with geothermal fluids available from the Meager Creek geothermal area. The turbine and separator were successfully operated over a period of 6 months at pressure ranges designed by EPRI, but modified in response to the site conditions. The test fluid flowrate at the wellhead was approximately 57 000 pounds per hour, with a surface temperature of 125°C. Ongoing temperature and flow testing on well MC-1 has improved the understanding of the chemical and physical parameters of the geothermal resource at Meager Creek.

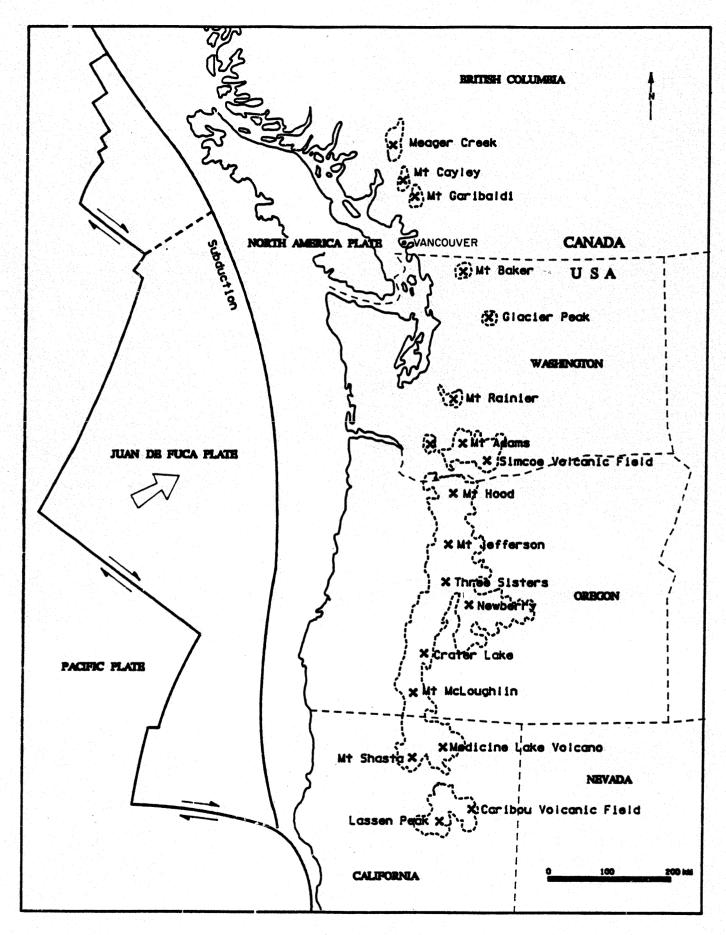
Section 1

INTRODUCTION

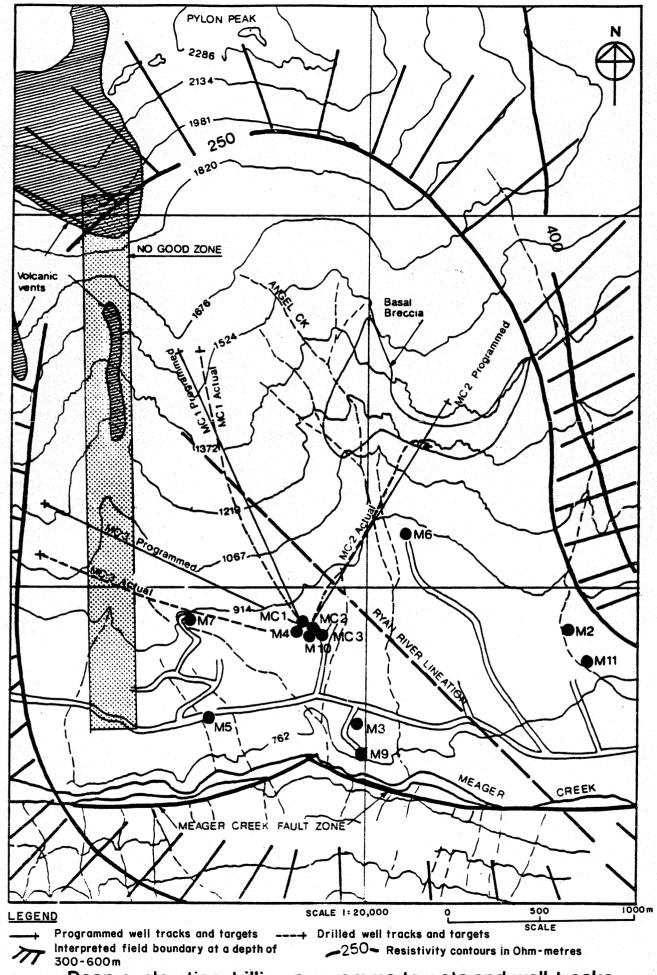
LOCATION AND ACCESS

The Meager Creek Project area is located approximately 200 km north of Vancouver in the rugged Coast Mountains of southwest B.C. (Fig. 1). A good, gravel surfaced logging road follows the Lillooet River valley for 50 km to the Meager area from the end of the paved highway at Pemberton Meadows.

PREVIOUS WORK

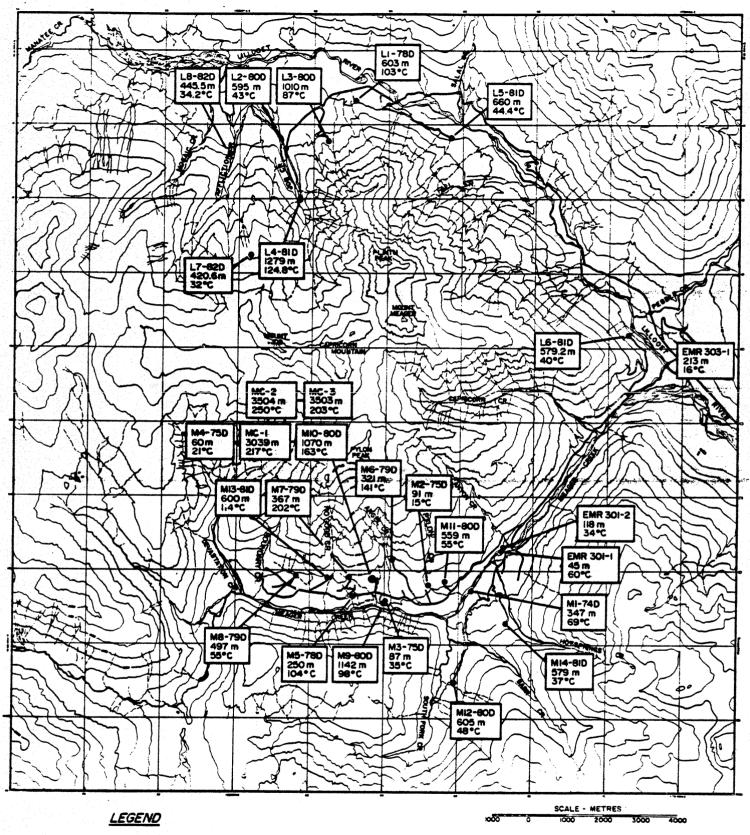

Geothermal investigations at Meager Creek have been in progress since late 1973. B.C. Hydro became involved in 1974 with a small-scale diamond drilling project designed to evaluate the thermal characteristics of the Meager Creek Hotsprings and the surrounding area (Figs. 2 and 3). Subsequent investigations identified and localized a potential resource area on the lower flanks of Pylon Peak, some 5 km upstream from the main vent of the Meager springs.

Exploration culminated with the drilling of three large diameter rotary holes during 1980 to 1982. Reaching depths of 3000 to 3500 m, the holes were drilled to assess various targets identified in earlier studies. The program resulted in one well, MC-1, capable of long-term, sustained two-phase fluid production. The two other wells, although unable to produce steam spontaneously in their present state, have assisted in the development of interpretive models for the geothermal reservoir.


WORK DONE IN 1983/84

The geothermal drilling program was suspended in August 1982. Since that time, activity at the Meager Creek Project has been restricted to testing and monitoring of the three deep exploratory wells.

In July 1983 preparations began for the installation of a small turbine on the producing well MC-1. Arrangements were made with the Electric Power Research Institute (EPRI) to supply a Rotary Separator Turbine.



LOCALITY MAP AND PLATE TECTONIC SEITING OF CASCADE RANGE

Deep exploration drilling programme targets and well tracks

1 - 3 FIG 2

LOCATION OF HOLE

M3-750

87 m

35°C

HOLE DESIGNATION

EMR - Energy, Mines & Resources, Canada L - Lillooer Drainage M - Meager Drainage MC - Deep Exploration Rotary

DEPTH IN METRES

MAXIMUM HOLE TEMERATURE

SUMMARY MAP OF DRILL SITES

However, this equipment could not be supplied on time, and instead, Barber-Nichols Engineering of Denver, Colorado, supplied a 20 kW skid-mounted axial flow steam turbine for EPRI. This single-flash, steam turbine was installed and tested under varied conditions during spring and summer 1984. The test program was completed in October 1984. However, flooding stranded the equipment on site before it could be demobilized. The separator, turbine and generator were winterized and remained at Meager Creek until May 1985.

EPRI TURBINE SEPARATOR INSTALLATION

On-site preparations for the steam turbine began in late 1983, with the delivery of the generator, separator, and turbine to Meager Creek in mid-November. Installation proceeded slowly because of logistical difficulties imposed by the approaching winter season.

The first 3 months of the installation period were required for the reconditioning of the separator unit. The equipment supplied had been previously used and arrived at the site in only fair condition. Installation was completed by April 1984, and the testing program began shortly thereafter.

EPRI TURBINE SEPARATOR TESTING

In order to provide a reasonable working assessment of the steam turbine, a variety of tests were designed as part of a program which was conducted during summer 1984. The tests as originally laid out by EPRI could not be conducted because of the quality of the fluid at the wellhead (Table 1). However, 26 tests ranging in length from 1 to 6 hours were run, observations of temperature, pressure, flow rate and power output were made at a number of points in the separator-turbine test loop (desigated, for example, T1, P1, F6a, W8 in Fig. 11). Data from these tests are included as Appendix A. The power generated was dissipated in a load bank.

Table 1

LIST OF PROPOSED TEST RUNS MEAGER CREEK PROJECT - WELL MC-1

Reason for Run/Comment		Base case/turbine design values	80 psia run	100 psia run	125 psia/limited by reservoir	150 psia/limited by reservoir	50 psia/begin low pressure runs	40 psia/limited by turbine	30 psia/limited by turbine	20 psia/limited by turbine	Atm. pressure, no turbine
Power (KW)		32	35	33	Ħ	4	24	Ħ	7	0	none
Separated Flows (1b/h) Liquid Steam		22 150 2 520	28 230 2 510	34 870 2 400	23 000 1 100	17 780 660	15 820 2 040	10 550 1 550	6 210 1 050	3 970 790	37 400 8 800
SH (관))	7°	170	25°	350	36°	20	5°	70	110	1
ressure (psia) Sep. Turb.		09	80	100	125 50	140	20	40	30	20	12
Well		65	82	110	135	160	52	45	33	22	13
Run No.			7	m	4	ည	9	7	ω	တ	10

Steam quality at the separator is calculated for isenthalpic flash from an assumed reservoir fluid of 100 percent saturated liquid at 382°F, 355.6 Btu/lb (200 psia). , -i Notes:

Turbine exhaust is to atmosphere at 12 psia pressure. Power is output of generator. 2 % 4

"SH" is amount of superheat at turbine inlet.

Run No. 3, 4 and 5 could be at 80 psia turbine inlet with resulting higher flows of steam and higher power output.

Section 2

RESOURCE CHARACTERISTICS

GEOLOGICAL SETTING

The Meager Volcanic Complex comprises a series of late Tertiary to Quaternary andesitic to rhyodacitic eruptive centers which intrude rocks of the Jurassic-Cretaceous Coast Plutonic Complex of southwestern B.C. Basement rocks in the vicinity of Meager Creek consist predominantly of altered, biotite quartz diorite of probable Mesozoic age with less commmon septa of metamorphic rocks. Volcanic dikes of rhyolite, dacite, and andesite transect the basement and are associated with the intrusions of the Meager Volcanic Complex.

A wide, normal fault zone, the Meager Creek Fault, strikes east-west, dips $45-50^{\circ}$ north and appears to be the major structure providing permeability for the flow of geothermal waters.

DISCHARGE ASSESSMENT

After MC-1 was completed it was found to have a positive wellhead pressure. On 22 December 1981, the well was first discharged through the 2-inch bleedline until flashing started; a 10-inch side valve was then opened. The discharge stopped after 30 minutes of operation and the well was subsequently put on bleed to maintain wellhead pressure and continue increasing the flow temperature.

During July 1982 the well output was measured using a total flow calorimeter. The calorimeter consisted of a 6 m length of 2-inch diameter casing in which the well fluid was condensed and cooled. By measuring the condensing water and outlet water temperature and flowrate, the well fluid enthalpy and flowrate were calculated. The results indicated a flow of 32 000 lb/h. The liquid had a deep well temperature of 194°C. Because of the inability to maintain pressure to the surface and the cooling effect of near surface waters, temperature at the wellhead dropped to approximately 125°C.

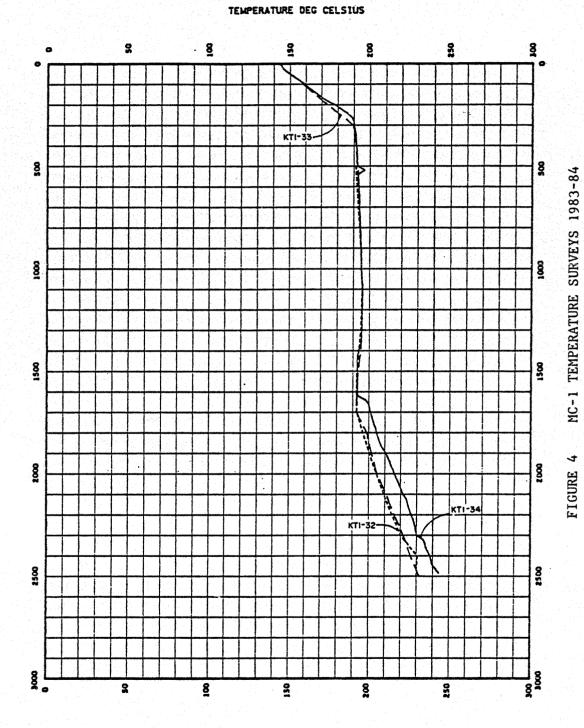
By October 1982 the well could sustain discharge through a 4-inch pipe. To obtain the well output, a silencer was installed and the water flow measured with a 90° V-notch

weir. The flowing surveys indicated deep well temperatures of 194°C and a wellhead pressure of 18 psig, a temperature of 106°C and a flowrate of 50 000 lb/h.

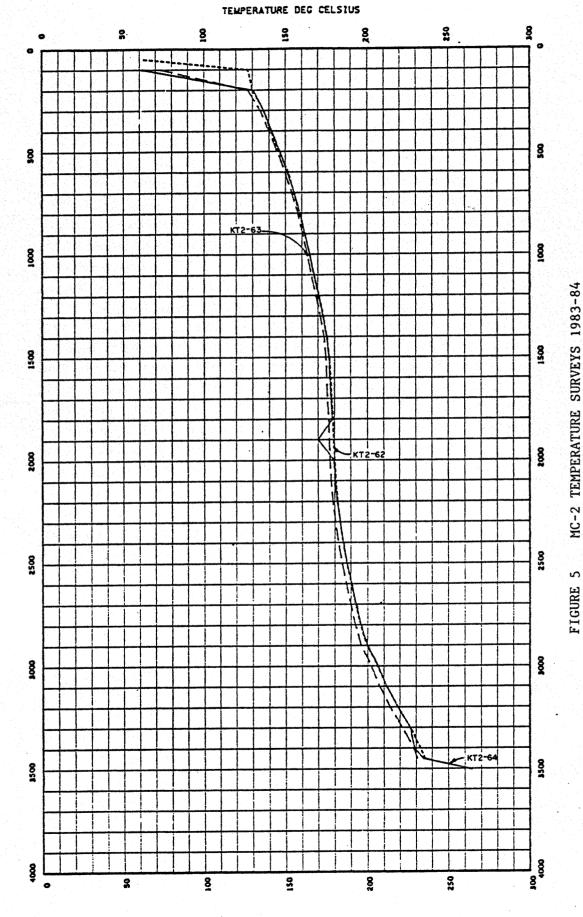
After the airlift stimulation in the fall of 1982, the discharge from the well improved to the point where it could sustain discharge for an indefinite period. The well was left discharging with periodic well maintenance (twice per year) until June 1985. The final flowrate measurements in November 1984 indicated a deep well temperature of 194°C, a flowrate of 57 200 lb/h and a wellhead pressure of 43.5 psig (300 kPag). The discharge was vented to the Meager Creek. The maximum temperature measured in MC-1 to date is 237°C at a depth of 2400 m (Fig. 4).

Well MC-2 was completed in the spring of 1982. An initial step-rate injection test showed the injectivity to be 17 percent higher than the one from MC-1. The bottom hole temperature was measured as 270°C at 3500 m depth (Fig. 5). At that time, the injectivity appeared too low to conduct any additional testing.

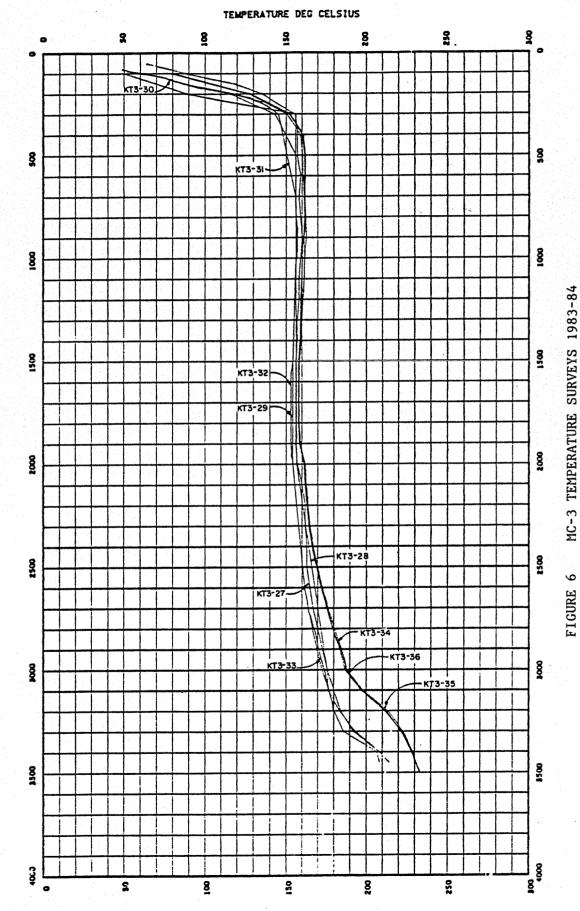
Well MC-3 was completed in the mid-summer of 1982 and the initial step-rate injection test showed the injectivity to be 92 percent higher than MC-1. The total circulation loss at 3025 m during the drilling was encouraging. However, the material used to regain the circulation loss was more effective than expected and this permeable zone was sealed off.


The bottom hole temperature of the well MC-3 increased by approximately 10°C (Fig. 6) over the 1-year period after drilling. Therefore, an airlift stimulation was conducted during November 1983. The permeability of the well improved. However, the flow could not be sustained at that time, the tests had to be concluded and no further testing work was done since.

WELL STATUS


The MC-1 discharge tests were conducted between November 1982 and mid-1984. Thermal fluid was discharged to a silencer/separator unit where the wellhead pressure was recorded constantly and flow rate was measured daily. Periodic temperature surveys and chemical sampling were conducted to monitor changes in the thermal regime.

During the course of production, the MC-1 well bore became obstructed by a substantial carbonate scale deposit. However, the blockage was successfully removed by mechanical means and further scale deposition was inhibited by maintaining constant pressure at the wellhead.



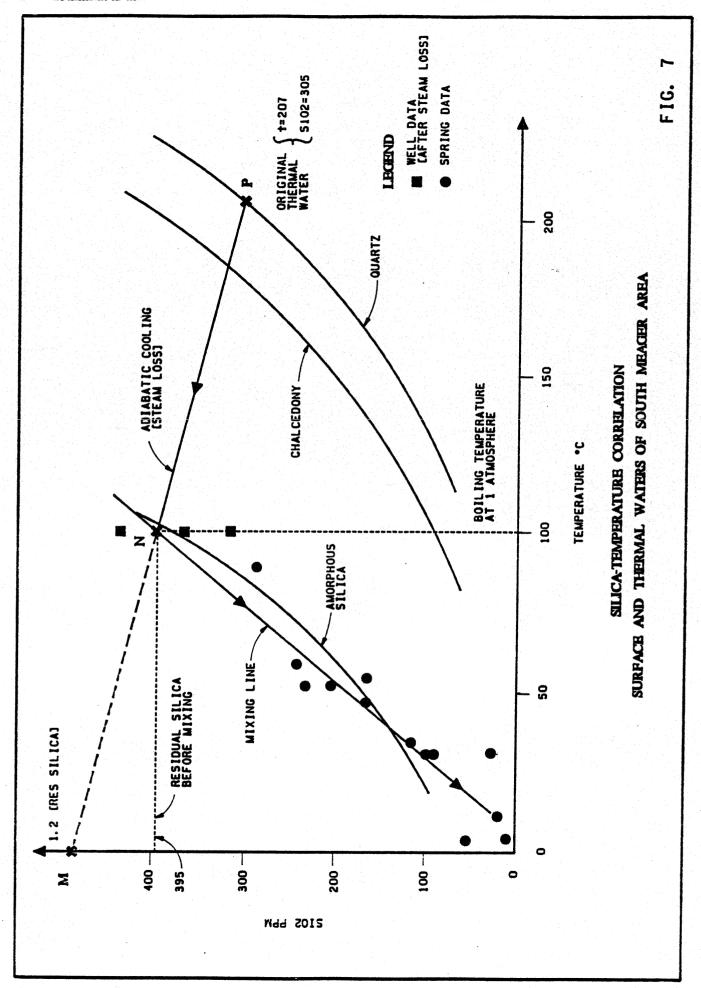
MC-2 TEMPERATURE SURVEYS 1983-84

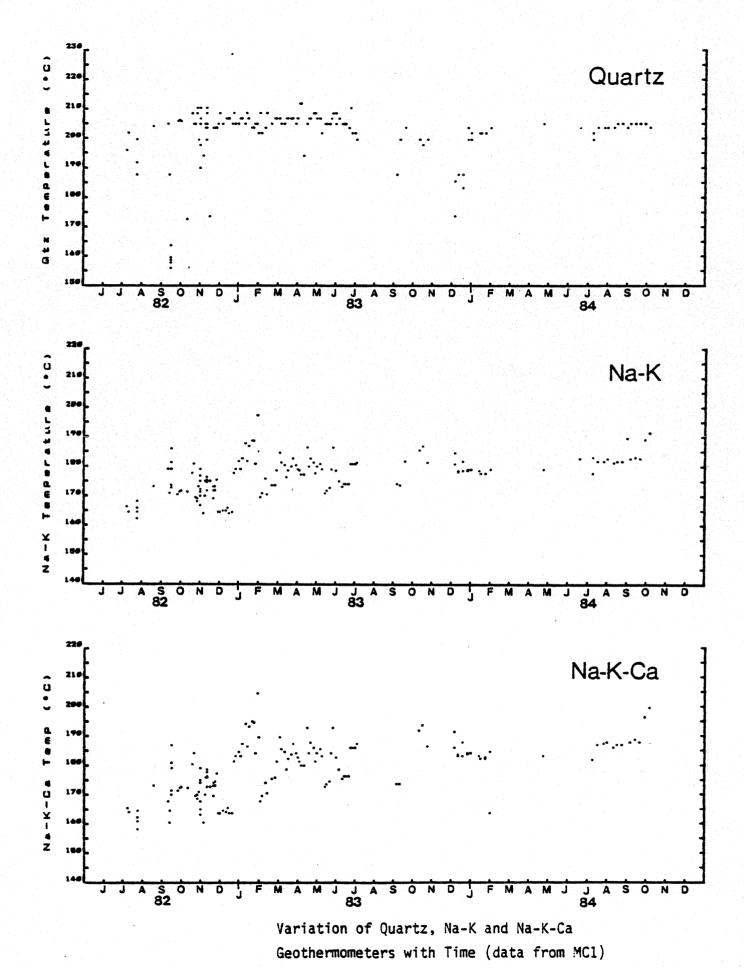
2-5

MC-2 and MC-3 remained dormant for most of the 1983/84 period. Standing water levels in the wells were recorded regularly and periodic temperature surveys were run.

Increased temperatures and indications of improved crossflow at depth in well MC-3 prompted a flow test in early November 1983. Continual airlifting for a period of 20 hours resulted in a series of discharges achieving peak wellhead pressures of 850 kPag (123 psig). However, it is believed that cooler surface water downflow quenched the flow approximately 20 minutes after the airlift was terminated because the casing did not extend to sufficient depth.

Section 3


WELL CHEMISTRY


Samples of the fluids were taken approximately once a week, except during special testing, and analyses were done in B.C. Hydro's lab. In addition, an EPRI mobile chemical sampling unit was brought to the site in early August 1983, in order to evaluate various chemical parameters of the production fluid. The EPRI lab analyzed for chemical components expected to be important for scale or corrosion. This lab performed a variety of other evaluations including analyses of trace elements in waste water and steam. Toxicity determinations are listed in Appendix B.

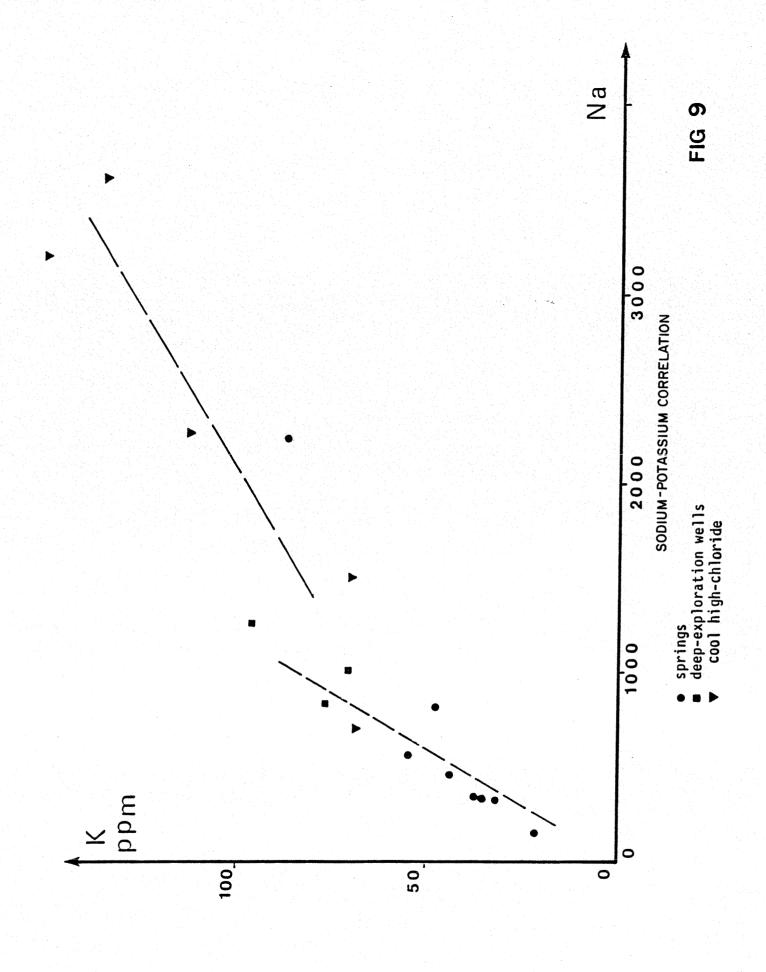
The analyses of samples taken periodically from the production fluid of well MC-1 was reviewed by Dr. Morteza Ghomshei, working for the Meager Creek Project under a UNESCO post-doctorate fellowship. Raw water chemistry data used in the study and ionic strength versus time interpretations are presented in Appendix C. Examination of the correlations between K, Na, and C1 indicated that discharge from well MC-1 is probably a mixture between a single brine and high-chloride cool waters (Fig. 7).

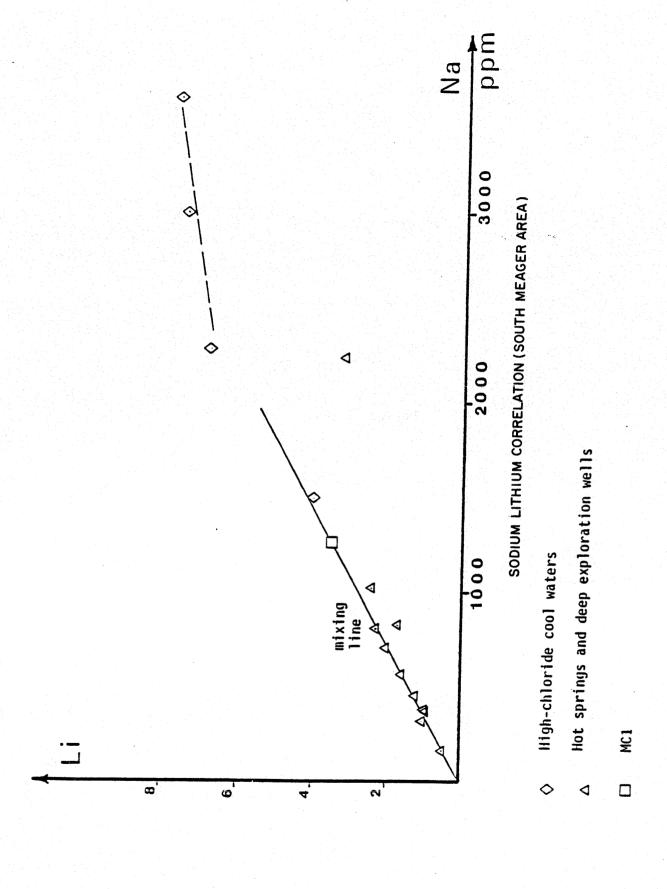
Various geochemical thermometers were assessed with some interesting results. At Meager Creek, the residual silica, SIL2, is 395 ppm prior to mixing, and construction of line PNM results in an original silica, SIL1 of 305 ppm and a temperature of 210°C where the line intersects the silica saturation curve. Although this calculated temperature is slightly higher, the results are more or less comparable to observed temperatures of 180°C to 195°C at the production level of 1200 m to 1600 m in MC-1 (Fig. 7).

Silica data from MC-1 give a quartz temperature of 200°C to 210°C (Fig. 7), similar to predictions using data from the hot springs. Surveys in MC-1 indicate a maximum of 230°C to 240°C at 2500 m, but production level temperatures are around 180°C to 195°C, which are somewhat lower than the calculated quartz temperature. However, if a correction for steam loss is considered, the predictions using the MC-1 silica geothermometer would be closer to the 185°C to 195°C predicted by the Na-K and Na-K-Ca geothermometers and the observed temperature at the production level (Fig. 8).

The Na/K and Na/Li geothermometers should be more accurate than quartz geothermometers. Neither is affected by steam loss or mixing with meteoric waters and there are no significant potassium or lithium temperature-dependent reactions with the environment during the relatively fast ascent of the brine. The sodium-potassium correlation for the Meager Creek hot springs extrapolates linearly to the origin (Fig. 9) which indicates the lack of potassium re-equilibrium, as depicted by the reaction:

$$Na^{+} + K \text{ (silicate)} \approx K^{+} + Na \text{ (silicate)}$$
 (3-1)


The Na/K ratio obtained from this correlation is about ten and gives a base temperature of 195°C. The Na-K correlation of MC-1 is ultimately affected by a mixing with M12 waters. As described above, the slope of the correlation line indicates an original Na/K ratio of around 9.2 and a base temperature close to 200°C, comparable with that of the hot springs. If mixing of MC-1 brine with M12 waters is disregarded, the measured Na/K ratios would yield a lower temperature of around 180°C, which is compatible with Na-K-Ca temperatures. It should be noted that mixing of MC-1 brine and M12 high-chloride waters (with a relatively high Na/K ratio of around 26 and a lower base temperature of around 115°C) would explain the decrease in Na-K temperatures for MC-1.


The sodium-lithium geothermometer gives a higher temperature than either the silica or sodium-potassium geothermometers. The data from MC-1 do not demonstrate a distinctive linear correlation between sodium and lithium. Nevertheless, when the average lithium and sodium concentrations of MC-1 brines are plotted together with data from other deep exploration wells and hot springs, a linear correlation extrapolating to the origin is observed (Fig. 10). This correlation has a Na-Li ratio of approximately 350 and a temperature of approximately 280°C using the formula:

$$T ^{\circ}C = 1195 / (log Na/Li - 0.39) - 273$$
 (3-2)

It was noted that, in contrast to the hot springs, the high chloride waters of M12-type have a Na-Li correlation which does not extrapolate to the origin. For this reason the sodium-lithium ratios of these waters are not reliable for temperature calculations. The high lithium concentration of these waters is not necessarily indicative of a geothermal origin.

The relatively high sodium-lithium temperature for the South Meager geothermal system (280° C) can be considered as the maximum temperature that the geothermal

waters have reached. Indeed, temperature measurements in well MC-1 at 2500 m approach those predicted by the Na/Li geothermometer. The difference between the calculated Na/Li temperature of 280°C and the observed 190°C at the production level (1500 m) probably reflects the geochemical signature of the primary thermochemical equilibrium attained by the thermal waters at depths exceeding 2500 m. This evidence supports the findings of Moore et al. (1983) in suggesting that a deeper and hotter reservoir may yet be discovered. Calculations of various geothermometers based on the data as analyzed by EPRI in November 1984 closely correspond with B.C. Hydro's calculations (Table 2).

If this is so, thermal fluids could have then migrated up the Meager Creek Fault zone to the production level where potassium has re-equilibrated at lower prevailing temperatures. Lithium, by contrast, has remained non-reactive to the new environment and has preserved the chemical memory of the high temperature geothermal fluid in the lower parts of the Meager Creek Fault zone.

Table 2

MEAGER CREEK GEOTHERMOMETRY NOVEMBER 1984

Location of Samp	Samples		Geoth	Geothermometer			
	Nieva & Nieva	Fournier & Truesdell	Stanford adiabatic	Stanford SiO, iabatic conductive	<u>Na-Ca</u>	Chalcedony	Quartz
T-1 steam	196.9	212.9			186.6		İ
I-2 steam	200.4	208.3			190.75		
P-6 brine	201.7	215.4	201	213	192.33	175.29	193.92
P-6a brine	205.2	220.5	197	211	196.65	173.04	191.88
Weir brine	198.7	211.2	228	228	188.72	187.86	205.2

Calculations were based upon data from samples collected by B.C. Hydro and analyzed by EPRI. Note:

Section 4

TURBINE AND SEPARATOR TESTING

EQUIPMENT ASSEMBLY

Separator Rework

On-site preparations for the steam turbine began in late 1983 with the delivery of the generator, separator and turbine to Meager Creek in mid-November. Installation proceeded slowly because of logistical difficulties imposed by the approaching winter season.

The flash steam separator was originally designed and built by the Bechtel Group (Research and Engineering Division) for testing at East Mesa and South Brawley, California. The past performance of the separator unit was described by Mr. L. Awerbuch in the paper entitled "Geothermal Steam Separator Performance Evaluation" published in the 1983 EPRI Proceedings of the Seventh Annual Geothermal Conference and Workshop.

Since the separator had not been used for some time after its exposure to high salinity geothermal brine at South Brawley, some of the threaded pipe was rusted, all control valves were rusted shut and most hand valves were rusted in their open or closed position. Approximately 3 months were required for reconditioning the separator unit.

Rework on the separator involved some reworking of 4-inch steam lines, replacing all control valves, cleaning all hand valves, replacing most of the threaded pipe, cleaning the level and pressure controllers, installing new burst disks on the pressure vessels, rerouting of brine and steam lines, and replacing pneumatic lines.

These changes provided flow to the turbine as well as a bypass around the turbine for use during separator warmup. The flow element originally in the bypass line around the moisture separator, was moved to the turbine bypass line so that steam flow could be measured both to the turbine and through the bypass (Fig. 11).

1 _ 4

Skid-mounted Turbine Generator Assembly

The skid assembly consisted of the turbine-gearbox with an air-cooled lube system, a Kato model 60ER9F 60 kWe synchronous generator, a Vectral VPAC 5106-480-35E-LSER power controller with a Woodward 2301-8271-347 governor and two Singer 3470T electric space heaters.

The controls for starting and stopping the turbine and for protection of the gearbox were installed in the generator control panel by Barber-Nichols and described in the report (unpublished) to EPRI by Barber-Nichols Engineering Company, Contract RP1196-4, January 1984 entitled "Steam Turbine Power System Operating Manual". Since there was no control power available until after the generator was running, the controls were battery operated and used the 24 Vdc power supply in the power controller to recharge the batteries.

The turbine-generator controls consisted of a pressure switch to protect the gearbox in the event of a loss of lube pressure or flow, an overspeed switch to protect the turbine in the event of loss of load, a controls enable switch, a turbine start push button, a speed control potentiometer and indicator lights for low oil pressure and overspeed. The switches and lights were added to the front of the generator control panel with the existing meters and switches previously installed by the generator manufacturer.

All components were mounted on a skid frame to make them easily transportable to the site at Meager Creek. At Meager Creek, the skid was placed in a shed near the wellhead to protect it from geothermal brine and inclement weather.

Turbine Design and Manufacture

The short schedule required the use of the existing turbine hardware wherever possible. The hardware reused by Barber-Nichols consisted of the gearbox with high-speed shaft, bearings and seals and the turbine rotor. The new hardware comprised the nozzle plenum, nozzle block and exhaust housing. The new nozzle was required since the available nozzle did not meet the steam flow requirements at Meager Creek.

From the review of the Meager Creek MC-1 well test data, an inlet pressure of 50 psia was specified. The local atmospheric pressure (@ 2700 ft) is nominally 13.5 psia. Since the turbine was an axial flow impulse turbine, all the pressure drop occurred across the nozzle. The turbine rotor simply changed the direction of the flow of the gas with no change in gas pressure. This resulted in a pressure

ratio across the nozzle of 3.70. However, since wellhead conditions were somewhat uncertain, it was decided to design the nozzle for a lower pressure ratio (PR=3, and 44 psia inlet pressure) and run it underexpanded. Running the nozzle underexpanded does not hurt nozzle performance and if the inlet pressure is lower than expected, the nozzle conditions approach the nozzle design pressure ratio.

Since the existing rotor was used, the blade height was already established as well as the nozzle height (80 percent of the blade height). The maximum steam flow was also fixed by the downhole conditions (382°F and 200 psia) and the wellhead conditions (278°F and 48 psia). Based on these parameters, the nozzle throat and exit areas were calculated. From these calculations, a partial admission nozzle block with an arc of admission of 64 percent resulted. This arc consisted of 11 rectangular nozzles with a nozzle height of 0.343 inches and a throat width of 0.2656 inches to satisfy the throat area of 1.0021 square inches which was calculated from the maximum steam flow available. The nozzles were converging - diverging with an area ratio of 1.2267.

With the nozzles designed, a plenum was then designed to fit between the nozzle block and the gearbox housing with sufficient cross-sectional area to ensure that the gas velocity in the plenum was less than mach 0.1 to reduce flow losses and ensure maximum nozzle performance.

To reduce losses and pressure drop, it was necessary to have two, 2-inch inlets into the nozzle plenum from the 3-inch turbine inlet manifold. The steam line from the separator was 4-inch schedule 40. The turbine inlet manifold and turbine stop valve were 3-inch in order to reduce the cost. The pressure drop across the 3-inch valve was only 0.3 psia. To reduce pressure drops in the long steam lines between the separator and the turbine stop valve, this line, the gate valve and the Y-strainer, were all 4-inch.

OPERATION AND PERFORMANCE

Separator

The separator, in conjunction with a pressure control valve in the separator bypass line between the wellhead and the silencer (P7), had the capability of controlling wellhead pressure between about 20-50 psia. Below 20 psia, the well was wide open and the pressure was too low to obtain a net power output from the generator. The pressure peaked at 45-50 psia, and if the well was further closed in to raise the pressure above this value, the pressure started to drop again because the flow rate was too low to overcome the heat leakage from the well casing. Eventually well flow

stopped completely and it took 24 to 36 hours for the downwell pressure to rise sufficiently to start the flow again.

The separator had a level controller on the flash vessel, a level control valve in the liquid line to the brine disposal area, and pressure control valves in the separator bypass and the turbine bypass lines. When flow was established in the separator bypass to the silencer and the pressure control valve in this line was set to maintain a wellhead pressure, the pressure control valve in the turbine bypass line at the separator was set at a value slightly less than that of the valve at the silencer.

The manual flow valve at the separator was then opened to start flow through the separator. The separator bypass at the silencer would close allowing all the brine to flow to the separator because the separator pressure was less than the wellhead pressure. The level control valve and pressure control valve would start to control fluid level and pressure to provide dry steam for turbine operation as the flash vessel filled and the pressure increased. When steady flow was established in the separator and it was fully warmed up, the blowdown valve in the Y-strainer and the gate valve to the turbine were opened to start warming up the 4-inch line to the turbine.

Turbine

When the 4-inch line to the turbine was cleared of all condensate and warmed up, the gate valve in the Y-strainer as closed and the turbine valve was opened. The gate valve was then slowly opened to start the turbine. When turbine speed reached 3400 rpm, the voltage regulator was turned on and the gate valve was opened while adjusting the speed control potentiometer on the Woodward governor to achieve and maintain a generator speed of 3600 rpm (60 Hz). With the turbine running at 60 Hz, the gate valve was opened fully to achieve full power from the turbine and generator.

With the turbine running at steady-state conditions, the turbine bypass pressure control valve was then set at a pressure slightly higher than the turbine inlet pressure to ensure that all of the flow from the separator was flowing through the turbine and that the bypass was fully closed. If for some reason the turbine valve closed (low oil pressure or turbine overspeed), the bypass would then automatically reopen to bypass the turbine.

SEPARATOR AND TURBINE CONTROLLABILITY

Separator

The separator was originally designed and built to be used at East Mesa, California. It was tested and operated there and was then modified for South Brawley. At Meager Creek, the separator worked at lower brine temperatures and pressures than at South Brawley, and the steam was generated at a higher specific volume. The steam flow rate to the turbine was low enough (1900 lb/h maximum) that the high specific volume could be handled by the 4-inch line to the turbine. The maximum velocity in this line was 73 ft/s. The 2-inch liquid drain from the primary separator with the level control valve in it was not large enough to handle the two-phase flow from the separator to the silencer.

The level controller could not control the level in the separator when operated at the normal total flow rates from the well. These flow rates were required for supplying the 1900 lb/h steam flow rate to the turbine. A bypass with a hand valve was first used to handle the additional flow volume. This was later changed to a 4-inch line in parallel with the 2-inch line and the level control valve was moved to the 4-inch line. This improved controllability of the separator by allowing the level in the primary separator to be controlled by the level control valve alone in most cases. All other controls worked without modifications.

Turbine

When the turbine was first started, the speed could not be controlled and the voltage output from the generator was no greater than 310 Vac. The problem was traced to the Woodward governor. A resistor to reverse the output of the load controller had to be added. The Woodward governor was designed originally for diesel engine operation. In that application it controlled the throttle on the inlet to the diesel engine. As speed increased, the governor output decreased to close the engine throttle. However, for this steam turbine - generator application, the governor output had to be reversed in order to increase output (by increasing load on the generator) as turbine speed increased.

When this problem was corrected, the turbine and generator could be operated at the design speed and the voltage could be adjusted to 480 Vac. The generator speed could be controlled until the turbine inlet pressure was increased to about 50 psia. At this point the turbine began to overspeed because the generator output exceeded the 30 kWe capacity of the load bank and the load switching capability of the load controller. The load controller could not switch any more than 25 kWe without

upsetting the voltage regulator. The generator output at the 50 psia turbine inlet pressure was estimated to be 33 kWe.

At turbine inlet pressures above 45 psia (310 kPa) the generator output was above 30 kWe and the load controller caused the voltage regulator to become unstable, in turn causing the turbine to overspeed and shut down. Because the load controller was a single stage unit, it had to switch the entire load from the generator. According to Barber-Nichols, only 45 to 50 percent of the generator output could be switched with a single load controller without causing problems with the voltage regulator. The turbine operators chose to keep the turbine inlet pressure below 40 psia to ensure this did not happen.

TURBINE PERFORMANCE

The turbine was operated at turbine inlet pressures ranging from 28 to 37 psia (195 to 255 kPa). The exhaust pressure was constant at 14.7 psia. This represented a pressure ratio variation from 2.37 to 2.76 and an insentropic velocity ratio (U/Co) variation from 0.265 to 0.280. The design pressure ratio and U/Co were 3.70 and 0.2331 respectively.

Table 1 includes the original test plan for the turbine and separator, and gives the wellhead, separator and turbine inlet pressures for ten test points. It also gives the liquid steam flow rates for each test point and the expected generator output. Since the maximum wellhead pressure was 60 psia and the turbine would "run away" at turbine pressures above 45 psia, only test points 6 and 7 of Table 1 were conducted. The generator output for test points 8 and 9 were too low to be of any value.

Fig. 12 is a plot of predicted turbine efficiency versus U/Co for turbine inlet pressures ranging from 15 to 50 psia. Since the turbine inlet pressure is measured under saturated conditions the efficiencies were corrected for wetness. To correct for wetness, the actual nozzle exit steam quality was calculated using a nozzle efficiency of 92 percent (nozzle velocity coefficient = 0.92^2). The turbine efficiency was then reduced to adjust for the moisture in the nozzle exit in order to obtain the turbine efficiency corrected for wetness.

Generator efficiency decreases with decreasing load. Tests of generator efficiency under various loads are illustrated in Fig. 13.

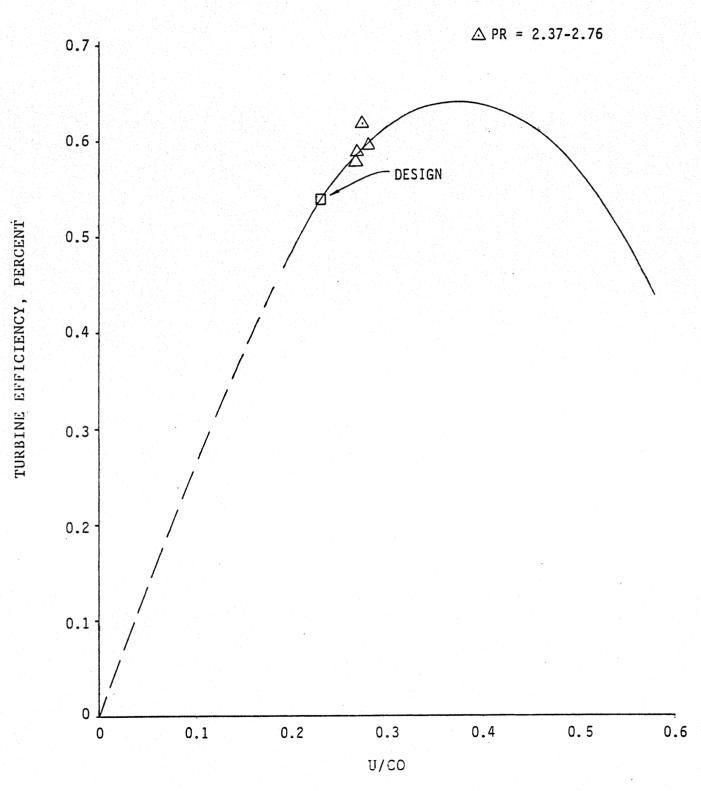


FIGURE 12 TURBINE EFFICIENCY V.S. U/CO

The effect of gearbox output shaft speeds on horsepower losses resulting from gearbox bearing and sealpower losses are illustrated in Fig. 14. The effects are plotted at three oil temperatures.

% LOAD	EFFICIENCY, %
100	87.6
75	85.6
50	81.5
25	70.5

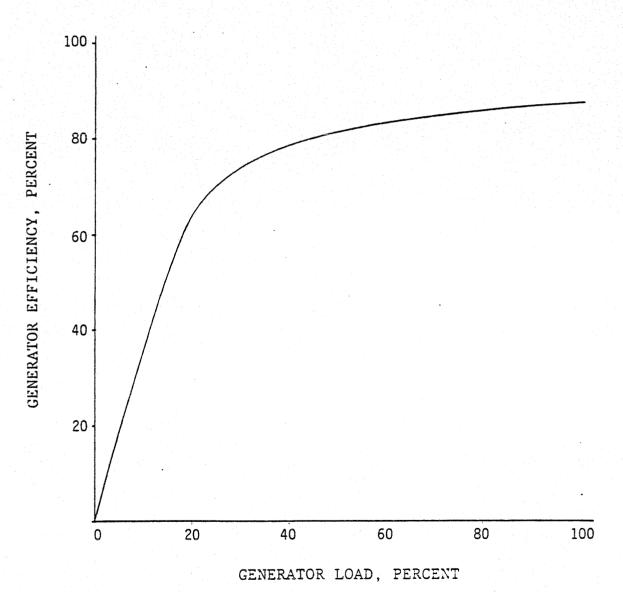
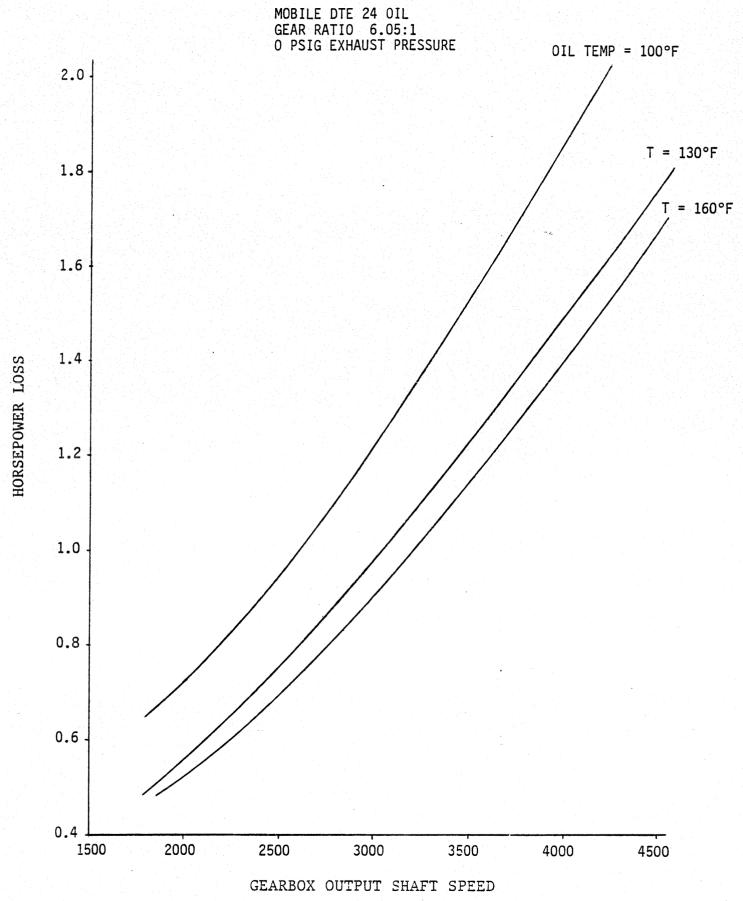



FIGURE 13 KATO 60 kWe GENERATOR EFFICIENCY

FIGURE 14

GEARBOX BEARING & SEAL POWER LOSSES

Section 5

CONCLUSIONS

The testing and monitoring program at the south side of the Meager Mountain Volcanic Complex indicates a fracture-dominated geothermal resource with a base temperature of approximately 200°C about 1600 m from the surface. Utilization of this resource for commercial electric power generation by conventional means appears to be restricted by the flow capacity of the rock due to insufficient rock permeability. It may be possible to extract a portion of the available energy by Hot Dry Rock techniques and binary or multi-flash cycles but these technologies are not sufficiently proven at present. Further research and development work would be required to gain more understanding of the resource and of inter-well spacings, fluid flow rate and economic viability based on the state of available technologies.

Two primary exploration targets were identified from exploration at Meager Creek, the Meager Creek Zone and the No-Good Zone. These are fault related structures which control the production of geothermal fluids on the south side of the Meager Mountain Volcanic Complex.

The installation and operation of a flash steam separator and a 20 kW steam turbine generator on well MC-1 has improved the understanding of the chemical and physical parameters of the resource. The production fluids appear to be relatively free of toxic elements and calcium and silica contents are within acceptable limits. No extraordinary treatment of the geothermal production fluid should be necessary.

Section 6

REFERENCES

- 1. B.C. Hydro and Power Authority: "Proposed Aquatic Inventory and Impact Assessment Studies Relative to Meager Mountain Geothermal Development", Report No. ESS-44, 21 pp. (1982a).
- 2. B.C. Hydro and Power Authority: "Preliminary Study of Aquatic Resources Relative to Meager Mountain Geothermal Development", Report No. ESS-53, 18 pp. plus appendices (1982b).
- 3. B.C. Hydro and Power Authority: "Meager Creek Geothermal Project Summary Report for 1982/83", 36 pp. (1983).
- 4. Emslie, J.H. 1982: Summary of Meager Creek Meteorological Data June 1979 March 1982. Environmental and Socio-Economic Services, B.C. Hydro.
- 5. Ghomshei, M.M., S.A.S. Croft and J.J. Stauder: "Geochemical Evidence of Chemical Equilibria in the South Meager Creek Geothermal System, British Columbia, Canada". Geothermics 1985. International Journal of Geothermal Research.
- 6. Hammerstrom, L.T. and T.H. Brown: "The Geochemistry of Thermal Waters from the Mount Meager Hot Springs Area, B.C.", GSC Open File Report 77-1A, 34 pp. (1977).
- Hitchon, B. and I. Friedman: "Geochemistry and Origin of Formation Waters in the Western Canada Sedimentary Basin - I. Stable Isotopes of Hydrogen and Oxygen", Geochim. Cosmochim. Acta, 33, pp. 1321-1349 (1969).
- 8. Kingston, Reynolds, Thom and Allardice Ltd.: "Meager Creek Geothermal Project Well Completion Report, MC-1", (unpublished) for B.C. Hydro and Power Authority, Report No. 144, 56 pp. (June 1982a).

- 9. Kingston, Reynolds, Thom and Allardice Ltd.: "Meager Creek Geothermal Project Well Completion Report, MC-2", (unpublished) for B.C. Hydro and Power Authority, Report No. 155, 63 pp. (September 1982b).
- 10. Kingston, Reynolds, Thom and Allardice Ltd.: "Meager Creek Geothermal Project Well Completion Report, MC-3", (unpublished) for B.C. Hydro and Power Authority, Report No. 167, 70 pp. (February 1983).
- 11. Kingston, Reynolds, Thom and Allardice Ltd. 1983. "Report on Meager Creek Geothermal Project, 1981/82". Unpublished report to B.C. Hydro. Kingston, Reynolds, Thom and Allardice Ltd., Auckland, New Zealand. March 1983. 214 pp.
- 12. Lewis, T.J. and J.G. Souther: "Meager Mountain, B.C.: "A Possible Geothermal Energy Resource", EMR, Earth Physics Branch, Geothermal Series No. 9, Ottawa, 17 pp. (1978).
- 13. Lewis, John F. 1977. "Preliminary Field Report of Drilling Near Mount Meager and Mount Cayley Volcanic Centers". EMR, Earth Physics Branch, Open File Report, 1977, 12 pp.
- 14. Michel, F.A. and P. Fritz: "Isotope Hydrology of the Meager Creek Thermal Waters", Final Report for EMR, 11 pp. (1979).
- 15. Moore, J.N., M.C. Adams and J.J. Stauder. 1983. "Geochemistry of the Meager Creek Geothermal System". Transactions Vol. 7, Geothermal Resources Council, 1983.
- 16. Moore, J.N., M.C. Adams and J.J. Stauder. 1985. "Geologic and Geochemical Investigations of the Meager Creek Geothermal System, British Columbia, Canada". Transactions Stanford University Geothermal Workshop 1985.
- 17. Nevin, Andrew E. and J. Stauder. 1976. Canada "Early Stages of Geothermal Investigation in British Columbia". Proceedings of the Second United Nations Symposium on the Development of Use of Geothermal Resources, San Francisco, May 1975, pp. 1161-1165.
- 18. Nevin Sadlier-Brown Goodbrand Ltd.: "Report on Investigation of Geothermal Resources in Southwestern British Columbia", (unpublished) to B.C. Hydro and Power Authority, 24 pp. (1974).

- 19. Nevin Sadlier-Brown Goodbrand Ltd.: "Report on Detailed Geothermal Investigation at Meager Creek", (unpublished) to B.C. Hydro and Power Authority, 18 pp. (1975).
- 20. Nevin Sadlier-Brown Goodbrand Ltd.: "Report on 1978 Field Work, Meager Creek Geothermal Area, Upper Lillooet River, British Columbia", (unpublished) to B.C. Hydro and Power Authority, 82 pp. (1979).
- 21. Nevin Sadlier-Brown Goodbrand Ltd.: "Report on 1979 Drilling and Exploration Program Meager Creek Geothermal Area, Upper Lillooet River, British Columbia", (unpublished) to B.C. Hydro and Power Authority, 57 pp. (1980).
- 22. Nevin Sadlier-Brown Goodbrand Ltd.: "Report on 1980 Drilling and Exploration Program, Meager Creek Geothermal Area, Lillooet River, British Columbia", (unpublished) to B.C. Hydro and Power Authority, 123 pp. (1981).
- 23. Nevin-Sadlier-Brown Goodbrand Ltd.: "Report on 1981 Drilling and Exploration Program, Meager Creek Geothermal Area, Upper Lillooet River, British Columbia", (unpublished) to B.C. Hydro and Power Authority, 93 pp. (1982a).
- 24. Nevin-Sadlier-Brown Goodbrand Ltd.: "Meager Creek Geothermal Area, Slim Hole Drilling Summary", for B.C. Hydro and Power Authority, (1982b).
- 25. Nevin-Sadlier-Brown Goodbrand Ltd.: "Meager Creek Geothermal Area, MC-1 Geological Summary, July 1981 October 1981", (unpublished) for B.C. Hydro and Power Authority, (1982c).
- 26. Nevin Sadlier-Brown Goodbrand Ltd.: "Meager Creek Geothermal Area, MC-2 Geological Summary, November 1981 March 1982", (unpublished) for B.C. Hydro and Power Authority, (1982d).
- 27. Nevin Sadlier-Brown Goodbrand Ltd.: "Meager Creek Geothermal Area, MC-3 Geological Summary, April 1982 July 1982", (unpublished) for B.C. Hydro and Power Authority, (1982e).
- 28. Nevin Sadlier-Brown Goodbrand Ltd.: "Report on 1982 Drilling and Exploration Program, Meager Creek Geothermal Area, Upper Lillooet River, British Columbia", (unpublished) to B.C. Hydro and Power Authority.

- 29. Read, P.B.: "Geology, Meager Creek Geothermal Area, British Columbia", GSC Open File 603, map, legend and descriptive notes. (1979).
- 30. Reid, Crowther and Partners Ltd.: "Meager Mountain Geothermal Project, Status of Environmental Studies, Baseline Data, Collection Program", (unpublished) prepared for B.C. Hydro and Power Authority, 55 pp. (1981).
- 31. Reid, Crowther and Partners Ltd.: "Meager Creek Geothermal Project, Detailed Environmental Studies, Terms of Reference", (unpublished) prepared for B.C. Hydro and Power Authority, 78 pp. (1982).
- 32. Reid, Crowther and Partners Ltd. 1979. "Environmental Reconnaissance Report, Meager Creek Geothermal Area", prepared for B.C. Hydro by Reid, Crowther and Partners Ltd. in association with VTN Consolidated Inc. 124 pp. plus appendices.
- 33. Stauder, J.J., J.M. Menzies, C.C. Harvey and T.M. Leach. 1983. "Meager Creek Geothermal Project Preliminary Resource Evaluation". Proceedings of the 7th Annual EPRI Geothermal Conference and Workshop.

APPENDIX A

DATA FROM POWER SYSTEM TESTS 1-26

Meager Creek Project - Well MC-1 BCH/EPRI Power System Test #1

Date: #5/27/85 Page: 1

A8 Coeents	Power System Testal, 22 HAY 84 Separator open, turbine on	P1,P7=[kPa] P5,wiz=[psi]	13,15=[deg F] #8=[V]												By-pass vlv clsd (Attempt to stabilize)	WB read 345 - 1 sec. (@ 1505 h)	By-pass valve opened									Turbine shut down, sep shut-in
=			5 0 0	. •		-		_	•	-		310	318	310	2	~	23	₽.		2	5	-22		~	ι.	
1			318	; =	2	F	5	=	,,	=	=	385-	385-	385	38	75	38	£.	38	200	25	77	٣	*	36	
			.	. 50	138	•		~		-		5		57		•	_	•	·			J.		G	•	
ia <i>P</i> 7			136		=	=	Ξ	=	=	=	**	8	=	=	3	•	_	=	E	=	5	•	~	~	æ	
ı T6a																										
s Péa																										
2																										
P.																										
22			265	265	265	265	265	765	265	265	268	266	268	268	568	268	255	265	265	268	268	268	268	268	260	
£																										
Ξ																										
=																										
Ξ																										
2			972	27.8	268	768	192	292	586	799	265	265	266	566	275	5 98	598	279	265	265	265	265	265	265	265	
23			28- 36 28	8	78	79	25	92	92	58	52	52	22	72	36	20	22	8 2	38	5 9	22	5 2	7.	*	5 7	
21																										
2																										
_ !	50 ≈ 14	, ic	י מט	235		239				225	·			2	.			245		99	S	•	210	č.	S.	
	15 348 15 348 15 348					•																				3
=	1345	55	7 7	Ξ	=	Ξ	77	Ξ	Ξ	Ξ	Ξ	Ξ	3	156	150	2	25	12	127	2	3	Š	25	<u> </u>	155	₫.

Well MC-1	t #2
- X	n Test
	System
Project	Power
Creek	
Meager	BCH/EPRI

	Company of the compan	***************************************	Silner vlv open, bypass clsd in 1881	P1,P2,P6,P5,P7=(kPa] LT setting = 3.5	Turbine vly opened, turbine on	12,14,15,16=[deg F] WB=[V]	wizlo,P3=[psi]		Loss of brine	Turb down, sincr viv opn, sep clsd - no	brine - ste only.WHP=# well back in 23 h
Date: #5/27/85 Page: 1	88	1									
Date: Page:	=				385	385	365	365	3.65	3,65	395
	17	:									
	ы	1		120	188	58	28	26			
<u>\</u>	Téa	1									
ה ה ה	P6a	-									
//EFKI FOWEr System lest #2	18	1									
i M M	P6	-									
1. 1. 1.	12	-			268	598	268	598	228	228	228
#CH/#	£	-			165	135	116	89	28	28	200
	Ξ	!									
	=	1									
	Q.	-									
											248
	2	:			12	13	12	80	'n	'n	S.
	12	1		398	265	265	265	265	248	246	240
	6	1		285	282	156	115	98	33	20	28
	Z	1		240	209	150	129	98	35	28	20
	i e	!	1328	1325	1330	1335	1348	1345	1350	1499	1489

Test #3
8
Ower System
BCH/EFRI Power

		Connents	*******	Power System Test 43.31 MAY 84	WH=90 as. LT setting = 3.5	Bypass, sep vivs open 1861	P1.P2.P6A.P7=[kPa]	12, T6a=[deo F] W171.0. P5=[osi]	Turbine on	Bypass viv cisd 5 turns = 50%					Turb down, bypass opn, sep clsd	
	Date: 65/27/85 Page: 1	2														
		BM 44	-						175	385	305	365	385	385		
		B		•			150	75	92	98	6 9	78	7.9	7.0	120	
Test #3		P6a T6a					125	75	188	166	169	165	165	165		
E		91	1													
BCH/EFRI Fower System Test #3		15 P6	****						249	255	255	268	268	268		
BCH/EFR		2	•						95	178	178	170	823	178		
•		11 FH	•													
		ŧ.	1													
		P3 13							8 236				24 265			
		12					275	268	260	268	265	265	265	265		
		2	!				250	175	185	200	246	266	200	200		
		₹.														
		Tine	-	1600	1688	1685	1619	1620	1625	1635	1645	1709	1715	1725	1738	

Meager Greek Froject - Well MG-1 BCH/EPRI Power System Test #4

	Coments	*****	Power System Test 84,85 JUN 84	ss tisa Joh; sep opi; toil oil belobt= 98 ms	anual brine line onen.level ctcl=3.7	2.P5.P6a.P7=[kPa]	12.13.15.16a=[deo F] M8=[V]	sizard, PJ=[psi]						Turb off.sep shut.b-p opn 1887		
Date: 65/27/85 Page: 1	88		Powe		7.		12.1	Mize						Turk		
Date: Page:		•														
	S	-		316	310	31.0	385	305	305	305	365	365	365			
	11	i														
	ы	-		85	82	75	92	38	7.0	78	18	92	7.0			150
	Téa	-														
						_										
	P6a			17.	175	17.1	169	15.	158	126	158	15.	159			
	16	-														
	P6	-														
	52	1		268	268	266	255	255	255	255	255	255	255			
	S	:		178	17.9	176	158	158	120	150	159	156	150			
	Ξ	:														
	=	•														
	Z	:														
	13	1		268	8	98	9	99	9	. 99		9	*			
		•														
	P3	į		58	2	25	22	22	21	21	71	71	21			
	13	1 1		275	275	266	260	268	50€	268	390	268	397			
	P2	i		250	25#	210	190	196	140	961	19.0	861	£61			
	_	ţ	180	. 59	-	91	-	ž.	982	1	_	رة د				99
	Ξ		955 955	8	100	101	101	182	182	163	183	101	101	164	195	Ξ

Meager Greek Project - Well MC-1 BCH/EFRI Power System Test #5

	Coments	AC MILE AT A 4-ET A CAPACITO A CA	closed Steros					A with clip on aeter 9 11	from generator							
Date: 05/27/85 Page: 1	88		- 6		12- 13	12- 13					<u>\$</u>	•	<u></u>	۵.	5	
Date: Page		1				_										
	9	-	489	48	486	489	48	488	486	88	48	48	48	489	489	
	11															
	М		96	96	96	98	75	22	ĸ	75	72	72	75	72	72	
	ſŝa		9	246	9	242	#	244	43	243	43	243	43	243	43	
	P6a		158	159	158	158	158	150	158	158	158	150	156	158	150	
	16	1														
	8															
	13		22	255	55	55	55	55	55	35	53	55	55	55	55	
			2	7	7	~	2	7	7	7	2	7	2	7	2	
 	PS		150	156	150	120	158	150	150	150	158	150	166	150	150	
	· *															
	±	1														
	Z.															
	13	1.	255	255	255	255	255	255	255	725	255	255	755	255	255	
	23	-	92	6	19	5	5	<u>6</u>	61	5	16	61	81	8	8	
	13		255	255	255	255	260	268	26€	268	26₿	268	368	268	255	
	P2		961	198	961	861	195	961	198	961	961	198	961	661	861	
		•	. —		_		.=				:					
	F		135	125	9=	115	130	125	120	115	81	125	128	112	120	
	100	#845	8845	8828	8855	9868	8985	8818	8915	8928	8475	9939	6935	8948	6945	

Meager Creek Froject - Well MC-1 BCH/EPRI Power System Test #6

	Contents	Power System Test 16.13 JHN 84	er heraht = 86 as	Steam thru seo, turbine on	11.P2.P5.P6.P7=[kPa]	12, 13, 15, 16A=[dea F] N8=[V]	1710.P3=[nsi]	lell dies - system shut dawn	H controller 9 8		eparator/turbine on	WH controller 2 16					all systems down	
Date: #5/27/85 Page: 1	84				-		-	-		•	•			- 2	=	-		
Date: Page:																		
	9	!		489	486	486	486	486				486	486	484	489	484	486	
	₽	<u> </u>																
	B	981		78	75	22	89	92				22	ß	22	52	79	28	
	Iba			258	255	255	255	255				245	245	245	245	245	243	
	PSa			125	9	-	138	32				99	9.6	99	33	95	35	
	2	•			-													
	8	<u> </u>																
	22			225	235	235	235	235				248	248	248	249	248	237	
	£	:		138	145	158	149	148				99	166	166	S.	S.	35	
	T	•													e e e e e e e e e e e e e e e e e e e			
	=																	
	Z																	
	12			520	255	255	255	255		•		242	245	245	241	240	242	
	23			91	81	11	11	11				21	13	13	21	12	21	
	13			255	252	255	255	222				245	247	245	245	245	245	
	6 2			160	180	88	17.0	168				130	149	146	130	138	130	
					,-			_		,_	_		_	' حرا				
	E .																	
	T.	6825	0830	8845	#820	#855	9899	8982	9810	0915	8925	8838	9935	6446	8958	6955	1696	1985

Meager Greek Froject - Well MC-1 BCH/EFRI Power System Test #7

			17 - 28 JUN 84	Pl PS wirln=facial	12.13.15.16a=[den F] MR=[V] AR=[d]	
7.82 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	Connents		Power System Tect	P1. P7. P6a. P7=[1Pa]	12, 13, 15, 16a=[den l	
Date: \$5/27/85 Page: 1	8	1	91	: ≃	: ≃	2
Date: Page:						
	2	:	485	485	485	485
	4					
	М	-	89	K	ĸ	99
	Tba	1	245	245	243	245
	Péa		120	115	BII	115
	2	-				
	P6					
	13	-	258	952	248	258
	£) - ! !	9	8	11	11
	3	!				
	=	-				
	Z	1				
	13	i	250	250	229	228
	P3		125	120	120	120
	13	:	228	255	255	255
	2	-	200	196	180	861
	2	;	366	360	298	240
	I se		9	9	1120	38

Meager Creek Project - Well MC-1 BCH/EPRI Power System Test #8

Date: #5/27/85 Page: 1

Consents	東京要素を書る書	Power System Test #8 - 29 JUN 84	WH=100 mm, MMP=300 kPa prior to test	P1,P2,P3,P6a,P7=[kPA] P5=[psig]	12,13,15,16a=[deg F) WB=[V] AB=[A]						
8	:	19	61	16- 18	16- 18	16- 18	16- 18	16- 18	16- 18	81 -91	16- 18
3	į	486	486	486	486	489	489	488	489	48	489
11	1					•					
P3	-	120	128	991	186	881	=	=	9=	=	=
Tba	1	259	250	250	228	258	228	228	228	720	228
Péa	!!!!	158	128	120	120	148	158	128	120	25	126
92	-										
32	-										
15	1	255	255	255	255	520	228	528	258	258	228
S	1	61	æ	=	81	81	81	9	81	81	8
I	:							•			
Ξ											
ā	1										
2	-	255	255	255	255	258	258	228	258	228	258
2	-	156	156	146	9	120	150	941	126	140	146
12		265	365	265	265	265	265	265	265	265	265
L 2		228	220	21.8	218	219	229	226	220	228	228
2		336	310	389	298	29.9	240	29.6	286	29.0	286
Ti me	-	9829	99.69	8168	8928	6936	8848	8958	1000	181	1629

Meager Creek Project - Well MC-1 BCH/EFRI Power System Test #9

	ents		Power System Test #9 - #4 JUL 84										
	03		Secarator L In										
Date: #5/27/85 Page: 1	8	1	17- 18	17- 18	17- 18	17- 18	17- 18	17- 18	17- 18	17- 18	17- 18	17- 18	
	=	1	189-185	480	489	88	68	689	484	68	484	186	
	12												
	4	1	84-125	75-125	75-125	75-125	65-135	65-135	65-136	65-138	65-138	65-139	
	Téa	1	268	250	258	222	252	258	258	259	250	259	
	P6a	-	148-168	145-150	145-150	147	138-148	138-140	139-146	139-140	139-146	138-140	
	91		247	247	258	258	228	250	220	256	256	259	
	2		148-156	149-169	148-168	148-168	148-158	139-158	139-156	138-158	138-158	138-158	
) !	12	1	268	255	255	255	255	255	255	255	255	255	
	S.		18- 28	18- 28	18- 29	18- 28	16- 28	15- 19	15- 19	15- 19	15- 19	15- 19	
	F	;											
	Ξ	!											
	Z	:											
	12	1								•			
	2	1											
	12	!	255	255	398	269	260	269	398	268	266	269	
	P2		208-248	286-248	288-248	266-246	286-246	200-240	200-240	288-248	200-246	288-248	
	ء ح	300 370	338-358	295-385	286-386	278-298	266-286	269-288	268-288	266-298	260-296	260-280	
	Ti se	1500	1515	1530	1545	1688	1615	1636	1645	1788	1715	2222	

MC-1	01#
Well	fest
act -	System
k Project	Power
eager Creek	BCH/EFRI
Меа	Ā

	Cossents	POWER System Test #18 - 87 JUL 84	Separator open	100 pine 00	Pl,P2,P6,P6a,P7=[kPa] P5,Wizard=[psig]	12,15,16,16a=[deg F] 17=[deg C]	MH, T-1 Flow level=[am] N8=[V] A8=[A]	For F4 & F6 refer to pressure charts		Black viv to turb stm cracked 4 turns		I-1 flow level ness'd from	sight glass bottom						Turbine off			
65/27/85 1	&	!	17. 19	17- 18	17-18	11	11	11	1	17	11	17- 18	17- 18	17- 18	17- 18	17- 18	17- 18	17- 18				
Date: Page:			787	98	484	486	486	48#	488	486	484	486	484	486	489	489	489	887				
	=	8	a	83	83	85	88	88	88	88	88	88	83	8	88	88	88	8				
	4	108-200	58-158	58-158	29-125	68-125	62-139	65-138	69-148	66-136	65-125	65-125	59-156	58-138	59-146	50-146	60-148	69-148		46-158	75-150	
0 #	Téa		238	255	255	255	255	222	255	255	255	255	255	255	255	255	255	255				
	Péa		78-86	159	145-155	156-155	159-155	158-155	159-157	150-157	159-155	158-155	159-155	150-155	159-155	150-155	159-168	159-168				
uten Te	16	l	248	245	269	598	598	260	268	268	268	268	597	268	269	568	268	269				
H/EFRI Power System Test	88		199-169	158-175	145-155	145-168	145-168	145-168	159-155	150-155	159-165	159-165	145-178	145-17#	145-178	148-178	149-179	146-170				
7. P	55	! ! !		268	268	268	269	268	757	727	257	257	257	727	257	257	257	123				
BCH/EP	£	: :		18- 28	17- 22	17-28	17- 28	17- 28		16- 22		16- 28		16- 22	16- 28	16- 21	16- 21	16- 20				
	Ξ	! ! !																				
	Ξ	; ; ;																				
	2																					
	2	; ; ;																				
	E	*																				
	12		255	268	269	398	398	263	263	263	263	263	263	265	265	263	263	292				
	P2		150-228	200-250	288-258	200-250	208-258	200-250	200-250	289-258	269-258	200-250	200-250	288-258	200-250	200-250	200-250	200-25B				
	ε	270-280	388-318	276-296	278-288	276-286	265-275	265-275	260-280	260-280	268-288	268-288	260-280	268-286	266-289	268-286	260-275	260-275		260-286	238-248	
	Time	1239	1246	1389	1319	1320	1338	1348	1350	1466	1415	1438	145	1598	1515	1530	1545	1698	1683	1605	1619	

Neager Creek Project - Well MC-1 BCH/EFRI Power System Test #11

156-272 12 13 13 14 14 14 15 15 15 16 16 16 16 16		
159-278 255 24-34 64 14 14 14 15 15 15 16 16 16 16 16		Turbine off 13 ranging 62 C to 88 C Separator down € 1458h
158-228 255 29 64 14 14 14 15 15 15 16 16 16 16 16	e: 6 5/27/85	18 - 18 18 - 19
156-226 255 26 46 14 14 14 14 15 15 15 16 16 16 16 16	Pag.	482-485 482-485 482
158-226 255 29 68 14 14 14 14 15 15 15 16 16 16 16 16		2 2 2 2 2 2
156-226 255 26 66 14 14 14 14 15 15 15 16 16 16 16 16		45-135 45-135 45-136 45-125 56-126 40- 66 86-269
P2 12 P3 13 P4 14 F4 P5 15 P6 T6 P6a T6 P6a T6 T6 T6 T6 T6 T6 T6		22 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25
P2 12 P3 13 P4 14 F4		159-155 159-155 159-155 119-126 116-129
P2 12 P3 13 P4 14 F4		258 258 245 245
P2 12 P3 13 P4 14 F4		159-165 159-165 145-165 116-156 119-146
P2 12 P3 13 P4 14 F4		268 268 268 268
P2 12 P3 13 P4 14 150-220 255 26 66 178-220 255 26 66 178-210 255 26-24 62 175-220 255 26-24 62 175-220 255 26-24 63 175-220 255 26-3 175-220 255 26-3 175-220 255 25 63 260 </td <td></td> <td>18-22 18-22 18-22</td>		18-22 18-22 18-22
P2 12 P3 13 156-226 255 26 66 176-226 255 29 66 176-226 255 24-34 63 175-225 255 24-34 63 175-225 255 24-34 63 175-225 255 25 63 206-246 266 18 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 20		
P2 12 P3 13 156-226 255 26 66 176-226 255 29 66 176-226 255 24-34 63 175-225 255 24-34 63 175-225 255 24-34 63 175-225 255 25 63 206-246 266 18 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 206-246 266 266 266 20		
P.2 12 P.3 150-220 255 26 176-220 255 26 176-210 255 26 175-225 225 24 175-225 255 25 175-225 255 25 175-225 255 25 176-226 255 25 286-246 266 18 286-246 266 266 286-246 266 266 286-246 266 266 286-246 266 266 286-246 266 266 286-246 266 266 286-246 266 266 286-246 266 266 286-246 266 266 286-246 266 266 286-246 266 266 286-246 266 266 286-246 266 266 286-246 266 266		
P2 12 159-229 255 178-229 255 178-225 255 175-225 255 175-225 255 175-225 255 289-249 269		62
P2 156-226 178-218 175-225 175-225 175-225 175-225 286-246 286-246 286-246 286-246 286-246 286-246 286-246 286-246 286-246 286-246 286-246 286-246 286-246		25
		268 268 268 268 258 257
11 12.286 12.286 12.296		206-246 206-246 206-246 206-246 186-226 178-226
P1 278-288 328-338 389-328 268-298 246-285 246-285 246-285 258-278 258-278 258-278 258-278 258-278 258-278 258-278 258-278 258-278		258-278 258-265 268-265 268-278 268-278 169-178 228-278
1015 1015 1015 1136 1235 1235 1235 1338 1345 1438 1435		1488 1488 1415 1438 1445 1588 1689

FOWER SYSTEM TEST NO. 12 July 18, 1984

		WHITE	Separation PCV7 @ 25 PCV6 @ 33			* Close Z" Marual Valve																		CIRCL ST. CONT.	Separator our row												
	9	8	1	ı		17-19*	2	17-20	17-19	9-71	2 2	8 8	18-19	18-19	18-19	9-19	18-19	18-19	18-19	18-19	2		1			•											
	9	≩		1	. !	8	9	8	8	8 3	3 8							-	- 7,1	8			1	•													
I	MOIT.	Teve!	260-620	240-680		110-600	019-097	440-670	420-600	400-620	420-630	260-760	300-500	320-615	365-620	280-600	300-620	300-600	330-640	330-620	400-280		310-610	420-710													
	PCV4	Output	Ę	8-12		15-20	15-21	15-21	15-21	15-20	17-20		15-20	15-20	15-20	15-20	15-20	15-20	5-71 8-71	15-19	15-20		<u>ភ</u>	7-17													
	PCV4	Setting	c	. 0		ន	ይ	ß	ድ	ድ	S 8	R 5	K 58	S	ድ	ß	ድ	ድ	ଛ	S	R		0														
	j	2	0%	240		255	748	248	248	248	87.		788								748		135														
	Póa	₽ B	19 113	95-115		150-160	150-500	150-200	150-200	150-200	150-200	061-091	155-195	160-200	155-200	160-190	155-185	160-180	160-175	155-190	160-180		100-140	110-140													
	Œ	副	27-07	5.5		70-75*	70-75	65-75	70-75	75	70-75	5.45		75-88	75.88	75-80	22.08	75-85	75-80	70-85	70-75		200	75.08	57-5	8											
	Œ	ပ္ပု		2 %		35	8	8	35	8	8	88			35										8			_									
	P7	장	75-160	30-150		50-150	45-155	50-100	50-155	45-160		66-156	71 7				60-180		60-130	75-125	65-130		70-125	50-135		90-125	9 8	50-12									
	19	[4]		75,7		257	259	23	23	260	260	98				92					_			245													
	经	KPa B	9	90-130	\ \	140-190	150-200	150-200	150-200	150-200			150-185			150-190	150-180	150-180	150-185	150-180	150-180		100-140	100-140													
	ħ	6 [2]		1 1		260	260	260	260	260	5 261	260	86	26.	36	5 261	5 261	5 261	5 261		4 260		1	1													
	钇	180	. •.			18-2	5	16.	18	18-2	18-2	20-25	7 5	3 5	Ş	2	Š	Š	8	5	20-24			1													
	77	<u> -</u>	;	243	3	265	265			265			20, 20,					3 %					245	245							ຜູ່		-	100	150 1	S 19	
	P4	EPa		80-110		140-185	150-180	15-180	150-180	150-150	150-182	155-190	145-185	74.17	145 185	145-185	15.	15-180	150-180	165-180	155-180		90-120	90-120							Skys Prec.	-				Clear	
	Ħ	ပ	!	9 6	3	¥7L	; x	5 K	; K	, K	2 12	75	≉ ;	\$ %	; ;	2 %	2 2	2 8	2 %	5 E	2 12	!	5.50	5	}					È		1	ບ	<u>ن</u>	3	ט ט	
	2	kPa	*;	25-35 25-35	5	15*	٦ ټ	3 T	3 7	5 T	3 2	2	:	J ;	3 2	J 7.	1 2	2 2 2		2 01	18-20	} : - }		8					Pol	Hamidilin	7				7/7	45%	
	2	1		8	Ş	263	3 %	707	262			265						26.2			3 2			ر ا لا						8	Press	}			2.75	102.7	2
	8	E E		180-240	1/0-230	070,000	מלני מסני	200-200	2007-007	200-200	198-260	200-270	210-250	210-250	27-017	710 260	202-017	210-200	210-220	000 010	210-255	2	180-2/0							, d	C Pr		22	92		26 103	
	2	kPa			C87CC7	יובב יועב	233-203	227-702	C07-10C7	092-567	250-260	255-275	260-270	260-270	27-72	C/Z-09Z	0/7-007	C17-CC7	20-77	C17-1)C7	242-263	602.00	676 036	260 275	77.67	240-250	150-160	230-150					Weather 0900	1200	0300	0090	35
		Time	0060	0001	C101	0701	7701	201	3	3 5	130	1230	0100	0130	0200	S 53	300	35	36		8 6	98	200	200	5 6	953	0915	0945					Weath				

				$RCV7 = \emptyset$ ps1	Separation PCV7 = 25; PCV6 = 3	2" brine closed; 4" steam clos							145 - PCV7 = 40 nst							Separator off 5 mm	Mithing - more of + 26 and	Ted of a mediana a virginia			PCV7 = 25 pst															
	\$	2			ı	1	. 1	1		1			• •	1	ı		1	•						a)			17_10	17-19	17-19	} ;										
	. 3	2				1	1	1			1			ı	: 1					urbine	urbtine	urbine	33	burbin			780	8	8	}										
F	Flow I ervel				380-700	320-680	410-640	420-700	450-620	410-590	370-660	350-620	360-560	380-560	300-630	330-620	340-620	355-640	8	0/50 oversp @ 25 pst turbine	25 ped to	oversp @ 25 psf turbine		oversp @ 25 pst turbine	000, 000	36.65	26/18/	310-700	360-690											
	PCW4				2	3	8-10	7	9-11	9-12	8-12	9-12	9-12	15	8-10	10-12	12-18	15-20	blown disc	rersp @	Perso @	rersp @		wersp (5	71-5	122	7-20	17-20											
i	PCV4 Setting			•	0	0	0	0	0	0	0	0	•	0	0			0	20/0 P	0\20 8	0/30 م	0/25 ca		20/22		- -		S												
•	e e	l		2	70-75	5-15	24	8	24.88	25.00	88	75-80	75-80	8	2	26-75	5-75	7.							8	2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	270-75	70-75	70-75	70-75									
£	ည္ပ	l			- 1				88	7 7	23 7	93 7		55		8	93 K	23							8	•	, f.,		93 X	93 7	•									•
•	r. kPa			100-500	3 5	3 :	55	45-150	\$-149 \$-149	60-145	66-150	65-160	70-150	8-120	8-13 8-13 8-13 8-13 8-13 8-13 8-13 8-13	10-130	110-150	125-150							50-125				45-140		75-150									
ž	, .			1	3 2	3	3	235	33	ង	33	235	232	238	ង	737	242	242							070	33.5	3 8	240	240											
y E	KPa B			110-140	21-12	CC1-011	2	110-150	100-140	100-140	100-140	100-145	140-150	115-125	140-160	150-165	155-165							01.	10-130	155-185	155-180	155-185				. •								
¥	. F) .		8 8	9 %	9.7	3 3	₽7	248	248	248	କ୍ଷ	22	2	25	3	3							5	2 2	26.	8	260												
×	K P		, , , , , , , , , , , , , , , , , , ,	051-011	201.301	201-011	21.51	21-21	9-149	110-140	110-140	120-140	130-140	120-125	135-150	21.5	21-12							. 2	110-140	155-185	150-190	150-190												
ķ	1			ŧ	1	ı	ı	1	1	ŀ.	ı	1	1	ı	1	1	ı								1 1	260	92	260												
K	절:			:)	ľ	1	ı	ı	i	ı	ı	ı		1	ı								1 1	20-24	20-24	20-24												
4	-		;	C#7	2,40	277	27.6	9 ;	9	5 46	246	ଯ	ន្ត	242	3 8	70	7		9	rep.	rap.			. 27/6	245	92	760	92						Prec.		5	2 5	, <i>2</i> 2	8	
7 8	kPa				4 × 1.7					85-120						•	-	į	> 25 oversp.	2. OVe	V 25 OVe	5		100	201-02	145-175	140-170	110-130						Sleye		Overcast	Loudy	<u> </u>	1	
ħ	ပ			Š	72-90	: 0	3 2	3 8	₹ ;	R :	8-3	8-32	\$ 5 \$ 5	2 8	3 2	2 2	5							76.82	4	23	72-80	74-84						ত্য।		O e	Gear Gear	Clear	ag D	
E	KPa Ba		10.15		3	3	3	2	7 5	3 8	7	27 27	<u>ئ</u> الم	3 5	4. K	3 5	3							30-35	3 2 2 2	15	5	15				Rel.	Hunddity	×	1	ងខ	3 23	ક્ષ	64	
2	6		20	3 5	8								707	3 %	6 ×	3 5	ì										265							921	•	ع رد ع	, 0,	6	ر ص	
2	kPa		300	200-250	200-240	200-240	20-760	100 260	007-KT	207-001	007-701	007-077	757-757 Poor	330 000	2007	250-260								220-250	190-240	220-250	220-250	220-250						°C Press				24 102.9		•
Ы	KPa	280.085	320-260	290-300	265-280	265-280	265-280	046-046	360 376	C12-000	0/7-07	707-707	197-701	200	26-0%	250-265	}					•		290-320				52-52	017-001	C17-CC7								1200		
	됩	02.20	2,70	080	0830	0000	0660	200	3 2	3 5	3 5	271	25	1215	1230	8	0110	0115	2 5	2 2	2 2	CCIO	0145	0150	0200		0230									WEBCIK				

	Remarks	Separator/Turbine Ch Turbine/Separator Off	
	8 Rel Næddity	57.5%	
Air	Temp Press	19 102.7 8 8 8 8 8 8 8 8 8 8	
	NS A8	480 17-18 480 17-18 480 17-18 480 17-18 480 17-18	
	m Setting	100 0 120 0 120 0 128 0 12-80 0 12-80 0 12-80 0 12-80 0 12-80 0	3
	KPa .c	50-100 89 75-100	80-120 89 75-80
	2" Valve		
	Pos Tos	160 250 160 250 160 250 140-150 250 140-150 250	
Flow	level B mm	320-680 280-600 550-620 410-630 320-680	
	PCV6 Setting		
	74 F6a FF	265 260 260 260 260 260	
	2 1	260 260 260 260 260 260 260 260 260 260	
	55 E	260 150 250 150 250 150 255 140-150 255 140-160 260 140-160	
	75 per 17	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
	P4 KPa F4	170 155 150 140-150 140-165	
	PCV4 Output	0-12 10-12 10-12 10-13	
	3 PCW C Setting	ន្ទន្ទន្ទ	
	12 E	22222	
	2.5	2222222	
	K 23	222	
	P. R. Ba	265-280 350-360 300 280-300 275-290 270-280	260-270
	Time		

																									,, -	
į	S e		-	7						6	4	S				•								. J	æ	
	Remarks		Separator On				Disc Burst.	Shut Down	for Repairs	Separator On				Turbine	Ruming								Turbine Off	Separator Off		
	Henddity	24%					-						20%											47		
		102.6											102.4											102.4		
Atr B	°C kPa	19											88											8		
•	8 g													480 15-16		0 16-17	0 17-18	0 17-18	0 17-18	0 16-17	0 16-17	91 0				
	178 P									_				Ξ.		89							_	0	0	
	Setting	88		8	8	8 8					80 25								-75 25					- - 		
	三日に	25-175 89 75-80		89 70-80	89 75	88 77				89 75-80	89 75-80	89 77	88 8	89		99 70	89 70	89 70	89 70-75	88 50 50	68 70	68 6		89 75-80	8	
1		25-175		50-150 89 7	45-130	45-140				30-146	35-140 89 7	25-130	25-125	35-125		45-120 89 7	40-125	40-125	35-120	35-130	40-130	40-120		75-150 89 7	85-175	
	Marina 1 2" Valve	Open	Open	Open	e do	Open	Open G			Open	Open	Open	Open	Open		Open	Open	Open	Open	Open	Open Open	Open	Open	Open 0		
	10a 1.2			0 240	0 540	0 770					240					0 245	0 245	0 245	0 245	0 245	0 245	0 245		245		
ì	क स			90-110	100	100-110					8					110-12	110-12	110-12	110-12		110-120	100-120				
Flow	Level un			390-530	310-500	360-560				300-580	270-540	360-570	390-490	380-470		350-430 110-120	300-540	240-590 110-120 2	300-610	330-480	170-500	370-640				
	PCW Setting					3.3				3,3				3.3					3.3	3.3	3.3	3.3		3.3		
	4.5		٠	238	238	238				238	238	240	240	255		255	222	222	252	222	222	222		247		
	P6 F6a			_										•			_		0	0	0					
	4. B			130 240	130 240	90-125 240				8	3	15	8			_	_	-	\sim			-140 250				
	रा १५ १८ इ			8	\$	8	1			8	8	88	8	248 115		250 110	250 110	250 110	250 110	250 110	20 105	501 052				
	2. 18 2. 18													15-18		14-18	15-18	15-18	15-18	15-18	15-18	15-18				
	F Pa			.001-02	80-110	80-110	}			65-110	80-110	75-100	99	100-150 15-18 248 115-1		120-150 14-18 250 110-1	05-150	00-155	00-150	00-150	05-150	105-140 15-18 250 105-144		100-125		
•	PCV4 Output			01	10-12	8-12	:							10-15		10-15	10-15	10-15	10-15	8-15	8-15	2				
	PCV4 1			0	0	Ċ	,				0	· c	. 0	8								0		0		
	ნა - ფ			74	87-78	8	3			76	72	72	72	72		71	7	7	2	2	98	8		98		
	E S			05-04	10-50	24.65				05-07	45-50	3	5 6	25.30		8	22	z	20-25	72	12	12		32		
	4.13			70 257	0 257	757 0	ì			750 07	50 255	253	253	40 255				255	25	255	255	255) 	30 255		
	전 점			220-2	200-2	200				220-2	180-2	2021	2021	250-270 180-240		190-5	180-2	180-2	180-2	255-265 180-240	255-265 190-240	5 170-240		5 190-2	0.0	
	F P	1000	K7-17	320-340	285-310	275-200 200-250 257 40-45 76-80	1000			1000 330-350 220-270 257	275-290	200-076	1120 260-270 170-240 253 40-45	250-270		1145 250-270 190-240 255	255-265	1245 255-265 180-240 255	0115 255-265 180-240	255-264	25.75	255-265		0300 245-265 190-230 255	0315 245-260	
	Time			8 5	9	8 8	3 6	3		100	9	9	3 5	000		1145	1215	1245	0115	0145	212	0245	0255	0300	0315	

Time P. II.

Remarks Chart Ref. Nos.	(1) Committee (b)	(1) Separator of	(2) Turbine On (3) Water Level in Tl increased	to be sure full brine level over flow plate	PCV6 to 2.5)	(4) Water Level	Overflowing to Turbine) PCV6=3.0	Turbine Off (5) Separator Off
Rel	27.9				į	7 29		
8 68 8 F	102.5					102.5		
Air Baro Temp Press °C kPa	26 10				9	2 2 8 8		
Arros 7		•	51		15 15-16	480 15-16 480 15-16 480 15	480 15–16	
			98		84 84 8	\$ 8 8	84	
PVC7 WB Setting V	οř					១៦៦	ង	•
E	75-80	5 5 8 8	75 88		888	5 5 5 5 5 5 5	70-75	75 75-80
P7 T7	10-185 88 75-80	50-125 88 75-80 40-125 88 75-80	-130 88		50-120 88	40-125 88 7 30-125 88 7	35-120 88 70-75	
	91							
Marual 2" Valve		Closed	Closed			Closed	120-145 238 Closed	
1. To		115-135 235	740 Z34		155 238	26.25	145 238	
P6a kPa					135-155			
Flow Level		310-700	440-720		680-970	750–950 490–810	520-760	
PCV6 Setting		3.3	3.3		2.5	2.5 3.0	3.0	
¥ .		245	220	٠	ន្តន	និនិនិ	220	
74 F6a °F								
2.5		40 248	~ .		55 250 52 250 53 250	່າວາ	55 252	
85 E		110-140	120-1		16-18 250 120-15 16-19 250 120-15		15-18 250 125-155	
14.A			18 250 18 250		18 25 19 25 19 25 19 25	3 5 5 3 5 3	-18 25c	
74 18 13		-						
P. P.		100-120	115-145		110-140	20-120	9-12 120-145	
P3 T3 PCV4 PCV4 kPa °C Setting Output		8-10 8-10			21-01		2-12	
PCV4 etting	0	000	R	•	888	388	. ₂ 2 c	
5 S	*	25.25					• •	
		5 45-5	55 40		8 8 8 8 8 8	322 832 833	04 75	
72 172 172		-240 2	-240 2		-240 258 -250 258	222	-250 2	•
	28	300-340 200-240 255 45-55 280-290 190-240 255 45-55	8		280-290 210-240 265-290 195-250 260 285 195-250	260-275 200-250 2	90 200	98 59
E E	0 275-285	5 300-3 5 280-2	280		5 280-2 5 265-2 3 265-2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0445 260-280 200-250 257 0448	0449 0451 245-260 0600 255-265
	010	0135	020	•	0216	988 845 845	24.2	06.55 06.55

Remarks Chart Ref. Nos.		Separator On - Blown Burst Disc.	Quick Shut Down (1) Separator	Start-Up	(2) Turbine On					Turbine Off (3) Separator Off	
Rel Immidity	259						242		51.5%		
	102.5						28 102.4	 - 	102.4	•	
Air Baro Temp Press	7					_			প্ত		
Ande					71 00	2 2	480 17	2	2 2		
PVC7 WB Setting V	•		શ્	ี่ช					ย หา	0	
	95-100		00-110	00-110	100-110	25 - 25 25 - 25 25 - 25	100	100-100	8 - 18 e		8
다위	125-190 89 95-100		75-125 89 100-110 25	65-125 89 100-110 25	20-110 89	55 88 88 88	45-110 89 100-105 25	68 01	2 S 8 S		90-175 89
P. P.									45-120		8
To Marual *F 2" Valve	Closed	Closed	160-175 140? Closed	155-170 1507 Closed	Closed	1907 Closed	Closed	Closed	Closed		
2.4			75 1407	70 1507	125-150 1757	2061		55 1907	50 1927 50 1957		
Po RPa						25-150			120-150		
Flow Level			470-800	450-780	460-780	092-097	500-780	560-820	280-730 260-820		
PCV6 Setting			3.0	3.0	3.0	3.0	o 0	3.0	9.0		
74 F6 F68 *F S			760	790	252	ន្ត	3 2	252	ន្ត ន		
13			175 260	170 260	255	255	2 22	220	ន្តន		
85 gA			150-175	0/1-091	120-150	130-155	120-155	130-145	120-150		
₽.₽					20 253	20 250	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ន្ត	1-021 052 61-51		•
7 2 3 4		•									•
PA PA			160-170	155-175	120-130	120-150	120-140	125-150	115-155		
PCV4 Output			15-19	51	12-15	10-15	3 5	10-12	7 2 2 3		
T3 PCW 1			G		2	S	88	3 8	88	0	
ह क्षे			35 130	27 130	144	22 144	92 2	146	25 35 35 35		
1 5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			65 25	2 2	65 20	62 20	22.5	121	22 22		
172 HPa 1			2007	270.7	7.057	22	957	25.	250		
Pi Pi	ä	C67-0/7	95-51 0 051 56-56 560 000-000 580-000 5001	1020 295-315 230-270 265 22-27 130	700 200	1-295 20	295 20	-280 21(1100 265-270 200-260 260 22 146 50 9-		235-245
Time	050 3700	. 0955	007 330	1020 295	1030	1100 270	1130 270	1230 265	0100 26:	0131	0134 235 0200 255

Rel Remarks Humidity Chart Ref. Nos.	(1) - Diesel	- Compressor On - Spit Valve Open to Drain	Water - Spit Valve Closed	- 4" Marual Valve to	Open Full (2)- Close	Valve to Repair Burst Burbura Disc	- Reopen 4" Nanual Valve	- Adjust PCV7 - Connect Bat-	- Open Nitrogen Bottle	- Open Black Manual Valve to Turbine
Air Baro Temp Press °C kPa	13 101.75 80									
A A A A A A A A A A A A A A A A A A A										
PVC7 WB Setting V	•							ង		
D. C.	3 100									
P7 7	115-185 83 100									
To Marual "F 2" Valve	Closed 11	Closed	Closed	Closed	Closed		Closed	Closed	Closed	Closed
88 gy										
Flow T4 RCV6 Level										
P6 T6 T4 KPa °F P6 P6a °F						•				
स स र							•	•		
F P										
P3 T3 PCV4 PCV4 kPa °C Setting Output										
다										
P2 kPa										
P. KPa	275-290									
Time P.u.	0215	0222.30	0223.30	0225.34	0226.10		0233.10	0233.26	0234.20	0234.50

Sheet 2 of 2

Rel Remarks Bundity Goart Ref. Nos.	to Drain Water	- Adjust ruys to Drain Water	- Close Y- strainer	- Close Black Valve	- Turbine Enable On	PCV4 adjustedBlack Valve	Opened	(3) First reading About 5 mins to complete Readings				Turbine 011 Press = 55	(4) Turbine/ Separator Off	
Rel Lumiddts									62	6		8		
Air Baro Temp Press °C kPa									13.5 101.75	14 101.7	14.5 101.7	13.5 101.7		
AMP8								91 087	480 16 480 16	480 16 480 16	480 I6 480 I6	91 084		
TT FT PVC7 WB								83 100 23	86 100-105 86 100-105	88	86 100-105 86 100-105	86 100-105		
P7 kPa								65-125	45-130 45-120	42-129 42-129	35-125	30-130		40-110 80-165
"F 2" Valve	Closed	Closed	Closed	Closed	Closed	Closed		Closed Closed	Closed	Closed	Closed	Closed		
Péa Téa kPa °F								Closed 520-820 140-165 N/A* Closed Closed	120-155 NA 120-155 NA	125-150 NA 130-150 NA	125-155 NA			
Flow Level								520-820	470-690	510-860	097-042	280-780		
RCV6 Setting								3.0	3.0	3.0	3.0	9.0		
TA FOR SE								255	ន្ត ន	ន្ត ន	22 5	និង		
7. 88 16 184 1° 184								18-21 255 140-160 255	16-18 250 125-150 250 15-19 250 120-150 250	15-19 250 120-150 250 16-19 250 120-150 250	16-19 250 125-155 250	15-19 250 125-155 250		
P¢ P¢								135-160	120-150	115-150	051-0	5-150		
PCV4								15 13		272				
T3 FCW		R	0	•	0	R	ន	50	91	8.5	22	22	•	
2 3								62 40*	25 25	122 123 134 135 135 135 135 135 135 135 135 135 135	i in	88		
P2 72 KPa • F								40-270 24	00-250 2	95-250 2	95-260 2	195-255 2 195-255 2		
P1 kPa			•					330-340 240-270 262	290-310 200-250	270-295 195-250 2	65-280 1	265-280 1 265-280 1		190-220
Time P.m.	0235.01	0235.04	0235.34	0235.40	0236.49	0237.01	0237.25	0237.32 0238 3 0243				0200	0540	0545

Note: * Gauges on P3, T3 and T6a would appear to be defective and will be replaced.

FOMER SYSTEM TEST NO. 20 September 11, 1984

ان	P3,	laced ir-	o o	Teg		- 구 <u>8</u> 8	Ben	1 in 3	ainer 4 to r in		*
Rel Remaddity Chart Ref. Nos.	(1) Gauges @ P3, T3 and T6a	were replaced - Diesel Gener-	- Compressor On - Spit Valve Open	 Spit Valve Closed Open 4" Manual 	to Steam Separator	- Adjust rcv/ - Cornect Bat- tery Terminals	- Open Nitrogen Bottles	- Open Manual Valve to Tur- hime (Rlack)	- Open Y-strainer - Adjust PCV4 to Drain Water in	Steam Line Close Y-strainer	- Close Black Valve
1 dity Char	3	百 百	1 1	3 O O	° 5 03 •	11	1	1	11	807	0 7
ro ess Re Pa Hand											
Air Baro Temp Press											•
A AB											
PVC7 WB Setting V	0				,	Q					
C C C C C C C C C C	26-95 56-95										
PP TP	125-195 86 90-95										
	2										
Tea Marual °F 2" Valve								•			
Pos RPs	•										
Flow Level											
PCV6 Setting			٠								
76 F68 F											
13.2											
8 3											•
5 TE								•			
Pa Pa											
									ı		
"C Setting Output	0								S	0	
E E E E E E E E E E E E E E E E E E E						•					
1. 13 12. 13											
72 kPa				•							
P. RPa	270-295	0437.27 270-295		\ \ C	-	2 2		~	0.8	. 90	#
Time	0415	0437.27	0437.46	0438.2	0439.41	0439.57	0440.55	0441.12	0441.20	0441.56	0442.01

Rel Remarks Namidify Chart Ref. Nos.	Turbine Enable On	- Adjust PCV4 -	Open Black Valve	- Cenerator On	- Turbine to	First Readings	5.36 mdns to	complete Readings		(3) Opened Steam	Bypass - 5 a	milated Water	(Will Incorpor-	ate this Step	in ruture lests)	(4) Turbine/	Separator Off	(5) To Drada	Water (Brine)	From T-I			
IITY Che	- 1	1	. .	•		, E	5.3	5		ට	2 3		3	ate.	S	3	&	3	Fac.	E			
Nuldi										2			2		8								
Air Baro Temp Press								2		ē			9.101		101.6					-			
						17	•	. 71	17	7			2		19 13	61							
A AB						480 16-17		790	8 8	480 16 14 101.5			92 78		480 18-19 13	490 18-19							
PVC7 NB Setting V																	۰			•	1 -1 -1 :		
						55-125 91 105-110 25		9	9 50	5150			50-110 50 100-110 52		5-110	60-110 88 105-110 25	2.00	SOI		85-50 · 0			
₽ °						5 91 10		8	88	8			8		98 10	88 10	88 10	8					
전 점					•	55-12		61-13	5-12	60-110 90 105-110 25			3		65-10	3	9-11-09	100-125 88 105		50-120 68			
To Meruel ** Yalve						Closed		Closed					Closed		Closed	Closed	Closed	Open		Closed			
\$						5 34		77 5	0 57	8		;	8		5 20	2 25							
\$ 3			•			91-051		130-15	130-150 57	160-17			195		160-18	160-185 72							
How Level						510-760 140-165 34* Closed		260-700		500-720			250-140 160-175 64			480-760							
PCV6 Setting			•	•		3.0		3.0	3.0	3.0			2.5		3.0	3.0							
74 P6 P6 8						255		252	22	255		į	ĝ		, 255	252							
5 F						22		22	82	SS			Š		822	3			•				
2 S									P-155	180					-185 2	183							
p			٠.			17-19 255 140-160		16-19 252 130-150	16-19 251 120-155	250 25		21 026	C/1-Ch1 007	•	260 15	260 23							
四日						17-19		16-19	16-19	15-19			1		20-22 260 150-185	20-22							
हूं। ज्रुष						155		83	53	22		٤	3										
F B						12-15 140-155		110-150		155-175		9	701-041 02-01		150-180	ᇫ							
TO PCW PCW						12-13			10-14			16.20	3		15-20	27							
PCV4 Settfn		ዴ	•	2 5	₹	2054 50			R			S			8		0	•		0			
E E								202	208	88					53	2							***************************************
7.12						262 04		0	38 0	9		9			65 0								
72 KPa						0-270		0-255 2	0-260	0-760		2000			7-565 2	7.592-							
r P		_				0443.23 330-360 230-270 262		280-310 220-255 260	270-290 210-260 258	270-285 22		260-295 220-220 265	-		265-290 230-265 265	265-285 230-265 265	265-285	240-250		180-205		/18	
The	0442.49)		```	047.18		0443.23	24%.0		-	8		0,50			0000		0.70	•		0745		EPRI/11	-

PIRPOSE - OBSERVE AND RECORD WELL RESPONSE AND RECOVERY

Rel Remarks Humiddity Chart Ref. Noe	3 (1) (2) Separator On													(3) Turbine
Rel umidity	8				•									
ress KPa H	103.0													
Temp Press	2													
Aggs Aggs														1 1
PVC7 WB Setting V			•											
Sett	o X											J		0 0 ង វ
日間	94-98											2011-011		103-110
E :9	88 88										8	J		5 S S
P. Idea	120-185 89										: 37			60-120 80-115
To Marual °F 2" Valve	Closed													Closed
To M														8.88
85 SA														160-175 78 160-175 81
Level														520-750
PCV6 Setting	3.0													3.0
74 F6a °F														760 260
5 F														260 260
75 25 Pa														150-180
2.4														11
E 2														1 1
PA PA	•													155-175 155-180
	0													
PCV4 8 Output	15-20	· ·												12-18 12-18
TO PCW 1	00											٠.		2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 E								•						202
13.13														262 <
KPa KPa														280-298 240-270 262 <5 275-295 230-280 262 <5 270-295
P1 kPa	275-295	300-320	340-355	285	1009.00 335-365	55	5.5.7 5.5.5.	2-337	5-332	9330	0-320	5 5	6,300	0-298 2 5-295 2 0-295
Time	27.	1004,30 300-320 1006.06 330-360	1007.00 33	8 8 8 8	8.8	8.	8 8 8	8	E .	1 1	8	? న	হ্য হ	1024 1030 1030 273

Sheet 3 of 3

FOMER SYSTEM TEST NO. 22 September 18, 1984

			1			URROSE	- TO DETE	TAMBE FL	CW RATE @	PURPOSE - TO DETENTINE FLOW RATE @ 100% THEU SEPARATOR FLOW	SEPARATOR TS. Moreon		. 6	S	7	8	Air Baro Tem Pres	Rel		Remarks
8 점 다 이 또 함	PCW PCW Setting Output	PCW Output	KPa F4	医五	P P	KPa Pa	FF FFB P	F Setting	III III		°F 2" Valve		S		Setting V		°C kPa	2		Chart Ref. Nos.
	•										Closed		125-180 87	8	•				(1) Flow Rate Using 5 Gal. @ V-North Sample Rates	(1) Flow Rate – Using 5 Gal. Vessel @ V-North – 5 Sample Rates
	0											\$21	125-180 87	26	•	***			Average	Average 10,110 L/III
1116 1117 1118 345-370 230-270 262 205 1130 345-330 200-240 246 5-10 205		10-15 1 8-12 1	10-15 110-120 248 8-12 110-130 248	, , , ,	120	120-140 250 115-145 250		3.0	580-750	50 120-145 54 05 120-145 69			125-160 92 115 25 60-110 92 110-115 25	115 110-115	ងង		21 102.4	4. 77	(2) Sel Steam 1 Bypass	(2) Separator On – Steam to Turbine Bypass Open to Drain
		15-18	15-18 130-140 257	1	- 160-1	-170 260		3.0	570-690	90 180-210 76	76 Closed		150-160 92	8	- (xeax)	1			* Flow Average Rates	* Flow Rate – Average 5 Sample Rates = 13,818 L/hr
1146 240-270 250-270 268 20-25 212 1200 260-280 250-275 270 20-27 212 1230 275-290 270-290 272 25-40 215	000	15-13 15-13 15-18	115-140 250 130-150 255 140-160 255	ο νν νν ι ι ι	135-13	135–155 260 150–190 262 170–200 265	C 21 IS	3.0	500-720 510-750 500-740	20 150-165 80 50 170-185 82 40 170-195 90	5 80 Closed 5 82 Closed 5 90 Closed		125-150 92 145-170 92 140-175 92 1	90-95 60 95-100 60 100±2 60	888		22.5 102.4	4.	Flow Rate 5 Sample Rai 19,129 L/hr	Flow Rate – Average 5 Sample Rates – 19,129 L/hr
[25] 1966 976 986 978 980 979 98-40 918	c	5.10	15-19-135-160-255	ا	. 17	170-200 265		3.0		530-720 170-195 90		Closed 130-170 92 100-105 60	-170 92	100-105	8	1		•		
		:)								100 e	100-120 91	8	0				(3) 4" Closed	(3) 4" Manual Closed - Separator
	•											551	135-180 88 92-97	92-97			23.5 102.4	2.4 75	0 £ £	

FOMER SYSTEM TEST NO. 23 September 20, 1984

September 20, 1304

PURPOSE - TO DETENDINE FLOW RATE @ 100% THRU SEPARATOR

	3	: 4 1-		٠.			님		aured	ample		. 8	1				를 :		•
	Ä	Toer (Je)		on g Wetr	بر	g Weir	30 17	0 Wear	s Meas	ng 5 S		(T)	, at	harge	3	::	9,049	700,1	1000
Remarks	* Note New	Rate @ Silencer =		Separator On Flow Rate @ Weir	19,500 L/hr	Flow Rate @ Weir	Box = 18,830 L/hr	Flow Rate 0 Weir $0.000 = 10.000$	Rate	by Averaging 5 Sample	50	5 Gal (22.7 L) vs.	Time (Segs) at V-	Notch Discharge	ign.	Flow Rates:	90 mm = 16,646 L/hr	100 um = 21,002 L/hr	• •
	* Not	Rate	ğ	Sepa Floa	3,55	Flow	Box	Flow	E P	by A	Rates	S	I Ime	Note	200	Flow	8	3 5	3
Rel Chart Hunddity Ref #5	-			7										٠.	2				
Rel (88							
H. R.																			
Afr Baro Temp Press	•											11.5 101.8							
												≓							
A 88	•			!		1 1		1											
PVC7 WB Setting V	i.			ı	Š	1 1		ı											
Sett	0			8		88		8				0							
日日	86-198			201 - 36		150-200 92 97-103 150-190 92 93-104		26- 10				120-150 88 92-98							. •
18:4	0 87		•	8		2 2	}	80 93				88							
P P	140-18			180-220 92 96-102		2 2	i }	152				8							
Marual 2" Valve	Closed 140-180 87 94-98			Closed		Closed		Closed 150-190 93 96-105											
76a M	S																		
P6a 7				190-230 40	}	170-210 68		175-200 87											
						- 1													
PCV6 Setting				3.0		3.0		3.0											
Flow Level				180-220 265 530-690	}	170-200 265 500-730	: }	170-195 265 520-710											
8				265.5		265 5		265 5											
₹ ₹ 8				0-730	} }	05-20	3	70-195											
14.04				1	1		•	- 1											
PCW P5 Lutput ped		•		ا		~ ~	_												
Outp.				20-75	1	18-22		18-20											
PCW PCW P5 P4 Setting Output ped				c	•	00	>	0											
五						0.0		٥											
물 의		•		20.	{	26.26	3	20 26											
2 强				Š	}	160	ξ.	150											
ដូ				215	3	38 215	2	35 215											
ह्य द्व				ž	5	. 28-	9	5 30.							•				
13.13				700 002	77	310 27	2	290 27											
72 KPa				. 080		280	2	5 280-				,							
P. P. B.	0945 275-300			0957	4	1015 280-300 280-310 275 28-38 215 140-170 260	22	1100 280-295 280-290 275 30-35 215 150-170 260				1115 260-275							
Time	0945 2			0957	3	1015	3	1100	8	9		1115							

Time

1203

EPR1/17

EPRI/18

EPR1/19

APPENDIX B

EPRI CHEMISTRY DATA

EPRI

SPECIAL TEST DATA

ON

GEOTHERMAL FLUID CHEMISTRY

FOR

Site: Meagre Creek, British Columbia

Well: MCG-1

CONTENT:

- * System Diagram
- * Chemical Analysis Request(s)
- * Chemical Analysis Report(s)

DATE: August 1983

Prepared by: Rockwell International as a result of field operations of EPRI's Mobile Geothermal Chemistry Lab., RP741-1

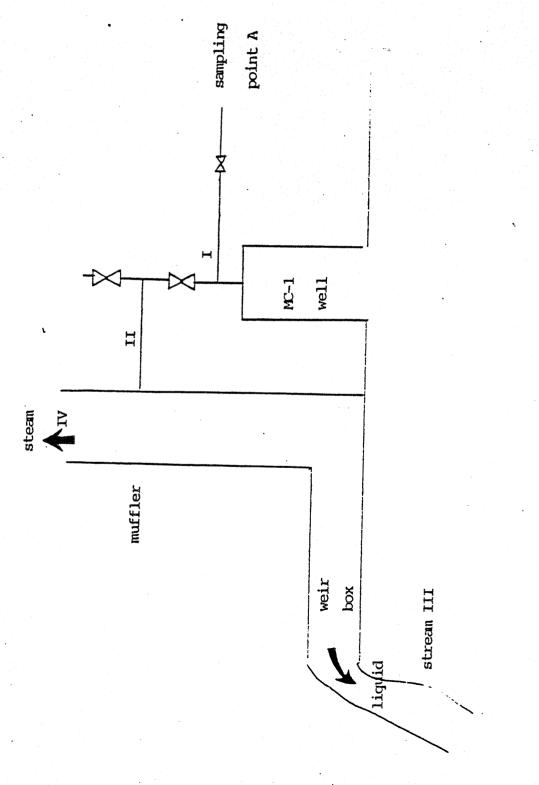
Special Test, Well MCG-1 Brine, Stream and Solids

Samples were collected on 29 July 1983; the well was flowing under stable conditions at approximately thirty percent of full flow. A sampling port (A) was available and used for collection of brine samples. The fluid sampling system was attached at port A, but no noncondensable gas was measured, indicating that the steam fraction was going to the muffler and not to port A. Only brine samples were collected at the wellhead; these included raw, acidified, flow, and sulfide samples.

The liquid fraction from the muffler was allowed to form a stream and flow down the hillside. Four raw samples were collected from the stream:

2015	~20 yards from well
2016	~75 yards from well
2017	just before the road
2018	pond near well.

Two solid samples were collected: 2019 weir box 2020 stream.


The diagram on the next page demonstrates the location of the sampling sites and flow streams.

All values reported represent the samples as collected, prior to stabilization, dilution or analysis.

CHEMICAL ANALYSIS REQUEST - CHEMLAB

REQUEST	NO:	83 - 8,9)			TOL:	10	
SITE	i-leagre	creek,	British	Columbia		***************************************		***************************************

System Diagram

CHEMICAL ANALYSIS REPORT - CHEMLAB

Key to Symbols

Sample Type	II ₂ S Trapped in zinc acetate with AT sampling. Collected in polyethylene bottle.	${\rm CO}_2$ Trapped in NaOH with AT sampling. ethyelene bottle.	Si Diluted without pre-cooling part sample to 9 distilled water ice. Collected in polyethylene	R Raw sample with AT sampling collected in acid washed and thoroughly rinsed polyethylene bottle.	A Acidified.10 ml conc. HNO ₃ + 990 ml sample with ΔT sampling. Collected in acid washed polyethylene bottle.	6 Gas sample. Collected by AP sampling in teflon-lined stainless steel bomb unless otherwise noted.	C Condensate sample. Taken by AP sampling from boiling water condenser separator.	F Flow through sampling probe. Sample analyzed at time of sampling.	FSS Fluid sampling system was used to collect T, P, and flow data in calculations	S Deposited Scale	Sample Modes ΔT Temperature drop ΔP Pressure drop
Units	mg/kg = milligrams/kg	ppm = parts/million	(M/M) = mass ratio mv = millivolts	NTU = National Turbidity Units	<pre>unho/cm = micromho/centimeter N.D. = Not detected</pre>	En = Oxidation-reduction potential with respect to the standard		T = temperature P = pressure	API = American Petroloum Instituto	V = volume	kg = kilogram g/ml = grams/milliliter ZnAc = zinc acetate

SITE Meagre Creek, British Columbia

Test Special

	\dots	Note Book	XVIII, 50	XVIII, 50	XVIII, 49	XVIII. 50	XVIII EO	WITT ED	WITT - 20	- 50	04 111W	WITT CO	WITT CO	יייין וביין דדאס -	WITT F	VITTE 50	WITT CO	XVIII EA	OC TITAN	05,111,00	05 TTTAV	05 TITAY
	Chronology	03 Time	1253	1301	1225-1240	1253	1254	1256	1246	1248	1250	1000	1001	1250	1000	1000	1330	1335	1337	1339	1444	1451
		Date	7-29	7-29	7-29	7-29	7-29	7-29	7-29	7–29	7-29	7-29	7-29	7-29	7-29	7-29	7-29	7-29	7-29	7-29	7-29	7-29
	rea	F. Rate	∿30	∿30	V30	∿30	30	∿30	v3D	س30	∿30	v30	∿30				1					
	NoT.	C Tisig	56	256	177	- 56	-36-	- 56	- 56	-52	- 52	- 52	52	-			clune	dunb	quæ	clas	quap	amb
	ON ON	1 3		24				<u> </u>	7	94	94	94	Ť	1. 1.	!	 	$\frac{1}{1}$	1	<u> </u>			
	Mode					<u> </u>				Ė		T dV	Ì		-	1111						
9	Type	R	A	Ţ	SAOB	SAOB	SYOU	ဗ်	, 8	8	Si	Si	ω,-μικ	Si-blk	Si-blk	R	R	R	<u> </u> ≃	S	S	
Sample	No.	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009A	2009B	2010	2011	2012	2015	2016	2017	2018	2019	2020	
	Source	EPRI	INA	EPRI	EPRI	LPRI	EPRI	EPRI	EPRI	EPRI	EPRI	EPRI	T.PRI	EPRI	EPRI	EPRU	EPRI	EPRI	Dida	INAH	EPRI	

CHEMICAL ANALYSIS REPORT

CHEMLAB

	LOCATION: weir box	MINOR CONSTITUENTS	Fe ₃ 0 ₄) not accessible)
special, solids	R; 2019	METHOD MAJOR CONSTITUENTS	XRD CaCO ₃				CaOO3 - aragonite and calcite present	Fe ₃ 0 ₄ - magnetite	XRF scans elements Al - U only (Na, Mg, O not accessible)
KIND OF TEST:	SAIPLE NUMBER:	DATE	6-6				COLLECTION		1

CHEMICAL ANALYSIS REPORT - CHEMLAB

		3	£ 25		1	Redox	DO Ki		AAS	Color		Coulca		
	S	Units			•	my	qdd		1/5tu	L/but	mg/1	mg/1	mg/1	
	ANALYS!S	Value/ Sample	3410	5.5x10 ³	6.58	-52	5		0.801	14.8	33.6	1690	0.20	101
brine		3 Analyte		conductivity 028 °C	pH @ 32°C	E _I @ 28°C	Dissolved 02		As	В	Ca	C1	Fe	2
Special, brine		Date 83	8-9	7-29	7-29	7-29	7-29		8-15	8-8	8-9	8-3	8-10	8-10
st:		Mode	ΔT	ΔT	ΔT	ΔT	ΔT		ΔT	ΔT	ΔT	ΔT	ΔT	-L-V
Kind of Test:	E	Type	R	F	स	F	Ŀ		A	B	A	R	A	A
Kinc	SAMPLE	No.	2000	2002	2002	2002	20 <u>02</u>	7	2001	2000	2001	2000	2001	2001

XVIII, 49 XVIII, 49 XVIII, 64 XVIII, 62 XVIII, 49 XVIII, 49 NOTEBOOK Reference XVIII, 61 XVIII, 71 XVIII, 57 XVIII, 65 XVIII, 60 XVIII, 58 XVIII, 53 XVIII, 68 XX, 32 $0.6 \times 10^{3}(3)$ Measure-Detection ment Limit Accuracy 0.036(3) 0.05(1)0.25(3) 130(3) 0.01(3) 1,1(3) 1.2(3) 0.1(3) 20(5) 10(3) 5(1) 1(3) 1(3) QUALITY CONTROL 0.004 0.005 0.5 0.03 0.10 0.03 metric Titration 350 0.02 0.5 20 stone Bridge Electrode K Electrode Electrode Ion Selective Method inetry metry AAS AAS AAS AAS mg/1 mg/1 mg/1 mg/1 mg/1 1.09 1140 0.64 101 154 s⁼, total Na Σg Si 8-10 8-11 8-9 8-9 8-2 ΔŢ ٧T 2003-5 SAOB AT ŢΩ K × Ø 2000 2001 2001

CHEMICAL ANALYSIS REPORT

CHEMLAB

	. LOCATION: stream	MINOR CONSTITUENTS	F.C.			XMD showed no crystalline phases present; solid appears to be an amorphous silicate XMF scans elements Al - U only (Na, Mg, O not accessible)	
special, solids		MAJOR CONSTITUENTS -	Ca, Si			I no crystalline phases present; solid appears telements Al - U only (Na, Mg, O not accessible)	
	NUMBER: 2020	METHOD	XRF				
KIND OF TEST:	SAHPLE NUMBER;	DATE	6-6			COMMENTS:	

CHEMICAL ANALYSIS REPORT - CHEMLAB

Special, stream

Kind of Test:

•	1												.• "			
I NOTEBOOK	Reference	XVIII, 57	XVIII, 57	XVIII, 57	XVIII, 57	XX, 32	ν. 22	XX 32		XX, 32						
	Measure- ment Accuracy	1.4(1)	1.3(1)	0.7(1)	1.2(1)	10(3)	10(3)	40 (4)	20747	(4)						
QUAL ITY CONTROL	Measi Detection ment	0.5	0.5	0.5	0.5	ition 350	ition 350	ition 350								
70	Wethod	Colorimetry	Colorimetry	Colorimetry	Colorimetry	Coulometric Titration 350	Conlowetric Titration 350	Coulometric Titration	Conjumetric Witration							
	Units	mg/1	Ing/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1							
ANAL YSIS	Value/ Sample	18.2	17.3	6.6	16.4	1990	_ 2060_	1250	1840							
	3 Analyte	В	В	В	В	CI	CI	C]	ฮ							
	Date 83	8-8	8-8	8-8	8-8	8-3	B-3	8-3	8-3							
	Mode	1	1	1	1	1		1	1							1
"	Туре	R	R	R	R	B	B	R	x						-	
SAMPLE	<u>8</u>	2015	2016	2017	2018	2015	2016	2017	2018		-			•		

APPENDIX C

GEOCHEMICAL ANALYSIS RESULTS

DATE: 15 JUN 84 PAGE: 1 of 1

Sample Number	Comments	pH —	Silica	<u></u>	F 	SO.	As —	8	Na 	<u>x</u>	Ca —	Hg	Li —		(H.
92/86/82				978.86											
93/96/82	unpreserved		238.8					7.8	729.9	74.8	28.#	4.2	2.38		
93/96/82	pH & 21.4C	8.5	249.9	999.86	3.89	299.9	⟨. 95	5.6	749.9	72.8	33.#	4.3	2.38	196.9	⟨.5
96/96/82	pH & 23C	8.5	• • • • • • • • • • • • • • • • • • • •	958.86										196.5	
98/96/82	unpreserved		218.8					7.7	789.8	72.9	27.6	3.7	2.38		
98/96/82	pH € 23.6C	8.3		948.88										199.9	
21/19/82 2466	J. 2 20100		178.5	728.88					529.5	53.#	29.8				
22/15/82 1866		8.8	260.0	586.66	8.86	189.8	8.26	3.1	499.9	28.6	59.9	1.5	1.29	39.8	⟨.5
23/16/82 1669		8.6	438.8	1978.00	1.59	160.0	0.23	6.8	789.8	58.#	58.5	1.7	2.66	42.8	⟨.5
23/19/82 8299			349.9	879.89					589.8	49.8	819.9				
23/16/82 2466			439.9	1229.99					77.8	73.5	59.9				
24/19/82 1499	pH € 29.6C	2.4	448.8	1348.86	1.55	160.8	9.17	9.4	829.9	77.9	55.#	1.8	2.30	11.8	⟨.5
25/19/82 #68#	pH & 25.8C	8.7	479.8	1496.56	1.60	158.6	6.47	19.5	950.8	93.8	49.8	9.6	2.60	32.9	⟨.5
25/19/82 9299	J., C 25.55		489.9	1396.86					899.5	84.6	56.8				
13/11/82 1996	pH & 21.3C	8.3	279.9	1829.36	1.59	189.0	9.58	12.7	1168.8	92.8	138.6	4.4	3.19	41.8	⟨.5
13/11/82 1145		7.8	249.8	7160.36	2.38	968.8	ø. 22	29.1	2129.6	299.8	458.8	4.5	6.49	56.9	1.9
13/11/82 1498		9.1	329.0	3819.99		429.8	8.95	19.9	2818.8	189.9	149.9	6.3	5.29	31.8	⟨.5
13/11/82 1599		8.5	416.8	1768.86	1.86	168.8	9.75	12.8	1118.8	92.8	166.6	9.1	3.86	42.9	(.5
13/11/82 1896		8.5	439.8	1996.86		198.8	9.77	12.9	1199.8	194.9	189.9	17.9	13.29	25.3	(.5
13/11/82 1988		7.8	139.5	8356.36		1498.8	9.68	52.0	5259.0	459.8	769.9	2.2	15.49	58.#	₹.5

NOTES: 'C' designates below detection limit

All values in ppm (mg/l)

Analysis by B.C. Hydro - Surrey Research Lab

DATE: 15 JUN 84 PAGE: 1 of 1

Sample Number	Comments	рН 	Silica	CI —	F 	504	As		Na 	K	Ca	Ag —	Li 	Total Carbonate as CO ₂	NH.
15/19/82 1799			178.6	779.99					598.8	44.8	26.8				
6/19/82 1999		9.1	349.4	859.00	1 74	429.8	9.94	6.9	778.8	52.0	32.#	9.8	1.70	191.8	⟨.5
6/19/82 9199		8.8	300.0	749.86		359.9	⟨.95	4.8	666.9	44.8	15.8	9.7	1.59	197.9	₹.5
6/19/82 1999		••••	386.9	829.99		308.0	1.00	1.0	750.0	55.9	24.9	". "	7.00	19114	110
9/19/82 2999			259.8	1379.86					1969.9	76.9	41.8				
18/19/82 16 89		9.6	458.8	1346.66	2.65	599.9	9.26	18.4	1186.8	78.5	194.9	2.7	2.46	39.8	<.5
9/19/82 1999			279.8	1430.00					1896.6	84.5	32.9				
1/18/82 1888		8.5	260.0	476.86	1.29	400.0	9.39	9.6	1138.0	79.0	26.8	2.9	2.60	114.8	₹.5
1/19/82 2400			348.8	1896.86				19.20	938.8	69.#	25.9				
1/18/82 1486			329.9	980.56					848.8	63.9	52.8				
5/19/82 29 00	pH € 21C	8.3	246.6	259.99	9.79	378.8	⟨.95	1.6	296.9	27.0	50.0	1.9	5.75	48.5	⟨.5
6/19/82 8499	pH € 29.9C	8.4	299.8	450.00	1.35	390.0	(.95	3.3	459.0	37.9	25.8	1.8	1.66	87.5	⟨.5
6/19/82 2996		9.3	389.9	988.88	1.86	558.9	6.12	6.1	819.0	61.0	118.#	2.3	1.79	91.8	4.5
6/19/82 1299			299.8	674.86					629.8	46.8	25.0				
7/19/82 0909	pH € 21C	8.7	320.0	750.60	1.29	399.9	9.96	5.1	638.8	51.9	28.8	2.4	1.40	111.5	(.5
7/19/82 2 999			246.6	1276.86					1986.8	64.9	49.8				
8/19/82 1996	pH € 21.2C	9.1	298.8	968.89	1.25	396.0	9.13	7.1	300.0	59.8	12.8	8.9	1.79	61.9	⟨.5
2/11/82 1488	pH & 21.3C	9.8	328.8	959.99	1.35	350.0	9.16	6.7	775.3	57.8	28.8	1.6	1.89	191.9	⟨.5 ः
2/11/82 2288		8.6	339.9	946.86	1.40	399.8	9.14	7.3	866.6	58.9	25.0	2.2	1.99	112.5	⟨.5
9/11/82 1200		8.8	340.8	1338.88	1.38	348.9	9.42	8.9	969.9	79.9	19.9	1.4	2.39	197.9	⟨.5
9/11/82 2000		9.5	289.9	1276.66	1.76	398.8	8.48	9.3	978.8	66.8	29.8	1.9	2.39	98.8	(.5
9/11/82 1699			329.9	1246.88					978.8	69.8	16.8				
1/11/82 1436	pH € 21.3C	8.9	388.8	1289.96	1.46	350.0	6.33	9.9	978.3	71.0	13.8	9.8	2.30	128.5	⟨.5
1/11/82 1834		9.5	249.8	1379.99	1.96	419.9	9.43	9.7	1915.9	71.9	35.0	1.3	2.46	71.5	⟨.5
1/11/82 1248			299.9	1449.86					1138.5	76.9	17.8		**		
1/11/82 1634			329.8	1219.86					978.6	48.#	12.6				•

NOTES: "(" designates below detection limit

All values in ppm (mg/l)

Analysis by B.C. Hydro - Surrey Research Lab

DATE: MAYBS PAGE: 1	Ca Mg Li Total Hg NH Carbonate as CO		48.9 416.9 97.9 1.78 996.95	5.00 65.00 Z.000 766.00	B	74.0 26.9 6.2 2.59 74.95					36.8 6.2 3.36 86.6	31.00 W.	43.8 4.2 2.98 64.8	42.9 9.5 2.58 54.9	64.9 8.2 2.89		39.9 6.6 2.99 52.9	134.0 1.4 2.50 245.0	6.3 3.49 119.6	9.16	73.6	62.9 6.4 3.39 59.9	.9 54.8 6.4 3.59 56.95	55.6 6.4 3.28 56.8	55.0 6.4 3.26 48.9	36.6	37.8 6.8 3.19 41.6	37.9 1.9 3.39 57.9	3 37.9 1.9 3.38 50.9 9.5			AG 4 4 4 4 7 4 4 5 4	
	21		828.6	74.4		1929.9					1139.6	1100.0	7 1168.8 82.	989.8	1166.6	1116.6	1106.9	8 879.9 74.9	1400.0	1356.0	1320.0	1316.6	1 1339.6 186.	1146.9	1229.0	1216.6	1219.9	1269.9	# 125#.# 98.#	12%.	1209.9		B 1268.6 97.6
	As B		4 6.67 9.2	. 6.	•	.6 6.39 7.9					0.75	6.65	1.6 6.67 9.7	6.65	9.68	6.13	1.1	9 6.76 9.8	9.39	8.98	9.29	9.64	_	6.59	6.73	9.62	9.28	8.8	6 5.84 13.50 a a co 17.5	6			9 9.77 12.8
	55		18 8.15 959.8	=		18 2.98 219.8	•	2	9 . 5	. •	2.10	2.20	19 2.28 168.6	2.80	2.28	2.20	2.19	B 1.49 218.9	2.38	2.28	2.60	2.86	19 2.79 159.6	2.68	2.70	2.20	2.66	2.30	19 2.39 139.6	g1.7			8 2.19 129.9
	Silica Cl		87.9 1969.99	_		439.8 1440.88	1276.66	1319.6	1266.9	1579.60			388.8 1778.88				_	1.6 1369.68	_		_		9.8 2888.89	_	_	_	_		7.9 1939.68		9.9 1998.99		
	oilis Hq		6.7	•		8.4 43											8.3 36	8.3 379.8	8.1 32				8.2 159.0						8.3 217.6 8 4 398 9	-	370.		6.5 5/8
	Connents	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	pH e 19.6L	DH @ 19.70		pH e 21.1C					pH e 29.2C		pH @ 22.6C				pH e 29.20	рн е 29С	pH @ 28.3C	pH e 20.6C	pH @ 22.3C					26.61 9 Hq	pH @ 20.1C	pH @ 19.30	pH e 19.20				
	Parameter	ara arara	MEDEN SEP	WEBER SEP								NEBER SEP			WEBER SEP	WEBER SEP							010 01011	MEDEN SEP	NE DEN SEY			youghin	ME IKBUY				
	Saple Number	2. 2.	25-MM	7 - 12 PM - 2 P	15/83/82	17/03/82	24/63/82	31/03/82	26/64/82	18/99/82	97/97/82	09/01/82	22/07/82 a.m. 1	22/87/82 p.a. 2	22/87/82 WEB #1	22/07/82 WEB #2	17/08/82 1000		12/89/82 8488	13/89/82 1388	14/09/82 1030	14/09/82 1166	14/69/82 1286	9911 79/49/41	#C11 79/14/41	25/89/82	27/89/82	91/19/82	18/18/82 1288		21/19/82 1289		24/19/82 1288
	Location	Š	<u>-</u>	- - - - - - - - - - -	22 12	2	#C-1				₩-1	늗	 	- ·	- <u>-</u>	MC-1	=	는 등	 	- <u>-</u> -	HC-1	를 :		- E	=	HC-1	- -		FC-1		를 -		- 1 - 2 - 3

PROJECT

GEOTHERMAL

MEABER CREEK BEOCHEMICAL ANALYSIS RESULTS DATE: NAY85 PAGE: 2

更	1		5	ا. د.		ו נא	ا. دی			ر. دي		'n.		جي ا	:	ı,	ָ ניא	6.5	•	ç		i.	r.	4	:		ا.	٠.5	.5	ı,	ا. ئ	٠.	ا. ئ	ا. ئ	ر.	į.	Ċ.	i,
£	1																																					
Total	Carbonate	3	52.0	54.0		51.0	63.6			61.9		43.0		46.4	i	45.8	48.6	45.0		4 9.		45.6	1.6	2	;	39.6	46.9	41.9	37.8	39.6	38.6	38.6	44.9	4.6	44.6	6.99	4 2. 8	5.
=	l		2.90	3.78		3.49	3.69			3.90		3.36		3.24		3,38	3.50	3.30		* :		3.28	3.28	97 6	AL .,	3.38	3.38	3.38	3.20	3.38	3.30	3.46	3.28	3.30	3.38	3.28	3.10	3.16
Ę	١.		9.	.5		4.6	28.0			23.8		1.2		1.2	:	1.2		1.2		<u>}</u>		1.2	1.3	•	•	1.3	1.4	† :	7	+:	1.4	+ :	1.6	.5	-:	:	:	:
z	1		47.6	82.0	59.8	74.0	64.9	ं	#. 2	62.8	41.0	41.6	49.6	37.6	#	37.8	37.0	36.9		20.00	34.8	37.8	36.9	97.4	37.6	36.0	37.1	36.5	36.5	36.8	35.5	36.0	36.8	37.8	46.8	37.0	36.0	36.
×	-		92.8	114.9	94.6	161.6	166.9		#: 2	126.0	76.0	97.0	88.	95.6	112.6	166.9	168.8	8.96		8. S		188.8	169.0	, 4	163.6	93.6	93.6	93.8	92.8	93.0	95.6	93.8	118.0	110.0	113.0	116.6	112.0	1 8.
2	l		1130.0	1449.9	1190.0	1310.6	1426.0		1338.8	1486.6	1929.6	1198.0	1270.0	1178.6	1420.0	1219.9	1228.8	1186.6	\$ 6 7		1749.8	12/8.8	1278.8	040	1268.8	1286.9	1286.6	1270.0	1269.8	1268.9	1279.9	1286.6	1316.6	1299.8	1290.0	1296.0	1276.9	12/8.8
			9.11	14.5		13.7	15.4			15.4		12.6		11.9		12.8	13.4	12.2	ċ	- -	!	13.	12.8	7	?	13.3	13.3	13.5	13.8	13.4	13.8	13.6	14.0	13.4	13.6	13.6	4	13.3
As	;		19.0	₿.23		9.28	9.18			9.32		9. 79		9.82		1.99	1.00	9.88	5	4.4		. de	1.00	97 78	3	8.8	9.88	9 .87	1.66	9.36	9.98	6.93	9.82	1.80	9.45	9.84	9.	
05	1		169.9	196.0		176.6	199.0			179.0		159.0		138.8		140.0	139.6	130.0	č	9		138.8	130.0	70		146.6	130.0	149.0	146.6	146.0	148.8	140.0	130.0	139.6	140.0	149.0	136.6	17B.B
14.	<u> </u>		1.96	2.30		2.00	2.68			2.80		1.99		1.84		1.90	2.00	1.94	7.7	2.5		7.99	2.99	5.0	•	2.69	2.00	2.00	2.96	2.80	2.00	2.00	2.10	2.18	2.18	2.19	9	1.78
IJ	1		1729.69	2218.88	1839.00	2020.00	2219.80	22 2720	44.0/47	2276.00	1668.88	1949.88	2610.66	1876.99	2200.00	1996.66	2939.00	1949.88	80 8101	16.0171	88.8187	10.001	1970.00	1404 84	1996.00	1998.00	1996.00	1998.80	2888.88	2986.99	1990.00	1998.80	2888.88	1998.86	2010.00	1986.66	1986.00	17/0.80
Silica	!		370.0	466.6	468.6	290.0	330.0	202	200	330.0	310.0	368.0	376.6	349.0	486.8	370.0	396.6	366.6	8 800	9.077	200	308.8	366.8	9 976	366.6	370.0	396.6	376.6	386.0	386.8	380.0	376.9	396.6	379.8	376.0	380.0	386.9	3/8.8
풉	ŀ		8.2	8.7		9.8	8.			æ.		₩.		8.3		8.3	8.3	8.3	. 6	-		?	.3 .3	7.4	•	8.3	8.3	8.5	8.3	8.3	8.4	8.3	. 3 . 3	8.3	8.3	8.7	8.7	7.B
Connents												pH @ 21.3C		pH @ 21.3C		pH @ 21.3C					9	pr e 21.3L	pH @ 21.3C			pH @ 21C							pH e 21.6C			;	pH & 21.3C	
Parameter	***************************************																BLEEDLINE	HEIRBOX						HERER SED		MHP 137	MHP 137	MHP 136	HHP 137	HHP 138	MEP 138							
Sample Number			29/10/82 0800	29/16/82 2469	29/18/82 1688	38/18/82 6866	39/18/82 2488	201100101102	201 70/01/05	31/18/82 6838	86/11/82 1269	67/11/82 1286	68/11/82 1266	69/11/82 1266	18/11/82 1213	11/11/82 9715	11/11/82 #945	11/11/82 4945	15/11/00 1984	0071 70/11/01	2011 70/11/11	21/11/82 1100	23/11/82 1168	23/11/82 1466	24/11/82 1169	28/11/82 A.M.	Ø1/12/82 P.M.	95/12/82 1499	69/12/82 1466	12/12/82 1888	15/12/82 6986		23/12/82 \$988	26/12/82 1200	29/12/82 1266	62/61/83 1666	8051 50/10/00 00/10/00 50/10/00	4414 CO 114114
Location	6 6 7 1 1 1		HC-1	를 -	-J	HC-1	 -2:	, F-	1 1	- -		 	1 -3	FC-1	FC-1	₩-1	를 	- - -	J		1 1	#C-1		- J X	₩	를 -	도	=	MC-1	光-1	F-1		-	FC-1			- 1 - 1	• ≩

С

4	e								
1	Carbonate as CO	45.8 45.8 45.8		38.6	35.6	36.8	34.8	43.6 43.6 43.6 43.6	42.8 43.8 46.8 43.8 43.8
]	3.16 3.29 3.19	3.38	3.28	3.68	3.46	3.46 3.56 3.56 3.56	3.46 3.49 3.39 3.38	3.49 3.38 3.28 3.28
	₹¦	EEE	1.2	3.8 3.8 5.2	222	25252	1.5	1.5	1.6 1.6 1.6 1.5
Z	3	36.9		52.6	38.6	39.8 39.8 38.6 39.6	39.6 46.6 38.6 41.9 38.8	37.6 36.2 36.2 37.9 36.8	36.5 36.1 34.2 36.9 35.9
	-	112.9	125.0	186.8 97.9 116.8	189.8	116.6	113.9	119.8 126.8 119.8 126.8	116.6
4	2	1289.8 1286.8 1286.9	1386.4	1366.6 1188.8 1426.6 1326.6	1338.8 1298.8 1388.8	1339.8 1328.8 1329.8 1319.8 1288.9	1296.8 1316.9 1296.8 1426.8	1329.9 1319.9 1286.9 1366.9	1318.8 1288.8 1276.8 1298.8 1288.8
a	-	14.6 13.8 13.9	5.6	13.6 12.7 15.1	====	14.3 14.6 13.9 13.6 14.5	13.8 14.6 15.8 16.9	14.9	14.8 14.8 15.8 15.8
Ŋ.	2	1.16		1.98	1.16	1.66	1.68 6.98 6.88 6.76	9.86 9.76 9.86 1.96	1.88 8.98 1.16 8.98 1.88
8	3	126.8 126.8 128.8	139.6	146.6	149.0 169.0 139.9	136.6 136.6 136.6 136.6 136.6	136.6 136.6 146.6 136.6	146.6 146.6 146.6 146.6	146.6 146.6 136.6 146.6
L	-	2.88			2.26	2.78 2.78 2.88 2.78 2.78	2.78 2.69 2.28 2.28	2.86 2.86 2.96 1.96	1.98 1.96 1.96 2.26
Ξ	3	1996.86 1998.86 1966.88	2169.88	1938.88 1878.88 2226.88 2898.88	2189.89	2949.99 2939.99 2959.99 2959.99 2949.99	2946.99 2939.89 2956.99 2239.99 2136.89	2659.99 2639.69 2649.66 2626.66 2619.99	2926.96 2919.99 2919.99 2996.99 2996.99
Silira		398.6 386.8 366.8	356.8	356.6 356.6 396.6 376.6	386.8 386.8 386.8	379.9 379.9 386.9 386.9	386.6 376.6 386.6 416.9	316.8 376.6 386.6 386.6 396.6	396.6 386.6 356.6 356.6
=	i i	8.2 8.2 8.3	8. 8. 4. 6.	8.5 7.1 8.6 8.4	8.8. 4.4.	0.00.00.00 0.4444	8.8.8.9. 4.6.6.4	8. 9. 9. 9. 9. 4. 4. 4. 4. 4.	8.8 4.8 4.4 4.4 4.4
Commonts					рн е 21С				pH @ 22C
Ta face red					· · · · ·				
Saanle Musher		13/81/83 1588 16/81/83 1588 28/81/83 1388	38/81/83 9988 82/82/83 1268	96/02/83 1739 89/02/83 1500 13/02/83 2030 19/02/83 1200	24/62/83 6966 27/62/83 6966 62/63/83 1336	65/63/83 9966 99/63/83 9966 13/93/83 9986 16/63/83 9986 26/63/83 9986	23/83/83 9988 27/83/83 9988 38/83/83 83/84/83	19/64/83 14/64/83 18/64/83 21/64/83	27/64/83 61/65/83 64/65/83 68/65/83 12/65/83 9939
Location		85-1 85-1 85-1	MC-1 MC-1		보고 1-1 1-1 1-1	#2-1 #2-1 #2-1 #2-1	2-1 2-1 2-1 2-1 2-1 2-1		MC-1 MC-1 MC-1 MC-1
				•	C -	5			

Date:MAY85 PAGE: 3

PROJECT

GEOTHERMAL

MEAGER CREEK GEOCHENICAL ANALYSIS RESULTS

₹ |

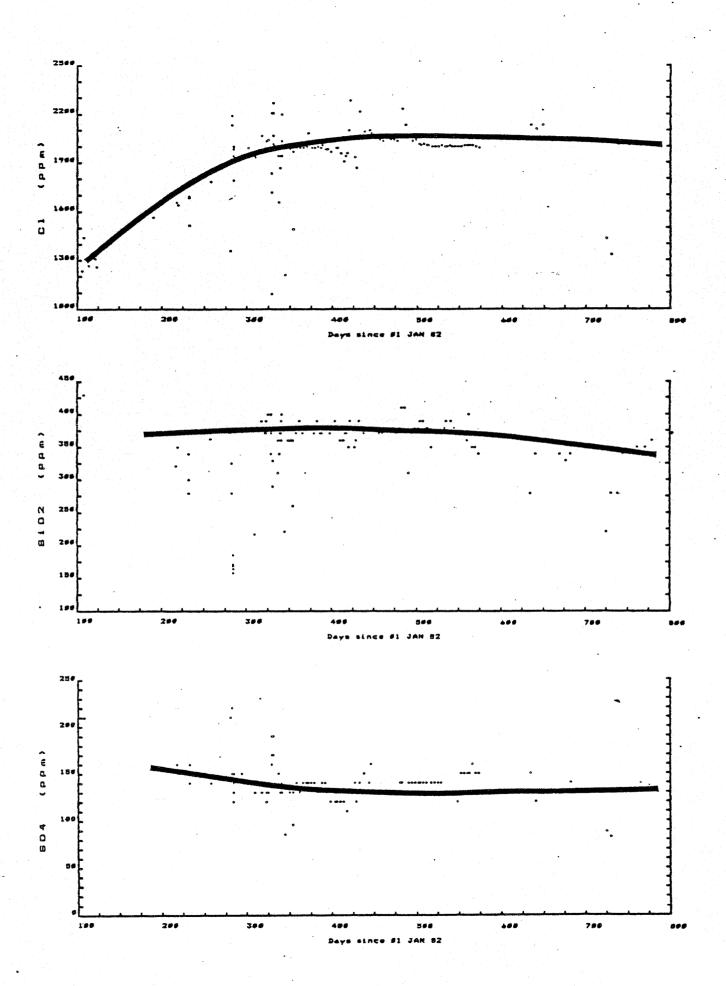
i, i, i,

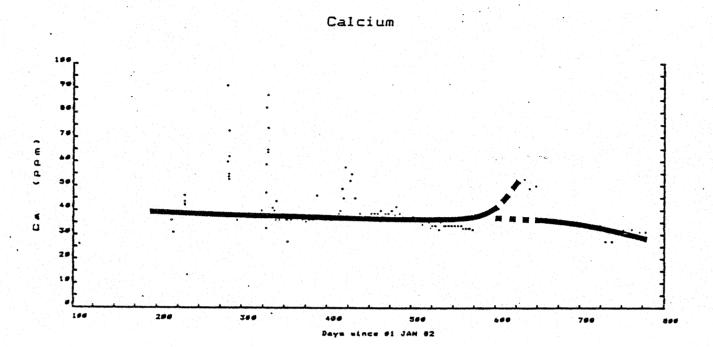
PROJECT

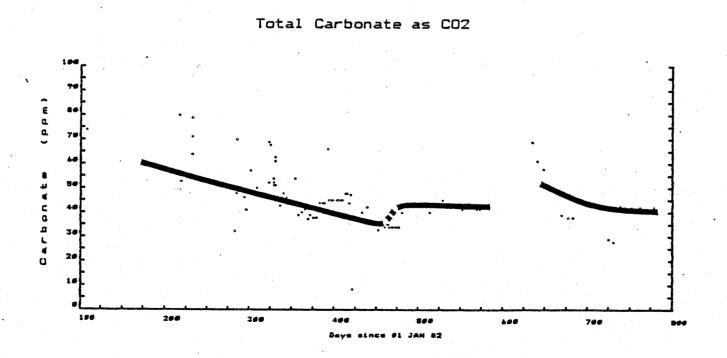
GEOTHERMAL

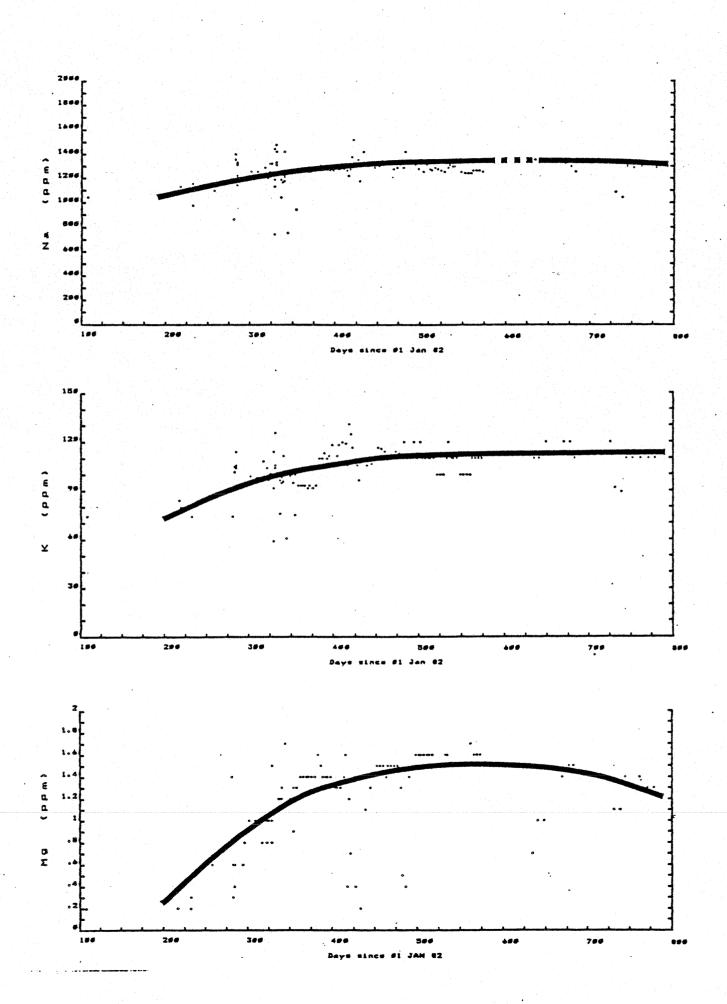
MEAGER CREEK GEOCHENICAL ANALYSIS RESULTS

			•				
∌	1 1 1 1 Rich Rich Rich Rich	1. 42. 42. 42. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12.					
₽;							
Total Carbonate as CO	42.8	44.8 43.8 41.8 41.9	69.6 61.8 58.6 39.6	38.8 29.8 36.8 36.8	43.8 29.8 42.8 38.9	35.6 42.8 36.9 41.8 36.8	42.8
- 3 - ,	3.28 3.28 3.28 3.38	3.38 3.38 3.48 3.48	3.58	3.58 3.48 2.98 3.18	2.89 2.70 3.39 3.59 3.48		3.38
e:	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	1.5	2222	22322	33333	11111	23
3	34.8	33.6 33.6 33.6 32.6	55.8 49.8 56.8 36.8	35.6 34.6 26.6 27.6 29.6	27.8 25.8 31.8 33.8 32.8	32.6 32.8 33.8 31.8 33.8	31.8
×	119.6 168.6 166.6	116.6	116.8 116.8 126.8 126.8	116.6 126.6 98.6 92.6 166.6	85.6 116.6 116.6		9:18
21	1356.9 1259.0 1246.9 1246.0	1248.6 1278.6 1276.6 1276.6 1256.9	1356.6 1376.6 1376.6 1326.6	1266.8 1336.8 1646.6 1696.6	1856.8 988.8 1386.8 1296.8 1296.8	1296.8 1396.8 1316.8 1319.8	1296.9
	=======================================		15.9	14.8	12.9	2.5.1	15.0
- BS	1.28	1.66 6.96 6.86 6.76	1.86	6.36 6.76 6.76 6.76	6.76 6.78 6.88 6.89	8. 98. 98. 98. 98. 98. 98. 98. 98. 98. 9	6.49
. .	138.8 128.8 158.8 158.8	159.8 156.8 166.8 159.8 159.9	156.6 126.6 136.6 136.6	146.8 88.6 146.6 83.6	138.8 128.8 138.8 148.8 138.8	136.6	149.8
-	2.29 2.28 2.28 2.29	2.28 2.18 2.18 2.18 2.19 2.19	2.48 2.58 2.58 2.58 2.48	2.58 2.88 1.68 1.78	1.58 2.18 2.88 2.88	2.18 2.19 2.19 2.19	2.16
5	2666.86 2666.66 2668.66 2616.66	2616.66 2616.98 2616.09 2696.66 1996.69	2136.68 2116.68 2138.86 2646.69 2636.88	2039.00 1439.00 2039.09 1339.00 2028.00	2819.86 1559.89 2628.86 2839.89 2819.89	2838.86 2816.86 2838.88 2828.86 2828.88	2616.88
Silica	388.8 378.8 378.8 378.8	368.6 468.6 359.9 359.8 348.9	289.6 349.8 369.8 346.8	349.8 226.8 279.8 286.8 326.8	289.8 269.8 349.8 368.8 348.8	356.6	368.8
₹ :	8.3 8.4 8.3	8.8 8.4 8.4 8.4	8.2 8.3 8.4	8.3 8.3 8.3	8.3 8.3 8.4	8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	8.4
Consents	рн е 22С	рн е 29 с	pH e 25 C	PH e 23 C DUPLICATE, PHEZIC PH e 23 C DUPLICATE, PHEZIC	PH & 23 C DUPLICATE, PH&21C PH & 23 C DUPLICATE, PH&21C PH & 23 C	DUPLICATE, PHEZIC PH e 23 C ph e 21 C Ph e 23 C DUPLICATE, ph e 21 C	PH e 23 C Duplicate, ph e 21 C
Paraneter							•
Sample Number	95/66/83 9966 89/66/83 8966 12/66/83 8968 16/66/83	19/96/83 22/66/83 26/96/83 29/96.83	84/89/83 11/89/83 18/89/83 16/18/83	23/18/83 95/12/83 9988 95/12/83 11/12/83 9988	18/12/83 9908 18/12/83 25/12/83 9908 25/12/83	81/81/84 12/81/84 9988 15/81/84 22/81/84	29/81/84 8988 29/81/84
Location	MC-1-1-0-1					20-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	


PROJECT


GEOTHERMAL


MEAGER CREEK Geochenical analysis results


. 	9.2 9.1	<u>.</u>	7 - 7	77	777
£ ;					
Total Carbonate	as CO 21.6 18.6 29.8	28.8	36.8	36.8	35.8
31	3.46	3.48	3.58	3.58	3.58
£:		8. 9		 8	8.68
3	37.6	38.9	38.6	38.8	38.8
~	128.8	126.9	128.8	129.8	128.8 138.8 138.8
4 !	1376.8	1386.6	1379.6	1356.8	1368.8 1388.8 1358.8
a	15.0	15.4	15.9	15.0	15.9
As -	1.88	98.	1.98	6.38	1.66 9.99 9.89
88	136.8	138.6	129.9	128.8	128.8 128.8 128.8
. .	2.28		2.38		2.39 2.39 2.39
3 :	2146.66 2166.86 2158.66	2159.66	2159.66	2149.88	2149.88 2148.88 2148.88
Silica	366.6 366.6 366.8	368.8	378.6	378.8	378.6 378.8 368.8
ቼ¦	8.6 8.6	÷ .		8.6	8. 8. 8. 4. 4. 4.
Coasents	-		7 77 a ud		
Parameter					
Sample Number	15/87/84 25/87/84 31/87/84	18/00/00/	13/88/84 31/98/84	13/69/84	28/89/84 28/89/84 84/18/84
Location	MC-1 MC-1 MC-2	HC-1	5.5 	HC-1	MC-1 MC-1

. .

