Botrytis Blight & Stem Canker of Greenhouse Tomato

March, 2018

Biology & Disease Cycle

Grey mould (Botrytis cinerea) can be a serious problem on greenhouse tomatoes under cool and wet or humid conditions. In British Columbia (B.C.), the fungus can cause serious damage to greenhouse tomato in early spring and late fall. B. cinerea is a cosmopolitan fungus that has a wide host range, including tomato, pepper and lettuce. The fungus can infect almost all parts of a plant, including stem, leaf, petiole and fruit. Stem infection through leaf-pruning scars and peduncles (fruit stem) often leads to stem canker, the most destructive stage of the disease causing substantial crop losses.

Grey mould thrives under cool, wet conditions and often establishes on dying tissues. It produces masses of dry spores called conidia that are air-borne. Spores are readily dispersed by wind (air currents), over-head irrigation or sprays, tools (particularly pruning shears & knives), machinery and workers. An epidemic situation can happen from air-borne spores that can infect soft tissues, cut-wounds and blossoms when moisture is present.

The most common and damaging infections take place through leaf-scars during de-leaﬁng operations. Botrytis spores can remain dormant for 10 to 12 weeks within leaf scars made at pruning. Such spores can be triggered to germinate by low light, plant stress or shift in fruit load. Spores germinate and penetrate the plant surface within 5 to 8 hours on wet plant surfaces at the optimum temperature of 15-20°C. A new infection can produce visible symptoms and masses of spores (conidia) within a few days, thus multiple cycles of infection can be expected in a given growing season.

Botrytis can survive/overwinter as mycelia and/or sclerotia in the soil, on plant debris, and on perennial plants and weeds for several months or years.

Figure 1. Botrytis infection on tomato (var. 'Bizarr') stem, showing brownish-grey dry lesion and girdling of the stem. Masses of grey colour Botrytis spores can be seen on the surface.
Figure 2. Botrytis infection on tomato (var. 'Bizarr') stem and fruit peduncle. Infected tissues turn brownish and masses of gray Botrytis spores form on the surface.

Figure 3. Tomato (var. 'Bizarr') leaf infected with Botrytis showing brownish-grey discolouration and withering.

Management of Botrytis

Prevention

- Follow overall biosecurity procedures: Enforce strict biosecurity & phytosanitary requirements as appropriate for your greenhouse operation.
- Prevent initial infection and introduction of Botrytis into greenhouse: Enforce general year-around sanitation practices and thorough year-end clean up (thoroughly disinfect greenhouse physical structures, machinery and tools between crops).
- Grow resistant/tolerant varieties if any. Avoid varieties that are highly susceptible to Botrytis.
- Adopt good cultural practices: Cool & wet conditions are ideal for Botrytis outbreaks and high humidity (>80%) favours disease development. Leave adequate spacing between plants and increase air circulation by removing lower leaves from overly shaded areas. Maintain adequate heat and ventilation, particularly during nights where temperature can be expected to drop significantly. Monitor the moisture level in the greenhouse. Avoid over-head irrigation. Avoid spray operations in the late afternoons and on cloudy days. Any water-based irrigation or spray operations should be done in the morning hours and on sunny days to minimize prolonged wetness on plant surfaces. Avoid puddling of water on the surfaces of greenhouse production sites.
- Scouting and early detection of Botrytis infection: Periodically and closely monitor for Botrytis disease symptoms, especially in the spring and fall seasons.
Follow a strict and structured fungicide spray program (see below) and cultural practices to limit disease severity and spread.

Control

Follow strict sanitation and cultural practices as outlined under PREVENTION.

Most importantly, eliminate or minimize the inoculum (spore) load & sources of inoculum in the greenhouse:

- Remove heavily infected plants from the bay. When doing so, if possible, wrap the infected plant tissues with a wet paper towel/newspaper (use soap water or KleenGrow®, previously Chemprocide) to prevent spores from dislodging into the air.
- Cover cull/trash piles of infected plants with a plastic sheet and take immediately to a far site for deep-burial or incineration. Consider the greenhouse location and the wind direction when choosing a plant refuse dump-site.
- Treat *Botrytis* lesions on stems at a very early stage – scrape off the epidermal layer of the tissue and immediately apply an appropriate fungicide paste (Ferbam, see below).
- Severe lesions cannot be treated since they have already damaged the vascular system; for such lesions, cover the lesions with disinfectant-treated paper towels/newspaper to reduce spore dispersal.
- Treat the tarped-flow periodically with an appropriate disinfect.

De-leafing operation and worker sanitation practices: One of the primary sources of *Botrytis* infection is via leaf-cut wounds, which often result in severe stem canker. Pruning is recommended in the early afternoon since it will allow leaf-cut wounds to dry quickly. Treat pruning shears and knives with disinfectant after pruning each plant. Use a couple of pruners alternatively; this will give sufficient time to disinfect a pruner (dip pruning shears/knives in either 70% ethanol or 0.1-0.2% KleenGrow for a minimum of 2 min). The second factor is handling of infected plants and de-leafing of plants by the workers. Use hand-sanitizers as frequently as possible, particularly when de-leafing.

Apply a scheduled fungicide spray program: Begin using fungicides at the very first sign of symptoms or when the conditions are favourable for disease development. Expected results may not be achieved with any good fungicide program if the disease pressure is high. Use a combination of chemical- and bio-fungicides (Table 1); choose from different chemical groups for maximum efficacy for *Botrytis* control and to prevent the pathogen from developing resistance to a specific chemical.

To prevent resistance development in the pathogen to a fungicide:

- Never apply a fungicide below recommended rate
- Use fungicide at the highest recommended rate
- Do not apply the same fungicide repeatedly, rotate with different chemical groups.

Note: Decree is restricted to 3 applications and Pristine and Scala to 1 application per crop cycle. Since *Botrytis* can be expected to cause damage in spring and fall use Pristine and Scala wisely, alternating with other chemicals in spring and fall.

Use the biological fungicides PreStop and Rhapsody preventatively, before the onset of disease or when disease pressure is low. Biological fungicides may not give expected results when applied at high disease pressure.
Table 1. A summary of registered fungicides and label information. Please refer to Health Canada’s Pest Management Regulatory Agency website for fungicide label information.

<table>
<thead>
<tr>
<th>Product</th>
<th>Active ingredient</th>
<th>Chemical or biological group</th>
<th>Mode of Action</th>
<th>REI1 hrs</th>
<th>PHI2 days</th>
<th>Application guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferbam</td>
<td>ferbam</td>
<td>M</td>
<td>protectant (non-systemic)</td>
<td>until dry</td>
<td>1</td>
<td>Apply preventatively</td>
</tr>
<tr>
<td>Rovral</td>
<td>iprodione</td>
<td>2</td>
<td>protectant (non-systemic)</td>
<td>12</td>
<td>2</td>
<td>Apply preventatively. No residue tolerance for export to USA</td>
</tr>
<tr>
<td>Fontelis</td>
<td>penthiopyrad</td>
<td>7</td>
<td>curative (locally systemic)</td>
<td>until dry</td>
<td>0</td>
<td>Apply in rotation with other fungicides at 7- to 14-day interval. Do not exceed 1 application per crop cycle.</td>
</tr>
<tr>
<td>Pristine</td>
<td>boscacid & pyraclostrobin</td>
<td>7 & 11</td>
<td>Protectant & curative (locally systemic)</td>
<td>until dry</td>
<td>0</td>
<td>Apply in rotation with other fungicides at 7- to 14-day interval. Do not exceed 1 application per crop cycle.</td>
</tr>
<tr>
<td>Scala</td>
<td>pyrimethanil</td>
<td>9</td>
<td>protectant (locally systemic)</td>
<td>24</td>
<td>1</td>
<td>Apply preventatively in rotation with other fungicides at 14-day interval. Do not exceed 2 applications per crop cycle.</td>
</tr>
<tr>
<td>Palladium</td>
<td>cypodinil & fludioxonil</td>
<td>9 & 12</td>
<td>protectant & curative (locally systemic)</td>
<td>1</td>
<td>1</td>
<td>Use preventatively in rotation with other fungicides at 7- to 10-day interval. Do not exceed 2 applications per crop cycle.</td>
</tr>
<tr>
<td>Decree</td>
<td>fenhexamid</td>
<td>17</td>
<td>protectant (locally systemic)</td>
<td>4</td>
<td>1</td>
<td>Apply preventatively at 7-10 day interval. Do not exceed 3 applications per year. Treated tomatoes CANNOT be used for processing.</td>
</tr>
<tr>
<td>Double Nickel</td>
<td>Bacillus amyloliquefaciens D747</td>
<td>biological</td>
<td>protectant (non-systemic)</td>
<td>0</td>
<td>0</td>
<td>Apply preventatively at 3- to 10-day interval, from flowering to fruit maturity.</td>
</tr>
<tr>
<td>PreStop</td>
<td>Gliocladium catenulatum</td>
<td>biological</td>
<td>suppressive</td>
<td>4</td>
<td>0</td>
<td>Apply preventively before onset of disease or at first sign of symptoms, at 3- to 4-week interval.</td>
</tr>
<tr>
<td>Regalia</td>
<td>Reynoutria sachalinensis extract</td>
<td>biological</td>
<td>suppressive</td>
<td>until dry</td>
<td>0</td>
<td>Apply preventatively, in rotation with other fungicides, at 7- to 10-day interval. Do not exceed 2 applications per crop cycle.</td>
</tr>
<tr>
<td>Rhapsody</td>
<td>Bacillus subtilis QST 713</td>
<td>biological</td>
<td>suppressive</td>
<td>until dry</td>
<td>0</td>
<td>Use preventively before onset of disease or at first sign of symptoms at 7- to 10-day interval.</td>
</tr>
<tr>
<td>StorOx</td>
<td>hydrogen peroxide</td>
<td>NC</td>
<td>suppressive</td>
<td>until dry</td>
<td>0</td>
<td>Use preventively before onset of disease or at first sign of symptoms. Caution: toxic to bees & beneficial insects.</td>
</tr>
</tbody>
</table>

1REI - re-entry interval indicated on label
2PHI - pre-harvest interval
NC - not classified

Prepared by:
Siva Sabaratnam,
Plant Pathologist
British Columbia Ministry of Agriculture,
Abbotsford, B.C.