Appendix E – Equations

Equation 3.1	Plant Water Requirement
Equation 3.2	Trickle System Design Requirement
Equation 4.1	Emitter Flow Rate
Equation 4.2	Emitter Discharge Exponent
Equation 4.3	Emission Uniformity Using Flow Rate
Equation 4.4	Emission Uniformity Using Pressure
Equation 4.5	Allowable Pressure Variation
Equation 4.6	Emission Uniformity – Manufacturer's Coefficient302
Equation 4.7	Distribution Uniformity
Equation 4.8	Lower Quarter Distribution Uniformity
Equation 8.1	Total Dynamic Head304
Equation 8.2	Horsepower
Equation 10.1	Mean Filter Capability – Drip Emitters
Equation 10.2	Mean Filter Capability – Spray Emitters
Equation 10.3	Screen Open Area
Equation 10.4	Screen Surface Area
Equation 11.1	Saturation Index
Equation 11.2	Chlorination – Iron Treatment
Equation 11.3	Chlorine Injection Rate - Organic Solid Control
Equation 11.4	Chlorine Injection Rate – Metric
Equation 11.5	Chlorine Gas Injection Rate
Equation 11.6	Acid Injection Rate
Equation 11.7	Sulphuric Acid Injection Rate
Equation 12.1	Sodium Adsorption Ratio
Equation 14.1	Fertilizer Injection Rate
Equation 15.1	Landscape Plant Water Requirement
Equation 15.2	Evapotranspiration for Landscape Plants
Equation 15.3	Landscape Crop Coefficient
Equation 15.4	Number of Emitters Per Plant
Equation 15.5	Application Rate for Drip Systems
Equation 15.6	Maximum Irrigation Interval for Landscape Systems310

.....

Equation 3.1 Plant Water Requirement

G/P/D	=	$0.623 \times ET \times S \times A \times K$	Page # 13	
where:				
G/P/D	=	Gallons (U.S.) per plant per day		
0.623	=	27,152 gal/ac-in 43,560 ft ² /acre		
ET	=	Peak evapotranspiration rate for location (Table 2.1)	on (in/day)	
S	=	Effective soil water storage factor (dec (Table 3.4)	imal)	
А	=	Plant area (ft^2) – calculated from plant	t spacing	
Κ	=	Crop coefficient factor (Table 3.5) (dec	cimal)	
Two factors that require further explanation are the effective soil water storage factor (S) and the crop coefficient factor (K).				

Equation 3.2 Trickle System Design Requirement

ТС	=	$\frac{\mathbf{G/P/D} \times \mathbf{L}}{\mathbf{E} \times \mathbf{Eu}}$	Page # 22
where:			
TC	=	Trickle system design capacity	
G/P/D	=	Plant water requirement	
L	=	Leaching factor (Table 3.7)	
Е	=	Application efficiency (decimal) (Table 3.8)	
Eu	=	Emission uniformity (decimal)	

	Q	=	$K_{d}(P)^{X}$ Page	e # 31
where:				
	Q	=	Flow Rate (gph)	
	Р	=	Operating pressure (psi)	
	K _d	=	Constant depending on the emitter and orifice si	ze
	x	=	Emitter discharge exponent	

Equation 4.2 Emitter Discharge Exponent

$\log\left(rac{\mathcal{Q}_1}{\mathcal{Q}_2} ight)$	Page # 31
$\mathbf{x} = \overline{\log\left(\frac{P_1}{P_2}\right)}$	
Where Q_1 and Q_2 are emitter flow rates measured and P_2 respectively.	d at pressures P ₁

Equation 4.3 Emission Uniformity Using Flow Rate

where:	Eu = ($\left(1-\frac{1.270}{\sqrt{n}}\right)$	$\left(\frac{Qw}{Qa}\right)\left(\frac{Qm}{Qa}\right)$	Page # 36
	Eu	=	Emission uniformity as	s a decimal
	n	=	Number of emitters per	r plant for point source emitter
		=	For line source emitter, the orifice spacing or 1	s, the plant spacing divided by , whichever is greater.
	Q_m	=	Minimum emitter flow i sure (Hm)	rate (gph) for the minimum pres-
	Q_{a}	=	The average emitter flo pressure (Ha)	w rate (gph) for the average
	C _v	=	Manufacturer's coeffic type. (Usually provide	ient of variation for the emitter d by the manufacturer)
manufac is manuf	cturing va factured.	ariation (C Table 4.5	C_v). It is a measure of the	nitter flow rate variance due to tolerance to which the emitter of Cv for a new emitter. The
	C _v	=	standard deviation x 10 mean	00

Equation 4.4 Emission Uniformity Using Pressure

$Eu = \left(1 - 1.27 \frac{Cv}{\sqrt{n}}\right) \left(\frac{Pm}{Pa}\right)$

This can be rewritten for pressure variation as:

$$\left(\frac{Pm}{Pa}\right) = \left(\frac{Eu}{1 - 1.27\frac{Cv}{\sqrt{n}}}\right)^{\overline{x}}$$

The pressure variance (P_m/P_a) is described as the minimum pressure (P_m) divided by the average pressure (P_a) . The actual operating pressure range P_{max} to P_{min} will be larger than the pressure variance term used in the Eu formula. P_{max} to P_{min} would normally be computed as two times the difference between P_{ave} and P_{min} . However, because the friction loss is not constant along a lateral and Eu is not calculated using absolute minimum values the allowable pressure variation can be slightly higher than a factor of 2 times the difference between P_{ave} and P_{min} . Equation 4.5 is used to calculate the allowable pressure difference.

Equation 4.5 Allowable Pressure Variation

Allowable Pressure Difference = 2.5 x
$$(P_{ave} - P_{min})$$

Page # 39

Page # 39

Equation 4.6 Emission Uniformity – Manufacturer's Coefficient

$$Eu_{\rm cv} = 1 - 1.27 \frac{Cv}{\sqrt{n}}$$
 Page # 40

Equation 4.7 Distribution Uniformity

Du = <u>"minimum" water applied to the plants x 100</u> average water applied to plants Page # 42

Equation 4.8 Lower Quarter Distribution Uniformity

					Page # 45
LQI)U =	Lo	wer Qu	arter x 100	
			Av	rerage	
where:					
LQI	DU =	Lo	wer Qua	rter Distribution Uniformity	
Lower Qu	arter =	Av	erage of	the lower 25% of the sample s	ize
Avera	nge =	Av	erage of	the total sample	
General crit	teria for the	e LQDU a	are:		
	>	90%	_	excellent	
	80) - 90 %	_	good	
	70) - 80 %	_	fair	
	<	70%	_	poor	

Equation 8.1 Total Dynamic Head

	п –	Page # 124
where:	n _T –	$H_s + H_e + H_f + H_p$
	$H_s =$	Static suction head (vertical distance from the water level to the centre of the pump impellor)
	$H_e =$	Static discharge head (elevation difference from the centre of the impellor to the highest point of the irrigation system)
	H _f =	Friction head (total friction loss of all suction and mainline fittings between the pump and the zone pressure control valve)
	$H_p =$	Pressure head (the pressure required at the zone pressure control valve)

Equation 8.2 Horsepower

 $H.P. = \frac{Q \times H_{T}}{3960 \times E}$

where:

Q = Trickle irrigation system flow rate (gpm)

 $H_{T} = Total dynamic head (ft)$

E = Pump efficiency at the flow rate and total dynamic head required given as a decimal.

Page # 124

Equation 10.1 Mean Filter Capability – Drip Emitters

For drip emitters:		Page # 152
$MFC_{d} =$	Emitter Orifice Diameter 10	

Equation 10.2 Mean Filter Capability – Spray Emitters

For spray emitters:		Page # 152
MFC _s =	Emitter Orifice Diameter 7	

Equation 10.3 Screen Open Area

Screen Open Area (ft^2) x 225 = filter capacity in gpm

Equation 10.4 Screen Surface Area

SA = Q(gpm) $448 \times V(\text{ft/sec}) \times \%O_p$ Page # 161

where:

SA = Screen surface area (ft²)
Q = System flow velocity in gpm
V = Flow velocity through the screen (ft/sec)
%O_p = Open Area of the Screen Mesh (% shown as a decimal)

Equation 11.1 Saturation Index

	Saturation index = pH - pHc						
where:							
	pН	=	Actual measurement taken from water supply				
	pНc	=	$p(Ca + Mg + Na + K) + p(Ca + Mg) + p(CO_3 - CO_3)$	+ HCO ₃)			
			(Table 11.3)				
K, Na, I (millieg	HCO ₃ , CC Juivalents	D ₃ and pI per litre	on index a water sample should be analyzed for Ca H. All units except for pH must be expressed in ma). Table 11.2 can be used to convert mg/L into me ermined from Table 11.3.	eq/L			

Equation 11.2 Chlorination – Iron Treatment

	Cl _g	=	$\frac{\text{Fe} \times \text{Q}}{3.15}$ Page # 186
where:			
	Cl _g	=	The amount of chlorine to add in g / hr
Fe	mg/L	=	The concentration of Fe in the water supply in mg/L
	Q	=	The irrigation system flow rate in gpm

Equation 11.3 Chlorine Injection Rate – Organic Solid Control

Page # 190

 $I = \frac{Q \times Cl}{1,000,000} \times 60 \times \frac{100}{\text{(bleach %)}}$

where:

Ι	=	Chlorine injection rate (gph)
Q	=	Trickle system flow rate (gpm)
Cl	=	Desired residual chlorine concentration in the water
		supply (mg/L) or ppm
Bleach %	=	Chlorine concentration of solution to be injected
		(% of available chlorine)

•		
Ι	=	$Q \times \frac{Cl}{278} \times \frac{100}{(\% \text{ bleach})} Page \# 192$
I	=	Chlorine injection rate (Lph)
Q	=	Trickle system flow rate (Litres per second)
Cl	=	Desired chlorine concentration in the water supply
		(mg/L) or (ppm)
Bleach %	=	Chlorine concentration of solution to be injected
		(% available chlorine)

Equation 11.4 Chlorine Injection Rate – Metric

Equation 11.5 Chlorine Gas Injection Rate

Ι	=	$Q \times Cl$	Page # 192
Ι	=	Chlorine gas injection rate (lbs / hr)	
Q	=	Trickle system flow rate (gpm)	
Cl	=	Desired chlorine concentration in the	water supply
		(mg/L) or (ppm)	

Equation 11.6 Acid Injection Rate

	I _a	=	$\frac{\mathbf{A} \times \mathbf{Q} \times 60}{1000}$ Page # 196	
where:				
	I_a	=	Acid injection rate L/hr	
	А	=	Amount of acid (litres) / 1000 gallons of water	
			(Table 11.5 if acid factor known)	
	Q	=	Trickle irrigation system flow rate (gpm)	

Equation 11.7 Sulphuric Acid Injection Rate

		$2O_{3 \text{ meq/L}} \times Q$ 287	Page # 197
where:			
	L _{H2SO4} = Litr	es of sulfuric acid per hour	
	$\mathrm{HCO}_{\mathrm{3meq/L}}$	= Amount of HCO ³ in the water supply i	n meq/L
	Q	= The irrigation zone flow rate in gpm	

Equation 12.1 Sodium Adsorption Ratio

1	I		
		Na	Page # 204
		Ca + Mg	
	SAR =	$=\sqrt{2}$	
where:			
where.	SAR	= Sodium Adsorption Ratio	
		= Na ion in meq/L	
	Ca	= Ca ion in meq/L	
	Mg	= Mg ion in meq/L	

Equation 14.1 Fertilizer Injection Rate

$I_{c} = \frac{Qc \times A}{C \times T}$ Page # 242
where:
I_c = Rate of chemical injection (L/min)
Q_c = Quantity of chemical to be applied per irrigation cycle (kg/ha)
C = Concentration of injected solution (kg/L)
A = Area (ha)
T = Total time of injection (min)

	G/P/D	= 0.6	23 x A x K _s x ET _o E x CE
where:	0.623	=	27,152 gal/ac-in (conversion factor) 43,560 ft ² /acre
	А	=	Plant root zone area (ft ²)
	K _s	=	Crop species factor (Table 15.2)
	ET _o	=	Reference evapotranspiration rate for location (in/day) (Table 2.1)
	Е	=	Application efficiency (Table 3.8)
	CE	=	Climate Efficiency (Table 15.1)

Equation 15.1 Landscape Plant Water Requirement

Equation 15.2 Evapotranspiration for Landscape Plants

where:	ETL	=	KL x ETo (in/day)	Page # 252
where.	ETL	=	Evapotranspiration landscape (in/day)	
	KL	=	Landscape coefficient	
	ЕТо	=	Reference evapotranspiration (in/day)	

Equation 15.3 Landscape Crop Coefficient

	K	=	K _s x K _d x K _{mc}	Page # 254
Where:				
	K	=	Landscape Coefficient	
	Ks	=	Species factor (Table 15.2)	
	K _d	=	Density factor (Table 15.3)	
	K _{mc}	=	Microclimate factor (Table 15.4)	
	ine			

The landscape coefficient (K_L) is approximated for a known period of time (annual average, monthly, daily or stage of growth). Once determined it is then applied to the reference evapotranspiration (ET_o) to establish the landscape evapotranspiration rate used to calculate plant water requirements using the landscape coefficient method.

Equation 15.4 Number of Emitters Per Plant

		Page # 256
Number of Emitters =	Plant root zone area x 0.50 Area wetted by one Emitter	

Equation 15.5 Application Rate for Drip Systems

			Page # 260
	AR	=	<u>1.6 x Q</u>
when			A
where:			
	AR	=	Application Rate of the drip system (in/hr)
	Q	=	Flow Rate supplied by the drip system (gph)
	А	=	Area to be irrigated (ft ²)

Equation 15.6 Maximum Irrigation Interval for Landscape Systems

		Page # 265
Maximum Irrigation Interval	=	Maximum Operating Time
		Calculated Operating Time per Day