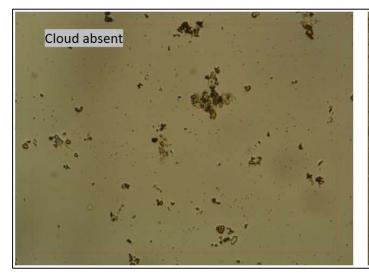
Whiteswan Lake Phytoplankton Summary Report 2021-2022

Overview

Samples were collected from one site on Whiteswan Lake during 2021 and 2022 (Table 1; Figure 1). Algae were identified to the taxonomic level genus and grouped into broad alga types for analysis.


Table 1: Sample sites and dates sampled in 2021 and 2022

Sample Site (EMS#)	t) Dates		
WHITESWAN LAKE (1131186)	2021-05-17		
	2021-08-19		
	2022-05-11		
	2022-08-10		
	Total= 4 samples		

Samples contained low densities of green algae, Desmids, Dinoflagellates, and diatoms. Samples collected in 2022 contained higher densities of flagellates relative to 2021 samples.

One sample, collected on 2021-08-19, contained a small bloom of the cyanobacteria Anacystis. Summer samples also contained Figure 1: Aerial view of Whiteswan Lake large amorphous clouds of degraded cyanobacteria and bacteria (Figure 2). Degraded cyanobacteria could represent threats to public health as cyanotoxins are usually contained within the cyanobacterial cells before cell death (EPA, 2022).

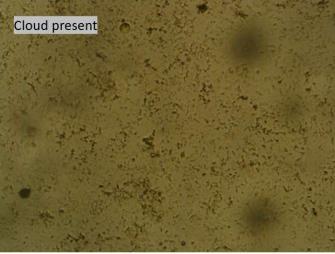


Figure 2: Spring 2021 sample (left) vs summer 2022 sample (right). Summer samples contained large amorphous clouds of degraded cyanobacteria and bacteria

Overview (continued)

Chrysophyta dominated total biovolumes of Whiteswan Lake (Figure 3). Genera *Chromulina* and *Dinobryon* were responsible for a combined 89% of the total biovolume identified in Whiteswan Lake (Figure 4).

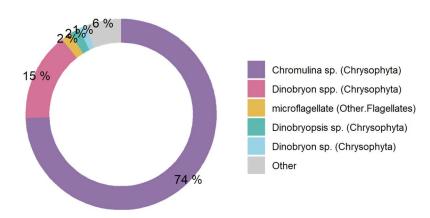


Figure 3: Dominant organisms from Whiteswan Lake (1131186) as percent of total biovolume

Chrysophyta taxa are advantageous and disadvantageous in freshwater systems, depending on their context. Some Chrysophytes are known to produce odor chemicals described as fishy, and others eat bacteria and reduce negative odor compounds (Wehr et al., 2015). *Dinobryon* blooms are associated with unpleasant fishy odors, and one species of *Dinobryon* is linked with toxins that can affect fish vitality (Cantrell & Long, 2013; Conrad, 2013).

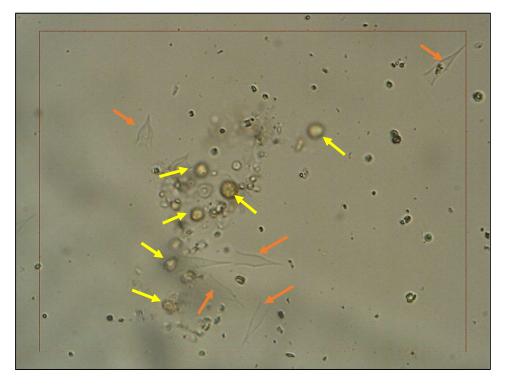


Figure 4: 400x magnification of Chromulina (yellow arrows) and Dinobryon (orange arrows) species

Algae – why should we care?

Algae blooms are becoming more frequent and severe worldwide due to excessive nutrient loading and warming summer lake temperatures. Diatom blooms can cause filter clogging, and odor issues.

Intense cyanobacteria blooms can threaten human safety and aquatic health through their toxicity. Illness related to cyanotoxins can include liver, kidney, and nerve cell damage, cancer, skin and gut irritation, and neurological issues. Cyanotoxins, including microcystins, are now known to accumulate in the food chain (Lance et al. 2014). Fish from lakes with heavy cyanobacteria blooms can have higher toxin concentrations than the lake water (Green et al. 2021) and consuming them can increase the risk of liver disease (Zhao et al., 2020).

Cyanobacterial Presence

All samples except one demonstrated low cyanobacteria densities; a small *Anacystis* bloom occurred on 2021-08-19. *Anacystis* was the dominant cyanobacteria genus in 2021 and 2022. *Gloeocapsa* and *Planktolyngbya* species were also observed (Figure 5).

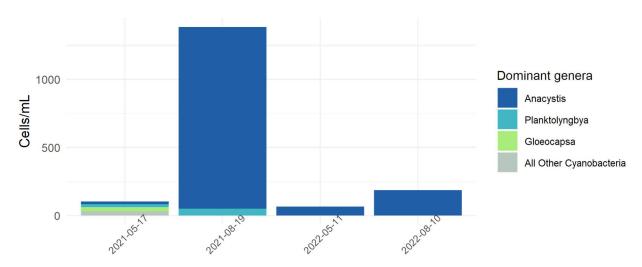
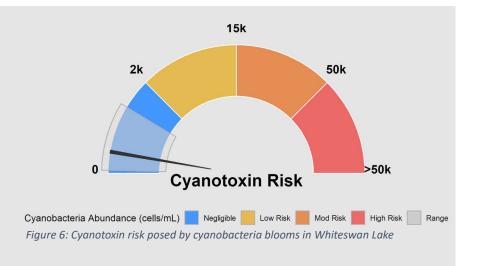


Figure 5: cell abundance for dominant cyanobacteria genera on Whiteswan Lake

Dominant cyanobacteria identified in samples are associated with several cyanotoxins that represent risks to public health (Table 2). Illness related to cyanotoxins can include: liver, kidney, and nerve cell damage, cancer, skin and gut irritation, and neurological issues (Lance et al., 2014).

Table 2: Dominant genera of cyanobacteria on Whiteswan Lake and their associated toxins

Genus	Maximum Abundance* (cells/mL)	Toxins Produced
Anacystis	1336	Lyngbyatoxin LYN, Lipopolysaccharide LPS, Microcystin MC, Nodularins NOD, Anatoxins (-a) ATX, BMAA, Cyanopeptolins CPL, Anabaenopeptins APT
Planktolyngbya	49	Lyngbyatoxin LYN, Microcystin MC, BMAA
Gloeocapsa	30	


Note: * = counted in samples

Cyanobacterial Presence (Continued)

Dominant species of cyanobacteria identified in Whiteswan Lake can produce cyanotoxins (Table 2).

Whiteswan Lake displayed a range of cyanobacteria levels in the negligible risk category, with a mean cyanobacteria abundance of 434 cells/mL (Figure 6). Figure 6 exhibits the range of cyanobacterial abundance observed in Whiteswan Lake compared to alert levels defined by authorities including the WHO and EPA.

Micro-flagellate and cyanobacteria frequently dominate algal communities in total cell count, but because of their small cell size their biovolume is usually low relative to the other types of algae present. This is highlighted in Figure 7 where a single diatom cell (*Ulnaria*) is an equivalent size to approximately 50 micro-flagellates.

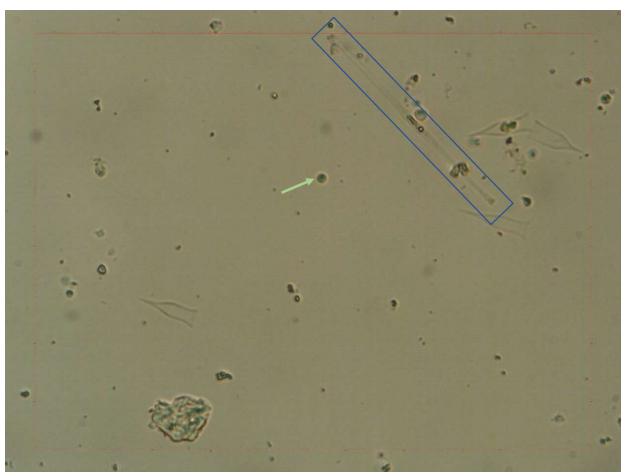


Figure 7: Size comparison of Ulnaria cell (blue box) to a micro-flagellate (green arrow)

Species Composition

Algae samples were identified to the genus level and grouped into broad alga types for analysis. The figures below display total cell counts for each broad algae group alongside their biovolume. The difference between Figure 8 (cell abundance) and Figure 9 (biovolume) illuminates the difference between cell abundance and biovolume.

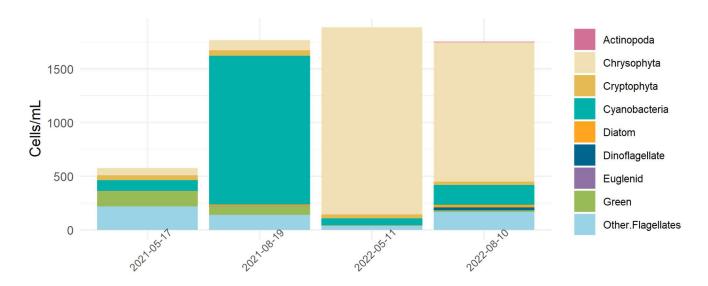


Figure 8: Cell abundance of high-level taxa groups on Whiteswan Lake

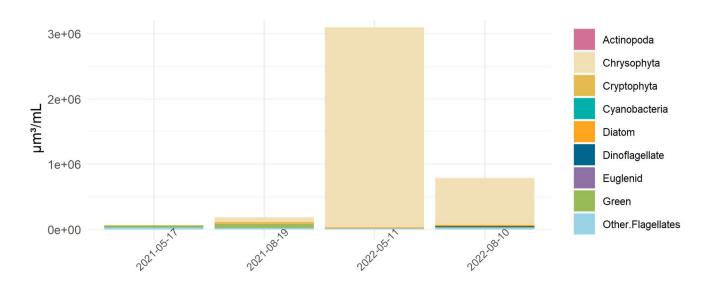


Figure 9: Biovolume of high-level taxa groups on Whiteswan Lake

References

- Cantrell, R., & Long, B. (2013). Dinobryon. PBWorks. http://ohapbio12.pbworks.com/w/page/51731561/Dinobryon
- Conrad, J. (2013). *DINOBRYON, a Golden Alga*. Jim Conrad's Naturalist Newsletter. https://www.backyardnature.net/n/x/dinobryo.htm
- EPA. (2022, September). *Learn about Cyanobacteria and Cyanotoxins*. United States Environmental Protection Agency.
- Lance, E., Petit, A., Sanchez, W., Paty, C., Gérard, C., & Bormans, M. (2014). Evidence of trophic transfer of microcystins from the gastropod Lymnaea stagnalis to the fish Gasterosteus aculeatus. *Harmful Algae*, *31*, 9–17. https://doi.org/10.1016/J.HAL.2013.09.006
- Wehr, J. D., Sheath, R. G., & Kociolek, P. (2015). Freshwater Algae of North America (Second). Elsevier Inc.
- Zhao, Y., Yan, Y., Xie, L., Wang, L., He, Y., Wan, X., & Xue, Q. (2020). Long-term environmental exposure to microcystins increases the risk of nonalcoholic fatty liver disease in humans: A combined fisher-based investigation and murine model study. *Environment International*, 138, 105648. https://doi.org/10.1016/J.ENVINT.2020.105648

Report prepared by: Larratt Aquatic Consulting Ltd.

Stephanie Butt: Taxonomist, H. B.Sc., BIT.

. Taxonomist, n. B.Sc., E

Jamie Self: Senior Aquatic Biologist, R.P. Bio

Reviewed by:

Stephonic Butt

Sara Knezevic: Field Biologist, B.Sc., BIT.

S.

Appendix

Additional figures and raw data are listed below:

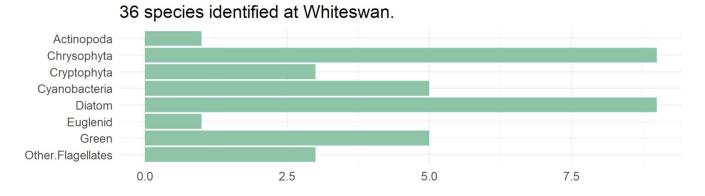


Figure 10: Identified species sorted into categories of higher-level taxa

EMS ID: 1131186	Total Abundance (cells/mL):	577		
Collection Date: 2021-05-17	7 Total Biovolume (μm³/mL):	79041		
Report.Name	Abundance (cells/mL)	Biovolume (µm³/mL)	High.Level.Taxa	ITIS Genus Number
Ochromonas sp.	1	1 2355	Chrysophyta	1455
Chrysochromulina sp.	5	7 2192	Chrysophyta	2160
Dinobryopsis sp.	3.	9133	Chrysophyta	1557
Cryptomonas sp.		7408	Cryptophyta	10635
Rhodomonas lacustris	4	4560	Cryptophyta	10663
Anacystis sp.	1	36	Cyanobacteria	609
Dactylococcopsis sp.	1	1021	Cyanobacteria	6446
Gloeocapsa punctata	3	126	Cyanobacteria	682
Planktolyngbya limnetica	2	118	Cyanobacteria	
Merismopedia punctata	1	97	Cyanobacteria	727
Fragilaria crotonensis		1942	Diatom	2932
Crucigenia tetrapedia	13	7 16782	Green	6225
Monoraphidium sp.		2650	Green	5990
microflagellate	18	30621	Other.Flagellates	

Figure 11: Raw data from 2021-05-17 EMS site 1131186

EMS ID: 1131186	Total Abundance (cells/mL):	1769		
Collection Date: 2021-08-19	Total Biovolume (μm³/mL):	188979		
Report.Name	Abundance (cells/mL)	Biovolume (μm³/mL)	High.Level.Taxa	ITIS Genus Number
Dinobryon sp.	23	34546	Chrysophyta	1515
Ochromonas sp.	27	5780	Chrysophyta	1455
Chrysochromulina sp.	11	423	Chrysophyta	2160
Chromulina sp.	15	26507	Chrysophyta	1717
Chrysococcus sp.	19	6308	Chrysophyta	1751
Cryptomonas sp.	15	27781	Cryptophyta	10635
Cryptomonas ovata	4	8704	Cryptophyta	10635
Rhodomonas lacustris	34	3692	Cryptophyta	10663
Anacystis sp.	1336	2542	Cyanobacteria	609
Planktolyngbya limnetica	49	251	Cyanobacteria	
Lindavia intermedia	4	3536	Diatom	
Navicula spp.	4	2356	Diatom	3649
Nitzschia sp.	4	367	Diatom	5070
Euglena sp.	4	2304	Euglenid	9620
Crucigenia rectangularis	46	14088	Green	6225
Mougeotia sp.	34	26239	Green	7055
microflagellate	140	23555	Other.Flagellates	

Figure 12: Raw data from 2021-08-19 EMS site 1131186

EMS ID: 1131186	Total Abundance (cells/mL):	1889		
Collection Date: 2022-05-11	Total Biovolume (μm³/mL):	3099277	1	
Report.Name	Abundance (cells/mL)	Biovolume (μm³/mL)	High.Level.Taxa	ITIS Genus Number
Chrysochromulina sp.		8 308	Chrysophyta	2160
Chrysococcus sp.		4 1328	Chrysophyta	1751
Dinobryon sp.		8 12016	Chrysophyta	1515
Chromulina sp.	172	7 3051861	Chrysophyta	1717
Cryptomonas ovata		8 17407	Cryptophyta	10635
Rhodomonas lacustris	2	7 2932	Cryptophyta	10663
Anacystis sp.	6	5 124	Cyanobacteria	609
Navicula veneta		4 3084	Diatom	3649
microflagellates	3	8 10217	Other.Flagellates	

Figure 13: Raw data from 2022-05-11 EMS site 1131186

EMS ID: 1131186	Total Abundance (cells/mL):	1753		
Collection Date: 2022-08-	10 Total Biovolume (μm³/mL):	790784		
Report.Name	Abundance (cells/mL)	Biovolume (μm³/mL)	High.Level.Taxa	ITIS Genus Number
Actinophryida	4	673	Actinopoda	
Chrysochromulina sp.	613	23655	Chrysophyta	2160
Chromalinales	15	2524	Chrysophyta	
Dinobryon spp.	393	620310	Chrysophyta	1515
Ochromonas sp.	19	4067	Chrysophyta	1455
Dinobryopsis sp.	250	67152	Chrysophyta	1557
Spumella sp.	11	81	Chrysophyta	1491
Rhodomonas lacustris	30	3257	Cryptophyta	10663
Anacystis sp.	186	354	Cyanobacteria	609
Asterionella formosa	11	7660	Diatom	3116
Cyclotella sp.		1062	Diatom	2439
Nitzschia acicularis		3158	Diatom	5070
Ulnaria acus		4167	Diatom	970000
Parvodinium sp.	27	14886	Dinoflagellate	
Monoraphidium sp.	11	7288	Green	5990
Chlamydomonas sp.		2393	Green	5448
microflagellate	167	28097	Other.Flagellates	

Figure 14: Raw data from 2022-08-10 EMS site 1131186

