Lakelse Lake Phytoplankton Summary Report 2021-2022

Overview

Samples were collected from one site on Lakelse Lake during 2021 and 2022 (Figure 1; Table 1). Algae were identified to the taxonomic level species and grouped into broad alga types for analysis.

Table 1: Sample sites and dates sampled in 2022			
Sample Site (EMS#)	Dates		
LAKELSE LAKE DEEP STATION (E206616)	2021-05-05		
	2021-08-31		
	2022-04-27		
	2022-08-18		
	Total= 4 samples		

Samples contained low concentrations of algae. Spring samples contained relatively elevated densities of diatoms, flagellates, and detritus compared to summer samples (Figure 2). Diatoms increase the resiliency and health of water systems by reducing nutrient concentrations and preventing monoculture blooms of less desirable algae (jrobyn, 2019).

Elevated quantities of suspended debris can affect the health and Figure 1: Aerial view of Lakelse Lake aesthetics of a water system. Particulates in the water column can cause turbidity and provide adhesive for pollutants including metals and bacteria (Water Science School et al., 2018). Turbidity spikes, from debris, during the spring are common due to elevated wind, rain, erosion, and runoff events (Card et al., 2014). Suspended materials can include clay, silt, organic and inorganic matter, algae, dissolved color compounds, and bacteria (Card et al., 2014).

Figure 2: Spring sample containing elevated detritus (left) vs. summer sample containing low concentrations of detritus

Overview (continued)

Samples contained moderate concentrations of diatoms including *Ulnaria acus* and *Asterionella formosa* (Figure 3). Cryptomonas ovata was also commonly observed.

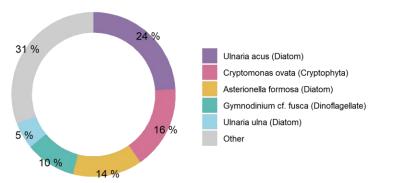
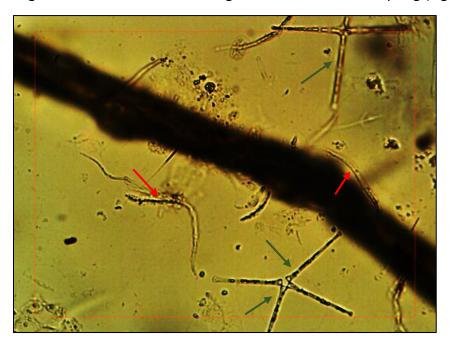



Figure 3: Dominant organisms from Lakelse L West Basin Deep Station (E105973) as percent of total biovolume

Diatoms are integral to aquatic food webs because they are the foundation of the web (jrobyn, 2019). Colony forming diatoms such as *Asterionella formosa* can avoid grazing pressures by developing into large colonies reducing their availability for zooplankton and microscopic invertebrates (Baker, 2012). Cryptomonas species are also favored elements of freshwater food chains and are selectively consumed by several zooplankton, ciliates, and dinoflagellates (Wehr et al., 2015).

Spring samples collected in Lakelse Lake also demonstrated low levels of diatom degradation indicative of lowering silica levels in the late spring (Figure 4).

Figure 4: 400x magnification of degraded Asterionella formosa (red arrows) next to un-degraded Asterionella formosa (green arrows)

Algae – why should we care?

Algae blooms are becoming more frequent and severe worldwide due to excessive nutrient loading and warming summer lake temperatures. Diatom blooms can cause filter clogging, and odor issues.

Intense

cyanobacteria blooms can threaten human safety and aquatic health through their toxicity. Illness related to cyanotoxins can include liver, kidney, and nerve cell damage, cancer, skin and gut irritation, and neurological issues. Cyanotoxins, including microcystins, are now known to accumulate in the food chain (Lance et al. 2014). Fish from lakes with heavy cyanobacteria blooms can have higher toxin concentrations than the lake water (Greer et al. 2021) and consuming them can increase the risk of liver disease (Zhao et al., 2020).

Cyanobacterial Presence

Samples contained low densities of cyanobacteria. Dominant genera included *Anacystis*, *Planktolyngbya*, and *Aphanocapsa* (Figure 5).

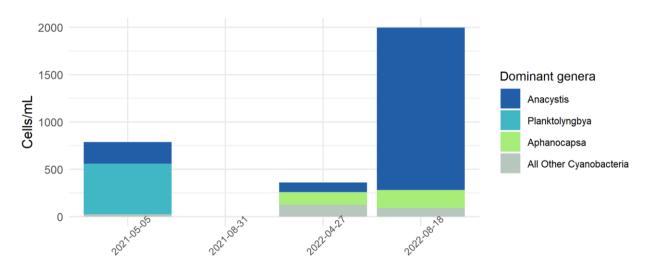
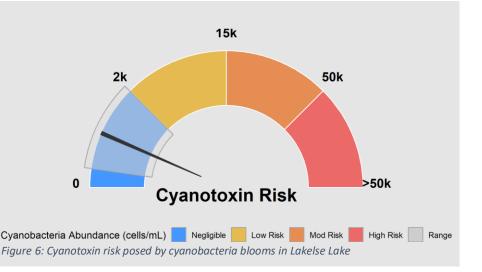


Figure 5: cell abundance for dominant cyanobacteria genera on Lakelse Lake

Anacystis, Planktolyngbya, and Aphanocapsa are associated with several cyanotoxins that represent risks to public health (Table 2). Illness related to cyanotoxins include: liver, kidney, and nerve cell damage, cancer, skin and gut irritation, and neurological issues (Lance et al., 2014). Concentration of cyanobacteria observed in Lakelse Lake were too low to represent risks to human health.

Table 2: Dominant genera of cyanobacteria on Lakelse Lake and their associated toxins

	Maximum Abundance*	
Genus	(cells/mL)	Toxins Produced
		Lyngbyatoxin LYN, Lipopolysaccharide LPS, Microcystin MC, Nodularins
		NOD, Anatoxins (-a) ATX, BMAA, Cyanopeptolins CPL, Anabaenopeptins
Anacystis	1480	APT
		Lyngbyatoxin LYN, Microcystin MC, BMAA
Planktolyngbya	535	
Aphanocapsa	190	Lyngbyatoxin LYN, Lipopolysaccharide LPS, Microcystin MC, BMAA


Note: * = counted in samples

Cyanobacterial Presence (Continued)

Dominant species of cyanobacteria identified in Lakelse Lake can produce cyanotoxins (Table 2).

Lakelse Lake displayed a range of cyanobacteria levels in the negligible risk category, with a mean cyanobacteria abundance of 1,047 cells/mL (Figure 6). exhibits Figure 6 the range of cyanobacterial abundance observed in Lakelse Lake compared to several authorities including the WHO and EPA.

Cyanobacteria frequently dominate algal communities in total cell count, but because of their small cell size their biovolume is usually low relative to other types of algae present. This is highlighted in Figure 7 where a *Polyarthra* (rotifer), *Heliozoan* (ciliate), *Lindavia* (diatom), and *Anacystis* (cyanobacteria) demonstrate differences in size.

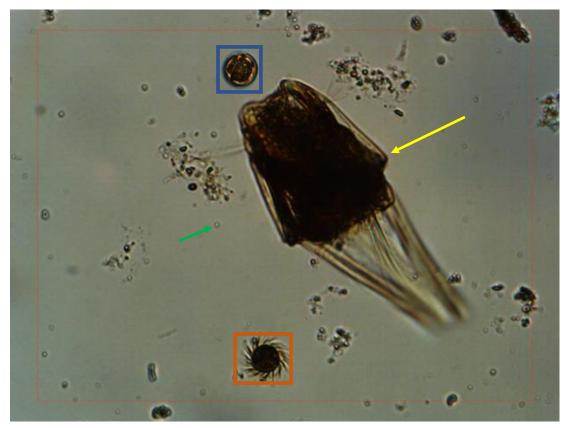


Figure 7: Size comparison of a single Lindavia cell (blue box) to an Anacystis cell (green arrow), a Heliozoan (orange box) and a Polyarthra (yellow arrow) were also captured in this frame.

Species Composition

Algae samples were identified to the species level and grouped into broad alga types for analysis. The figures below display total cell counts for each broad algae group alongside their biovolume. The difference between Figure 8 (cell abundance) and Figure 9 (biovolume) illuminates the difference between cell abundance and biovolume.

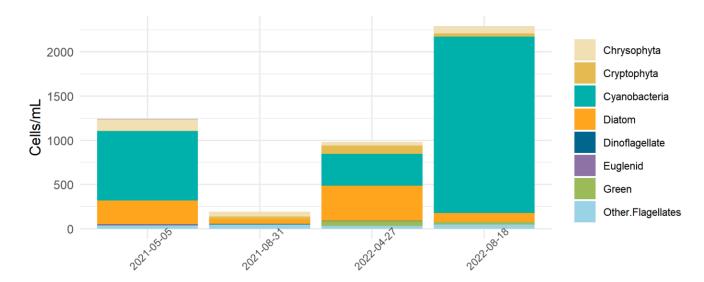


Figure 8: Cell abundance of high-level taxa groups on Lakelse Lake

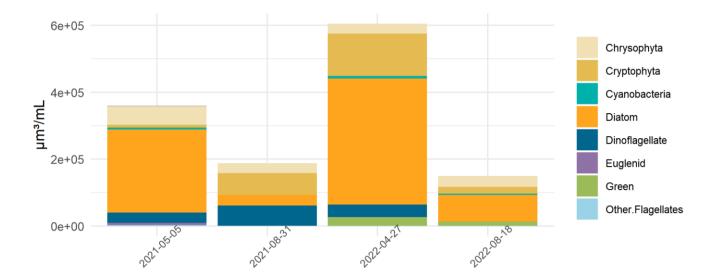


Figure 9: Biovolume of high-level taxa groups on Lakelse Lake

References

- Baker, A. L. et al. (2012). *Phycokey -- an image based key to Algae (PS Protista), Cyanobacteria, and other aquatic objects.* University of New Hampshire Center for Freshwater Biology. http://cfb.unh.edu/phycokey/phycokey.htm
- Card, A., Fitch, K., Kelly, D., Kemker, C., & Rose, K. (2014, June 13). *Turbidity, Total Suspended Solids & Water Clarity*. FONDRIEST.
- jrobyn. (2019). *How Diatoms Benefit a Body of Water BioNova®*. BioNova. https://bionovanaturalpools.com/howdiatoms-benefit-a-body-of-water/
- Lance, E., Petit, A., Sanchez, W., Paty, C., Gérard, C., & Bormans, M. (2014). Evidence of trophic transfer of microcystins from the gastropod Lymnaea stagnalis to the fish Gasterosteus aculeatus. *Harmful Algae*, *31*, 9–17. https://doi.org/10.1016/J.HAL.2013.09.006

Water Science School, Swanson, H. A., & Baldwin, H. L. (2018, June 18). Turbidity and Water . USGS.

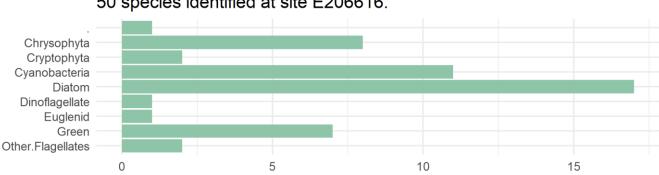
- Wehr, J. D., Sheath, R. G., & Kociolek, P. (2015). Freshwater Algae of North America (Second). Elsevier Inc.
- Zhao, Y., Yan, Y., Xie, L., Wang, L., He, Y., Wan, X., & Xue, Q. (2020). Long-term environmental exposure to microcystins increases the risk of nonalcoholic fatty liver disease in humans: A combined fisher-based investigation and murine model study. *Environment International*, 138, 105648. https://doi.org/10.1016/J.ENVINT.2020.105648

Report prepared by: Larratt Aquatic Consulting Ltd.

Stephanie Butt: Taxonomist, H. B.Sc., BIT.

Stephonis Built

Jamie Self: Senior Aquatic Biologist, R.P. Bio


Reviewed by:

Sara Knezevic: Field Biologist, B.Sc., BIT.

Appendix

Additional figures and raw data are listed below:

50 species identified at site E206616.

Figure 10: Identified species sorted into categories of higher-level taxa

EMS ID: E206616	Total Abundance (cells/mL):		1241	
Collection Date: 2021-05-05	Total Biovolume (μm³/mL):		359000	
Report.Name	Abundance (cells/mL)		Biovolume (µm³/mL)	High.Level.Taxa
		4	570	
Chroomonas acuta		38	20528	Chrysophyta
Chrysococcus sp.		38	12617	Chrysophyta
Rhodomonas sp.		8	954	Chrysophyta
Dinobryon divergens		4	3448	Chrysophyta
Dinobryon sertularia		8	9837	Chrysophyta
Ochromonas sp.		30	6422	Chrysophyta
UID Chrysophyta		4	2094	Chrysophyta
Cryptomonas ovata		4	8704	Cryptophyta
Dactylococcopsis sp.		8	545	Cyanobacteria
Gloeocapsa sp.		15	652	Cyanobacteria
Planktolyngbya limnetica		535	2737	Cyanobacteria
Anacystis aeruginosa		228	1203	Cyanobacteria
Achnanthidium microcephalum		4	580	Diatom
Asterionella formosa		129	89826	Diatom
Cyclotella sp.		4	1062	Diatom
Lindavia bodanica		4	4174	Diatom
Cyclotella glomerata		42	26428	Diatom
Diatoma tenue var. elongatum		4	1434	Diatom
Aulacoseira italica		11	5491	Diatom
Navicula spp.		8	4712	Diatom
Ulnaria acus		42	43757	Diatom
Ulnaria ulna		8	42038	Diatom
Tabellaria fenestrata		11	29566	Diatom
Gymnodinium cf. fusca		4	30411	Dinoflagellate
Euglena sp.		11	6336	Euglenid
UID flagellate		8	2783	Other.Flagellates
picoflagellates		27	91	Other.Flagellates

Figure 11: Raw data from 2021-05-05 EMS site E206616

EMS ID: E206616	Total Abundance (cells/mL):		191
Collection Date: 2021-08-31	Total Biovolume (μm³/mL):		187237
Report.Name	Abundance (cells/mL)	Biovolume (um³/mL) High.Level.Taxa
Chroomonas acuta		8	4322 Chrysophyta
Chrysococcus sp.		11	3652 Chrysophyta
Dinobryon divergens		4	3448 Chrysophyta
Dinobryon sertularia		8	9837 Chrysophyta
Kephyrion sp.		11	2304 Chrysophyta
UID Chrysophyta		11	5760 Chrysophyta
Cryptomonas ovata		30	65276 Cryptophyta
Achnanthidium microcephalur	r	8	1159 Diatom
Lindavia bodanica		8	8348 Diatom
Cyclotella glomerata		11	6922 Diatom
Eunotia cf. monodon		4	1223 Diatom
Aulacoseira italica		15	7488 Diatom
Navicula spp.		4	2356 Diatom
Ulnaria acus		4	4167 Diatom
Gymnodinium cf. fusca		8	60821 Dinoflagellate
picoflagellates		46	154 Other.Flagellates

Figure 12: Raw data from 2021-08-31 EMS site E206616

EMS ID: E206616	Total Abundance (cells/mL):	980	
Collection Date: 2022-04-27	Total Biovolume (μm³/mL):	604906	
Report.Name	Abundance (cells/mL)	Biovolume (μm³/mL)	High.Level.Taxa
Chrysococcus sp.	10	3320	Chrysophyta
Dinobryon sertularia	20	24592	Chrysophyta
Ochromonas sp.	10	2141	Chrysophyta
Cryptomonas ovata	56	121849	Cryptophyta
Rhodomonas lacustris	40	4343	Cryptophyta
Anacystis cyanea	101	152	Cyanobacteria
Aphanocapsa elachista	137	383	Cyanobacteria
Merismopedia tenuissima	20	53	Cyanobacteria
Pseudanabaena catenata	101	7372	Cyanobacteria
Asterionella formosa	66	45957	Diatom
Cocconeis placentula	5	8146	Diatom
Lindavia bodanica	10	10435	Diatom
Nitzschia palea	5	1051	Diatom
Ulnaria acus	238	247954	Diatom
Ulnaria ulna	5	26273	Diatom
Tabellaria fenestrata	10	26878	Diatom
UID Pennate Diatom	10	1472	Diatom
cf. Dinobryon cyst	46	8261	Diatom
Gymnodinium cf. fusca	5	38013	Dinoflagellate
Ankistrodesmus fractus	5	899	Green
Monoraphidium cf. caribeum	10	6625	Green
Monoraphidium contortum	20	11339	Green
Monoraphidium indicum	10	6625	Green
Scenedesmus abundans	10	672	Green
picoflagellates	30	101	Other.Flagellates

Figure 13: Raw data from 2022-04-27 EMS site E206616

EMS ID: E206616	Total Abundance (cells/mL):	2293	
Collection Date: 2022-08-18	Total Biovolume (μm³/mL):	149602	
Report.Name	Abundance (cells/mL)	Biovolume (μm³/mL)	High.Level.Taxa
Dinobryon sertularia	15	18444	Chrysophyta
Kephyrion sp.	15	3142	Chrysophyta
Ochromonas sp.	53	11346	Chrysophyta
Cryptomonas ovata	8	17407	Cryptophyta
Rhodomonas lacustris	30	3257	Cryptophyta
Anacystis cyanea	1480	2228	Cyanobacteria
Anacystis sp.	235	447	Cyanobacteria
Aphanocapsa incerta	190	600	Cyanobacteria
Anathece cf. smithii	91	381	Cyanobacteria
Asterionella formosa	61	42476	Diatom
Lindavia bodanica	15	15652	Diatom
Pinnularia brebissonii	8	5152	Diatom
Ulnaria acus	15	15627	Diatom
Elakatothrix genevensis	15	2689	Green
Monoraphidium cf. caribeum	8	5300	Green
Monoraphidium cf. obtusum	8	5300	Green
picoflagellates	46	154	Other.Flagellates

Figure 14: Raw data from 2022-08-18 EMS site E206616

