Horse Lake Phytoplankton Summary Report 2021-2022

Overview

Samples were collected from one site on Horse Lake during 2021 and 2022 (Figure 1; Table 1). Algae were identified to the taxonomic level genus and grouped into broad alga types for analysis.

Table 1: Sample sites and dates sampled in 2021 and 2022				
Sample Site (EMS#)	Dates			
HORSE LAKE AT DEEPEST PT (0603100)	2021-05-11			
	2021-08-19			
	2022-05-08			
	2022-08-24			
	Total= 4 samples			

Horse Lake exhibited predictable seasonal patterns; elevated diatom density in the spring followed by cyanobacteria blooms in summer. Spring blooms of diatoms are common and reflective of increased temperatures, light penetration, and silica in the water following ice off (Kong et al., 2021). Diatoms increase the resiliency and health of water systems through their ability to bloom in early spring, reduce nutrient levels, and prevent monoculture blooms of less desirable algae (jrobyn, 2019). Dominant diatoms included species of *Aulacoseira, Lindavia,* and *Tabellaria*.

Figure 1: Aerial view of Horse Lake

Diatoms are integral to aquatic food webs because they are the foundation of the food web (jrobyn, 2019). Colony forming diatoms such as *Aulacoseira* and *Tabellaria* can avoid grazing pressures by developing into large colonies reducing their availability for zooplankton and microscopic invertebrates (Baker, 2012). Spring samples collected in Horse Lake demonstrated diatom/silica degradation reflective of lowering silica levels in the late spring (Figure 2).

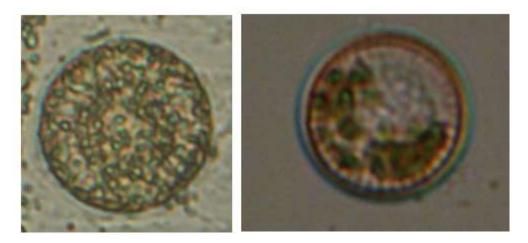


Figure 2: Spring Lindavia (left) showing degradation vs. summer Lindavia (right) with intact silica shell

Overview (continued)

Samples contained elevated densities of Chromalinales (genus *Dinobryon;* Figure 3; Figure 4). *Dinobryon* blooms are associated with unpleasant fishy odors, and one genus of *Dinobryon* is linked with a toxin that can affect fish vitality (Cantrell & Long, 2013; Conrad, 2013).

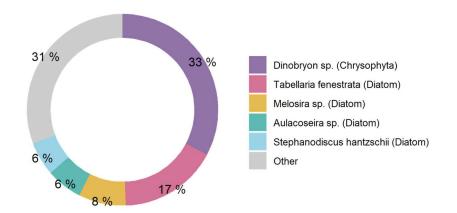


Figure 3: Dominant organisms from Horse Lake (0603100) as percent of total biovolume

Spring samples contained a *Dinobryon* bloom that included swarmers (sexual reproductive stages) and stomatocysts (asexual reproductive stages; Figure 4). Stomatocysts are normally produced at 0.05% the rate of swarmers (Lee, 2008). When *Dinobryon* populations are in a nitrogen-depleted environment, asexual stomatocysts rise from 0.05% to 4% (Lee, 2008).

Figure 4: 400x magnification of Dinobyron species with internalized sexual Dinobryon swarmers (green arrows) compared to an asexual stomatocysts (blue arrow)

Algae – why should we care?

Algae blooms are becoming more frequent and severe worldwide due to excessive nutrient loading and warming summer lake temperatures. Diatom blooms can cause filter clogging, and odor issues.

Intense cyanobacteria blooms can threaten human safety and aquatic health through their toxicity. Illness related to cyanotoxins can include liver, kidney, and nerve cell damage, cancer, skin and gut irritation, and neurological issues. Cyanotoxins, including microcystins, are now known to accumulate in the food chain (Lance et al. 2014). Fish from lakes with heavy cyanobacteria blooms can have higher toxin concentrations than the lake water (Greer et al. 2021) and consuming them can increase the risk of liver disease (Zhao et al., 2020).

Cyanobacterial Presence

Summer samples contained elevated concentrations of cyanobacteria; dominant genera include *Anabaena*, *Anacystis*, and *Aphanizomenon* (Figure 5).

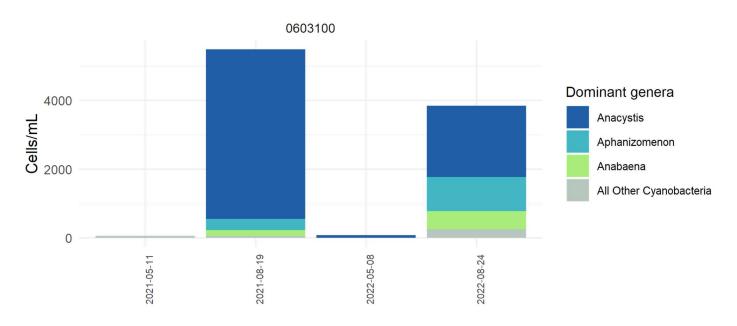
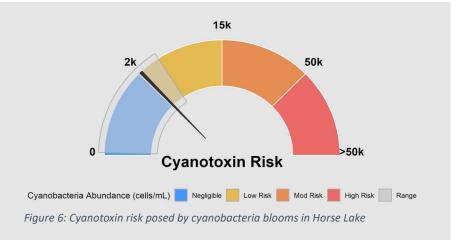


Figure 5: Cell abundance for dominant cyanobacteria genera on Horse Lake

During blooms, species of *Anabaena* and *Aphanizomenon* produce both negative odor/taste compounds and toxic secondary metabolites. *Anabaena* blooms can quickly accumulate, produce odor compounds, and color water systems (EPA, 2022). Other dominant cyanobacteria identified in summer samples are also associated with cyanotoxins that represent risks to public health (Table 2). Illness related to cyanotoxins can include: liver, kidney, and nerve cell damage, cancer, skin and gut irritation, and neurological issues (Lance et al., 2014).

	Maximum Abundance*	
Genus	(cells/mL)	Toxins Produced
		Lyngbyatoxin LYN, Lipopolysaccharide LPS, Microcystin MC, Nodularins
		NOD, Anatoxins (-a) ATX, BMAA, Cyanopeptolins CPL, Anabaenopeptins
Anacystis	4827	APT
		Lyngbyatoxin LYN, Lipopolysaccharide LPS, Cylindospermopsin CYN,
		Microcystin MC, Anatoxins (-a) ATX, Saxitoxins SAX neosaxitoxin NEO,
Aphanizomenon	990	BMAA, Anabaenopeptins APT, Taste and Odor
		Lyngbyatoxin LYN, Apoptogen Toxin (ApopTX), Lipopolysaccharide LPS,
		Cylindospermopsin CYN, Microcystin MC, Anatoxins (-a) ATX, Saxitoxins
		SAX neosaxitoxin NEO, BMAA, Cyanopeptolins CPL, Anabaenopeptins
Anabaena	524	APT, Taste and Odor


Note: * = counted in samples

Cyanobacterial Presence (Continued)

Dominant species of cyanobacteria identified in Horse Lake can produce cyanotoxins (Table 2).

Horse Lake displays a range of cyanobacteria levels in the negligible-low risk categories, with a mean cyanobacteria abundance of 2,371 cells/mL (Figure 6). Figure 6 exhibits the range of cyanobacterial abundance observed in Horse Lake compared to alert levels defined by several authorities including the WHO and the EPA.

Cyanobacteria frequently dominate algal communities in total cell count, but because of their small cell size their biovolume is usually low relative to the other types of algae present. This can be seen in Figure 7 where two *Cosmarium* cells are similarly sized to approximately 75 cyanobacteria cells.

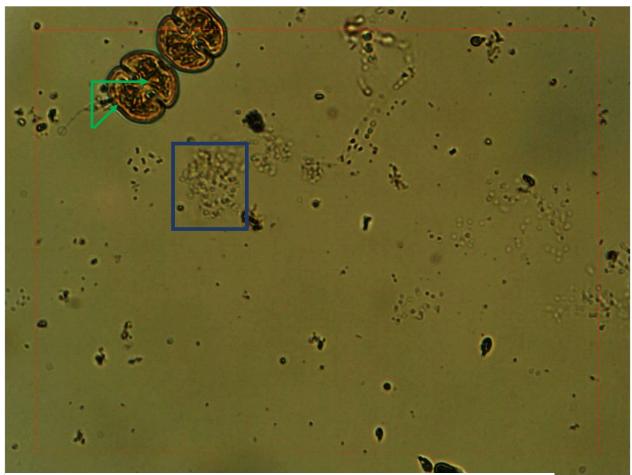


Figure 7: Size comparison of two Cosmarium cells (green arrow) to approximately 45 Anacystis cell (blue box)

Species Composition

Algae samples were identified to the genus level and grouped into broad alga types for analysis. The figures below display total cell counts for each broad algae group alongside their biovolume. The difference between Figure 8 (cell abundance) and Figure 9 (biovolume) illuminates the difference between cell abundance and biovolume.

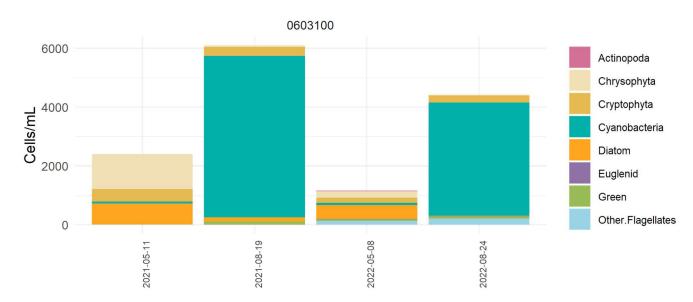


Figure 8: Cell abundance of high-level taxa groups on Horse Lake

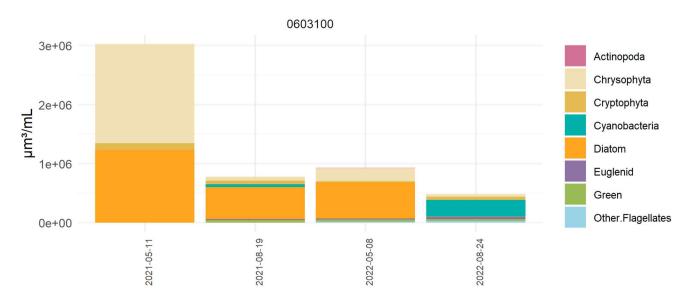


Figure 9: Biovolume of high-level taxa groups on Horse Lake

References

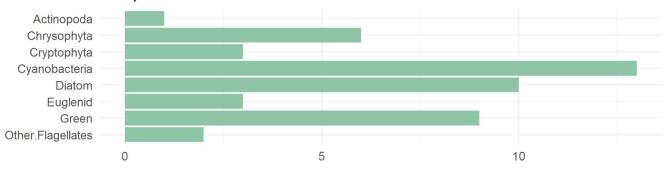
- Baker, A. L. et al. (2012). *Phycokey -- an image based key to Algae (PS Protista), Cyanobacteria, and other aquatic objects.* University of New Hampshire Center for Freshwater Biology. http://cfb.unh.edu/phycokey/phycokey.htm
- Cantrell, R., & Long, B. (2013). Dinobryon. PBWorks. http://ohapbio12.pbworks.com/w/page/51731561/Dinobryon
- Conrad, J. (2013). *DINOBRYON, a Golden Alga*. Jim Conrad's Naturalist Newsletter. https://www.backyardnature.net/n/x/dinobryo.htm
- EPA. (2022, September). Learn about Cyanobacteria and Cyanotoxins. United States Environmental Protection Agency.
- jrobyn. (2019). *How Diatoms Benefit a Body of Water BioNova®*. BioNova. https://bionovanaturalpools.com/howdiatoms-benefit-a-body-of-water/
- Kong, X., Seewald, M., Dadi, T., Friese, K., Mi, C., Boehrer, B., Schultze, M., Rinke, K., & Shatwell, T. (2021). Unravelling winter diatom blooms in temperate lakes using high frequency data and ecological modeling. *Water Research*, 190, 116681. https://doi.org/10.1016/J.WATRES.2020.116681
- Lance, E., Petit, A., Sanchez, W., Paty, C., Gérard, C., & Bormans, M. (2014). Evidence of trophic transfer of microcystins from the gastropod Lymnaea stagnalis to the fish Gasterosteus aculeatus. *Harmful Algae*, *31*, 9–17. https://doi.org/10.1016/J.HAL.2013.09.006
- Lee, R. E. (2008). Phycology. In Phycology (Fourth, pp. 344–343). Cambridge University Press.
- Zhao, Y., Yan, Y., Xie, L., Wang, L., He, Y., Wan, X., & Xue, Q. (2020). Long-term environmental exposure to microcystins increases the risk of nonalcoholic fatty liver disease in humans: A combined fisher-based investigation and murine model study. *Environment International*, *138*, 105648. https://doi.org/10.1016/J.ENVINT.2020.105648

Report prepared by: Larratt Aquatic Consulting Ltd.

Stephanie Butt: Taxonomist, H. B.Sc., BIT.

Stephonis Built

Jamie Self: Senior Aquatic Biologist, R.P. Bio


Reviewed by:

Sara Knezevic: Field Biologist, B.Sc., BIT.

Appendix

Additional figures and raw data are listed below:

47 species identified at Horse.

Figure 10: Identified species sorted into categories of higher-level taxa

EMS ID: 603100	Total Abundance (cells/mL):		2408		
Collection Date: 2021-05-1	Total Biovolume (μm³/mL):		3034711		
Report.Name	Abundance (cells/mL)		Biovolume (µm³/mL)	High.Level.Taxa	ITIS Genus Number
Dinobryon sp.		205	307910	Chrysophyta	1515
Dinobryon sp.		907	1362314	Chrysophyta	1515
Ochromonas sp.		72	15413	Chrysophyta	1455
Chrysochromulina sp.		4	154	Chrysophyta	2160
Dinobryopsis sp.		15	4029	Chrysophyta	1557
Cryptomonas sp.		38	70378	Cryptophyta	10635
Rhodomonas lacustris		395	42888	Cryptophyta	10663
Planktolyngbya sp.		65	808	Cyanobacteria	
Aulacoseira granulata		342	112493	Diatom	590863
Melosira sp.		129	421501	Diatom	2290
Stephanodiscus niagarae		8	84010	Diatom	2415
Tabellaria fenestrata		228	612813	Diatom	3241

Figure 11: Raw data from 2021-05-11 EMS site 0603100

EMS ID: 0603100	Total Abundance (cells/mL):	6105			
Collection Date: 2021-08-19	Total Biovolume (µm³/mL):		782551		
Report.Name	Abundance (cells/mL)		Biovolume (µm³/mL)	High.Level.Taxa	
Dinobryon sp.		4	6008	Chrysophyta	
Dinobryon sp.		23	34546	Chrysophyta	
Mallomonas sp.		8	24194	Chrysophyta	
Ochromonas sp.		27	5780	Chrysophyta	
Cryptomonas sp.		15			
Rhodomonas lacustris		281	30510 Cryptophyta		
Aphanizomenon sp.		319	11274 Cyanobacteria		
Anacystis microscopica		114	249 Cyanobacteria		
Anacystis cyanea		4827	7266 Cyanobacteria		
Anabaena sp.		34	2549 Cyanobacteria		
Anabaena flos-aquae		133	25885	Cyanobacteria	
Gloeothece sp.		65	4254	Cyanobacteria	
Aulacoseira granulata		4	1316	Diatom	
Asterionella formosa		8	5571	Diatom	
Stephanodiscus hantzschii		42	302764	Diatom	
Tabellaria fenestrata		87	233837 Diatom		
Trachelomonas scabra		4	13270 Euglenid		
Ankistrodesmus sp.		19			
Closteriopsis acicularis		8	9425 Green		
Cosmarium cf. depressum		30	24370 Green		
Botryococcus braunii		53	8715	Green	

Figure 12: Raw data from 2021-08-19 EMS site 0603100

EMS ID: 0603100	Total Abundance (cells/mL):	1179		
Collection Date: 2022-05	Total Biovolume (μm³/mL):	956635		
Report.Name	Abundance (cells/mL)	Biovolume (µm³/mL)	High.Level.Taxa	ITIS Genus Number
Actinophryida	15	2524	Actinopoda	
Chrysochromulina sp.	80	3077	Chrysophyta	2160
Chromulina sp.	15	26507	Chrysophyta	1717
Dinobryon spp.	114	180858	Chrysophyta	1515
Dinobryon sp.	8	12016	Chrysophyta	1515
Rhodomonas lacustris	175	19001	Cryptophyta	10663
Anacystis sp.	80	152	Cyanobacteria	609
Aulacoseira sp.	194	319247	Diatom	590863
Lindavia intermedia	68	60108	Diatom	
Lindavia bodanica	190	198265	Diatom	
Tabellaria fenestrata	11	29566	Diatom	3241
Ulnaria acus	4	4167	Diatom	970000
Strombomonas spp.	4	26463	Euglenid	9740
Trachelomonas sp.	4	14137	Euglenid	9690
Euglena sp.	8	4608	Euglenid	9620
Coenococcus sp.	19	269	Green	
Elakatothrix sp.	8	1536	Green	9412
Monoraphidium sp.	34	22525	Green	5990
Monoraphidium indicun	4	2650	Green	5990
Chlamydomonas sp.	11	6582	Green	5448
microflagellate	133	22377	Other.Flagellates	

Figure 13: Raw data from 2022-05-08 EMS site 0603100

EMS ID: 0603100	Total Abundance (cells/mL):		4430		
Collection Date: 2022-08-2	24 Total Biovolume (μm³/mL):		495965		
Report.Name	Abundance (cells/mL)		Biovolume (µm³/mL)	High.Level.Taxa	ITIS Genus Number
Chromulina sp.		4	7069	Chrysophyta	1717
Dinobryon spp.		27	42835	Chrysophyta	1515
Cryptomonas sp.		4	7408	Cryptophyta	10635
Cryptomonas ovata		11	23935	Cryptophyta	10635
Rhodomonas lacustris		228	24756	Cryptophyta	10663
Anabaena flos-aquae		524	101983	Cyanobacteria	1100
Anacystis sp.		664	1263	Cyanobacteria	609
Anacystis delicatissima		1412	3084	Cyanobacteria	609
Aphanizomenon flos-aqu	ae	990	164839	Cyanobacteria	1191
Gloeocapsa punctata		61	256	Cyanobacteria	682
Gloeocapsa aeruginosa		38	537	Cyanobacteria	682
Gomphosphaeria sp.		159	7054	Cyanobacteria	714
Lindavia bodanica		8	8348	Diatom	
Trachelomonas sp.		11	38877	Euglenid	9690
Crucigenia apiculata		61	13992	Green	6225
Monoraphidium sp.		23	15238	Green	5990
microflagellate		205	34491	Other.Flagellates	

Figure 14: Raw data from 2022-08-24 EMS site 0603100

