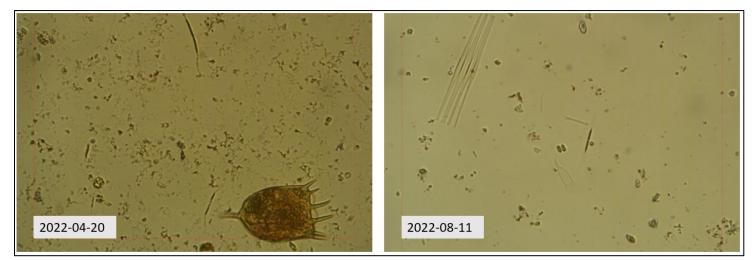
Columbia Lake Phytoplankton Summary Report 2021-2022

Overview

Samples were collected from one site on Columbia Lake during 2021 and 2022 (Figure 1; Table 1). Algae were identified to the taxonomic level of species and grouped into broad alga types for analysis.

Table 1: Sample sites and dates sampled in 2021 and 2022


Sample Site (EMS#)	Dates
COLUMBIA LAKE; MIDLAKE NORTH	2021-04-27
(0200434)	2021-08-18
	2022-04-20
	2022-08-11
	Total= 4 samples

Samples contained low concentrations of diatoms; *Fragilaria crotonensis* was the dominant diatom species identified. Moderate concentrations of Dinoflagellates, Chrysophyta, Cryptophyta, green algae, and cyanobacteria were observed in all samples.

Elevated concentrations of debris was observed in spring samples (Figure 2). Excessive suspended debris can affect the health and aesthetics of a water system. Particulates in the water column can cause turbidity and provide adhesive for pollutants including metals and bacteria (Water Science School et al., 2018). Turbidity spikes, from debris, during the spring are common due to elevated wind, rain, erosion, and runoff events (Card et al., 2014). Suspended materials include clay, silt, organic and inorganic matter, algae, dissolved color compounds, and bacteria (Card et al., 2014; Figure 2).

Figure 1: Aerial view of Columbia Lake

Figure 2: Debris concentration in a spring sample (left) vs a summer sample (right)

Overview (continued)

The dinoflagellate *Gymnodinium cf. aeruginosa* (20%) and Chrysophyta genus *Dinobryon* (14%) dominated total biovolumes (Figure 3; Figure 4). *Monoraphidium indicum* were also observed frequently (13%; Figure 3).

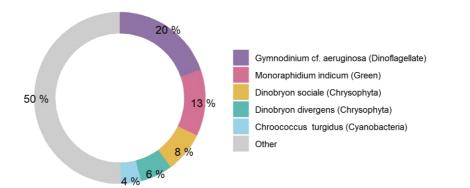


Figure 3: Dominant organisms from Columbia Lake (0200434) as percent of total biovolume

Marine species of *Gymnodinium* are commonly associated with the production of several toxins. Saxitoxin is a by-product of several *Gymnodinium* species (Osterbauer & Dobbs, 2009). Few studies evaluate threats posed by freshwater *Gymnodinium* species.

Chrysophyta, including genus *Dinobryon*, are advantageous and detrimental in freshwater systems, depending on their context. Some Chrysophyta are known to produce odor metabolites described as fishy, while others eat bacteria and reduce negative odor metabolites (Wehr et al., 2015).

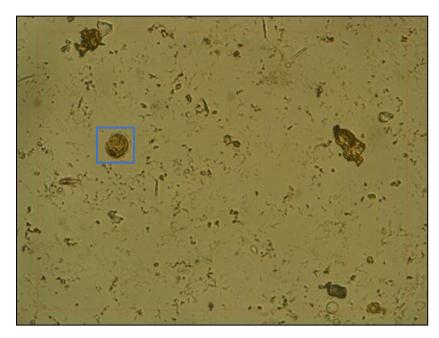


Figure 4: 400x magnification of EMS #0200434 collected on 2022-04-20 demonstrating morphology of Dinoflagellate Gymnodinium cf. aeruginosa (blue box)

Algae – why should we care?

Algae blooms are becoming more frequent and severe worldwide due to excessive nutrient loading and warming summer lake temperatures. Diatom blooms can cause filter clogging, and odor issues.

Intense cyanobacteria blooms can threaten human safety and aquatic health through their toxicity. Illness related to cvanotoxins can include: liver, kidney, and nerve cell damage, cancer, skin and gut irritation, and neurological issues. Cyanotoxins, including microcystins, are now known to accumulate in the food chain (Lance et al. 2014). Fish from lakes with heavy cvanobacteria blooms can have higher toxin concentrations than the lake water (Greer et al. 2021) and consuming them can increase the risk of liver disease (Zhao et al., 2020).

Cyanobacterial Presence

Summer samples contained elevated concentrations of cyanobacteria. Dominant genera included *Anacystis*, *Aphanocapsa*, and *Lyngbya* (Figure 5).

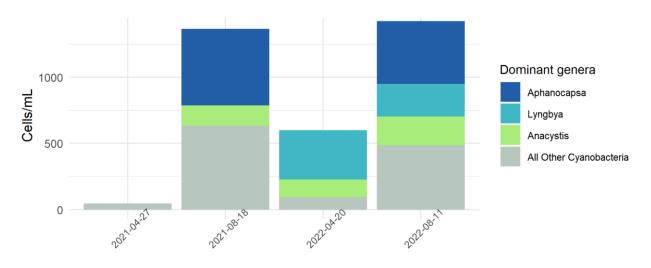
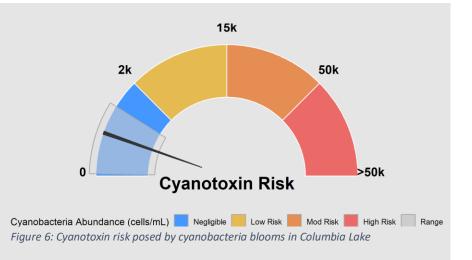


Figure 5: cell abundance for dominant cyanobacteria genera on Columbia Lake

Dominant cyanobacteria in Columbia Lake are associated with several cyanotoxins (Table 2). Illnesses related to cyanotoxins can include: liver, kidney, and nerve cell damage, cancer, skin and gut irritation, and neurological issues (Lance et al., 2014). Concentration of cyanobacteria observed in Columbia Lake were too low to represent risks to human health (Lance et al., 2014).

Genus	Maximum Abundance* (cells/mL)	Toxins Produced
Aphanocapsa	581	Lyngbyatoxin LYN, Lipopolysaccharide LPS, Microcystin MC, BMAA
Lyngbya	372	Lyngbyatoxin LYN, Aplysiatoxins APL, Lipopolysaccharide LPS, Cylindospermopsin CYN, Microcystin MC, Anatoxins (-a) ATX, Saxitoxins SAX neosaxitoxin NEO, BMAA, Anabaenopeptins APT, Taste and Odor
Anacystis	220	Lyngbyatoxin LYN, Lipopolysaccharide LPS, Microcystin MC, Nodularins NOD, Anatoxins (-a) ATX, BMAA, Cyanopeptolins CPL, Anabaenopeptins APT

Table 2: Dominant genera of cyanobacteria on Columbia Lake and their associated toxins


Note: * = counted in samples

Cyanobacterial Presence (Continued)

Dominant species of cyanobacteria identified in Columbia Lake can produce cyanotoxins (Table 2).

Columbia Lake displayed a range of cyanobacteria levels in the negligible risk category, with a mean cyanobacteria abundance of 860 cells/mL (Figure 6). Figure 6 exhibits the range of cyanobacterial abundance observed in Columbia Lake compared to alert levels defined by several authorities including the WHO and the EPA.

Cyanobacteria frequently dominate algal communities in total cell count, but because of their small cell size their biovolume is usually low relative to the other types of algae present. This is highlighted in Figure 7 where a single green algae cell dwarfs the adjacent cyanobacteria cell.

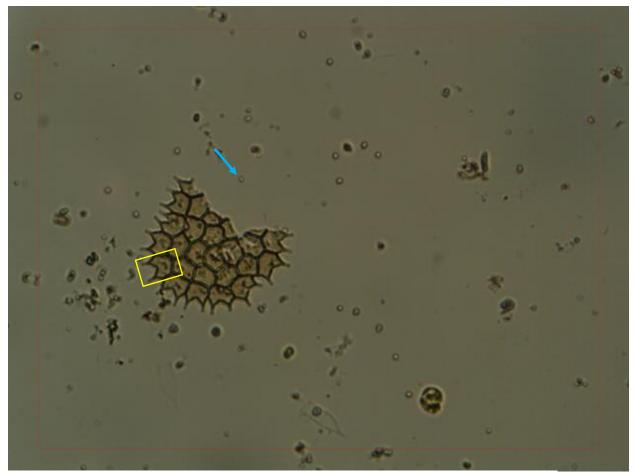


Figure 7: Size comparison of a Pediastrum boryanum cell (yellow box) to an Anacystis cell (blue arrow)

Species Composition

Algae samples were identified to the species level and grouped into broad alga types for analysis. The figures below display total cell counts for each broad algae group alongside their biovolume. The difference between Figure 8 (cell abundance) and Figure 9 (biovolume) illuminates the difference between cell abundance and biovolume.

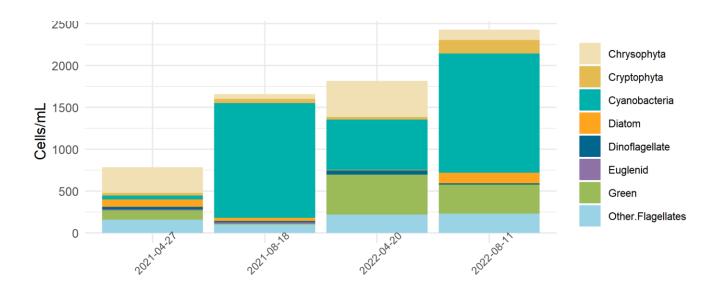


Figure 8: Cell abundance of high-level taxa groups on Columbia Lake

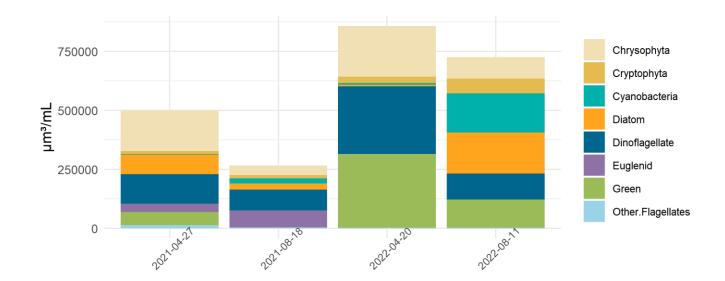


Figure 9: Biovolume of high-level taxa groups on Columbia Lake

References

- Card, A., Fitch, K., Kelly, D., Kemker, C., & Rose, K. (2014, June 13). *Turbidity, Total Suspended Solids & Water Clarity*. FONDRIEST.
- Lance, E., Petit, A., Sanchez, W., Paty, C., Gérard, C., & Bormans, M. (2014). Evidence of trophic transfer of microcystins from the gastropod Lymnaea stagnalis to the fish Gasterosteus aculeatus. *Harmful Algae*, 31, 9– 17. https://doi.org/10.1016/J.HAL.2013.09.006
- Osterbauer, P. J., & Dobbs, M. R. (2009). Neurobiological Weapons. In M. R. Dobbs (Ed.), *Clinical Neurotoxicology: Syndromes, Substances, Environments* (pp. 631–645). Elsevier. https://doi.org/10.1016/B978-032305260-3.50061-7

Water Science School, Swanson, H. A., & Baldwin, H. L. (2018, June 18). Turbidity and Water. USGS.

Wehr, J. D., Sheath, R. G., & Kociolek, P. (2015). Freshwater Algae of North America (Second). Elsevier Inc.

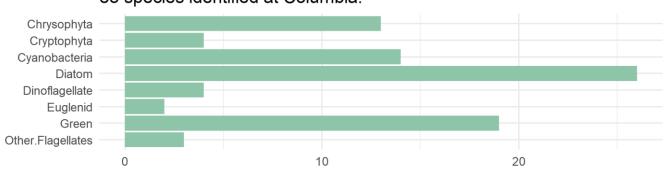
Zhao, Y., Yan, Y., Xie, L., Wang, L., He, Y., Wan, X., & Xue, Q. (2020). Long-term environmental exposure to microcystins increases the risk of nonalcoholic fatty liver disease in humans: A combined fisher-based investigation and murine model study. *Environment International*, 138, 105648. https://doi.org/10.1016/J.ENVINT.2020.105648

Report prepared by: Larratt Aquatic Consulting Ltd.

Stephanie Butt: Taxonomist, H. B.Sc., BIT.

Stephonis Butt

Jamie Self: Senior Aquatic Biologist, R.P. Bio


Reviewed by:

Sara Knezevic: Field Biologist, B.Sc., BIT.

Appendix

Additional figures and raw data are listed below:

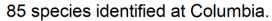


Figure 10: Identified species sorted into categories of higher-level taxa

EMS ID: 0200434	Total Abundance (cells/mL):		783	
Collection Date: 2021-04-27	Total Biovolume (µm³/mL):		499529	
Report.Name	Abundance (cells/mL)		Biovolume (µm³/mL)	High.Level.Taxa
Chroomonas acuta		15	8103	Chrysophyta
Dinobryon divergens		106	91367	Chrysophyta
Dinobryon sociale		27	32945	Chrysophyta
Kephyrion sp.		110	23040	Chrysophyta
Ochromonas sp.		4	856	Chrysophyta
Chrysococcus sp.		38	12617	Chrysophyta
Ochromonas sp Irg pointed		8	4072	Chrysophyta
Cryptomonas ovata		4	8704	Cryptophyta
Rhodomonas lacustris		27	2932	Cryptophyta
Planktothrix sp.		46	2561	Cyanobacteria
Achnanthidium minutissima		23	2439	Diatom
Amphora ovalis		4	5833	Diatom
Fragilaria crotonensis		8	3884	Diatom
Frustulia sp.		11	17417	Diatom
Mastogloia albertii		4	21768	Diatom
Navicula ingenua		4	903	Diatom
Navicula radiosa		4	8207	Diatom
Navicula cf. caterva		4	204	Diatom
Nitzschia sp. small		4	2827	Diatom
Nitzschia acicularis		11	8685	Diatom
Ulnaria acus		11	11460	Diatom
Gymnodinium cf. aeruginosa		4	36949	Dinoflagellate
Gymnodinium cf. lantzschii		8	12064	Dinoflagellate
Peridinium inconspicuum		4	7326	Dinoflagellate
Peridinium sp.		15	67663	Dinoflagellate
Trachelomonas volvocinopsis		11	35278	Euglenid
Closteriopsis sp.		8	1433	Green
Closteriopsis longissima		19	6029	Green
Closterium kuetzingii		8	3063	Green
Crucigenia quadrata		4	245	Green
Elakatothrix gelatinosa		8	1413	Green
Pediastrum boryanum		23	39371	Green
Scenedesmus bijuga		30	3271	Green
Schroederia setigera		4	1018	Green
Tetraedron minimum		8	984	Green
UID flagellate		30	10436	Other.Flagellates
nanoflagellates		65	1957	Other.Flagellates
picoflagellates		61		Other.Flagellates

Figure 11: Raw data from 2021-04-27 EMS site 0200434

EMS ID: 0200434	Total Abundance (cells/mL): 16	57
Collection Date: 2021-08-18	Total Biovolume (μm³/mL): 2665	84
Report.Name	Abundance (cells/mL) Biovolume (µm³/mL)	High.Level.Taxa
Chroomonas acuta	8 43	22 Chrysophyta
Dinobryon divergens	27 233	73 Chrysophyta
Dinobryon sociale	4 45	81 Chrysophyta
Dinobryon sertularia	4 45	18 Chrysophyta
Chrysococcus sp.	11 36	52 Chrysophyta
Ochromonas sp. Small	4	09 Chrysophyta
Cryptomonas ovata	4 8	04 Cryptophyta
Rhodomonas lacustris	46 49	95 Cryptophyta
Anathece sp.	133	57 Cyanobacteria
Anacystis cyanea	152	29 Cyanobacteria
Anabaena aequalis	57 19	10 Cyanobacteria
Aphanocapsa elachista	581 16	22 Cyanobacteria
Chroococcus limneticus	46 58	74 Cyanobacteria
Chroococcus turgidus	8 72	38 Cyanobacteria
Gloeocapsa sp.	15 6	52 Cyanobacteria
Planktolyngbya limnetica	304 15	55 Cyanobacteria
Rhabdogloea sp.	72 16	96 Cyanobacteria
Achnanthidium minutissima	11 11	66 Diatom
Asterionella formosa	4 27	85 Diatom
Epithemia sorex	4 131	95 Diatom
Fragilariformis sp.	4 11	80 Diatom
Fragilaria crotonensis	8 38	84 Diatom
Nitzschia sp.	4 3	67 Diatom
Ulnaria acus	4 41	67 Diatom
Gymnodinium cf. aeruginosa	8 738	98 Dinoflagellate
Gymnodinium cf. Iantzschii	4 60	32 Dinoflagellate
Peridinium inconspicuum	4 73	26 Dinoflagellate
Trachelomonas volvocinopsis	15 481	07 Euglenid
Trachelomonas cf. hispida var. papillata	4 241	76 Euglenid
Chodatella quadriseta	4	02 Green
Tetraedron minimum	4	92 Green
UID flagellate	4 15	91 Other.Flagellates
nanoflagellates	49 14	75 Other.Flagellates
picoflagellates	46	54 Other.Flagellates

Figure 12: Raw data from 2021-08-18 EMS site 0200434

EMS ID: 0200434	Total Abundance (cells/mL):	1816	
Collection Date: 2022-04-20	Total Biovolume (μm³/mL):	857392	
Report.Name	Abundance (cells/mL)	Biovolume (μm³/mL)	High.Level.Taxa
Chroomonas acuta	4	2161	Chrysophyta
Dinobryon sp.	53	79606	Chrysophyta
Dinobryon divergens	4	3448	Chrysophyta
Dinobryon sociale	83	101276	Chrysophyta
Dinobryon sertularia	4	4918	Chrysophyta
Pseudokephyrion sp.	231	10341	Chrysophyta
Ochromonas sp.	42	8991	Chrysophyta
Chrysococcus sp.	11	3652	Chrysophyta
Cryptomonas curvata	4	25200	Cryptophyta
Rhodomonas lacustris	27	2932	Cryptophyta
Anacystis cyanea	133	200	Cyanobacteria
Lyngbya limnetica	372	376	Cyanobacteria
Planktothrix sp.	95	5288	Cyanobacteria
Fragilaria crotonensis	4	1942	Diatom
Gomphonema intricatum	4	5508	Diatom
Gymnodinium cf. aeruginosa	27	249406	Dinoflagellate
Gymnodinium cf. lantzschii	15	22619	Dinoflagellate
Peridinium inconspicuum	8	14652	Dinoflagellate
Cosmarium sp.	4	2001	Green
Monoraphidium indicum	444	294154	Green
Oocystis parva	8	1798	Green
Pediastrum tetras	11	13590	Green
Scenedesmus dimorphus	11	972	Green
nanoflagellates	61	1837	Other.Flagellates
picoflagellates	156	524	Other.Flagellates

Figure 13: Raw data from 2022-04-20 EMS site 0200434

EMS ID: 0200434	Total Abundance (cells/mL):		2429	
Collection Date: 2022-08-11	Total Biovolume (μm³/mL):		725643	
Report.Name	Abundance (cells/mL)		Biovolume (µm³/mL)	High.Level.Taxa
Bitrichia chodatii		19		Chrysophyta
Chroomonas acuta		8	4322	Chrysophyta
Dinobryon bavaricum		4	8706	Chrysophyta
Dinobryon divergens		30	25858	Chrysophyta
Dinobryon sociale		34		Chrysophyta
Pseudokephyrion sp.		4	179	Chrysophyta
Ochromonas sp.		11	2355	Chrysophyta
Chrysococcus sp.		4	1328	Chrysophyta
Ochromonas sp. Small		11		Chrysophyta
Cryptomonas curvata		4	25200	Cryptophyta
Cryptomonas marssonii		11		Cryptophyta
Rhodomonas lacustris		144		Cryptophyta
Anabaena circinalis		224		Cyanobacteria
Anacystis cyanea		224		Cyanobacteria
Aphanocapsa elachista		474		Cyanobacteria
Apnanocapsa elachista Chroococcus limneticus		87	1024	Cyanobacteria
Chroococcus iimneticus Chroococcus turaidus		91		Cyanobacteria
		15		
Dactylococcopsis sp.		68		Cyanobacteria
Gloeocapsa punctata				Cyanobacteria
Lyngbya limnetica		247		Cyanobacteria
Achnanthidium minutissimum		19		Diatom
Amphora ovalis		8		Diatom
Asterionella formosa		11		Diatom
Brachysira cf. neoacuta		4	1.4.11	Diatom
Lindavia bodanica		8		Diatom
Lindavia ocellata		8		Diatom
Fragilaria crotonensis		38		Diatom
Gomphonema truncatum		4		Diatom
Navicula gregaria		4	1131	Diatom
Nitzschia minuta		4		Diatom
Nitzschia sp. small		4	2827	Diatom
Pinnularia viridis		4	2576	Diatom
Stauroneis gracilis		4	76265	Diatom
Ulnaria acus		4	4167	Diatom
Ulnaria ulna		4	21019	Diatom
Gymnodinium cf. aeruginosa		11	101610	Dinoflagellate
Peridinium inconspicuum		4		Dinoflagellate
Chodatella quadriseta		4		Green
Closteriopsis sp.		. 4		Green
Crucigenia quadrata		61		Green
Crucigenia rectangularis		106		Green
Didymocystis bicellularis		15		Green
Docystis parva		57		Green
Docystis palva Docystis solitaria		34		Green
Pediastrum boryanum		23		Green
Pediastrum boryanum Pseudopediastrum subgranul				Green
Scenedesmus bijuga		15		Green
Schroederia setigera		4		Green
Tetraedron minimum		11		Green
nanoflagellates		49		Other.Flagellate
picoflagellates		182	611	Other.Flagellate:

Figure 14: Raw data from 2022-08-11 EMS site 0200434

