Brohm Lake Phytoplankton Summary Report 2021-2022

Overview

Samples were collected from one site on Brohm Lake during 2021 and 2022 (Figure 1; Table 1). Algae were identified to the taxonomic level genus and grouped into broad alga types for analysis.

Table 1: Sample sites and dates sampled in 2021 and 2022

Sample Site (EMS#)	Dates
BROHM LAKE; MIDLAKE (1132490)	2021-04-01
	2021-08-31
	2022-03-29
	2022-08-17
	Total= 4 samples

Algal counts in the spring were lower than the summer (Figure 2). Diatom numbers were low in all samples but demonstrated a small rise in density in both summer samples; *Aulacoseira* and *Ulnaria* were the dominant genera.

Diatoms are integral to aquatic food webs because they are the foundation of the food web (jrobyn, 2019). Colony forming diatoms such as *Aulacoseira* can avoid grazing pressures by developing into large colonies, reducing their availability for zooplankton and microscopic invertebrates (Baker, 2012).

Figure 1: Aerial view of Brohm Lake

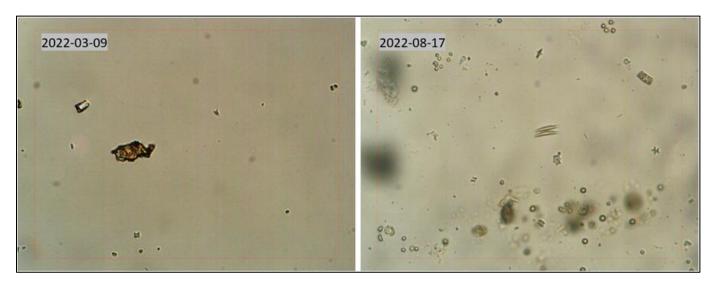


Figure 2: Typical algae density in the spring (Left) vs. summer (right)

Overview (continued)

All sites included moderate levels of micro-flagellates, specifically *Chrysococcus*, *Rhodomonas lacustris* and *Chrysochomulina* (Figure 3).

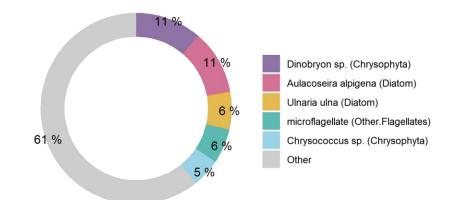


Figure 3: Dominant organisms from Brohm Lake; Midlake (1132490) as percent of total biovolume

Chrysophyta taxa are advantageous and disadvantageous in freshwater systems, depending on their context. Some Chrysophytes are known to produce odor chemicals described as fishy, while others eat bacteria and reduce negative odor compounds (Wehr et al., 2015).

One sample contained elevated densities of Chrysophyta (genus *Dinobryon;* Figure 3; Figure 4). *Dinobryon* blooms are associated with unpleasant fishy odors, and one species of *Dinobryon* is linked with toxins that can affect fish vitality (Cantrell & Long, 2013; Conrad, 2013). Sample collected on 2022-08-17 contained a small bloom of Synurophytes (genus *Synura*). When densities are high, *Synura* species cause water pigmentation and unpleasant odors through the production of secondary metabolites (Jo et al., 2016).

Figure 4: Dinobryon loricas (yellow arrows), EMS Site#1132490 collected on 2021-08-31

Algae – why should we care?

Algae blooms are becoming more frequent and severe worldwide due to excessive nutrient loading and warming summer lake temperatures. Diatom blooms can cause filter clogging, and odor issues.

Intense cyanobacteria blooms can threaten human safety and aquatic health through their toxicity. Illness related to cyanotoxins can include: liver, kidney, and nerve cell damage, cancer, skin and gut irritation, and neurological issues. Cyanotoxins, including microcystins, are now known to accumulate in the food chain (Lance et al. 2014). Fish from lakes with heavy cyanobacteria blooms can have higher toxin concentrations than the lake water (Greer et al. 2021) and consuming them can increase the risk of liver disease (Zhao et al., 2020).

Cyanobacterial Presence

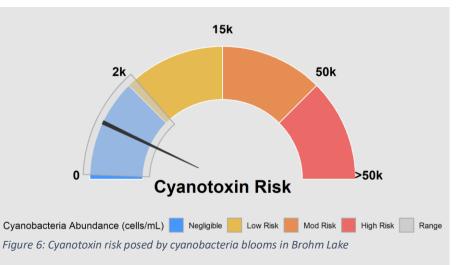
Summer samples demonstrated high concentrations of cyanobacteria. Dominant genera included Pseudoanabaena, Microcystis, and Chroococcus. (Figure 5).

Figure 5: cell abundance for dominant cyanobacteria genera on Brohm Lake

Pseudanabaena is associated with toxins and odor compounds. Microcystis is a well understood and predominantly toxic genus of cyanobacteria. Microcystis blooms also pose aesthetic threats to water systems because the granular green-hued particles accumulate near shore and resemble a thick green paint (EPA, 2022). Chroococcus identified in summer samples is associated with several cyanotoxins which represent risks to public health (Table 2). Illness related to cyanotoxins can include: liver, kidney, and nerve cell damage, cancer, skin and gut irritation, and neurological issues (Lance et al., 2014).

Table 2: Dominant aenera of	^r cvanobacteria on Brohm	Lake and their associated toxins

Genus	Maximum Abundance* (cells/mL)	Toxins Produced
Pseudanabaena	1791	Lyngbyatoxin LYN, Lipopolysaccharide LPS, Microcystin MC, Anatoxins (-a) ATX, BMAA, Taste and Odor
Chroococcus	1044	Microcystin MC, BMAA
Microcystis	710	Lyngbyatoxin LYN, Lipopolysaccharide LPS, Microcystin MC, Nodularins NOD, Anatoxins (-a) ATX, BMAA, Cyanopeptolins CPL,
Note: * = counted in sa	mplos	Anabaenopeptins APT


counted in samples Note:

Cyanobacterial Presence (Continued)

Dominant species of cyanobacteria identified in Brohm Lake are capable of producing cyanotoxins (Table 2).

Brohm Lake displayed cyanobacteria levels in the negligible-low risk category, with a mean cyanobacteria abundance of 1,131 cells/mL (Figure 6). Figure 6 exhibits the range of cyanobacterial abundance observed in Brohm Lake compared to alert levels defined by several authorities including the WHO and the EPA.

Cyanobacteria frequently dominate algal communities in total cell count, but because of their small cell size their biovolume is usually low relative to other types of algae. This is highlighted in Figure 7 where a single *Dinoflagellate* cell is an equivalent size to approximately 100 cyanobacteria cells.

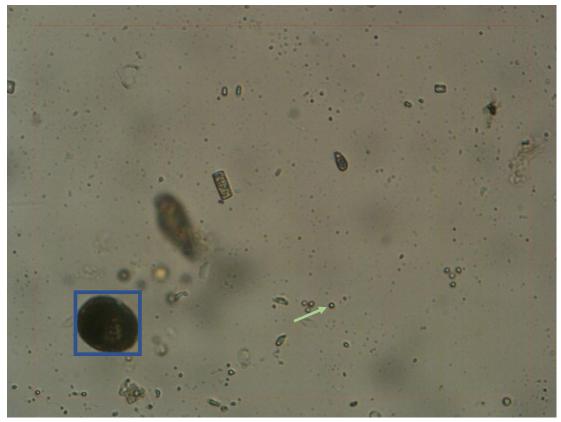


Figure 7: Size comparison of a Dinoflagellate cell (blue box) to an Anacystis cell (green arrow)

Species Composition

Algae samples were identified to the genus level and grouped into broad alga types for analysis. The figures below display total cell counts for each broad algae group alongside their biovolume. The difference between Figure 8 (cell abundance) and Figure 9 (biovolume) illuminates the difference between cell abundance and biovolume.

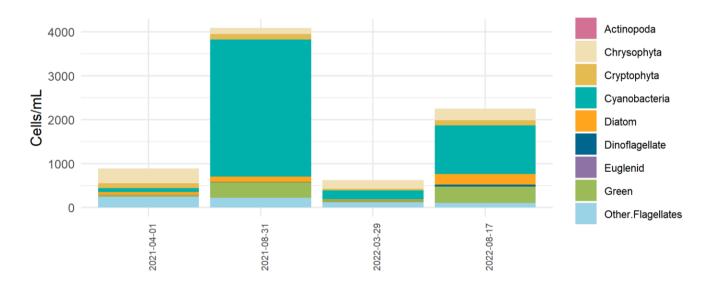


Figure 8: Cell abundance of high-level taxa groups on Brohm Lake

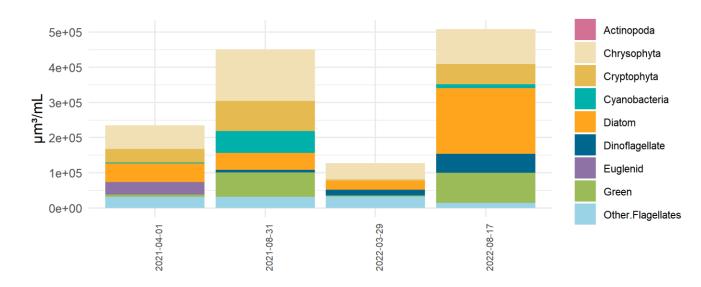


Figure 9: Biovolume of high-level taxa groups on Brohm Lake

References

Baker, A. L. et al. (2012). Phycokey -- an image based key to Algae (PS Protista), Cyanobacteria, and other aquatic objects. University of New Hampshire Center for Freshwater Biology. http://cfb.unh.edu/phycokey/phycokey.htm

Cantrell, R., & Long, B. (2013). *Dinobryon*. PBWorks. http://ohapbio12.pbworks.com/w/page/51731561/Dinobryon

- Conrad, J. (2013). *DINOBRYON, a Golden Alga*. Jim Conrad's Naturalist Newsletter. https://www.backyardnature.net/n/x/dinobryo.htm
- EPA. (2022, September). *Learn about Cyanobacteria and Cyanotoxins*. United States Environmental Protection Agency.
- Jo, B. Y., Kim, J. I., Škaloud, P., Siver, P. A., & Shin, W. (2016). Multigene phylogeny of Synura (Synurophyceae) and descriptions of four new species based on morphological and DNA evidence. *European Journal of Phycology*, *51*(4), 413–430. https://doi.org/10.1080/09670262.2016.1201700
- jrobyn. (2019). *How Diatoms Benefit a Body of Water BioNova®*. BioNova. https://bionovanaturalpools.com/howdiatoms-benefit-a-body-of-water/
- Lance, E., Petit, A., Sanchez, W., Paty, C., Gérard, C., & Bormans, M. (2014). Evidence of trophic transfer of microcystins from the gastropod Lymnaea stagnalis to the fish Gasterosteus aculeatus. *Harmful Algae*, 31, 9– 17. https://doi.org/10.1016/J.HAL.2013.09.006
- Wehr, J. D., Sheath, R. G., & Kociolek, P. (2015). Freshwater Algae of North America (Second). Elsevier Inc.
- Zhao, Y., Yan, Y., Xie, L., Wang, L., He, Y., Wan, X., & Xue, Q. (2020). Long-term environmental exposure to microcystins increases the risk of nonalcoholic fatty liver disease in humans: A combined fisher-based investigation and murine model study. *Environment International*, 138, 105648. https://doi.org/10.1016/J.ENVINT.2020.105648

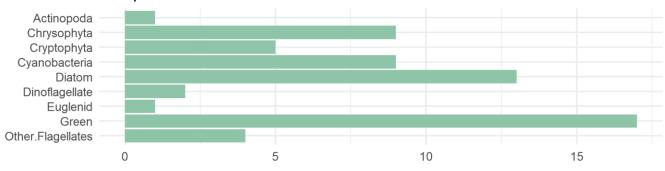
Report prepared by: Larratt Aquatic Consulting Ltd.

Stephanie Butt: Taxonomist, H. B.Sc., BIT.

Jamie Self: Senior Aquatic Biologist, R.P. Bio

Stephonis Built

m Self


Reviewed by:

Sara Knezevic: Field Biologist, B.Sc., BIT.

Appendix

Additional figures and raw data are listed below:

61 species identified at Brohm.

Figure 10: Identified species sorted into categories of higher-level taxa

EMS ID: 1132490	Total Abundance (cells/mL):		891		
Collection Date: 2021-04-01	Total Biovolume (μm³/mL):		245764		
Report.Name	Abundance (cells/mL)		Biovolume (µm³/mL)	High.Level.Taxa	ITIS Genus Number
Dinobryon sp.		8	12016	Chrysophyta	1515
Ochromonas sp.		65	13914	Chrysophyta	1455
Chrysochromulina sp.		152	5846	Chrysophyta	2160
Chroomonas sp.		23	5230	Chrysophyta	10613
Chrysococcus sp.		91	30214	Chrysophyta	1751
Dinobryopsis sp.		23	6178	Chrysophyta	1557
Cryptomonas sp.		15	27781	Cryptophyta	10635
Rhodomonas lacustris		95	10315	Cryptophyta	10663
Aphanizomenon flos-aquae		19	3164	Cyanobacteria	1191
Anacystis sp.		72	137	Cyanobacteria	609
Achnanthidium minutissimum		19	3604	Diatom	590864
Aulacoseira distans var. nivalis		27	5429	Diatom	590863
Nitzschia sp.		8	734	Diatom	5070
Ulnaria ulna		8	42038	Diatom	970000
Trachelomonas scabra		11	36493	Euglenid	9690
Tetraedron incus		27	3789	Green	5661
Scenedesmus sp.		8	1867	Green	6104
microflagellate		220	37015	Other.Flagellates	

Figure 11: Raw data from 2021-04-01 EMS site 1132490

EMS ID: 1132490	Total Abundance (cells/mL):	4090		
Collection Date: 2021-08-31	Total Biovolume (μm³/mL):	460284		
Report.Name	Abundance (cells/mL)	Biovolume (µm³/mL)	High.Level.Taxa	ITIS Genus Number
Dinobryon sp.	8	0 120160	Chrysophyta	1515
Mallomonas sp.		4 12097	Chrysophyta	1598
Chrysochromulina sp.	1	5 577	Chrysophyta	2160
Chrysococcus sp.	4	2 13945	Chrysophyta	1751
Dinobryopsis sp.		4 1074	Chrysophyta	1557
Cryptomonas sp.	1	5 27781	Cryptophyta	10635
Cryptomonas ovata		8 17407	Cryptophyta	10635
Cryptomonas marssonii	1	5 30628	Cryptophyta	10635
Rhodomonas lacustris	8	7 9446	Cryptophyta	10663
Anacystis sp.	10	6 202	Cyanobacteria	609
Chroococcus minutus	104	4 39416	Cyanobacteria	654
Chroococcus dispersus	1	5 212	Cyanobacteria	654
Pseudanabaena sp.	179	1 19956	Cyanobacteria	1175
Planktolyngbya sp.	t	5 186	Cyanobacteria	
Snowella lacustris	15	2 1667	Cyanobacteria	
Achnanthidium minutissimum		4 759	Diatom	590864
Aulacoseira alpigena	6	1 33080	Diatom	590863
Cyclotella sp.	4	2 11150	Diatom	2439
Cymbella sp.		4 6773	Diatom	4795
Platessa conspicua	1	1 706	Diatom	
Peridinium inconspicuum		4 7326	Dinoflagellate	10212
Crucigenia fenestrata		3 12157	Green	6225
Crucigenia tetrapedia	6	1 7472	Green	6225
Elakatothrix gelatinosa	8	3 14660	Green	9412
Oocystis sp.	1	5 283	Green	5827
Schroederia setigera		4 1018	Green	
Tetraedron caudatum	3	0 4210	Green	5661
Tetraedron lunula	1	5 2105	Green	5661
Tetraedron minimum	1	5 1845	Green	5661
Spondylosium planum	3	0 14043	Green	8468
Scenedesmus sp.	3	4 7935	Green	6104
Scenedesmus serratus	1	5 3501	Green	6104
microflagellate	21	2 35669	Other.Flagellates	
Kephyrion ampulla		4 838	Other.Flagellates	1764

Figure 12: Raw data from 2021-08-31 EMS site 1132490

EMS ID: 1132490	Total Abundance (cells/mL):	625		
Collection Date: 2022-0	3 Total Biovolume (μm³/mL):	127269		
Report.Name	Abundance (cells/mL)	Biovolume (μm³/mL)	High.Level.Taxa	ITIS Genus Number
Dinobryopsis sp.	15	4029	Chrysophyta	1557
Chrysochromulina sp.	102	3923	Chrysophyta	2160
Chroomonas sp.	19	4320	Chrysophyta	10613
Chrysococcus sp.	53	17597	Chrysophyta	1751
Dinobryon sp.	11	16522	Chrysophyta	1515
Rhodomonas lacustris	38	4126	Cryptophyta	10663
Anacystis sp.	205	390	Cyanobacteria	609
Achnanthidium sp.	4	759	Diatom	590864
UID centric diatom	4	673	Diatom	
Melosira sp.	4	4562	Diatom	2290
Nitzschia sp.	4	367	Diatom	5070
Aulacoseira sp.	11	18102	Diatom	590863
Glenodinium sp.	8	15984	Dinoflagellate	10174
Tetraedron incus	11	1544	Green	5661
Crucigenia tetrapedia	15	1838	Green	6225
microflagellates	121	32533	Other.Flagellates	

Figure 13: Raw data from 2022-03-29 EMS site 1132490

EMS ID: 1132490	Total Abundance (cells/mL):	2251		
Collection Date: 2022-08-17	Total Biovolume (μm³/mL):	513953		
Report.Name	Abundance (cells/mL)	Biovolume (µm³/mL)	High.Level.Taxa	ITIS Genus Number
Actinophryida		673	Actinopoda	
Chrysococcus sp.	8	2656	Chrysophyta	1751
Chrysochromulina sp.	42	1615	Chrysophyta	2160
Dinobryon spp.	30	47594	Chrysophyta	1515
Mallomonas sp.	4	12097	Chrysophyta	1598
Ochromonas sp.	15	3211	Chrysophyta	1455
Dinobryopsis sp.	23	6178	Chrysophyta	1557
Synura sp.	140	25143	Chrysophyta	1655
Cryptomonas sp.			Cryptophyta	10635
Cryptomonas erosa	23	40753	Cryptophyta	10635
Rhodomonas lacustris	91	. 9881	Cryptophyta	10663
Aphanizomenon flos-aquae	11	. 1832	Cyanobacteria	1191
Chroococcus sp.	30	1005	Cyanobacteria	654
Gloeocapsa punctata	353	1479	Cyanobacteria	682
Microcystis sp.	710	5809	Cyanobacteria	747
Asterionella formosa	4	2785	Diatom	3116
Aulacoseira alpigena	212	114965	Diatom	590863
Epithemia adnata	8	26389	Diatom	5005
Platessa conspicua	8	377	Diatom	
Ulnaria ulna	8	42038	Diatom	970000
Parvodinium sp.	23	12681	Dinoflagellate	
Glenodinium sp.	15	29971	Dinoflagellate	10174
Peridinium inconspicuum	8		Dinoflagellate	10212
Crucigenia fenestrata	38	8716	Green	6225
Crucigenia tetrapedia	87	10658	Green	6225
Elakatothrix sp.	8	1536	Green	9412
Monoraphidium minutum	38	25175	Green	5990
Oocystis sp.	11	. 207	Green	5827
Tetraedron minimum	27	3321	Green	5661
Tetraedron caudatum	11	. 1544	Green	5661
Tetraedron incus	57	7999	Green	5661
Quadrigula closteroides	19	5558	Green	5938
Didymocystis bicellularis	68	18319	Green	55858
Scenedesmus aculeolatus	11	. 2567	Green	6104
microflagellate	102	17161	Other.Flagellates	

Figure 14: Raw data from 2022-08-17 EMS site 1132490

