Bainbridge Lake Phytoplankton Summary Report 2021-2022

Overview

Samples were collected from one site on Bainbridge Lake during 2021 and 2022 (Figure 1; Table 1). Algae were identified to the taxonomic level genus and grouped into broad alga types for analysis.

Table 1: Sample sites and dates sampled in 2021 and 2022

Sample Site (EMS#)	Dates
BAINBRIDGE LAKE; DEEP STN (E275463)	2021-03-11
	2021-09-02
	2022-03-08
	2022-08-31
	Total= 4 samples

Samples contained moderate densities of micro-flagellates and low densities of green algae, dinoflagellates, and diatoms.

Samples collected in 2022 had low to moderate concentrations of Chrysophyta (genus *Dinobryon*; Figure 2).

High concentrations of *Dinobryon* species can result in unpleasant fishy odors, and one species of *Dinobryon* is linked with toxins that can affect fish vitality (Cantrell & Long, 2013; Conrad, 2013).

Figure 1: Aerial view of Bainbridge Lake

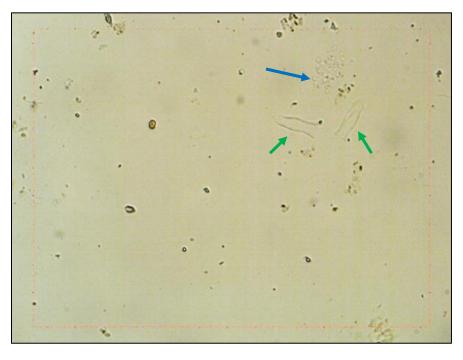


Figure 2: 400x magnification of EMS #E275463 collected on 2022-08-31. This sample contained Dinobryon (green arrow) and Anacystis (blue arrow)

Overview (continued)

Chrysophyta dominated biovolumes in Bainbridge Lake (Figure 3). *Dinobryon* was the dominate genus observed but flagellates where also frequently observed; *Cryptomonas*, *Mallomonas* and *Chromulina* (Figure 4).

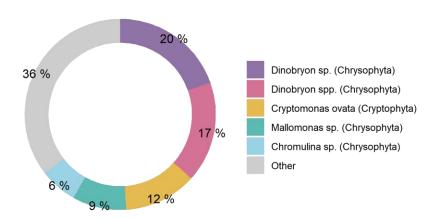


Figure 3: Dominant organisms from Bainbridge Lake; Deep Stn (E275463) as percent of total biovolume

Chrysophyta are advantageous and disadvantageous in freshwater systems, depending on their context. Some Chrysophytes are known to produce odor compounds described as fishy, while others eat bacteria and reduce negative odor compounds (Wehr et al., 2015). Cryptomonads are favored elements of freshwater food chains and are selectively consumed by several zooplankton, ciliates, and dinoflagellates (Wehr et al., 2015).

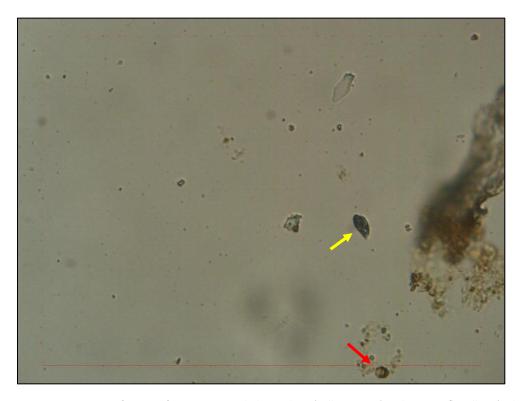


Figure 4: 400x magnification of a Cryptomonad Chrysophyte (yellow arrow) and a micro-flagellate (red

Algae – why should we care?

Algae blooms are becoming more frequent and severe worldwide due to excessive nutrient loading and warming summer lake temperatures. Diatom blooms can cause filter clogging, and odor issues.

Intense cyanobacteria blooms can threaten human safety and aquatic health through their toxicity. Illness related to cyanotoxins can include: liver, kidney, and nerve cell damage, cancer, skin and gut irritation, and neurological issues. Cyanotoxins, including microcystins, are now known to accumulate in the food chain (Lance et al. 2014). Fish from lakes with heavy cyanobacteria blooms can have higher toxin concentrations than the lake water (Greer et al. 2021) and consuming them can increase the risk of liver disease (Zhao et al., 2020).

Cyanobacterial Presence

Samples demonstrated moderate cyanobacteria densities; dominant genera included *Anacystis, Aphanocapsa,* and *Anabaena* (Figure 5).

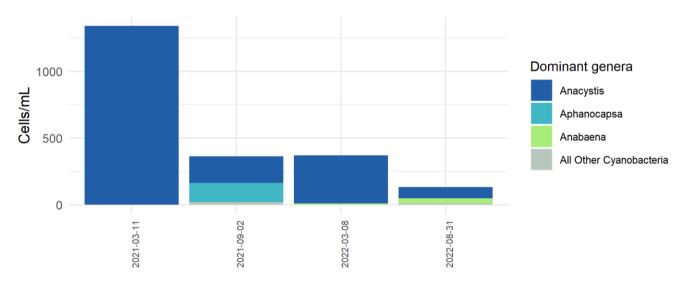


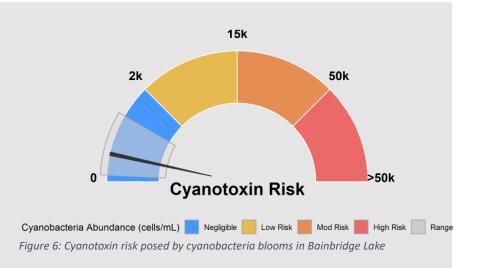
Figure 5: cell abundance for dominant cyanobacteria genera on Bainbridge Lake

During blooms, species of *Anabaena* produce both negative odor/taste compounds and toxic secondary metabolites. *Anabaena* blooms can quickly accumulate, produce odor compounds, and color water systems (EPA, 2022).

Other dominant cyanobacteria identified in the summer samples are also associated with several cyanotoxins that represent risk to public health (Table 2). Illness related to cyanotoxins can include: liver, kidney, and nerve cell damage, cancer, skin and gut irritation, and neurological issues (Lance et al., 2014).

Table 2: Dominant genera of cyanobacteria on Bainbridge Lake and their associated toxins

Genus	Maximum Abundance* (cells/mL)	Toxins Produced
Anacystis	1343	Lyngbyatoxin LYN, Lipopolysaccharide LPS, Microcystin MC, Nodularins NOD, Anatoxins (-a) ATX, BMAA, Cyanopeptolins CPL, Anabaenopeptins APT
Aphanocapsa	144	Lyngbyatoxin LYN, Lipopolysaccharide LPS, Microcystin MC, BMAA
Anabaena	34	Lyngbyatoxin LYN, Apoptogen Toxin (ApopTX), Lipopolysaccharide LPS, Cylindospermopsin CYN, Microcystin MC, Anatoxins (-a) ATX, Saxitoxins SAX neosaxitoxin NEO, NA, BMAA, Cyanopeptolins CPL, Anabaenopeptins APT, Taste and Odor


Note: * = counted in samples

Cyanobacterial Presence (Continued)

Dominant species of cyanobacteria identified in Bainbrige Lake can produce cyanotoxins (Table 2).

Bainbridge Lake displayed cyanobacteria levels in the negligible risk category, with a mean cyanobacteria abundance of 289 cells/mL (Figure 6). Figure 6 exhibits the range of cyanobacterial abundance observed in Bainbridge Lake compared to alert levels defined by several authorities including the WHO and the EPA.

Cyanobacteria frequently dominate algal communities in total cell count, but because of their small cell size their biovolume is usually low relative to the other types of algae present. This is highlighted in Figure 7 where a single *Dinobryon* cell is an equivalent size to approximately 50 cyanobacteria cells.

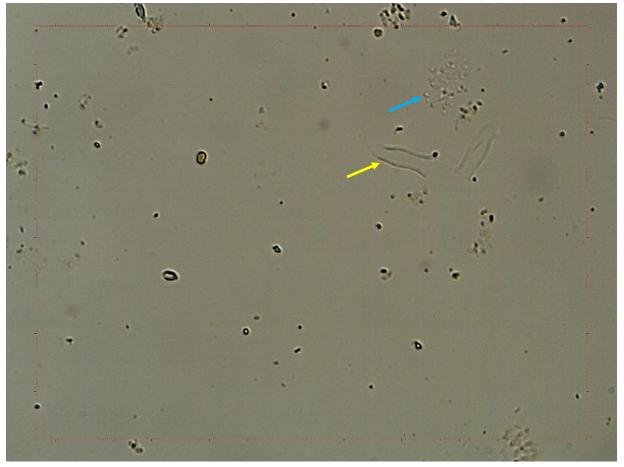


Figure 7: Size comparison of Dinobryon (yellow arrow) to Anacystis cell (blue arrow)

Species Composition

Algae samples were identified to the genus level and grouped into broad alga types for analysis. The figures below display total cell counts for each broad algae group alongside their biovolume. The difference between Figure 8 (cell abundance) and Figure 9 (biovolume) illuminates the difference between cell abundance and biovolume.

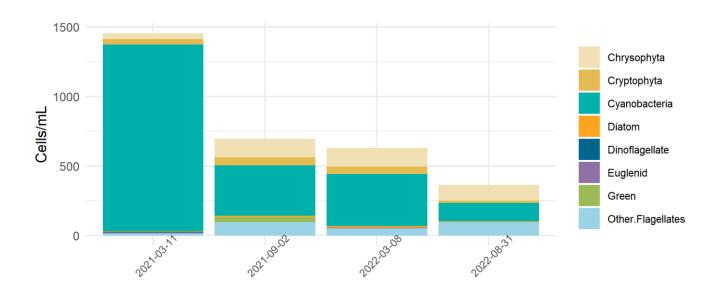


Figure 8: Cell abundance of high-level taxa groups on Bainbridge Lake

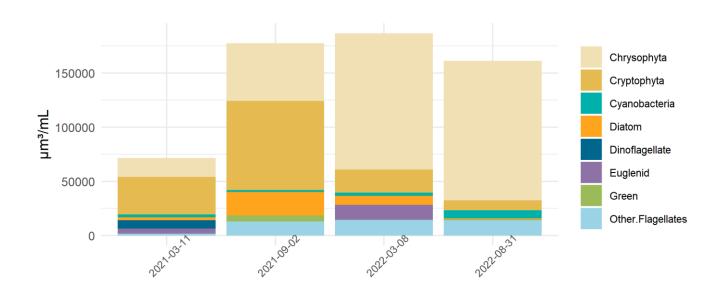


Figure 9: Biovolume of high-level taxa groups on Bainbridge Lake

References

- Cantrell, R., & Long, B. (2013). Dinobryon. PBWorks. http://ohapbio12.pbworks.com/w/page/51731561/Dinobryon
- Conrad, J. (2013). *DINOBRYON, a Golden Alga*. Jim Conrad's Naturalist Newsletter. https://www.backyardnature.net/n/x/dinobryo.htm
- EPA. (2022, September). *Learn about Cyanobacteria and Cyanotoxins*. United States Environmental Protection Agency.
- Lance, E., Petit, A., Sanchez, W., Paty, C., Gérard, C., & Bormans, M. (2014). Evidence of trophic transfer of microcystins from the gastropod Lymnaea stagnalis to the fish Gasterosteus aculeatus. *Harmful Algae*, *31*, 9–17. https://doi.org/10.1016/J.HAL.2013.09.006
- Wehr, J. D., Sheath, R. G., & Kociolek, P. (2015). Freshwater Algae of North America (Second). Elsevier Inc.
- Zhao, Y., Yan, Y., Xie, L., Wang, L., He, Y., Wan, X., & Xue, Q. (2020). Long-term environmental exposure to microcystins increases the risk of nonalcoholic fatty liver disease in humans: A combined fisher-based investigation and murine model study. *Environment International*, *138*, 105648. https://doi.org/10.1016/J.ENVINT.2020.105648

Report prepared by: Larratt Aquatic Consulting Ltd.

Stephanie Butt: Taxonomist, H. B.Sc., BIT.

Stephono Butt

Jamie Self: Senior Aquatic Biologist, R.P. Bio

Reviewed by:

Sara Knezevic: Field Biologist, B.Sc., BIT.

Appendix

Additional figures and raw data are listed below:

34 species identified at Bainbridge.



Figure 10: Identified species sorted into categories of higher-level taxa

EMS ID: E275463	Total Abundance (cells/mL):		1455		
Collection Date: 2021-03	Total Biovolume (μm³/mL):		72862		
Report.Name	Abundance (cells/mL)		Biovolume (μm³/mL)	High.Level.Taxa	ITIS Genus Number
Dinobryon sp.		8	12016	Chrysophyta	1515
Ochromonas sp.		15	3211	Chrysophyta	1455
Chrysochromulina sp.		11	423	Chrysophyta	2160
Chroomonas sp.		8	1819	Chrysophyta	10613
Dinobryopsis sp.		4	1074	Chrysophyta	1557
Cryptomonas sp.		8	14816	Cryptophyta	10635
Cryptomonas ovata		8	17407	Cryptophyta	10635
Rhodomonas lacustris		23	2497	Cryptophyta	10663
Anacystis sp.		1343	2555	Cyanobacteria	609
Asterionella formosa		4	2785	Diatom	3116
Gymnodinium ordinatur		4	7800	Dinoflagellate	10031
Euglena sp.		8	4608	Euglenid	9620
microflagellate		11	1851	Other.Flagellates	

Figure 11: Raw data from 2021-03-11 EMS site E275463

Collection Date: 2021-09-02+	Total Abundance (cells/mL):	696		
EMS ID: E275463	Total Biovolume (μm³/mL):	181334		
Report.Name	Abundance (cells/mL)	Biovolume (μm³/mL)	High.Level.Taxa	ITIS Genus Number
Dinobryon sp.		12016	Chrysophyta	1515
Mallomonas sp.		24194	Chrysophyta	1598
Ochromonas sp.	5	12202	Chrysophyta	1455
Dinobryopsis sp.		2149	Chrysophyta	1557
Chrysochromulina sp.	4:	1885	Chrysophyta	2160
Chroomonas sp.		1819	Chrysophyta	10613
Chrysococcus sp.		1328	Chrysophyta	1751
Cryptomonas sp.		14816	Cryptophyta	10635
Cryptomonas ovata	30	65276	Cryptophyta	10635
Rhodomonas lacustris	19	2063	Cryptophyta	10663
Aphanocapsa delicatissima	14	1 603	Cyanobacteria	625
Anacystis sp.	20	1 382	Cyanobacteria	609
Gloeothece sp.		524	Cyanobacteria	703
Planktolyngbya sp.	1	137	Cyanobacteria	
Diatoma sp.		4862	Diatom	3214
Frustulia rhomboides		16990	Diatom	4564
Elakatothrix gelatinosa	30	5299	Green	9412
Oocystis sp.		151	Green	5827
microflagellate	8	14638	Other.Flagellates	

Figure 12: Raw data from 2021-09-02 EMS site E275463

EMS ID: E275463	Total Abundance (cells/mL):	637		
Collection Date: 2022-03-0	Total Biovolume (μm³/mL):	188650		
Report.Name	Abundance (cells/mL)	Biovolume (μm³/mL)	High.Level.Taxa	ITIS Genus Number
Chroomonas sp.	4	909	Chrysophyta	10613
Chrysochromulina sp.	27	1038	Chrysophyta	2160
Chromulina sp.	15	26507	Chrysophyta	1717
Ochromonas sp.	27	5780	Chrysophyta	1455
Dinobryon sp.	61	91622	Chrysophyta	1515
Cryptomonas marssonii	8	16335	Cryptophyta	10635
Rhodomonas lacustris	46	4995	Cryptophyta	10663
Anacystis sp.	209	398	Cyanobacteria	609
Anacystis delicatissima	152	332	Cyanobacteria	609
Anabaena flos-aquae	11	2141	Cyanobacteria	1100
Asterionella formosa	4	2785	Diatom	3116
Cyclotella sp.	4	1062	Diatom	2439
Platessa sp.	8	1947	Diatom	
Ulnaria sp.	4	4412	Diatom	970000
Trachelomonas sp.	4	14137	Euglenid	9690
microflagellates	53	14250	Other.Flagellates	

Figure 13: Raw data from 2022-03-08 EMS site E275463

EMS ID: E275463	Total Abundance (cells/mL):		368		
Collection Date: 2022-08	Total Biovolume (µm³/mL):		165399		
Report.Name	Abundance (cells/mL)		Biovolume (μm³/mL)	High.Level.Taxa	ITIS Genus Number
Chrysochromulina sp.		15	577	Chrysophyta	2160
Chromulina sp.		4	7069	Chrysophyta	1717
Dinobryon spp.		57	90429	Chrysophyta	1515
Mallomonas sp.		8	24194	Chrysophyta	1598
Ochromonas sp.		30	6422	Chrysophyta	1455
Cryptomonas marssonii		4	8167	Cryptophyta	10635
Rhodomonas lacustris		11	1194	Cryptophyta	10663
Anabaena sp.		4	300	Cyanobacteria	1100
Anabaena flos-aquae		34	6617	Cyanobacteria	1100
Anacystis sp.		83	158	Cyanobacteria	609
Gloeocapsa aeruginosa		11	156	Cyanobacteria	682
Cyclotella sp.		4	1062	Diatom	2439
Parvodinium sp.		4	2205	Dinoflagellate	
Sphaerocystis sp.		4	865	Green	9169
microflagellate		95	15984	Other.Flagellates	

Figure 14: Raw data from 2022-08-31 EMS site E275463

