Protocol for Fish Passage Determination of Closed Bottom Structures

- Ministry of Forests
- Integrated Land Management Bureau
- Department of Fisheries and Oceans
- Council of Forest Industries

May, 2008

Why did the fish cross the Road?

Overall Process							
Introduction	Washington State						
	State	8% - 2,700 culvert barriers					
	Private	64% - 21,460 culvert barriers					
	Federal	14% - 4,600 culverts barriers					
	County, Municipal	14% - 4,600 culverts barriers	Ó				
	TOTAL	33,000 culvert barriers (plus 6,000 dams)					
		$\mathbf{O}(\mathbf{C})$	WDFW, 2001				

Overall Pro	Decess Decess									
Barrier Determination										
Risk	Embedded*	value	Outlet drop	value	Slope	value	SWR	value	Length	value
low	> 30 cm. or > 20% of Diameter and continuous	01	< 15	0	< 1	0	< 1.0	0	< 15	0
mod	< 30 cm. or 20% of Diameter but continuous	5 ²	15 - 30	5	1 - 3	5	1.0 - 1.3	3	15 – 30	3
high	No embeddment or discontinuous	10	> 30	10	> 3	10	> 1.3	6	> 30	6
¹ Pro char ² A o is at	operly embedde nnel. No further culvert that is e greater risk of	ed culv consid mbedd being	erts are deration ed less a barrie	consid of oth than 3 r to fisl	dered <u>p</u> er surr 0 cm or h passa	assabl ogates · 20% o ige	<u>e</u> as per is requir f the cul	natura [.] ed. vert dia	l stream ameter	

Overall F	Process								
Analys	is Ph	ase							
, , , , , , , , , , , , , , , , , , ,									
	Step	3: Cost Ben	efit An	alysis					
Site No	HGI	Proposed	Span (m)	Cost Estimate	Proposed	Cost	Cost Benefit	Cost	
		Solution 1	• • • •	1 (\$K)	Solution 2	Estimate 2	1	Benefit 2	
						(\$K)			
18	32	BW	19	15			2.13		
9	13.4	EM	21	10			1.34		
4	45	SB	36	250			0.18		
17	16	SB	18	120	2000 x 22 SS	65	0.13	0.25	
1	16.8	SB	21	140	3000 x 25 SS	85	0.12	0.20	
7	2.1	CB	12	80	1600 x 25 SS	70	0.03	0.03	
6	2.7	SB	24	135	2000 x 25 SS	75	0.02	0.04	
5	1.7	SB	21	120	3200 x 20 SS	80	0.01	0.02	6
		booloustoring							
		Dackwatering							
	SD	stool bridge							
	CP	steer bridge							
	60	stroombod simul	ation						
	33	streambed simul	auon						

