
Nickel Water Quality Guideline for the Protection of Freshwater Aquatic Life

B.C. Nickel Biotic Ligand Model (BLM) User's Manual

Ministry of Water, Land, and Resource Stewardship Watershed Sustainability & Security Branch

The Water Quality Guideline Series is a collection of British Columbia (B.C.) Ministry of Water, Land, and Resource Stewardship water quality guidelines. Water quality guidelines are developed to protect a variety of water values and uses: aquatic life, drinking water sources, recreation, livestock watering, irrigation, and wildlife. The Water Quality Guideline Series focuses on publishing water quality guideline technical reports and guideline summaries using the best available science to aid in the management of B.C.'s water resources. For additional information on B.C.'s approved water quality parameter specific guidelines, visit:

http://www2.gov.B.C.ca/gov/content/environment/air-land-water/water/waterquality/water-quality-guidelines/approved-water-quality-guidelines

Document citation:

B.C. Ministry of Water, Land, and Resources Stewardship 2024. Nickel Water Quality Guideline for the Protection of Freshwater Aquatic Life - B.C. Ni BLM User's Manual. Water Quality Guideline Series, WQG-22-2. Prov. B.C., Victoria B.C.

© Copyright 2024

Cover Photograph:

Location: Brooks Falls, B.C.

Acknowledgements

The Ministry of Water, Land, and Resource Stewardship (WLRS) would like to thank Robert Santore and Kelly Croteau of Windward Environmental LLC. for their technical expertise and developing the B.C. Ni BLM software.

CONTENTS

1.	INTRODUCTION	5
2.	SETUP AND INSTALLATION	
	2.1. SYSTEM REQUIREMENTS	
	2.2. INSTALLING THE B.C. NI BLM SOFTWARE	5
3.	STARTING THE APPLICATION	6
4.	RUNNING THE APPLICATION	6
	4.1. Quick Start Guide	6
	4.2. Description of Interface	7
	4.3. Menu Bar	7
	4.3.1. File	7
	4.3.2. Edit	8
	4.3.3. Options	8
	4.3.4. Inputs	9
	4.3.5. Help	10
	4.3.6. Language	10
	4.4. Tool Bar	10
	4.4.1. Standard File Operations	10
	4.4.2. Standard Edit Operations	10
	4.4.3. Check Inputs	11
	4.4.4. Run BLM	12
	4.5. Data File Description	12
	Item Description	13
	4.6. Site Chemistry Input Tabs	13
	4.6.1. Site Chemistry	13
	4.6.2. Simplified Site Chemistry	14
5.	EXAMPLE APPLICATION	15
6.	DESCRIPTION OF OUTPUT FILES	15
7.	UNINSTALLING THE B.C. NI BLM	18

LIST OF TABLES

Table 4.1. Ranges of values for BLM input parameters.	
Table 4.2. Water chemistry factors necessary to run the B.C. Ni BLM, their unit	
in calculation of WQGs	

LIST OF FIGURES

Figure 2.1. Installation directory screen for the B.C. Ni BLM software setup program	6
Figure 3.1. Opening screen for the B.C. Ni BLM application	6
Figure 4.1. Opening screen for the B.C. Ni BLM application	7
Figure 4.2. Snapshot of "File" menu item	8
Figure 4.3. Snapshot of <i>Edit</i> menu item	8
Figure 4.4. Snapshot of Options menu item.	9
Figure 4.5. Snapshot of <i>Inputs</i> menu item	
Figure 4.6. Snapshot of Help menu item.	
Figure 4.7. Tool Bar menu icons	
Figure 4.8. Example of an "Input Check Report" generated by the Check Inputs function	
Figure 4.9. Example of the notification window shown at completion of B.C. Ni BLM run	12
Figure 4.10. Snapshot of B.C. Ni BLM application	12
Figure 4.11. Columns for data input in the B.C. Ni BLM.	
Figure 4.12. Snapshot of Simplified Site Chemistry inputs and ion ratios.	14
Figure 4.13. Snapshot of Set Inorganic Carbon menu item.	15
Figure 6.1. Example of a text file produced by B.C. Ni BLM.	
Figure 6.2. Example of the B.C. Ni BLM SSD output file	
Figure 6.3. Example of the Microsoft Excel [®] file (*.output) produced by B.C. Ni BLM.	18
Figure 6.4. Example of the Microsoft Excel [®] file (*.ssdnormalized) produced by B.C. Ni BLM	18

1. INTRODUCTION

The British Columbia (B.C.) Ministry of Water, Land and Resource Stewardship (WLRS) Biotic Ligand Model (BLM) software (Version 0.09) automates the calculation of long-term chronic and short-term acute water quality guidelines (WQG) for nickel (Ni) for the protection of aquatic life. A full technical description of the toxicity data set and derivation procedure can be found in the *Nickel Water Quality Guideline for the Protection of Freshwater Aquatic Life - Technical Report* available on the <u>approved WQG website</u>. The software uses two separate toxicity databases for chronic and acute Ni exposures for a diverse mixture of aquatic organisms, including plants, invertebrates, fish, and amphibians. The B.C. Ni BLM software is used to normalize the toxicity database to site-specific water chemistry, which allows for consideration of the effects of certain water quality information to calculate guideline values. The user can choose to run either the full BLM model that requires 11 input parameters or the simplified model that requires 4 input parameters and estimates the others.

The <u>B.C. Ni BLM</u> software is based on the BLM software created by Windward Environmental (version 3.60.2.50). Note that BLM data files created using the older version of the BLM Windows[®] Interface can be used directly with B.C. Ni BLM.

This document describes the requirements for running the B.C. Ni BLM software, details the data requirements, and provides a step-by-step guide to using the various features using an example BLM data file.

2. SETUP AND INSTALLATION

2.1. SYSTEM REQUIREMENTS

The B.C. Ni BLM software is designed for use with Microsoft Windows[®]. The minimum requirements and the recommended system configurations are described below.

- Minimum system requirements
 - ✓ PC-compatible, Intel Pentium 233 MHz
 - ✓ Microsoft Windows[®] 95/98/2000/ME/XP/Vista/Win7
 - ✓ 32 MB RAM
 - ✓ 30 MB free disk space
- Recommended system configuration
 - ✓ Intel Pentium 3,500 MHz
 - ✓ 64 MB RAM
 - ✓ 100 MB free disk space

Even though the B.C. Ni BLM software can be run on a system with the specified minimum requirements, the recommended system configuration or faster is recommended to minimize computation time.

2.2. INSTALLING THE B.C. NI BLM SOFTWARE

Install the B.C. Ni BLM software from the setup file "B.C. Ni BLM software.exe" and follow the prompts. The setup program will guide the user through a straightforward installation process, querying the user for information on where to install the necessary files (Figure 2.1). During the installation, a shortcut to the B.C. Ni BLM application will be added to the 'Programs' sub-menu within the 'Start' menu on the Microsoft Windows[®] desktop. In addition, the B.C. Ni BLM application will also be registered in the system registry so that the BLM data files created by the user can be accessed directly by just double-clicking on the file name.

Setup - British Columbia N	Welcome to th		olumbi	×
	Nickel BLM Se This will install British Colu your computer. It is recommended that yo continuing. Click Next to continue, or (umbia Nickel BLM vers u close all other appli		
		Next >	Can	

Figure 2.1. Installation directory screen for the B.C. Ni BLM software setup program.

3. STARTING THE APPLICATION

To start the B.C. Ni BLM, select 'Start ----> Programs ----> British Columbia Nickel BLM ----> British Columbia Nickel BLM' on the Microsoft Windows[®] desktop. The user will be presented with the screen shown in Figure 3.1., which contains the user input areas and the various functions of the B.C. Ni BLM.

D	🛩 🖬 📭 🐰	🛍 🗸 🕺 👘						
escri	ption:							Long-te
ite Cl	nemistry Simplified	Site Chemistry						
	Site Name	Sample Name	Temp.	pН	Ni	DOC	Hardness ^	Ion Ratios Ion ratios are British Columb
			С		ug/L	mg C/L	mg/L CaCO:	median values (default).
				_				Ca: Mg 3.33
	_							Ca:Na 3.30
-								Ca : K 23.51
	-							SO4 : CI 3.86
,								
1								Restore Default Values
•								
0								Select Ion Ratios
1								*lon ratios are molar ratios
2				_				
.3 .4	-			_				
.4 5								

Figure 3.1. Opening screen for the B.C. Ni BLM application.

Existing BLM data files created using other versions of the BLM Windows[®] Interface can be opened directly by double-clicking on the file name through a file system manager, such as Microsoft Windows[®] Explorer.

4. RUNNING THE APPLICATION

The following subsections describe the various functions and features available in the B.C. Ni BLM Windows[®] Interface and its various predictive capabilities.

4.1. Quick Start Guide

Steps 1-7 provide an overview of the user's manual for quick application of the B.C. Ni BLM. More details are provided in the following subsections.

Step 1: Enter water chemistry data or upload a saved '.blm' or '.blme' file (see sections 4.6 and 4.3.1);

Step 2: Save file on the desired destination on your computer (see Section 4.3.1);

Step 3: Select chronic/acute database (see Section 4.3.4);

Step 4: Step 5: Select run (see Section 4.4.4);

Step 5: Open the output directory suggested by the software (see Section 4.4.4);

Step 6: Obtain the acute/chronic WQG from the '.txt' file produced by the software (see Section 6).

4.2. Description of Interface

Figure 4.1 shows the B.C. Ni BLM application. The interface provides an easy-to-use editor to construct input files for the B.C. Ni BLM containing site-specific water chemistry data, checks and validates user input data to ensure the values entered for any given parameter are within the range for which the B.C. Ni BLM has been calibrated, and runs the B.C. Ni BLM to calculate WQGs. The interface window is divided into four areas based on their functionality. Each of these is described in the following subsections.

	dit Options Inp	1.	Languag	e						
	ition:	G∕	1							Long-te
ite Ch	emistry Simplified Sil	te Chemistry	1							
	Site Name	Sample N	lame	Temp.	pH	Ni	DOC	Hardness ^		re British Columb
Site	e Chemistry Input	Tabs		С		ug/L	mg C/L	mg/L CaCO:		re British Columb /alues (default).
	1				_				Ca:Mg	3.33
					_				Ca : Na	3.30
									Ca : K	23.51
									S04 : CI	3.86
									504.0	0.00
<u> </u>								_		
3	-			_	_		_		Restore	Default Values
0	-			-	_	-			Select	Ion Ratios
1									10.000.00	e molar ratios
2										
13 14					_					

Figure 4.1. Opening screen for the B.C. Ni BLM application.

4.3. Menu Bar

The Menu Bar located at the top of the interface window provides the user with a range of functions and features described in the following sections.

4.3.1. File

The *File* menu (Figure 4.2) includes basic file management utilities to: create a new BLM data file (*New*); open an existing BLM data file (*Open...*); save a BLM data file (*Save*); and save a BLM data file under a different name or in a new location (*Save as...*). Shortcut keys (shown to the right of each item) are also available for the different functions in this menu item. Note that the B.C. Ni BLM data files created by the interface application are given a '.blm' or 'blme' extension for full or simplified chemistry, respectively. Clicking the 'Open' icon while in the full or simplified site chemistry tabs will filter for files with the extension of '.blm' or '.blme', respectively.

File	Edit	Options	Inputs	Help	Language	
	New		Ct	rl+N		
	Open		Ct	rl+O		
	Save		Ct	rl+S		
	Save a	35	Ct	rl+A		
	Run B	atches			le Name	·
	Quit		Ct	rl+Q		
	<prev< th=""><th>ious files></th><th></th><th></th><th></th><th>_</th></prev<>	ious files>				_
Z					1	
3						

Figure 4.2. Snapshot of "File" menu item.

BLM data files can also be opened directly by double-clicking on the BLM data file in a file system manager, such as Microsoft Windows[®] Explorer. This avoids having to first start the application and then navigate through the file menu to locate the BLM data file of interest.

The *Run Batches...*function can be used to run several input files simultaneously.

The *Quit* function can be used to quit B.C. Ni BLM application.

4.3.2. Edit

The *Edit* menu provides basic editing functions such as *Copy*, *Cut*, and *Paste* (Figure 4.3). These functions can be performed on a single cell or multiple cells by highlighting the cell with the cursor (left click and drag) or by using the Shift + Arrow functions on the keyboard. The editing functions can also be applied using the shortcut keys shown to the right of each function. Note that it is also possible to copy and paste data from external programs, such as spreadsheet applications, into the B.C. Ni BLM.

File	Edit	Options	Inputs	Help	Language	
D		Сору	Ctrl+C		ę.	
		Cut	Ctrl+X	E		
Desc		Paste	Ctrl+V			
0.2	la a seciel			_		
Site (Chemis	try Simplifie	ed Site Che	emistry		
Sitel	Linemis				nie Name	Ton
Site		Site Na			ole Name	Ten
					ole Name	Ten C
1					ole Name	

Figure 4.3. Snapshot of *Edit* menu item.

4.3.3. Options

Figure 4.4 shows the functions available under the *Options* menu.

Show Engine Runs

The run may take up to an hour when running several sites simultaneously, depending upon the computing power available. In these cases, it is recommended to select the *Show Engine Runs* option to show the software's progress allowing the user to ensure the software is working properly.

	Save S		Ctrl+Alt+E Ctrl+Alt+G					
Descr	iption: HC5 C	onfidence Limits	>					
Site Cl	hemistry Simplified	Site Chemistry		·				
	Site Name	Sample Name	Temp.	pH	Ni	DOC	Hardness	1
1			С		ug/L	mg C/L	mg/L CaCO	
1								
2								
3								
4								
5								
6								
7								
8								
9								

Figure 4.4. Snapshot of *Options* menu item.

Save SSD Graphs

The *Save SSD Graphs* feature allows the user to save a copy of the species sensitivity distribution (SSD) graph produced by the BLM software. The HC_5 of the SSD is the base of the WGQ for the intended water chemistry. For each site a separate SSD will be produced and saved.

HC5 Confidence Limits

The *HC5 Confidence Limits* options allows the user to select the number of bootstrap samples used to calculate confidence limits for the SSD. The recommended number of samples is 100. The higher number of samples will take more time to process but provides better confidence intervals of the SSD.

4.3.4. Inputs

Figure 4.5 shows the options available under the *Inputs* menu. The units for all parameters can be changed by selecting the *Set Units* function. For each component, the available units are displayed in the *Select Units* menu to the right. The Dissolved Inorganic Carbon (DIC) concentration is needed to run B.C. Ni BLM. DIC can be calculated from alkalinity and since alkalinity is a more routinely measured, B.C. Ni BLM requests for alkalinity data by default. However, the *Set Inorganic Carbon* function allows the user to input DIC instead of alkalinity in case of availability. If neither of measured DIC or Alkalinity data is available, DIC can be estimated from atmospheric CO₂.

Database Option allows the user to specify the calculation of either acute or chronic WQGs.

File Edit	Options	Inputs	Help	Language									
D 🚔	🖬 🗈	Se	t Units			1							
		Se	t Inorga	anic Carbon									
escription)		G	uideline	Option	>	SI	hort-term	- H				Lon	g-terr
ite Chemis	try Simplifie	d São Ch	a secietar a	Outra d									
	o angenio	u sike ch	emistry	Uutput	_	• L	ong-term						
	Site Nan		-	ole Name	Ten	_	pH	Ni	DOC	HA	Ca	Mg	Na ^
			-		Ten C	_	-	Ni ug/L	DOC mg C/L	HA %	Ca mg/L	Mg mg/L	Na ^
1			-		-	_	-						Na ^r
1 2			-		-	_	-						

Figure 4.5. Snapshot of *Inputs* menu item.

4.3.5. Help

The User's Guide for the B.C. Ni BLM can be accessed under the *Help* menu item (Figure 4.6). The *About BLM* option provides contact information for technical support. The *Create Debug Log* can be used to directly contact the developers of B.C. Ni BLM (Windward Environmental) if the user faces a problem while working B.C. Ni BLM.

File Ed		uts Help Language			
Descripti	우 🔜 🖻 👗 🛍 on:	BUser's Guide About BLM Create Debug	g Log		
Site Cher	mistry Simplified Sit	e Chemistry		<i>.</i>	
	Site Name	Sample Name	Temp.	рН	Cu
			С		ug/
1					
2					
3					
4					
-					

Figure 4.6. Snapshot of *Help* menu item.

4.3.6. Language

The user can select either English or French from the Language menu item.

4.4. Tool Bar

The *Tool Bar* provides shortcuts to some B.C. Ni BLM functions (Figure 4.7).

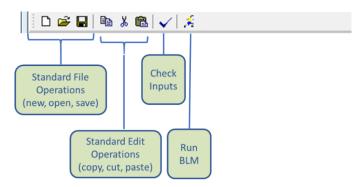


Figure 4.7. Tool Bar menu icons.

4.4.1. Standard File Operations

New File: this shortcut allows the user to create a new file for water chemistry input (Section 4.3.1).

Open File: this shortcut provides quick access to the B.C. Ni BLM data files (Section 4.3.1). If the B.C. Ni BLM data file being edited has changed since the last time it was saved and the user tries to open another file, the user will be asked if the current data file should be saved prior to opening another.

Save File: this shortcut allows quick saving of the B.C. Ni BLM data file (Section 4.3.1). The data file will be saved with the same, existing name. If the user wishes to save the file under a different file name, the menu bar item *File* \rightarrow *Save As* should be chosen.

4.4.2. Standard Edit Operations

Shortcuts for basic editing functions such as *Copy*, *Cut*, and *Paste* are provided and can be used to edit the water chemistry data at any point (Section 4.3.2).

4.4.3. Check Inputs

The range of parameter values used to develop and calibrate the B.C. Ni BLM are listed in Table 4.1. These ranges were taken from chronic and acute toxicity studies that considered the effects of water chemistry (e.g., pH, DOC, or hardness cations) on Ni bioavailability. The B.C. Ni BLM is only valid within these data ranges. After creating a B.C. Ni BLM data file, the user may wish to check the water chemistry inputs to verify whether the parameter values are within the overall range for which the B.C. Ni BLM has been calibrated, and to see whether data for all the parameters necessary for a B.C. Ni BLM prediction have been specified. Clicking on this icon generates an input check report that contains information on which parameters are out of range (i.e., too high or too low when compared with the range for which the B.C. Ni BLM has been calibrated) and which parameters are missing for any given input row. Figure 4.8 shows an example of an input check report.

If water quality input values are greater or less than these ranges, the B.C. Ni BLM software automatically applies the upper or lower bounds while calculating WQGs.

Parameter	Lower Bound	Upper Bound
Temperature (°C)	4	27
рН	3.5	8.9
DOC (mg/L)	0.032	25
Humic acid content (%)	0.01	99
Calcium (mg/L)	5.428	392
Magnesium (mg/L)	1.547	115
Sodium (mg/L)	0.00751	322
Potassium (mg/L)	3.91e-6	166.86
Sulfate (mg/L)	0.51	890
Chloride (mg/L)	0.0414	550
Alkalinity (mg/L)	0.01	728
Hardness (mg/L)	20	1100

Table 4.1. Ranges of values for BLM input parameters.

📴 Input Check Report		\times
pH in observation 1 > 8.9 DOC in observation 1 > 25 mg C/L S in observation 1 < 0.001 mg/L		^
		J

Figure 4.8. Example of an "Input Check Report" generated by the Check Inputs function.

4.4.4. Run BLM

The *Run BLM* icon is used to launch the B.C. Ni BLM program to calculate WQGs for the user-specified water chemistry in the data file currently open. If the data file has unsaved changes, the user is given the option of saving the changes prior to running the B.C. Ni BLM. The program will use either the chronic or acute database, depending on which guideline was selected from the *Inputs Menu* (see Section 4.3.4), and calculates the WQG for each row in the database. The runtime for B.C. Ni BLM calculations can vary from a few seconds to a few hours depending on the number of input rows in the data file and the database selected (chronic or acute). Upon completion, the user is informed of the names and the locations of the output files, and given the option to open the directory, as shown in Figure 4.9.

Rriti-	sh Columbia Nickel P	BLM version 0.09 - C:\Bl	M test\Norma	lized\norm	alized blm					×
_		ts Help Language								
	F 🖬 🗈 🕉 🛍									
Descript	ion:								Lon	ng-term
Site Che	mistry Simplified Site	Chemistry Output								
	Site Name	Sample Name	Temp.	pH	Ni	DOC	HA	Ca	Mg	Na ^
			С		ug/L	mg C/L	%	mg/L	mg/L	mç
1	Normalized	Normalized	15	7.5	1	5	10	15	3	3
2 3	Informat	ion			×	7		_		
4 5 6 7 8 9 10 11 12		Results are saved in: C\BLM test\Norma in Files: normalized_Long-te normalized_Long-te Would you like to ope	rm.output.xls rm.results.txt rm.ssdnormali							
13 14 15			0	Yes	No					
<										>

Figure 4.9. Example of the notification window shown at completion of B.C. Ni BLM run.

4.5. Data File Description

The *Data File Description* field (Figure 4.10) allows the user to insert comments describing the B.C. Ni BLM data file which will be saved with the water chemistry data entered by the user. Although this function is not critical to the function of the B.C. Ni BLM, it is useful for record-keeping and quality assurance/quality control purposes.

		Data fi	le descr	iption						
Briti	sh Columbia Nickel B	ILM version 0.09 - e:\BL	.M test\Norma	lized\norm	alized.blm				- 0	×
File Ed	dit Options Input	s Help Language								
	F 🖬 🖻 🐰 🛍	1								
Descript	ion:								Lon	g-tern
Site Che	mistry Simplified Site	Chemistry Output								
	Site Name	Sample Name	Temp.	pH	Ni	DOC	HA	Ca	Mg	Na ^
			С		ug/L	mg C/L	%	mg/L	mg/L	mį
1	Normalized	Normalized	15	7.5	1	5	10	15	3	3
2										
3										

Figure 4.10. Snapshot of B.C. Ni BLM application

Item Description

Located at the very bottom of the interface window, this area displays a brief description of the feature over which the cursor is currently positioned.

4.6. Site Chemistry Input Tabs

There are two options for entering the water chemistry data depending on the parameters available: *Site Chemistry* (i.e., full site chemistry) and *Simplified Site Chemistry*.

4.6.1. Site Chemistry

This region of the interface window contains a spreadsheet-based editor, which organizes the various B.C. Ni BLM input data in a columnar format such that the chemistry for each discrete water sample can be specified in a separate row. Two additional columns are provided for labeling the sites and samples in a given B.C. Ni BLM data file. Figure 4.11 shows the columns available for user input.

		s Help Language													
D 🗳	🖬 🛍 👗 🛍														
escription:															
iite Chemis	Simplified Site	Chemistry													
	Site Name	Sample Name	Temp.	pH	Cu	DOC	HA	Ca	Mg	Na	K	S04	Cl	Alkalinity	
			С		ug/L	mg C/L	%	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L CaCO3	
1															
2															
3															
4															
5															
6															
7															

Figure 4.11. Columns for data input in the B.C. Ni BLM.

The B.C. Ni BLM predicts Ni toxicity in aquatic systems and calculates WQGs for a site based on ambient water chemistry. The user is required to provide data describing the physical and chemical properties of the site water. The data requirements of the BLM are conventional physical and chemical parameters that are listed in Table 4.2. Some of these parameters have an important effect on B.C. Ni BLM predictions, while others have only minor effects.

Table 4.2. Water chemistry factors necessary to run the B.C. Ni BLM, their unit and relative importance in calculation of WQGs.

Factor	Unit	Importance
Temperature	°C	Low
рН	NA	High
Dissolved organic carbon (DOC)	mg/L	High
Humic acid fraction of DOC	%	Low
Calcium	mg/L	High
Magnesium	mg/L	High
Sodium	mg/L	High
Potassium	mg/L	Low
Sulfate	mg/L	Low
Chloride	mg/L	Low
Alkalinity	mg/L	High

Nickel concentrations are not required for the model to calculate WQGs, however, this field is retained to allow compatibility with other BLM versions. Nickel concentrations entered will not affect the WQG calculations but are included in the output text file for comparison with the WQG.

4.6.2. Simplified Site Chemistry

The *Simplified Site Chemistry* tab provides an option when all the water chemistry factors are not available. It differs from the *Site Chemistry* tab in that it only requires data for temperature, pH, DOC and hardness (mg/L as CaCO₃) to run the B.C. Ni BLM. Selecting the *Simplified Site Chemistry* tab provides a simpler site chemistry data input spreadsheet (Figure 4.12).

Additionally, there is a side bar where the ion ratios can be set. The ion ratios will vary depending on watershed geology. The default values provided are the median ion ratios for B.C. and can be used if the ratios are unknown. These values can be changed to match the conditions of the site or test and can be reset to the default values at any time by clicking the *Restore Default Values* button at the bottom of the box. The *Select Ion Ratios* button allows the user to select default ion ratios for other regions of North America. Note that this is not recommended for calculating WQGs in B.C.; this option is included only to make the B.C. Ni BLM compatible with other versions of BLM Windows[®] Interface.

After the simplified site chemistry data has been entered, the B.C. Ni BLM estimates the missing water chemistry information while calculating WQGs. Due to the uncertainty in estimating the absent water chemistry data, a cautious strategy was employed to guarantee that the WQGs generated by the simplified B.C. BLM do not surpass the values generated by the complete B.C. BLM. For this purpose, a correction factor was introduced to reduce the guideline values derived from the simplified chemistry BLM, ensuring that they do not exceed the corresponding values based on the full chemistry data.

	· 🖬 🐚 👗 🛍									
Descriptio										
iite Chen	nistry Simplified Site	Chemistry								
	Site Name	Sample Name	Temp.	pH	Cu	DOC	Hardness	^	Ion Ratios	British Columbi
			С		ug/L	mg C/L	mg/L CaCO3			British Columbi Ilues (default).
1										
2									Ca : Mg	3.33
3	_								Ca : Na	3.30
4			_		_				Ca : K	23.51
5									SO4 : CI	3.86
6			_	_	_					3.0
7	_			_				- 1		
8	_		_	_	_			- 11	Restore D	efault Values
9	_			_				- 11		
10	_		_	_				- 1	Select Ic	on Ratios
11	_		_	_				-		
12	_			_				- 11		
13	_			_				-		
14								~		

Figure 4.12. Snapshot of *Simplified Site Chemistry* inputs and ion ratios.

When additional water chemistry data for the simplified option are available (e.g., major ions), but insufficient for the full B.C. Ni BLM, the following steps should be taken:

- Enter the parameters in the Simplified Site Chemistry tab;
- Switch to the full *Site Chemistry* tab and replace the estimates for parameters with the available measured values;
- If alkalinity data are available, the *Set Inorganic Carbon* option should be selected from the *Inputs* menu and then *Closed System, Input Alkalinity* should be selected (Figure 4.13). An additional column for alkalinity will appear and the data are entered there.

• If the user is missing calcium, magnesium, or alkalinity from the full chemistry, but is using the full chemistry tab in the software, then the correction factor needs to be added manually. The correction factor can be used from the below equation (the equation is presented as an Excel function):

 $CF_{long-term} = \min(0.8371, \max(0.5446, -0.1067 * log_{10}(Hardness, mg/L) + 0.7846))$

Note that if you switch back to the *Simplified Site Chemistry* tab without saving the data, the water chemistry data will be deleted.

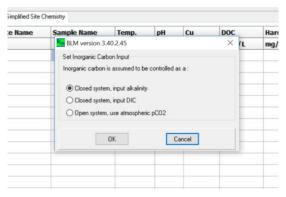


Figure 4.13. Snapshot of *Set Inorganic Carbon* menu item.

5. EXAMPLE APPLICATION

The B.C. Ni BLM features an example application for demonstration purposes. This file, named 'Lake Superior.blm,' is installed along with the B.C. Ni BLM and is in the "My Documents \rightarrow British Columbia Nickel Biotic Ligand Model" folder. The file can be opened directly, by double-clicking on the file name through a file-system manager such as Microsoft Windows[®] Explorer or by first starting the B.C. Ni BLM and selecting the file through the 'File \rightarrow Open' action. This data file 'Lake Superior.blm' can be used to calculate a Ni WQG example produced by the B.C. Ni BLM.

6. DESCRIPTION OF OUTPUT FILES

The contents of the output files will appear in an *Output* tab in the B.C. Ni BLM User Interface once the model has finished running. The main output is written to a text file and saved to the same location as the input file, with the same name as the input file but with '.results' appended (Figure 6.1). For example, using the input file 'LakeSuperior.blm' would create an output file titled 'LakeSuperior_Chronic.results.txt' or 'LakeSuperior_Acute.results.txt' depending on the selection of *Acute* or *Chronic* databases (see Section 4.3.4). The output file includes the site chemistry used, and the WQG value calculated for each site.

In addition, a bitmap image is produced for each site that illustrates the SSD for the different species in the toxicity database, normalized to the specified site chemistry (Figure 6.2). Solid lines on the graphic indicate the confidence intervals and the dotted line denotes the HC_5 . The bitmap file will not be produced if the "Save SSD Graphs" option is not selected.

Two Microsoft Excel[®] files will also be produced:

1. *.output: shows the water chemistry, HC₅, confidence intervals, and guidelines values (Figure 6.3).

 *.ssdnormalized: shows the data associated with the toxicity datapoints for different species such as water chemistry, life stage, endpoint, and endpoint quantifiers it also shows the effect concentration normalized to the site water chemistry ().

LakeSuperior_Long-term.results - Notepad File Edit Format View Help Chronic Nickel Biotic Ligand Model (BLM) for Aquatic Life British Columbia Nickel BLM Software Version 0.09 (Based on Windward BLM Version 3.60.2.50) For the following calculation, the ${\tt BLM}$ is used in conjunction with acceptable chronic toxicity data for nickel. The BLM calculations here are resulting from three steps. In the first step, the BLM predicts bioavailability effects to adjust observed chronic toxicity values (EC10, MATC, NOEC, etc.) to values appropriate for the water chemistry of new water body. In the second step, most preferred endpoints along with the geometric means (where possible) for individual species are selected following the CCME protocol (2007). Then, a HCS is derived from these selected endpoints (one endpoint per species) as the S-percentic value, using the model-average of the Log-Normal, Log-Logistic, and Gamma distribution models. An assessment factor of 2.0 is then applied to the HCS to get the water quality guideline. BLM Ni toxicity values normalized to chemistry found in the file: \\sfp.idir.bcgov\U109\AAZIZISH\$\British Columbia Nickel BLM\LakeSuperior.blme Site Characteristics: Ion Ratios: (Ion ratios are custom values.) Ion Ratios: (Ion Ca:Mg = 2.067 Ca:Na = 5.425 Ca:K = 26.31 SO4:Cl = 0.1361 pCO2 = 10^-3.2 Temp. pH DOC Hardness C mg C/L mg/L CaCO3 10 7.5 1.5 45.67 Site Name Sample Name 2009 Avg Lake Superior Esimated Complete Site Chemistry: Temp. pH DOC HA Alk. C mg C/L % mg/L CaCO3 Site Name Sample Name S mg/L 1.5 10 10 7.5 20.6 1E-010* Lake Superior 2009 Avg Site Name Ca Mg Na K SO4 mg/L mg/L mg/L mg/L mg/L mg/L Sample Name Site Name **C**1 mg/L 2009 Avg 12.33 3.616 1.303 0.457 7.187 19.49 Lake Superior

Figure 6.1. Example of a text file produced by B.C. Ni BLM.

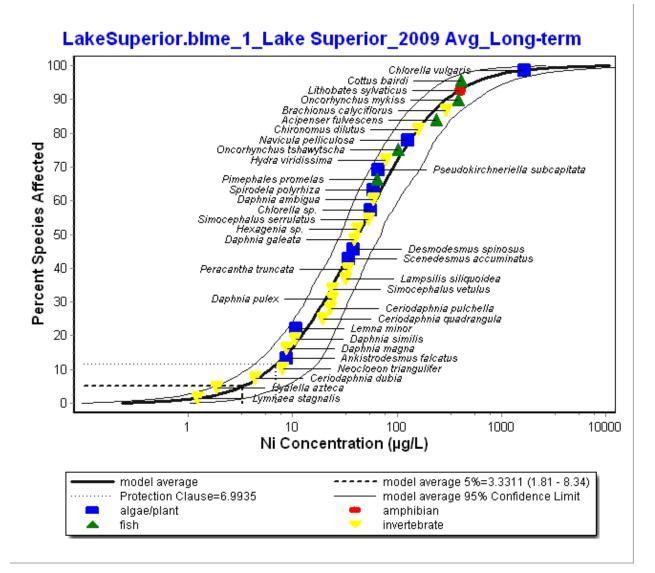


Figure 6.2. Example of the B.C. Ni BLM SSD output file.

File Home	Insert Pag	ge Layout	Form	ulan I	Data Re	eview View	Automate Help	Power Piv	und .
	insert Pag	je Layout	Form	ulas i	Jala Kt	view view	Automate Help	Power Piv	/01
Paste 🕒 🗸	Arial SIU - H				= ≫~ → = = =		General ✓ \$ ~ % 9 50 30	Conditional	
× ♀								Formatting ¥	,
Clipboard 😼	Font		۲ <u>م</u>		Alignment	F2	Number 😼		Styles
1 -	: × ✓		e Name	E	F	G	н		
Site Name	Sample Name	Temp.	pH	Ni	DOC	Hardness	Model Average Distribu	tions	HC5 (Mod. Ave.)
	-	C		ug/L	mg C/L	mg/L CaCO3			ug/L
Lake Superior	2009 Avg	1	0 7.5		1		5.67 model average (LNorm,	LLogis, Gam)	
_									
-									
-									
1									
1									
8									
2 9 9									
F 3 3 4 4 5									

Figure 6.3. Example of the Microsoft Excel[®] file (*.output) produced by B.C. Ni BLM.

,	AutoSave 💽 🗄 🍤 -	v Q × ⊽ Lake	Superior_Long-term.ssdnormalized - Co	mpatibility Mode • Saved to	this PC V	
F	ile Home Insert	Page Layout Formulas	Data Review View Auto	omate Help Power	Pivot	
ſ	Tahoma	- 10 - A^ A = ≡	E = ≫~ →¶ → ab General		Insi	
P	aste 🧭 B I U v			6 9 50 .00 Condition	nal Format as Cell	
	· <> □ -			o ✓ .00 →0 Formattin	,	
C	lipboard 🖪	Font ы	Alignment 🖬 Nu	umber 😼	Styles Ce	
A	×	✓ fx Obs ID				
_	A	В	С	D	E	
1	Obs ID	Taxonomic Category	Species	Toxicity Endpoint	Endpoint quantification	
2	C0762AnfaIC10	algae/plant	Ankistrodesmus falcatus	growth	IC10	
3	C0805ChspEC10	algae/plant	Chlorella sp.	growth	EC10	
4	C0806ChspEC10	algae/plant	Chlorella sp.	growth	EC10	
5	C0807ChspEC10	algae/plant	Chlorella sp.	growth	EC10	
6	C0808ChspEC10	algae/plant	Chlorella sp.	growth	EC10	
7	C0809ChspEC10	algae/plant	Chlorella sp.	growth	EC10	
8	C0880ChspEC10	algae/plant	Chlorella sp.	growth	EC10	
9	C0881ChspEC10	algae/plant	Chlorella sp.	growth	EC10	
10	C0882ChspEC10	algae/plant	Chlorella sp.	growth	EC10	
11	C0883ChspEC10	algae/plant	Chlorella sp.	growth	EC10	
12	C0884ChspEC10	algae/plant	Chlorella sp.	growth	EC10	
13	C0885ChspEC10	algae/plant	Chlorella sp.	growth	EC10	
14	C0886ChspEC10	algae/plant	Chlorella sp.	growth	EC10	
15	C1064ChvuLOEC	algae/plant	Chlorella vulgaris	growth	LOEC	
16	C0218DespEC10	algae/plant	Desmodesmus spinosus	growth	EC10	
17	C0238DespEC10	algae/plant	Desmodesmus spinosus	growth	EC10	
	BCMOE SSD	+			÷ •	
Rea	idy 🛛 💏 Accessibility: Unavailabl	le				

Figure 6.4. Example of the Microsoft Excel[®] file (*.ssdnormalized) produced by B.C. Ni BLM.

7. UNINSTALLING THE B.C. NI BLM

To uninstall the B.C. Ni BLM, select the Uninstall Utility using 'Microsoft Windows[®] Start Menu \rightarrow Programs \rightarrow British Columbia Nickel Biotic Ligand Model \rightarrow Uninstall.' All files installed by the B.C. Ni BLM during setup will be uninstalled. None of the files created by the user and saved in the B.C. Ni BLM installation directory will be deleted during this process. These need to be manually deleted by the user, if so desired.