

Province of British Columbia Ministry of Transportation and Highways

Geotechnical and Materials Engineering Standards for Bridge Foundation Investigations

January, 1991

Ministry of Transportation and Highways Geotechnical and Materials Engineering Victoria, B.C.

Geotechnical and Materials Engineering Standards for Bridge Foundation Investigations

January, 1991

Prepared by:

K.F. Rimer Geotechnical Engineering Technician

D. R. Lister, P. Eng. Senior Terrain Evaluation Engineer

C. B. Kern, P. Eng. Senior Geotechnical Engineer

TABLE OF CONTENTS

SECTION 1 - GEOTECHNICAL FOUNDATION INVESTIGATION REPORT OUTLINE

SECTION 2 - 8.5 * 11 SUMMARY LOG (AUTOCAD PROTOTYPE GHSUM100)

2.0.... Preparation Standards 2.1.... Project Information 2.2.... Drilling Details 2.3.... Depth 2.4.... Sample Type 2.5.... Blowcount 2.6.... Sample Recovery 2.7a... Shear Strength 2.7b... Rock Quality Designation 2.8.... Gradation 2.9.... Index Properties 2.10... Classification 2.11... Description 2.12... Other Tests 2.13... Reproduction Requirements

2.14... AutoCAD information 2.15... Examples

See Appendix A - Materials Classification Legend and Definition of Aggregates Appendix B - Excerpts from Canadian Foundation Manual and Soil Mechanics in Engineering Practice Appendix C - Draft Summary Log Form (H-181) and Metric Conversion Table

SECTION 3 - SUMMARY LOG DRAWING A1 SIZE (AUTOCAD PROTOTYPE GHBASE1B)

3.0.... Preparation Standards
3.1.... Legend
3.2.... Information Notes
3.3.... Title Block and Signing Instructions
3.3a... Standard Title Block (In-House)
3.3b... Standard Title Block (Consultant)
3.4.... Reproduction and Storage Requirements
3.5.... AutoCAD information
3.6.... Examples

SECTION 4 - FOUNDATION INVESTIGATION DRAWING AL SIZE SHEET (AUTOCAD PROTOTYPE GHBASELA)

- 4.0.... Preparation Standards
 4.1.... Plan
 4.2.... Profile
 4.3.... Key Map
 4.4.... Legend
 4.5.... Title Block
 4.6.... Reproduction and Storage Requirements
 4.7.... Detail Drawings
 4.8.... AutoCAD Information
 4.9.... AutoCAD Test Hole Logs

SECTION 5 - BRIDGE BRANCH SITE PLAN CONTRACT DRAWING A1 SIZE SHEET

5.0.... Requirements

5.1... Example

4.10... Examples

SECTION 6 - CONTACTS

6.0.... Geotechnical and Materials Engineering Staff Listing

ю.

6.1... Drafting Services

SECTION 7 - GEOTECHNICAL AND MATERIALS ENGINEERING AUTOCAD LIBRARY DISKS

Appendix A - Materials Classification Legend and Definition of Aggregates
Appendix B - Excerpts from Canadian Foundation Manual and Soil Mechanics in Engineering Practice
Appendix C - Draft Summary Log Form and Metric Conversion Table
Appendix D - Disk and File Naming
Appendix E - Rock Core Logs
Appendix F - Cone Holes
Appendix G - Becker Hammer

SECTION 1 - GEOTECHNICAL FOUNDATION INVESTIGATION REPORT OUTLINE (GUIDE) (10 - 8 1/2" X 11" copies of report required)

1. SUMMARY/ABSTRACT

2.	INTRODUCTION/SITE DESCRIPTION	 Reasons for study, scope of study Date of and source of request Location of proposed structure Major geological and geographical features Previous work in area (if applicable)
3.	GEOLOGY/TERRAIN	 Description of terrain Surficial geology/glacial history Bedrock geology Natural hazards
4.	INVESTIGATION	 Ministry Geotechnical Engineer approval required for site investigation methods Site inspection, drilling, test pitting, cone penetration, etc. Rationale - explain how method adequately determines ground conditions
5.	GROUND CONDITIONS	 Description of soil and rock and engineering properties, possible strata, ground water problems
6.	GEOTECHNICAL EVALUATION	- Discussion of ground conditions and how they effect foundation
7.	DESIGN RECOMMENDATIONS	 Pile types, lengths, sizes, load capacities Footing type, size, bearing capacity Stability of embankments/footings Settlement of embankments/footings Special problems related to foundation/soil interaction
8.	CONSTRUCTION RECOMMENDATIONS	 Discussion of sequence of construction Pile installation method, hammer requirements, etc. Duration of stage construction Construction Monitoring, settlement plates, piezometers, slope indicators, movement hubs, pile driving analysis, etc
9.	APPENDICES	 Summary Logs 8.5 X 11" (see examples Section 2.15) Foundation investigation drawing (see examples Section 4.10) Photos

SECTION 2 - 8.5 * 11" SUMMARY LOG

2.0.... PREPARATION STANDARDS

Prepare using AutoCAD Release 10 and Geotechnical and Materials Engineering AutoCAD Prototype (GHSUM100).

In unusual circumstances, Summary Log formats different than the Ministry standard (AutoCAD - GHSUM100) may be used with the approval of the Ministry Geotechnical Project Engineer. Also, See Appendix E, F, and G.

See 2.14 - AutoCAD information See 2.15 - Examples

See Appendix E, F, G for Rock Core Logs, Becker Holes and Cone Holes information.

2.1.... PROJECT INFORMATION (top and bottom of sheet)

- Test Hole No. (Year Hole No.) eg. 90-1
- Project Name
- Location (Station and Offset) and/or (Easting and Northing)
- Elevation
- Driller or Drilling Firm
- Drilling Method or Drill Type
- Dates (yy-mm-dd/dd)
- Geotechnical and Materials Engineering File No.
- Prepared By eg. KFR-TAO (initials)
- Sheet # of #

2.2.... DRILLING DETAILS

- >100 Blowcount Details
- Water Table and Date
- Artesian Pressure Noted
- Instrumentation Depths and Notes
- Other Drilling Details

2.3.... DEPTH (metres - scale 1:100)

- Sheet 1 (0-18m) - Sheet 2 (18-36m) - Sheet 3 (36-54m)

- Sheet 4 (54-72m)

2.4.... SAMPLE TYPE

- A Auger
- C Core
- D Dennison
- S Split Spoon
- T Shelby Tube
- W Wash
- - Other (specify)

- Sample driven distance is graphically shown (rounded to the nearest tenth of metre)

2.5.,.. BLOWCOUNT

- Standard Penetration Test (ASTM 1586)
- Blowcounts over 100 are represented by >100
- Blowcounts over 100 are detailed in drilling details column

2.6.... SAMPLE RECOVERY

Soil - (metres) Rock - (metres or %)

2.7a... SHEAR STRENGTH (kPa)

U - Unconfined Compression Fv - Field Vane Lv - Laboratory Vane R - Remoulded

2.7b... ROCK QUALITY DESIGNATION (%)

Shear Strength column can double as Rock Quality Designation (%) column by changing column heading. (See 2.15 - Examples)

2.8.... GRADATION (%) TOTAL = 100

- Visual identification (V.I's) of samples are required on all samples when sufficient recoveries are obtained.
- Gravel
- Sand
- Fines (Silt and Clay)
- Organic matter content noted in description column

2.9.... INDEX PROPERTIES

- wL Liquid Limit
- wP Plastic Limit
- W Water Content
- Do sufficient Atterberg Limit Tests to determine classification of fine-grained soils, see ASTM D421, Section 4. Moisture Content Tests are not necessary for coarse grained soils.

2.10... CLASSIFICATION

- Soil Classification Symbols to be shown individually or for soils having 5-12% passing .075 sieve, a dual symbol hyphenated and plus to indicate mixture or layering of soil (eg. GP-GM+SB) (ML+SC3)
- Modified Unified Soil Classification Chart (see Appendix A)
- Driller's interpretation to be enclosed in brackets where applicable

2.11... DESCRIPTION

- Soil description as in Canadian Foundation Engineering Manual. 2nd Edition, Part 1, Section 3.1.3 and Soil Mechanics in Engineering Practice for relation of consistency of clay to number of blows on sampling spoon, when undrained shear strength is unknown
- Rock strength classification as in Canadian Foundation Engineering Manual Part 1. Section 3.2.4.1, Table 3.4
- Nouns to be capitalized
- COBBLES and Large BOULDERS to be noted (capitalized) with encountered dimension in millimeters
- See Appendix B Excerpts from Canadian Foundation Engineering Manual and Soil Mechanics in engineering practice
- See 2.15 Geotechnical and Materials Engineering examples.

2.12... OTHER TESTS

М	12	Mechanical Analysis
Q.R.S.	-	Triaxial Compression
C	\mathbf{x}	Consolidation
DS	\cong	Direct Shear

2.13... REPRODUCTION AND STORAGE REQUIREMENTS

- 8.5 * 11" copies of Summary Logs to be included in Geotechnical Report
- See Summary Log Drawing Sheet instructions for preparing drawing for Bridge Contract (See Section 3)

2.14... GEOTECHNICAL ENGINEERING AUTOCAD SUMMARY LOG (8.5" x 11" - 4 sheets, 0 m - 72 m)

PROTOTYPE FILE NAME: GHSUM100

LOAD FILENAME: FILENAME - GHSUM100 (item 1 on main Autocad menu)

<u>VIEWS</u>: 0, 18, 36, 54 full sheets 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 partial sheets

LAYERS:	GOFORM GOTEXT	0 m to 18 m	(Sheet 1, View 0)
	G18FORM G18TEXT	18 m to 36 m	(Sheet 2, View 18)
	G36FORM G36TEXT	36 m to 54 m	(Sheet 3, View 36)
	G54FORM G54TEXT	54 m to 72 m	(Sheet 4, View 54)

LISP: IN - - LISP routine which inserts the following blocks simply by multiplying the depth by 10. e.g. 30 inserts block at 3.0 m e.g. 76 inserts block at 7.6 m

<u>BLOCKS</u>: - Type in appropriate information with each block on the proper text layer.

> T = TITLE - insert block T at depth of 0 - array title for sheets 2, 3 and 4 when hole is greater then 18.0 m (distance factor of -180) - change arrayed title to appropriate text layer (G##TEXT eg. G18TEXT) - attedit sheet # of #

S0 **S**1 S2 = SAMPLES - S0 used for samples driven greater than 1.0m in conjunction with block S and samples 53 S4 with dual results. \$5 - S1 to S10 are for samples driven .1m to 1.0m. **S6** \$7 **S**8 \$9 S10 S - SINGLE LINE - delinates sample boundaries greater than 1.0m. repeat for top and bottom of sample E = END OF HOLE - defines hole which has reached required depth and depth (m) R = REFUSAL - defines depth which hole was terminated due to material density and depth (m) B = BOUNDARY - defines material boundary and depth (m) DB = DASHED BOUNDARY - shows approximate material boundary and depth (m). JB1 and JB2 = JOGGED BOUNDARY - defines material boundary and depth (m) with extra space in description column WT-M = Water Table Measured WT-E = Water Table Estimated WT-A = Water Table with two text lines for Artesian Source - shows water table, and date. D = DESCRIPTION - inserts 4 lines of text for describing material type, approximately 35 characters per line. BL = BLOWCOUNT DETAILS - sub heading for Drilling Details column when blowcounts are greater than 100.

FOR EDITING BLOCKS

- set var - ATTDIA (1) - command - DDATTE

PLOT: 1 = 1 (freeze unwanted layers)

- PLOT VIEW 0 or 18, 36, 54 for 8.5" x 11" plots
- WBLOCK for insertion onto Al size drawing.

- Pen sizes are: red = 0.25 yellow = 0.35 green = 0.50 cyan = 0.70

GEOTECHNICA	GEOTECHNICAL ENGINEERING AUTOCAD SUMMARY LOG (Scale 1:20) (8.5" x 11" - 1 sheet, 0 m - 3.6 m) 90/06/11)								
PROTOTYPE I	FILE NAME: GH	ISUM20							
LOAD FILENA	AME: FI	LENAME - GHSUM20 (item 1 on main	AutoCAD menu)						
VIEWS:	0 - full sheets T, 1, 2, 3 - part	ial sheets							
LAYERS:	G0FORM G0TEXT								
LISP:	IN20 -	- LISP routine which inserts the blocks simply by multiplying the							
		e.g. 15 inserts block at 1.5m e.g. 32 inserts block at 3.2m							
BLOCKS:		Type in appropriate information on text layer.	with each block						
	T = TITLE	- insert block T at depth of $\boldsymbol{0}$							
\$0 \$1 \$2 \$3 \$4 \$5 \$6 \$7 \$8 \$9 \$10	S05 S15 S25 = SAMPLES S35 S45 S45 S55 S65 S75 S85 S95	 S0 used for samples driven gree in conjunction with block S and dual results. S05 to S10 are for samples dri 1.0m. 	nd samples with						
	S = SINGLE LINE	- defines sample boundaries great repeat for top and bottom of s							
	E = END OF HOLE	 defines hole which has reached and depth (m). 	d required depth						
	R = REFUSAL	 defines depth which hole was t material density and depth (m) 							

B = BOUNDARY - defines defined material boundary and depth (m). DB - DASHED BOUNDARY - shows approximate material boundary and depth (m). JB1 and JB2 = JOGGED BOUNDARY - defines material boundary and depth (m) with extra space for description. WT-M - Water Table Measured WT-E = Water Table Estimated WT-A = Water Table with two text lines for Artesian Source - shows water table and date. D = DESCRIPTION - inserts 4 lines of text for describing material type, approximately 35 characters per line. BL = BLOWCOUNT DETAILS - sub heading for Drilling Details column when blowcounts are greater than 100. FOR EDITING BLOCKS set var - ATTDIA (1) command - DDATTE PLOT: 1 = 1 (freeze unwanted layers) - PLOT VIEW 0 8.5" x 11" plot - WBLOCK for insertion onto Al sizes drawing. - Pen sizes are: red = 0.25yellow = 0.35 green = 0.50 cyan = 0.70

unu	Highwo Proje Locat Driller	ct SC ion ST	RC	7+8()BER	BRIDO 0.4,	ES 6.1m 6.1m	1 RT.,		rive d [r) DIAM	OND Index	DR		Materials Branch 89-3 Elevation 341.661 Dates 89-01-14/16
	illing etails	Depth (m)	Sample Type	Blowcount	Recovery (m)	Rock Quality Designation (2)	Gravel	Sand	Fines	1.1.2	operti Wp		Classification	Description
0 @ 8.2m)		- 1											(GP)	GRAVEL
.0m HEA		2	S	7	.20		15	80	5	-	-	-	SP	-
GAIN WATER (ARTESIAN 4.0m HEAD	HW CASING	4	S	5	.22		5	90	5	Ĵ.	1	-	SP	Loose SAND, some to trace gravel, trace silt, subround gravel, med—coarse sand, light grey, saturated
ATER		6	S	9	.17		-	95	5	-	-	-	SP	6.0m -
GAIN W		7	S	27	.10		45	35	20	-	1	-	(ML) GM2	SILT Compact GRAVEL and SAND, 6.7m silty subround gravel, med- coarse sand, light grey, sat 8.2m
	NQ3 TRIPLE TUBE	9 10 11 12 13 14 15 16	CORED		92% 89% 100%	39% 69% 90% 17% 69% 56% 24%							BR	GNEISS - Broken to shattered zones, some fissures and weak seams
ACDST	LE TYI Auger Core Deniso Split : Shelby Wash			Die	U Fv Lv R	SHEAR S – Uncon – Field V – Lab V – Remoi – Standa	fined Vane ane Jided	Соп	npres		(ACT)	Q,R WI,Y	,S – Tri C – Co DS – Dii Vp – Lio W – Mo	brackets TESTS echanical Analysis iaxial Compression prect Shear quid, Plastic Limits bisture Content FILE No. 01-22-50 DRAWN BY: ST - KFR SHEET of 01 01

Manistry of Tr and Highways Project	S .				ES		ŀ	HC)L	E	L	.00	Geotechnical and TEST HOLE No. Materials Branch 90—1
Location Driller	n STa	A I	74+0)3, (etho	D	MAI	OND	DR	ũ.	Elevation 353.8m Dates 90-02-27
Drilling)	ype	-	(m)	(kPa)	Gra	dation	76		Index operti		tion	
Details	Depth (m)	Sample Type	Blowcount	Recovery (m)	Shear Strength (kPa)	Gravel	Sand	Fines	WL	w _P	W.	Classification	Description Figure 1
	1	S	12	.2		5	55	40	_		_		-
	2	5	12	.2		Ŭ	00					GP	
-	3	S	92	.15		70	25	5	-	-	-	+ SP +	Compact to dense silty GRAVEL and SAND
-	4	S	46	.25		45	45	10	÷	jį,	-	SM ₄	
-	5												-
-	6	S	20	.20		310	65	35	Ξ		-		6.7m
1	7 8	S	14	.25		-	15 -	85 100	Ξ		-	SM3 + ML	SILTY SAND and stiff non-plastic SILT 8.4m
	9	S	21	.25		36	65	35	Ŧ	(-)	-	SM3	Compact SILTY SAND
1 - 1	10	S	10	.30	a wa	-	10	90	-	-	29		10.0m -
-	12	Ť	_	.55	Lv U 25 75 24 72	-	_	_		-	31 33		-
_	13				29 77 28						37 33	ML	Soft non-plastic SILT
	14	S	15	.20	Lv	-	5	95	-		29		
-	15	Т	-	.55	16 21 18	-	-	-	-	-	32 36 34		
	16 17				18						33	ML + CL	Firm to hard non-plastic - SILT and CLAY with - traces of sand -
SAMPLE TYP A - Auger C - Core D - Denisor S - Split Sy T - Shelby W - Wash	n poon			U Fv	SHEAR S - Uncon - Field - Lab V - Remo	fined Vane ane	i Cor		sion			S - Tr C - Co S - Di P - U	TESTS echanical Analysis riaxial Compression onsolidation irect Shear iquid, plastic Limits oisture Content
W - Wash			Blow	count	- Standa	ord P	enetr	ation	Test	(AST	M 19		SHEET of 01 02

		1.1						75.2		7			2.15
Amistry of B and Highways	s				ES								30-2
Project Location Driller	n ST	A.		6.4,	BRIDG .6m	RT.	letho			ARY			Elevation 326.12m Dates 90-03-03
Drilling Details	(E)	Type	Int	y (m)	h (kPa)	Gra	datio	n %	Pr	Index opert		cation	Description
Blowcount	Depth (m)	Sample Type	Blowcount	Recovery (m)	Shear Strength	Gravel	Sand	Fines	w _L	wp	W	Classification	Other
Details 70/.15m_	1						4.5					SB +GP	Very dense GRAVEL with some - sand and COBBLES to 150mm -
60/.07m _	2	\$	>100	.20		85	15	-	-	-	-	(GP) +LB	Driller reports your dense
80/.10m_	3	-5-	>100	0		×	310	ж	-	÷	-	+SB	Driller reports very dense GRAVEL with LARGE BOULDERS and COBBLES to 180mm
70/.08m_ 90-03-05	4	s	>100	.08		30	60	10	-	-	-	SP <u>-SM</u> +SB	4.2m
80/.12m	5 6	- S -	>100	.05		95	5	4	-	-		GP +SB	Very dense gravelly SAND – and GRAVEL, some is silty, – contains COBBLES to 250mm –
60/.15m _	7 8	\$	>100	.12		15	60	25	æ	-	Ξ	SM2 +SB	
60/.08m		-\$	>100	0		-	-	-	-	-		SM2 +SB	9.4m
60/.10m _	10 11	-5	>100	.05		(3=-3)	-	-	-	-	-	LB (GP) +(SB)	Driller reports GRAVEL - and COBBLES to 100mm -
-	12 13											LB	LARGE BOULDER
65/.08m- -	14 15 16	s	>100	.07		60	35	5		*	н,	GP +SB	Very dense sandy GRAVEL
 65/05m	17	S	>100	05		100	-	_	1	_	-	GP	
SAMPLE TYPE A - Auger C - Core D - Denison S - Split Sp T - Shelby 1	oon	5	/ 100	U - Fv - Lv -	SHEAR S - Uncon - Field V - Lab V - Remou	TREN fined Vane ane			sion		Q,R WL,W	M – Me S – Tri C – Co S – Dir P – Lic	TESTS schanical Analysis laxial Compression prosolidation rect Shear guid, plastic Limits biture Context
W — Wash			Blowc	ount ·	- Standa	rd Pe	enetro	ition	Test	(ASTA	1 195		SHEET of 01 02

Ministry of T and Highway Project	S			1											۷o.
Locatio Driller	n ST	Ά.		6.4,	.6m	RT.	Aetho			RY			Elevation 3	26.12m 0-03-03	
Drilling											ts				
Details	Depth (m)	Sample Type	Blowcount	Recovery (m)	Shear Strength (kPa)	Gravel	Sand	Fines		wp		Classification	Description		Other Tests
Blowcount_	De	So	Bic	Re	ਨਿਲੋ	ভ	S	Ē	۳L	"P	-	5			ð
Details _	19														
-	20													-	
- 100/.08m-	21	s	>100	.08		-	95	5		-	-	SP	Very dense SAND with a trace of silt		
_	22													_	
_	23													_	
- 90/.05m	24	-\$	>100	0		_		-	-	-	-				
	25												Driller reports BEDROCH	24.6m	
	26	S	÷	0		-	-	æ	×	×	=	(BR)	that he couldn't sampl		
· · · · ·	27												26.5m END OF HOLE	_	
	28													-	
-	29													-	
-	30													-	
-	31													_	
	32														
	33													-	
	34														
2	35														
-															
SAMPLE TYP A - Auger C - Core				U Fv	SHEAR S - Uncor - Field	fined Vane	Cor		noisi		Q,R	1.5 - Tr	echanical Analysis 01-	E No. -22-43	
D - Denisor S - Split S T - Shelby	poon				— Lab V — Remo		l				w_,	DS - Di Wo - Li	quid, plastic Limits BK	AWN BY:	
W ← Wosik			Blowc	ount	- Stand	ord P	enetr	ation	Test	(AST	M 19	14.1	SH	EET of 02 (02

SECTION 3 Summary Log Contract Drawing

SECTION 3 - SUMMARY LOG DRAWING SHEET (AutoCAD prototype GHBASE1B) (for inclusion with Bridge Branch Contract Drawings)

3.0.... PREPARATION STANDARDS

Prepare using AutoCAD Release 10 and Geotechnical and Materials Engineering AutoCAD Prototype (GHBASE1B)

Contract drawings using Summary Log formats (approved) which are different than the Ministry standard and not compatible with AutoCAD can be composed by attaching logs on a base sheet. (GHBASELB). Original drawings can be created by copying onto heavy weight vellum using a large size copier.

 - 6 - 8.5" * 11" summary test hole log sheets per Al drawing sheet maximum

- Do not mix bridge projects on the same drawing sheet

See 3.5.... AutoCAD information See 3.6.... Examples

3.1.... MATERIALS CLASSIFICATION LEGEND

See Appendix A (GLEGEND1)

3.2.... INFORMATION NOTES

- NOTE: 1. The soil and groundwater conditions shown are representative at the test hole locations on the dates indicated. Conditions encountered during construction may vary. Cobble and boulder sizes are driller's estimate of the dimension encountered.
- NOTE: 2. Field and laboratory logs are available for viewing at Geotechnical and Materials Engineering in Victoria. (Phone No. 387-1881)
- NOTE: 3. Gradation and classification are based on a visual estimate unless otherwise noted under "other tests".
- NOTE: 4. BR Bedrock Intact Rock Strength (See Canadian Foundation Manual, 2nd Edition, page 35.)

3.3.... GEOTECHNICAL AND MATERIALS ENGINEERING TITLE BLOCK (<u>GHTITLE1</u>) AND SIGNING INSTRUCTIONS (See 3.3a and 3.3b)

- Type of Drawing (SUMMARY LOGS)

	SCALE N	NOTE 13						
		MINIS		RANSPOR	TATION	ANI	l umbia D HIGHWAYS NGINEERING	
	NOTE 1 P	HIGHWAY	DRAW	ECT NA	AME PE			
	- <u>1977</u>	PARED BY DTE 2		ECOMMENDED		ACCEP	NOTE 4	
	DESIGN ENGINEE	DIE Z R/SUPERVISOR	DIRECTOR, GEOT	CHNICAL & MAT	eřials éng.	and the state		
		DTE 5 NOTE S	- Contain China and Allerat	NOTE 8	PROJECT	0.06642.5	DRAWING No.	
			CAD No. FILE No.	NOTE 8 NOTE 9	NOTE REGION No		NOTE 12 -	n
				CANCEL	PRINTS B	EARING F	PREVIOUS LETTER	
							N.T.S	ê Ka (
NOTE 2	 SENIOR HEADQU REGION 		SIGNS AND AWINGS - I S - MANAC	DATES DIRECTOR SER, PROF	SIGNS	AND I AL SE		
NOTE 4	- HEADQU	JARTERS DR AND DATES	AWINGS AND	MAJOR	PROJEC	TS –	CHIEF HIGHWAY	ENGINEER
NOTE 6 NOTE 7 NOTE 8 NOTE 9	(Notes – DESIGNE – CHECKE – DRAFTSI – NEGATIV – GEOTEC	3 & 4 Ch ER INITIALS PERSON INI /E AND CAD :HNICAL AND	AND DATES AND DATES FIALS AND I NUMBER (MATERIALS	According DATES assigned ENGINEE	ly) by Brar RING CO	nch S	ECTOR SIGNS AND itaff) SPONDENCE FILE	
NOTE 11	- HIGHW	RACT DOCUN AY REGION E NUMBER	NUMBER (P	roject Lo	cation)		6] T DRAWINGS	
APPRALS INS.		ed by Bridg						
Province of Bri Ministry of Trai GEOTECHNICAL	sportation and		入園人一	TANDARD A1 I-HOUSE FO ND INSTRUCT	RMAT	оск		SECTION 3.3a

		NOTE	14		
SCALE	MINIST	ovince of I RY OF TRANSF CCHNICAL AND	ORTATION AL	ND HIGHWAYS	
NOTE	1 PROJECT BO	DISTRICT; HIGH PROJECT DRAWING DUNDARIES or G	NAME TYPE EOGRAPHIC L		
DESIGN ENC DATE DESIGNED	PREPARED BY NOTE 2 GINEER / SUPERVISOR NOTE 5 NOTE 5 NOTE 6 NOTE 6 NOTE 7 NOTE 7	CAD No. NOTE	3 MATERIALS ENG. CHIEF DATE 8 PROJECT No. 8 NOTE 10	EPTED FOR CONSTRUCTION NOTE 4 HIGHWAY ENGINEER DRAVING No. NOTE 12 -	
		SPECIFIC DRAWI		N.T.S	
NOTE 3 - HEAD REGI DISTE NOTE 4 - HEAD SIGN	DQUARTERS DRAN ONAL DRAWINGS RICT DRAWINGS DQUARTERS DRAN IS AND DATES	WINGS - DIRECT - MANAGER, PI - DISTRICT HIGH WINGS AND MAJO	OR SIGNS AND ROFESSIONAL S IWAY MANAGER R PROJECTS -	DATES ERVICES SIGNS & SIGNS AND DATES - CHIEF HIGHWAY RECTOR SIGNS AND	ENGINEER
(Note NOTE 5 - DESIGNOTE 6 - CHEC NOTE 7 - DRAFNOTE 8 - NEGANOTE 9 - GEOTNOTE 10 - CONNOTE 11 - HIGHNOTE 11 - HIGHNOTE 12 - BRID	es 3 & 4 Char GNER INITIALS A CKER INITIALS AI TSPERSON INITIA ATIVE AND CAD FECHNICAL AND NTRACT DOCUME HWAY REGION N DGE NUMBER AN	nge Titles Accord ND DATES ND DATES ALS AND DATES NUMBER (assigne	ingly) ed by Branch IEERING CORRE IMBER Location) [1 - ER OF CONTRA	Staff) SPONDENCE FILE - 6] CT DRAWINGS	
NOTE 13 - BAR	RSCALE) GO (thaw layer GC	CONSULT)
Province of British Colum Ministry of Transportation GEOTECHNICAL and MATER	and Highways		A1 TITLE BLOCK NTS' FORMAT SUCTIONS		SECTION 3.3b

3.4.... REPRODUCTION AND STORAGE REQUIREMENTS

- 1 Fullsize Original Al Size (vellum) for Bridge contract
- 1 Fullsize copy for Geotechnical and Materials Engineering Drawing Storage
- 2 5.25 Floppy Disks (preferably Dysan 1.2M) for Geotechnical and Materials Engineering Storage

3.5.... SUMMARY LOG DRAWING (A1 SIZE) AUTOCAD INFORMATION (for inclusion with Bridge Contract Drawings)

PROTOTYPE FILE NAME: GHBASE1B

LOAD FILENAME:	FILENAME = GHBASE1B	(item 1 on main AutoCAD
		menu)

<u>VIEWS</u>: T = zooms title block Plot = Al size sheet

LAYERS :	GHBASE1	- Base Sheet
	GHTITLE1	- Title Block
	GCONSULT	 Box above Title Block for Consultants Name, Address and Logo
	GHTITREV	 Revision Box (frozen until required, move if necessary)
	CWTSTINS	 Summary Logs insertion points (freeze before final plot)
	GTESTHOLE	- Summary logs inserted on this layer
	GLEGEND1	- Materials Classification Legend (GLEGEND1) thaw before final plot

INSERT: WBLOCKED 8.5 x 11" Summary Logs insert onto layer GTESTHOLE using upper left corner of 8.5 x 11" sheet as insertion point.

BLOCKS :

CHTITLE1 = TITLE TEXT - insert on layer CHTITLE1 @ 0,0 and type in appropriate information. GLEGEND1 = MATERIALS CLASSIFICATION LEGEND - thaw layer GLEGEND1 before final plot CHTITREV = REVISION TEXT - insert on layer CHTITREV @ 0,0 and type in appropriate information.

PLOT:

Freeze layer GTSTINS before final plot
use view PLOT
1 = 1
Pen sizes

red = 0.25
yellow = 0.35
green = 0.50
cyan = 0.70

Drating				(E	(Pa)	Gre	datio			Index	£.	UD RO			/9
Delois	(m) taged	Somple Type	Biowcourt	Records (Ster	Grami	See	in the second	1	apert wp	*	Cassification	Descr	iplica	
	,8	3	成	12	68	15	.8	42	1		2	21	PAVEMENT		-
-	1			-									Loose to compact mediam to corne	brown-grey,	-
	2	5	11	.05		50	45	5	-	-	1	08	angular GRAVEL, I		-
- Q	3	s	19	ŏ		-	-	-	-	-	÷				-
	4	Π											Loose to compact	brown-serv.	1
3	5	5	10	.03		30	20	-	-	-	+	C1*	sub-migular, fine some medium to	CRAVEL.	-
1	6	5	32	.05											0
	7	Ť													1
- 2	8	5	23	.13		÷	-	÷	÷	-	÷.				-
	9	5				~			1	<u>.</u>	_	CP + 58	0.2m in diamete	5 le mbotit c i 8.6m	1
3	10													41.0419	3
-	11	Z	>100	a		85	30	5	÷	-	÷	GP+	Dents to very der	184.	1
												58-10	brown-grey, sub- sondy (medium to GRAVEL, tracs sill,	course)	
	12	5	47	-23		-	-	-	-	1			cobbles and bouid large boulder enco	lers, puntered	-
1 3	14	ŝ	>100	a		-	÷		-	-	-		from 8.6 to 9.3m		-
	15												- · ·		3
		5	91	-30		50	45	5		3	5	CP+59	Very dense, brown to coerse SAND a GRAVEL, COBBLES,	nd aub-rounded.	3
	16														-
9	17					65	30	5	-	-	•		Very dense, brown sub-angular, sand coarse) GRAVEL, b occasional COBBLE	y (medium to roce silt, S	-
SAMPLE TYP A - Auger G - Core	¢			. U	SHEAR S	fired	CTH Con	k/te opras	+loni	-		4 - 44	IESTS Indianal Analysia India Compression	FILE No. 01-61-35	

Lacatio Driter	n Si	λ.	9+9: MPTI	5.3.	(BRID 5.8m IOTH	RT.	OF	P-1	INE {-R	ODS	D A	1893	NT Devel Dolea	ion 14.7m 90-05-07	
Driling Details	Ē	Type	Ħ	(E) A	(9%)	.Sra	dəba I	n X		inder upert		oto	Descr	inline	-tre
Wheel	Depth	Somple	Blowcound	Records	Shear	E	Sond	EDet	•1	*P	٠	Casalication			Chief P
	1	Ē										-	PAVEMENT	0.3m -	-
	2	5	10	-ii		65	30	5	-	•	-	CP	Loose to compact sub-rounded to a roundy (medium to	ub-angalar,	-
-	3	\$	10	30.		-	E.	÷	-	-	-		GRAVEL, trace sift FILL		
8	4	s	18	25		4	÷	-	1		7	-		- #.0m -	+
	5								1				1)	2	
	6	5		:0:		3	-	*	*	*	-	1	Compact to very		-
#0/.08-s	7 8	5	5 100	0		55	35	10	-	•	-	CP-CM †SB	medium to coarse and sub-rounded some silt, roots a encountered hom	CRAVEL, ind fibres	
	9	s	72	з	1	-	÷	÷	-	-	-	1 8	COBBLE encounter 7.3 to 7.6m		
*/is	10	2	>103	2		s,	-	-	÷.	÷	-				+
110177 4	11												Very dense, grey-	hrown	
-	13	2	57.	33		75	20	5 限	-	-	-	CP:	sandy (medium to sub-rounded to a GRAVEL trace soft	course);	
95/.15m -	14	5	>100	.08		3	5	0	2	-	2		PROVET DOCE BUT		
	15	s	85	a.		30	50	10					Very dense, brown	-14.3m	-
101	16		00	100				14		Ĩ	1	SP-SW	medium to charse gravelly (sub-roun some silt	groined,	
2	17					60	35	5	4	-		GP	Very Sense, grey- sub-angulor, sand coarse) GRAVEL 1	y (medium to	1
SAMPLE TYP & - Augus C - Core D - Occlean D - Spill S I - Shalby W - Work	e pren			12	DIFAR S - Unean - field - Lab V - Benno	Timed Vyrie drie	Car	hPu minee	elia			C = Co DS = D0 PP = 10	12515 chanical Analysis asial Compression incolidation est Stear pdd, Flastie Unite Siture Contend	FILE No. 01-61-35 DRAWN BY: YMI/KLASSCAU SLIFET of	p

Ociling		24		E	(64)	Gre	dalio	n X	Pr	indes operfi		.8	1
Detala	Depth (m)	Series 1	Slowcount	Records	Shear	Ganet	Sond	Lines	n	m	Ŧ	Castification	Description
1	1					80	15	5				CP ²	Compact, grey-brown some and, trace sit, Fitz
1	2	5	21	.18		- 60	25	15	2	•	-	Cut	Compost, red-brown, sondy (medium to dee
	3	\$	29	2		50	40	to	-	-	-	GP-CM	Compact, brown, medi comise SWD and sub to sub-imputer CRAVE
	4	5	43	2		65	30	5		2	_	58 ·	Gravely COBRES
1	5	-	10	1				5					Dense, grey, sub-round sub-angular, sondy (m course) GRAVEL and Cl phain 25m diameter,
1	6	5	35	.15		#5	13	-	7	-	5	CP	
1.4	7	5	62	23		60	35	5	-	-			Dense, grey, sub-ongo snime medium to court
1	9	5	58	25			4		4	~	2	CP	Very dense, grey-brown sub-angular to sub-ro saudy (medium to con
10/.13m	10		>100	0					_				trace sill
-	11	-2-	2100					Ĩ		-	Ĩ	-	
	12	s	58	,25		40	55	5	÷	s,	÷	SP4GP	Very slenss, brown, me
-	13	s	32	.23		ĺ,	-						to course SAND and sub-rounded GRAVEL trace ell
-	14	-						1					
	15 16	s	30	.23		65	30	5	÷		Ŧ	CP.	Dense, grey-brown, and sandy (medium to cost trace silt
	17					-15	50	5	÷	-	11.	SP+CP	Dense to very dense, g

_	Sample Type	Gorcount	8	60				p,	hdez operti		8			- Er
- E		30	Recovery	Shear	Grand	Sond	Fines	મ	٧p	v	Cassification	(lesp	iption	Other Lines
19	\$	91	.23		-	-	-	-	-	-				-
														-
20												Very dense, brown	-diax.	1
21	2	100	.08		85	30	5	Ξ.	-	-	(P+58	Very dense, brown sub-ongular, send coarse) GRAVEL, b occasional COUBLE	roce sill,	-
22														
23														-
24	2	90	0		-	-	_	-	-	-				-
25														-
26														2
27				_								25.5m END 0	F HDLE	-
28														1
29														-
														-
														-
32														
33														
34														-
35				÷		1								-
	-										w - 14	TESTS cherical Analysis	FILE No. 01-61-35	
	22 23 24 25 26 27 28 29 30 31 32 33 34	22 23 24 <u>x</u> 25 26 27 28 29 30 31 32 33 34	22 23 24 <u>5</u> 90 25 26 27 28 29 30 31 32 33 34	22 23 24 <u>5</u> 90 0 25 26 27 28 29 30 31 32 33 34 35	22 23 24 <u>5</u> 90 0 25 26 27 28 29 30 31 32 33 34 35	22 23 24 <u>x</u> 90 0 - 25 26 27 28 29 30 30 31 32 33 34 35	22 23 24 <u>x</u> 90 0 25 26 27 28 29 30 30 31 32 33 34 35	22 23 24 5 30 0 25 26 27 28 29 30 31 32 33 34 35 DHAR DISONIN MS	22 23 24 x 90 0 25 26 27 28 29 30 30 31 32 33 34 35	22 23 24 5 50 0 25 26 27 28 29 30 30 31 32 33 34 35	22 23 24 5 90 0 25 26 27 28 29 30 30 31 32 33 34 35	22 23 24 x 90 0 25 26 27 28 29 30 30 31 32 33 34 35	22 23 24 x 90 0	22 23 24 x 30 0 25 26 27 28 29 30 31 32 33 34 35 END OF HOLE END OF

Prime Below E 30 F 30 Properties 8 Bescription 19 100 2 60 35 5 - - - 0P Very dense, step-brown, sub-onputer, step-brown, s	Drilling		×		Ê	HTOH (age)	T	dalise			ODS Index	6	1.00	T			ſ
12/100 19 5 100 .2 60 35 5 - - CP Very dense, grey-brown, sub-onputer, sindy (median to come) CRUEL, trace with to come? 20 5 92 .2 45 50 5 - - CP Very dense, grey-brown, median to come? 19.5m 20 5 92 .2 45 50 5 - - CP Very dense, grey-brown, median to come? 19.5m 21 21 - 21 - - CP Very dense, grey-brown, median to come? 10.5m 22 23 21 - 70 25 - - CP Very dense, grey, sub-rounded, sody (median to comted) 24 5 100 .2 70 25 5 - - CP Very dense, grey, sub-rounded, sody (median to conte) 26 26 - 27 - - CP Very dense, grey, sub-rounded, sody (median to conte) 20/3m 27 - - - - - CP Very dense, grey, sub-rounded, sody (median to conte)				Bertourt			Gener	Sund	10er	-		-	Casticati	Qescrip	5on		
90/15m 20 5 92 2 45 50 5 - - - 0P Very dense, grey-hours, g	27/15m 40/15m 60/,15m	19		1						F	-	-	CP	Vely dense, grey-b sub-angular, sandy course) GRAVEL, tr		4	I
22 23 24 24 25 26 26 27 27 27 27 27 27 27 27 27 27	50/15m	20	5	92	2		45	50	5			_	CP	Very dense, grey-h	cown,		ľ
-22 23 24 24 25 26 26 27 27 27 27 27 27 27 27 27 27	35/ (5m 32/ 15m	21	Ê						-					and sub-rounded (DRAVEL.	9	
BM/15n 24 3 >100 2 70 25 5 - - off socky (medium in centre) 26 26 26 - - - off GRAVEL, trace set 26 27 - - - - - - - 26 27 - - - - - - - 27/33e 27 - - - - - - - 28 29 - - - - - - - - 30 - - - - - - - - 31 - - - - - - - - - 33 - - - - - - - - -	Æ	22														3	ľ
M/.1se -2.5 -100 .2 70 23 5 - - - 6P sandy (medium to control) -2.6 -2.6 -2.6 -	÷.	23														2	
AV.15n 225 26 10/15m 27 cs stim n	11/150	24	5	>100			70	26					ice/	Very dense, gray, a	ub-rounded,	100	
Her / Jac 27 - 5 - 5 + 100 n - <td>64/.15m</td> <td>25</td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td>32)</td> <td>Ű</td> <td></td> <td>1</td> <td>Ē.</td> <td></td> <td></td> <td>course)</td> <td>-</td> <td></td>	64/.15m	25	1				1	32)	Ű		1	Ē.			course)	-	
28 29 30 31 32 33	3	26														4	
29 -30 -31 -32 -33	40/33m	27	5	>100	0				4	-	÷					-	
30 31 32 33		28		-										27.3m END OF	HOLE	1	
31 32 33	- 4	29														į.	l
-32 -33		30														5	
-33	1	31														ġ	
-33	1	32														\$	
	1															1	
	- 3	10														1	
35	ł																

Drilling	1	×		E	(a ₀	- · · ·	datio			Index opera	-		ARY Doles	9
Delais	Depth (m)	KI HIS	Blowcount	Recordery (Shear Strength	Gore	Sand	Free	-	*P	-	Closedfication	Descript	lon
		5	25	.05		-	-	-	-	-	-			
1	19												Dense to very dense medium to course i engular to sub-rour	认用
	20											SP+GP	trace sit	10613
	21	4	65	23		15	50	3	2		L			
	22			ñ		1	ñ	1						
- 2	23													
	24										IJ			
175/04-	25	1	>100	1		85	10	5		1	1	CP.	Very dense, Sahl gro sub-rounded to sub	ey to
	26												GRAVEL, some coors trace sill	
78/15-	27													
78/15m 43/15m		2	2100	05		*	-	-	-	-	-	-	27.4m END OF	LIFH.
	28			1	D	n		37				~	6 m. m. m	100
	29		N.	U	K	1	Crossen,	in one	WELCOM .	R	10	1	RFD.	í.
	30		ř (1					7(4) 	N 18 Bay 115' 1	æ.,
-	31			2						a china	100		1017-	
	32			Support of	AND-	E.		1	1	n		1	¥ 62 × 9 -	
-	33			资				California (Marcal	F			2	SIZE	
100	34			÷	Ka		1	Ē	F	5.	-		JAL.	e.
	35			-			-	-	-	-	-			
SAUPLE TIP		_	-	10.0	SHEAR S	Sec. 6	1 Sec.	iPa Ipres	Fion			M := 34	ESTS Analysis	FILE
	4 200H			10.0	- Uncol - Faild - Cab V - Remo	Sec. 6	1 Sec.	npr##	FION			C = 16 C = 20 DI = Dir P = Ug	saidt Compression nacfédition util Sheat sid, Plustio Limita	IT-DFA

MATERIALS CLASSIFICATION LEGEND

	IOR IONS	SYMBOL	SOIL TYPE
110	9	GW	WELL GRADED GRAVELS OR GRAVEL-SAVID MIXTURES, < 5% FINES
SIIO	SIICS	GP	POORLY-GRADED GRAVELS OR GRAVEL-SAND MIXTURES, < 5% FINES
50	GRAVELLY	GM*	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES
NEC	5 S	GC*	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES
GRAINED		SW	WELL-GRADED SANDS OR GRAVELLY SANDS.
	SUILS	SP	POORLY-GRADED SANDS DR GRAVELLY SANDS, < 5% FINES
COARSE	ANNS	SM*	SILTY SANDS SAND-SILT MIXTURES
0	0.4	SC*	CLAYEY SANDS SAND-CLAY MIXTURES
	AND M <50	ML	HORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
SOILS	SILTS AN	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, CRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
8	<u>_</u>	OL	ORGANIC SILTS AND ORGANIC SILT-CLAYS OF LOW PLASTICITY
GRAINED	AND WI >50	MH	INORGANIC SILTS, MICACEOUS OR DIATOM- ACEOUS FINE SANDY OR SILTY SOILS, PLASTIC SILTS
NIC.		CH	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
la,	SILTS	OH	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
ORG	ANIC	Pt	PEAT AND OTHER HIGHLY ORGANIC SOILS
	SOIL	TS	TOPSOIL WITH ROOTS, ETC.
COB	BLES	SB	ROCK FRAGMENTS AND COBBLES, PARTICLE SIZE 75mm TO 300mm
iout	DERS	LB	BOULDERS, PARTICLE SIZE OVER 300mm
BEDI	ROCK	BR	BEDROCK
142; 142;	GC1: S GC2: S GC3: S	ut; SC1;	

GENERAL NOTES

_

GENERAL NOTES NOTE 1) The soil and groundwater conditions shown are representative of the test hole locations only. Conditions encountered during construction may vary. Cobble and boulder sizes are driller's estimate of the dimension encountered. NOTE 2) Field logs and laboratory logs are available for viewing at Geotechnical and Materials Engineering in Victoria. (Phone No. 387-1881) NOTE 3) Gradation and classification are based on a visual estimate unless otherwise noted under other tests. NOTE 4) BR - Bedrock Intact Rock Strength (See Canadian Foundation Manual, 2nd Edition, page 35.) 3.6 θ Hardy BBT Limited ÷ KLASSCAD DRAFTING SPECIALTIES 1:100 5m SCALE 1:100

_										
		MINISTI	RY OF	TRAN	SPOR	RTATIO	N AN	lumbi: D HIGHN NGINEER	FAY	
	CE	HIR		CRE				0. 4		
				AMAR						
Signation de une 90	нарина е Гал анста 1 го - 10 - 21	N PONISON S			Y LAP		ACCED SHEF H	med fish boxis	inoctio A/	я
	Га- аншя) ел - 10 - 21	N 5 10-15	K ME	ENNED'	Y LAH		DHE H	TED FOR DONS	ŧ7 III	X
SK HENH DE UNIT 90 DESKNED DESKNED DESKNED	Га- аншя) ел - 10 - 21	N 5 18-10-15 10-10-15	K DUE DUE HECATHE	ENNED RECOMM GENTCOME No. 92,84	Y LAH	E pa	DHE H	ionen sionen	Ř.	8

CANCEL PHINTS BEARING PREMOUS LETTER

Driðer	n 5 D	A	ER R	MER	BRIDA .4m	RT.	lo,	109	, N	EAR						and Highwa Projec Locali Drifer	FR m ST	aser A. 20	RIVE	TES B BRIC	RT.	No.	109	NE	EAR		JRN	
Drilling Details	Ē	Inpa	*	(m) A	[94]	-	dobo	n X	,	hde Toper			Description	etts		Drifting	(E	24	(E)			odalia	2.60	n	hde		3	ĺ
Blowcount _	Complete (1	Sample	Borcourt	Record	Steer	Gravel	2005	Free	Y,		•	Construction	Pears Arous	Other Te		Defails Blowcount Defails		Sancie	Recovery	Stear	Convet	Sand	E.	*1		-	3 Domitodion	
Details 80/,08m	1	-8	>100	0		÷	-	-	-	-	-	(GP) +58				70/.15m. 60/.07m	1	5>	100 .20		85	15	-	-	-	-	58 +G2	9
90/.08m	2 3	*	>100	.05		90	10	-	-	-	-	629 +58	Very dense GRAVEL, with some sand and COBBLES to 250mm becoming sandy			80/.10m	2	8>	100 0		-	-	-	-	÷	-	(GP) +LE +SE SP	6 9
65/.15m	4	5	5100	.10		65	35	-	-	-	-	GP +58	ond silly with depth	-		70/.05m. 90-03-05	1 I	*>	50.001		30	60	10	-	-	-	-51	ù.
48/.15m - 65/,15m	5 6	2	>100	.22		40	50	10	-	3	-	SP -SW				80/.12m	5	*	00.05		95	5	-		-	-	6P +58	
85/,15m -	7 8	2	>100	.10		25	55	20	-	-	-	514 2	Gravelly silty SAND 7.6	11		60/.15m	7 8	5>1	00.12		15	60	25	-	-	-	SM2 +58	
1	9	*	>100	.08		20	30	50	-	-	-	W.	Very hard, sandy, gravelly SILT, non-plastic	-		60/,08m	9	\$ \$1	00 0		-	-	-	ù:	-	-	SM) +58	ŝ
33/.15m 90/.10m -	10		>100	.18		30	50	20		-	-	SM 2		m —		60/,10m	10 11	\$>1	00.05		-	-	÷	i.	B	4	(GP) +(SB)
90/.15m	172	11	>100	.15		20	50	30	ž	Ξ	÷	SH 3 +		1			12											
00/.076m -	13 14	*	>100	0		-	-	-	-	-	-	58	Very dense gravely and silty SAND with some COBBLES to 200mm				13 14										LB	
50/,15m 90/,15m	15 16	Z	>100	.30		40	45	15	-	-	-	SM 1 + SB				65/.08m	6.6	\$ >1	00.07		60	35	5	4	-	-	CP +58	
103/.15m	17		>100				50					50 5W 1		-		2	17											
s - spill sy t - shelly W - Wash Winistry of Tr	anspo	rtatio			- Stand				_		W 19	56)	December 2017 Parage Stream Content SHEET Content Of Co	02 XE No.		5 - Spill 3 Y - Sheby W - Weeh	ransparl			- 51m						¥ 19		
A - Avent - Care D - Dentanon S - Spell 35 - Sheihy W - Wash Writty of Ir and Highways Project Location Driller	enspo FF ST	ASE	a R RI	7 VER 0.8,	- stand ESS BRIDG .4m	T E N	- H	-10)L NE	E	19	_O(Ceolectorical and IEST HC	02 XE No. ~1		Ministry of and Highway Project	ranspart FR/ STA	ation SER	RIVER	- Sim TES BRID	ST ge n rt,	 0. 1	-HC)L NE	E	19	_0 _N 0	(
S - Spall Sp - Shaday W - Wash Wash Wash Wash Wash Wash Wash Wash	FF ST D.	RO	a R Ri 19+9 BER1	VER 0.6. S	ES BRIDG	T E N RT. Gas	o. 1 ethou	-1C	DL NE ROT/	E AR Index ropert	CHU DRI	56) _O(RN CR _L	EEX Eex Eex Eex Eex Eex Eex Eex Eex	02 XE No. -1 14	, 8	Winistry of and Highway Project Locatio	FRV STA D.	stion SER 20 ROBI	RIVER +86.4 RTS	FES BRID . 6m	ST RT. RT.	la. 1 detho	-1C 109, d R	NE NE	AR AR Index operti	L 19 CHU DRIL	_O _N C	
s - Spill, st w - Wesh w - Wesh Winistry of It and Highways Project Location Dealing Details Nowcount -	enspo FF ST D. (u) tadag	ASE	a R Ri 19+9 BER1	VER 0.8, 3	BRIDG	T E N RT. Gas	o. 1 ethou	-1C	DL NE	E AR hde	CHU DRI	_O(Cestechoical and EST M Social Standard	02 XE No. 1 14	, 8	Ninistry of 1 and Highway Project Locatio Urillar Orifling Details Blowcount	FR/ STA D.	stion SER 20 ROBI	RIVER +86.4 RTS	TES BRID	ST RT. RT.	la. 1	HC 109,)L NE	E AR RY Index		_0 _N 0	
s - Spill, st w - Wesh w - Wesh Winistry of It and Highways Project Location Dealing Details Nowcount -	FF ST D.	RO	a R Ri 19+9 BER1	VER 0.6. S	ES BRIDG	T E N RT. Grav	o. 1 ethou	-1C	DL NE ROT/	E AR Index ropert	CHU DRI	56) _O(RN CR _L	Cestechoical and EST M Social Standard	02 XE No. -1 14	, 1	Ministry of 1 and Highway Project Uration Drilling Details	FRV STA D.	stion SER 20 ROBI	RIVER +86.4 RTS	FES BRID . 6m	ST RT. RT.	la. 1 detho	-1C 109, d R	NE NE	AR AR Index operti	L 19 CHU DRIL	_O _N C	CF
S - Spill 3: W - Work Writely of Ir and Highways Project Location Drillor Retains Rowcount 	FF ST D. (E. 984) 1920	A TRO SAL PARTY	a R Ri 19+9 BER1	VEC.S (W) Janoba	ES BRIDG	T N RT. U Grav	l- a. 1 dolior Jolior		DL NE ROT/	E AR Index ropert		_O(RN CR L	Cestechoical and EST M Social Standard	02 XE No. -1 14	, 8	Ninistry of 1 and Highway Project Locatio Urillar Orifling Details Blowcount	ronsport FR/ STA D. 王 王 19 20 21=	ation SER 20 ROBI	RIVER +86.4 RTS geodesia (u)	FES BRID . 6m	CT RT.	la. 1 detho		NE NE	AR AR Index operti	L 19 CHU DRIL	_O _N C)(
S - Spill 31 Winistry of It and Highways Project Locetion Driller Driller Driller Betails - - 83/.15m - -	FF ST D. (E) Star 19	A TRO SAL PARTY	A RI 9+9 BERI Junoung	VEC.S (W) Janoba	ES BRIDG	T N RT. U Grav	l- a. 1 dolior Jolior		DL NE ROT/ Pr	E AR Index Index	CHU DRI	SS) CRN CR L +SB SP	EEX Devotion 325.36m Dates 90-02-1 Description	02 XE No. -1 14	, k	Ministry of 1 and History Project Locatio Drillar Defails Blowcount Details	FRV STA D. 19 20	ation SER 20 ROBI	RIVER +86.4 RTS geodesia (u)	FES BRID . 6m	CT RT.	la. 1 dethou) NE Ph	E AR Index operti	N 19 CHU DRIL	S6))(
S - Sent 3: W - West Writely of Ir and Highways Project Location Drifer Details Rowcount - - - - - - - - - - - - - -	61100 FFST D. (三) 19 20 21 22 23 24	RO States	A RI 9+9 BERI Junoung	VER.6. (W) Janoozal 12	ES BRIDG	T N RT. U Grav	l- a. 1 dolior Jolior		DL NE ROT/ Pr	E AR Index Index	CHU DRI	SS) CRN CR L +SB SP	Cestechoical and TEST IK Wateriols Branch 90 EEX Bevolica 325.36m Dates 90-02-1 Description Very dense SANO and GRAVEL with some silt and some COBBLES	02 XE No. -1 14	, k	Ministry of 1 and History Project Locatio Drillar Defails Blowcount Details	romport FR/ STA D. 19 20 21= 22 23 24=	stion SER 20 ROBI	RIVER +86.4 RTS (1) June 8 000,08	FES BRID . 6m	CT RT.	la. 1 dethou) NE Ph	E AR Index operti	N 19 CHU DRIL	S6))(
S - Spell, 3s W - West Waiting Fried Inter Driter Driter Driter Beating Details 	mpo FFST D. 19 20 21 22 23	RO States	4 R RI 9+9 BERT 100	VER.6. (W) Janoozal 12	ES BRIDG	T N ERT. J Gov Tegy 10	I- o. 1 sotior E	-IC 109, 10		E AR hden ropert	CHU DRIL	 	Cestechoical and TEST IK Wateriols Branch 90 EEX Bevolica 325.36m Dates 90-02-1 Description Very dense SANO and GRAVEL with some silt and some COBBLES	02 XE No. -1 14	, k	kinistry of 1 and Higheny Project Locatio Drilling Details Biowcount Details	romport FR/ 5 19 20 21= 22 23 24= 25	stion SER 20 ROBI	RIVER +86.4 RTS 00 .08	FES BRID . 6m	GE N RT.	dation dation	-1C 109, d R 1 2 5)L NE Prota	E AR Index operti	N 19 CHU DRIL	_O	
S - Sent 3: W - West Writestry of Ti and Highways Project Location Details Rowcount - Jetails - - - 100/.05m - - - - - - - - - - - - -	19 20 21 22 23 24 25 26	A R add and and and and and and and and and	4 R RI 9+9 BERT 100	VER.6. [W] Jaconal 12 0	ES BRIDG	T N RT. 1985	I- o. 1 sotior E	-IC 109, 10		E AR hden ropert	CHU DRIL	 	Very dense SANO and GRAVEL with some silt and some COBBLES to 200mm	02 XE No. 	, 8	kinistry of 1 and Higheny Project Locatio Drilling Details Biowcount Details	E FR/ 51 19 20 21= 22 23 24= 25	se>1	RIVER +86.4 RTS 000.08	FES BRID . 6m	T I I I I I I I I I I I I I I I I I I I	la. 1 detheo dation JES 95	-1C 109, 8 R 12 5	Prota	AR AR Index P	L 19 CHU DRIL	S6) 	
S - Sent 3: W - West Writestry of Ti and Highways Project Location Details Rowcount - Jetails - - - 100/.05m - - - - - - - - - - - - -	19 21 22 23 24 25	A R add and and and and and and and and and	6 R R/ 9+9 BERT 100	VER.6. [W] Jaconal 12 0	ES BRIDG	T N. RT. J Grav. 10 80	l- a. 1 dotion JE	HC 09.		E AR bdea ropert	CHU DRIL	 	Very dense SANO and GRAVEL with some silt and some COBBLES to 200mm	02 XE No. 		kinistry of 1 and Higheny Project Locatio Drilling Details Biowcount Details	romport FRU 517 19 20 21= 22 23 24= 25 26	se>1	RIVER +86.4 RTS 000.08	FES BRID . 6m	T I I I I I I I I I I I I I I I I I I I	la. 1 detheo dation JES 95	-1C 109, 8 R 12 5	Prota	AR AR Index P	L 19 CHU DRIL	_O	CE
S - Spill, 3s W - West Writicity of Ti and Highways Project Location Details Rowcount - letails - - - - - - - - - - - - -	19 20 21 22 23 24 25 26 27 28 29 30	A TO AL TARKS STATES	4 R Ri 9+9 BERI 100	VER.6. [14] Incom (14) 12 0 13 -	Red today Pergentian Paragraphic	T N. RT. J Grav. 10 80	10 20	10 10		E AR	CHU DRI	54) O(RN CR 	Very dense, SANO and DRAVEL with some allt and some COBBLES to 200kmm	02 XE No. 		kinistry of 1 and Higheny Project Locatio Drilling Details Biowcount Details	E 20 21 22 23 24 25 26 27 28 29 30	se>1	RIVER +86.4 RTS 000.08	FES BRID . 6m	T I I I I I I I I I I I I I I I I I I I	la. 1 detheo dation JES 95	-1C 109, 8 R 12 5	Prota	AR AR Index P	L 19 CHU DRIL	_O	
S - Spill, 31 W - West Waiterly of Tir and Highways Project Location Driter Details 	19 20 21 22 23 24 25 26 27 28	A TO AL TARKS STATES	4 R Ri 9+9 BERI 100	VER.6. [14] Incom (14) 12 0 13 -	Red today Pergentian Paragraphic	T N. RT. J Grav. 10 80	10 20	10 10		E AR	CHU DRI	54) O(RN CR 	Very dense SANO and GRMCL with some silt and some COBBLES to 200mm 26.5r Driller suspects BEDROCK, but is unable to recover sufficient core to be certain	02 XE No. 		kinistry of 1 and Higheny Project Locatio Drilling Details Biowcount Details	19 20 21= 22 23 24= 25 26 27 28 29	se>1	RIVER +86.4 RTS 000.08	FES BRID . 6m	T I I I I I I I I I I I I I I I I I I I	la. 1 detheo dation JES 95	-1C 109, 8 R 12 5	Prota	AR AR Index P	L 19 CHU DRIL	_O	
S - Spell, 3s Winistry of Li and Highways Project Locetion Driller Driller Driller Bay/15m 	19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	A TO AL TARKS STATES	4 R Ri 9+9 BERI 100	VER.6. [14] Incom (14) 12 0 13 -	Red today Pergentian Paragraphic	T N. RT. J Grav. 10 80	10 20	10 10		E AR	CHU DRI	54) O(RN CR 	Very dense SANO and GRMCL with some silt and some COBBLES to 200mm 26.5r Driller suspects BEDROCK, but is unable to recover sufficient core to be certain	02 XE No. 	~ *	kinistry of 1 and Higheny Project Locatio Drilling Details Biowcount Details	FRX FRX D E	se>1	RIVER +86.4 RTS 000.08	FES BRID . 6m	T I I I I I I I I I I I I I I I I I I I	la. 1 detheo dation JES 95	-1C 109, 8 R 12 5	Prota	AR AR Index P	L 19 CHU DRIL	_O	
S - Sent 3: Very - Weath Very - Weath Very - Weath Notice Project Locoton Driter Details 	19 20 21 22 23 24 25 26 27 28 29 30 31 32	A TO AL TARKS STATES	4 R Ri 9+9 BERI 100	VER.6. [14] Incom (14) 12 0 15 -	Red today Pergentian Paragraphic	T N. RT. J Grav. 10 80	10 20	10 10		E AR	CHU DRI	54) O(RN CR 	Very dense SANO and GRMCL with some silt and some COBBLES to 200mm 26.5r Driller suspects BEDROCK, but is unable to recover sufficient core to be certain	02 XE No. 		kinistry of 1 and Higheny Project Locatio Drilling Details Biowcount Details	EX. 0 19 20 21= 22 23 24= 25 26 27 28 29 30 31 32	se>1	RIVER +86.4 RTS 000.08	FES BRID . 6m	T I I I I I I I I I I I I I I I I I I I	la. 1 detheo dation JES 95	-1C 109, 8 R 12 5	Prota	AR AR Index P	L 19 CHU DRIL	_O	

and Highway		rlati	70	-	ES	T	1	10	11	E		0	Geolechni		TEST HOLE	N
Project Locatio Uriller	n St	٨		36.4,	BRIDG .6m	E N RT,		109,	NE	AR			J Vaterials REEK Elevati Dotes	on 326	90-2 5.12m -03-03	
Driffing		N.		E	(6 ⁰ 0)	Gro	datio	1		Index operf		.8				
Details	(m) ribged	Sample 1	Sivecourt	Recovery	Strength	Fund	Read	Fines	٣		Ŧ	Carsteator	Descri	plion		
Blowcount _				~	01.01	-	01	1~	1	f		_			-18.4m -	
Details	19												- 92			
	20														÷	1
100/.08m	21	8	>100	.08		Ξ	95	5	5	Ξ	-	SP	Very dense SAND with a trace of a	in .	-	1
	22														-	1
	23														2	1
90/.05m	24	8	>100	0			4	×.	4	-	4					
	25										1	-	Date much of	1000V	-24.6m-	1
-	26	5	-1	0	1	-	-	-	-	~	-	(8R)	Driller reports BEI that he couldn't			
54	27		-			-		-					26.5m EN0_0F	HOLE	-	ł
-	28														-	
	29														3	
-	30														-	
1	31															
.1	32														3	
1	33												×		1.03	
-	34															
	35															
-	20			11				11								1

Description
nse sandy GRAVE BBLES to 120mm
nse gravelly SANI It and COBBLES
BOULDER se silly SAND vel se GRAVEL
0
nse sandy GRAVE ce sill and some S to 150mm
OULDER
ne silt and COBB ne silt and COBB
END OF HOLE

Ceolechnical and Wateriais Branch 90-2

Develion 326.12m Doles 90-03-03

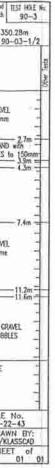
Description

Very dense GRAVEL with some sond and COBBLES to 150mm

(GP) +LB - +SB GRAVEL with LARCE BOULDERS SP and COBBLES to 180mm

GP Very dense gravelly SAND +SB and GRAVEL, some is sity, contains COBBLES to 250mm

SM2 +SB 1B LARGE BOULDER


LB LARGE BOULDER

(GP) Driller reports GRAVEL +(SB) and COBBLES to 100mm

CP +SB Very dense anndy CRAVEL and COBBLES to 120mm

τ.

DRA	WING	REDU
	APP	54 H- 89-
	HALF	SIZE.

MATERIALS CLASSIFICATION LEGEND

MAJOR		SYMBOL	SOIL TYPE		
COARSE GRAINED SOILS	Solis	GW	WELL CRADED GRAVELS OR GRAVEL-SAND MIXTURES, < 5% FINES		
	Y SO	GP	POORLY-GRADED GRAVELS OR GRAVEL-SAND MIXTURES, < 5% FINES		
	CRAVELLY CRAVELLY	GM*	SILTY GRAVELS; GRAVEL-SAND-SILT MIXTURES		
	0.8	GC*	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES		
		SW	WELL-GRADED SANDS OR GRAVELLY SANDS, < 5% FINES		
	AND	SP	POORLY-GRADED SANDS OR GRAVELLY SANDS, < 5% FINES		
	SAND	SM*	SILTY SANDS SAND-SILT MIXTURES		
	0	SC*	CLAYEY SANDS SAND-CLAY MIXTURES		
FINE GRAINED SOILS	MI >50 CLAYS MI <50	ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY		
		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS		
		OL	ORGANIC SILTS AND ORGANIC SILT-CLAYS OF LOW PLASTICITY		
		ΜΗ	INORGANIC SILTS, MICACEOUS OR DIATOM- ACEOUS FINE SANDY OR SILTY SOILS, PLASTIC SILTS		
	SILTS W	CH	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS		
		OH	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS		
ORGANIC SOILS Pt TOPSOIL TS COBBLES SB BOULDERS LB BEDROCK BR		Pt	PEAT AND OTHER HIGHLY ORGANIC SOILS		
		TS	TOPSOIL WITH ROOTS, ETC.		
		SB	ROCK FRAGMENTS AND COBBLES, PARTICLE SIZE 75mm TO 300mm		
		LB	BOULDERS, PARTICLE SIZE OVER 300mm		
		BR	BEDROCK		
GM1; GM2; GM3;	GC1; SI GC2; SI GC3; SI	41; SC1; 42; SC2; 43; SC3;			

GENERAL NOTES

- NOTE 1) The soil and groundwater conditions shown are representative of the test hole locations only. Conditions encountered during construction may Conditions encountered during construction may vary. Cobble and boulder sizes are driller's estimate of the dimension encountered. NOTE 2) Field logs and laboratory logs are available for viewing at Geotechnical and Materials Engineering in Victoria. (Phone No. 387-1881) NOTE 3) Gradation and classification are based on a viewed estimate unlarge obtaining established and
- visual estimate unless otherwise noted under "other tests".
- NOTE 4) BR Bedrock Intact Rock Strength (See Canadian Foundation Manual, 2nd Edition, page 35.)

020	Province of British Columbia MINISTRY OF TRANSPORTATION AND HIGHWAYS GEOTECHNICAL AND MATERIALS ENGINEERING							
I have a	SOUTH CARIBOO DISTRICT, MEADOW CREEK ROAD FRASER RIVER BRIDGE No. 109 TEST HOLE LOGS NEAR CHURN CREEK							
				10775-00	1 10 10 11 10 1	- 100 parts - 50		
	DESIGN ENG	Marines (-11	10775-00	1 10 10 11 10 1	CREEK		TED FOR CONSTRUCTION
		27	- 99/09/d	NEAF	R CHURN	CREEK	ACCOP CONET IN BATE	TED FOR CONSTRUCTION CHECK DEGRECOP Dévenue Inc.

1

SECTION 4 Foundation Investigation Drawing

SECTION 4 - FOUNDATION INVESTIGATION DRAWING (AutoCAD Prototype <u>GHBASELA</u>) (for inclusion in Geotechnical Report at approximately 47% reduction, 11" X 17")

4.0.... PREPARATION STANDARDS

Preferred method of drafting, AutoCAD Release 10 and Geotechnical and Materials Engineering Standards.

See 4.8 and 4.9 - AutoCAD information See 4.10 - Examples

4.1.... PLAN (show test hole locations and pertinent information)

- Control Line with Stationing
- Test Hole Locations and Number
- Existing and Proposed Bridge Outline
- Proposed Approach Fill Outline and Rip Rap
- Existing and Proposed Highways, Roads and Railway, etc.
- Existing and Proposed Utilities and Existing Buildings
- Water Levels and Drainage Features
- Contours (.5m or 1.0m intervals)
- Other Entities which may influence Foundation Design (eg. old piers or abutments, temporary detours, rock outcrops)
- North Arrow
- Appropriate labeling of Features
- Scale (metric)
 - Small Structures (1:100) or (1:250)
 - Large Structures (1:250)
- 4.2.... PROFILE (including test hole logs)

- Test hole Logs to include (see 4.9)

- Station, Offset, Elevation and Test Hole No.
- Water Table and Date
- Log (conclusion of log to be designated End or Refusal)
- Soil Classification symbols
- Disturbed, Undisturbed and Cored samples
- Blowcounts
- Attebergs (wL, wP, W)
- Proposed Bridge Structure when available
- Groundline along Control Line and Finished Grade
- Axis Showing Stationing and Elevation
- Water Levels of River (extreme, high and current)
- Scale same as plan (natural)

4.3.... KEY MAP (appropriate scale to define location of site)

- Towns and Cities
- Highways, Roads, and Railways
- Lakes, Rivers and Creeks
- Bridge Site noted

4.4.... MATERIALS CLASSIFICATION LEGEND (GLEGEND1)

See Appendix A

- 4.5.... GEOTECHNICAL AND MATERIALS ENGINEERING TITLE BLOCK (CHTITLE1) AND SIGNING INSTRUCTIONS (See 3.3a and 3.3b)
 - Type of Drawing (FOUNDATION INVESTIGATION)
 - This drawing currently is not included in Bridge Contract, therefore signing by Ministry Executive and drawing number are not required.

4.6.... REPRODUCTION AND STORAGE REQUIREMENTS

- Fullsize original Al Size (vellum) for Geotechnical and Materials Engineering Drawing Storage
- -10 Paper Copies Approximately 47% for inclusion in Geotechnical Report (11" X 17")
- 2 5.25 Floppy Disk (Preferably Dysan 1.2M) for Geotechnical and Materials storage

4.7.... DETAIL DRAWINGS

 Other detailed drawings maybe required to define a specific site such as cross sections, offset profiles and construction details, etc.

4.8 FOUNDATION INVESTIGATION AUTOCAD INFORMATION (GHBASELA)

STANDARD LAYERS GUIDE

LAYER N	JAME	COLOR	LINETYPE
0	ATE	COLOR	Continuus
Concernance of the second		and the second s	"
GRCO		red	
GYCO		yellow	
GGCO		green	
GCCO		cyan	
GRDA		red	dashed
GYDA		yellow	.u.
GGDA		green	
GCDA		cyan	
CYCE		yellow	center
0100		J	
CRTXT		red	continuous
		yellow	"
GYTXT		-	
GGTXT		green	
GCTXT		cyan	
PLAN:			
	CENTERLINE - GY	CE, GYCO	
	CONTOURS - GRCO	, GYCO	
	BRIDGE OUTLINE		
	- Existin		
	- Propose		
	if prop	osed bridge outline not	available, use GYCO for
		g bridge outline	
	ROADWAY -		
	- Paved -	GGCO	
	- Gravel	- GGDA	
	- Shoulde		
	DITO VIL NO		
	WATER LEVELS -		
		evel - GGDA	
	- High wa	ter Mark - GYDA	
	- Extreme	W.M GYDA	
	and the second		
	TESTHOLES - GGC	0	
PROFILE			
	BRIDGE - GYCO		
	GROUNDLINE - GG	CO	
	GRADE - GYCO		
	WATER LEVELS -	GYDA	

TESTHOLES - GYCO

AXIS - GYCO

KEY MAP:

MAIN ROADS -

Existing - GGCO Proposed - GGDA

SECONDARY ROADS -Existing - GYCO

Proposed - GYDA

RIVERS AND LAKES - GYCO

CREEKS - GRCO

BORDERS - GCCO

LEGEND: - thaw layer GLEGEND1

TEXT:

TITLES - GGTXT

NOTATIONS - GRTXT, GYTXT, GGTXT

2.0	mm	٠	GRTXT	-	RomanS
2.5	mm	-	GYTXT	÷	11
3.5	mm	$\hat{\boldsymbol{x}}$	GCTXT	×	n
5.0	mm	×	GCTXT	٠	. W.

WATER FEATURES:

2.0 mm - GRTXT - RomanS 2.5 mm - GYTXT - " 3.5 mm - GGTXT - 15° slope - RomanC 5.0 mm - GCTXT - 15° slope - "

4.9 - GEOTECHNICAL AUTOCAD TEST HOLE LOGS FOR DRAWINGS (Scales 1:50, 1:100, 1:200, 1:250)

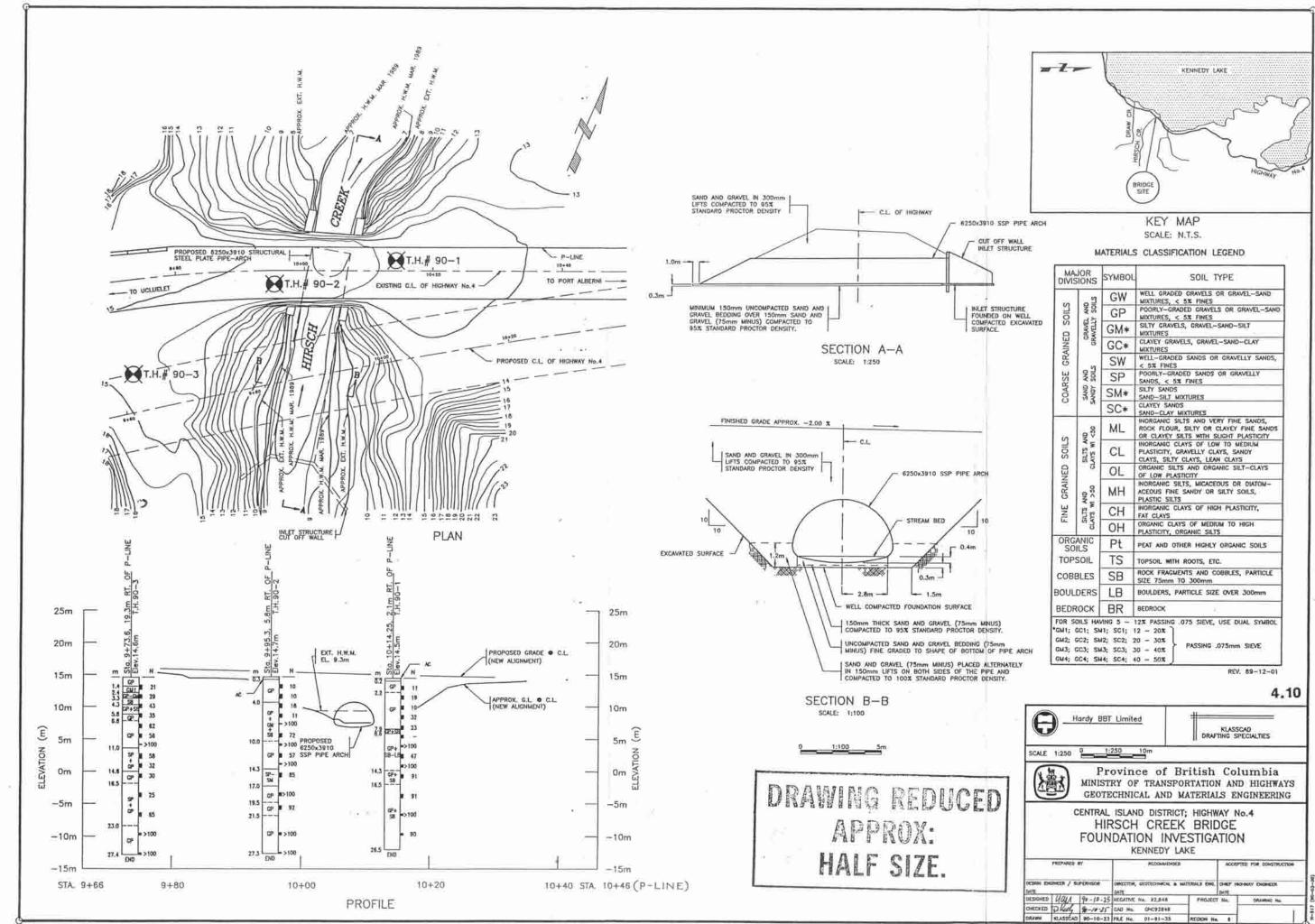
PROTOTYPE FILE NAME: GHLOG50, GHLOG100, GHLOG200, GHLOG250

LOAD FILENAME: FILENAME - PROTOTYPE (item 1 on AutoCAD main menu, new drawing) eg. 90-1 - GHLOG200

<u>VIEWS</u>: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 (depth in meters)

LAYERS: 0

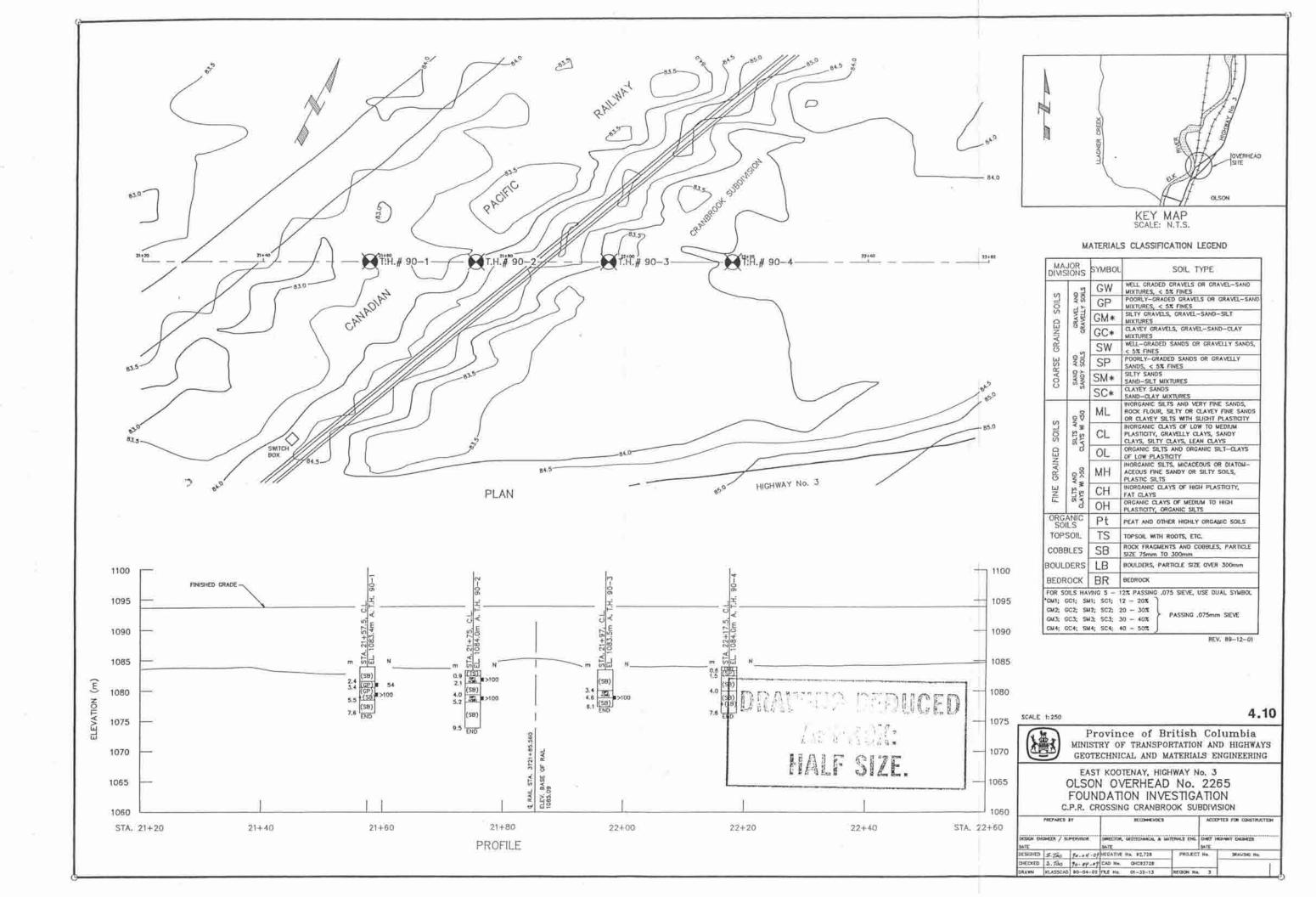
LISP: IN - LISP routine which inserts the following blocks simply by multiplying the depth by 10. eg. 50 inserts block @ 5.0 m 119 inserts block @ 11.9 m (Use AutoCAD insert command to insert block -LOG)

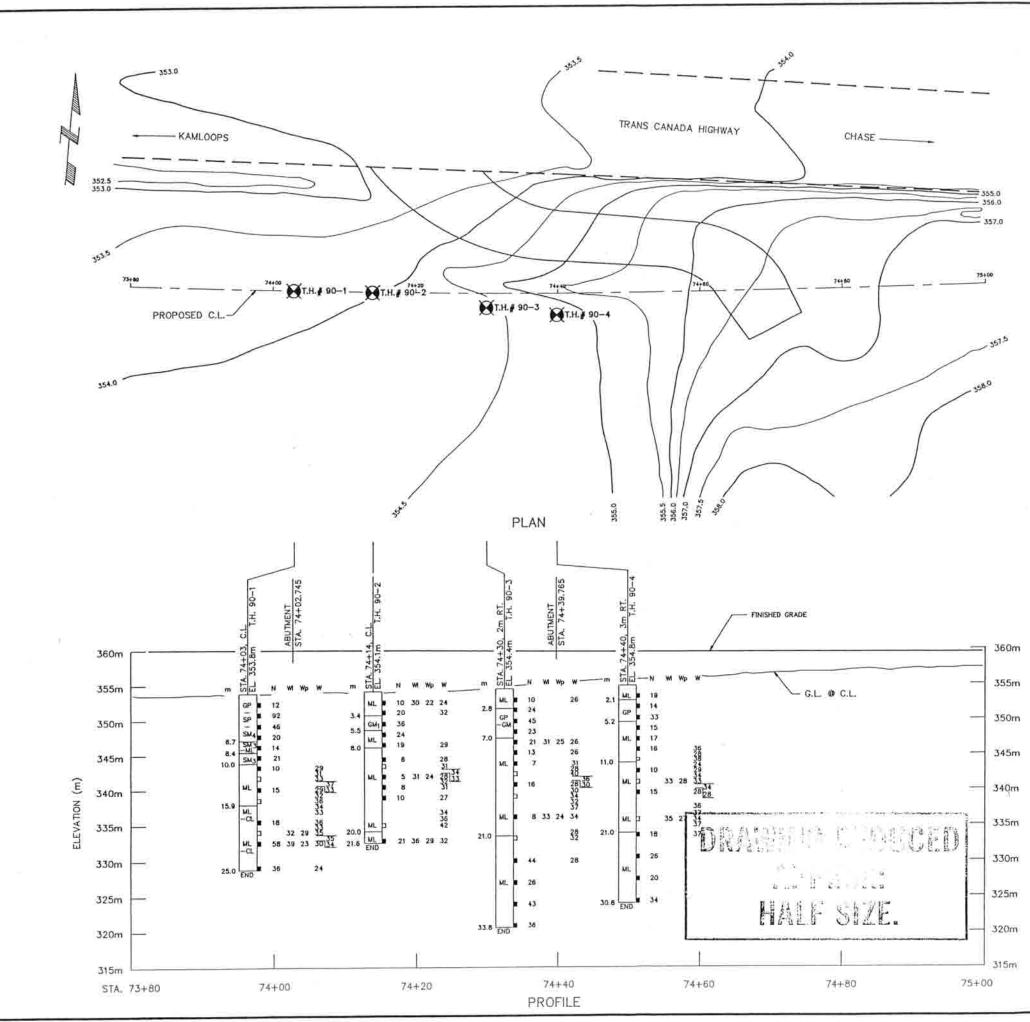

To prepare a test hole log which is mirrored, type BLOCKS : [- L] following each block name. eg. LOCN-L UD6-L - Test Hole label (verticle) insert at depth 0 - LOCN - Location, metre and blow count - LOCA = Location, metre, blow count and atterberg symbols - Test Hole Labels (Horizontal) - LocN-H = Location, metre and blowcounts - LocA-H = Location, metre, blowcount and atterberg symbols LOG = TEST HOLE LOG OUTLINE (USE AutoCAD insert command) - insert @ 0,0 on layer 0 (X - scale Factor = 1) (Y - scale Factor = depth of hole) eg. Y scale Factor 2.9 creates a test hole log 2.9 metres deep. E = END OF HOLE- defines test hole which has reached required depth and depth (m). R = REFUSAL - defines depth which hole was terminated due to material density encountered and depth (m). B = BOUNDARY - shows defined material boundary and depth (m). DB - DASHED BOUNDARY - shows approximate material boundary and depth (m). WT-M = WATER TABLE MEASURED and date WT-E = WATER TABLE ESTIMATED and date WT-A = WATER TABLE ARTESIAN and date DO = DISTURBED SAMPLES - DO used for disturbed samples driven greater D1 D2 than 1.0m or samples with dual results D3 D4 - D1 to D10 are for disturbed samples driven D5 .1m to 1.0m D6 D7 D8 D9 D10

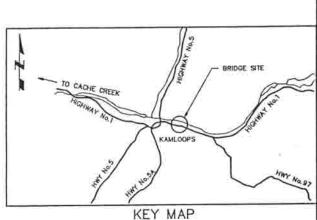
UD1 = UNDISTURBED SAMPLES UD2 UD3 UD4 - same as above UD5 but with undisturbed samples UD6 UD7 UD8 UD9 UD10 P = Piezometer - insert @ tip elevation

WBLOCK:

each test hole log for insertion into drawing.insert into drawing with the following Scale Factors.


> GHLOG50 1:50 Scale - Scale Factor of 2 GHLOG100 1:100 Scale - Scale Factor of 1 GHLOG200 1:200 Scale - Scale Factor of .5 GHLOG250 1:250 Scale - Scale Factor of .4




π.

1

CANCEL PRINTS BEARING PREVIOUS LETTER

SCALE: N.T.S.

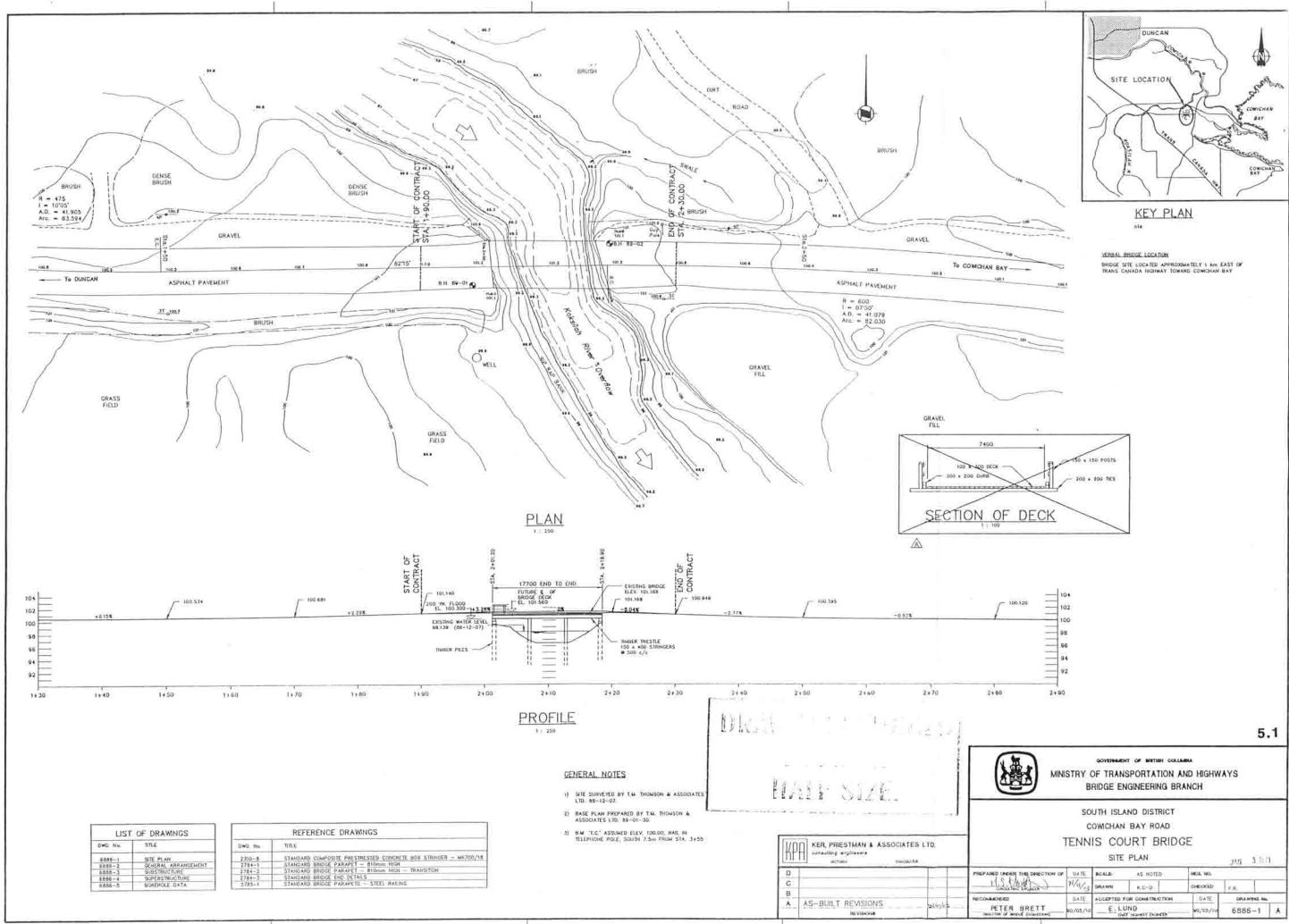
MATERIALS CLASSIFICATION LEGEND

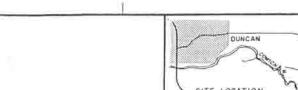
	JOR	SYMBOL	SOIL TYPE				
	1.7	GW	WELL GRADED GRAVELS OR GRAVEL-SAND				
SOILS (Y SOILS	GP	POORLY-GRADED GRAVELS OR GRAVEL-SAN				
	GRAVEL	GM*	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES				
GRAINED	9.99	GC*	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES				
GRJ		SW	WELL-GRADED SANDS OR GRAVELLY SANDS, < 5% FINES				
SE	AND	SP	POORLY-GRADED SANDS OR GRAVELLY SANDS, < 5% FINES				
COARSE	SAND /	SM*	SILTY SANDS SAND-SILT MIXTURES				
	5	SC*	CLAYEY SANDS SAND-CLAY MIXTURES				
GRAINED SOILS	MUD-	ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY				
	SILTS AV	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS				
8	. 9	OL	ORGANIC SILTS AND ORGANIC SILT-CLAYS				
GRAIN	AND M >50	мн	INORGANIC SILTS, MICACEOUS OR DIATOM- ACEOUS FINE SANDY OR SILTY SOILS, PLASTIC SILTS				
FINE		CH	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS				
Ē	SILTS	OH	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS				
	ANIC	Pt	PEAT AND OTHER HIGHLY ORGANIC SOILS				
TOP	SOIL	TS	TOPSOIL WITH ROOTS, ETC.				
COB	BLES	SB	ROCK FRAGMENTS AND COBBLES, PARTICLE SIZE 75mm TO 300mm				
BOUL	DERS	LB	BOULDERS, PARTICLE SIZE OVER 300mm				
	BEDROCK BR		BEDROCK				
•GM1; GM2; GM3;	GC1; S GC2; S GC3; S	MNG 5 - M1; SC1; M2; SC2; M3; SC3; M4; SC4;	20 - 30% 30 - 40% PASSING .075mm SIEVE				

REV. 89-12-01

4.10

SCALE 1:250 圖 Province of British Columbia MINISTRY OF TRANSPORTATION AND HIGHWAYS GEOTECHNICAL AND MATERIALS ENGINEERING THOMPSON DISTRICT, TRANS CANADA HIGHWAY KIPP ROAD OVERPASS No. 2948 FOUNDATION INVESTIGATION BARNHARTVALE TO CAMPBELL CREEK ACCEPTED FOR CONSTRUCTION PROPARED T RECONNECT DESIGN ENGINEER / SUPERVISION DESCUTOR, GEOTEDHICK, & MATCHINES END. CHEF HICHMAY DADAETR DATE NEGATIVE No. 92.749 DRAMPIC No. PROJECT No. DESIGNED CAD No. CHC92748 DIECKED ANN RLASSCAD 90-04-21 FRE No. 01-22-60 REGON No. 1


SECTION 5 Bridge Branch Site Plan


SECTION 5 - BRIDGE BRANCH SITE PLAN CONTRACT DRAWING

5.0.... REQUIREMENTS

Inform structural designer of test hole locations, number and collar elevation for inclusion on Bridge Contract Site Plan drawing.

See 5.1 - Example

SECTION 6 Geotechnical Personnel

SECTION 6 - CONTACTS

6.0..., GEOTECHNICAL AND MATERIALS ENGINEERING STAFF

- Turgut Ersoy, P. Eng. 356-0390 Manager Geotechnical Engineer
 - Kirby Rimer 387-7706 Geotechnical Engineering Technician

DESIGN SECTION

- Bryan Kern, P. Eng. 387-7704 Senior Geotechnical Engineer
- Shannon Tao, P. Eng. 387-7705 Geotechnical Engineer
- Ivan Grof, P. Eng. 387-7701 Geotechnical Engineer

TERRAIN SECTION

- Don Lister, P. Eng. 387-7703 Senior Terrain Evaluation Engineer
- Rob Buchanan 387-7702 Senior Terrain Analyst

GENERAL	PHONE	NUMBER	387-1881
FACSIMIL	E		356-0624

ADDRESS Geotechnical and Materials Engineering Branch Ministry of Transportation and Highways 4A - 940 Blanshard Street Victoria, B.C. V8W 3E6 6.1.... DRAFTING SERVICES

Klas CAD Drafting Specialties 4954 Wesley Road Victoria, B.C., V&Y 1Y9 Phone No.: 658-5537 Attention: Wes or Shelley Klassen

The above firm prepares Geotechnical AutoCAD drawings. Their charge rate is approximately \$30.00/hr.

SECTION 7 AutoCAD Library Disks

APPENDIX A Legend and Definition of Aggregates

MATERIALS CLASSIFICATION LEGEND

	IOR IONS	SYMBOL	SOIL TYPE
	S	GW	WELL GRADED GRAVELS OR GRAVEL-SAND MIXTURES, < 5% FINES
ED SOILS	Y SOILS	GP	POORLY-GRADED GRAVELS OR GRAVEL-SAND MIXTURES, < 5% FINES
	GRAVEL	GM*	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES
GRAINED	GR	GC*	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES
	s	SW	WELL-GRADED SANDS OR GRAVELLY SANDS, < 5% FINES
SSE	AND	SP	POORLY-GRADED SANDS OR GRAVELLY SANDS, < 5% FINES
COARSE	SAND SANDY	SM*	SILTY SANDS SAND-SILT MIXTURES
Ŭ	S	SC*	CLAYEY SANDS SAND-CLAY MIXTURES
10	AND L <50	ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
SOILS	SILTS AI CLAYS w _L	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
VED	CL	OL	ORGANIC SILTS AND ORGANIC SILT-CLAYS OF LOW PLASTICITY
GRAINED	AND L >50	MH	INORGANIC SILTS, MICACEOUS OR DIATOM- ACEOUS FINE SANDY OR SILTY SOILS, PLASTIC SILTS
INE	TS w	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
E	SIL	ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
ORG/ SO		Pt	PEAT AND OTHER HIGHLY ORGANIC SOILS
TOP	SOIL	TS	TOPSOIL WITH ROOTS, ETC.
	BLES	SB	ROCK FRAGMENTS AND COBBLES, PARTICLE SIZE 75mm TO 300mm
LAR BOUL	CE DERS	LB	BOULDERS, PARTICLE SIZE OVER 300mm
BEDR	ROCK	BR	BEDROCK
*GM1; GM2; GM3;	GC1; SM GC2; SM GC3; SM		30 - 40% PASSING .075mm SIEVE

REV. 90-04-26

APPENDIX A - DEFINITIONS FOR AGGREGATES

As the nominal dimensions for U. S. Standard sieves for #4 and #200 sieves are 4.75 mm and 0.075 mm respectively, the sizes indicated in my memo dated 14 December have been revised accordingly. The terms "Mineral Filler" and "Fines" have also been deleted. The revised definitions are as follows:

MINERAL: A naturally formed inorganic solid having a definite chemical composition (includes ice but excludes water or mercury).

MINERAL AGGREGATE: An aggregation of sand, gravel, crushed rock, slag or other material of mineral composition, used in combination with a binding medium to form bituminous and portland cement concrete, or alone as base course, filters, or as other construction material.

SAND: The mineral aggregate, smaller than 4.75 mm (#4 US standard sieve opening) and larger than 0.075 mm (#200 US standard sieve opening) in diameter.

GRAVEL: The mineral aggregate, smaller than 75 mm and larger than 4.75 mm in diameter.

COBBLE: The mineral aggregate, smaller than 300 mm and larger than 75 mm in diameter.

LARGE BOULDER: The mineral aggregate, larger than 300 mm in diameter.

DEBRIS: Inorganic and/or organic material deposited by the action of gravity or water. The inorganic material may range in size from boulders several metres in diameter to smaller size mineral aggregates ranging from cobbles to silt and clay sizes, and the organic material may range from whole trees to mulch.

SILT, CLAY, MINERAL DUST: Mineral soil particles smaller than 0.075 mm in diameter.

TA	BI	E	3	2	1

Compactness	SPT N-index					
condition	(blows per 0.3 m)					
Very loose	0 - 4					
Loose	4 - 10					
Compact	10 - 30					
Dense	30 - 50					
Very dense	Over 50					

COMPACTNESS CONDITION OF SANDS FROM STANDARD PENETRATION TESTS

(From Canadian Foundation Manual)

TABLE 45.2

RELATION OF CONSISTENCY OF CLAY, NUMBER OF BLOWS N ON SAMPLING SPOON

Consistency	Very Soft	Soft	Firm	Stiff	Very Stiff	Hard
N	<2	2 - 4	4 - 8	8 - 15	15 - 30	>30

(From Soil Mechanics in Engineering Practice)

3.1.3 LABORATORY IDENTIFICATION TESTS

The results of the grain-size test are used to classify the soil beyond the rough separation into fine grained and coarse grained. The classification is based on amounts by weight within the respective grain-size fractions, as follows:

noun	GRAVEL, SAND, SILT, CLAY	>50%
"and"	and gravel, and silt, etc.	>35%
adjective	gravelly, sandy, silty, clayey	20 - 35%
	etc.	
"some"	some sand, some silt, etc.	10 - 20%
"trace"	trace sand, trace silt, etc.	1 - 10%

(From Canadian Foundation Manual)

TABLE 3.3

CONSISTENCY AND SHEAR STRENGTH OF COHESIVE SOILS

Consistency	Undrained shear strength (kPa)
Very soft	<12
Soft	12 - 25
Firm	25 - 50
Stiff	50 - 100
Very stiff	100 - 200
Hard	>200

(From Canadian Foundation Manual)

Strength		Field	Range of unconfined
Grade		identification	compressive strength
Classification		method	(MPa)
RÔ	Extremely weak	Idented by thumbnail	< 1
R1	Very weak	Crumbles under firm blows of geological hammer; can be peeled with a pocket knife	1 - 5
R2	Weak rock	Can be peeled by a pocket knife with difficulty; shallow indentations made by a firm blow with point of geological hammer	5 - 25
R3	Medium strong	Cannot be scraped or peeled with a pocket knife; specimen can be fractured with a single firm blow of geological hammer	25 - 50
R4	Strong	Specimen requires more than one blow of geological hammer to fracture	50 - 100
R5	Very strong	Specimen requires many blows of geological hammer to fracture	100 - 250
R6	Extremely strong	Specimen can only be chipped by the geological hammer	> 250

CLASSIFICATION OF ROCK WITH REGARD TO STRENGTH

Table 3.5.

Spacing classification	Spacing width (m)
Extremely close	< 0.02
Very close	0.02 - 0.06
Close	0.06 - 0.20
Moderately close	0.2 - 0.6
Wide	0.6 - 2.0
Very wide	2 - 6
Extremely wide	> 6

CLASSIFICATION OF ROCK WITH REGARD TO SPACING OF DISCONTINUITIES

(From Canadian Foundation Manual)

APPENDIX C Draft Summary Log

Ministry and Higi Proj	hways	S								OLI	ELO	DG	Geotechnic Materials Br		Hole	No.
Loca	ation								_	_			Elevation			
Drill	er			1	1	<u> N</u>	Neth	od _	-	_			Dates			_
Drilling Details Vater Table	Depth (m)	Sample Type	Blowcount	Recovery (m)	Shear Strength (kPa)	Gravel D	1	Fines w	Pn	Index opert	ies	Classification	Descript	ion		Other Tests
SAM	LETYP	E				SHE	ARST	RENGT	τн				TESTS	File N	0.	
A C D	Auger Core Denisor Split Sp	n				U - 1 Ly - 1 Fy - 1		lines Ci Né ane		ssion		G	M - Mechanical Analysis A.S Triaxial Compression C - Consolidation DS - Direct Shear	Drawr	ву:	
1	Sheiby Wash	Rabe		Bio	wcount - Sta	indard I	Penetra	ation Te	st (AS	TM 158	6)	W,	We - Liquid, Plastic Limits W - Moisture Content	Sheet	0	I

<u>ft m</u>	<u>ft. – m</u>	<u>ft m</u>	ft m	ft m	ft m
1 • .3	26 - 7.9	51 - 15.5	76 - 23.2	101 - 30.8	126 - 38.4
26	27 - 8.2	52 - 15.9	77 - 23.5	102 - 31.1	127 - 38.7
39	28 - 8.5	53 - 16.2	78 - 23.8	103 - 31.4	128 - 39.0
4 - 1.2	29 - 8.8	54 - 16.5	79 - 24.1	104 - 31.7	129 - 39.3
5 - 1.5	30 - 9.1	55 - 16.8	80 - 24.4	105 - 32.0	130 - 39.6
6 - 1.8	31 - 9.5	56 - 17.1	81 - 24.7	106 - 32.3	131 - 39.9
7 - 2.1	32 - 9.8	57 - 17.4	82 - 25.0	107 - 32.6	132 - 40.2
8 - 2.4	33 - 10.1	58 - 17.7	83 - 25.3	108 - 32.9	133 - 40.5
9 - 2.7	34 - 10.4	59 - 18.0	84 - 25.6	109 - 33.2	134 - 40.8
10 - 3.1	35 - 10.7	60 < 18.3	85 - 25.9	110 - 33.5	135 - 41.1
11 - 3.4	36 - 11.0	61 - 18.6	86 - 26.2	111 - 33.8	136 - 41.5
12 - 3.7	37 - 11.3	62 - 18.9	87 - 26.5	112 - 34.1	137 - 41.8
13 - 4.0	38 - 11.6	63 - 19.2	88 - 26.8	113 - 34.4	138 - 42.1
14 - 4.3	39 - 11.9	64 - 19.5	89 - 27.1	114 - 34.7	139 - 42.4
15 - 4.6	40 - 12.2	65 - 19.8	90 - 27.4	115 - 35.1	140 - 42.7
16 - 4.9	41 - 12.5	66 - 20.1	91 - 27.7	116 - 35.4	141 - 43.0
17 - 5.2	42 - 12.8	67 - 20.4	92 - 28.0	117 - 35.7	142 - 43.3
18 - 5.5	43 - 13.1	68 - 20.7	93 - 28.4	118 - 36.0	143 - 43.6
19 - 5.8	44 - 13.4	69 - 21.0	94 - 28.7	119 - 36.3	144 - 43.9
20 - 6.1	45 - 13.7	70 - 21.3	95 - 29.0	120 - 36.6	145 - 44.2
21 - 6.4	46 - 14.0	71 - 21.6	96 - 29.3	121 - 36.9	146 - 44.5
22 - 6.7	47 - 14.3	72 - 22.0	97 - 29.6	122 - 37.2	147 - 44 8
23 - 7.0	48 - 14.6	73 - 22.3	98 - 29.9	123 - 37.5	148 - 45.1
24 - 7.3	49 - 14.9	74 - 22.6	99 - 30.2	124 - 37.8	149 - 45.4
25 - 7.6	50 - 15.2	75 - 22.9	100 - 30.5	125 - 38.1	150 - 45.7
	<u>in m</u>	<u>in m</u>	<u>ín m</u>	<u>in m</u>	
	2"05	8"20	14"36	20"51	
	4"10	10"25	16"41	22"56 24"61	
	6" - . 15	12"30	18"46	A MAY COMMU	

APPENDIX D Disk and File Naming

GEOTECHNICAL

FILE NAMING (AutoCAD)

Files are identified using Branch Identifier (C), Region # (1 - 6 or H for Headquarters or O for Operations), Technician or Firm designation (K), Five character Negative, Drawing number or other five character designation.

eg. GHK92689

5 or 6 Character Negative or Drawing Number

Technician or Firm designation (optional)

Highway Region # (1 - 6 or H or 0)

G for Branch designation

- 2 - 5.25" Floppy Disks (preferably Dysan 1.2M).

- One Al size drawing per disk and related blocks

- Enter disk and file name in project job listing (Geotechnical Branch)

DISK LABEL

DISK LABEL - First line of disk label to be FILE NAME - Signed by Geotechnical Branch PROJECT NAME HIGHWAY OR ROAD NAME FIRM NAME OR CONSULTANT

APPENDIX E - ROCK CORE LOG

Rock Core Logs are required when bedrock structure is pertinent to foundation design. Currently, Ministry Rock Core Logs are prepared manually using the following format and examples. In unusual circumstances other formats may be used with permission of the Ministry Geotechnical Project Engineer.

The Ministry computerized Rock Core Log has been scheduled to be included in our system in the spring of 1991.

Ministry of Transportation ROC and Highways Project						DRE LOG		Geotechnical Materials Brai		ch			
Location									E	levation			
										Dates			
Hole	o Orie	ntation				ogged	By		C	Date		- 1	
Drilling Details Water Table	Depth (m)	Core Recovery %	Core Condition	Discontinuity Spacing	R.O.D.	Intact Rock Strength	Weathering	Structural Discontinuity Description	Rock Symbol	Rock M Descri			ts
Y Water lable	Del	Pec Rec	ΰÖ	Dis Spe	R.C	Stre	We		Bor Syr				Tests
CORE RECOV	ERY	F	1.Q.D.				ROCK S	TRENGTH (MPa)		HERING	File No		
Length of core core run		Sum	core ler	ngths>1	00 mm			emely weak <1 weak 1-5	F F SW S	resh lightly loderately	Drawn		
DISCONTINUITY SPACING No. of fractures/m						R3 Medi R4 Stroi R5 Very	um strong 25-50 ng 50-100	HW H CW C	lighly completely lesidual Soil	Sheet .	_	of	

Ministry of Transportation and Highways Geotechnical and Materials Branch Victoria, British Columbia

ROCK CORE LOG

D. R. Lister, P. Eng. Geotechnical Engineer October 1987

DD27/DON13/bb

INTRODUCTION

The Diamond Drilling Log of Test Boring form H482 that has been used for rock cores is obsolete. For some time a new log has been considered.

The new form is similar in many respects to the Test Hole Log H181. In producing this new form, I have drawn extensively on the references listed at the end of the report and have used the preliminary work of B. Hayden and W. Eisbrenner. Logs from various geotechnical consultants have also been reviewed. The top of the log is like the top of the Test Hole Log but blank spaces for hole orientation (inclination and direction), name of person logging the core and date of logging, have been added. The log itself consists of 11 columns; the purpose of each is described below. The bottom of the log contains a brief explanation of some of the column headings.

LOG DESCRIPTION

DRILLING DETAILS - This column records information associated with the actual drilling of the hole. The type of drill, core barrel and bit are noted along with the length of casing and type of drilling fluid. The water table and location of piezometers, if installed, are also noted.

023

DEPTH - Depth in metres along the hole from the collar. Conversion from drillers imperial units used by the driller may be necessary. Normal practice is to use one division on the log per metre.

- CORE RECOVERY During the drilling process, the bit cuttings are removed by the drilling fluid and the core sample passes into the core barrel. Some of the core sample may be lost by erosion of soft or friable material resulting in a reduction in diameter and/or length of core. The material placed in the core box from each core run is the recovered core. If none of the sample is lost by erosion then the core recovery is 100%. Core recovery is measured by length and expressed as a percentage of the core run length.
- CORE CONDITION The state of the core recovered can be described as solid, broken, very broken, shattered, or rounded pieces. In some cases, poor quality core may be the result of the drilling method but usually reflects the state of the rock mass.
- DISCONTINUITY SPACING This is another quantitative description of the natural breaks in the rock mass. It is count of the number of natural discontinuities per unit length. Discontinuity Spacing - No. of discontinuities/metre A classification of rock with regard to discontinuity spacing has been developed ³.

Spacing Classficiation	Spacing Width (m)
Extremely close	< 0.02
Very close	0.02 - 0.06
Close	0.06 - 0.20
Moderately close	0.2 - 0.6
Wide	0.6 - 2.0
Very wide	2 - 6.0
Extremely wide	> 6.0

ROCK QUALITY DESIGNATION - The Rock Quality Designation³ (RQD) is an indirect measure of the number of fractures and the amount of softening or alteration in a rock mass. It is obtained from the rock cores by summing up the length of core recovered, counting only those pieces of sound core that are 100mm or more in length. The RQD value is expressed as a percentage and is the ratio of the summed core lengths to the total core length (core run). The classification according to the RQD-value is given below.

ROD Classification	ROD-Value (%)
Very poor quality	< 25
Poor quality	25 - 50
Fair quality	50 - 75
Good quality	75 - 90
Excellent quality	90 - 100

- 3 -

If the core is broken by handling or during drilling (i.e. the fracture surfaces are fresh irregular breaks rather than natural joint surfaces); the fresh broken pieces should be fitted together and counted as one piece. Some judgement is necessary in the case of thinly bedded sedimentary rocks and foliated metamorphic rocks, and the method is not so precise in these cases as it is for igneous rocks, thick-bedded limestones, sandstones, etc. However, the system has been applied successfully even for shales, although it is necessary to log the cores immediately upon removing them from the core barrel, before air-slaking and cracking can begin.

The procedure obviously penalizes rock masses where core recovery is poor. This is appropriate because poor core recovery usually reflects poor quality rock. Poor drilling equipment and techniques can also cause poor recovery. For this reason, double-tube core barrels of at least NX size (54 mm in diameter) must be used, and proper supervision of drilling is imperative.

As simple as the procedure appears, it has been found that, as an indicator of general quality of rock for engineering purposes, the RQD-value is more sensitive and consistent than gross percentage core recovery.

- 4 -

INTACT ROCK STRENGTH - Although rock masses are non-isotropic and the main feature of their weakness is the strength along discontinuities, it is often useful to have some information about the uniaxial compressive strength of the intact rock. The table below gives seven grades of rock strength and simple methods of identification. These grades have been based on results of unconfined compressive strength tests for which standard methods have been suggested³

	ength de Classification		Range of un Compressive	
RO	Extremely weak	Idented by thumbnail		< 1
R1	Very weak	Crumbles under firm blows of geological hammer; can be peeled with a pocket knife	1	- 5
R2	Weak rock	Can be peeled by a pocket knife with difficulty; shallow indentations made by a firm blow with point of geological hammer	5	- 25
R3	Medium strong	Cannot be scraped or peeled with a pocket knife specimen can be fractured with a single firm blow of geological hammer.	25	- 50
R4	Strong	Specimen requires more than one blow of geolog- ical hammer to fracture	50	- 100
R5	Very strong	Specimen requires many blows of geological hammer to fracture	100	- 250
R6	Extremely strong	Specimen can only be chipped by a geological hammer		> 250

- 5 -

WEATHERING - These are two main results of weathering: mechanical disintegration and chemical decomposition² Generally, both effects act together but, depending on the climate, one may be dominant. Chemical alteration although not a form of weathering may also be considered here. Mechanical weathering results in the opening of discontinuities, the forming of new fractures, the opening of grain boundaries and the fracture of mineral grains. Chemical weathering results in discolouration of rock and leads to the eventual decomposition of silicate minerals to clay minerals. The state of weathering can be described according to the following table.

Term	Description	<u>Grade</u>
Fresh	No visible sign of rock material weathering: perhaps slight dis- colouration on major discontinuity surfaces.	I
Slightly weathered	Discolouration indicates weathering of rock material and discontinuity surfaces. All the rock material may be discoloured by weathering and may be somewhat weaker externally than in its fresh condition.	II
Moderately weathered	Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a continuous framework or as corestones.	III
Highly weathered	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a continuous frame- work or as corestones.	IV
Completely weathered	All rock material is decomposed and/or disintegrated to a soil.	v
Residual soil	The original mass structure is still largely intact. All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.	VI

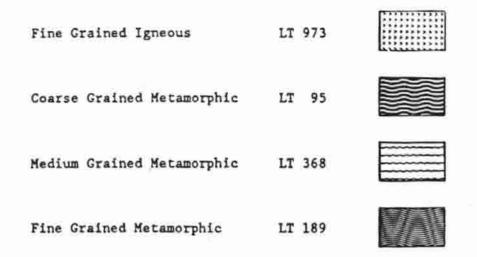
STRUCTURAL DISCONTINUITY DESCRIPTION - A discontinuity is a general term for any mechanical discontinuity in a rock mass having zero or low tensile strength. It is the collective term for most types of joints, bedding planes, schistosity planes, shear zones, cleavage and faults.

Discontinuities can be described according to the following parameters:

Orientation - dip from long axis of the core

- Form overall shape of the discontinuity which may be planar, undulating, stepped or irregular. This parameter may be difficult to determine from a piece of core.
- Roughness surface roughness of the discontinuity which can be polished, smooth, rough or slickensided.
- Infilling material that separates the rock walls of the discontinuity is usually weaker than the intact rock. Typical infilling materials are clay gouge, breccia, calcite and quartz

A graphic structural log can be produced as part of the structural description. Appropriate abbreviations and symbols are noted below.


Roughness	 Polished Smooth Rough Slickensided 	Po Sm Rh Sx
Infilling	- Clay Gouge Calcite Quartz Rust Stained Breccia	Cg Ca Qz Rt Br
Form	 Planar Undulating Stepped Irregular 	Pl Un St Ir
Discontinuity	- Fault (zone) Joint Shear (zone) Bedding Cleavage Vein	F(Z) J S(Z) B C V

ROCK SYMBOL - A symbolic log sho Suggested symbols Letraset shading n	are listed bel	ow I Suitable
Limestone	LT 243	
Conglomerate	LT 129	
Sandstone	LT 912	
Greywacke	LT 164	
Siltstone	LT 153	
Shale	LT 122	
Argillite	LT 923	
Breccia	LT 970	
Pyroclastic	LT 356	
Coarse Grained Igneous	LT 959	+ + + + + + + + + + + + + + + + + + + +
Medium Grained Igneous	LT 131	認約

đ

2 C

- 8 -

ROCK MASS DESCRIPTION - This column is for a general desciption of the rock mass. The intact rock should be described according to its colour, grain size, fabric, texture and rock type. Grain size refers to the average dimension of the mineral or rock fragments. For sedimentary rocks the size ranges used for soils are appropriate. Coarse grained igneous and metamorphic rocks have a grain size greater than 2 mm and fine grained igneous and metamorphic rocks have grain sizes less than .06 mm.

The texture of a rock is its general physical appearance including the geometric aspects of the component particles or crystals. e.g. size, shape and arrangement of the sedimentary particles or the crystallinity or granularity of an igneous rock. Fabric refers specifically to the arrangement of the grains. In sedimentary rocks, it is the orientation of discrete particles and in crystalline rocks for the pattern produced by the shapes and orientation of the crystalline and non-crystalline parts. The fabric of sedimentary rocks is often related to the mode of deposition and hence bedding. Bedding is usually considered as a structure and should be described in the structural log, although a general statement about the layer thickness is appropriate in the rock mass description. Typical textural terms include porphyritic, crystalline, granular, amorphous and glassy. The principal rock name should be in capital letters e.g. calcareous SANDSTONE. This column can also be used for additional structural description or to re-emphasize the degree of weathering.

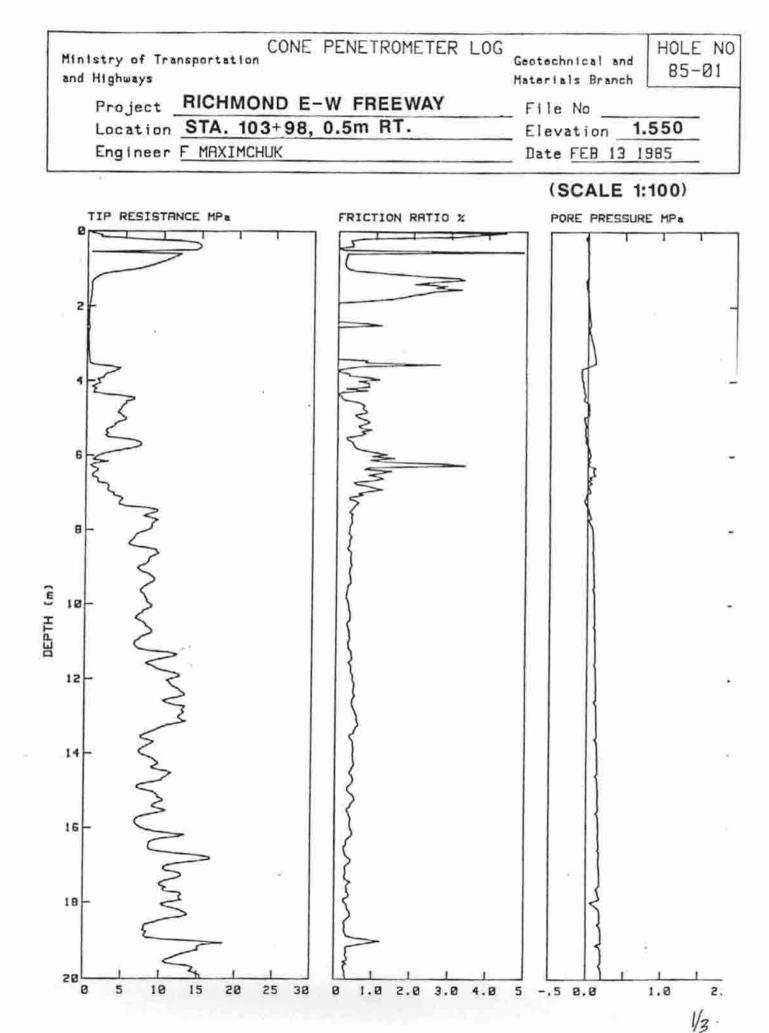
- TESTS Results of either insitu or laboratory tests can be recorded in this column.
- <u>OTHER INFORMATION</u> In addition to the log itself, it is preferable to have photographs of the core. Two or three photographs (1000 x 1500 mm) along the core box joined together in a strip produces a suitable size picture.

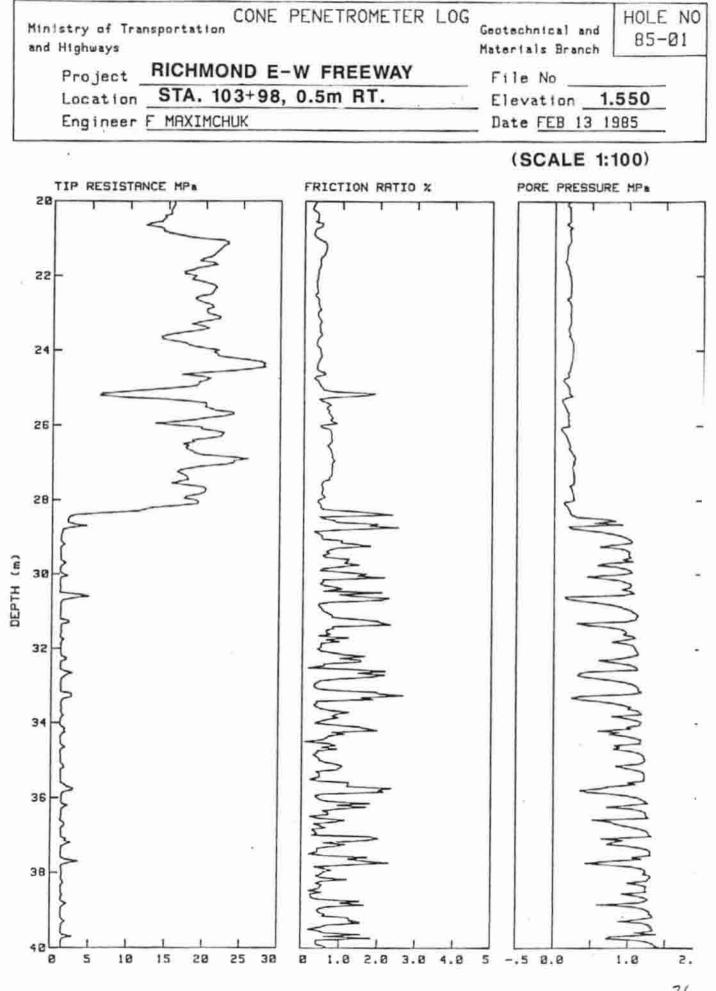
REFERENCES

- British Standards Institution. Code of Practice for Site Investigations BS 5930:1981.
- 2 Brown, E.T. Rock Characterization, Testing and Monitoring, International Society for Rock Mechanics, 1981.
- 3 Canadian Geotechnical Society. Canadian Foundation Engineering Manual, 2nd Edition, 1985.
- ⁴ Geological Society Engineering Group Working Party. The Logging of Rock Cores for Engineering Purposes. Quarterly Journal of Engineering Geology, Vol.3 No 1, 1970.

Ministry of T and Highway Project Locatio Driller Hole O	s Th A C	HREE /ALAN	VALLE CHE (Y OV	CK ERHE/	D - OSITE Method	EAGLI 3 V/ DIA	RE LOG SUMMIT VLLEY GAP MOTEL MOND DRILL PUNSHON		Geotechnical and Materials Branch 90- Elevation - Dates 90-10-2 Date 90-11-0	-1
Drilling Details	Depth (m)	Core Recovery %	Core Condition	Discontinuity Spacing	R.Q.D.	Intact Rock Strength	Weathering	Structural Discontinuity Description	Rock Symbol	Rock Mass Description	Tests
	18	90%	BROKEN SOLID SOLID	50.7	43%	R2- R3 R3	HW - MW	SOFT + SEVERELY WEATHERED. MICACEOUS, 70-80% FRACTURES STRONGLY WEATHERED 70-80% FRACTURES 70-80% FRACTURES 70-80% FRACTURES 70-80% AVX, DIA, 4cm.		BIOTITE GNEISS MEDIUM HARD, HIGHLY MICACEOUS BIOTTE AND SOME	
	19 20	86%	SOLID		20%	R3	HW - MW	20-40'\430'/SEVERELY WEATHERED FRACTURES + VERTICAL FISSURES 60-70'/SEVERELY WEATHERED, MICACEOUS FRACTURES 40'/SEVERELY WEATHERED FRACTURES 80-90'/MICACEOUS FRACTURES		CHLORITE SPOTS, SOWE FELDSPATHC ANGENS, PECMATITE VEINS AND 801, MICACEDUS BANDS	
	21	100%			88%		MW HW-MW	80-90 /FRACTURES 80-90 /FRACTURES 50 / STRONGLY WEATHERED FRACTURES 80 / MICACEOUS FRACTURES 80 / MICACEOUS FRACTURES		SEAMS, SOME CHLORITE SPOTS BIOTITE CNEISS WITH SOX APLITE VEN PEGMATITE -BIOTITE SEAMS, SOME CHLORITE BIOTITE GNEISS PEGMATITE -BIOTITE SEAMS, SOME SHLORITE SEAMS, SOME SHLORITE SEAMS, SOME SHLORITE VEN IN BIOTITE GNEISS BIOTITE GNEISS	
	22	100%	SOLID BROKEN SOLID	7.3	51%	R3 87-83	HW MW	AND BIOTTLE BANDS BOY + BUY STRENOLY WEATHERED FRACTURES BUY MICACEOUS FRACTURES BUY MICACEOUS FRACTURES AND BIOTTLE BANDS 30-407 / FRACTL FSS. + SEVERELY WEATH, SLICK, BUY MICACEOUS FRACTURES		PEGMATTTE -BIOTITE SEAMS BIOTITE GNEISS SOME CHLORITE AND CARNET SPOTS GNEISS WITH PEGMATTTE SOME BIOTITE SEAMS AND CHLORITE SPOTS BIOTITE GNEISS WITH CARNET SPOTS, SOME PYRTE, CHLORITE	
-	23									22.8m END OF HOLE	
CORE RECOVERY Length of core core run x DISCONTINUITY SF No. of fractures,	PACING	Sum con	R.Q.D. e lengths of core	run > 100	<u>mm</u> x 10	NO R R R R R R	0 Extrem 1 Very # 2 Weak 3 Medium 4 Strong 5 Very s	reak 1-5 SW S 5-25 MW M n strong 25-50 HW H 50-100 CW C	ERING resh Slightly Ioderatel Ighly Completel Residual	J.P. / KLAS	SCAD

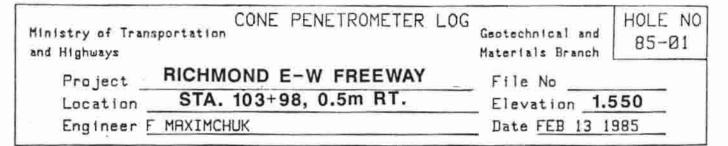
Ministry of Tr and Highways Project Location	s Th	IREE	E VAL		SU OVERH	IEAD) -	EAC	SLE	SUM	AMIT		Geotechnical and Materials Branch 90—1
Driller			EASM			١	letho	d [OND	DF		Dotes 90-10-20/23
Drilling	-	ype	-	(E	Shear Strength (kPa)	Gra	datio	n %	Pr	Index opert		tion	Description 🕺
Details	Depth (m)	Sample Type	Blowcount	Recovery (m)	ength	Gravel	p	es	-		w	Classification	Description 28
	Dep	Sar	80	Rec	5.5	Gro	Sand	Fines	WL	wp	W		
	1											GP+SB	GRAVEL and COBBLES 0.5m -
Blowcount _ Details	-											LB	LARGE BOULDERS
	2												COBBLES and GRAVEL 2.0m
85/.15m	3	=S=	>100	0		-	-	-	-	-	-	GP+LB	GRAVEL and LARGE BOULDERS
-	4											LB	LARGE BOULDERS
27/.15m - 77/.15m -	5 6	S	>100	.15		80	15	5	-	-	-	GP+SB	
												LB	LARGE BOULDER 6.8m
-	7	S	75	.10		50	45	5	-	-	-	GP+SB	Very dense GRAVEL and COBBLES
-	8											LB GP+SB	BARGE BOOLDER 8.0m
_	9											GP+58	8.9m
27/.15m - 55/.08m -		=S=	>100	.13		50	45	5	Ξ		-	GP+LB	Very dense GRAVEL and LARGE BOULDERS
	11											SB	COBBLES 10.7m
-	12												
		S	14	.15		50	45	5	1	-	7	GP+LB	Compact GRAVEL and LARGE BOULDERS
10/.15m 7/.15m 35/.08m	13	S	>100	0		_	_	_	_	_	-		17.0
35/.08m	14		- 125										13.8m
_	15	s	55	.20		75	20	5	-	-	-	GP+SB	Very dense GRAVEL and COBBLES
-	16											LB	LARGE BOULDER 15.8m GRAVEL and COBBLES 16.6m
_	17											GP+3B	GRAVEL
-	1.6											BR	WEATHERED BEDROCK 18.0m
SAMPLE TYPE A - Auger C - Core D - Denison S - Spilt Spi T - Shelby T W - Wash	oon			U · Fv · Lv ·	SHEAR S - Uncont - Field \ - Lab Vo - Remou	fined /ane ine			sion			,S - Tri C - Co DS - Dir P - Lig	TESTS chanical Analysis axial Compression nsolidation rect Shear uid, Plastic Limits isture Content FILE No. 01-32-00 PREPARED BY: RGB/KLASSCAD SHEET of
			Blowco	ount ·	- Standa	rd Pe	enetro	tion	Test	(AST)	158	36)	01 03

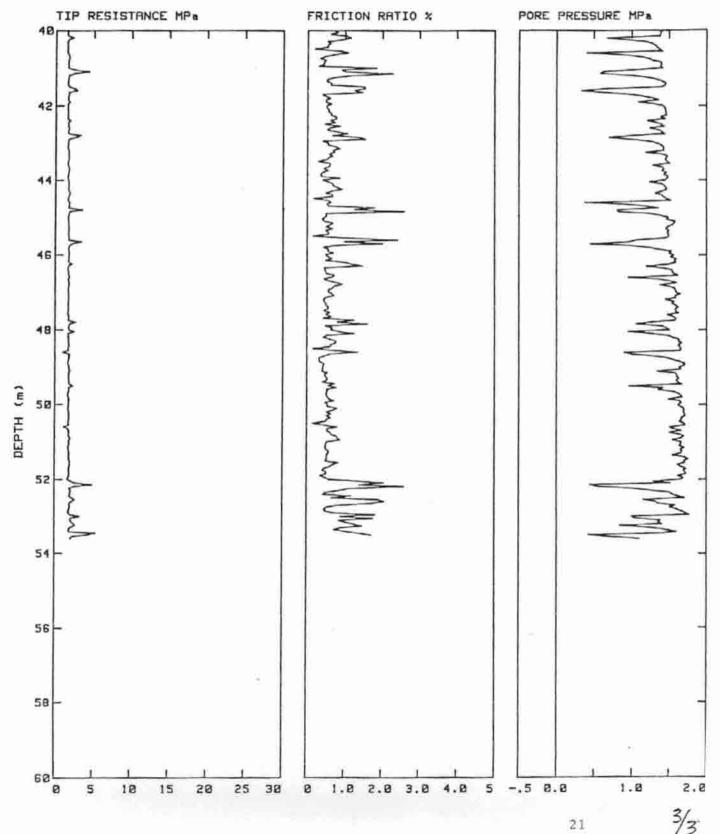



APPENDIX F - CONE LOG

Sites requiring investigation using cone equipment are co-ordinated through our Operations Division, Burnaby. Contact person is Don Gillespie.

Cone Logs for reports and contract drawings are required to be prepared at a scale of 1:100.


See the following examples and information.



20

2/:

(SCALE 1:100)

Ministry of Transportation and Highways

MEMORANDUM

December 7, 1990

Kirby Rimer Geotechnical Engineering Technician

3149 Production Way Burnaby, B.C. V5A 3H1

VICTORIA

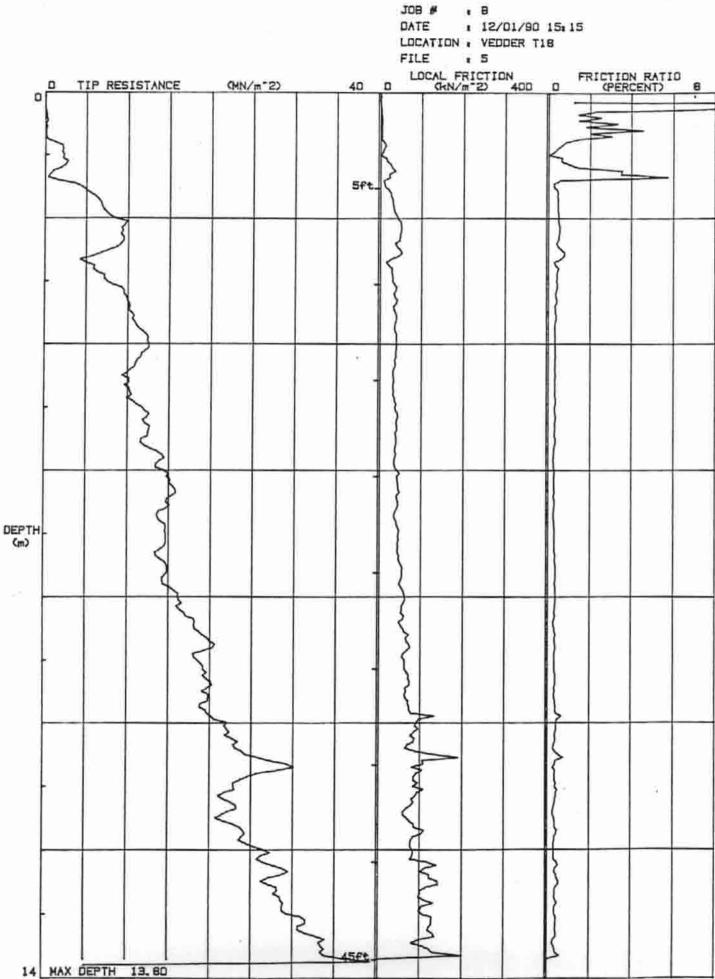
RE: CPT Output

Our CPT outputs are still in the process of being upgraded to a PC environment but our present output includes:

- Field Plots: See example #1. These plots have no flexibility in scale.
- HP Plots: See example #2. These plots are hard copy only on 81/2" x 11" paper/mylar. They can be 1, 2 or 3 boxes and have stepwise variable depth and pressure scales.
- ASCII files: PC format field depth and pressure readings.
- Listing: See example #3. These are field listings and also include pore pressure data with time.
- Pore Pressure Time Data. Field listings or interpreted data are available.

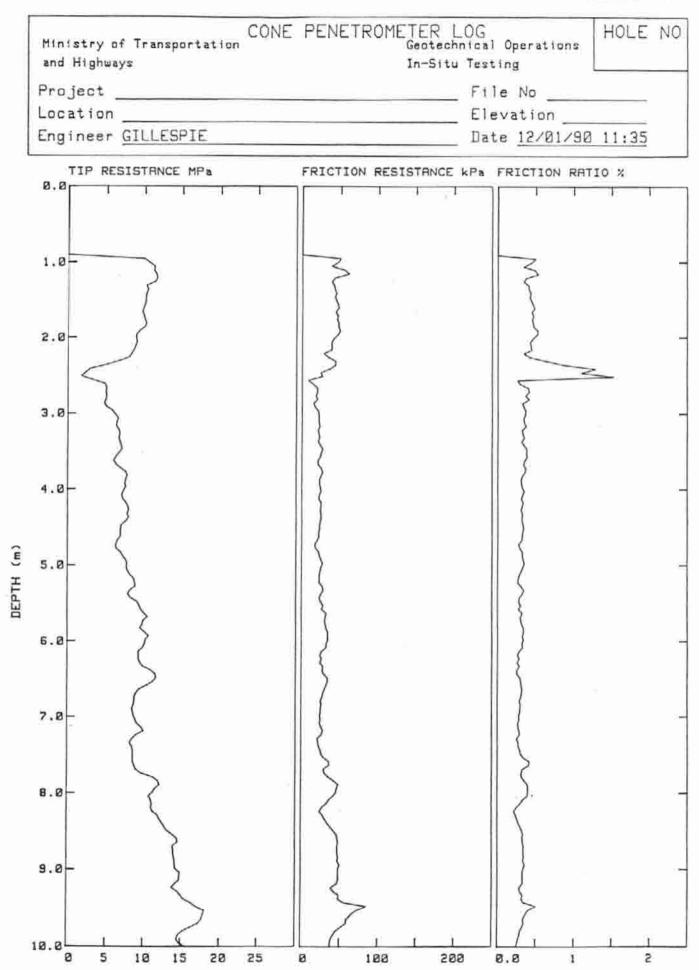
Our future developments include:

 PC/HP plots: See example #4. These plots have flexible depth scale, pressure scales, format (# boxes) orientation on 81/2 x 11" paper and if requested interpretation.


Amilalopa

Don Gillespie Geotechnical Engineer

for:


Manager, Geotechnical Operations

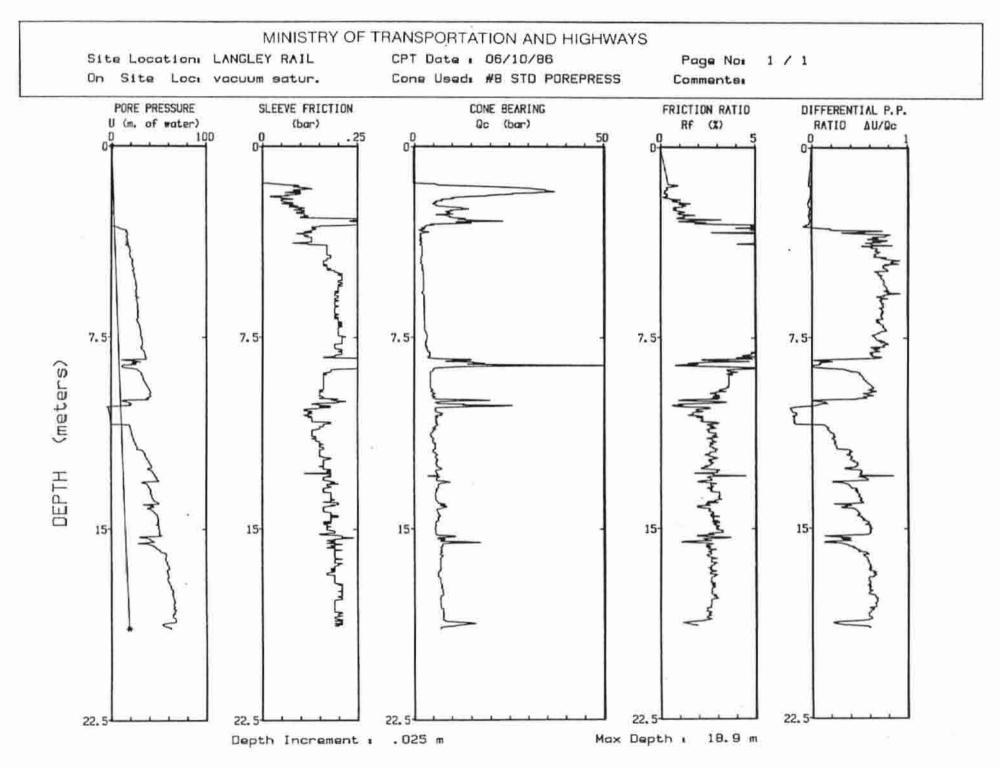
DG/kb

EXAMPLE #1

EXAMPLE #2

UNDING DATA IN FILE 5 12/06/90 12:45

GINEER : GILLESPIE LOCATION : VEDDER T21


NE ID : NS10B STD JOB # : B

nistry of Transportation and Highways ptechnical and Materials Branch

Sector 11

PTH	TIP RESISTANCE	LOCAL FRICTION	FRICTION RATIO	PORE PRESSURE	DIFF P P RATIO	INCLINATION	TEMPERATURE
ERSI	(#N/#*2)	(kN/m^2)	(PERCENT)	(BARS GRUSE)	(PERCENT)	(DEGREES)	(DEG C)
4.85	-0.0	-0	0.83	-8,38	-0.2	0.3	-273.1
. 10	/· -e.e	-0	2.99	0,00	2.	0.0	-273.1
4.15	8.8	-0	1.20	0.01	3.9	0.0	-273.3
1.28	0.2	e	8.8	0.02	1.19	8.8	-273.3
1,25	8.5	4	0.72	8.82	0.45	8.8	-273.3
. 30	8.4	18	2.16	0.03	0.63	0.0	-273.3
35	1.5	-1	0. 86	0. 83	0.20	0.0	-273.1
48	1.7	-0	0.01	8,83	0.19	0.0	-273.3
45	8.6	6	0.87	0.05	0.75	8.8	-273.3
50	1.0	2	8, 16	0.87	0.64	0.8	-273,3
55	1.1	5	0.45	0.06	0.57	0.0	-273.3
60	0.9	6	0.78	0.07	8,75	0.3	-273.1
65	1.3	4	8.40	0.03	6.87	0.0	-273.3
78		4	0.25	8.89	0.55	8.8	-273.1
75	Pe 1.9	4	0.21	0.03	8.47		
88	1.9 1.9 1.9 2.0 2.1	7	e. 34			0.8	-273.1
85	\$ 2.0	10		0.05	0.23	8.0	-273.3
98	9 2.0		0.50	0.09	8.44	0.0	-273.1
95	2.1	7	0.36	0.08	8.39	0.0	-273.1
	Q 2.1 Q 2.6	6	0.31	0.03	8.43	8.8	-273.1
.00	Q 2.6	13	0.51	8.18	6. 37	8.8	-273.3
05	3.8	13	0.33	0.11	0.29	0.0	-273.3
18	7.8	38	e. 38	0.12	8.14	8.8	-273.4
- 15	12.3	63	0.51	8.11	8.89	0.0	-273.3
.20	12.5	71	8.56	0.05	8. 84	8.0	-273.1
.25	11.7	75	0.63	8. 81	8. 88	8.8	-273.1
. 38	11.4	34	0.30	8. 62	8. 81	8.8	-273.3
, 35	11.0	19	0.17	0.05	8.84	8. 8	-273.1
. 48	18.9	27	8.25	8.06	8.85	8.0	-273.3
, 45	18.8	34	8.30	0.09	0. 88	0.0	-273.1
. 50	11.4	40	0.35	8.13	8.11	0.0	-273, 1
.55	11.8	45	8.38	8.12	8.89	0.8	-273.3
.60	12.8	51	8.42	0.08	8.85	8.8	-273,1
.65	12.0	52	8.43	8.86	8, 25	8.8	-273.1
. 78	11.8	49	8.41	8.83	8.87	8.8	-273.1
.75	11.9	48	8.48	0.10	0.08	8. 9	-273.3
.88	11.8	49	8.41	8.13	0.11	8. 8	-273.3
.85	11.7	45	8.38	0.13	0.11	0.0	-273.3
, 98	11.6	45	8.38	0.12	8.18	8.8	-273.3
. 95	11.5	47	8.40	0.10	0.08	0.0	-273.3
. 88	11.3	46	0.48	8. 87	0.06	8.8	-273,3
						33.5	TUS/101

EXAMPLE #4

APPENDIX G - BECKER HAMMER

Becker Hammers are not normally used by the Ministry. However, their use may be approved for particular sites. The following log is an example only. (Courtesy of Golder Assoc.)

Boreh	ian (See Figure 2) ole Type <i>Becker Harmmer (1</i> er Hammer Wt ikg., Drop		-		Baring Date February 20,1989 Barehole Diameter 140 mm Datum Geodetic
ELEV. DEPTH metres)	DESCRIPTION	STRATHGRAPHY. PLOT	SAMPLE NUMBER	SAMPLE TYPE	BDT PENETRATION TEST
-36 m	sea Bed				20 40 60
	Very loose to loose grey fine SAND, some shells, trace gravel, becoming coarser below 3.0m				
	loose to compact SAND, some shells, trace to some gravel and wood particles interlayered with brown silty SAND	6			
11.43m	Compact grey SAND, some silt and gravel, trace she fragments.				
14.63 <i>m</i>	Compact to dense grey interlayered SAND to silty SAND, trace gravel and shells, occ. cobbles				
20.12m 21.03m	Dense to very dense grey SAND and GRAVEL, some cobbles, some to trace silt (Possible Till) End of Borehole.				

1:125