

Guest Road and Shallow Bay Road Intersection Improvement STA 100+75 to STA 112+31 Highway 16 Cluculz Lake, BC Geotechnical Assessment Report

Presented To:

Ministry of Transportation and Infrastructure

 Dated:
 April 2023

 MoTI File No.:
 38199-0000

 Ecora File No.:
 GK-18-750-MOT-13 (212111-05)

THIS PAGE IS INTENTIONALLY LEFT BLANK

Presented To:

Ministry of Transportation and Infrastructure 1011 4th Avenue Prince George, BC V2L 3H9

Prepared by:

Reviewed by:

Mark Berthiaume, E.I.T. Junior Geotechnical Engineer

April 28, 2023 Date

Michael J. Laws, P.Eng. Senior Geotechnical Engineer Mike.Laws@ecora.ca April 28, 2023 Date

Reviewed & Approved by:

Mark.Berthiaume@ecora.ca

Dan Bruton, M.Eng., P.Eng. Senior Geotechnical Engineer Dan.Bruton@ecora.ca Date

Version Control and Revision History

Version	Date	Prepared By	Reviewed By	Approved By	Notes/Revisions
0	2023-04-28	MAB	DCB/MJL	DCB	Issued for Use

Limitations of Report

This report and its contents are intended for the sole use of the British Columbia Ministry of Transportation and Infrastructure (MoTI), their agents and the applicable regulatory authorities. Ecora Engineering & Resource Group Ltd. (Ecora) does not accept any responsibility for the accuracy of any data, analyses, or recommendations contained or referenced in the report when the report is used or relied upon by any Party other than the British Columbia Ministry of Transportation and Infrastructure, their agents, the applicable regulatory authorities or for any Project other than that described in this report. Any such unauthorized use of this report is at the sole risk of the user.

Where Ecora submits both electronic file and hard copy versions of reports, drawings, and other project-related documents, only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by Ecora shall be deemed to be the original for the Project. Both electronic file and hard copy versions of Ecora's deliverables shall not, under any circumstances, no matter who owns or uses them, be altered by any party except Ecora.

Table of Contents

1.	Introduction1					
2.	Project Description1					
3.	Site I	Descr	iption	2		
4.	Back	grour	nd Review	2		
	4.1	Publisl	hed Surficial and Bedrock Geology	2		
	4.2	Water	Well Logs	2		
	4.3	Histori	cal Air Photos	3		
5.	Geot	echni	cal Investigation	4		
	5.1	Geote	chnical Drilling and Excavation	4		
	5.2	Surfac	e Water Sample Collection	5		
	5.3 Laboratory Testing					
		5.3.1	Geotechnical Index Testing	5		
		5.3.2	Chemical Testing in Native Soils	7		
		5.3.3	Surface Water Sample Testing	8		
6.	Surfa	ace Co	onditions	8		
	6.1	Soil Co	onditions	8		
		6.1.1	Existing Pavement Structure	8		
		6.1.2	Dense to Very Dense Sand and Gravel	9		
		6.1.3	Compact to Dense Sand and Silt	10		
		6.1.4	Clay and Silt Mixtures	10		
	6.2	Wetlar	nd Clay & Silt	10		
	6.3	Groun	dwater	10		
7.	Geot	echni	cal Overview	10		
8.	Cons	seque	nce and Site Understanding Classification	11		
	8.1	8.1 Consequence Classification				
	8.2	8.2 Site Understanding				
	8.3	Geote	chnical Factors of Safety for Global Slope Stability	12		

9.	Seisi	mic Considerations	12		
	9.1	Seismic Hazard	. 12		
	9.2	Seismic Site Classification	. 13		
10.	Slop	e Stability	13		
	10.1	Culvert Headwall	. 13		
	10.2	Embankment Fill Stability	. 14		
	10.3	Cut Slope Stability	. 15		
	10.4	Embankment Settlement	. 15		
11.	Earth	nworks and Material Recommendations	16		
	11.1	Site Preparation	. 16		
	11.2	Compaction Requirements	. 16		
	11.3	Cut and Fill Recommendations	. 16		
	11.4	Material Re-use	. 17		
	11.5	Wetland Sub-excavation and Groundwater Control	. 17		
12.	Frost	t Considerations	17		
13.	Pave	ement Design	18		
	13.1	General	. 18		
	13.2	Pavement Structure and Type	. 18		
	13.3	Pavement Design Thickness	. 20		
14.	Cher	mical Testing Interpretation	21		
	14.1	Sulphates	. 21		
	14.2	Chlorides	. 22		
	14.3	pH Testing	. 22		
15.	Temporary Excavations				
16.	Geot	technical Construction Recommendations	22		
17.	Clos	ure	23		
Refe	rence	S	24		

Appendix Sections

Figures

Figure 1.0	Site Plan
Figure 2.0	Slide2 Analysis Results- Section STA 105+00
Figure 3.0	Slide2 Analysis Results – STA 103 + 72.643

Photographs

Appendices

Appendix A	Water Well Logs
Appendix B	Ecora 2021 & 2022 Site Investigation Logs
Appendix C	Laboratory Test Results
Appendix C.1	Geotechnical Index Test Results
Appendix C.2	Native Soil Chemical Test Results
Appendix C.3	Surface Water Chemical Test Results
Appendix D	Option Analysis SLIDE2 Model Results
Appendix E	Traffic Volume Data - Bednesti (P-42-2EW)

1. Introduction

The BC Ministry of Transportation and Infrastructure (MoTI) retained Ecora Engineering & Resource Group Ltd. (Ecora) to carry out a geotechnical site assessment for the proposed road improvements along Highway 16 and the paralleling Frontage Road at the intersection of Guest Road and Shallow Bay Road north of Cluculz Lake, BC.

MoTI requested Ecora to undertake a detailed site assessment to gain an understanding of the soil properties, groundwater conditions and provide geotechnical recommendations for the proposed road widening. Preliminary embankment design including stability and settlement assessments are provided as part of the work.

Our services are being provided in accordance with the Northern Region MoTI, As-and-When contracts between Ecora and MoTI (MoTI Contract No. 863CS1092 and 863CS1149).

2. Project Description

It is Ecora's understanding that the MoTI intends to carry out road improvements along Highway 16 and the paralleling Frontage Road in the vicinity of the intersections at Guest Road and Shallow Bay Road. The total combined project length is approximately 1.55 km.

The project location is approximately 400 m north of Cluculz Lake and approximately 40 km east of Vanderhoof. Based on drawing package R3-375 from BINNIE and Associates Ltd. (BINNIE), the proposed project consists of eight alignments listed below. Proposed alignments and test hole locations are indicated in Figure 1.

- L100: 544 m of construction surrounding Guest Road, and an additional 440 m at Shallow Bay Road, with a total approximate length of 1 km in the east-west direction.
- L300: 70 m of roadway along Guest Road north of Highway 16.
- L400: 70 m of roadway along Guest Road south of Highway 16.
- L500: 100 m of roadway along Frontage Road, west of Guest Road.
- L600: 100 m of roadway along Frontage Road, east of Guest Road.
- L700: 60 m of roadway along Shallow Bay Road, to the south of Highway 16.
- L800: 65 m of roadway along Frontage Road, to the west of Shallow Bay Road.
- L900: 100 m of roadway along Frontage Road, to the east of Shallow Bay Road.

Project works will consist of road widening and construction of turning lanes at the two intersections along with grading, and drainage improvements. It also includes widening of the embankment surrounding an existing 2400 mm diameter steel jacked pipe culvert which crosses the road centerline on L100 at STA. 108+31, 150 m to the east of Guest Road. The existing culvert length is 70 m (DWG No. R3-375-102) which conveys flow from a catchment pond to the north into a creek to the south.

Based on sections provided in drawing package R3-375, proposed fill embankments are typically sloped at 4H:1V (~14°) with toe slopes of 2H:1V (~27°) up to 1 m. The exception is in the vicinity of the culvert between STA.104+80 to STA.105+40, where fill slopes are observed as 2H:1V for the full embankment height. The height of embankment in this section is up to 8 m. Proposed cut slopes are indicated as 2H:1V and are up to 3 m in height but generally less than 2 m.

3. Site Description

The project site is located approximately 40 km by road east of Vanderhoof along Highway 16 within the vicinity of the intersections of Guest Road and Shallow Bay Road including segments of Frontage Road, which parallels Highway 16 to the south. The existing intersection at Guest Road comprises a north and south segment which are paved in the immediate vicinity of the intersection with Highway 16. Frontage Road crosses Guest Road to the south and is an unpaved gravel road. Shallow Bay Road exists only to the south of Highway 16 and pavement does not extend beyond an area immediately adjacent to the highway. Frontage Road crosses Shallow Bay Road and is unpaved.

Existing topography at the site is undulating terrain with the road alignment constructed atop a fill embankment with variable side slopes. Current slopes are steeper along the north shoulder, with gentler gradients to the south. The current alignment appears to have been constructed on embankment fill with a footprint extending north of Highway 16 to south of Frontage Road. Existing embankment slopes range from 2H:1V (~27°) to 3H:1V (~18°) with heights of up to 4 m, and steeper slopes near the existing culvert. In this area, embankment slopes of 1.5H:1V (~34°) and heights of up to approximately 8 m were observed.

4. Background Review

4.1 Published Surficial and Bedrock Geology

The 1:100,000 scale surficial geology map of Cluculz Lake (Geological Survey of Canada Open File 3638) indicates that the area is underlain by a "veneer of glacial lake sediments" consisting of a thin cover of clay and silt with localized deposits of gravel and sand.

The bedrock geology for the site was determined from "MapPlace2" the BC Geological Society GIS. This indicates that the bedrock underlying the site comprises Cache Creek Complex of Permian to Triassic in age. These are described as "mafic volcanic breccia and flows; greenstone; minor limestone, argillite and chert".

4.2 Water Well Logs

From review of the BC Provincial Groundwater Wells and Aquifers database, four wells were identified within a 200 m radius of the project area. The most proximal wells are concentrated on the west side of the project site with additional wells to the south closer to Cluculz Lake. The following list describes the location of the nearest water wells:

- Well ID 56111 100 m south of Highway 16 between Guest Road and Shallow Bay Road.
- Well ID 79203 90 m west of Guest Road and 90 m south of Frontage Road.
- Well ID 62927 55 m west of Guest Road and 50 m south of Frontage Road.
- Well ID 60057 90 m southwest of Frontage Road west of Guest Road.

Stratigraphy logs provided from drilling operations are summarized in the following tables with original water well logs provided in Appendix A. The inferred water table based on these logs was approximately 50 m below ground surface.

Table 1: Water Well ID: 56111

Depth Interval (m)	Thickness (m)	Drillers Description
0 to 18.3	18.3	"Glacial Till"
18.3 to 48.8	30.5	"Dry gravel and till layers"
48.8 to 54.9	6.1	"Silty sand"
54.9 to 65.5	10.7	"Dirty gravel"
65.5 to 67.1	1.6	"Sand and gravel"

Table 2: Water Well ID: 79203

Depth Interval (m)	Thickness (m)	Drillers Description
0 to 1.8	1.8	"Mostly gravel"
1.8 to 24.4	22.6	"Mostly clay, some gravel"
24.4 to 27.4	3.0	"More gravel"
27.4 to 34.7	7.3	"Dark clav"
34.7 to 37.2	2.5	"Brown clav and grit"
37.2 to 60.4	23.2	"Sand and gravel to more gravel"

Table 3: Water Well ID: 62927

Depth Interval (m)	Thickness (m)	Drillers Description
0	53.3	"till"
53.3	62.8	"gravel"

Table 4: Water Well ID: 60057

Depth Interval (m)	Thickness (m)	Drillers Description
0 – 38.7	38.7	"Brown till"
38.7 – 40.8	2.1	"Cemented gravel"
40.8 - 58.8	18.0	"Gravel and sand"

4.3 Historical Air Photos

Historical air photos were reviewed to gain an understanding of historical development at the site. This included the following:

- University of British Columbia air photos dated 1946, 1953, 1960, 1966, 1978, 1980, 1985, 1990, 1996, 2000 and 2006;
- Google Earth historical imagery dated 2002, 2018 and 2021.

The above air photos suggest that Guest Road existed as early as 1946 along with the section of Frontage Road to the east. At this time the surrounding area was heavily forested. By 1953 Shallow Bay Road was constructed and Frontage Road was extended to the west of Guest Road. From 1953 to 1960 it appears construction of Highway 16 had occurred. From 1960 to 2021 the project area has remained relatively unchanged with the exception of clear cutting the surrounding forested areas.

No significant geotechnical constraints were identified from a review of the air photos.

5. Geotechnical Investigation

5.1 Geotechnical Drilling and Excavation

Ecora conducted a geotechnical investigation between August 17 and August 20, 2021 which was coordinated by Teri Brito from Ecora's Vancouver Office. Drilling operations were carried out by Geotech Drilling Ltd. from Prince George, BC, on August 18 and 19, 2021 using both truck and track mounted drill rigs with solid stem auger drilling capabilities. Test pits were excavated by an independent contractor, Darcy Tiani, on August 20, 2021.

Ecora conducted an additional geotechnical investigation program on March 22, 2022, using a hand auger and a Scala penetrometer. The investigation was carried out by Mark-Antoine Berthiaume, from Ecora's Vancouver office, and by Darrel Norstrom from MoTI. The purpose of this additional investigation was to acquire additional geotechnical information on the wetland located on the culvert near STA 105+00.

Prior to both phases of drilling, a BC One Call ticket was reviewed to assess utilities in the region. For the first phase, First Call Locating & Underground Services from Prince George, BC (First Call) were engaged to carry out site identification of subsurface utilities. AccuMark Utility Locating were used for the second phase of locates.

Drilling and test pitting were supervised by Ecora personnel. The investigation comprised nine test holes (TH21-01 to TH21-09), six test pits (TP21-01 to TP21-06) and three hand auger holes (HA22-01 to HA22-03). Details of coordinates, completion depths, and test hole objective are provided in Table 5, with locations indicated on the site plan in the attached Figure 1. Detailed geotechnical logs for each test hole are provided in Appendix B.

Test Hole ID	Easting (m)	Northing (m)	Termination Depth (m)	Objectives
TH21-01	464811	5971633	12.2	Culvert wing wall design
TH21-02	464812	5971598	9.1	Culvert wing wall design
TH21-03	464565	5971696	1.5	Pavement characterization
TH21-04	464664	5971598	1.5	Pavement characterization
TH21-05	464676	5971693	1.5	Pavement characterization
TH21-06	465134	5971612	1.5	Pavement characterization
TH21-07	465255	5971608	1.5	Pavement characterization
TH21-08	465341	5971648	1.5	Pavement characterization
TH21-09	465396	5971654	1.5	Pavement characterization

 Table 5:
 Test Hole Summary

Test Hole ID	Easting (m)	Northing (m)	Termination Depth (m)	Objectives
TP21-01	464572	5971701	3	Road improvements / embankment design
TP21-02	464723	5971634	2.4	Road improvements / embankment design
TP21-03	465027	5971589	3.4	Road improvements / embankment design
TP21-04	465154	5971604	3.5	Road improvements / embankment design
TP21-05	465296	5971632	3.6	Road improvements / embankment design
TP21-06	465428	5971672	3.4	Road improvements / embankment design
Surface Water Sample Collection	464824	5971637	N/A	Chemical testing of surface water
HA22-01	464833	5971636	2.1	Wetland characterization
HA22-02	464840	5971635	2.3	Wetland characterization
HA22-03	5971635	464847	1.6	Wetland characterization

5.2 Surface Water Sample Collection

Due to the existence of the water body north of the highway, chemical testing is required as stipulated in the MoTI document entitled "Environment Testing Requirements for Concrete Deterioration" dated October 19, 2018. Collection of water quality sampling was conducted in accordance with the United Stated Department of Agriculture (USDA) and Canadian Council of Ministers of the Environment (CCME) guidelines. Near bank samples were collected on August 20, 2021, from the northwest side of the culvert inlet.

5.3 Laboratory Testing

Laboratory testing was carried out on grab samples and SPT split spoon samples which were collected during the site investigation. Testing included:

- Geotechnical Index Testing at Ecora's in-house geotechnical laboratory
- Chemical Testing in Native Soils at CARO Analytical Services laboratory
- Surface Water Sample Testing at CARO Analytical Services laboratory

Geotechnical index testing includes grain size analysis, hydrometer, natural moisture content, and Atterberg limits testing. Chemical testing on native soil material included sulphate content and chloride content. Surface water samples were tested for pH and water-soluble sulphates. Details of the testing are described herein.

5.3.1 Geotechnical Index Testing

Geotechnical index testing comprised of grain size analysis, hydrometer, natural water content, and Atterberg limits from grab samples and SPT split spoon samples collected during the site investigation. Index testing was carried out at Ecora's geotechnical laboratory and undertaken in accordance with the ASTM standards outlined in Table 6.

Table 6: Geotechnical Index Testing ASTM Standards

Test type	ASTM standard used
Grain Size Analyses / Hydrometer	ASTM C136
Atterberg Limits	ASTM D4318
Natural Moisture Content	ASTM D2216

A summary of results from the suite of index testing carried out is provided in Table 8, with detailed laboratory results provided in Appendix C.

Table 7: Grain Size Analysis Results

Test Hole	Sample Depth	Moisture Content	Gravel (%)	Sand (%)	Fines (%)	
ID	Interval (m)	(%)	(//)	(/)	(Silt / Clay)	Description
TH21-01	0.6 - 0.8	1.3	0.4	20.2	79.4	Sandy FINES; trace gravel
TH21-01	3.0 - 3.6	13.8	16.8	33.8	49.4	Sandy SILT; some gravel
TH21-01	9.1 - 9.3	7.5	36.3	36.7	27.0	Silty SAND and GRAVEL
TH21-02	2.5 - 2.7	9.7	22.6	38.6	38.8	Gravelly SILT and SAND
TH21-02	7.5 - 7.7	22.4	7.5	43.2	30.0 / 19.3	Silty SAND; some clay, trace gravel
TH21-03	0.5 - 0.7	5.7	38.9	53.0	8.1	SAND and GRAVEL; trace fines
TH21-04	1.0 - 1.2	8.9	25.1	45.4	29.5	Silty, gravelly SAND
TH21-05	0.8 - 1.0	14.1	2.1	36.2	61.7	SILT and SAND, trace gravel
TH21-06	0.3 - 0.5	2.0	46.9	48.1	5.0	SAND and GRAVEL; trace fines
TH21-06	1.3 - 1.5	13.5	14.1	39.1	46.8	SILT and SAND; some gravel
TH21-07	0.3 - 0.5	20.5	0.4	7.5	44.9 / 47.2	CLAY and SILT; trace sand, trace gravel
TH21-07	1.0 - 1.2	30.9	0	0.6	52.7 / 46.7	CLAY, medium plasticity
TH21-08	0.5 - 0.7	5.1	41.0	50.7	8.3	SAND and GRAVEL; trace fines
TH21-08	1.2 - 1.4	12.5	13.5	35.6	50.9	SILT and SAND; some gravel
TH21-09	0.4 - 1.0	3.3	37.8	51.6	10.6	SAND and GRAVEL; some fines
TH21-09	1.2 - 1.4	18.5	7.5	21.7	70.8	Sandy SILT; trace gravel
TP21-01	1.9 - 2.0	33.3	0	0.9	59.7 / 39.4	SILT and CLAY; trace sand
TP21-03	3.0 - 3.4	7.5	29.1	33.9	37.0	Sandy, gravelly FINES
TP21-04	0.6 - 0.8	5.3	31.4	61.1	7.5	Gravelly SAND; trace fines

Test Hole	Sample Depth	Moisture Content	Gravel (%)	Sand (%)	Fines (%)	
ID	Interval (m)	(%)			(Silt / Clay)	Description
TP21-04	1.5 - 1.6	30.4	0	1.9	51.3 / 46.8	SILT and CLAY; trace sand
TP21-05	1.8 - 2.0	21.1	2.6	23.1	36.4 / 37.9	Sandy CLAY and SILT; trace gravel
TP21-05	0.8 - 1.0	5.7	32.3	62.0	5.7	Gravelly SAND; trace fines
TP21-06	1.9 - 2.0	10.1	26.1	40.1	33.8	Silty gravelly SAND
HA22-01	1.8 - 2.0	43.0	0	13.5	59.0 / 27.5	Clayey SILT; some sand
HA22-02	1.7 - 2.0	31.9	3.3	19.3	48.3 / 29.1	CLAY, medium plasticity
HA22-03	1.0 - 1.2	41.4	0	5.8	63.2 / 31.0	CLAY, medium plasticity

Table 8: Atterberg Limit Results

Test Hole ID	Sample Depth	Moisture Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Description
TH21-02	7.3 - 7.5	14.8	31.8	15.1	16.7	CM - Medium Plastic Clay
TH21-04	1.5 - 1.6	21.1	40.8	21.7	19.1	CM - Medium Plastic Clay
TH21-07	1 - 1.2	30.9	40.9	21.4	19.4	CM - Medium Plasticity Clay
HA22-01	1.4 - 1.8	50.0	39.0	24.0	15.0	CM – Medium Plastic CLAY
HA22-02	1.2 - 1.7	48.5	38.0	24.0	14.0	CM – Medium Plastic CLAY
HA22-02	2.0 - 2.2	36.4	40.0	19.0	21.0	CM – Medium Plastic Clay
HA22-03	1.2 - 1.6	35.3	33.0	20.0	13.0	CM – Medium Plastic CLAY

5.3.2 Chemical Testing in Native Soils

Select samples were collected for chemical testing from locations and depths in accordance with the MoTI document entitled "Environment Testing Requirements for Concrete Deterioration" dated October 19, 2018. Material testing requirements from this document indicate water soluble sulphate and chloride content testing within native soil in accordance with CSA A23.2-3B and ASTM C1218. Samples were analyzed by Caro Analytical Services. Results are summarized in Table 9 below with the laboratory test report presented in Appendix C.

Test Hole ID	Depth (m)	Water Soluble Sulphate in Soil (%)	Soluble Chloride in Water (%)
	2.70	< 0.05	< 0.002
TH21-02	5.70	< 0.05	< 0.002

Table 9: Native Soil Chemical Test Results Summary

5.3.3 Surface Water Sample Testing

Surface water samples collected from the northern inlet of the existing culvert were sent to Caro Analytical Services for analysis. Testing was carried out in accordance with the MOTI test requirements document specified above including pH and water-soluble sulphate content in accordance with CSA A23.2-2B. Results of testing for surface water samples are summarized in Table 10 with the laboratory test report presented in Appendix C.

Surface Water Sample Ref.	Sample Type	рН	Soluble Sulphate in Water (mg/L)
SW21-01	Surface Water	7.14	-
SW21-03	Surface Water	7.21	<1.0
SW21-04	Surface Water	-	<1.0

Table 10: Surface Water Test Results Summary

6. Surface Conditions

6.1 Soil Conditions

Typical material types encountered throughout the site during the investigation are summarized in the following sections with detailed logs for each borehole provided in Appendix B.

6.1.1 Existing Pavement Structure

During the site investigation a total of 9 test holes were drilled, with 7 located within the existing road alignments including Highway 16 and side roads. Pavement structure was observed in 6 of the shallow test holes; TH21-03 to TH21-09 except for TH21-05, which was located in the unpaved section of Guest Road north of Highway 16. We could not decipher between crushed base course (CBC) and select granular subbase (SGSB) during the field investigation and is collectively referred to herein as "base". Typical observations from the site investigation are listed below:

- Asphalt material ranged from 60 mm in thickness where present within side road and shoulder structure to 250 mm in thickness within the Highway 16 travel lanes. No asphalt was observed along the north segment of Guest Road or in the deep test holes within the embankment.
- Granular base thickness ranged from 100 mm to 900 mm and was described as dense, well graded, and grey to brown in colour.
- Sub-base material underlying the granular base was observed from 150 mm 1200 mm and similarly described as dense, well graded, and grey to brown.

The total thickness of current pavement structure observed in test holes varied from 300 mm to 1520 mm including asphalt, base, and sub-base material summarized in Table 11.

Test Hole ID	Thickness of Asphalt (mm)	Thickness of Base (mm)	Total Pav. Structure Thickness (mm)	Location
TH21-01	-	-	-	North Embankment at Culvert Outlet
TH21-02	-	-	-	South Embankment at Culvert Outlet
TH21-03	250	1270	1520	Westbound shoulder west of Guest Road
TH21-04	90	1430	1520	Center of Guest Road at Frontage Road
TH21-05	-	-	-	Center of Guest Road North of Highway 16
TH21-06	250	950	1200	Westbound travel lane between Guest Road and Shallow Bay Road
TH21-07	150	150	300	Center of Shallow Bay Road at Frontage Road.
TH21-08	60	940	1000	Eastbound shoulder east of Shallow Bay Road
TH21-09	240	1280	1520	Center of eastbound travel lane east of Shallow Bay Road.

Table 12:	Existing Travel and Shoulder Lane Pavement Structure
-----------	--

		Travel Lane	•	Shoulder Lane			
	Asphalt	Base	Total	Asphalt	Base	Total	
Minimum Thickness (mm)	240	950	1000	60	940	1000	
Maximum Thickness (mm)	250	1280	1520	250	1250	1520	
Average Thickness (mm)	245	1115	1260	155	1095	1260	

6.1.2 Dense to Very Dense Sand and Gravel

Encountered immediately below pavement structure in the majority of holes, this layer comprised of granular material ranging from gravelly sand to sand and gravel, with some areas described as silty. Occasional cobbles were observed. Extending to depths ranging from 0.75 m 1.7 m this material was considered dense to very dense, moist, grey or brown in colour, well graded, and exhibited subrounded gravel. SPT N-values with this material ranged from 49 to over 100 blows per 300 mm.

Comprising of a gravel mass fraction ranging from 25% to 47% and sand from 45% to 62% based on laboratory results this material is inferred to be fill material.

6.1.3 Compact to Dense Sand and Silt

This material ranges from interlayered silty sand to sandy silt with trace to some gravel. It is described as dry to moist, well graded, and brown in colour and characterized as compact to dense. SPT N-values in the dense and very dense strata range from 37 to refusal (N>50) for 300 mm. This material was typically non-plastic to low plastic, with some regions of localized medium plasticity.

Within holes TH21-05, TH21-06, TH21-08, TH21-09, TP21-02, and TP21-03 this material was encountered at depths ranging from 1 m to 1.5 m below existing grade and extending to the full depth of the respective (shallow) test hole or test pit. At TH21-01 and TH21-02 this material is found at shallow depths and interlayered with sandier layers and clay layers.

6.1.4 Clay and Silt Mixtures

Material ranging from silty clay to clayey silt was encountered in TH21-02, TH21-07, TP21-01, TP21-04, and TP21-05. This material was described as medium plastic, and moist to wet, with moisture contents between 15% and 33% based on laboratory testing. The clays and silts are predominantly brown in colour with the exception of a blue-grey seam located at TP21-04.

Clay ranged from 19% - 47% of the material composition by mass, and silt ranged from 36% to 60% based on gradation results from laboratory testing. Atterberg limits carried out in this material showed PI values ranging from 16% to 19%.

6.2 Wetland Clay & Silt

The material encountered in the wetland near station 105+00 was mostly comprised of clayey silt with trace to some sand and increased in sand content with depth. Some organic material was present in the upper portion of the wetland. Silt content ranged from 48% to 63% and clay content ranged from 28% to 31%. The clayey silt material was medium plastic, with PI values ranging from 15% to 21%.

Scala penetrometer values ranged from 2 to 5 blows/50 mm. Hard material (Scala refusal) was encountered at depths between 2.69 m and 3.32 m. The hard material appeared shallower towards the eastern end of the wetland.

6.3 Groundwater

During site reconnaissance, an inferred water table was noted at 5.3 m depth in TH21-02 located in the embankment between Highway 16 and Frontage Road. Groundwater levels within the wetland are anticipated near surface.

7. Geotechnical Overview

Subsurface conditions observed during the site investigation comprise of silty sand to sandy silt underlying sand and gravel. Based on the encountered conditions and the proposed works associated with the project key geotechnical design considerations include:

 Stability: Including the roadway alignment, adjacent embankments, and area surrounding the culvert.

- Earthworks: Cuts and fills will be required to construct the works associated with road improvement and widening. Recommendations are provided to support the design and construction of these earthworks.
- Culvert Headwall: The road widening at the location of the existing culvert will require upgrades to the existing culvert configuration to accommodate the extended embankments associated with the road improvement and widening.
- Pavement Design: A pavement design assessment has been undertaken based on traffic data, frost considerations, and best practices of the Northern Region MoTI.

The above considerations are discussed in the following sections together with provisional geotechnical construction recommendations.

8. Consequence and Site Understanding Classification

8.1 Consequence Classification

Section 6.5.1 of the Canadian Highway Bridge Design Code (CHBDC) S6-14 specifies three failure consequence levels, namely:

- High Consequence The foundations and/or geotechnical systems are designed for applications including bridges, essential to post disaster recovery (e.g., lifeline) and/or having large societal or economical impacts;
- Typical Consequence The foundations and/or geotechnical systems are designed for applications including bridges, carrying medium to large volume of traffic and/or having potential impacts on alternative transportation corridors or structures; or,
- Low Consequence The foundations and/or geotechnical systems that are designed for applications where life safety is not a concern. The use of low consequence for bridges requires approval.

It is assumed that a determination of the consequence classification has not been undertaken by the Regulatory Authority and that the area is not used for post disaster recovery, or wide reaching societal or economic impacts, thus the selected consequence classification for the project site is assumed to be "Typical".

8.2 Site Understanding

According to Table 6.2c in the Supplement to the CHBDC S6-14, the three degrees making up the site and prediction model understanding are identified as:

- High Understanding Extensive project-specific investigation procedures and/or knowledge are combined with prediction models of demonstrated quality to achieve a high level of confidence with performance predictions.
- Typical Understanding Typical project-specific investigation procedures and/or knowledge are combined with conventional prediction models to achieve a typical level of confidence with performance predictions.

 Low Understanding – Limited representative information (e.g., previous experience, extrapolation from nearby and/or similar sites) combined with conventional prediction models to achieve a lower level of confidence with performance predictions.

Based on the site investigation program conducted, the site and prediction model are identified as "Typical Understanding".

8.3 Geotechnical Factors of Safety for Global Slope Stability

Supplement to CHBDC (Table 6.2b) provides the minimum Factor of Safety (FoS) for global stability corresponding to the site consequence and degree of understanding summarized in Table 13 below. Based on a "Typical Consequence" and "Typical Understanding" the minimum design FoS used for global stability of permanent and temporary slopes are 1.54 and 1.33 respectively.

 Table 13:
 Factors of Safety for Global Stability of Embankments (Supplement to CHBDC S6-14, 2016 – Table 6.2b)

Degree of Understanding		Low			Typical			High	
Consequence factor from S6-14	High	Typical	Low	High	Typical	Low	High	Typical	Low
FoS for Global Stability – Permanent	1.85	1.67	1.45	1.71	1.54	1.34	1.59	1.43	1.24
FoS for Global Stability – Temporary	1.59	1.43	1.24	1.48	1.33	1.16	1.39	1.25	1.09

9. Seismic Considerations

9.1 Seismic Hazard

Peak Ground Acceleration (PGA) and Spectral Accelerations (Sa(T)) for various return periods for a "Class C" site were obtained from the Earthquakes Canada website (<u>http://earthquakescanada.nrcan.gc.ca</u>) which is based on the 5th Generation Seismic Hazard Model for Canada (Adams et. al. 2015). The values for the project area are summarized in Table 14 below.

Annual Exceedance Probability (AEP)	PGA (g)	Sa(0.2) (g)	Sa(0.5) (g)	Sa(1.0) (g)	Sa(2.0) (g)	Sa(5.0) (g)	Sa(10.0) (g)
1/475	0.016	0.033	0.034	0.028	0.022	0.009	0.003
1/1,000	0.025	0.056	0.051	0.040	0.030	0.014	0.005
1/2,475	0.044	0.101	0.082	0.059	0.043	0.020	0.006

9.2 Seismic Site Classification

Based on Table 15 below (reproduction of Table 4.1 in CHBDC S6-14), and the SPTs recorded during the investigation, a seismic site classification of Class D "Stiff Soil" is recommended for the project area.

 Table 15:
 Site Classification for Seismic Site Response (Table 4.1 CHBDC S6-14)

		Average Properties in Top 30 m					
Site Class	Soil Profile Name	Soil Shear Wave Average Velocity <i>⊽_{s30}</i> (m/s)	Standard Penetration Resistance, \overline{N}_{60}	Soil Undrained Shear Strength s _u (kPa)			
А	Hard Rock	$\bar{V}_{s30} > 1500$	Not Applicable	Not Applicable			
В	Rock	$760 < \overline{V}_{s30} < 1500$	Not Applicable	Not Applicable			
С	Very Dense Soil and Soft Rock	$360 < \bar{V}_{s30} < 760$	$50 < \overline{N}_{60}$	100 < s _u			
D	Stiff Soil	$180 < \overline{V}_{s30} < 360$	$15 \le \overline{N}_{60} \le 50$	50 < s _u < 100			
		$\bar{V}_{s30} < 180$	$\bar{N}_{60} < 15$	su < 50			
E	Soft Soil	Any profile with more than 3 m of soil with the following characterist Plasticity Index, Ip > 20; Moisture Content, w \ge 40%; and Undrained Shear Strength, s _u < 25 kPa					
F	Other Soils (1)	Site specific evaluation requ	ired				

(1) Other soils include:

a) liquefiable soils, quick and highly sensitive clays, collapsible weakly cemented soils, and other soils susceptible to failure or collapse under seismic loading;

- b) peat and/or highly organic clays greater than 3 m in thickness;
- c) highly plastic clays (PI > 75) more than 8 m thick, and

d) soft to medium stiff clays more than 30 m thick

10. Slope Stability

Assessment of slope stability in cut slopes and fill embankments along the project alignment described in the following sections is based on the BINNIE drawing package R3-375 provided by MOTI with cross-sections at various stations. Evaluation of the sections provided was the basis of stability model development described herein.

10.1 Culvert Headwall

BINNIE cross-section drawings indicate that the majority of side slopes in the project area are moderately gentle with the exception of near the existing culvert (STA 105+00 to 105+17) where fill embankments will be as high as 8 m to match existing. Within this area, slope stabilization measures are required.

Slope stability was assessed by use of the RocScience software package Slide2 (V9.0.0.3), creating a model under static and seismic (pseudo-static) conditions. Geotechnical soil parameters used in the stability analysis are

summarized in Table 16 below. The soil parameters for existing material are based on subsurface conditions encountered in adjacent test holes (TH21-01 and TH21-02). Parameters for proposed engineered materials are assumed based on typical values.

Material	Unit	Drained	Analysis	Undrained Analysis
	Weight (kN/m ³)	Friction Angle (°)	Cohesion (kPa)	Undrained Cohesion (kPa)
Native Sand and Silt	20	33	2	-
Silt	20	30	0	-
Type D - Granular Fill	20	37	0	-
Engineered Fill	20	38	0	-
Rock Fill	21	46	0	-
Lock Block	24	0	365	-
Wetland – Very Soft Clay	16	19	1	5
Wetland – Firm Clay	18	26	5	30

Table 16 [.]	Soil	Pronerties	llsed for	Slide2	Analysis
	0011	1 Toperties	0300101	Ollacz	Analysis

Several remediation strategies were considered during preliminary design development. Of the proposed options, the MoTI has selected a 2H:1V fill extension with some sub-excavation and replacement of the wetland material. Other alternatives required displacement of the culvert or did not meet adequate Factor of Safety (FoS) requirements. These options included a Geosynthetic Reinforced Soil (GRS) wall, a 2.6H:1V fill extension without wetland material replacement and a slope with a rock toe buttress.

Culvert headwall retention works will be carried out approximately from STA 105+00 to STA 105+34. Design in this area has a targeted FoS of 1.54 as specified in the British Columbia Supplement to CHBDC S6. Current analysis for the selected option; results shown in Figure 2.0, calculates an FoS of 1.53.

The selected design consists of a granular fill slope of 2H:1V (27°) extending from the proposed highway elevation. The wetland below the fill will be excavated to a depth of 1.5 m below mudline. The removal of the weak clay layer and replacement with a higher strength material increases the passive resistance of the soil and allows us to achieve a satisfactory FoS. Recommended construction sequencing involves a benched excavation with placement of fill in lifts meeting standard MoTI specifications. Earthworks construction recommendations are further described in Section 12.

Slide2 software was used to analyze a cross-section at STA 105+00 and STA 103 + 72.643 (see BINNIE Drawing R3-375-6XS). Model results from analysis of the selected option are presented in Figure 2.0 with supplementary preliminary design options shown in Appendix D. Model results for STA 103 + 72.643 slope stability analysis is presented in Figure 3.0.

10.2 Embankment Fill Stability

The fill slopes on Binnie cross sections typically consist of 4H:1V slopes (for the 9 m width from the through lane to meet the clear zone requirement). Beyond that 9 m offset, the embankments extend down at 2H:1V (i.e. near the toe of the embankment).

Where embankments are behind concrete roadside barriers (CRBs), they are 2H:1V as the CRBs satisfy clear zone requirements.

These 4H:1V sections and 2H:1V embankments are low in height and constructed in areas away from softer wetland soils. These embankment slopes are considered acceptable provided that the embankments are placed and compacted in in accordance with Section 201 of the MoTI Specifications for Highway Construction SS 202.

10.3 Cut Slope Stability

Cut slopes within the project extents are predominantly located along the side road alignments (L300 – L900) and are typically minimal in height. The most significant cut slopes proposed are located at the C20 curb section located at the northeast corner of the intersection between Highway 16 and Guest Road with a maximum height of approximately 3 m. This C20 curb section is shown in the BINNIE drawings as having a 2H:1V (27°) slope. Ecora has completed slope stability analysis for the critical cut slope section at approximately STA 103+72.643. The cross section location and results of both the static and seismic stability analyses are presented as Figures 3.0 to 3.2 which indicate a low risk of instability of these cut slopes.

10.4 Embankment Settlement

Construction of the proposed road improvements will involve fill placement in sections of the alignment, which will impose loading on the subgrade soils with the potential to cause settlement. Based on sections provided by BINNIE, the maximum embankment height will be approximately 8 m, associated with the northern embankment in vicinity of the existing culvert from approximate station 105+00 to 105+30. Embankment fill placement is assumed to be granular fill with an approximate bulk density of 20 kN/m³. Soils encountered during the site investigation were described as silty sands and sandy silts, with some areas containing some gravel. The wetland downstream of the culvert is comprised of clays, some silt and varying amounts of sand. Based on these parameters it is anticipated that in the area of the existing culvert post-construction settlement resulting from construction activities will be less than 75 mm, provided that the wetland material is excavated and replaced. Other locations within the project alignment are considered to have nominal settlement (< 50 mm). The majority of this is anticipated to occur during embankment construction, prior to the placement of asphalt.

Tolerances of the infrastructure in this zone to impacts of settlement should be considered during design. Utilities may require relocating.

10.5 Wetland Sub-excavation and Groundwater Control

As noted earlier, subexcavation is required within the wetland (near STA 105+00) to both improve the stability and improve the settlement of the embankment that would impact the culvert.

This will involve subexcavating to an inferred depth of 1.5 m (below mudline) within the wetland and replacement with compacted granular fill. The required width at the base of the granular fill replacement zone will be 6 m and it should be wrapped in non-woven geotextile up to Elevation 771.0 m. The finished embankment slope is to be constructed at 2H:1V and formed entirely in compacted granular fill.

The final elevation of the sub-excavation should be confirmed by a geotechnical representative from Ecora or MoTI during construction.

Dewatering will be needed during construction to facilitate embankment construction. The contractor shall allow for appropriate dewatering methods to enable the subexcavation works to be undertaken. This may entail the use of temporary sheet piling or other measures as determined by the Contractor. Construction during the summer is likely to reduce the groundwater control requirements.

11. Earthworks and Material Recommendations

11.1 Stripping

For stripping, we recommend utilizing a nominal allowance of 300 mm for the highway design.

11.2 Site Preparation

Prior to the placement of fill or pavement structure, the Contractor shall remove all topsoil, organics, and any other deleterious material to at least 1 m laterally past the edge of proposed fill. The stripped subgrade shall be reviewed by a geotechnical engineer prior to the placement of any fill. This review should include a "proof-roll" by completing several passes with approved heavy construction equipment for compaction. Any soft areas or areas showing poor performance (i.e., pumping, cracking, deflection etc.) should also be sub-excavated and replaced with structural fill to be placed in accordance with WorkSafe BC Occupation Health & Safety Regulations, Part 20.

11.3 Compaction Requirements

General embankment fill is subject to requirements of Section 201.37 of the MoTI Specifications for Highway Construction SS 202 (MoTI specifications), which defines "earth embankments" as embankments constructed from material containing less than 15% by volume of rock larger than 150 mm in diameter.

Requirements of section 201.37 are that earth embankments are constructed in successive horizontal lifts not exceeding 200 mm in loose thickness below the top 500 mm and in layers not exceeding 100 mm in loose thickness above 500 mm. Compaction efforts are required between each lift such that a minimum of 95% of the Standard Proctor Maximum Dry Density (SPMDD) determined in accordance with ASTM D698 with the exception of the top 300 mm of embankments which much meet a compaction standard of 100% of the SPMDD.

During tendering, we recommend that the Special Provisions require the Contractor to provide an earthworks management plan which addresses their strategy for quality control and quality assurance with respect to fill placement. This should address the construction equipment that will be used to compact fine grained soils (e.g., sheepsfoot rollers), measures for controlling moisture, and obtaining representative proctors for the various material types in use.

11.4 Cut and Fill Recommendations

Where fill thickness is small, design grade will be achieved with pavement structure i.e., designated base and subbase material. In areas of greater fill thickness, grade will be achieved through the placement of site grading fill followed by base and subbase material. In these areas, the site grading fill shall comprise of 75 mm minus sand and gravel with less than 5% fines.

All exposed cut slopes should be reviewed by a geotechnical engineer to verify the exposed soil and groundwater conditions are consistent with design assumptions and conducive to construction. Based on the site investigation it is assumed that the water table will not be encountered during excavation for road improvements for the majority of the alignment. Potential for groundwater may exist to the north of Highway 16, near the culvert inlet depending on final design of the headwall.

The establishment of vegetation on soil slopes assists with stabilization by root-binding, preventing erosion, and lowering soil moisture content. It is recommended that slopes should be vegetated soon after construction to minimize the potential for erosion.

11.5 Material Re-use

Material encountered during the site investigation exhibits a significant amount of fines. This material can be used as Type D borrow however limitations and risks associated with re-use should be appreciated. Fine grained fill requires additional moisture control, may be frost susceptible, has potential for expansion, has limitations on side slopes, and requires additional compaction efforts. Other considerations may be the experience of local contractors in working with fine grained materials. Specialized compaction equipment may be needed, such as a sheepsfoot roller.

Fine grained material encountered does not meet the BC MoTI specifications for CBC, SGSB or BEF.

Localized regions of more granular material were encountered, which may be considered for re-use. Quality of this material for use should be determined by confirmatory testing.

12. Frost Considerations

Design of the works associated with the road and intersection improvements in the project area should consider the susceptibility of material to frost effects such as heave.

Frost depth is defined as the maximum depth to which freezing temperatures penetrate the ground. Extent of subsurface freezing effects will vary depending on climate and material conditions. Penetration depth of freezing temperature is approximated based on frost probes through the MoTI Road Weather Information System (RWIS) online database. The most proximal frost probes from this repository are 27.2 km east and slightly south in a direct path (28 km along the highway). Two stations are installed at this location, including a frost probe, Tamarack FP (41961), and a climate station, Tamarac (41094). The next most proximal probes are located greater than 45 km away. Table 17 summarizes frost depth encountered at probes within 50 km of the subject site.

Frost Probe ID	Latituda	Longitude	Elevation	Proximity to Site (Approximate)	Maximum Freezing Depth < 0° (m)			
		Longitude	(m)	Distance (km)	Elevation (m)	2021	2020	2019
Tamarack FP (41961)	53.83111	- 123.13222	715	27.2 (SE)	- 65	1.7	1.6	1.7
Blackwater Road (41964)	53.75035	- 122.87018	760	46.2 (SE)	- 20	1.6	1.45	-
Highway 27 (52362)	54.14944	- 124.16306	840	49.8 (NW)	+ 60	1.8	1.95	2.4

Frost penetration over a 3-year period indicate an average freezing depth ranging from 1.45 m to 2.4 m. It is noted that the frost probe which registered deeper freezing penetration is located at an elevation 60 m higher than the project site.

Frost protection impacts on the pavement design are discussed in Section 13.

Works within the vicinity of the culvert should be carried out by use of non-frost susceptible material in accordance with Section 303 (Culverts) of the MoTI specifications.

13. Pavement Design

13.1 General

Pavement analysis and design has been conducted for the proposed alignment including Highway 16 and intersection improvements at Guest Road and Shallow Bay Road.

The following sources were used in the development of pavement design of the project site:

- Geotechnical data from 2021 site investigation including subsurface material observations and laboratory results.
- MoTI Pavement Structure Design Guidelines Technical Circular T-01/15 (January 2015).
- AASHTO (1993) "Guide for Design of Pavement Structures".
- Traffic volumes from the MoTI Traffic Data Program GIS application (www.th.gov.ca/trafficdata).

13.2 Pavement Structure and Type

Basis of the pavement design provided herein follows procedures outlined in the Technical Circular T-01/15 and relies upon vehicle volumes from the BC MoTI "Traffic Data Program" website. The most proximal traffic data locations were assessed to determine typical traffic volumes experienced by the road in this region. Three sites were reviewed located between 7 km and 17 km from the project site. Of the three sites located within the vicinity, only one, Bednesti (P-42-EW – N), is a permanent site having consistent data collection from 2009 to 2021.

Design inputs are based on the information collected from the Bednesti data collection station, located approximately 9.7 km east of the project site along Highway 16. Annual traffic volume data for this site is provided in Appendix E. Traffic growth rate is highly variable at this station as well as the temporary stations in the region, showing fluctuating growth rates. Due to this high variability the growth rate from data collection is considered unreliable and a standard growth of 2% is assumed for the project area per Technical Circular T-01/15. A summary of data inputs to determine service loading applicable to the roadway is provided in Table 18 based on procedures from AASHTO 1993 guidelines referenced in the MoTI Technical Circular T- 01/15.

Parameter	Description	Highway 16	Source
AADT	Annual average daily traffic (vehicles/day)	4,616	2021 data from Station 45-001EW-N
Directional Distribution	Distribution in POS and NEG direction	0.5	Data from Traffic Data Program website
Design Life in years	-	20	Recommended by Technical Circular T-01/15
Growth Factor	Traffic growth rate (%)	2 %	Standard value from Technical Circular T- 01/15
HVP	Heavy vehicle percentage (%)	30 %	Data from Traffic Data Program website
HVDF	Heavy vehicle percentage in design lane (%)	100 %	Single lane per direction (all heavy vehicles in one lane)
NALV	Number of ESALs per heavy vehicle	6	Based on TAC Vehicle Weights and Dimensions Study Load Equivalency Factor plot interpolation
TDY	Traffic days per year	365	
Estimated ESALs	Current equivalent single axle loads (yearly)	1.5 x 10 ⁶	Calculation based on Technical Circular T- 01/15 for current conditions
20-year Estimated ESALs	20-year projected equivalent single axle loads (cumulative)	37 x 10 ⁶	Calculation based on AASHTO formula and indicated growth rate

Table 18: Summary of Traffic Data Design Inputs

Of the four typical pavement structure types (A, B, C, D) provided in the MoTI Technical Circular T-01/15 -"Pavement Structure Design Guidelines", the applicable pavement type for this project based on traffic loading is Type A. The typical pavement types and their respective attributes as described in the above referenced document are shown in Table 19. Additional considerations should be made to confirm adequacy of design to meet northern conditions and impacts of frost penetration.

Traffic volume data is not available for the side roads in the project area including Guest Road, Shallow Bay Road, and Frontage Road. It is assumed that traffic volumes are significantly lower than the monitored sections along Highway 16 and will not require a Type A pavement design. In these sections, roadway improvements will only extend approximately 100 m or less along side roads at the intersections and it is assumed that a tapered pavement design would be adequate.

able 19: F	Pavement Structure Type		
Pavement Structure Type	Roadway Description	20 Year Deign ESAL Criteria	Typical Asphalt Concrete Pavement Thickness (mm)
А	High volume roads, truck lanes, specialty locations	>20,000,000	≥ 150
В	Medium to high volume roads	100,000 to 20,000,000	75 to 150
С	Low volume & subdivision roads	<100,000	50 to 75
D	Low volume sealcoat or gravel roads	<100,000	Graded aggregate sealcoat layer(s)
C D	Low volume & subdivision roads Low volume sealcoat or gravel roads	<100,000 <100,000	50 to 75 Graded aggregate sealcoat layer(

h T

13.3 Pavement Design Thickness

Design of the pavement structure follows the methods outlined in the MoTI Technical Circular T-01/15 with reference to parameters from AASHTO 1993. Values used in the determination of minimum required structural Number (SN) are provided in Table 20. The calculated minimum structural number is based on reliability requirements, serviceability index, resilient modulus, structural layer coefficient, and drainage coefficient. Structural number used in design must meet or exceed the calculated minimum.

Parameter	Description	Highway 16	Notes
Pi	Initial serviceability index	4.2	Technical Circular T-01/15
Pt	Terminal serviceability index	2.5	Technical Circular T-01/15
R	Reliability	90	Technical Circular T-01/15
So	Standard Deviation	0.45	Technical Circular T-01/15
aac	Structural layer coefficient—AC	0.40	Technical Circular T-01/15
ab	Structural layer coefficient—CBC	0.14	Technical Circular T-01/15
asb	Structural layer coefficient—SGSB	0.10	Technical Circular T-01/15
mb	Drainage coefficient—CBC	0.95	Technical Circular T-01/15
M _{sb}	Drainage coefficient— SGSB	0.8	Technical Circular T-01/15
Mr (MPa)	Resilient modulus—subgrade	35	Estimated from SPT N-values and soil type
SN _R (mm)	Structural Number Required	170	-

Table 20:	Pavement	Structure	Properties
-----------	----------	-----------	-------------------

Using a convergent numerical analysis, the minimum structural number is determined as 170 mm. Proposed pavement structure to achieve this SN requirement as well as minimum pavement requirements for a Class A roadway is provided in Table 21, resulting in a SN of 172 mm and a total depth of pavement structure of 1,350 mm.

Design thicknesses provided assume pavement structures are well drained, proper maintenance is performed, and that placement is conducted in accordance with the current MoTI Standard Specifications for Highway Construction (2020) unless otherwise approved by the MoTI.

 Table 21:
 Pavement Structure Design Thickness (Highway 16)

Material	Thickness	Structural Number
Asphalt Pavement	150 mm	60 mm
Crushed Base Course (CBC)	300 mm	40 mm
Select Granular Subbase (SGSB)	900 mm	72 mm
TOTAL	1,350 mm	172 mm

As the total pavement depth exceeds 50% of assumed frost depth, further thickening of pavement structure layers is not deemed necessary to combat impacts of frost penetration.

Asphalt pavement construction shall follow Section 502 of the "Standard Specifications for Highway Construction" (MoTI, 2020).

Construction of granular surfacing, granular base, and SGSB shall follow Section 202 of the "Standard Specifications for Highway Construction" (MoTI 2020). Granular surface materials shall be placed in lifts with loose thickness of 300 mm (150 mm compact), adequately moisture conditioned, and compacted to 100% of the Standard Proctor Maximum Dry Density (SPMDD) per ASTM D698.

For the gravel frontage roads, we recommend the use of High Fines Surfacing Aggregate (HFSA) over 300 mm of CBC over 900 mm of SGSB.

14. Chemical Testing Interpretation

Laboratory testing to determine potential for chemical degradation was carried out in accordance with the MoTI "Environment Testing Requirements for Concrete Deterioration" document indicating testing requirements. Analytes tested include water-soluble sulphates and water-soluble chlorides with discussion of result interpretation provided in the following sections. Chemical testing was carried out by CARO Analytical Services.

14.1 Sulphates

Sulphate attack is defined as a chemical and/ or physical reaction between sulphates usually found in soil or groundwater and concrete or mortar in the built environment. Primarily the reaction in the mortar occurs with the calcium aluminate hydrates in the cement paste matrix, often causing deterioration. Table 3 of the CSA A23.3.1 provides exposure classification for various scenarios of concrete subjected to sulphate attack and is reproduced in Table 22.

Class of Exposure	Degree of Exposure	Water Soluble Sulphate (SO₄) in Soil Sample (%)	Sulphate (SO₄) in Groundwater Sample (mg/L)	Water Soluble Sulphate (SO₄) in Recycled Aggregate Sample (%)	Cementing Materials to Be Used
S-1	Very Severe	> 2.0	> 10,000	> 2.0	HS or HSb
S-2	Severe	0.20 - 2.0	1,500 - 10,000	0.6 - 2.0	HS or HSb
S-3	Moderate	0.10 - 0.20	150 – 1,500	0.20 - 0.60	MS, MSb, LH, HS, or HSb

Table 22: Additional Requirements for Concrete Subjected to Sulphate Attack (CSA A23.1 – Table 3)

Soil samples obtained during the site investigation with results provided in section 5.3.2 indicate a sulphate content of < 0.05% and are thus lower than the exceedance threshold provided by CSA A23.3 of 0.1% - 0.2%. As such, risk of sulphate attack on concrete structures or pavement due to contact with sulphate rich soil in the project is considered sufficiently low to not require sulphate-resistant cement material.

Surface water samples tested for soluble sulphate content indicated values of < 1.0 mg/L. Based on the threshold requirements from the CSA regulations for groundwater, it is assumed surface water specifications are comparable and the risk of sulphate attack due to contact with sulphate-laden surface water is considered low.

Use of sulphate-resistant cementitious material is not considered required at the project site.

14.2 Chlorides

Introduction of chloride ions may occur as contaminants from manufacturing or subsequent exposure to chlorideladen environments such as seawater or de-icing salts. Exposure to chlorides can cause corrosion problems adversely affecting reinforcing steel. A significant concentration of chloride ions in the alkaline electrolyte phase adjacent to the steel tends to cause a phenomenon termed "pitting" wherein localized breakdown of the passive film on the embedded metal. Pitting can result in a serious localized loss in cross section of the affected regions of bars.

The limits of water-soluble chloride ion contents by mass of cementitious material are provided in section 4.1.1.2 of CSA 23 A23.1 (Limits on chloride ion content) as presented below:

- for prestressed concrete: 0.06%;
- for reinforced concrete exposed to a moist environment or chlorides, or both: 0.15%; and
- for reinforced concrete exposed to neither a moist environment nor chlorides: 1.0%

Chloride test results from the project site indicate water soluble chloride content < 0.002%, which is below the lower chloride exposure threshold. Risk of chloride attack on reinforcing steel due to soil exposure to chloride containing soil is considered low.

14.3 pH Testing

Chemical pH testing in surface water at the project site indicate values of 7.14 and 7.21, which are considered to exhibit a neutral pH. Risk of concrete deterioration caused by contact with acidified fluids is considered to increase with pH values below 6.5. The encountered pH at the project site suggest that the pH is within an acceptable range and additional measures are not required to regulate pH.

15. Temporary Excavations

All work conducted in and around excavations should be carried out in accordance with requirements specified by the WorkSafe BC Occupation Health & Safety Regulations, Part 20.

To maintain the stability of trench excavations, all materials excavated from the trench shall be placed a minimum distance away form the excavations, equal to the depth of the excavation.

Temporary cut slopes/excavations formed within the native soils shall be graded no steeper than 1H:1V. When a temporary cut slope of 1H:1V cannot be achieved, temporary shoring will be required.

16. Geotechnical Construction Recommendations

Ecora should be given the opportunity to review Special Provisions, design drawings and any other specifications related to geotechnical aspects of this project, prior to construction.

All design recommendations presented in this report are based on the assumption that an adequate level of monitoring will be provided during construction, and that construction will be carried out by a suitably qualified Contractor, experienced in earthworks, culvert and roadway construction. One of the purposes of providing an adequate level of field review is to check that recommendations based on geotechnical data obtained at discrete test locations are relevant to other areas of the alignment. It is recommended that the following site reviews are carried out by a geotechnical representative on behalf of MoTI:

- Review of subgrade conditions prior to the placement of embankment fill to verify that subgrade conditions are in line with those anticipated in this report.
- Full-time monitoring and compaction testing for the placement of all engineered fill.
- Review of subgrade conditions for new culvert foundation.
- Review of permanent cut slopes.

17. Closure

We trust this report meets your requirements. Please contact us if you have any questions or comments.

References

- American Association of State Highway and Transportation Officials, AASHTO, 1993. "AASHTO Guide for Design and Pavement Structures".
- BC Ministry of Transportation and Infrastructure (MoTI), (2015). "Pavement Structure Design Guidelines." Technical Circular T-01/15. Available at <u>http://www2.gov.bc.ca/assets/gov/driving-and-transportation/transportation-infrastructure/engineering-standards-and-guidelines/technical-circulars/2015/t01-15.pdf</u>
- BC Ministry of Transportation and Infrastructure (MoTI), 2019. "Recognized Products Lists" April 2019. Available at https://www2.gov.bc.ca/gov/content/transportation/transportation-infrastructure/engineering-standards-guidelines/recognized-products-list
- BC Ministry of Transportation and Infrastructure Traffic Data Program for "Bednesti P-42-2EW N" (MoTI 2021), Available at <u>https://www.tgh.gov.bc.ca/trafficData</u>
- BC Ministry of Transportation and Infrastructure (MoTI), (2020). "Standard Specifications for Highway Construction"
- Canadian Council of Ministers of the Environment (2011). "Protocols Manual for Water Quality Sampling in Canada". ISBN 978-1-896997-7-0 (PN 1461).
- Canadian Geotechnical Society (2006)." Canadian Foundation Engineering Manual, 4th Edition,"
- Canadian Standard Association (CSA), (2019). "CSA A23.1:19/CSA A23.2:19 Concrete materials and methods of concrete construction / Test methods and standard practices for concrete".
- Clague, J.J. 1998. Surficial Geology, Cluculz Lake, British Columbia. Geological Survey of Canada. Open File 3638, scale 1:100,000
- CSA A23.1/A23.2-19, 2019. "Concrete materials and methods of concrete construction/Test methods and standard practices for concrete".
- iMapBC, 2019. British Columbia Geographical Information Systems mapping website.
- Page, Chris L., and Mary M. Page, eds. Durability of concrete and cement composites. Elsevier, 2007.
- US Army Corps of Engineers. 1984. Pavement Criteria for Seasonal Frost Conditions. Department of the Army Corps of Engineers.
- WorkSafeBC, "Occupational Health and Safety Regulations, Part 20".

Figures

Figure 1.0 Site Plan

- Figure 2.0 Slide2 Analysis Results- Section STA 105+00
- Figure 3.0 Slide2 Analysis Results STA 103 + 72.643

SITE PLAN

GEOTECHNICAL ASSESSMENT HIGHWAY 16 GUEST RD TO SHALLOW BAY RD CLUCULZ LAKE, BC

Legend

References

Aerial Imagery: Vivid Maxar. Imagery Date: 7/24/2018

		-,		_	Me
5	0	10	0	15	0

Project No.: 180750-13 Client: Ministry of Transportation & Infrastructure NAD 1983 UTM Zone 10N

0

Date: 2022/05/25 Drawn: MT Check: MS

Figure 1.0

Notes:

Base plan provided by Binnie in drawing R3-375-102-1 dated March 18, 2021.

Cross-section provided by Binnie in drawing L100A1-8XS dated January 25, 2022.

Guest Road to Shallow Bay Intersection Improvement STA100+75 to STA112+31 Highway 16

Slide2 Analysis Results – Section STA 105+13.2 Location

Project No. Client: Office:	212111-05 Ministry of Transportation and Infrastructure Vancouver	écora
Scale:	NTS	
Date:	June 17, 2022	Figure 2.0
DWN:	MB CHK: DB	Figure 2.0

Client:Ministry of Transportation and InOffice:VancouverScale:NTSDate:June 17, 2022DWN:MBCHK:DB

Figure 2.0a

Notes:

See figure 2.0 for cross-section location.

Guest Road to Shallow Bay Intersection Improvement STA100+75 to STA112+31 Highway 16

Slide2 Analysis Results- Section STA 105+13.2 - 2H:1V Slope with Sub-Excavate & Replace (Drained)

61

.2a

Project No.	212111-05	
Client:	Ministry of Transportation and Infrastructur	
Office:	Vancouver	
Scale:	NTS	
Date:	June 17, 2022	Eiguro 2
DWN:	MB CHK: DB	Figure 2

April 28th, 2023 Date:

DWN: BrS CHK: DB

Figure 3.0

Date:

DWN:

BrS CHK: DB

Slide2 Analysis Results (Static) – ~STA103+72.643

Guest Road to Shallow Bay Intersection Improvement STA100+75 to STA112+31 Highway 16

Safety Factor 0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000 5.500 6.000+ -19 -18

Photographs

Appendix A

Water Well Logs

Well Tag Number: 60057 Well Identification Plate Number: Owner Name: RICK WARE Intended Water Use: Private Domestic Artesian Condition: No Well Status: New Well Class: Water Supply Well Subclass: Aquifer Number: Observation Well Number: Observation Well Status: Environmental Monitoring System (EMS) ID: Alternative specs submitted: No

Licensing Information

Licensed Status: Unlicensed

Licence Number:

Location Information

Street Address: LEHMAN ROAD Town/City: PRINCE GEORGE

Legal Description:

Lot	1
Plan	33469
District Lot	1421
Block	
Section	
Township	
Range	
Land District	05
Property Identification Description (PID)	

Description of Well Location:

MapBox | Government of British Columbia, DataBC, GeoBC

Geographic Coordinates - North American Datum of 1983 (NAD 83)

Latitude: 53.891821	
UTM Easting: 464483	
Zone: 10	

Longitude: -123.540437 UTM Northing: 5971621 Coordinate Acquisition Code: (50 m accuracy) Digitized from 1:20,000 mapping

Well Activity

Activity \$	Work Start Date	Work End Date \$	Drilling Company \$	Date Entered	\updownarrow
Legacy record	1992-07-01		Pine Drilling	August 13th 2003 at 8:28 AM	

Start Date of	End Date of	Start Date of	End Date of	Start Date of	End Date of
Construction	Construction	Alteration	Alteration	Decommission	Decommission
1992-07-01					

Total Depth Drilled:	Estimated Well Yield: 15 USgpm	Static Water Level (BTOC): 162 feet btoc
Finished Well Depth: 193 ft bgl	Well Cap:	Artesian Flow:
Final Casing Stick Up:	Well Disinfected Status: Not Disinfected	Artesian Pressure (head):
Depth to Bedrock:	Drilling Method: Other	Artesian Pressure (PSI):
Ground elevation:	Method of determining elevation: Unknown	Orientation of Well: VERTICAL

Lithology

From (ft bgl)	To (ft bgl)	Raw Data	Description	Moisture	Colour	Hardness	Observations	Water Bearing Flow Estimate (USGPM)
0	127	BROWN TILL						
127	134	CEMENTED GRAVEL						
134	193	GRAVEL AND SAND						

Casing Details

From (ft bgl)	To (ft bgl)	Casing Type	Casing Material	Diameter (in)	Wall Thickness (in)	Drive Shoe
			There are no records	to show		

Surface Seal and Backfill Details

Surface Seal Material: Other	Backfill Material Above Surface Seal:
Surface Seal Installation Method:	Backfill Depth:
Surface Seal Depth:	

Liner Details

Liner Material:		Liner perforations		
Liner Diameter:	Liner Thickness:	From (ft bgl)	To (ft bgl)	
	Liner to:	There are no record	ds to show	

Screen Details

Intake Method:	Installed Screens				
Туре:	From (ft bgl)	To (ft bgl)	Diameter (in)	Assembly Type	Slot Size
Material: Other		_			
Opening:	There are no records to show				
Bottom:					

Well Development

Developed by:

Development Total Duration:

Increase in Yield Due to Hydrofracturing:

Well Yield

Estimation Method: Static Water Level Before Test: Hydrofracturing Performed: No

Estimation Duration:

Well Decommission Information

Reason for Decommission: Sealant Material: Decommission Details: Method of Decommission: Backfill Material:

Estimation Rate:

Drawdown:

Comments

COMPLETION DAY NOT INCLUDED IN WELL DRILLERS LOG. METHOD OF DRILLING = DRILLED

Alternative Specs Submitted: Yes

Documents

• WTN 60057_Well Record.pdf

Disclaimer

Well Tag Number: 62927
Well Identification Plate Number:
Owner Name: JIM TURCOTTE
Intended Water Use: Private Domestic
Artesian Condition: No

Well Status: New Well Class: Water Supply Well Subclass: Aquifer Number: Observation Well Number: Observation Well Status: Environmental Monitoring System (EMS) ID: Alternative specs submitted: No

Licensing Information

Licensed Status: Unlicensed

Licence Number:

Location Information

Street Address: SS#3,SITE18,COMP10 V2N 2S7 **Town/City:** PRINCE GEORGE, BC

Legal Description:

Lot	5
Plan	26667
District Lot	1421
Block	
Section	
Township	
Range	
Land District	05
Property Identification Description (PID)	

Description of Well Location:

MapBox | Government of British Columbia, DataBC, GeoBC

Geographic Coordinates - North American Datum of 1983 (NAD 83)

Latitude: 53.891515	
UTM Easting: 464612	
Zone: 10	

Longitude: -123.53847 UTM Northing: 5971586 Coordinate Acquisition Code: (50 m accuracy) Digitized from 1:20,000 mapping

Well Activity

Activity \$	Work Start Date \$	Work End Date \$	Drilling Company \$	Date Entered	\$
Legacy record	1996-05-01		Pine Drilling	August 13th 2003 at 5:57 AM	

Start Date of	End Date of	Start Date of	End Date of	Start Date of	End Date of
Construction	Construction	Alteration	Alteration	Decommission	Decommission
1996-05-01					

Total Depth Drilled:	Estimated Well Yield: 5 USgpm	Static Water Level (BTOC): 175 feet btoc
Finished Well Depth: 208 ft bgl	Well Cap:	Artesian Flow:
Final Casing Stick Up:	Well Disinfected Status: Not Disinfected	Artesian Pressure (head):
Depth to Bedrock:	Drilling Method: Other	Artesian Pressure (PSI):
Ground elevation:	Method of determining elevation: Unknown	Orientation of Well: VERTICAL

Lithology

From (ft bgl)	To (ft bgl)	Raw Data	Description	Moisture	Colour	Hardness	Observations	Water Bearing Flow Estimate (USGPM)
0	175	till						
175	206	gravel						

Casing Details

From (ft bgl)	To (ft bgl)	Casing Type	Casing Material	Diameter (in)	Wall Thickness (in)	Drive Shoe
There are no records		to show				

Surface Seal and Backfill Details

Surface Seal Material: Other	Backfill Material Above Surface Seal:
Surface Seal Installation Method:	Backfill Depth:
Surface Seal Thickness:	
Surface Seal Depth:	

Liner Details

	Liner perforations		
Liner Thickness:	From (ft bgl)	To (ft bgl)	
Liner to:	There are no records to show		
	Liner Thickness: Liner to:	Liner Thickness: From (ft bgl) Liner to: There are no record	

Screen Details

Intake Method:	Installed Screens				
Type: Material: Other	From (ft bgl)	To (ft bgl)	Diameter (in)	Assembly Type	Slot Size
Opening: Bottom:	There are		There are no records to sl	าอพ	

Well Development

Developed by:

Development Total Duration:

Well Yield

Estimation Method: Static Water Level Before Test: Hydrofracturing Performed: No **Estimation Rate:** Drawdown: Increase in Yield Due to Hydrofracturing: **Estimation Duration:**

Well Decommission Information

Reason for Decommission: Sealant Material: **Decommission Details:**

Method of Decommission: **Backfill Material:**

Comments

RECOMMENDED PUMP SETTING 200FT. METHOD OF DRILLING = DRILLED

Alternative Specs Submitted: Yes

Documents

<u>WTN 62927_Well Record.pdf</u>

Disclaimer

Well Tag Number: 79203
Well Identification Plate Number:
Owner Name: ALAN WILAMS
Intended Water Use: Private Domestic
Artesian Condition: No

Well Status: New Well Class: Water Supply Well Subclass: **Aquifer Number:**

Observation Well Number: Observation Well Status: Environmental Monitoring System (EMS) ID: Alternative specs submitted: No

Licensing Information

Licensed Status: Unlicensed

Licence Number:

Location Information

Street Address: HWY 6 WEST & GUEST RD Town/City:

Legal Description:

8
26667
1421

Description of Well Location:

MapBox | Government of British Columbia, DataBC, GeoBC

Geographic Coordinates - North American Datum of 1983 (NAD 83)

Latitude: 53.891036
UTM Easting: 464574
Zone: 10

Longitude: -123.539042 UTM Northing: 5971533 Coordinate Acquisition Code: unknown, accuracy based on parcel size) ICF cadastre, poor or no location sketch, arbitrarily located in center of parcel

Well Activity

Activity 1	Work Start Date	Work End Date \$	Drilling Company 🌐 🇘	Date Entered	\updownarrow
Legacy record	1999-06-01	1999-06-01	Pine Drilling	August 13th 2003 at 9:31 AM	

Start Date of	End Date of	Start Date of	End Date of	Start Date of	End Date of
Construction	Construction	Alteration	Alteration	Decommission	Decommission
1999-06-01	1999-06-01				

Total Depth Drilled:	Estimated Well Yield: 0 USgpm	Static Water Level (BTOC): 162 feet btoc
Finished Well Depth: 198 ft bgl	Well Cap:	Artesian Flow:
Final Casing Stick Up:	Well Disinfected Status: Not Disinfected	Artesian Pressure (head):
Depth to Bedrock:	Drilling Method:	Artesian Pressure (PSI):
Ground elevation:	Method of determining elevation: Unknown	Orientation of Well: VERTICAL

Lithology

From (ft bgl)	To (ft bgl)	Raw Data	Description	Moisture	Colour	Hardness	Observations	Water Bearing Flow Estimate (USGPM)
0	6	MOSTLY GRAVEL						
6	80	MOSTLY CLAY SOME GRAVEL						
80	90	MORE GRAVEL						
90	114	DARK CLAY						
114	122	BROWN CLAY & GRIT						
122	198	SAND & GRAVEL TO MORE GRAVEL						

Casing Details

From (ft bgl)	To (ft bgl)	Casing Type	Casing Material	Diameter (in)	Wall Thickness (in)	Drive Shoe
				0		

Surface Seal and Backfill Details

Surface Seal Material:	Backfill Material Above Surface Seal:
Surface Seal Installation Method:	Backfill Depth:
Surface Seal Thickness:	
Surface Seal Depth:	

Liner Details

Liner Material:		Liner perforations		
Liner Diameter: Liner Thickness:	Liner Thickness:	From (ft bgl)	To (ft bgl)	
Liner from: Liner to:	Liner to:	There are no records to show		

Screen Details

Intake Method:	Installed Screens						
Туре:	From (ft bgl)	To (ft bgl)	Diameter (in)	Assembly Type	Slot Size		
Material: Opening:	194.00	198.00			25.00		
Bottom:							

Well Development

Developed by:

Development Total Duration:

Well Yield

Estimation Method: Static Water Level Before Test: Hydrofracturing Performed: No Estimation Rate: Drawdown: Increase in Yield Due to Hydrofracturing: **Estimation Duration:**

Well Decommission Information

Reason for Decommission: Sealant Material: Decommission Details:

Comments

SCREEN RISER & PARKER 6'2"

Alternative Specs Submitted: Yes

Method of Decommission: Backfill Material:

Documents

• WTN 79203_Well Record.pdf

Disclaimer

Well Tag Number: 56111
Well Identification Plate Number:
Owner Name: DAVE APPLETON
Intended Water Use: Private Domestic
Artesian Condition: No

Well Status: New Well Class: Water Supply Well Subclass: **Aquifer Number:**

Observation Well Number: Observation Well Status: Environmental Monitoring System (EMS) ID: Alternative specs submitted: No

Licensing Information

Licensed Status: Unlicensed

Licence Number:

Location Information

Street Address: GUEST ROAD Town/City: VANDERHOOF

Legal Description:

Lot	1
Plan	26667
District Lot	1421
Block	
Section	
Township	
Range	
Land District	05
Property Identification Description (PID)	

Description of Well Location:

MapBox | Government of British Columbia, DataBC, GeoBC

Geographic Coordinates - North American Datum of 1983 (NAD 83)

Latitude: 53.890743 UTM Easting: 464892 **Zone:** 10

Longitude: -123.534199 UTM Northing: 5971498 Coordinate Acquisition Code: (50 m accuracy) Digitized from 1:20,000 mapping

Well Activity

Activity	① Work Start Date	1 Work End Date	1 Drilling Company	1 Date Entered	

Activity 1	Work Start Date \$	Work End Date \$	Drilling Company 1	Date Entered	\updownarrow
Legacy record	1986-06-16		Cariboo Water Wells	August 13th 2003 at 8:28 AM	

Start Date of	End Date of	Start Date of	End Date of	Start Date of	End Date of
Construction	Construction	Alteration	Alteration	Decommission	Decommission
1986-06-16					

Total Depth Drilled:	Estimated Well Yield: 10 USgpm	Static Water Level (BTOC):
Finished Well Depth: 220 ft bgl	Well Cap:	Artesian Flow:
Final Casing Stick Up:	Well Disinfected Status: Not Disinfected	Artesian Pressure (head):
Depth to Bedrock:	Drilling Method: Other	Artesian Pressure (PSI):
Ground elevation:	Method of determining elevation: Unknown	Orientation of Well: VERTICAL

Lithology

From (ft bgl)	To (ft bgl)	Raw Data	Description	Moisture	Colour	Hardness	Observations	Water Bearing Flow Estimate (USGPM)
0	60	GLACIEL TILL						
60	160	DRY GRAVEL AND TILL LAYERS						
160	180	SILTY SAND						
180	215	DIRTY GRAVEL						
215	220	SAND AND GRAVELS						

Casing Details

From (ft bgl)	To (ft bgl)	Casing Type	Casing Material	Diameter (in)	Wall Thickness (in)	Drive Shoe
			There are no records	to show		

Surface Seal and Backfill Details

Surface Seal Material: Other	Backfill Material Above Surface Seal:
Surface Seal Installation Method:	Backfill Depth:
Surface Seal Thickness:	
Surface Seal Depth:	

Liner Details

Liner Material:		Liner perforations		
Liner Diameter:	Liner Thickness:	From (ft bgl)	To (ft bgl)	
Liner from:	Liner to:	There are no records to show		

Screen Details

Intake Method:	Installed Screens							
Туре:	From (ft bgl)	To (ft bgl)	Diameter (in)	Assembly Type	Slot Size			
Material: Other	_	-						
Opening:		т	There are no records to show					
Bottom:								

Well Development

Developed by:

Development Total Duration:

Well Yield

Estimation Rate:

Increase in Yield Due to Hydrofracturing:

Drawdown:

Estimation Method: Static Water Level Before Test: Hydrofracturing Performed: No

Reason for Decommission:

Decommission Details:

Well Decommission Information

Estimation Duration:

Method of Decommission: Backfill Material:

Comments

Sealant Material:

METHOD OF DRILLING = DRILLED

Alternative Specs Submitted: Yes

Documents

• WTN 56111_Well Record.pdf

Disclaimer

Appendix B

Ecora 2021 & 2022 Site Investigation Logs

TERMS, SYMBOLS AND ABBREVIATIONS USED ON BOREHOLE & TEST PIT LOGS

SOIL DESCRIPTION SEQUENCE OF TERMS - consistency - fraction - grading - moisture - plasticity - additional

The visual field description and classification of soils is made in accordance with the Canadian Foundation Engineering Manual 4th Edition (Canadian Geotechnical Society, 2006) and the International Association of Engineering Bulletin, Rock and Soil Description and Classification for Engineering Geological Mapping (1981) with the exception of particle size criteria which is made on the basis of ASTM D2487-06 Standard Practice for Classification of Soils for Engineering Purposes.

PARTICLE SIZE CRITERIA & GRAPHIC SYMBOL

			COARSE					FI	NE	ORGANIC	FILL
			Gra	ivel		Sand					
TYPE	Boulders	Cobbles	coarse	fine	coarse	medium	fine	Silt	Clay	Organic Soil	Fill
Size Range (mm)	je 200 75 19 4.75 2 0.475 0.075 0.002										
Graphic Symbol											
Notes: 1.) Graphic symbols are combined for mixed soil types. 2.) The upper particle size for clay is as per the Canadian Foundation Engineering Manual.											

PROPORTIONAL TERMS

FRACTION	TERM	% OF SOIL MASS	EXAMPLE
Major	() and () (UPPER CASE)	35 to 50	GRAVEL
Subordinate	() y (lower case)	20 to 35	sandy
Minor	some () (lower case)	10 to 20	some clay
	trace () (lower case)	less than 10	trace silt

CONSISTENCY TERMS FOR GRANULAR SOILS

DESCRIPTIVE TERM	SPT 'N' VALUE (BLOWS / 300 mm)	DYNAMIC CONE (SCALA) (BLOWS / 100 mm)		
very loose	< 4	0 to 2		
loose	4 to 10	1 to 3		
compact	10 to 30	3 to 7		
dense	30 to 50	7 to 17		
very dense	e > 50 > 17			
Notes: 1.) No correlation implied between the SPT and Scala Penetrometer. 2.) SPT 'N' values are uncorrected.				

PLASTICITY TERMS FOR COHESIVE SOILS

TERM	DESCRIPTION
high plasticity	Can be moulded or deformed over a wide range of moisture contents without cracking or showing any tendancy to change volume.
medium plasticity	Can be moulded over a wide range of moisture contents however will crack at low moisture contents.
low plasticity	Can be moulded in fingers when moist however crumbles.
non plastic	Has no ability to be moulded at any moisture content, may show quick or dilatant behavior.

SENSITIVITY TERMS FOR COHESIVE SOILS

TERM	S _t RATIO OF PEAK/REMOULDED UNDRAINED SHEAR STRENGTH
quick clay	S _t > 16
extra sensitive	8 < S _t < 16
sensitive	4 < S _t < 8
medium sensitivity	2 < S _t < 4
low sensitivity	S _t < 2

CONSISTENCY TERMS FOR COHESIVE SOILS

DESCRIPTIVE TERM	UNDRAINED SHEAR STRENGTH (kPa)	FIELD DIAGNOSTIC CHARACTERISTICS
very soft	< 12	Easily exudes between fingers when squeezed.
soft	12 to 25	Easily indented by fingers.
firm	25 to 50	Can be indented by strong finger or thumb pressure.
stiff	50 to 100	Cannot be indented by thumb pressure.
very stiff	100 to 200	Can be indented by thumb nail.
hard	200 to 500	Difficult to indent by thumb nail.

MOISTURE CONDITION

DESCRIPTIVE	CONDITION	FIELD DIAGNOSTIC CHARA	CTERISTICS		
TERM	CONDITION	COHESIVE SOILS	GRANULAR SOILS		
dry	Looks and feels dry.	Hard, powdery or friable.	Runs freely through hands.		
moist	Feels cool,	Weakened by moisture, but no free water on hands when remoulding.	Tond to ophoro		
wet	colour.	Weakened by moisture, free forms water on hands when handling.	rena lo conere.		
saturated	Feels cool, dar	kened in colour and free water is pr	esent on the sample		

GRADING TERMS FOR GRANULAR SOILS

TERM	DESCRIPTION											
well graded	Good representatio	n of all particle sizes from largest to smallest.										
	Limited representation of grain sizes - further divided into:											
poorly graded	uniformly graded	Most particles about the same size.										
	gap graded	Absence of one or more intermediate sizes.										

SAMPLE TYPE

ERM	DESCRIPTION
В	Bulk disturbed sample.
С	Core sample obtained with the use of standard size coring bits.
D	Small disturbed sample.
Р	Piston sampler
S	Split spoon sample (obtained by performing the Standard Penetration Test)
Т	Shelby tube or thin wall tube.

WATER LEVEL

SYMBOL	DESCRIPTION
Ļ	Measured in a standpipe, piezometer, or well.
Ţ	Inferred.

	SUMMER	Ministry of																			S	U	MMARY LOG	Drill Hole #: TH21-01						
В	RITISH	M Ti	lin	ist	ort	of ati	on	1		F	Pro)jer	ct:	Ģ	Gue	est	an	d	Sh	all	ow	/ E	Зау	Dat	Date(s) Drilled: 2021-08-19					
Pre	DLUMBIA	ar Gl	1d K-1	Ini 8-7	ras 750	-M	UCI OT	tur [-1:	е 3		oca)ati	atio um	<u>n:</u> 1: 1	Hię OU	ghv . N/	vay AD8	16 3						Alianment:	Cor Drill	npany: Geotech Drilling ler: Pat Ross					
E	cora Engine	eerin	g a	ind	Re	sc	ouro	ce		N	lort	thin	ng/E	Eas	ting	g: 5	971	163	3,	464	181 <i>°</i>	1	Station/Offset:	Drill	Drill Make/Model: Fraste MDXL					
Lo	gged by: T		Re	vie	vec	d b	y:	DE	3	E	lev	/atio	on:			. (1.)	h->	_				_	Coordinates taken with GPS	Drill Z	ing Method: Solid Stem Auger					
DEPTH (m)	DRILLING	S P T			SP ⁻	T "	N"	(BI		****	300 300 S/3	300) m	m) W(igu) %		SAMPLE TYPE		SAMPLE NU	RECOVERY (%	SOIL SYMBOL		SOIL DESCRIPTION	CASSIFICATIO	COMMENTS TESTING Drillers Estimate {G % S % F %}	DEPTH (m)				
- 10)		-			-	••••														a'.	с. N	Silty SAND and GRAVEL; well graded,			-				
- - - - - - - - - - - - - 11	1			•••	· · · · · · · · · · · · · · · · · · ·		 60	fc	or (60	m	ım	•				И	SP1	-01-	4	0.0.0.0.0.0.0) 0 0 0	to very dense, brown, dry. <i>(continued)</i>			11-				
Ē			9		: : :												Ľ		01-		0	0				-				
Ē			i		:	÷		÷			÷		-	÷							0. 0.	Э. N								
-12	2			•••	: : :	•••	•••					••••										-				12-				
Ę			÷		:	:		:			:		-	÷							<u>a'`</u>	<u>~:</u>	End of hole at 12.19 m.		-	-				
Ē		··	•	•••	 	•••	• • •	 	• • •		••••	••••	 	·		•••	ł									-				
Ē			-			:					:			:																
	5			•••			•••									••••	1									13-				
Ē					: :	.;		; ;							;		ļ									-				
Ē			ł			:		÷			÷		-	÷												-				
-14	1		•	•••	: : :	•	•••	 	• • •		•••••		 	·			ł									14-				
Ē			į		:	÷		:			÷		-	÷												-				
Ē				•••		•••		 	• • •		••••		 	·			ł													
- 1	5												 													15-				
Ē	,		ł					÷			÷		-	÷																
E				•••			•••										ł									-				
Ē			-		-	:		-					-	÷												-				
-16	3		•	•••		•	•••	 :	• •		•••••		 	·		•••	ł									16-				
			i		:	:		÷			÷			÷												-				
				•••		:	•••									••••	1													
5 2-17	,																ļ									17-				
2 -					:			-					-	:																
		··	•	•••	:			: : :			••••	••••					+													
			ł								:		-	:																
≤ 18 -¦_	3		• • •	•••	· · ·	•		: : :			••••		: :	•	••••	•••	ł									18-				
					: : :												ļ													
								-			:		-	÷												-				
	9			•••	: : · ·	•		÷									ļ									19-				
			-					-			÷		-	÷																
		+	•	•••	 	•••		 			•••••		 	·			ł													
2 - 20)				:						:		-	:																
	gend mple ∏_A	-Aug	jer	Ļ	B-	Be	ck	er[C-	·Co	ore			G	-Gr	ab		_	V -\	/ane	е			Final Depth of Hole: 12	2.2 m				
Ty	pe: S	# -La ampl	b le	\times	S -3	Sp	lit n	[• :	0 - (ai	-Od	lex ota	(ary)		N (n	I-W	ash reti	urn	Ш	T-S Tub	Shel be	lby	,		Depth to Top of R Page 2	kock: of 2				

		SWIII A	Ministry of Transportation Project: Guest and Shallow B													IMMARY LOG	Drill Hole #: TH21-03							
	BR	ITISH	Minis	porta	of ation	1	Pr	oje	ct:	Gu	est	and	d Sł	nalle	ow E	Вау	Date	Date(s) Drilled: 2021-08-18 Company: Geotech Drilling						
	Pren	UMBIA	and I	ntras	MOT	ture	Lo	catic atum	n: H	High UN	Nay AD8	16 3				Alianment	Con	npany: Geotech Drilling er: Pat Ross						
	Eco	ora Enginee	ring ar Group	d Re	sour	ce	No	orthin	ng/Ea	astin	g: 5	971	696,	464	565	Station/Offset:	Drill	Make/Model: Fraste MDXL						
	Logo	ged by: TB	Revi	ewed	l by:	DB	Ele	evatio	on:	onet	h ///	h->			_	Coordinates taken with GPS	Drill Z	ng Method: Solid Stem Auger						
	DEPTH (m)	DRILLING DETAILS	-ocke	100 100 SP1	2 ["N"	(BLC 40	30 30 50 7% 6	30 5/300) mm -1 8	1) ▲ (_ %	II (Kr	SAMPLE TYPE	SAMPLE NO	RECOVERY (%	SOIL SYMBOL	SOIL DESCRIPTION	CLASSIFICATIO	COMMENTS TESTING Drillers Estimate {G % S % F %}	DEPTH (m)					
	0															Asphalt.			-					
J MOTI_DATATEMPLATE_REV3.GDT 6/16/22	1		•										\$\$03	-1		SAND and GRAVEL, trace fines; some cobbles, rounded gravel, well graded, loose to compact, brown, moist. End of hole at 1.52 m. 1.5m		Sieve (Sa#GS03-1) G:39% S:53% F:8%						
)-MOT-13.GF	-				•••••														-					
18-750	-				:	ł													-					
'3 GK-	-																		-					
L-REV														 				Final Depth of Hole: 1	5 m					
I-SOI	Sam		uger	ן_B-6 קייי	3ecki Solit	er	ງ ດ -ດ	Core] -	Q	Gra	ab ach	Ŀ	ן ∨ -∿ זד∶⊆	ane			Depth to Top of F	Rock:					
MOT	iype	. Sar	nple D	⊴sp	oon	Ē	air	rota	ry)	ا (۱	v-vva nud	asn retu	ırn∭	J _{Tuk}	e Ne	y 		Page 1	of 1					

			Ministry of Transmission Project: Guest and Shallow Ba													S	U	MMARY LOG		Drill Hole #: TH21-04					
	BR	ITISH	Mi Tra	nist	ry o orta	t tion	L	Pr	oje	ct:	Gu	est	an	d Sł	nall	ow	/ E	3ay	Date	Date(s) Drilled: 2021-08-18					
	COL	UMBIA	and	18-7	trast		ture	Lo	catio	on: I	High	way	16					Alignment	Con	npany: Geotech Drilling					
	Ecc	ora Enginee	ring	and	Res	sourc	ce	No	orthin	ng/Ea	astin	д: 5	,5 971	598,	464	1664	4	Station/Offset:	Drill	Make/Model: Fraste MDXL					
	Logg	jed by: TB	roup Re) eviev	wed	by:	DB	Ele	evati	on:		0				_		Coordinates taken with GPS	Drill	ing Method: Solid Stem Auger					
	DEPTH (m)	DRILLING DETAILS X	Poc	ket I	Pene 00 SPT	etron 2	(BLC)	× S 30 0WS 1%	Sheai 00 5/300	r Str 4) mm – ^W 8	rengt 00 n) ▲ V_ % 30	h (kl	SAMPLE TYPE	SAMPLE NO	RECOVERY (%)	SOIL SYMBOL		SOIL DESCRIPTION	CLASSIFICATION	COMMENTS TESTING Drillers Estimate {G % S % F %}	DEPTH (m)				
	0		2		÷		ł	÷					Ľ	\$S04	-1			Asphalt0.09m			-				
DT-13.GPJ MOTI_DATATEMPLATE_REV3.GDT 6/16/22	-0	30 34 29 31				····			63					PT04	-1 -1 -2 -2			Asphalt0.09m Silty, gravelly SAND trace to some cobbles, well graded, very dense, brown, moist		Sieve (Sa#GS04-2) G:25% S:45% F:30%					
EV3 GK-18-750-MO	- - - - 5		••••		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·····	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	·····	· · · · · · · · · · · · · · · · · · ·	Î												
JIL-R	Lege	end []] A-A	une		B-F	Beck	er	c -0	ore	<u></u>		G.Gr	ab		v-\	/an	e		I	Final Depth of Hole: 1	.5 m				
-I-SC	Sample LLA-Auger D-Decker Core G-Grad V-Vane									V _\//	ash	<u> </u>	ייי <u>ו</u> ד-פ	Shel	- Ibv			Depth to Top of F	Rock:						
LOM	, ypc	Sar	nple	\boxtimes	Spo	on oon		air	rota	iry)	Â(mud	retu	ırn∭	Tut	be	עהי			Page 1	of 1				

		Ministry of Project: Guest and Shallow Ba													UI	MMARY LOG	Drill Hole #: TH21-05							
	BR	ITISH	Minis Transp	try o porta	f tion		Proj	ect:	Gu	est	an	d Sł	nall	ow	B	ay	Date(s) Drilled: 2021-08-18							
	COL	UMBIA	and Ir	1frast	ructu	are	Loca	tion:	High	way	16					Alignment	Con	npany: Geotech Drilling						
	Ecc	ora Enginee	ring and	d Res	source	e	North	nina/l	Eastir	14Da 1a: 5	55 5971	693 .	464	676	5	Station/Offset:	Drill	Make/Model: Fraste MDXL						
	Logg	ed by: TB	Broup Revie	ewed	by: [ов	Eleva	ation	:	.9		,				Coordinates taken with GPS	Drill	ing Method: Solid Stem Auger						
	DEPTH (m)	DRILLING DETAILS A T T S	Pocket W	Pene 100 SPT	etrome 20 ""N" (40	eter 2 00 BLOV W%	K She 300 ₩S/3	ear S 00 m	trengt 400 m) ▲ W_ % 80	th (kl	SAMPLE TYPE	SAMPLE NO	RECOVERY (%)	SOIL SYMBOL		SOIL DESCRIPTION	CLASSIFICATION	COMMENTS TESTING Drillers Estimate {G % S % F %}	DEPTH (m)					
	0														•	SILT and SAND, trace gravel; loose to			-					
30-MOT-13.GPJ MOTI_DATATEMPLATE_REV3.GDT 6/16/22	-0		1									3505	-1		$\begin{array}{c} \bullet \ \circ \$	SILT and SAND, trace gravel; loose to compact, well graded, brown, moist.		Sieve (Sa#GS05-1) G:2% S:36% F:62%						
-18-7	-			-				-	-															
Ŗ	-						÷	-	÷										-					
RV3	5			:	<u> </u>				:	:									-					
	Legend A-Auger B-Becker C-Core G-Grab											F] v -∖	/ane	•			Final Depth of Hole: 1	l.5 m					
DTI-S	Type	pie ⊑ ≍ []L# -	Lab 🔽		plit	(O -Od	ex	<u>رتا</u>	N -W	ash	Ē	- ד-פ	Shelt	by			Depth to Top of F	Rock:					
Ň		Sar 🔍	nple 🖄	Spo	oon	<u> </u>	(air ro	tary)	12/1	mud	retu	ırrl)∭	JTuk	е				Page 1	of 1					

		Ministry of Transportation Project: Guest and Shallow Bar														SU	IMMARY LOG		Drill Hole #: TH21-06					
	BR	ITISH	Mi Tra	nist	ry o orta	r tion	l	Pr	roje	ct:	Gu	est	an	d Sł	nallo	ow E	Bay	Date	Date(s) Drilled: 2021-08-18					
	Prepa	UMBIA	and GK-	1 In 18-1	trast 750-	MOT	ure -13	Lo	catic	on: l	High\ U N	way AD8	16 3				Alianment	Con	npany: Geotech Drilling er: Pat Ross					
	Eco	ora Enginee	ring	and	Res	sourc	ce	No	orthin	ng/Ea	astin	g: 5	971	612,	465	134	Station/Offset:	Drill	Make/Model: Fraste MDXL					
	Logg	ed by: TB	R	evie	wed	by:	DB	Ele	evati	on:			. .		-		Coordinates taken with GPS	Drill	ing Method: Solid Stem Auger					
	DEPTH (m)	DETAILS	Poc	ket 1 W	SPT	etron 2 	(BLC)	2WS	Sheai 00 5/300	r Str 4) mm – W	n) ▲	h (kF	SAMPLE TYPE	SAMPLE NO	RECOVERY (%)	SOIL SYMBOL	SOIL DESCRIPTION	CLASSIFICATION	COMMENTS TESTING Drillers Estimate {G % S % F %}	DEPTH (m)				
	0			÷	ł			÷									Asphalt.			-				
		39	2	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	•		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	94	R	S06	-1		SAND and GRAVEL; dense, well graded grey to brown. Inferred granular base. SAND and GRAVEL, trace fines; dense, well graded grey to brown. Inferred subbase. SAND and GRAVEL; dense to very dense, occasional silt pockets, non-plastic, grey, dry.		Sieve (Sa#GS06-1) G:47% S:48% F:5%					
	-1	42 52		• 14 14	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	.	A	PT06	-2 -3		SILT and SAND; some gravel, fine grain sand, brown. End of hole at 1.52 m.		Sieve (Sa#GS06-3) G:14% S:39% F:47%	1				
	-2						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·								2				
F 6/16/22	-3			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·												
DATATEMPLATE_REV3.GD	-4					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	-							- - - - - 4-				
:V3 GK-18-750-MOT-13.GPJ MOTI	_			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·												
JIL-RE	ວ Lege	end∏∑]∧_∧		r∏⊤	B-F	Jecki	er∏∎] c .(Core	<u>.</u> Г].]_(]_r	l ab		v -v	l /ane		I	Final Depth of Hole: 1	.5 m				
MOTI-SC	Sam Type	ple LL21-*** :: Sar	Lab nple		Spc	plit oon		0- 0 (air	Ddex rota	(iry)	v ∭(i	V-Wa mud	ash retu	 Irn]T-S]Tub	Shelby	Y		Depth to Top of F Page 1	Rock: of 1				
ſ		Milles I	10			C										sι	JMMARY LOG		Drill Hole #: TH21	1-07				
--------------------	-------------	-------------------------------	------	-----------------------------------	---------------------------------------	---	---	---------------------------------------	----------------------	---------------------------------------	---------------------------------------	---	-------------	-----------	-----------------------	-------------	---	----------------	---	-----------------------				
	BR	ITISH	Tra	nsp	ry o orta	tior	1	PI	roje	ct:	Gu	est	and	d Sh	nalle	ow l	Вау	Date	∋(s) Drilled: 2021-08-18					
	COL	UMBIA	and	18-7	rast		ture	Lo	catio	n: I	High	Nay AD8	16 3				Alignment	Con	pany: Geotech Drilling					
	Ecc	ora Enginee	ring	and	Re	sour	ce	No	orthin	ng/E	astin	g: 5	971	608,	465	255	Station/Offset:	Drill	Make/Model: Fraste MDXL					
	Logg	ed by: TB	Re) evie\	wed	by:	DB	Ele	evati	on:					_	_	Coordinates taken with GPS	Drill	ing Method: Solid Stem Auger					
	DEPTH (m)	DRILLING DETAILS A TO M	Poc	ket I 1 W _F 2	SPT	etror 2	(BLC)	- X 6 3 3 0WS 7%	Shear 00 5/300	r Str 4) mn – V	rengt 00 1) ▲ 4_ %	h (kF	SAMPLE TYPE	SAMPLE NO	RECOVERY (%)	SOIL SYMBOL	SOIL DESCRIPTION	CLASSIFICATION	COMMENTS TESTING Drillers Estimate {G % S % F %}	DEPTH (m)				
	0						-										Asphalt.			_				
					21	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	- - - - - - - - - - - - - - - - - - -	2	S07	-1		Cobbly SAND and SILT; some gravel, compact, brown. CLAY and SILT to SILT and CLAY, trace sand, trace gravel; firm, medium plastic, brown.		Sieve (Sa#GS07-1) G:1% S:8% F:92% Clay:47% Silt:45%					
	-1				-	3 1		· · · · · ·		· · · · · · ·	· · · · · ·		2	S07	-2		End of hole at 1.52 m 1.5m		Atterberg (Sa#GS07-2): PL:21% LL:41% Sieve (Sa#GS07-2) G:0% S:11% F:99% Clay:47% Silt:53%	1 - - - -				
					•		· · ·	•	•		•	•					End of hole at 1.52 m.			-				
	-2				•							· · · · ·								- 2— -				
							· · · · · · · · · · · · · · · · · · ·	· · · · · ·	•											-				
2	-3				•		· · · · · · · · · · · · · · · · · · ·	· · · ·	•		•	· · · · · ·								- - 3—				
REV3.GDT 6/16/2								· · ·	•		· · · · · · · · · · · · · · · · · · ·									-				
ATATEMPLATE	-4										· · · · · · · · · · · · · · · · · · ·									- - - 4				
-13.GPJ MOTI_D.	r				•			•	•		•									-				
EV3 GK-18-750-MOT-	E				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·									-				
IL-R	ວ Lege	end∏ ∖] ∧			R.F		⊳r∎		loro	<u>.</u> г						/anc		I	Final Depth of Hole: 1	.5 m				
TI-SC	Sam Type	ple ⊔∡⊔ ^-^ ∷!#_	Lah	╘┻┙	SS	Split	╵Ш	יר <u>ה</u> חט-נ) Jdev	۔ ء	 3 ₩0 V	V -W	ash	<u> </u>	י־•נ ז ד -פ	Shelh	↓ ↓		Depth to Top of R	Rock:				
-OM	. , po	Sar Sar	nple	\boxtimes	Spo	oon		(air	rota	ry)	<u>نا</u> (۱	nud	retu	rn)Ш	Tuk	e	1		Page 1	of 1				

[M			c										sι	JMMARY LOG		Drill Hole #: TH2	1-08
	BR	ITISH	Mir Trai	nspo	ry o orta	tion		P	roje	ct:	Gu	est	an	d Sł	nalle	ow I	Вау	Date	e(s) Drilled: 2021-08-18	
	Pren	UMBIA	and	Int 18-7	rast	ruct	ure	Lo	catic	n: 1 • 10	High\	Nay AD8	16 3				Alignment	Con	npany: Geotech Drilling er: Pat Ross	
	Ecc	ora Enginee	ring	and	Res	ourc	e	No	orthin	ng/Ea	astin	g: 5	971	648,	465	341	Station/Offset:	Drill	Make/Model: Fraste MDXL	
	Logg	ed by: TB	Re	, eviev	ved	by:	DB	Ele	evati	on:					_		Coordinates taken with GPS	Drill	ing Method: Solid Stem Auger	
	DEPTH (m)	DRILLING DETAILS DETAILS	Pocł	ket F 10 ₩ F 2	SPT	etrom 21 "N"	(BLC		Sheai 00 5/300	r Str 4) mn - V	rengti 00 1)▲ 4_%	h (kł	SAMPLE TYPE	SAMPLE NO	RECOVERY (%)	SOIL SYMBOL	SOIL DESCRIPTION	CLASSIFICATION	COMMENTS TESTING Drillers Estimate {G % S % F %}	DEPTH (m)
6DT 6/16/22	-1 -1 1 2 		•	9 13										\$508	-1		SAND and GRAVEL; dense, well graded, brown, inferred granular base and 0.2m SANDS and GRAVEL, trace fines; rounded gravel, well graded, dense, brown. SILT and SAND; some gravel, compact, grey. 1.0m End of hole at 1.52 m. 1.5m		Sieve (Sa#GS08-1) G:41% S:51% F:8% Sieve (Sa#GS08-2) G:14% S:36% F:51%	- - - - - - - - - - - - - - - - - - -
L-REV3 GK-18-750-MOT-13.GPJ MOTI_DATATEMPLATE_REV3.C		and ITS																	Final Denth of Hole: 1	
SOIL	Lege Sam	ple A-A	uger		B -B	ecke	er] c -0	Core	[G	Gra	ab	F	V -\	/ane			Final Depth of Hole: 1	.5 m
OTH	Туре	: L# -	Lab	\boxtimes	S-S	plit		0- (Ddex		V	V- Wa	ash		T- S	Shelb	¥			OCK:
ΣL		Joan	inhie	لاے	Sho	UI	<u> </u>	-(alf	rota	ıy) E	(I	nuu	າປເບ	ш уш	- i ul)e			гауе Г	JII

	- MI		10			c										รเ	JMMARY LOG		Drill Hole #: TH2	1-09
	BRI	TISH	Tra	nist nsp	ry o orta	r tion		P	roje	ect:	Gu	est	an	d Sł	nall	ow	Вау	Date	e(s) Drilled: 2021-08-18	
	Prepa	red by:	and GK-	1 In 18-7	750-1	MOT	-13	Lo Da	atum	on: 10 10	High)U, N	way JAD8	16 33				Alignment:	Drill	npany: Geotech Drilling er: Pat Ross	
	Ecor	a Enginee	ring	and	Res	sourc	ce	No	orthir	ng/E	astin	ng: 5	5971	654,	465	5396	Station/Offset:	Drill	Make/Model: Fraste MDXL	
	Logge	ed by: TB	R	evie	wed	by:	DB	Ele	evati	ion:		H- (1-	h -\				Coordinates taken with GPS	Drill	ing Method: Solid Stem Auger	
	DEPTH (m)	DRILLING DETAILS	POC		SPT	2 ""N"		30 30 30 30 30 30 30 30 30 30 30 30 30 3	00 6/300	ar su 4 0 mn −1 8	n) ▲ V_ %	וח (גו	SAMPLE TYPE	SAMPLE NO	RECOVERY (%	SOIL SYMBOL	SOIL DESCRIPTION	CLASSIFICATIO	COMMENTS TESTING Drillers Estimate {G % S % F %}	DEPTH (m)
_	0							÷			÷						Asphalt.			-
		22 25 24 18	9 3	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	4		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		PTOS) -1		0.24m SAND and GRAVEL; some fines, well graded, subrounded gravel, dense, brown to grey.		Sieve (Sa#SPT09-1) G:38% S:52% F:11%	
-	1		•••	1	9	· • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	•	R	\$\$09 \$\$09	-1 -2		0.95m 0.95m / 1.0m Sandy SILT, trace gravel; trace woody debris, rounded gravel, brown to grey.		Sieve (Sa#GS09-2) G:8% S:22% F:71%	1 - - - -
-			•••		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	•								End of hole at 1.52 m.			-
-	2			•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·		•								2
				•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · ·		•								
3DT 6/16/22	3				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	-							3
TATEMPLATE_REV3.				· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·								
DT-13.GPJ MOTI_DAT	4					••••		·····				•••••								4
REV3 GK-18-750-MC	5					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·								
SOIL-	Leger Samp	nd∏]A-A	uge	r 🖵	B-E	lecke	er] c -c	Core		0	G -Gr	ab	5] ∨ -∖	/ane			Final Depth of Hole: 1	.5 m
MOTH	Type:	Sar	Lab nple	\boxtimes	Spc	plit	\Box	0- 0 (air	Odex rota	(ary)) (N -W mud	ash retu	ırn∭] T- S]Tub	Shelb De	¥		Page 1	of 1

		William I				TE	ST PIT LOG		Test Pit #: TP2	1-01
	BR	ITISH	Ministry of Transportation	Project: Guest and	d Shall	ow E	Bay	Date	e(s) Drilled: 2021-08-20	
	Prepa	ared by:	GK-18-750-MOT-13	Location: Highway 16 Datum: 10U. NAD83			Alianment:	Con Ope	npany: N/A erator: Darcy Tiani	
	Eco	ora Enginee	ering and Resource	Northing/Easting: 5971	701,464	1572	Station/Offset:	Exc	avator: XCMG XE250UF	
	Logg	ed by: TB	Reviewed by: DB	Elevation:			Coordinates taken with GPS	z		
	DEPTH (m)	DRILLING DETAILS	▲ SPT "N" (BLC W p% W 20 40	× Snear Strengtn (krad 300 400 ↓ UWS/300 mm) ▲ 1% WL % 80 S	SAMPLE NO RECOVERY (%	SOIL SYMBOL	SOIL DESCRIPTION	CLASSIFICATIO	COMMENTS TESTING Drillers Estimate {G % S % F %}	DEPTH (m)
	- - - - - -									- - - - - - - -
	-		9		SS01-1		SILT and CLAY, trace sand, low plastic to medium plastic, firm, brown, moist.			- - - - - - -
	-2 - - - - - - - - - - - - -				6501-2		2.0m		Sieve (Sa#GS01-2) G:0% S:1% F:99% Clay:39% Silt:60%	2
ATATEMPLATE_REV3.GDT 6/16/22	- - - - - - - -						End of hole at 3 m.			- - - - - - - - - - - - - - - - - -
ZEV3 GK-18-750-MOT-13.GPJ MOTI_DA										4
SOIL-F	Lege Sam	ple	Auger B -Becker	C -Core G -Grab	v -v	/ane			Final Depth of Hole: 3	.0 m
MOTI-5	Туре	E L# - Sar	Lab Spoon	O-Odex (mud retu	rn Tul	Shelby be	,		Depth to Top of F	kock: of 1

			10			c										Т	EST PIT LOG		Test Pit #: TP21-	-02
	BR	ITISH	Mir Trai	nistr	y o orta	t tion		Pr	roje	ct:	Gu	est	an	d Sh	all	ow l	Вау	Date	e(s) Drilled: 2021-08-20	
	COL	UMBIA	and	Int 18-7	rast		ure	Lo	catio	n: h	High	way Ans	16				Alignment	Con	ipany: N/A rator: Darcy Tiani	
	Ecc	ora Enginee	ring	and	Res	sourc	e	No	orthir	. io ig/Ea	astin	д: 5	971	634,	464	723	Station/Offset:	Exca	avator: XCMG XE250UF	
	Logg	jed by: TB	roup Re	viev	ved	by:	DB	Ele	evati	on:		0					Coordinates taken with GPS	_		
	DEPTH (m)	DRILLING DETAILS A DETAILS	Pock	(et F 10 ₩ F 2	Pene 00 SPT %0 ⊢	etrom 2 "N"	(BLC)	- X s 30 30 30 30 30 30 30 30 30 30 30 30 30	Shea 00 5/300) mm	engt 00 1) ▲ (_ %	h (kF	SAMPLE TYPE	SAMPLE NO	RECOVERY (%)	SOIL SYMBOL	SOIL DESCRIPTION	CLASSIFICATION	COMMENTS TESTING Drillers Estimate {G % S % F %}	DEPTH (m)
MOTI_DATATEMPLATE_REV3.GDT 6/16/22					% <u>0</u> ⊢		46						SA	<u>5</u> \$502			Gravelly SAND; some silt, well graded, subrounded to subangular gravel, brown, moist. SILT and SAND, some gravel, firm, brown, moist. Excavator on slope, hole terminated at 2.4 m due to reach. 2.4 m	CLA	Sieve (Sa#GS02-2) G:12% S:42% F:46%	
REV3 GK-18-750-MOT-13.GPJ 1	- - - - - 5				· · · · · · · ·	•		· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								-
OIL-F	Lege	end	uger	\square	B -B	ecke	er	c -c	Core	٦		Gra	ab		V -\	/ane			Final Depth of Hole: 2.4	1 m
TI-S(Sam Type	ріе шел :: Гара L#-	Lab		s -s	plit		- ŋ O -C	Ddex	. P	 کرچ	V -Wa	ash	ст ППТ	דן ד-8	Shelb	ý.		Depth to Top of Ro	ock:
ЮW	71 -	Sar	nple	М	Spc	on	<u></u>	l (air	rota	ry) 🕯	الگ	mud	retu	ırrİ∭	JTuł	be]		Page 1 of	f 1

					2								TE	EST PIT LOG			Test Pit #: TP2	1-03
	BR	ITISH	Minis Trans	stry o porta	f tion	F	Projec	ct: Gu	lest	an	d Sh	nall	ow I	Зау		Date	e(s) Drilled: 2021-08-20	
	COL	UMBIA	and I	nfrast	ructu	re L	ocatio	n: High	way	16						Com	npany: N/A	
	Prepa Eco	ared by: ora Enginee	GK-18 ring an	-750-l d Res	MOT-1 source	3 D	Datum:	10U, N		33	500	405		Alignment:		Ope	rator: Darcy Tiani	
		Ģ	Group				lovatic	g/Eastir	ng: t	971	589,	465	027	Station/Offset:		Exca	avator: XCMG XE2500F	
	Logg	ed by: TB	Revi Pocke	ewed t Pene	by: D	ter 🗙	Shear	Streng	ith (k	Pa)		6			-	Z		
	Ê	იი		100	200)	300	400		ΥP	9 N	7 (%	B			11C		Ê
	Ĕ	AIL								Ш	Щ	ЕŖ	Σ	SOIL		IC/		Η̈́́Η
	E			SPT	"N" (B	BLOW	S/300	mm) 🛦		JPL	MP	0	LS	DESCRIPTION		SIF	1201ING	
			W	/ p % F	40	W%	60	⊣₩́%	Ď	SA	s,	NEC	SO			LAS	Drillers Estimate {G % S % F %}	
	0			20	40								•	Gravelly SAND; some silt, well graded,		с С	. ,	
	-													subrounded gravel, fine sand, brown,				
				÷	÷ ÷	÷	: :		÷					noist.				
	-			÷	: :	:			:									-
	-										5003			Asphalt layer.	45m⊢ 55m			-
	-			÷	÷ ÷	÷	: :		÷		000	ľ	.∢.	Gravelly SAND; some silt, well graded,	5511			-
	-		•						÷	_(S03	-1	.	subrounded gravel, fine sand, brown, moist.				-
	-		° :	÷	÷ ÷	÷	: :		÷		1							
	-1									ļ								1-
	-			:	: :	:	: :		÷									-
	-								-									-
	-								÷				hπ	I SILT: trace to some sand, interbedded fine	I.3m-			-
	-			÷	÷ ÷	÷	: :		÷					grained sand layers, brown, moist.				-
	_							:		1								
	-														I.7m-			-
	-			÷	: :	÷			:					Sandy, gravelly SILT; brown, moist.				-
	-								÷									-
	-2			· :	:	· · · · · · · · · · · · · · · · · · ·			· : · · · · :	1								2-
	-								-									-
	_								÷									
	-			÷	: :	÷	: :		÷									-
	-									ł								-
	-			÷	÷ ÷	÷	: :		÷									-
	-								÷									-
	_			÷	÷ ÷	÷	: :		÷									
	-3									L								3-
~	-			÷	÷ ÷	÷	: :		÷								Sieve (Sa#GS03-3)	-
16/2:	-								-		S 03	-3					G:29% S:34% F:37%	-
JT 6,	-			÷		:			÷					_				-
/3.GL											1			End of hole at 3.4 m.	s.4m⊢			
Ŕ	-																	
ATE	-			-	: :													-
MPL	-								÷									-
TATE	-			÷	: :	:	: :		÷									-
DA	-4		····	••••••		•••••••	•••••		· · · · · · · · · · · · · · · · · · ·	1								4-
MOT	_			÷		:			÷]
- GE	-			-		ł												-
-13.0	-																	-
MOT	-			•••••••		••••	••••••	••••	•••••	ł								-
-750-	-			-														-
K-18			:	-		÷			-									
ы С С	-					-												-
-RE/	5	nd		<u> </u>	<u> </u>	<u>.</u>			:		l	<u> </u>					Final Danth of Lista - 0	0.1
SOIL	Lege Sam	ple A-A	uger	_В -В	Becker	C-	-Core		G- Gr	ab		 ∨ -∖	/ane				Final Depth of Hole: 3	0.4 M
10TI-	Туре	:	Lab nple D] <mark>\$</mark> -S	on [-Odex ir rotar	v) 📴	W- W (mud	ash reti	urn] T- 5 דעו	Shelb be	Y			Page 1	of 1
2				- ٣٩		(54		.,			.,			1			g- 1	

					C										Τ	EST PIT LOG		Test Pit #: TP2	1-04
	BR	ITISH	Min Trar	istry	r of rtati	on		Proje	ect:	Gu	iest	an	d Sł	nall	ow	Bay	Date	e(s) Drilled: 2021-08-20	
	COL	UMBIA	and GK-1	Infra 8-75	astru 0-M	OT-1	re I	Locat Datur	ion: n· 1	High	iway	16 33				Alianment	Con One	ipany: N/A erator: Darcy Tiani	
	Ecc	ora Enginee	ring a	and R	Reso	ource		North	ing/E	Eastir	ng: 5	5971	604,	465	5154	Station/Offset:	Exca	avator: XCMG XE250UF	
	Logg	ged by: TB	Re	viewe	ed b	y: D	B	Eleva	tion:			1 .				Coordinates taken with GPS	-		
	DEPTH (m)	DRILLING DETAILS DETAILS	Pock	et Pe 100 ▲ SI W p% 20	PT "	N" (B	sLOW	She 300 VS/30	ar S 	treng 400 m) ▲ W_ %	th (k	SAMPLE TYPE	SAMPLE NO	RECOVERY (%)	SOIL SYMBOL	SOIL DESCRIPTION	LASSIFICATIO	COMMENTS TESTING Drillers Estimate {G % S % F %}	DEPTH (m)
750-MOT-13.GPJ MOTI_DATATEMPLATE_REV3.GDT 6/16/22	1		9 5					<u></u>				SAM	¥S 3504 3504	-1 -2 -3		Gravelly SAND, trace silt; medium to coarse grained sand, subrounded gravel, loose to compact, brown, moist. SILT and CLAY; trace sand, flaky, medium plastic, brown, moist. Blue-grey layer from 1.5 m to 1.9 m depth. End of hole at 3.5 m. 3.5m	CLAS	Drillers Estimate {G % S % F %} Sieve (Sa#GS04-1) G:31% S:61% F:8% Atterberg (Sa#GS04-2): PL:22% LL:41% Sieve (Sa#GS04-2) G:0% S:2% F:98% Clay:47% Silt:51%	
DTI-SOIL-REV3 GK-16	5 <u>Lege</u> Sam Type	end ple ∷ ■L#-	uger Lab	Ţ∎ ∑\\$	3-Be	cker[-Core	e		G -Gr	ab ash] v -\] ī -š	/ane	×		Final Depth of Hole: 3 Depth to Top of F	8.5 m Rock:
ž		l ⊠ Sar	nple	∠JS	Броо	n Ŀ	 (a	air rot	ary)	Ľ211	mud	retu	ırrl¥∐	JTul	ре			Page 1	ot 1

			M: -:		C									TE	EST PIT LOG			Test Pit #: TP2	1-05
	BR	ITISH	Trans	porta	or ation		Proje	ect:	Gue	st ai	nd S	Sha	llo	w E	Bay		Date	e(s) Drilled: 2021-08-20	
	Prepa Eco	ared by: ora Enginee (led by: TB	GK-18 GK-18 Fring an Group Revi	-750- id Re ewed	-MOT- ² source	13 B	Location Datum Northin Elevat	on: F n: 10 ng/Ea ion:	Jignwa U, NAI Isting:	ay 16 D83 597	1632	2 , 4	652	96	Alignment: Station/Offset: Coordinates taken with GPS		Ope Exca	ipany: N/A rator: Darcy Tiani avator: XCMG XE250UF	
	DEPTH (m)	DRILLING DETAILS	Pocke	t Pen 100 SP1 / p% 20	etrome 200 Г "N" (Е 40	BLOV	Shea 300 VS/300 60	ar Stra 4(0 mm – W	ength)0) ▲ 0			SAMPLE NO	RECOVERY (%)	SOIL SYMBOL	SOIL DESCRIPTION		CLASSIFICATION	COMMENTS TESTING Drillers Estimate {G % S % F %}	DEPTH (m)
LSOIL-REV3 GK-18-750-MOT-13.GPJ MOTI_DATATEMPLATE_REV3.GDT 6/16/22	0 0 		e e		Becker						GS(05-1			Cravelly SAND, trace silt; loose to compact, subrounded gravel, medium to coarse sand, brown, moist. Sandy CLAY and SILT, trace gravel, non-plastic, laminated, brown, moist. Cobbles up to 250 mm diameter below 2.5 m depth. End of hole at 3.6 m.	- 1.2m		Sieve (Sa#GS05-1) G:32% S:62% F:6% Sieve (Sa#GS05-2) G:3% S:23% F:74% Clay:38% Silt:36%	
MOT	туре	. Sar	nple	⊴s _p	oon	$\Box_{(}$	air rota	ary)	2 vv - 2 (mi	vvasi ud rei	urn)	Шt	-Sh Tube	ieib) e				Page 1	of 1

				c							TE	EST PIT LOG		Test Pit #: TP2	1-06
	BR	ITISH	Ministry of Transporta	t tion	Proje	ect: Gu	iest	and	d Sh	allo	ow E	Зау	Date	e(s) Drilled: 2021-08-20	
	COL	UMBIA	GK-18-750-	ructure	Locatio	on: High r 10U I	way NAD8	16 3				Alianment [.]	Con Ope	npany: N/A prator: Darcy Tiani	
	Eco	ora Enginee	ring and Res	source	Northir	ng/Eastii	ng: 5	971	672,	465	428	Station/Offset:	Exc	avator: XCMG XE250UF	
	Logg	ed by: TB	Reviewed	by: DB	Elevati	ion:	41- /1-5	h-)				Coordinates taken with GPS	z	1	
	DEPTH (m)	DRILLING DETAILS	100 100 ▲ SPT ₩ ₽% ₽	"N" (BLC	X Snea 300 0WS/300 60	0 mm) ▲		SAMPLE TYPE	SAMPLE NO	RECOVERY (%	SOIL SYMBOL	SOIL DESCRIPTION	CLASSIFICATIO	COMMENTS TESTING Drillers Estimate {G % S % F %}	DEPTH (m)
-MOT-13.GPJ MOTI_DATATEMPLATE_REV3.GDT 6/16/22			W 20 20	40		W 80		SAM SAM	45 SS06-	-1		SAND; some gravel to gravelly, trace silt, medium to coarse sand, subangular gravel, occasional cobbles, brown, moist. Silty, gravelly SAND; subangular gravel, brown, moist. End of hole at 3.4 m. 3.4m		Drillers Estimate {G % S % F %}	
IL-REV3 GK-18-750	- - - 5 Leae	end TT												Final Depth of Hole:	
I-SOI	Sam		uger B- B	ecker	C-Core		G-Gra	ab ach	<u> </u>	ן ע -∨ ד≏	ane			Depth to Top of F	Rock:
MOT	rype	∎Sar		ion 🖸	(air rota	ary) 🖾	(mud	asn retu	rn)∐	Tub	i ieiD) ie			Page 1	of 1

HAND AUGER: HA22-01

Project: HWY16 - Guest Road/Shallow Bay

Location: Highway 16

Zone: 10U Northing: 5971635.98

Easting: 464833.37

Client: MoTI Elevation: 776 m

Project No: 212111

(m) H		METHOD	L LEGEND	DESCRIPTION	TYPE		IUMBER	PA DIST	RTIC SIZE RIBU	LE TION	DARD ION TEST)	O DYNAMIC CONE PENETRATION TEST (Blows/300mm) 10 20 30 40 FIE REMOUL	CKET PEN. (kPa) ▲ 200 300 400 ELD VANE (kPa)	ON (m)
DEPTH		DRILLING	GRAPHICA	(For Explanation of Terms, Symbols and Abbreviations See Attached Key Sheet)	SAMPLE		SAMPLE N	3RAVEL (%	SAND (%)	FINES (%)	STANC PENETRAT (N	■ SCALA PENE TRATION TEST (Blows/50mm) 3 6 9 12 ■ STANDARD PENETRATION TEST (N) 10 20 30 40 10	80 120 160 M.C. LIQUID 20 30 40	ELEVATI
-				(ICE) (0 m to 0.59 m) (WATER)										
- - - 1 - -		Hand Auger		(0.59 m to 1.2 m) CLAY (CH) (1.2 m to 1.4 m) CLAY, very soft no recovery.	_									
-				CLAY (OH) (1.4 m to 1.8 m) CLAY, some silt, some organics, very soft, high plasticity, dark brown. CLAY (OH)	В	8 0	G1		10 E	00 F			F 1 •	
2	2			(1.8 m to 2.05 m) CLAY, some silt , trace organics, firm, medium to high plasticity, dark brown. Potential small gravel layer at end of hole. End of hole at 2.05 m depth. Scala from 2.05 m to		-	52	0.0	13.5	80.5			-	
				3.32 m depth.										
:DT 6/16/22												14 blows to 20 cm		
LE 212111-05.GPJ DATAECORA2018.G														
DL DC	ontra illing	act g F	or: Rig T	Logged By: MB S ype: Hand Auger Reviewed By: DB C	tarted	 1: 20 eteo	022 d: 2	2-03- 022	-22 -03-	22	ł	Hole Inclination: 90° Com Hole Orientation: ° Page	pletion Depth: 2.0)5m

HAND AUGER: HA22-02

Project: HWY16 - Guest Road/Shallow Bay

Location: Highway 16

Zone: 10U Northing: 5971635

Easting: 464840.12

Client: MoTI Elevation: 776 m

Project No: 212111

Image: Clear (CEB) (0.54 m to 0.54 m) (WATER) (0.54 m to 1 m) Image: Clear (CH) (1.2 m to 1.2 m) CLAY (OH) (1.2 m to 1.2 m) CLAY (OH) (1.3 m to a still, some organics, soft, high plasticity, dark brown. B G1 Image: Clear (CH) (1.2 m to 1.2 m) (1.3 m to a still, trace organics, firm, medium to high plasticity, dark brown. B G2 3.3 10.377.4 Image: Clear (CH) (1.3 m to a still, trace organics, firm, medium to high plasticity, dark brown. B G3 Image: Clear (CH) (1.3 m to a still, trace organics, firm, medium to high plasticity, dark brown. B G3 Image: Clear (CH) (1.3 m to a still, trace organics, firm, medium to high plasticity, dark brown. B G3 Image: Clear (CH) (1.3 m to a still, trace organics, firm, medium to high plasticity, dark brown. B G3 Image: Clear (CH) (1.3 m to a still, trace organics, firm, medium to high plasticity, dark brown. B G3 Image: Clear (CH) (1.3 m to a still, trace organics, firm, medium to high plasticity, dark brown. B G3	DEPTH (m)	DRILLING METHOD	GRAPHICAL LEGEND	DESCRIPTION (For Explanation of Terms, Symbols and Abbreviations See Attached Key Sheet)	SAMPLE TYPE	SAMPLE NUMBER	BRAVEL (%) ISI	ARTICI SIZE RIBU (%) DNVS	FINES (%) 🛛	STANDARD PENETRATION TEST (N)	O DYNAMIC CONE PENETRATION TEST (Blows/300mm) ▲ POCKET PEN. (kPa) ▲ 100 200 300 400 ▲ 100 200 300 400 ▲ SCALA PENETRATION TEST (Blows/50mm) 3 6 9 12 FIELD VANE (kPa) 40 80 120 160 ▲ ● ↓ ● ↓
	018.GDT 6/16/22		[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	Symbols and Abbreviations See Attached Key Sheet) (ICE) (0 m to 0.54 m) (WATER) (0.54 m to 1 m) CLAY (CH) (1 m to 1.2 m) CLAY, very soft, no recovery. CLAY (OH) (1.2 m to 1.65 m) CLAY, some silt, some organics, soft, high plasticity, dark brown. CLAY (OH) (1.65 m to 2.3 m) CLAY, some silt, trace organics, firm, medium to high plasticity, dark brown. End of hole at 2.3 m depth. Scala from 2.2 m to 2.69 m depth.	BBB	G1 G2 G3	3.3	6) OND (3) 19.3	6) Samuel Elnes	PENETR	10 120 180 ■ STANDARD PENETRATION PLASTIC M.C. LIQUID 10 20 30 40
You was a started with the started withe started withe started with the started withe started	- BOREHOLE 212111-05.GPJ DATAECORA2	ntrac	tor:	Logged By: MB Sta	rted:	202:	2-03-	-22		ŀ	Hole Inclination: 90° Completion Depth: 2.3m

HAND AUGER: HA22-03

Project: HWY16 - Guest Road/Shallow Bay

Location: Highway 16

Zone: 10U Northing: 5971634.56

Easting: 464846.61

Client: MoTI Elevation: 776 m

Project No: 212111

(m)	AETHOD	. LEGEND	DESCRIPTION	TYPE	UMBER	P/ DIST	ARTIC SIZE TRIBU	LE TION	ARD ON TEST	O DYNAMIC CONE PENETRATION TEST (Blows/300mm) 10 20 30 40	▲ POCKET PEN. (kPa) ▲ 100 200 300 400 FIELD VANE (kPa)	(m) NC
DEPTH	DRILLING N	RAPHICAL	(For Explanation of Terms, Symbols and Abbreviations See Attached Key Sheet)	SAMPLE	SAMPLE NI	RAVEL (%)	SAND (%)	INES (%)	STAND ENETRATI (N)	SCALA PENETRATION TEST (Blows/50mm) 1 2 3 4 STANDARD PENETRATION TEST (N)	40 80 120 160 ASTIC M.C. LIQUID	ELEVATIO
-		0	(ICE) (0 m to 0.47 m)		0,	Ō		<u> </u>			10 20 30 40	
-			(WATER) (0.47 m to 0.64 m)									
-			CLAY (OH) (0.64 m to 1 m) CLAY, very soft, no recovery.									
- 1 - -			CLAY (OH) (1 m to 1.2 m) CLAY, some silt, some organics, soft, high plasticity, dark brown.	в	G1	0.0	5.8	94.2			•	
-			CLAY (OH) (1.2 m to 1.6 m) CLAY, some silt , trace organics, firm, medium to high plasticity, dark brown.	В	G2						⊨ _ I ●	
			End of hole at 1.6 m depth.									
.GDT 6/16/22												
AECORA2018												
11-05.GPJ DA1												
REHOLE 2121												
တ်ခြင် ကြေး ကြေး	ntrac Iling I	tor: Rig T	Logged By: MB Sta ype: Hand Auger Reviewed By: DB Co	rted: nple	202 ted: 2	2-03 2022	-22 2-03-	22	ŀ	Hole Inclination: 90° Hole Orientation: °	Completion Depth: 1.6 Page 1 of 1	ôm

Appendix C

Laboratory Test Results

Appendix C.1

Geotechnical Index Test Results

MOISTURE CONTENT TEST RESULTS

Project:

Guest and Shallow Bay Road

Project Number:

GK-18-750-MOT-13

Client: BC Ministry of Transportation & Infastructure

Sample No.:	21-350
Date Tested:	Sept 20, 2021
Tested By:	ТВ
Page:	1 of 1

B.H. Number	Sample Depth (m)	Tare Number	Tare Mass (g)	Mass of Wet Soil & Tare (g)	Mass of Dry Soil & Tare (g)	Moisture Content (%)	Additional Information
TH21-01	1.2 - 1.35	1	8.1	107.1	100.1	7.6%	
TH21-01	2.5 - 2.7	2	9.6	127.0	116.1	10.2%	
TH21-01	4 - 4.2	3	9.4	127.9	122.0	5.2%	
TH21-01	5.2 - 5.4	4	9.4	146.8	125.3	18.6%	
TH21-01	6.6 - 7.2	5	4.0	118.6	101.0	18.1%	
TH21-01	8.1 - 8.3	6	4.0	121.2	114.7	5.9%	
TH21-01	10.5 - 10.56	7	3.8	120.9	111.5	8.7%	
TH21-01	11 - 11.5	8	3.9	114.8	105.6	9.0%	
TH21-02	0.5 - 0.7	9	3.9	158.0	150.3	5.3%	
TH21-02	1 - 1.2	10	3.9	135.9	119.7	14.0%	
TH21-02	3 - 3.45	11	3.9	142.9	128.3	11.7%	
TH21-02	5.5 - 5.7	12	3.9	173.0	151.8	14.3%	
TH21-02	7.5 - 7.7	13	3.9	166.8	137.0	22.4%	
TH21-02	8.5 - 8.6	14	3.8	267.1	229.8	16.5%	
TH21-03	0.5 - 0.7	15	3.8	181.4	171.9	5.7%	
TH21-04	0 - 0.09	16	3.9	183.3	179.2	2.3%	
TH21-04	0.09 - 0.84	17	3.9	224.9	215.8	4.3%	
TH21-06	0.75 - 1.2	18	3.9	144.5	136.4	6.1%	
TH21-06	1 - 1.2	19	4.0	177.4	156.2	13.9%	
TH21-09	0.9 - 1.1	20	4.0	190.8	179.3	6.6%	
TP21-01	1 - 1.1	21	3.9	153.3	143.6	6.9%	
TP21-02	2 - 2.4	22	120.8	368.4	338.4	13.8%	
TP21-03	0.7 - 0.8	23	103.4	376.1	364.1	4.6%	
éC	610	тм		Ecora Er	ngineering	and Res	ource Group

Ecora Engineering and Resource Group

MOISTURE	- CONTEN	ILESIR	-SUUS
			LOOLIO

			MOIS	STURE C	ONTENT	TEST	RESULTS	
Project: Hwy 16: Guest Raod & Shallow Bay				Sample No.:	22-194			
Project N	umber:	212111			Date Tested:	April 11, 2022		
Client:		British Columbia Ministry of			Tested By:	SQ		
		Transpo	rtation and	Infastructu	re		Page:	1 of 1
	0	T	Terre			Maintura	_	
Number	Depth	Number	Mass	Soil & Tare	Soil & Tare	Content	Additional Information	
	(m)		(g)	(g)	(g)	(%)		
HA22-01	1.4-1.8	1	369.4	1593.2	1185.2	50.0%		
HA22-01	1.8-2.0	2	390.1	1063.8	861.3	43.0%		
HA22-02	1.2-1.65	3	392.3	1430.5	1091.3	48.5%		
HA22-02	1.65-2.0	4	389.6	1930.9	1557.8	31.9%		
HA22-02	2.0-2.2	5	390.1	1528.8	1225.0	36.4%		
HA22-03	1.0-1.2	6	392.1	1282.0	1021.6	41.4%		
HA22-03	1.2-1.6	7	392.0	1350.9	1100.8	35.3%		
			<u> </u>					
			тм					
	J		J	Ecora Er	ngineerin	g and R	esource Group	

Project: Guest/Shallow Bay Intersection Improvements **Location:** Guest Road at Highway 16 **Sample Location/Source:** TH21-02 at 7.3 - 7.5 m

LIQUID LIMIT (ASTM Designation D 423)				
Trial Number	1	2	3	
Tare Number	L1	L2	L3	
Number of Blows	16	26	45	
Mass of Wet Soil and Tare (g)	39.5	39.9	36.7	
Mass of Dry Soil and Tare (g)	33.5	34.2	32.3	
Mass of Tare (g)	15.8	15.8	16	
Mass of Moisture (g)	6	5.7	4.4	
Mass of Dry Soil (g)	17.7	18.4	16.3	
Moisture Content(%)	33.9	31.0	27.0	

Test Results

Liquid Limit:	32
Plastic Limit:	15
Plasticity Index:	17

Sample Description: CM - Medium Plastic Clay Natural Moisture Content: 14.8%

Comments:

Project No.: GK-18-750-MOT-13 Client: BC Minsitry of Trnsportation & Infastructure

PLASTIC LIMIT (ASTM Designation D 424)

(· · · · · · · · · · · · · · · · · · ·	,	
Trial Number	1	2
Tare Number	P1	P2
Mass of Wet Soil and Tare (g)	21.3	21.4
Mass of Dry Soil and Tare (g)	20.6	20.7
Mass of Tare (g)	16.00	16
Mass of Moisture (g)	0.7	0.7
Mass of Dry Soil (g)	4.6	4.7
Moisture Content (%)	15.2	14.9

Plasticity Classification (based on Liquid Limit W1)

0 to 30 Low Plasticity 30 to 50 Medium Plasticity > 50 High Plasticity

Sample Number: 21-355 Date Tested: 23-Sep-2021 Tested by: AE Checked by: SK

Project: Guest/Shallow Bay Intersection Improvements **Location:** Guest Road at Highway 16 **Sample Location/Source:** TH21-07 at 1.0 - 1.2 m

LIQUID LIMIT (ASTM Designation D 423)					
Trial Number	1	2	3		
Tare Number	L1	L2	L3		
Number of Blows	31	25	17		
Mass of Wet Soil and Tare (g)	24.96	26.29	27.59		
Mass of Dry Soil and Tare (g)	18.98	19.83	20.54		
Mass of Tare (g)	3.94	3.99	3.89		
Mass of Moisture (g)	5.98	6.46	7.05		
Mass of Dry Soil (g)	15.04	15.84	16.65		
Moisture Content(%)	39.8	40.8	42.3		

Test Results

Liquid Limit:	41
Plastic Limit:	21
Plasticity Index:	19

Sample Description: CM - Medium Plasticity Clay Natural Moisture Content: 30.9%

Comments:

Project No.: GK-18-750-MOT-13 Client: BC Minsitry of Trnsportation & Infastructure

PLASTIC LIMIT (ASTM Designation D 424)

(,	
Trial Number	1	2
Tare Number	P1	P2
Mass of Wet Soil and Tare (g)	10.32	9.7
Mass of Dry Soil and Tare (g)	9.28	8.64
Mass of Tare (g)	4.21	3.9
Mass of Moisture (g)	5.07	4.74
Mass of Dry Soil (g)	1.04	1.06
Moisture Content (%)	20.5	22.4

Plasticity Classification (based on Liquid Limit W1)

0 to 30 Low Plasticity 30 to 50 Medium Plasticity > 50 High Plasticity

Sample Number: 21-362 Date Tested: 23-Sep-2021 Tested by: AE Checked by: SK

Project: Guest/Shallow Bay Intersection Improvements Location: Guest Road at Highway 16 Sample Location/Source: TH21-04 at 1.5 - 1.6 m

LIQUID LIMIT (ASTM Designation D 423)				
Trial Number	1	2	3	
Tare Number	L1	L2	L3	
Number of Blows	17	26	30	
Mass of Wet Soil and Tare (g)	28.81	26.07	25.8	
Mass of Dry Soil and Tare (g)	21.32	19.63	19.64	
Mass of Tare (g)	3.86	3.92	4.04	
Mass of Moisture (g)	7.49	6.44	6.16	
Mass of Dry Soil (g)	17.46	15.71	15.6	
Moisture Content(%)	42.9	41.0	39.5	

Test Results

Liquid Limit:	41
Plastic Limit:	22
Plasticity Index:	19

Sample Description: CM - Medium Plasticity Clay Natural Moisture Content: 21.1%

Comments:

Project No.: GK-18-750-MOT-13 Client: BC Minsitry of Trnsportation & Infastructure

PLASTIC LIMIT (ASTM Designation D 424)

· · ·	,	
Trial Number	1	2
Tare Number	P1	P2
Mass of Wet Soil and Tare (g)	9.87	10.76
Mass of Dry Soil and Tare (g)	8.82	9.52
Mass of Tare (g)	3.89	3.92
Mass of Moisture (g)	4.93	5.6
Mass of Dry Soil (g)	1.05	1.24
Moisture Content (%)	21.3	22.1

Plasticity Classification (based on Liquid Limit W1)

0 to 30 Low Plasticity 30 to 50 Medium Plasticity > 50 High Plasticity

Sample Number: 21-371 Date Tested: 23-Sep-2021 Tested by: AE Checked by: SK

Project: Highway 16: Guest Road & Shallow Bay **Location:** Vanderhoof, BC **Sample Location/Source:** HA22-01 @ 1.4 - 1.8 m

LIQUID LIMIT
(ASTM Designation D 423)

	/	
1	2	3
L1	L2	L3
17	23	33
36.31	32.48	35.17
30.85	27.72	29.80
17.36	15.75	15.71
5.46	4.76	5.37
13.49	11.97	14.09
40.5	39.8	38.1
	1 L1 17 36.31 30.85 17.36 5.46 13.49 40.5	1 2 L1 L2 17 23 36.31 32.48 30.85 27.72 17.36 15.75 5.46 4.76 13.49 11.97 40.5 39.8

Test Results

Liquid Limit:	39
Plastic Limit:	24
Plasticity Index:	15

Sample Description: CM - Medium Plastic Clay Natural Moisture Content: 50.0%

Comments:

Project No.: 212111 Client: BC Ministry of Transportation & Infastructure

PLASTIC LIMIT (ASTM Designation D 424)

Trial Number	1	2
Tare Number	P1	P2
Mass of Wet Soil and Tare (g)	21.09	21.34
Mass of Dry Soil and Tare (g)	20.10	20.35
Mass of Tare (g)	16.11	16.22
Mass of Moisture (g)	0.99	0.99
Mass of Dry Soil (g)	3.99	4.13
Moisture Content (%)	24.8	24.0

Plasticity Classification (based on Liquid Limit W₁)

0 to 30 Low Plasticity 30 to 50 Medium Plasticity > 50 High Plasticity

Sample Number: 22-198 Date Tested: 11-Apr-2022 Tested by: SQ Checked by: SK

Project: Highway 16: Guest Road & Shallow Bay Location: Vanderhoof, BC Sample Location/Source: HA22-02 @ 1.2 - 1.65 m

LIQUID LIMIT
(ASTM Designation D 423)

Trial Number	1	2	3
Tare Number	L1	L2	L3
Number of Blows	10	25	45
Mass of Wet Soil and Tare (g)	33.91	28.77	32.42
Mass of Dry Soil and Tare (g)	28.62	25.18	28.04
Mass of Tare (g)	16.11	15.76	15.91
Mass of Moisture (g)	5.29	3.59	4.38
Mass of Dry Soil (g)	12.51	9.42	12.13
Moisture Content(%)	42.3	38.1	36.1

Test Results

Liquid Limit:	38
Plastic Limit:	24
Plasticity Index:	14

Sample Description: CM - Medium Plastic Clay Natural Moisture Content: 48.5%

Comments:

Project No.: 212111 Client: BC Ministry of Transportation & Infastructure

PLASTIC LIMIT (ASTM Designation D 424)

Trial Number	1	2
Tare Number	P1	P2
Mass of Wet Soil and Tare (g)	23.07	21.60
Mass of Dry Soil and Tare (g)	21.90	20.42
Mass of Tare (g)	17.01	15.63
Mass of Moisture (g)	1.17	1.18
Mass of Dry Soil (g)	4.89	4.79
Moisture Content (%)	23.9	24.6

Plasticity Classification (based on Liquid Limit W₁)

0 to 30 Low Plasticity 30 to 50 Medium Plasticity > 50 High Plasticity

Sample Number: 22-199 Date Tested: 11-Apr-2022 Tested by: SQ Checked by: SK

Project: Highway 16: Guest Road & Shallow Bay Location: Vanderhoof, BC Sample Location/Source: HA22-02 @ 2.0 - 2.2 m

LIQUID LIMIT
(ASTM Designation D 423)

1	2	3
L1	L2	L3
10	21	39
36.64	30.41	37.38
30.44	26.23	31.42
15.86	15.91	15.73
6.20	4.18	5.96
14.58	10.32	15.69
42.5	40.5	38.0
	1 L1 10 36.64 30.44 15.86 6.20 14.58 42.5	1 2 L1 L2 10 21 36.64 30.41 30.44 26.23 15.86 15.91 6.20 4.18 14.58 10.32 42.5 40.5

Test Results

Liquid Limit:	40
Plastic Limit:	19
Plasticity Index:	21

Sample Description: CM - Medium Plastic Clay Natural Moisture Content: 36.4%

Comments:

Project No.: 212111 Client: BC Ministry of Transportation & Infastructure

PLASTIC LIMIT (ASTM Designation D 424)

Trial Number	1	2
Tare Number	P1	P2
Mass of Wet Soil and Tare (g)	21.04	21.00
Mass of Dry Soil and Tare (g)	20.28	20.15
Mass of Tare (g)	16.00	15.79
Mass of Moisture (g)	0.76	0.85
Mass of Dry Soil (g)	4.28	4.36
Moisture Content (%)	17.8	19.5

Plasticity Classification (based on Liquid Limit W₁)

0 to 30 Low Plasticity 30 to 50 Medium Plasticity > 50 High Plasticity

Sample Number: 22-200 Date Tested: 11-Apr-2022 Tested by: SQ Checked by: SK

Project: Highway 16: Guest Road & Shallow Bay Location: Vanderhoof, BC Sample Location/Source: HA22-03 @ 1.2 - 1.6 m

LIQUID LIMIT
(ASTM Designation D 423)

1	2	3
L1	L2	L3
15	28	40
37.83	28.07	29.05
32.30	25.02	26.18
15.72	15.69	17.28
5.53	3.05	2.87
16.58	9.33	8.90
33.4	32.7	32.2
	1 L1 15 37.83 32.30 15.72 5.53 16.58 33.4	1 2 L1 L2 15 28 37.83 28.07 32.30 25.02 15.72 15.69 5.53 3.05 16.58 9.33 33.4 32.7

Test Results

Liquid Limit:	33
Plastic Limit:	20
Plasticity Index:	13

Sample Description: CM - Medium Plastic Clay Natural Moisture Content: 35.3%

Comments:

Project No.: 212111 Client: BC Ministry of Transportation & Infastructure

PLASTIC LIMIT (ASTM Designation D 424)

Trial Number	1	2
Tare Number	P1	P2
Mass of Wet Soil and Tare (g)	20.36	21.18
Mass of Dry Soil and Tare (g)	19.62	20.28
Mass of Tare (g)	15.89	15.80
Mass of Moisture (g)	0.74	0.90
Mass of Dry Soil (g)	3.73	4.48
Moisture Content (%)	19.8	20.1

Plasticity Classification (based on Liquid Limit W₁)

0 to 30 Low Plasticity 30 to 50 Medium Plasticity > 50 High Plasticity

Sample Number: 22-201 Date Tested: 11-Apr-2022 Tested by: SQ Checked by: SK

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TH21-01 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 0.6 m to 0.75 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TH21-01

Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 3 m to 3.6 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TH21-01 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 9.1 m to 9.3 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TH21-02 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 2.5 m to 2.7 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TH21-02

Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 7.5 m to 7.7 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TH21-03 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 0.5 m to 0.7 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TH21-04 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 1 m to 1.2 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TH21-05 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 0.75 m to 1 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TH21-06 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 0.3 m to 0.45 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TH21-06 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 1.3 m to 1.5 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TH21-07 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 0.3 m to 0.5 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TH21-07 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 1 m to 1.2 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TH21-08 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 0.5 m to 0.7 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TH21-08 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 1.2 m to 1.4 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TH21-09 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 0.35 m to 0.95 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TH21-09 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 1.2 m to 1.4 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TP21-01 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 1.9 m to 2 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TP21-02 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 2 m to 2.4 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TP21-03 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 3 m to 3.4 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TP21-04

Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 0.6 m to 0.8 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TP21-05 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 1.8 m to 2 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TP21-05

Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 0.8 m to 1 m

GRAIN SIZE DISTRIBUTION GK-18-750-MOT-13 LAB. GPJ DATAECORA2018.GDT 21-11-10

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TP21-04 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 1.5 m to 1.6 m

Project: Guest and Shallow Bay Location: Guest Road at Highway 16 Sample Location/Source: TP21-06 Project No: GK-18-750-MOT-13 Client: Ministry of Transportation Depth: 1.9 m to 2 m

GRAIN SIZE DISTRIBUTION GK-18-750-MOT-13 LAB.GPJ DATAECORA2018.GDT 21-11-10

Appendix C.2

Native Soil Chemical Test Results

CERTIFICATE OF ANALYSIS

REPORTED TO	Ecora (Kelowna) 200 - 2045 Enterprise Way Kelowna, BC_V1Y 6L8		
ATTENTION	Teri Brito	WORK ORDER	21K3052
PO NUMBER PROJECT PROJECT INFO	180750-13	RECEIVED / TEMP REPORTED COC NUMBER	2021-11-22 13:25 / 19.1°C 2021-11-29 14:55 No Number

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

We've Got Chemistry

Big Picture Sidekicks

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too. It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

3 🂫

Ahead of the Curve

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at bwhitehead@caro.ca

Authorized By:

Brent Whitehead Client Scientist - Team Lead

I what had

1-888-311-8846 | www.caro.ca

#110 4011 Viking Way Richmond, BC V6V 2K9 | #102 3677 Highway 97N Kelowna, BC V1X 5C3 | 17225 109 Avenue Edmonton, AB T5S 1H7 | #108 4475 Wayburne Drive Burnaby, BC V5G 4X4

TEST RESULTS

REPORTED TO PROJECT	PORTED TOEcora (Kelowna)OJECT180750-13			WORK ORDER REPORTED	21K3052 2021-11-29	9 14:55			
Analyte		Result	RL	Units	Analyzed	Qualifier			
TH21-02 @ 2.5 - 2	2.7m (21K3052-01) Ma	trix: Solid Sampled: 2021-08-	23						
General Parameter	rs								
Sulfate, Water-So	luble	< 0.050	0.050	%	2021-11-29				
Chloride, Water-S	Soluble	< 0.002	0.002	%	2021-11-29				
TH21-02 @ 5.5 - 5.7m (21K3052-02) Matrix: Solid Sampled: 2021-08-23									
General Parameter	rs								
Sulfate, Water-So	luble	< 0.050	0.050	%	2021-11-29				
Chloride, Water-S	Soluble	< 0.002	0.002	%	2021-11-29				

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO PROJECT	Ecora (Kelov 180750-13	vna)	WORK ORDER REPORTED	21K3052 2021-11-29	9 14:55	
Analysis Descr	iption	Method Ref.	Technique		Accredited	Location
Chloride, Water S	oluble in Solid	ASTM C1218-97 / ASTM C1218-17	Hot Water Extraction / Hot Water Extraction			Richmond
Sulfate, Water-Sc	luble in Solid	CSA A23.2-3B / CSA A23.2-2B	Extraction (HCI) / Gravimetry (Bariu	m Sulfate Precipitat	ion)	Richmond
Glossary of Term	ns:					
KL	Reporting Lim	lit (default)				

RL	Reporting Limit (default)
%	Percent
<	Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors
ASTM	ASTM International Test Methods
CSA	Canadian Standards Association Chemical Test Methods

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued or once samples expire, whichever comes first. Longer hold is possible if agreed to in writing.

Results in **Bold** indicate values that are above CARO's method reporting limits. Any results that are above regulatory limits are highlighted **red**. Please note that results will only be highlighted red if the regulatory limits are included on the CARO report. Any Bold and/or highlighted results do <u>not</u> take into account method uncertainty. If you would like method uncertainty or regulatory limits to be included on your report, please contact your Account Manager:bwhitehead@caro.ca

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline(s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO	Ecora (Kelowna)	WORK ORDER	21K3052
PROJECT	180750-13	REPORTED	2021-11-29 14:55

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- Duplicate (Dup): An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- **Reference Material (SRM)**: A homogenous material of similar matrix to the samples, certified for the parameter(s) listed. Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameters, Batch B1K2530									
Blank (B1K2530-BLK1)			Prepared	1: 2021-11-2	3, Analyze	d: 2021-1	11-24		
Sulfate, Water-Soluble	< 0.050	0.050 %							
General Parameters, Batch B1K3064									
Blank (B1K3064-BLK1)			Prepared	1: 2021-11-2	8, Analyze	d: 2021-1	11-29		
Chloride, Water-Soluble	< 0.002	0.002 %							

Appendix C.3

Surface Water Chemical Test Results

CERTIFICATE OF ANALYSIS

REPORTED TO	Ecora (Vancouver) #300 - 638 Smithe Street Vancouver, BC V6B 1E3		
ATTENTION	Teri Brito	WORK ORDER	21K2619
PO NUMBER PROJECT PROJECT INFO	Culvert Outlet	RECEIVED / TEMP REPORTED COC NUMBER	2021-11-18 10:15 / 18.0°C 2021-11-23 11:01 No Number

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

We've Got Chemistry

Big Picture Sidekicks

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too. It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

32

Ahead of the Curve

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at bwhitehead@caro.ca

Authorized By:

Brent Whitehead Client Scientist - Team Lead

I what had

1-888-311-8846 | www.caro.ca

#110 4011 Viking Way Richmond, BC V6V 2K9 | #102 3677 Highway 97N Kelowna, BC V1X 5C3 | 17225 109 Avenue Edmonton, AB T5S 1H7 | #108 4475 Wayburne Drive Burnaby, BC V5G 4X4

TEST RESULTS

REPORTED T PROJECT	REPORTED TO Ecora (Vancouver) PROJECT Culvert Outlet		WORK ORDER REPORTED	21K2619 2021-11-2	23 11:01
Analyte	Result	RL	Units	Analyzed	Qualifier
SW21-01 (21K	(2619-01) Matrix: Water Sampled: 2021-08-20 16:00				CT1
General Param	eters				
рН	7.14	0.10	pH units	2021-11-21	HT2
SW21-02 (21K	(2619-02) Matrix: Water Sampled: 2021-08-20 16:00				CT1
General Param	eters				
рН	7.21	0.10	pH units	2021-11-21	HT2
SW21-03 (21K	(2619-03) Matrix: Water Sampled: 2021-08-20 16:00				CT1a
Anions					
Sulfate	< 1.0	1.0	mg/L	2021-11-20	HT1
SW21-04 (21K	(2619-04) Matrix: Water Sampled: 2021-08-20 16:00				CT1a
Anions					
Sulfate	< 1.0	1.0	mg/L	2021-11-20	HT1
Sample Qua	lifiers:				
CT1 Inco	prrect Container(s) supplied for ph analysis				
CT1a Inco	prrect Container(s) supplied for sulfate analysis				
HT1 The	sample was prepared and/or analyzed past the recommended holding	ng time.			
HT2 The reco	15 minute recommended holding time (from sampling ommended.	to analysis) ha	as been exceed	ed - field	analysis is

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Ecora (Vancouver) PROJECT Culvert Outlet			WORK ORDER REPORTED	21K2619 2021-11-23 11:01		
Analysis Descri	ption	Method Ref.	Technique		Accredited	Location
Anions in Water		SM 4110 B (2017)	Ion Chromatography		✓	Kelowna
pH in Water		SM 4500-H+ B (2017)	Electrometry		✓	Kelowna

Glossary of Terms:

RL	Reporting Limit (default)
<	Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors
mg/L	Milligrams per litre
pH units	pH < 7 = acidic, ph > 7 = basic
SM	Standard Methods for the Examination of Water and Wastewater, American Public Health Association

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued or once samples expire, whichever comes first. Longer hold is possible if agreed to in writing.

Results in **Bold** indicate values that are above CARO's method reporting limits. Any results that are above regulatory limits are highlighted **red**. Please note that results will only be highlighted red if the regulatory limits are included on the CARO report. Any Bold and/or highlighted results do <u>not</u> take into account method uncertainty. If you would like method uncertainty or regulatory limits to be included on your report, please contact your Account Manager:<u>bwhitehead@caro.ca</u>

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline (s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO	Ecora (Vancouver)	WORK ORDER	21K2619
PROJECT	Culvert Outlet	REPORTED	2021-11-23 11:01

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- Duplicate (Dup): An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- **Reference Material (SRM)**: A homogenous material of similar matrix to the samples, certified for the parameter(s) listed. Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Anions, Batch B1K2285									
Blank (B1K2285-BLK1)			Prepared	l: 2021-11-2	0, Analyze	d: 2021-1	1-20		
Sulfate	< 1.0	1.0 mg/L							
LCS (B1K2285-BS1)			Prepared	I: 2021-11-2	0, Analyze	d: 2021-1	1-20		
Sulfate	16.1	1.0 mg/L	16.0		101	90-110			
Duplicate (B1K2285-DUP1)	Sour	ce: 21K2619-04	Prepared: 2021-11-20, Analyzed: 2021-11-20			1-20			
Sulfate	< 1.0	1.0 mg/L		< 1.0				10	
Matrix Spike (B1K2285-MS1)	Sour	ce: 21K2619-04	Prepared	I: 2021-11-2	0, Analyze	d: 2021-1	1-20		
Sulfate	16.4	1.0 mg/L	16.0	< 1.0	102	75-125			

General Parameters, Batch B1K2348

Reference (B1K2348-SRM1)		Prepared: 2021-11-21, Analyzed: 2021-11-21			
рН	6.99	0.10 pH units	7.01	100	98-102
Reference (B1K2348-SRM2)	Prepared: 2021-11-21, Analyzed: 2021-11-21				
pH	6.99	0.10 pH units	7.01	100	98-102

Appendix D

Option Analysis SLIDE2 Model Results

GRS Wall – With Rockfill Selected Option

GRS Wall Insufficient FoS

GRS Wall – Deeper Insufficient FoS

GRS Wall – High (No Fill) Insufficient FoS

GRS Wall – High (D-Type Fill) Insufficient FoS

GRS Wall – High (Rockfill) Requires Culvert Displacement

GRS Wall - High & Deep Requires Culvert Displacement

GRS Wall – Above Requires Culvert Displacement

Appendix E

Traffic Volume Data – Bednesti (P-42-2EW)

BRITISH COLUMBIA The Best Place on Earth	Ministry of Transportation and Infrastructure	Traffic D 10 Year Annual Summar	ata y for 2	020
TM Site ID:	P-42-2EW	Vellewheed Trees Conside	AADT	Traffic Data in this report Annual Average Daily Traffic A calculated daily estimate of the number of vabidos passing this site
TM Site Name:	Bednesti - P-42-2EW,	, Yellownead Trans-Canada		Summer Average Daily Traffic
Location:	Route 16, 49.4 km wes	st of Route 97, west of Prince George		(for the months of July and August)
Posted Speed:	100 kph		Class	Vehicle Length Types of vehicles traveling through this site.
Report Run on:	Friday October 1 2021	09:17 AM		

Average Daily Traffic Volumes

					- J					
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
AADT			3,998	4,086	4,065	4,191	4,132	4,127	4,180	4,118
SADT			5,327	5,449	5,364	5,579	5,405	5,368	5,535	5,846

10 Years % AADT by Direction

BRITISH COLUMBIA The Best Place on Earth	Ministry of Transportation and Infrastructure	Irattic Data 10 Year Annual Summary for 2020	
TM Site ID:	P-42-2EW		
TM Site Name:	Bednesti - P-42-2EW	, Yellowhead Trans-Canada	
ocation:	Route 16, 49.4 km we	st of Route 97, west of Prince George	
Posted Speed:	100 kph		
Report Run on:	Friday October 1 2021	9:17 AM	
BRITISH COLUMBIA The Best Place on Earth TM Site ID: TM Site Name: Location: Posted Speed: Report Run on:	Transportation and Infrastructure P-42-2EW Bednesti - P-42-2EW Route 16, 49.4 km wes 100 kph Friday October 1 2021	10 Year Annual Summary for 2020 Yellowhead Trans-Canada st of Route 97, west of Prince George 9:17 AM	

10 Year Annual Average Daily Length Distribution Summary for 2020

Length	Vehicle Type	Road	% of Roadway	% Pos	% Neg
0 - 6 metres		24,121	73	50	50
6 - 12.5 metres		2,991	9	50	50
12.5 - 22.5 metres		2,881	9	48	52
22.5 - 35 metres		3,022	9	51	49
35 - 999 metres	<u>, , , , , , , , , , , , , , , , , , , </u>	15	<1	38	62