

Oracle Designer 10g Standards &
Guidelines

Ministry of Community and Rural Development

 Ministry of Tourism, Culture and the Arts

(CD/TCA)

Revision History

This section lists the various versions or releases of the document.

Date Version Description Author
2002-NOV-01 0.1 Initial Draft (Analysis Phase only) Systems By Design Inc.
2002-NOV-06 0.2 Preliminary feedback from MD Systems By Design Inc
2002-NOV-12 0.3 Incorporated Design Phase section Systems By Design Inc
2002-NOV-14 0.4 Incorporated Build, Maintenance sections Systems By Design Inc
2002-NOV-15 0.5 Corrected formatting errors, included

appendices, labeled ‘DRAFT’, removed in-
line comments and highlighting

Systems By Design Inc

2002-NOV-19 0.6 Incorporated Analysis Phase comments (up
to 4.2.3) from MD and RG

Systems By Design Inc

2002-NOV-23 0.7 Incorporated remainder of Analysis Phase
comments from MD and RG

Systems By Design Inc

2002-NOV-24 0.8 Incorporated Design/Build Phase comments
from MD and RG

Systems By Design Inc

2002-NOV-24 0.9 Added ‘Req?’ column in property tables to
replace ‘mandatory/optional’ text

Systems By Design Inc

2002-NOV-25 1.0 In-line comments removed, in preparation
for DRAFT release

Systems By Design Inc

2003-JAN-12 1.1 Edits as per Dec 17, 2002 Meeting Systems By Design Inc
2003-FEB-12 1.2 Minor Edits Systems By Design Inc
2003-FEB-26 1.3 Addition of “SQL Tuning” section (5.2.20) Systems By Design Inc
2003-MAY-26 1.4 Addition of 2.0 Security Access M Dixon
2003-JUN-11 1.5 Addition of Legend to Appendix A M Dixon
2003-JUN-18 1.6 Addition of Appendix D Systems By Design Inc.
2003-JUL-29 1.7 Addition of Appendix E Systems By Design Inc.
2004-MAR-12 1.8 Incorporated comments from RG and BS Systems By Design Inc.

2006-FEB-01 1.9 Update to reflect change to Ministry
name(s) and upgrade to Oracle Designer
10g.

M. Bird and R. Gretchen

2006-JUL-26 1.10 Updated Section 6.2.7 and created Section
7.2.2.1 (System Level Roles) and Section
7.2.2.1 (Application Level Roles) for
Oracle 10g Application Security Policy for
shared 10g DB environment
Added section 6.2.16.1 PL/SQL Best
Practices and section 6.2.20.4 Embedding
of SQL in PL/SQL Code, and added Section
7.2.6 PL/SQL modules.

R. Gretchen

2006-SEPT-21 1.11 Added new grant to APP_SCHEMA K. Warnes
2010-MAY-19 1.12 Update Ministry names, change “ACIM”

references to “OCIO”, and update DAF
urls.
Update to Section 5.2.1 to highlight
standard that ERD must be in 3NF.

M. Bird

Table of Contents
1 Introduction .. 1

1.1 Target Audience ... 1
1.2 Purpose ... 1
1.3 Assumptions ... 1

2 Security Access Policy ... 2
3 Definitions .. 3

3.1 Guideline .. 3
3.2 Standard ... 3
3.3 Related Definitions ... 3

4 Application System Properties ... 4
4.1 Application Naming ... 4
4.2 Electronic Delivery of the Application .. 5

5 Analysis Phase .. 6
5.1 Overall Guidelines ... 6

5.1.1 Referencing Objects in Text Descriptions .. 6
5.1.2 Structured Notes ... 6

5.2 Entity Relationship Modeling .. 6
5.2.1 Objectives ... 7
5.2.2 Deliverables .. 7
5.2.3 Entities .. 14
5.2.4 Attributes .. 17
5.2.5 Standard Entity Enhancements ... 19
5.2.6 Relationships .. 19
5.2.7 Domains .. 20

5.3 Functional Modeling .. 22
5.3.1 Objectives ... 22
5.3.2 Deliverables .. 22
5.3.3 Functions .. 24

5.4 Business Processing Modelling .. 25
5.4.1 Objectives ... 26
5.4.2 Deliverables .. 26

5.5 Business Areas ... 27
5.5.1 Deliverables .. 27
5.5.2 Business Units .. 27

5.6 Business Rules Modelling .. 28
6 Design Phase .. 34

6.1 Overall Guidelines ... 34
6.1.1 Referencing Objects in Text Descriptions .. 34
6.1.2 Keeping logical data model current .. 34
6.1.3 Electronic Delivery of the Application ... 34

6.2 Database Design ... 34
6.2.1 Objectives ... 35
6.2.2 Deliverables .. 35
6.2.3 Object Naming Conventions ... 37
6.2.4 Database Design Transformer .. 38
6.2.5 Standard Table Enhancements .. 40
6.2.6 Journal Tables ... 41
6.2.7 Databases .. 42
6.2.8 Tablespaces ... 44
6.2.9 Datafiles .. 44
6.2.10 Tables ... 44
6.2.11 Columns .. 46
6.2.12 Views .. 49
6.2.13 Sequences ... 50

 i

6.2.14 Constraints .. 50
6.2.15 Indexes .. 54
6.2.16 PL/SQL Definitions .. 55
6.2.17 Storage Definitions ... 60
6.2.18 Synonyms ... 60
6.2.19 Database Object Grants .. 60
6.2.20 SQL Statement Tuning ... 62

6.3 Module Design ... 62
6.3.1 Objectives ... 64
6.3.2 Deliverables .. 64
6.3.3 Module Naming Conventions ... 65

7 Build Phase ... 66
7.1 Overall Guidelines ... 66

7.1.1 Referencing Objects in Text Descriptions .. 66
7.1.2 Keeping logical data model current .. 66
7.1.3 Documenting Post-Generation Changes ... 66

7.2 Implementation of Database Objects ... 67
7.2.1 Users ... 68
7.2.2 System and Application Roles .. 68
7.2.3 Table Implementations ... 70
7.2.4 Sequence Implementations ... 71
7.2.5 User Object Index Storages .. 71
7.2.6 PL/SQL Modules .. 71

7.3 Updating Bound Columns in Modules ... 72
7.4 Preferences ... 72

7.4.1 Objectives ... 73
7.5 Code Tables .. 73
7.6 Designer Generated Reference Codes - REF_CODES .. 73

8 Maintenance Phase ... 74
8.1 Overall Guidelines ... 74

8.1.1 Synchronizing Table Definitions .. 75
8.1.2 Synchronizing View Definitions .. 75
8.1.3 Synchronizing Domain Definitions .. 75
8.1.4 Synchronizing Display Information / Comments / Help Text .. 76
8.1.5 Synchronizing Entities with Tables .. 77
8.1.6 Synchronizing Module Definitions ... 78
8.1.7 Electronic Delivery of the Application ... 80

9 Designer Generation ... 81
9.1 Generate Database from Server Model .. 81

9.1.1 Post-Generation Changes .. 85
9.1.2 Reconcile Report .. 85
9.1.3 Capture Design of Server Model .. 85
9.1.4 Capture Design of Supporting Tables ... 86

10 Repository Extensions .. 88
11 Summary .. 89
12 Appendices ... 90

12.1 Appendix A – Summary of Deliverables.. 91
12.2 Appendix B – Glossary of Terms ... 93
12.3 Appendix C – Standard Approved Abbreviations ... 94

12.3.1 Mandatory Abbreviations ... 94
12.3.2 Preferred Abbreviations .. 94

12.4 Appendix D – Developer Guidelines ... 96
12.5 Appendix E – Developer SCM Guidelines .. 97

 ii

 iii

Table of Figures

Figure 1: Analysis Phase QA Checklist.. 8
Figure 2 - Master ERD Example composed of colour coded Subject Areas entities with the Primary UIDs 9
Figure 3 - Subject Area ERD Example – no external Subject Area entities ... 10
Figure 4 - Subject Area ERD Example – with external “Enterprise Participant” Subject Area entity 11
Figure 5 - Subject Area ERD Example - with external “Enterprise Participant” and “Contract” Subject

Areas entities .. 11
Figure 6: Function Hierarchy Diagram ... 23
Figure 7: Business Rules Hierarchy ... 29
Figure 8: Tuple Rules Hierarchy .. 32
Figure 9: Design Phase QA Checklist .. 36
Figure 10: DDT Settings - Database ... 38
Figure 11: DDT Settings - Keys ... 39
Figure 12: DDT Settings - Other .. 40
Figure 13: Journal Table ... 41
Figure 14: Database Package .. 58
Figure 15: Role Security ... 61
Figure 16: Column Properties... 63
Figure 17: DB Object Implementation ... 67
Figure 18: Generator Options ... 74
Figure 19: Reference Code Table Scope .. 74
Figure 20: Recreate Domain ... 76
Figure 21: Database Design Transformer Options ... 77
Figure 22: Entity Retrofit ... 78
Figure 23: Capture Forms ... 79
Figure 24: Generate Server Model Options .. 82
Figure 25: Database Generator Options ... 83
Figure 26: Generate Server Model Objects .. 84
Figure 27: DDL Generation .. 84
Figure 28: Reconcile Report ... 85
Figure 29: Capture Server Model ... 86
Figure 30: Journal Tables reverse engineered .. 87

1 Introduction

The intent of this document is to describe the guidelines and standards to be followed when designing and
developing Oracle Designer applications at the Ministry of Community and Rural Development and the
Ministry of Tourism, Culture and the Arts. This document is not intended to be an 'all inclusive' guide on
the use of Oracle products.

Originally the Designer Standards for the Ministry of Sustainable Resource Management, this document
has been taken, with permission from that Ministry, and modified to suit our unique requirements.

As with any standards document, this document will evolve over time. It is fully expected that each and
every development effort will contribute to the evolution of this document.

1.1 Target Audience

This document is directed at those who will be designing, developing and maintaining Oracle application
systems for the Ministry of Community and Rural Development and the Ministry of Tourism, Culture and
the Arts. This includes external contractors, consultants, and business partners, as well as ministry
employees (Data Administrator, Database Administrator, Business Analyst and Application Analysts).

1.2 Purpose

Oracle's Designer product provides a central repository for the storage of information about an application
throughout its entire life cycle. Utilizing this repository provides for consistent application design and
development within the Ministry of Community and Rural Development and the Ministry of Tourism,
Culture and the Arts.

This document outlines the standards which must be followed when building application systems using
Oracle's Designer tool set.

1.3 Assumptions

As it is not the intent of this document to be an 'all inclusive' guide on the use of Oracle products, it is
assumed that the audience has a working knowledge of Oracle's Designer and Developer product set, and
relational databases.

Throughout the remainder of the document, the Ministry of Community and Rural Development and the
Ministry of Tourism, Culture and the Arts shall be referred to as “The Ministry”.

The current release of Designer 10g used by the Ministry is Designer 10g Release 2 (10.1.2.0.2). All
developers using Designer 10g to access the ministry repositories must have this release installed for
compatibility. Release levels will change over time as Oracle support obsolescence occurs. There will be
ample notification to developers prior to any upgrade of the ministries Designer 10g repository versions.

 1

 2

2 Security Access Policy

Audience: ISB Staff, External Contractors, Clients

The Data and Database Administration Group within the Ministry ISB is ultimately responsible for the
management, data integrity and security of the ministry's Designer 10g Systems Configuration
Management (SCM) repository. Due to the inherent complexities and risks associated with managing
metadata within a SCM environment such as Designer 10g, the ISB will restrict
"Create/Update/Delete" access only to specific external development resources and select ISB staff.
"Read only" access may be provided to other individuals in the ministry if deemed necessary on a case-
to-case basis. This policy will be firmly enforced by the ISB.

3 Definitions

3.1 Guideline

A guideline is a method or custom, which through common usage has become an accepted method of work.
A guideline is not enforced, and is not a standard.

3.2 Standard

A standard is a specific statement of the rules and constraints governing the naming, contents, and
operations of software. Some statements are in bold, to emphasize standards that have been overlooked in
the past.

Unless otherwise noted, every statement in this document is a standard.

3.3 Related Definitions

Other relevant definitions can be found at:

 3

4 Application System Properties

The Application System Properties sheet must be filled in for each project. The ‘Req?’ column refers to the
fact that the property must be completed, either due to Designer rules or Ministry Standards, or both.

Property Rule Req?
Name • specifies the application short name (e.g. LGIS)

• defined at application creation
Y

Version

• all properties in this group are maintained automatically through the
versioning function

Y

Title • used as the application title on screens and reports that are generated
(e.g. LGIS System)

Y

Authority • describes the person, business or organization responsible for this
application

• should be name of the application custodian

Y

Owner • set automatically; should be the application owner (e.g. LGIS) Y
Datawarehouse? • identifies this application as one that feeds the Ministry data warehouse Y
Documentation

Priorities • recommended
• describes the priorities on this application

N

Constraints • recommended
• describes any constraints on this application; not interfaces to other

corporate systems

N

Comment • describes any general comments about the application as a whole N
Summary • contains a summary of the purpose of the application system N
Objectives • describes the objectives of the application system within the context of

the business unit: e.g.
LGIS is intended to replace multiple legacy applications (LGDETAX
and manual spreadsheets); in addition, enhancements will be needed in
response to new business requirements and a changing service model.

Y

Description • contains a brief overall description of the application system Y
Notes • contains a change history of the application

• may contain extraneous notes on the application system
Y

4.1 Application Naming

Applications must be named as a 3-4 character short name or acronym that is unique within the business
area or corporation. The expanded name should be recorded in the Title property.

This Application Name will be automatically prefixed to all 'physical' database objects such as tables,
views, packages, sequences and roles (see Database Design Transformer). Functions and procedures that
are not encapsulated in packages should also be prefixed with this name.

The intent of requiring the prefixing of the Application Name on all objects is to reduce the possibility of
namespace collisions. For example, the LGIS application uses LGIS as its short name. Therefore, the
SCHEDULE entity becomes the LGIS_SCHEDULES table.

Approval to use a new application acronym must be obtained from the Corporate Data Administrator or
Corporate Database Administrator to ensure that there are no duplicate names.

 4

 5

4.2 Electronic Delivery of the Application

All development is done directly against the Ministry Repository, and all vendors must perform a specific
number of steps at the end of each life-cycle phase (e.g. Analysis Phase). For details of this standard
process, please refer to Section 8.4 (Promotion Management Procedures) of the Designer Repository
Management Guide (CS_TSA_Des_Mngmt_Guide.doc).

It is assumed that the DWS (Development and Web Services) participants have been involved
iteratively throughout the project, for Quality Assurance purposes.

For a complete overview of the Ministry standard Promotion Model, see the Ministry’s Designer
Repository Management Guide (CS_TSA_Des_Mngmt_Guide.doc).

5 Analysis Phase

5.1 Overall Guidelines

This section presents some overall guidelines to assist in requirements analysis within the Oracle Designer
environment.

5.1.1 Referencing Objects in Text Descriptions

Whenever the name of another ENTITY, ATTRIBUTE (or any other object) is used within a textual
description, it should be capitalized for easier reading (and reference).

For example, if LICENCE is an entity, then the following description should be used for the
LICENCE_TYPE entity:

"This entity identifies the types of LICENCES that are available to the polling system"

5.1.2 Structured Notes

Issues, decisions and notes should be recorded in the Notes property of the relevant object (e.g. entity,
attribute, function, table, column, and module). The suggested format is to prefix the text with indicators of

1. What phase of development (Analysis, Design, or Build)
2. What type of note (Question, Point, Answer, or Decision)
3. Date that the issue was raised, or resolved
4. Initials of the analyst who raised this issue

An example is:
A? 1998-01-18 GW There may be an opportunity to share this
 functionality with 'Record contact information
 about a new permittee/PMP'er/Certificate holder.

The notation is:
<Phase><Note Type> <Date> <Initials> <Note Text>
<Phase> is one of A, D, B (Analysis, Design, or Build)
<Note Type> is one of ?, !, A, D (Question, Point, Answer, or Decision)
<Date> is in the format YYYY-MM-DD

For examples, see Functions Notes or Entity Notes.

5.2 Entity Relationship Modeling

Entity Relationship Modeling involves identifying the things of importance in an organization (entities), the
properties of those things (attributes) and how they are related to one another (relationships).

The Repository Object Navigator (RON) and Entity Relationship Diagrammer (ERD) tools are used to
model entities, their attributes, relationship to other entities, and unique identifiers. They are also used to
identify domains, allowable values, and unique identifier components associated with attributes.

 6

It is the intention of Entity Relationship Modelling to produce a data model of the business
requirements, not the physical implementation.

5.2.1 Objectives

The objectives of the Entity Relationship Modeling process are:
• To provide an accurate model of the information needs of the organization, which will act as a

framework for the development of new or enhanced systems.
• To document the business requirements for data, the specific business rules and relationships that

apply to that data.
• To provide a model independent of any data storage and access method, to allow objective decisions to

be made about implementation techniques and coexistence with existing systems.
• To provide a blueprint for data storage which ensures data integrity and reduces data redundancy.

It is a Ministry standard that, by the end of the Analysis Phase, the Entity Relationship Model is in
Third Normal form (e.g. no non-UID attribute can be dependent upon another non-UID attribute).

Related standards on data modelling are available on the Government of British Columbia’s Office
of the Chief Information Officer (OCIO) Data Administration Forum (DAF) website
(http://www.cio.gov.bc.ca/cio/standards/daf.page?).

5.2.2 Deliverables

Although Designer can produce numerous reports and diagrams, only the following set of reports and
diagrams are required deliverables for Entity Relationship Modeling. This does not preclude the use of the
various analytical and quality assurance reports during the design, development, and review of the
components of an application.

The logical data model document to be presented for sign-off will contain the following diagrams and
reports:
• Entity Relationship Diagrams
• System Glossary Report
• Entity Definition Report
• Entities and Their Attributes Report
• Entity Completeness Checks Report
• Domain Definition Report
• Attributes In a Domain Report

The logical data model forms part of the Business Requirements Document.

A checklist is available to confirm that the Analysis Phase is complete and that the repository is ready for
the Design Phase. This checklist is used in conjunction with the deliverables stated above:

 7

Figure 1: Analysis Phase QA Checklist

Note that Ministry Quality Assurance reviews will reference the Data Modelling standards found on
the Government of British Columbia’s Office of the Chief Information Officer (OCIO) Data
Administration Forum (DAF) website (http://www.cio.gov.bc.ca/cio/standards/daf.page?).

5.2.2.1 Entity Relationship Diagrams (ERD)

Entity Relationship Diagrams (ERD’s) showing all of the application entities and relationships must be
provided.

Master ERD
The Master ERD provides context to a system by presenting a total view of all system entities and their
relationships. To facilitate readability and ease of printing, the detailed entity information is presented in
Subject Area ERDs.

The Master ERD must contain the following:

• entities with only the Primary UID attributes (if possible). The entities from specific Subject
Areas must be colour coded to indicate their origin. The colour code for entities from each
Subject Area must be consistent among all diagrams within a system. This requirement provides
an effective visual communication of each Subject Area in context of the system.

• a legend describing the colour code for each set of Subject Area entities
• all of the relationships with their descriptions.

 8

Figure 2 - Master ERD Example composed of colour coded Subject Areas entities with the Primary
UIDs

Subject Area ERDs
The Subject Area ERDs provide the required detailed information of all the entities in the system pertaining
to a specific business function (e.g. contract payments).

To facilitate readability and ease of printing, a Subject Area ERD must not exceed 15 entities. If there is a
business requirement to exceed this maximum, it must first be reviewed and approved by the Ministry DA.

The Subject Area ERD must contain the following:

• entities with all of the attributes including Primary UIDs and Mandatory and Optional attribute
indicator symbols

• entities depicted in the diagram must be white in colour. Key entities from external Subject Areas,
(which are included to provide context to the Subject Area diagram), must be colour coded to
indicate their origin. The colour code for these key entities must be consistent among all
diagrams within the system.

• a legend describing the colour code for each set of external Subject Area entities
• all of the relationships with their descriptions.

 9

Figure 3 - Subject Area ERD Example – no external Subject Area entities

 10

Figure 4 - Subject Area ERD Example – with external “Enterprise Participant” Subject Area entity

Figure 5 - Subject Area ERD Example - with external “Enterprise Participant” and “Contract”
Subject Areas entities

 11

ERD Naming Conventions
The ERD naming conventions are as follows:

• the term “ERD” must precede each diagram name
• if it’s a Subject Area ERD, then “- SA” must follow each name (e.g. ERD Contract – SA)
• if it’s a Master ERD, then “- Master” must follow each name (e.g. ERD Contract Management

– Master)

Diagramming Style
Each ERD must contain the Diagram Summary Information displayed without borders. The Diagram
Summary Information must contain the following information as recorded in the Repository:

• the diagram name,
• title (which could be the Application System name if the Container name is not explicit e.g.

“Contract Management System” ERD in the “CLIENT” container),
• date and time the diagram was created,
• date and time the diagram was last modified,
• the author,
• the application system name (i.e. CONTAINER name).

A consistent diagramming style should be used throughout the ERD; a recommended style is to diagram
master (Independent) entities above the detail (Dependent) entities they are related to. When utilizing this
style, all relationships are drawn as lines with the many end of one–to–many relationships appearing at the
bottom of the relationship line and to the right. Using a consistent style improves the readability of the
diagram and makes it much easier to identify potential problems in the model.

ERD Visual Check List
A visual check of the ERD would include the following items:

• Diagram Summary Information including:
• Diagram Name in the format defined above
• Title,
• Date & Time Created,
• Date & Time Last Modified,
• Author,
• Application System

• Entity boxes line up, and relationship lines are mainly straight and horizontal or vertical (many
end at bottom or right of relationship line)

• All text is unambiguous - jargon and abbreviations have been avoided
• The relationship names are easy to read. This implies that the names are:

• horizontally orientated
• on opposite sides of the lines next to the entity to which they refer such that they may be

read in a clockwise fashion
• not overlapping.

• If colour is used to enhance the readability of an ERD, a legend describing the colour code for
each set of subject area entities must be included in the diagram. The legend may be created
using a tool such as Microsoft Excel and then inserting it as an object in the ERD.

• The diagram is presentable, with legible elements and no crossing lines where possible
• The diagram reflects the business accurately as validated by business users
• The diagram can be effectively used to describe data to all interested participants.

 12

5.2.2.2 System Glossary Report

• Entity names should be singular
• Entity names should be meaningful and the use of abbreviations should be kept to a minimum. A

typical entity name is a noun
• A standard list of abbreviations can be found in Appendix C – Standard Approved Abbreviations, and

should be used wherever possible
• All entities must have a clear business description. The description must explain what the data is to

non-application personnel (e.g. Data Administration)
• Descriptions for abstract entities should contain concrete examples
• All references to other objects should be capitalized.

5.2.2.3 Entity Definition Report

• Entity names must be singular
• Entity names must be meaningful and the use of abbreviations should be kept to a minimum. A typical

entity name is a noun
• A standard list of abbreviations can be found in Appendix C – Standard Approved Abbreviations, and

should be used wherever possible
• All entities must have a clear business description. The description must explain what the data is to

non-application and non-technical personnel

Note: It is a Ministry standard that the business area expert(s) (i.e. client representative, business
analyst, and data administrator) review and approve these descriptions

• Descriptions for abstract entities should contain concrete examples.
• All references to other objects should be capitalized.
• Where applicable, use should be made of Oracle's support of sub-type entities and domains.
• All super-type entities must have a unique identifier.
• All sub-type entities must have at least one relationship or attribute different from their super-type.
• All sub-type entities must be mutually exclusive
• Many–to–many relationships must be resolved with an intermediate entity.
• Relationship names must be meaningful and both sides of a relationship must be named. It is helpful to

consider the relationship name in the context of a sentence as follows:

EACH ENTITY1 MUST BE/MAY BE relationship ONE AND ONLY ONE/ONE OR
MORE ENTITY2

For example:
EACH STUDENT MUST be enrolled in ONE OR MORE CLASSES
EACH CLASS MAY BE comprised of ONE OR MORE STUDENTS

Note: The Entity Model Reference Report has a 'Relationships' section where you may check the
relationship wording.

5.2.2.4 Entities & Their Attributes Report

Any attribute where the attribute name does not effectively describe the nature of the attribute must have an
associated note. An example would be an attribute name that would exceed the 30-character limit, if fully
descriptive.

Note: It is a Ministry standard that the business area expert(s) (i.e. client representative, business
analyst, and data administrator) review and approve these attributes and associated elements.

 13

5.2.2.5 Entity Completeness Checks

Any entity that appears on this report should have justifications documented in the Entity Notes. An
example is an intersection entity, which has no attributes. The checks are:
• No Attributes
• No Description
• No Unique Identifiers
• With No Relationships
• Not Used by any Functions

5.2.2.6 Domain Definition Report

All attributes should be placed under a domain. This Report lists all the domains and their descriptions.
There are currently no Ministry standard domains, so application-specific ones may be defined. Domains
must be reviewed and approved by ministry Data Administrator

Note: The Ministry is currently reviewing its COMMON set of domains.

5.2.2.7 Attributes in a Domain Report

There are benefits to creating and using application-specific domains wherever an attribute is used in more
than one entity. If this approach is taken, it is easier to ensure that datatype mismatches between
entities/tables are avoided, and that any changes to the datatype can be made at the domain level, and then
flushed throughout the application.

It is therefore a Ministry standard that extensive use of application-specific domains be used for every
attribute/column.

5.2.3 Entities
An entity is a thing of significance about which information needs to be known or held.

Property Rule Req?
Name • Should uniquely identify the entity in a manner that is easily understood

by the business people
• should be made up of one to three real words, with no ambiguity in

meaning
• abbreviations should be avoided unless they are obvious
• when the entity name is only one word, it must not be an Oracle Reserved

Word
• use a singular noun and any modifiers
• contains only alphabetic characters and spaces
• does not contain hyphens or underscores

Note:
• cross-reference entity names must be suffixed with _XREF
• code lookup entities must be suffixed with _CDS
• see OCIO’s Data Administration Forum (DAF) website

(http://www.cio.gov.bc.ca/cio/standards/daf.page?)

Y

Short Name • an entity identifier, up to 10 characters in length
• when the entity short name is only one word, it must not be an Oracle

Y

 14

Property Rule Req?
Reserved Word

Note: The Entity Short Name becomes the default Table: Short Name when the
Database Design Transformer is used.

Plural • should follow the standards for the Entity Name (no underscores,
hyphens, etc)

• there are cases where the name is already plural (e.g. SHEEP), so this
must be corrected manually

Note: The Entity Plural becomes the default Table: Name when the Database
Design Transformer is used.

Y

Volumes • These fields are the initial estimates for the quantity of data, and provide
estimates for the annual growth in information. These data will eventually
be used in the sizing estimate algorithm.

Note: It is important that some thought, effort, and calculation be put into these
estimates by actively soliciting this information from the business experts.

Initial • expected number of records in the entity (table) when the system first
goes into production

Y

Maximum • expected number of records in the entity (table) at the end of the third
year

Y

Average • average number of expected records in the entity (table) at the end of the
third year

Y

Annual
Growth
Rate

• expected % growth rate for the entity (table) per year Y

Documentation
Description

• must explain what the entity is to non-application personnel
• descriptions for abstract entities should contain concrete examples
• can be further categorized into Definition, Example and Miscellaneous,

such as:

DEFINITION
A type of role that a party may play in the context
of a permit, PMP, license or certificate.

EXAMPLE
Examples of role types are 'Located Within' (i.e.
Region or regions that the PMA, License or
Certificate are physically located or affect in the
case of items that cross regional boundaries),
'Administering Region' (i.e. the region actually
responsible for a permit. PMP, License or
certificate), 'Consultative' and 'Contact'.

MISCELLANEOUS
Note that Administering Region may include HQ, as HQ
staff may perform the hands-on administration of a
permit, PMP, license or certificate.

This entity is used to hold the valid list of
Approval Roles that are available for use in CRISP.
This list is only to be modified by the Application
Manager, and then, only when adding new functionality
to the system.

Y

 15

Property Rule Req?

Recently, we've added 'Approved Training Agency',
which will now share the duties of issuing
Certificates with 'Administering Region' .

Note: The Database Design Transformer copies this information into the User /
Help Text and Description fields.

Notes • should contain any notes about this entity
• structured analysis or design comments should be placed here, for

example:

OUTSTANDING ISSUES
===================
A! 1998-01-21 GW GENERAL LOCATION and all information
 specifically related to time/place
 details have been deleted (R. Adams,
 1998-01-19) from EXAMINATION entity
 and the entire entity has been
 deleted.

IMPLEMENTATION NOTES
=====================

MISCELLANEOUS
==============

Note: The Database Design Transformer copies this information into the Notes
field.

N

Although unique identifiers are usually entered via the Entity Relationship Diagrammer, they also show up
in the RON, under the following sub-node.

 16

Node Rule Req?
Unique
Identifiers

• must be comprised of attribute(s) and/or relationship(s) that are defined for
the entity

• this is to ensure business uniqueness

Y

Primary
UID?

• indicates that this UID is the primary key Y

Note: UID’s can be either a business key (with meaning, such as Name) or a system (a surrogate
meaningless value, such as a number). When using System UID’s, the underlying business keys are still
recorded in Designer as Secondary UID’s.

5.2.4 Attributes

An attribute is a thing of significance that serves to classify, quantify, qualify, identify or express the state
of an entity.

Property Rule Req?
Name • should be made up of one to three real words

• when an attribute name is only one word, it must not be an Oracle
Reserved Word

• should be singular and contain no hyphens or underscores
• if generating Forms modules, then the length should be 22 characters or

less, due to a Forms Generator bug

Y

 17

Property Rule Req?

Note: The Database Design Transformer uses this to generate the default Name
and Prompt for the column.

Sequence in
Entity

• will become the sequence of the columns in the table (see Database
Design Transformer)

• optional attributes should be after mandatory ones
• long character attributes should be next
• large binary attributes (e.g. video, sound) should be next
• audit attributes (create_userid, create_timestamp, etc.) must be last

Y

Domain • name of the domain (if a domain is used)
Definition • if a domain is not used, then the following fields must be completed to

define the datatype
• if a domain is used, then these fields will be populated automatically

Format Y
Average
Length

 Y

Maximum
Length

 Y

Decimal
Places

• mandatory for numeric attributes N

Optional? • NO means that the attribute is required (Not null)
• YES means that the attribute allows null values

Y

Units • Used for documentation purposes only
• Defined the unit of measure for the attribute (metres, kilograms, ppm)

N

Default • Should not be used if an attribute is optional
• Must be the same datatype as the attribute

Note: Use of defaults must be examined carefully, as default values may lead
the inexperienced user to enter erroneous data

N

Derivation • algorithm or expression how the attribute's value is derived
• further explanation of this derivation must be qualified in the Attribute

Notes property

N

Volumes • These fields contain estimates for the quantity of data, and will eventually
be used in the sizing estimate algorithm

It is the Ministry standard to enter appropriate values for these fields

Percent
Used
- Initial

• should be specified for documentation purposed
• if an attribute is not optional, then will be set automatically at 100%

Y

Percent
Used
- Average

• if an attribute is not optional, then will be set automatically at 100%
• specifies the average percent of the attributes that contain values

Y

Documentation
Comment • For example:

Indicator that a stay is currently on this
approval

Note: The Database Design Transformer uses this to generate the Display: Hint
and Comments for the column.

Y

Description • must be described from the user's perspective and in plain English
• provide examples where possible

Y

 18

http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-06.html#DDW%20Setting%20for%20Application%20Short%20Name%20Prefix
http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-06.html#DDW%20Setting%20for%20Application%20Short%20Name%20Prefix
http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-05.html#5.8%20Domains#5.8%20Domains

Property Rule Req?
• should further expand upon the attribute comment, for example:

A 'Stay' is an order issued by the Environmental
Appeal Board, a temporarily suspending the
approval, pending a decision on an appeal. This
stay can affect only a certain portion on the
approval.

Note: The Database Design Transformer uses this field to populate the Text:
Description and Text: User Help Text fields for the column.

Notes • any additional notes for the attribute N

Although Allowable Values are usually entered via the Entity Relationship Diagrammer, they also show up
in the RON, under the Allowable Values sub-node:
• where possible, defining allowable values should be done in a domain rather than explicitly in an

attribute
• if this is not possible (i.e. the Database Design Transformer creates this list for discriminator columns

in super-type implementations), allowable values can be defined for each attribute in this group

5.2.5 Standard Entity Enhancements

It is the Ministry standard that the following audit attributes be added to all entities:

CREATE_USERID not null varchar2(30)
CREATE_TIMESTAMP not null date
UPDATE_USERID not null varchar2(30)
UPDATE_TIMESTAMP not null date

When implemented as columns in the table, these attributes allow a degree of simple security tracking, but
can also be useful in tracing down problems.

See Standard Table Enhancements for more implementation details.

5.2.6 Relationships

A Relationship represents any significant way in which two entities can be associated.

Property Rule Req?
From

Relationship
Name

• relationship names must be meaningful
• both sides of a relationship must be named
• "catch all" phrases (related to, associated with) should be avoided in

favour of more descriptive names

Note: It is often helpful to consider the relationship name in the context of a
sentence as follows:
EACH entity1 MUST BE/MAY BE relationship ONE AND ONLY
ONE/ONE OR MORE entity2

for example:
EACH student MUST BE enrolled in ONE OR MORE classes,
or
EACH class MAY BE comprised of ONE OR MORE students

Y

Minimum • defines optionality of the relationship Y

 19

http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-05.html#5.8%20Domains#5.8%20Domains

Property Rule Req?
Cardinality 0: MAY BE

1: MUST BE
Maximum
Cardinality

• mandatory in the sense that it must be considered
• defines the degree of the relationship

1: ONE AND ONLY ONE
null: ONE OR MORE

Y

Transferable • mandatory in the sense that it must be considered
• by default, a relationship is transferable, which means the end can be

disconnected from the current instance and reconnected to another
instance

Y

To
Relationship
Name

• relationship names must be meaningful
• both sides of a relationship must be named
• "catch all" phrases (related to, associated with) should be avoided in

favour of more descriptive names

Note: It is often helpful to consider the relationship name in the context of a
sentence as follows:
EACH entity1 MUST BE/MAY BE relationship ONE AND ONLY
ONE/ONE OR MORE entity2

for example:
EACH student MUST BE enrolled in ONE OR MORE classes,
or
EACH class MAY BE comprised of ONE OR MORE students

Y

Minimum
Cardinality

• defines optionality of the relationship
0: MAY BE
1: MUST BE

Y

Maximum
Cardinality

• mandatory in the sense that it must be considered
• defines the degree of the relationship

1: ONE AND ONLY ONE
null: ONE OR MORE

Y

Transferable • mandatory in the sense that it must be considered Y

Note: One to one relationships should be carefully reviewed; they may actually be sub-types, perhaps with
different names or attributes or relationships.

Note: Relationships that are optional at both ends should also be carefully reviewed; they are nearly always
a modelling error.

5.2.7 Domains

A domain categorizes the nature of the data represented by a group of attributes, and indicates the general
purpose of those attributes. The use of domains can save time and apply a desirably high degree of
standardization across attribute definitions, and subsequently, column names.

Domains are also used to implement lists and ranges of valid values. The use of domains to implement lists
of values should only be considered when the list of allowable values is static (e.g. days of week, months of
the year, yes/no indicators). Domains are created in the Repository Object Navigator, the Server Model
Diagrammer or the ER Diagrammer (choose Edit Elements/Domain from the menu).

 20

Only include attributes in a domain when the values that they represent all have the same business
meaning. Where applicable, domains must also represent the same units of measure.

Domains must be defined for each application, and reviewed by the Data Administrator.

It is the Ministry standard to place all attributes under domains.

Property Rule Req?
Name • should be made up of one to three real words

• when the domain name is only one word, it must not be an Oracle
Reserved Word

• should be singular
• should be meaningful; abbreviations should be avoided unless obvious

Y

Attributes
in Domain

• These fields define the datatypes to be used for attributes

Format Y
Ave Att
Length

 Y

Max Att
Length

 Y

Att Decimal
Places

• mandatory for numeric datatypes N

Unit of
Measure

• applicable to Domain Attributes only N

Columns
in Domain

• These fields define the datatypes to be used for columns

Datatype Y
Ave Col
Length

 Y

Max Col
Length

 Y

Col Decimal
Places

• mandatory for numeric datatypes N

Dynamic
List?

• if selected, will cause the LOV to be implemented as a table lookup
(<APPL>_REF_CODES)

Note: This is only if the column's Display Datatype is Poplist or Text

N

Documentation
Comment • should contain a simple description of the domain Y
Description • describes the domain Y
Notes • contains any additional information about the domain N

If the domain is enumerated, then the values are listed under the Allowable Values sub-node.

Property Rule Req?
Value • valid value for the attribute/column in this domain or the lowest allowable

value when implementing a range of values
Y

High Value • maximum allowable value when implementing a range of values N
Abbreviation • mandatory for entries representing a valid value in a list of values N
Meaning • mandatory for entries representing a valid value in a list of values N
Display
Sequence

• mandatory for entries representing a valid value in a list of values
• determines the order the values are displayed in the list

N

Documentation
Description • contains a description of the allowable value/range N
Notes • contains any additional information about the allowable value/range N

 21

http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-12.html#12.2.1%20Oracle%20Reserved%20Words
http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-12.html#12.2.1%20Oracle%20Reserved%20Words

Changes to a domain can only be propagated to the associated attributes and columns by using the Update
Attributes in a Domain and Update Columns in a Domain utilities. These can be accessed from the Utilities
menu of the Repository Object Navigator.

Note: For enumerated values, a lookup entity (with the valid values stored as data) may be more
appropriate if the valid values are subject to change; for example, city names or product codes. If the valid
values are relatively static, then a domain is more appropriate; for example, gender or compass direction.

5.3 Functional Modeling

Functional Modeling is used to describe what an organization does. Simply put, Functional Modeling
involves identifying what a business does (functions), what triggers those activities (events), and which
things of significance (entities) or properties of those things (attributes) are acted upon by the functions.

The Functional Model should be geared towards what the organization is attempting to achieve in terms of
its objectives, and should be easily understood by non-application personnel.

The Repository Object Navigator (RON), and Functional Hierarchy Diagrammer components are used to
model the hierarchy of business functions.

5.3.1 Objectives

The objectives of the Functional Modeling process are:
• To provide an accurate model of the functional needs of the organization, which will act as a

framework for the development of new or enhanced systems.
• To provide a model that is independent of any mechanism or process method, and allows for objective

decisions to be made about implementation techniques and coexistence with existing systems.

5.3.2 Deliverables

The Functional Model documentation to be presented for sign-off will contain the following diagrams and
reports:
• Functional Hierarchy Diagram
• Function to Entity Matrix Diagram (CRUD Matrix)
• Function Definition Report

5.3.2.1 Functional Hierarchy Diagram

A Functional Hierarchy Diagram is a hierarchy of business functions describing what the organization does
not how it does it. It does not include mechanisms, examples, organization, responsibilities or roles.
• All Function Hierarchy Diagrams must include the Summary Information in the upper left hand corner

of the diagram
• The diagram name must be prefixed with "FHD"
• There must be one "complete" Functional Hierarchy Diagram per application system
• A function definition should be a single sentence that begins with a verb followed by the entity (or

entities) affected
• All entity names should be capitalized when used within definitions and descriptions

 22

Figure 6: Function Hierarchy Diagram

 23

5.3.2.2 Function to Entity Matrix (CRUD Matrix)

The CRUD Matrix is used to check for completeness and correctness for the function (and data) model.
Completeness is assured if the following is true:
• All elementary functions must refer to at least one entity
• All entities must have a usage by at least one function
• Each entity must have a created, read, updated and deleted usage

5.3.2.3 Function Detail Report

Any specific processing requirements for a function should be documented and available for review on this
report.

5.3.3 Functions

A function is something that an organization does or needs to do, irrespective of how it does it. An
elementary function is a lowest implementable function, and results in a form module, reports module,
etceteras.

Property Rule Req?
Label

• must be unique within the application Y

Short
Definition

• function descriptions must start with a verb acting upon an object (or
objects)

Y

Elementary? • must be considered
• elementary functions act upon data and are the only functions to have

associations with entities
• an elementary function must be associated with at least one entity

N

Frequency
Frequency • mandatory for elementary functions N
Frequency
Unit

• mandatory for elementary functions N

Response
Needed

• mandatory for elementary functions N

Documentation
Description • must be clear and concise

• must be more detailed that the Short Definition
• references to entities must be CAPITALIZED
• can be further categorized into Goal, Description, Example of Typical

Use, and Miscellaneous, for example:

GOAL
Record contact information for a license applicant.

DESCRIPTION
This function enables the user to enter contact
information, such as name, address and telephone
number, into the system. The user can also update
existing information for a licensee.

When entering new contact information, the user
should be sure that the licensee is truly unknown

Y

 24

Property Rule Req?
to us (in any role, including permittee, PMP
holder, etc.). Since a licensee may be an
organization or person, the user should first
declare how the applicant should be recorded (i.e.
last name and first name, or legal registered
business name).

EXAMPLE OF TYPICAL USE
This function is used when entering the initial
license application from a new applicant, or when
updating the contact information for a known
licensee.

MISCELLANEOUS
When updating the licensee’s name, it will be
necessary to keep the old name (since the original
license was issued in this name) in addition to
recording the new name (for future reference).

Notes • should contain any notes about this function
• structured analysis or design comments should be placed here, for

example:

OUTSTANDING ISSUES
===================
A? 1998-01-27 GW There may be an opportunity to
 share this Functionality with
 'Record contact information about a
 new permittee / PMP'er /
 Certificate holder.

IMPLEMENTATION NOTES
=====================

Y

Although data usages are usually entered via the Function Hierarchy Diagrammer, they also show up in the
RON, under the following sub-nodes.

Usages
Node

Rule Req?

Using
Entities

• One or more entities must be associated with each elementary function.
• How the function acts upon the entity must be recorded (e.g. create, update,

delete)

Y

Using
Attributes

• One or more attributes must be associated with each entity within each
elementary function.

• How the function acts upon the attribute must be recorded (e.g. create,
update, delete...)

• optional, and only for elementary functions

N

5.4 Business Processing Modelling

The Process Model is intended to describe the business, and requirements for a system to capture
information about the business, and events which occur in it. The focus, therefore, in Process Models will

 25

be on the information used in, and produced by, the process and how that information will be handled
within the process.

Formal Process Models produced early in the development and reviewed by users avoid repeated changes
to the system as business processes are determined by trial and error during the design phase. The
Repository Object Navigator (RON), and Process Modeler components are used to model the business
processes.

5.4.1 Objectives

The objectives of Process Modeling are:
• To provide the basis for confirming and understanding business activity.
• To provide a means to define business requirements before system is designed and built
• To provide a framework for analyzing and improving current business processes and for business re-

design.
• To document the results of the analysis of business information requirements
• To verify the data model
• To analyze organizational responsibilities

The analysis should model the following key ideas:
• Business Activities
• Hierarchical Organization and Decomposition
• Data Objects
• Data Usage (i.e., association matrices)
• Activation, Sequencing, and Termination
• Governing Rules and Conditions

High-level guidelines for modelling business processes include:
• Process Model Diagrams will use boxes for processes and arrows to indicate the flow
• The process boxes in the models will be labeled in a numeric sequence indicating the hierarchy (e.g.

1,2,3 at the highest level, 1.1, 1.2, 1.3 at the next level, 1.1.1, 1.1.2, 1.1.3 at the next level and so on)
• Diagrams should not have a wide variety of different diagram shapes (e.g. use only the basic Process

box, Event arrow, Input arrow, Output arrow, Decision diamond, and Data Store rectangle)
• Diagrams should have no more than ten processes; if a diagram requires more, then link it to another

diagram which continues the process
• The process modelling exercise should ensure that the "as is" and "to be" processes are documented

separately.
• Items identified during the development of the initial or "analytic" model should be included in the text

of the final process modelling documentation so as not to lose the knowledge gained. These could be
such items as responsibilities for processes, interactions between processes and specific systems, gaps
between the "as is" and the "to be" models, and issues that hamper the "as is" model".

• It is recommended, but not mandatory, to use Oracle Designer to produce Business Process Models;
alternatives include Microsoft Visio and/or Microsoft Word.

Note that these alternative documents must then be checked in and held in the Repository.

5.4.2 Deliverables

The Process Model documentation to be presented for sign-off will contain the following diagrams and
reports:
• Process Model Diagram(s)
• Process Definition Report (Function Definition Report if Designer is used)

 26

5.5 Business Areas

During the Analysis phase, it is important to record the involved organizational departments (e.g.
Information Services Branch), and the relevant roles that a user may play (e.g. child care worker). Both are
recorded in Designer as Business Units.

5.5.1 Deliverables

The Business Area documentation to be presented for sign-off will contain the following diagrams and
reports:
• Business Unit Definition Report
• Business Function to Business Unit Matrix

5.5.2 Business Units

Using the Repository Object Navigator, Business Units (also known as User Groups) may be recorded.
Business Units define the departments, divisions, and organizational units that are within the scope of the
application. Roles are also documented here, as a business unit may be a role that the person, or persons,
plays in the use of the application.

Property Rule Req?
Short Name • must be unique within the application

• abbreviation for the business unit (e.g. "App Mgr" for Application
Manager)

Y

Name • full name of the business unit or role (e.g. Conservation Office) Y
Parent • the parent business unit (e.g. Federal Government could be the parent of

Environment Canada)

Documentation
Comment • should contain a simple description of the business unit Y
Description • describes the business unit Y
Notes • contains any additional information about the business unit N

BPR
Role • identifies that this business unit is a role, to be implemented as a database

role during the Design Phase
Y

Although function usages can be entered via the Function Hierarchy Diagrammer, they also show up in the
RON, under the Performing Functions sub-node. The actual usages are mandatory, but the frequency and
response information is optional.

Property Rule Req?
Function • reference to the business function for which this business unit has access

• chosen from a picklist
Y

Frequency • frequency of access N
Frequency
Unit

• unit of measure for the frequency N

Response
Needed

• type of response; translates to on-line versus batch implementation during
the Design phase

N

Although data usages can be entered via the Entity Relationship Diagrammer, they also show up in the
RON, under the Using Entities sub-node. The actual usages are mandatory, but the frequency and response
information is optional.

 27

Property Rule Req?

Entity • reference to the entity for which this business unit has access
• chosen from a picklist

Y

Initial
Volume

• expected number of records that this business unit contributes to the entity
(table) when the system first goes into production

N

Maximum
Volume

• expected number of records that this business unit contributes to the entity
(table) at the end of the third year

N

Average
Volume

• average number of expected records that this business unit contributes to the
entity (table) at the end of the third year

N

Annual
Growth

• expected % annual growth rate that this business unit contributes to the
entity (table)

N

These business units form the basis for defining authorization rules, such as:
• the hierarchy of user roles (parent property of the business unit)
• the function access rules (which Performing Functions are used)
• the vertical data access rules (which Using Entities are linked)

The Business Function to Business Unit matrix provides the documentation for security and network
constraints; it shows which Business Units perform which Business Functions.

5.6 Business Rules Modelling

A business rule is:

• a restriction that applies to the state of the data or to the change of data, or
• an automatic action that takes place after a change in data

It is recommended that the modelling of business rules be treated as an integral part of analysis. Most of
these rules can be documented in the data model (e.g. format, domain rules), but many others (e.g. change
event rules, update rules, delete rules) have no pre-defined property in Designer. These rules are often
hidden in the descriptions and notes text of the functions and entities.

Another method is to organize the rules into classes, and record them in a separate 'Business Rules' function
hierarchy. This 'Business Rules' hierarchy is completely separate and distinct from the 'Business Functions
Hierarchy' usually created during Analysis.

An example of such a 'Business Rules' hierarchy is the following:

 28

Figure 7: Business Rules Hierarchy

There are several advantages to this method:
1. Event modelling can be used to explicitly describe the event that triggers the rule
2. Function to Entity and matrices can be created to show the entire life-cycle of an entity
3. During the Design and Build phases, the implemented rules (e.g. stored procedures, modules, or

database triggers) can be cross-checked using the 'Implementing Business Functions' usage of the
module; this would facilitate completeness checking of the rules

4. The business rule is documented in one and only one location, and its subsequent implementation can
be easily traced to this business rule.

Note: Advantage #3 does not apply for rules implemented as Check Constraints; although the comment
property of the check constraint could refer to the source business rule.

There are four main classes of business rules:
• static data rules
• data operation rules
• change event rules
• authorization rules

 29

Static data rules are rules that always apply. Every state of the data has to adhere to all the data rules. Static
data rules are tightly integrated with entity relationship modeling. Some of these rules are implicitly created
during entity relationship modeling and can be graphically represented in an entity relationship model.

Data operation rules are dynamic, which means that they tell something about valid state transitions but
nothing about the state itself.

Change event rules define automatic actions to be taken after the state of the data has changed.

Authorization rules define which business unit, person or group of people is able to perform a function or
manipulate (a set of) data.

There are sub-classes under these four main classes, and are shown in the following table:

RULE Recording
Method

Function
Prefix

Tool
Access Class Sub-Class Type

Static
Data Rules

Attribute Rules Format Attribute Format / Function
Description

 ER Diagrammer

Optionality Attribute Required ER Diagrammer

Allowable Values Domain object ER Diagrammer

Other Attribute Function Description $TUP FHD1
Tuple Rules Tuple Function Description $TUP FHD
Entity Rules Unique ID Unique Identifier ERD

Other Entity Function Description $ENT FHD

Inter-Entity
Rules

Referential Integrity Relationship ER Diagrammer

Relationship Cardinality Relationship property ER Diagrammer

Restricted Relationship Function Description $RER FHD
Data
Operation
Rules

Create Rules Create Rules Function $CRE FHD
Update Rules Transferable Relationship Transferable Property ERD

Attribute Transition Function Description $UPD FHD
Other Update Function Description $UPD FHD

Delete Rules Relationship Function Description $DEL FHD
Other Delete Function Description $DEL FHD

Change Event Rules Change Event Function Description $CEV FHD
Authorization Rules Function Access Business Unit to Function

matrix
 Matrix

Diagrammer
Vertical Data Business Unit to

Entity/Attribute matrix
 Matrix

Diagrammer
Horizontal Data Model as Entity ER Diagrammer

1 Function Hierarchy Diagrammer

 30

The shaded types are those rules which can be recorded in the data model, or through the appropriate
matrices; these rules do not belong in the 'Business Rules Hierarchy'. The tool FHD refers to the Function
Hierarchy Diagrammer used to maintain the 'Business Rules Hierarchy.

Rule Sub-Class Definition
Other Attribute All other allowable value rules for an attribute. In most cases the attribute

value depends on the value of a constant.
Tuple Rules Tuple rules define attribute allowable values which depend on the value of

other attribute(s) of the same entity occurrence (tuple).
Other Entity Rules Other entity rules consist of all allowable value rules which you can define

within an entity.
Restricted
Relationship Rules

A restricted relationship rule restricts the set of entity occurrences to which an
entity relationship can refer.

Attribute
Transition Rules

Transition rules define attribute allowable values that depend only on the
previous value of the same attribute.

Change Event Rules A change event rule defines an automated, derived (secondary) action that
takes place after a data state change. The change event defines which change
of data triggers the automated action. This can be one, or a combination, of
the following events:
• creation or deletion of an entity
• insert or update of an attribute value
• creation, transfer, or deletion of an entity relationship

The automated action triggered is most likely another data manipulation
action (which in turn can trigger another change event rule). However, it could
be anything else, for example sending an email or printing a report.

The rules which are not shaded are recorded in the appropriate Designer property, and do not require
explanation. The shaded rules may require some examples.

Examples of these are:

Rule Type Example
Other Attribute "Employee Salary must be a multiple of 1000."
Tuple "Employee end date must be later than employee hire date."
Other Entity "No more than 20 departments are allowed."
Restricted
Relationship

"An employee can only be managed by an employee with job ‘MANAGER’".

Create Rules "An order item can not be added to an order that is already approved."
Attribute Transition "Allowed transitions for marital status of employee are:"

• unmarried —> married
• married —> divorced
• divorced —> married
• married —> widow
• widow —> married

Other Update "The price of a product cannot be updated if the status of the article is
‘obsolete’."

Relationship "When a department is deleted all employees working for that department
should be deleted as well. "(cascade)

"A department cannot be deleted when employees exist who are working for
that department. "(restricted)

This rule maps to the choice of ‘On Delete' Cascade rules for new foreign keys

 31

Rule Type Example
in the Database Design Transformer (Keys tab of the Settings dialog). The
only other choice is 'Nullify' (affected employees no longer have a parent
department', which is not recommended.

Other Delete "A client may only be deleted when there are no outstanding orders."
Change Event "When the end date of a customer of a telephone company is set, create an

occurrence in Work Order of type ‘disconnect customer’ so the maintenance
crew will perform the disconnection."

The following is an example of Tuple rules in the 'Business Rules' hierarchy;

Figure 8: Tuple Rules Hierarchy

The function label holds the rule name, the short definition is a succinct phrase, and the description hold the
actual rule.

 32

For example:

Label Short Definition Description
$IER0021 Calculate Certification

Expiry Date
IF 60 <= EXAM_RESULT <= 74 THEN
 EXPIRY_DATE = Issue Date + 1 Calendar Year
ELSIF 75 <= EXAM_RESULT <= 100 THEN
 EXPIRY_DATE = Issue Date + 5 Calendar Year

Note that this will be a DB function, so that changes to this
logic may be easily distributed.

$ENT0004 Ensure unique names
for a party

For each party, ensure that no duplicate names are recorded.
This could be accomplished by a unique index on the
appropriate combination of attributes and relationships;
including the EFFECTIVE DATE attribute to allow the re-use
of names (i.e. by changing to a previously used name).

This 'Business Rules Hierarchy' is not a Ministry standard, but is a suggested method of modelling business
rules. The main objective for explicitly modeling rules this way is to allow for a more structured approach
to actually implementing the business rules.

 33

6 Design Phase

6.1 Overall Guidelines

This section presents some overall guidelines to assist in the Design Phase within the Oracle Designer
environment.

6.1.1 Referencing Objects in Text Descriptions

Whenever the name of another TABLE, COLUMN (or any other object) is used within a textual
description, it should be capitalized for easier reading (and reference).

For example, if ADAMS_MODEMS is a table, then the following description should be used for the
ADAMS_MODEM_TYPES table:

"This table identifies the types of ADAMS_MODEMS that are available to the polling
system"

Note: This may make maintenance of this text difficult, as changes in table names would necessitate
updates to the descriptive text. Therefore, this is a recommended guideline, and not a Ministry standard.

6.1.2 Keeping logical data model current

In the Design Phase, there may be corrections and/or additions to the data requirements (i.e. new column).
Aside from de-normalization or other issues specific to physical implementation, all such changes must be
re-documented in the logical data model, either via the Table to Entity Retrofit Utility or via manual update
of entities, attributes and relationships.

See Synchronizing Entities with Tables for further information on the Table to Entity Retrofit Utility.

6.1.3 Electronic Delivery of the Application

All development is done directly against the Ministry Repository, so no explicit delivery is required.
However, all vendors must perform a specific number of steps. For details of this standard process, please
refer to Section 8.4 (Promotion Management Procedures) of the Designer Repository Management Guide
(CS_TSA_Des_Mngmt_Guide.doc).

For a complete overview of the Ministry standard Promotion Model, see the Ministry’s Designer
Repository Management Guide (CS_TSA_Des_Mngmt_Guide.doc).

6.2 Database Design

The Database Design (Physical Data Modeling) process involves the conversion of entities, attributes,
relationships, and other logical constructs to their physical database counterparts. Specifically, entities are
mapped to their corresponding table definitions, attributes to their corresponding column definitions,
relationships to their corresponding foreign key definitions, and so on.

The process of converting analysis data into tables and foreign key constraints is automated by the
Database Design Transformer (DDT). The Database Design Transformer creates and maintains database
designs based upon entity, attribute and relationship information previously recorded in the Designer

 34

Repository. The Database Design Transformer creates tables to record instances of each entity, columns to
store the attributes, and constraints to implement the relationships between entities. It also creates
constraints to enforce any unique identifiers that have been defined, and indexes to support foreign keys.
The Database Design Transformer generated database design is stored in the Designer Repository. This
model can subsequently be used by the Server Generator to generate the SQL DDL statements required to
create the associated database objects.

The Server Model Diagrammer is a graphical tool for modeling logical database schema designs. The
database objects within the schema can be represented graphically on one or more data diagrams. These
diagrams depict the relationships between tables, views and snapshots recorded in the Designer repository.
After a first cut database design is completed using the Database Design Transformer, the Server Model
Diagrammer can be utilized to refine the database design.

De-normalization and the addition of columns to support special processing logic may be done as required.
This must, however, be fully documented in the description for the column and must be done with DBA
approval.

6.2.1 Objectives

The objectives of the Database Design process are:
• To ensure that all entities, attributes, and relationships that are to be physically implemented have

corresponding database objects.
• To ensure that the transition from the logical model to the physical database design is documented.
• To provide an accurate model of the database requirements of the organization. This model can

subsequently be used by the Server Generator to generate the statements required to create the
associated database objects.

6.2.2 Deliverables

The Database Design document to be presented for sign-off will contain the following diagrams and
reports:
• Proposed Database Design
• Entity to Table Implementation
• Table Definition Report
• Server Model Diagram
• Database Table and Index Size Estimates
• Role Definition Report

A checklist is available to confirm that the Database Design task is complete and that the repository is
ready for the Build Phase. This checklist is used in conjunction with the deliverables stated above.

 35

6.2.2.1 Design Phase QA Checklist

Figure 9: Design Phase QA Checklist

6.2.2.2 Proposed Database Design
This is not a standard Designer report, but is a Word document describing major sub-type implementations
and denormalization rationales.

6.2.2.3 Entity to Table Report

• All entities that are to be physically implemented must have a corresponding table.
• The transition from logical entities to physical tables is documented.
• Supertype & subtype mapping must be addressed.

6.2.2.4 Table Definition Report

• All tables must have a primary key.

 36

• Any special tables (e.g. tables with no relationships, tables implemented for physical reasons only,
etc.) should be well documented in the 'Comments'.

• All columns should be understandable (either by its name or by the comments or by the use of an
example in the comments about that column) to a non-application person.

6.2.2.5 Server Model Diagram

One or more diagrams should be made to show the relationships between the tables

6.2.2.6 Database Table and Index Size Estimates

As this report tables the volume estimates for all tables and columns (inherited from their corresponding
entities and attributes during the table generation process with the Database Design Transformer) and
calculates approximate sizes for the tablespaces.

This report is vitally important; it is the Ministry standard that these sizing estimates be performed.

6.2.2.7 Role Definition Report

This report shows the database roles in the application. All security should be enforced at the server, using
role-based security.

6.2.3 Object Naming Conventions

The Ministry's conventions for naming database objects (including tables, views, columns, indexes,
sequences, roles, packages and functions, etceteras) follow those basic naming conventions imposed by
Oracle:
• object names should be maximum of thirty (30) characters long with these exceptions:

o names of databases are limited to 8 characters
o names of database links can be as long as 128 characters

• should not contain quotation marks
• are in upper-case
• can only contain alphanumeric characters from the database character set and the characters _, $, and #.

The use of $ and # is strongly discouraged. Names of database links can also contain periods (.) and at-
signs (@)

• should contain underscores (_) for visual clarity
• must begin with a letter
• must not duplicate an ORACLE reserved word
• should not contain the word DUAL (e.g. DUAL is the name of a dummy table frequently accessed by

Oracle tools such as SQL*Plus and Forms)
• must not duplicate the name of another database object
• should use nouns, rather than verbs
• should be as descriptive and as short as possible
• should use standard abbreviations when required (see Appendix C – Standard Approved

Abbreviations)
• should not be ambiguous
• In addition, it is a Ministry standard that the Application Name (acronym such as LGIS) be prefixed to

all 'physical' database objects such as tables, views, packages, sequences and roles.

Note: Procedures and functions defined within a package do not need this prefix, as the package itself will
be prefixed with the application name.

 37

6.2.4 Database Design Transformer

The Database Design Transformer can be used to easily convert the logical model into a physical
implementation. Bear in mind, however, that no automated process is without problems; it is the
developers' responsibility to ensure that the way that all objects are built is correct and will satisfy the
business needs.

The following Run Options should be used:
• the first time running the DDT, the Create flags are set; subsequent runs will have the Modify flags set

to allow modifications to existing objects

The following Settings - Database should be used:
• the Database should be set to a database that has been defined
• the Database User should be set to a application schema user that has been defined
• the Tables - Tablespace should be set to the tables tablespace name
• the Index - Tablespace should be set to the index tablespace name
• Commit frequency for changes allows the user to determine when/if the results of the design session

will be saved:
o After each phase is the most efficient and will allow some work to be saved even if later steps

fail to process
o At end of run will allow the rollback of the entire session if an error occurs
o Don't commit allows the user to perform a trial run to see what objects would be built, but

without saving anything

Figure 10: DDT Settings - Database

The following Settings - Keys should be used:
• the Surrogate Keys - Create surrogate keys for all new tables option will create a primary key if a table

does not have one.

 38

Most of the time, the developers should ensure that all entities have UID's defined before using the
DDT, so this option should not be used.

Figure 11: DDT Settings - Keys

Note: Neither ‘Nullify’ nor ‘Delete’ is permitted as a cascade rule. This applies to ‘On Delete’ as well as
‘On Update’.

The following Settings - Other Settings should be used:
• the Elements that you want prefixes generated for (Columns) option should NOT be checked
• the Elements that you want prefixes generated for (Foreign Key Columns) option should be checked
• the Elements that you want prefixes generated for (Surrogate Key Columns) option should be checked
• the Table Prefix should be set to the Application Short Name followed by an underscore (e.g. LGIS_)

 39

Figure 12: DDT Settings - Other

6.2.5 Standard Table Enhancements

Tables which record transactions, or go through changes in state due to a business process, must have these
audit columns. For all other tables, it is still mandatory to include these columns; this is especially
important for data warehouse replication to determine when data values have changed. They allow a degree
of simple security tracking, but can also be useful in tracing down problems.

As per the Standard Entity Enhancements section, these columns will be automatically generated from the
source attributes.

It is the Ministry standard that the following audit columns be included in all tables:

CREATE_USERID not null varchar2(30)
CREATE_TIMESTAMP not null date
UPDATE_USERID not null varchar2(30)
UPDATE_TIMESTAMP not null date

Database triggers should be created on the tables to fill these columns. The following code can be used as
an example for the trigger functionality necessary:

CREATE OR REPLACE TRIGGER LGIS_IV_BR_IUD_TRG
BEFORE INSERT OR UPDATE
ON LGIS_INSTANCE_VALUES
FOR EACH ROW
DECLARE
BEGIN
 if inserting then
 :new.create_userid:= user;

 40

 :new.create_timestamp:= sysdate;
 :new.update_userid := user;
 :new.update_timestamp := sysdate;

 if :new.identifier is null then
 select prt_staffs_seq.nextval into :new.identifier from dual;
 end if;
 elsif updating then
 :new.update_userid := user;
 :new.update_timestamp := sysdate;
 end if;
END;

It is the Ministry standard that all audit columns be populated in this fashion (at the Server instead
of the client).
It is the Ministry standard that all surrogate key columns be defaulted, if null, in this fashion (at the
Server instead of the client).

6.2.6 Journal Tables

The four audit columns (described in the previous section) provide only a basic historical audit. In some
cases, a table may require a more sophisticated mechanism in order to keep a complete history of the
changes to some tables. This is done by holding each updated copy of a row in a separate Journal table,
with user and timestamp information added

A journal table is a database table that is used to record details about each row that is inserted, updated or
deleted in the associated table. This is specified in the Table Definition under the Journal property:

Figure 13: Journal Table

 41

The name of the generated journal table is <table_name>_JN. The journal table is a duplicate of the base
table but has six additional columns, prefixed by JN_, to maintain transaction information. These columns
are described below:

Journal Column Name Type of information recorded
JN_OPERATION Type of transaction performed: INSERT, UPDATE or DELETE.
JN_ORACLEUSER Name of the Oracle user who performed the transaction.
JN_DATETIME Date and time the transaction was performed.
JN_APPLN Name of the application in which the transaction was performed.
JN_NOTES Notes associated with the transaction.
JN_SESSION Identifying number of the auditing session for that user.

The journal columns can be maintained in one of the following ways, specified when you create the journal
table:
• via generated Table API triggers
• via client calls to generated Table API procedures
• via client side code

The Ministry standard is to use database triggers to maintain journal tables, and does not support
the use of any client-side journaling code.

Note: The table being journalled must have a non-updateable primary key, so that each row in the journal
table can be traced back to the original row in the source table.

Note: There is no means of recording a storage clause against a journal table. However, by reverse
engineering these tables into the repository, you may record this information against the resulting table
definitions.

6.2.7 Databases

An Oracle Database and appropriate application level users and roles will need to be defined before
running the Database Design Transformer or any of the module or DDL generators.

Property Rule Req?
Database Name • Should be set to “CSPROD” as a default Target. No SYSTEM level

scripts will be generated by the developer using this value, but it is useful
metadata for the application to maintain.

Y

Oracle Version • should be set to Oracle 10g for new development Y
Complete ? • must be Yes Y

The following screenshot taken from the Designer RON shows the Oracle Database Node and Users and
 “System” and “Application” level Roles which are mandatory for every application container. It is not
necessary to define the underlying system privileges that are granted to the APP_SCHEMA,
PROXY_USER or END_USER roles. At this time the ministry does NOT require that end users be
modeled in the Designer container (eg. JSMITH). Therefore the END_USER role will not be referenced
further in this discussion.

The granting of system privileges to the APP_SCHEMA and PROXY_USER System Roles is the
responsibility of the CD/TCA DBA. System privileges allow resource access by the user to Oracle
resources and as such are strictly controlled by the DBA group. Database object privileges are granted
through separate Application roles and are the responsibility of the developer.

 In the following example the “STVDES” user is the schema level user and is granted the System role
APP_SCHEMA and the STVDES_WU user is the proxy user and is granted the System role

 42

PROXY_USER and the Application role STVDES_WEB_USER. It is necessary for the developer to
create the “Application” level Roles that will enable access to data structures within the schema through
object privileges. Please refer to Section 7.2.2. for a more detailed explanation of System and Application
level roles.

 43

6.2.8 Tablespaces

Tablespaces should be defined in the Designer tool. In order to define the application schema owner as an
Oracle Database User, the system's temporary tablespace will also need to be defined; the Ministry standard
name for this tablespace is TEMP.

It is a Ministry standard is to define (at least) two tablespaces, one for tables and the second for indexes.

The tablespace names should be in the form <application_short_name>_DATA and
<application_short_name>_INDEX, e.g.:
• LGIS _DATA
• LGIS_INDEX

Property Rule Req?
Database • should be set to a database that has been defined Y
Name • <name>_DATA for 'tables' tablespace

• <name>_INDEX for 'indexes' tablespace
• TEMP for temporary tablespace

Y

Complete ? • set to Yes Y
Online ? • set to Yes Y
Datafiles
Node

• This allows datafiles to be defined for tablespaces. These data files must
be defined first in the Datafiles section.

Y

Full
Pathname

• must be defined in the Datafiles section Y

Autoextend ? • must be set to No (unless otherwise approved by the Ministry DBA) Y

6.2.9 Datafiles

Data files should be defined for all the _DATA and _INDEX tablespaces described in the Designer tool
(e.g.: with Complete? =Yes).

The Ministry uses a standard directory convention (based on Oracle’s OFA) on all servers for datafiles,
always in the format of E:\ORA_DB_FILES\<SID>\DATA_LGIS_01.DBF.

Property Rule Req?
Name • must follow the Ministry standard naming convention (based upon OFA),

e.g. DATA_LGIS_01.DBF
Y

Full
Pathname

• must follow the Ministry standard naming convention (based upon OFA),
e.g. . E:\ORA_DB_FILES\LGIS\

Y

Reuse ? • must be No Y
File Size • should be the initial datafile size (in units defined below)

• refer to the Database Table and Index Size Estimates report to get datafile
size estimates

Y

Unit • either KILOBYTES or MEGABYTES Y
Autoextend ? • must be No Y

6.2.10 Tables

Table definitions can be generated directly from the entity relationship model using the Database Design
Transformer, or can be created manually using the Server Model Diagrammer or Design Editor.

 44

Note: When using the Server Model Diagrammer, viewing properties via the Property Palette show more
information than using the Dialog Palette. Many of the following properties are visible only through the
Property Palette.

Property Rule Req?
Name • the table name should conform to the naming standards presented in the

Object Naming Conventions section
• must be prefixed with the Application Short Name and an underscore,

e.g.:
LGIS_FORMS

• cross-reference table names must be suffixed with _XREF
• code tables must be suffixed with _CDS
• table names should be kept as generated from the associated Entity Plural

Name. If a table is defined manually, the table name should be plural

Y

Alias • if a table definition is generated using the DDT, the default is the short
name of the corresponding Entity; otherwise an appropriate short name
should be entered

Note: The table alias is used when generating default index names for the table.
It is also used to create block names during Forms generation.

Y

Col Prefix • should be left blank
Display Title • will be used by the module generators to create a default title Y
Volumes Note: These fields are automatically populated from the corresponding fields

for the associated entity. These fields are vitally important in systems design to
allow for adequate sizing estimates.

Start Rows • estimated number of rows when the table is initially loaded Y
End Rows • estimated number of rows at the end of 3 years Y

Documentation
Comment

• becomes the table comment when the table is built

Note: It is often overlooked to populate these comments, but they must be filled
prior to the Build Phase, in order for the DDL to contain these comment
commands.

Y

Description • should be described from the users perspective and provide examples
where possible

Y

Notes • this should contain any notes about the table N
User/Help
Text

• contains the User Help Text associated with the table Y

Triggers • This section ties the trigger to a specific table.
Name • the trigger name should conform to the naming standards presented in the

Object Naming Conventions section
• must contain application short name prefix (eg. LGIS)
• must contain the table alias
• must be suffixed with _<type>_TRG
• Ministry standard is:

 <appl. prefix>_<table_alias>_<B/A><R/S>_<I/U/D>_TRG
• Note: B/A is Before/After, R/S is Row/Statement, IUD is Insert / Update /

Delete. For example, LGIS_IV_BR_IUD_TRG is a trigger on the
LGIS_INSTANCE_VALUES table, triggered Before Row upon the
operations Insert, Update and Delete

Y

Purpose • describes why this trigger is needed Y
PL/SQL
Definition

• PL/SQL definition that holds the code
• chosen from a picklist

Y

Complete ? • Yes means the Generate Database from Server Model utility will create Y

 45

Property Rule Req?
the trigger

Enabled ? • Yes means the trigger will be enabled when it is created with the Generate
Database from Server Model utility

Y

Trigger
Time • controls whether the trigger fires before or after the triggering event Y
Level • controls whether the trigger is at the row level or the statement level Y
Insert ? • Yes means the trigger fires on insert
Delete ? • Yes means the trigger fires on delete
Update ? • Yes means the trigger fires on update
Trigger
When
Condition

• optional
• defines the when-clause for the trigger

N

6.2.11 Columns

Column definitions for tables are generated directly from attributes of the corresponding entity using the
Database Design Transformer or can be manually defined with the Server Model Diagrammer.

Please refer to the Standard Table Enhancements section for information on suggestions for adding certain
columns to all 'primary' tables.

Property Rule Req?
Name • the column name should conform to the naming standards presented in the

Object Naming Conventions section
• column names should not be prefixed
• names should be singular; the default column name generated using the

Database Design Transformer is the name of the corresponding attribute
• if a system generated primary key is used, the column name should be

suffixed by _ID
• if a Super-type (Single Table) implementation of Sub-types is chosen,

specify the name of the discriminator column as: <entity-short-
name>_TYPE; this is the default name generated by the Database Design
Transformer

Y

Sequence in
Table

• specified the column sequence within the table
• primary key fields should be first; in the case of a multiple column

primary key, the columns should follow the order in the primary key
• NOT NULL columns must be listed before columns that allow nulls
• Long VARCHAR2 columns are next
• LONG column are next
• audit columns (create_userid, create_timestamp, etc.) must be last

Y

Complete ? • Should be Yes Y
Domain • Name of the Domain if the column is defined with a domain type Y
Scalar Note: If a domain is not used to define the data type, the properties in the Scalar

Group must be entered. If a domain is used for a column, these properties are
filled automatically.

Datatype

• Should use datatypes explicitly supported by the target database Y

Average
Length

• used for sizing estimates Y

 46

Property Rule Req?
Maximum
Length

• used for sizing estimates Y

Decimal
Places

• mandatory for datatypes of NUMBER or DECIMAL N

Definition
Optional ?

• No will generate a NOT NULL column; Yes will generate a NULL

column
Y

Uppercase ? • should be considered for CHAR or VARCHAR2 datatypes
• used by the Forms generator for a field mask

N

Default
Value

• Should not be used if an column is optional
• Must be the same datatype as the column

Note: Use of defaults must be examined carefully, as default values may lead
the inexperienced user to enter erroneous data

N

Sequence • name of a sequence if one is used to populate the column N
Volumes Note: The Volume Group estimates the percentage of columns in the table that

will contain values. If a column is NOT NULL (Optional? = No) then these
volumes will be 100 (%). These values are important for sizing estimates.

Initial
Volume

• the percentage of columns that will contain values at initial data load Y

Final
Volume

• the average percentage of columns that will contain data when the system
is active

Y

Default Display Note: The Display Group is used to set properties that will be used as default
values when creating Forms, Reports and Web modules based on the table and
column. For that reason, it is worthwhile filling these properties in.

It is the Ministry standard that these values are filled in prior to creating the
Module Components, as these values are read only upon creation of the
Table/Column usages

Display ? • if Yes, then this column will be displayed N
Display
Type

• mandatory if Display? = Yes
• usually the same as the column datatype

N

Alignment • mandatory of Display? = Yes N
Display
Length

• should be specified if Display? = Yes
• specifies the display length in characters

N

Display
Height

• should be specified if Display? = Yes
• specifies the display height in characters

N

Display
Sequence

• should be specified if Display? = Yes N

Format
Mask

• applicable only if Display? = Yes
• sets the default display format, e.g. YYYY-MM-DD

N

Prompt • mandatory if Display? = Yes
• specifies the boilerplate text prompt for the column (note that the

generator will append a colon ':' onto the prompt). E.g.: Date Received:

N

Help
Hint • mandatory where Display? = Yes

• should contain business terms where application

Note: During Forms generation, this field is used to provide hint text to the user
and is displayed on the message line of the form. This field is populated with
comment text defined for an attribute if the Database Design Transformer was
used to generate the column.

N

 47

Property Rule Req?
Documentation

Comment

• specifies a column comment

Note: It is often overlooked to populate these comments, but they must be filled
prior to the Build Phase, in order for the DDL to contain these comment
commands.

Y

Description • must be clear and concise
• must be meaningful to non-application personnel

Y

Notes • any column-specific notes should be included here N

 48

6.2.12 Views

A view defines a "window" on one or more tables through which the table information may be queried or
changed. Views are defined to simplify complex queries and are often created for security purposes. By
creating a view, user access may be restricted to a subset of columns in a table, thus protecting sensitive
information by controlling data access at the object level.

View definitions can be created as either free-form text, or explicitly identifying each column. Although
free-form text is often easier, it does not document the source columns used in the view as clearly. It is the
Ministry standard to explicitly declare the base tables and columns. The only exceptions are views
which cannot be defined declaratively, such as those using set operators (e.g. union, minus)

Property Rule Req?
Name • the view name should conform to the naming standards presented in the

Object Naming Conventions section
• must be prefixed with the Application Short Name and an underscore and

suffixed with “_VW” , e.g.: LGIS_VALUES_DATA_VW
• the view name should be descriptive, as well as indicate which tables are

used within the view

Y

Alias Y
Col. Prefix • should be left blank N
Display Title Y
SQL

Free Format
Select Text ?

• should be set to No except where the view includes tables from other
databases and/or other applications that are not modeled in the repository

• if a view is reverse engineered, then this will be Yes

Caution: If you change the value of this property from Yes to No, you will lose
any text that you have entered in the Select Text property.

N

Select Text • if Free Format Select Text? is No, then this text is Read Only and will
contain the 'base columns' from the various tables that the view is created
from

• if Free Format Select Text? is Yes, then this text will contain the view
definition

N

Where /
Validation
Condition

• applicable only with Free Format Select Text? = No
• contains the 'where' clauses for the view

N

Documentation
Comment Y
Description • contains a description of the view Y
Notes • should contain any special notes about the view N

Base Tables • defines the tables on which the view is based Y
Columns • defines the column names as presented with the view

• ensure that the sequence numbers for the columns are correct
Y

Select Column •
Base
Column

• if the view column is based on a table, then this will be the column_name
from that table

• if the view column is based on a function or an expression, then this will
be blank

N

 49

Select Text • if the view column is based on a table, then this will be the

table_alias.column_name from that table
• if the view column is based on a function or an expression, then this will

be that function or expression. e.g.: to_char(sysdate,'Month')

N

6.2.13 Sequences

A sequence number generator (often just called a sequence) can be used to automatically create unique
integer numbers for primary keys. This primary key is called a surrogate (or artificial) key, and has no
meaning in the sense of the Business Requirements.

Sequence number generators improve performance in a multi-user environment by avoiding lock conflicts
at the cost of potential gaps in the sequence. These sequence numbers are generated independently of
tables. The same sequence may be used for one or more tables, although multiple table usage of a single
sequence is not recommended. Sequences may be defined using the Repository Object Navigator. The
Database Design Transformer will generate a surrogate key and its associated sequence in situations where
a primary key for an entity was not provided.

Sequences can be implemented in one of two ways: as an Oracle sequence, or as a Code Control sequence.
An Oracle sequence is faster and simpler, but the Code Control sequence approach is better suited to
situations where the values are required to be continuous. Please consult the Oracle technical
documentation for a detailed description of these two approaches.

The Ministry standard is to always use Oracle sequences

Property Rule Req?
Name • the sequence name must conform to the naming standards presented in

the Object Naming Conventions section
• must be prefixed with the table name (which itself is prefixed with the

Application Short Name) and an underscore, e.g.: LGIS_LVT_PK_SEQ
• musts be suffixed with _SEQ
• if multiple sequences are required for a single table, the sequence name

should be suffixed with _SEQ# where the '#' increments sequentially

Y

Code Control? • must be Oracle sequence Y
Documentation

Comment

 Y

Description • contains a description of the sequence Y
Notes • contains any special notes on the sequence N

6.2.14 Constraints

Constraint definitions are generated automatically by the Database Design Transformer from relationships,
primary keys, unique identifier entries and attribute allowable value lists. There are four types of
constraints defined in Designer:

Type Description
Primary Key • a column or a set of columns in a table that will always be unique within the table. All

columns within the primary key must be mandatory. The primary key may be
referenced by foreign keys in join tables.

Unique
Keys

• a column or set of columns in a table that will always be unique within the table.
Columns within a unique key may be optional (Note: this is a departure from ANSI
SQL standards). A table may have zero, one, or many unique key constraints.

 50

Type Description
Foreign
Keys

• a column or set of columns which reference a corresponding column or set of columns
in another table through primary or unique keys. The columns in a foreign key must
have the same relative sequencing of the columns in the associated primary or unique
key.

Check
Constraints

• a condition or expression that applies to a table restricting the data that can be entered.
Check constraints may be used to enforce such things as:
o enforcing ranges for specific columns
o inter-column dependencies (e.g. column_a column_b or if column_a is null then

column_b must not be null).

6.2.14.1 Primary Key Constraints

Property Rule Req?
Name • the constraint name should conform to the naming standards presented in

Object Naming Conventions
• the default name, as generated by the Data Design Transformer, should be

kept as-is. This ensures that that it:
o contain the table alias
o suffixed with _PK
o prefixed with the Application Short Name and an underscore, e.g.:

FNI_TREATIES_PK

Y

Complete ? • set to Yes if the constraint should be built by the Generate Database from
Server Model utility

Y

Enable ? • set to Yes if the constraint should be automatically enabled when it is built Y
Update ? • if set to Yes, then it allows the Primary Key to be updated N
Validation

Validate
in

• must be Server or Both Y

Error
Message

• suggested, unless using an Error Message table
• specifies a text message to be hard-coded in a generated module if the

constraint fails

N

Documentation
Description • a brief description of the primary key constraint Y
Notes • any notes for the constraint N

Columns Note: These entries determine the columns in the Primary Key; ensure that their
order is correct.

Column

• the column name is specified via a picklist Y

Sequence
in Key

• controls the order of the columns within the primary key Y

6.2.14.2 Unique Key Constraints

Property Rule Req?
Name • the constraint name should conform to the naming standards presented in

the Object Naming Conventions section
• the default name, as generated by the Data Design Transformer, should be

kept as-is. This ensures that that it:
o contain the table alias
o suffixed with _UK
o prefixed with the Application Short Name and an underscore, e.g.:

FNI_TREATIES_UK1

Y

 51

Property Rule Req?
Complete ? • set to Yes if the constraint should be built by the Generate Database from

Server Model utility
Y

Enable ? • set to Yes if the constraint should be automatically enabled when it is built Y
Update ? • if set to Yes, then it allows the Unique Key to be updated
Validation

Validate in • must be Server or Both Y
Error
Message

• suggested
• specifies a text message to be displayed in a generated module if the

constraint fails

N

Documentation
Description • a brief description of the constraint Y
Notes • any notes specific to the constraint N

Columns • These entries determine the columns in the Unique Key; ensure that their
order is correct.

Column

• the column name is specified via a picklist Y

Sequence
in Key

• controls the order of the columns within the unique key Y

6.2.14.3 Foreign Key Constraints

Property Rule Req?
Join Table • name of the table that foreign key constraint references Y
Name • the default name, as generated by the Data Design Transformer, should

be kept as-is. This ensures that that it:
o contain the table alias
o suffixed with _FK

• the constraint name should conform to the naming standards presented in
the Object Naming Conventions section

• table aliases should be used (e.g. emp_dept_fk is a foreign key constraint
on the employees table)

Note: In rare cases, the constraint name must be unique within the first 21
characters, due to a known bug in the Forms Generator. In these cases, it will
be necessary to modify the constraint name manually, after the DDT.

Y

Complete ? • set to Yes if the constraint should be built by the Generate Database from
Server Model utility

Y

Enable ? • set to Yes if the constraint should be automatically enabled when it is
built

Y

Mandatory ? • Yes indicates that a value is required in the foreign key Y
Transferable ? • Yes indicates that the foreign key can be updated (transferable); No

indicates the foreign key cannot be updated (non transferable).
Y

Validation
Validate
in

• must be Server or Both Y

Error
Message

• suggested
• specifies a text message to be displayed in a generated module if the

constraint fails

N

Cascade Rules
Delete
Rule

• determines what happens when a row in the join table is deleted
Cascades: deletes the foreign key in this table when the related row is

Y

 52

Property Rule Req?
deleted in the join table

Restricted: prevents deletion of a row in the join table when a related row
exists in this table

Nullifies: updates the foreign key in this table as NULL where a row in
the related join table is deleted

Defaults: updates the foreign key in this table to the specified default
value where a row in the related join table is deleted

Update
Rule

• must be Restricted or the Generate Database from Server Model utility
will not build the constraint

Y

Joining To
Primary Key
Joined to

• either this field or Unique Key Joined to is mandatory N

Unique Key
Joined to

• either this field or Primary Key Joined to is mandatory N

Documentation
Description • a brief description of the foreign key N
Notes • any notes on the foreign key N

Columns Note: These entries determine the columns in the Foreign Key; ensure that
their order is correct.

Column • name of the column in this table Y
Sequence in
Key

• controls the order of the columns within the foreign key Y

Join Column • name of the corresponding column in the join table Y

6.2.14.4 Check Constraints

Property Rule Req?
Name • the constraint name should conform to the naming standards presented in

the Object Naming Conventions section
• must contain the table names or aliases
• should be suffixed with _CHK
• if multiple check constraints are defined for a table, then they should be

suffixed with _CHK#
• must be prefixed with the Application Short Name and an underscore,

e.g.: FNI_REGIONS_CHK

Y

Complete ? • set to Yes if the constraint should be built by the Generate Database from
Server Model utility

Y

Enable ? • set to Yes if the constraint should be automatically enabled when it is
built

Y

Error Message • Suggested
• Specifies a text message to be displayed in a generated module if the

constraint fails

N

Validation
Validate in • must be Server or Both Y
Comment • describes the check constraint Y
Where/
Validation
Condition

• contains the constraint text for the check constraint, e.g.:
RECEIVE_DATE <= SYSDATE

Y

Documentation

 53

Property Rule Req?
Description • a brief description of the constraint N
Notes • any notes on the constraint N

6.2.15 Indexes

Indexes are used for two purposes within a relational database management system:
• to provide quick access to rows in a table
• to enforce uniqueness of one or more columns within a table

Applications should be 'tuned' for performance by creating indexes on columns or groups of columns which
are frequently queried. Primary key constraints are implemented through unique indexes, as are unique key
constraints. Foreign key constraints also generate indexes (non-unique) to enhance performance.

If a table is small, typically less than 2 * block size, it is often more efficient not to index the table. This is
because if there is an index, it will take at least one read (of one block) to get it, and then a second read to
get the data; if the whole table can be read into memory in two reads, then there is no performance gain
through the index.

Care should be taken to remove redundant indexes. For example, if an composite index already exists for
columns (col_a, col_b, col_c), then queries on (col_a) and (col_a, col_b) will use this index, so there is no
need to define an additional index. However, this index will not be used with queries on (col_a, col_c) or
(col_b); in such situations, additional indexes may be required if these are common queries.

As the number of indexes on a table is increased, the insert and update performance usually decreases while
the select performance increases.

Property Rule Req?
Name • must be suffixed with _I

1. Foreign Key indexes must be suffixed with _FK_I
2. Unique indexes should be suffixed with _UK_I

• the index name should conform to the naming standards presented in the
Object Naming Conventions section

• table aliases should be used (e.g. emp_dept_fk_i is a foreign key index
from the employees table to the departments table)

• indexes supporting foreign key constraints should have the same prefix
(e.g. index t_mbr_c_thm_fk_i supports the foreign key constraint
t_mbr_c_thm_fk)

Y

Index Type ? • either Unique or Not unique Y
Complete ? • set to Yes if the index should be built by the Generate Database from

Server Model utility
Y

Foreign Key • mandatory if this index is for a foreign key relationship N
Documentation
Description • a brief description of the index N
Notes • any notes specific to the index N

Columns Note: This group defines the columns in the index.
Column

• name of the column included in the index Y

Usage
Sequence

• sequence of the column within the index Y

 54

6.2.16 PL/SQL Definitions

6.2.16.1 Best Practices for Coding

The intent of this section is to describe best practices when coding PL/SQL in the Oracle database. This
applies only to new applications, and as per Ministry standards, the PL/SQL must be documented in the
Designer Repository.

These best practices are simple and practical guidelines for developers. The objective of these best
practices is to produce PL/SQL code that is understandable and maintainable.
Much of the content in this section is derived from Steven Feurestein’s book “Oracle PL/SQL
Programming2” and on-line articles.

6.2.16.1.1 Follow Ministry Coding Standards

In addition to the Designer-specific guidelines in this document, PL/SQL Developers should follow the
Ministry’s “Standardized Coding Practices”.

Some of these practices, such as Variable Type Prefixes, are not relevant to PL/SQL but the following
do apply:

• Variable Scope and Usage Prefixes (e.g. g_, st_, v_, etc.)

• Variable Name Capitalization (i.e. camelCase) ; although camel_Case (with underscores) are

also permissible if this aids readability

• Constants (i.e. all uppercase)

• Comments (comment code blocks that are large or complex)

• Readability (indenting code and using whitespace); there are no explicitly rules to indentation

and whitespace (i.e. leading tab characters, or ‘four spaces’), so the key best practice here is

consistency within the application.

6.2.16.1.2 Use Packages instead of stand-alone procedures or functions

Organize all PL/SQL code in well-named packages, which has the following advantages over stand-alone
modules:

• breaks the dependency chain in that there are no cascading invalidations when you install a

new package body. If you have procedures that call other procedures, then compiling one will

invalidate your code.

• supports encapsulation -- allows you to write modular, easy to understand code -- rather then

monolithic, hard to read procedures

• increases your namespace measurably. Package names have to be unique in a schema, so

2 Oracle PL/SQL Programming, Third Edition, by Steven Feurstein with Bill Pribyl, 2002, O’Reilly &
Associates, Inc.

 55

you can have many procedures across different packages with the same name without

colliding.

• supports overloading

• supports session variables when you need them

• promote overall good coding techniques by logically grouping related code

6.2.16.1.3 Use Anchored Declarations

In retrieving the value of a column, it is possible to declare the variables as a generic numeric or character
(i.e. party_id IN number). However, it is better to anchor the declaration to the underlying datatype in the
column (i.e. party_id party.id%TYPE).

This ensures that the variable will be able to hold the value, even if the column’s datatype changes in the
future.

6.2.16.1.4 Avoid Repetition of SQL Code

Instead of embedding native SQL code everywhere, the SQL statements should be encapsulated into a
central PL/SQL function. Typically, there is a central function for every table, or set of tables acting as a
common interface (e.g. PARTY, NAME, ADDRESS are normalized tables that often are queried at the
same time). This also applies to SELECT’s, INSERT’s, UPDATE’s, and DELETE’s.

This “central PL/SQL function” should be a pre-built, pre-tested module that allows it to be ‘written once,
used often’ .

6.2.16.1.5 Avoid excessively long procedures or functions

Use local procedures and functions to hide logic from the ‘mainline’ portion of the module, breaking up the
larger problem into smaller, more manageable problems.

This will result in more small, focused packages. Each of these will have executable sections that are
smaller, readable and less than 75 lines from BEGIN to END.

6.2.16.1.6 Use Bind Variables instead of string literals

Instead of concatenating strings together (i.e. user = ‘&User’) to build a SQL query, it is better to use bind
variables (i.e. user = :user). This is important in terms of scalability and performance, but it is especially
important to help prevent against SQL injection attacks.

For more details on SQL injection, see “Effective Oracle by Design” by Thomas Kyte (ISBN number
0072230657).

6.2.16.1.7 Formalize Unit Testing

Unit Testing should incorporate documented test cases, and any bugs discovered should reference this test
case. It is recommended that a testing framework be established and used. Two examples are Oracle Unit

 56

Tester (http://www.ounit.com/) and Unit Testing Framework for PL/SQL Developers
(http://oracle.oreilly.com/utplsql/).

6.2.16.2 Function, Packages, Procedures, and Cursors

PL/SQL Definitions are components of the application that are stored in the database. Naming conventions
for triggers are described in the appropriate Database Design section.

Names for these:

• should be no more that 30 characters long
• must contain the Application Short Name and an underscore as a prefix, unless the program is

inside a package
• must be suffixed with an underscore and a type (unless it is inside a package):

_PKG for packages
_F for functions
_P for procedures
_CSR for cursors

• the centre component of the name is a free format descriptive identified that follows general
naming conventions where possible (see Object Naming Conventions for database objects)

• example: STVS_STANDARD_PKG- a package of functions.

PL/SQL Definitions can be declarative (e.g. every variable, constant, argument, etceteras is defined and
recorded as an object in the repository) or free format (e.g. all code and variable declarations are recorded
as part of a multi-line text property in the repository.

 57

http://www.ounit.com/

Figure 14: Database Package

It is a Ministry standard to define packages, and its procedures declaratively (e.g. Free Format
Declaration? = No). Standalone procedures and functions should not be used as all procedures and
functions should be encapsulated in Packages.

For other definitions (e.g. standalone procedures, functions), it is recommended to declare them
declaratively, although free format definitions will be accepted.

The Ministry will not accept PL/SQL definitions created by pointing to a file on disk (e.g. having a
file name in the Source Path property).

When selecting repository objects to generate (Generate Database from Server Model utility), the defined
functions, packages, and procedures are available for generation. They are generated to files on disk, with
the following file name suffixes:
• <File_Prefix>.fnc (functions)
• <File_Prefix>.pks (package specifications)
• <File_Prefix>.pkb (package body specifications)
• <File_Prefix>.prc (procedures)

 58

Note: Included procedures and functions (e.g. inside a package) are always generated in the context of the
owning package definition and are not available for selection under the Procedure and Function nodes
when you generate the package.

6.2.16.3 Triggers

When defining the trigger, everything between the BEGIN and END statements goes into the PL/SQL
Block. For example, the following trigger would have the lower-case text in the PL/SQL block; the
capitalized information is generated automatically from other properties:

CREATE OR REPLACE TRIGGER LGIS_IV_BR_IUD_TRG
BEFORE INSERT OR UPDATE
ON LGIS_INSTANCE_VALUES
FOR EACH ROW
DECLARE
BEGIN
 if inserting then
 if :new.id is null then
 select prt_staffs_seq.nextval into :new.id from dual;
 end if;
 :new.create_userid := user;
 :new.create_timestamp := sysdate;
 elsif updating then
 :new.update_userid := user;
 :new.update_timestamp := sysdate;
 end if;
END;

Property Rule Req?
Short Name • the trigger name should conform to the naming standards presented in

the Object Naming Conventions section
• must contain application short name prefix (eg. LGIS)
• must contain the table alias
• must be suffixed with _<type>_TRG
• Ministry standard is:

 <appl. prefix>_<table_alias>_<B/A><R/S>_<I/U/D>_TRG

Note: B/A is Before/After, R/S is Row/Statement, IUD is Insert / Update /
Delete. For example, LGIS_IV_BR_IUD_TRG is a trigger on the
LGIS_INSTANCE_VALUES table, triggered Before Row upon the
operations Insert, Update and Delete

Y

Name • descriptive name Y
Purpose • short description for the purpose of the trigger Y
Type • must be set to Trg-Logic Y
Implementation
Name

• recommended to leave blank, so that implementation name is derived
from the Short Name

N

PL/SQL
PL/SQL
Block

• contains the body of the trigger (everything between the BEGIN and
END statements - see example)

Y

Documentation
Module
Generation
History

• must contain dates, names and brief descriptions for each major
modification of the module

• historical information must be maintained

Y

Release • optional N

 59

Property Rule Req?
Notes • any release-specific information for the current version
Description • optional

• a brief description of the trigger
N

Notes • any notes about the trigger N

6.2.17 Storage Definitions

Storage definitions can be created in the Repository to ensure that similar classes of objects will have
similar storage definitions.

Property Rule Req?
Storage Label • unique name for this storage definition Y
Extents

Initial
Extent

• size of the first extent to be allocated Y

Initial
Extent Unit

• units (Kilobytes, Megabytes), with Bytes used if null
• Ministry standard is to use Megabytes

Y

Next
Extent

• size of every extent after the initial one Y

Next
Extent Unit

• units (Kilobytes, Megabytes), with Bytes used if null
• Ministry standard is to use Megabytes

Y

Min
Extents

• initial number of extents to be allocated Y

Max
Extents

• total number of extents that can be allocated

Unlimited • automatically allocate more extents as needed
• Ministry standard is to set to No

Y

Percentage
Increase

• percentage by which each following extent will grow over the preceding
one

• must be zero

Y

6.2.18 Synonyms

Public Synonyms can be defined in the Repository and created with the Generate Database from Server
Model utility. The Synonyms Group underneath the object in each of the Modules, Tables, Sequences and
Views nodes is used for this.

The Public Synonym Name must match exactly the object name that it references (e.g.
LGIS_FIELD_GROUPS public synonym for the LGIS_FIELD_GROUPS table).

6.2.19 Database Object Grants

Privileges on database objects granted to roles must also be captured, documented and maintained in the
Designer Repository.

Once the roles and the actual objects exist, the Database Object Grants group for each object is used to
grant the specific privileges to the various roles.

Roles must be hierarchical. Therefore one should only grant the additional rights specific to that role to an
object.

 60

For example, assume that there are three roles: APPL_ROLE_1, APPL_ROLE_2 and APPL_ROLE_3.
APPL_ROLE_1 is granted to APPL_ROLE_2, and APPL_ROLE_2 is granted to APPL_ROLE_3. For a
specific table APPL_ROLE_1 needs select, APPL_ROLE_2 needs select and insert, and APPL_ROLE_3
requires select, insert and delete.

Instead of explicitly granting all the rights for the table to each role, the Ministry standard is to:
• SELECT to APPL_ROLE_1
• INSERT to APPL_ROLE_2
• DELETE to APPL_ROLE_3
and ensure that the role hierarchies are defined and granted correctly

A further example follows, from the Oracle 10g Database Security Guide (Figure 21-1):

Figure 15: Role Security

It is a Ministry standard that applications set the database role upon user login, and disable the role
upon user logout from the application.

This means that the startup module will perform the SET_ROLE command while the ‘user-exit’ condition
will explicitly disable the role.

For further details on the modeling of roles and object privileges please refer to Section 6.2.7 – Databases
and Section 7.2.2 – Roles.

 For further details on application development and Oracle Database Security best practices please refer to
the Oracle 10g Database Security guide which can be referenced at:

http://download-west.oracle.com/docs/cd/B14117_01/network.101/b10773/toc.htm

 61

http://download-west.oracle.com/docs/cd/B14117_01/network.101/b10773/toc.htm

6.2.20 SQL Statement Tuning

6.2.20.1 COST vs. RULE Based Optimization

The ministry does NOT support the use of RULE based optimization in SQL queries. COST based
optimization IS the standard for all ministry databases.

The primary reasons for this are that the RULE based optimizer has been de-supported in the Oracle
RDBMS (after 9i Release 2), and it is more expensive to maintain queries developed using RULE’s due to
changes in data content and selectivity over time. As well, a properly designed data structure and efficient
SQL will ensure that COST based optimization provides the most efficient data access paths.

6.2.20.2 Explain Plans
Every static multi join query (2 or more tables) must provide EXPLAIN PLAN output. Developers should
make available suitable data volumes for testing purposes in order for the explain plan to be properly
utilized.

Ensure that prior to generating the explain plans that table and index statistics are updated, as this will
influence optimizer behavior. There are standard Oracle supplied packages which simplify this process for
developers and the DBA, such as:
EXEC DBMS_UTILITY.ANALYZE_SCHEMA('SCHEMA_NAME','COMPUTE');

NOTE: For more information on SQL Statement Tuning and general Oracle tuning considerations please
reference the Oracle 10g server documentation available from Oracle's technical support website
(metalink.oracle.com) and Oracle's technology network site (technet.oracle.com).

6.2.20.3 Embedding of SQL in PL/SQL Code

As discussed in “6.2.16.1.4 Avoid Repetition of SQL Code”, it is a PL/SQL Best Practice to use centralized
data access in PL/SQL functions that also includes all of the necessary error handling and optimization
logic.

This is in contrast to “SELECT INTO…” statements in multiple places, all accessing the same table or
view, but using different variable names or types. This results in excessive parsing and difficulty in
optimizing the performance. The database can take advantage of cached statements if the syntax of the
statement is exactly the same; this enables more code re-use and better optimization.

6.3 Module Design

The Module Design process involves the definition of modules (programs/program units) to support the
business functions of the organization as defined in the Function Modeling phase. These modules may
include forms, reports, packages, procedures, functions, triggers and cursors. The definition requirements
for triggers have been covered in the Database Design section.

After verifying the completeness of existing business functions and consolidating functionality using the
Functional Hierarchical Diagrammer (FHD), the Application Design Transformer (ADT) is used to
generate candidate module definitions. These candidate module definitions can be further refined using the
tools described below. Upon further refinement of the module definitions, the various generator tools are
utilized to generate working modules.

 62

The display characteristics of bound items in modules are inherited from the source column (in the table
definition). This is done only at the initial creation of the bound item, and is not automatically kept up to
date by Designer (e.g. when the hint text for the column is modified, the modules using this column as a
bound item still have the obsolete hint text).

It is the Ministry standard to set the Default Display, Help and Documentation properties at the
column level before creating the module components. The following is an example of a column with
these properties.

Figure 16: Column Properties

This ensures a consistent look and feel to the screen items. In the case where a column needs a different
hint text or display characteristic, this can still be done by over-riding the property in the bound item.

Designer supports four tools that can create or manipulate modules:

Tool Description
Application Design
Transformer (ADT) • The Application Design Transformer is used to generate candidate module

definitions based upon the function definition developed in the Functional
Modeling phase.

Repository
Object
Navigator (RON)

• The Repository Object Navigator can be used to review the default properties
of the candidate modules, change the default name of the candidate modules
and reject or accept the candidate modules.

Module Diagrammer
(MDD)

• The Module Diagrammer shows the modules detailed data usages and the
links between the detailed table usages, as well as the layout placement of
each detailed table usage.

 63

Tool Description
• The MDD can also be used to create new modules and change the modules

detailed data usages.
Logic Editor • The Logic Editor provides capabilities for entering, editing, importing,

exporting and implementing PL/SQL code.
• From the definitions of PL/SQL modules, the DDL script files can be

generated using the Generate Database from Server Model utility
• The generated script files can be used to implement the PL/SQL in the Oracle

server.

6.3.1 Objectives

The objectives of the Module Design process are:
• to design modules which support the business functions of the organization
• to provide a means of documenting the design of modules within an application
• to establish the framework for the successful generation of programs and program units defined in

Designer

6.3.2 Deliverables

The Module Design document to be presented for sign-off will contain the following diagrams and reports:
• Modules in a Container
• Module Definition
• Module Network Diagram

Note: Some Applications, defined in Designer, may be implemented in non-Oracle tools. These Module
reports will still be useful, as these modules will be recorded in Designer with module ‘header’ information
(i.e. date and description of change).

6.3.2.1 Modules in a Container

This report consists of a summary of all modules in the specified container:
• all the required functions and modules are defined
• module names are descriptive and follow standards
• module purposes are descriptive

6.3.2.2 Module Definition

The Module Definition Report is used to verify:
• module names are descriptive and follow standards
• the type and language for each module is appropriate
• an appropriate description has been included for each module
• notes have been included where required
• table & view usages have been defined and are appropriate

6.3.2.3 Module Network Diagram

One or more diagrams from the Module Diagrammer tool are required to show the module hierarchy and
calling network

 64

http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-12.html#DDL

6.3.3 Module Naming Conventions

These modules are components of the application that are not stored in the database. Usually, these
components are found on the client's desktop or LAN (as in the case of forms), but may also be found on an
application server (such as scripts or reports).

In order to facilitate moving these components to the most appropriate platform, these client-side modules
must conform to the most limiting platform naming requirements - Windows NT.

These module names must:
• be uniquely identified by an filename (not limited to 8 characters) and 3 character extension
• the filename should be in uppercase
• the filename must be in the format AAAXXXXX where:
• AAA is the Application Short Name

XXXXX is a unique alpha-numeric identification

• if numeric identifiers are used, then all modules should be named numerically; similarly, if alphabetic
identifiers are used, then all modules should be named alphabetically

• the "Main" module must be suffixed by _MAIN or 0000
• the 3 character extension must be in lower case and follow these conventions:

Extension Meaning

.bat script file for Windows

.fmb Oracle Forms (uncompiled)

.fmx Oracle Forms (compiled)

.htm web HTML on DOS and Win31

.html web HTML on all other platforms

.mmb Oracle Forms Menu (uncompiled)

.mmx Oracle Forms Menu (compiled)

.rdf Oracle Reports (uncompiled)

.rep Oracle Reports (compiled)

.sh script file for Unix shell

.sql SQL*Plus script

 65

7 Build Phase

7.1 Overall Guidelines

This section presents some overall guidelines to assist in application development within the Oracle
Designer environment.

7.1.1 Referencing Objects in Text Descriptions

Whenever the name of another TABLE, COLUMN (or any other object) is used within a textual
description, it should be capitalized for easier reading (and reference).

For example, if WRQ_LAB_NO is a column, then the following notes should be used for the
LGIS_FIELD_GROUPS table:

"This table has a one-way link to the WRQ system, via the shared identifier WRQ_LAB_NO"

Note: This may make maintenance of this text difficult, as changes in table or column names would
necessitate updates to the descriptive text. Therefore, this is a recommended guideline, and not a Ministry
standard.

7.1.2 Keeping logical data model current

In the Build Phase, there may be corrections and/or additions to the data requirements (i.e. revised column
definition). Aside from de-normalization or other issues specific to physical implementation, all such
changes must be re-documented in the logical data model via manual update of entities, attributes and
relationships

If the application was not developed using Designer10g it may be permissible to reverse engineer the
model into Designer via the Table to Entity Retrofit Utility.

See Synchronizing Entities with Tables for further information on the Table to Entity Retrofit Utility.

7.1.3 Documenting Post-Generation Changes

All post-generation module changes (aside from layout modifications) must be documented in the
repository, either via a Capture Design or via text in the Module Notes. All changes to database objects
must be performed via the repository. Database objects (other than modules) must not be updated directly
in the target database, but instead will be updated in the Designer 10g repository and pushed out to the
target DB via the CD promotion model.

Electronic Delivery of the Application

All development is done directly against the Ministry Repository, so no explicit delivery is required.
However, all vendors must perform a specific number of steps. For details of this standard process, please
refer to Section 8.4 (Promotion Management Procedures) of the Designer Repository Management Guide
(CS_TSA_Des_Mngmt_Guide.doc)

 66

For a complete overview of the Ministry standard Promotion Model, see the Ministry’s Designer
Repository Management Guide (CS_TSA_Des_Mngmt_Guide.doc).

7.2 Implementation of Database Objects

A feature of Designer is the separation between database objects (e.g. tables, views, etc) and their
implementation. Each implementation is for a specific schema (or user); each user-specific implementation
may have different characteristics.

A user-specific object shares the properties of the base object, but has unique storage characteristics,
implementation details and privileges that are specific to a particular user. For example, storage parameters
are no longer recorded against the base table definition, but instead against a user-specific implementation
of the table.

The following diagram is from the Designer On-Line Help, under 'About user-specific database objects'.

Figure 17: DB Object Implementation

Base database objects User-specific properties

Relational Tables • Storage parameters
• Tablespace
• Index storage
• Space allocation in data blocks
• Privileges

Relational Views • Base Relation Location
• Privileges

Sequences • Sequence values
• Privileges

Snapshots • Refresh details
• Storage
• Data blocks
• Privileges
• Base Relation Location
• Snapshot log

PL/SQL Definitions
(e.g. Functions, Procedures, and Packages)

• Privileges

Object Tables • Tablespace
• Index storage
• Space allocation in data blocks
• Privileges

 67

Base database objects User-specific properties
Object Views • Base Relation Location

• Privileges

7.2.1 Users

It is not practical to define all the database users in the Designer tool. However, it is useful to define the
Schema Owner and Proxy Users as Oracle Database Users in the repository; this permits the
documentation of any special roles that the schema owner will need.

It is the Ministry standard that the Schema Owner and Proxy Users be defined as a Database Users
in the repository. End Users should not be defined in the repository.

Property Rule Req?
• should be the same as the Application Short Name Y Name
• suggest using something like &NEW_PASSWORD to cause auto-

prompting when running the user creation script
Y Initial Password

Complete ? • Yes Y
Tablespaces

• should be the name of the application's table tablespace (e.g.
LGIS_DATA)

Y Default
Tablespace

• should be the name of the temporary tablespace (TEMP) Y Temporary
Tablespace

Documentation
Comments • Optional N
Description • Optional N
Notes • Optional N

• This information is the same as the Tablespace Quotas Group for
Tablespaces. The application schema (e.g. LGIS) should have unlimited
quota on the application tablespaces.

 Tablespace
Quotas

Tablespace

• Specifies the name of the tablespace Y

Quota • a null value means 'unlimited quota'
• 'unlimited quota' should be set for the application schema

N

Quota Units • should be null for 'unlimited quota' N
Roles Granted • This section describes the special system privileges that the user needs.

Note: It is preferable to grant explicit system privileges instead of the DBA
role.

Role

• name of the system privilege or role (picklist) Y

With Admin
Option ?

• usually should be null
• if Yes means that the system privilege will be granted 'with grant option'

N

7.2.2 System and Application Roles

7.2.2.1 System Level Roles

There are two types of Roles normally created for an application. These are the “System” level Roles
such as APP_SCHEMA and PROXY_USER which control system privileges for the user and then there
are “Application” level Roles, such as STVDES_WEB_USER which control object level access to the data
structures in the schema, primarily through object privileges. The following table outlines the classification

 68

http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-04.html#Application%20Short%20Name
http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-06.html#6.2.8%20Tablespaces
http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-06.html#6.2.8%20Tablespaces
http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-06.html#6.2.8%20Tablespaces
http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-06.html#6.2.8%20Tablespaces

matrix for System roles for the CD/TCA shared 10g Database environment. These must be modeled in
every application, but the underlying system privileges are not the responsibility of the developer.
Please refer to Section 6.2.7 for a detailed explanation on “SYSTEM” level roles and modeling these in
Designer.

 The following table outlines the user classification matrix for the System level roles in the CD/TCA
Shared Oracle 10g database environment:

USER TYPE DEFAULT ROLE SYSTEM PRIVILEGES
---------------------- ----------------------- --

End User (eg. CCONRADV) END_USER CREATE SESSION, ALTER SESSION

Proxy User (eg. STVDES_WU) PROXY_USER CREATE SESSION, ALTER SESSION
 + custom system privileges as required

Schema User (eg. STVDES) APP_SCHEMA GRANT CREATE ANY JOB

GRANT ALTER SESSION,
 CREATE CLUSTER,
 CREATE DATABASE LINK,
 CREATE INDEXTYPE,
 CREATE OPERATOR,
 CREATE PROCEDURE,
 CREATE PUBLIC SYNONYM,
 CREATE SEQUENCE,
 CREATE SESSION,
 CREATE SYNONYM,
 CREATE TABLE,
 CREATE TRIGGER,
 CREATE TYPE,
 CREATE VIEW,
 RESTRICTED SESSION

These are the "default" system privileges that will be granted to a user in the CD/TCA shared database
environment. . For a schema level user there are also tablespace level resource quotas granted but this has
to be done explicitly to the user and cannot be granted to a role.

7.2.2.2 Application Level Roles
Application Roles enable object level access to data structures in the application schema and are mandatory
in every application. These must be modeled in the Designer application container and the proper database
object privileges created.

Application Roles must be hierarchical; this means that 'higher' roles are granted the lower role, and then
the additional grants required. For example, if there are three simple roles:

APPL_VIEWER
• can read all the tables

APPL_USER
• can read all the tables
• can insert and update all tables except for code tables

APPL_ADMIN
• can read all the tables

 69

• can insert and update all tables except for code tables
• can delete from all tables
• can insert, update and delete code tables

This should be implemented as:

create role appl_viewer;
grant select on appl_table_1 to appl_viewer;
grant select on appl_table_2 to appl_viewer;
grant select on appl_code_table to appl_viewer;
create role appl_user;
grant appl_viewer to appl_user;
grant insert,update on appl_table_1 to appl_user;
grant insert,update on appl_table_2 to appl_user;
create role appl_admin;
grant appl_user to appl_admin;
grant delete on appl_table_1 to appl_admin;
grant delete on appl_table_2 to appl_admin;
grant insert,update,delete on appl_code_table to appl_admin;

There may be times when certain roles cannot be defined in such a manner; at such times, the requirements
and reasons for this non-standard approach should be clearly documented.

Property Rule Req?
• must be prefixed with the Application Short Name, e.g.:

LGIS_WEB_USER
Y Name

Default
Password

• required only if the role is password protected
• if used, then suggest using something like &NEW_PASSWORD to

cause auto-prompting when running the user creation script

N

Complete ? • Yes Y
Documentation

Comment

• mandatory
• brief description about the role group

Y

Description • a description of the role Y
Notes • any notes about the role

• if the role is not hierarchical, then that should be noted here
Y

Roles Granted • The Roles Granted Group should not be used to assign the generic roles
(Connect, Resource, or DBA) - these roles should be granted directly to
users. This group should be used if roles are hierarchical in nature.

N

Database Object
Privileges

• These entries are usually managed from the actual database object, but
access can be maintained from here as well.

• the name of the specific database object should be defined in the
appropriate category (table, view, snapshot or sequence)

• the appropriate privilege(s) should be marked as Yes

Y

• This group allows specific system privileges to be defined for a
particular role. These are not required for Application level roles, and
System level roles will be defined by the CD/TCA DBA.

N System
Privilege

• name of the system privilege being granted, should not be required for
Application level roles

N Privilege
Name
With Admin
Option?

• unless absolutely required, this should be No
• controls the 'with grant option' clause

N

7.2.3 Table Implementations

 70

http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-04.html#Application%20Short%20Name

Standards and guidelines for tables have been discussed in the Design Phase. However, these are only for
the base definitions.

The important implementation specific properties are:

Property Rule Req?
Complete? • should be set to Yes Y
Storage

Tablespace

• name of the tablespace that the table will be built in
• Ministry standard is <application_name>_DATA

Y

• name of the storage definition to be used while building the table Y Storage
Definition

7.2.4 Sequence Implementations

Standards and guidelines for sequences have been discussed in the Design Phase. However, these are only
for the base definitions. The important implementation specific properties are:

Property Rule Req?
Complete? • should be set to Yes Y
Specification

Start • specifies the initial value for the sequence when it is created Y
Increment • specifies the step value for the sequence when it is incremented Y
Cache
Value

• applicable to Oracle sequence types only
• specifies the number of entries that are cached
• set to null for the NOCACHE option

N

Cycle? • if set to True, then the sequence is cyclical and sequence numbers may be
re-used

N

Order? • if set to True, then the ordering of values is important Y
Minimum • specifies the minimum value for the sequence N

Maximum • specifies the maximum value for the sequence N

7.2.5 User Object Index Storages

Indexes been discussed in the Design Phase. However, these are only for the base definitions. The
important implementation specific properties are:

Property Rule Req?
Storage .

Tablespace

• name of the tablespace that the table will be built in
• Ministry standard is <application_name>_INDEX

Y

• name of the storage definition to be used while building the index Y Storage
Definition

7.2.6 PL/SQL Modules

As part of the Build Phase, it is permissible to use 3rd party IDE’s, such as Quest Software’s TOAD, to
develop and unit test the PL/SQL procedures, functions and packages. However, it is mandatory to place
this code back into the Repository, and indeed, to generate these PL/SQL packages directly from the
Repository.

 71

http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-06.html#6.2.8%20Tablespaces
http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-04.html#Application%20Short%20Name
http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-06.html#6.2.17%20Storage%20Definitions
http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-06.html#6.2.8%20Tablespaces
http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-04.html#Application%20Short%20Name
http://srmwww.gov.bc.ca/imb/3star/sdlc/4design/des6i_std/des6i_std_body-06.html#6.2.17%20Storage%20Definitions

There is a generic exception handler, pre-seeded in every application container in the Repository under:
cm_non_generated

db_objects
 schema_folders
 package bodies
 packages

This Exception Handler is based upon Steven Feuerstein’s PL/Vision freeware, although we have
customized it for Ministry use (i.e. no UTL_FILE or DBMS_PIPE dependencies). The package names
should begin with the short name of the application.

The SQL files (xxx_plv.tab, xxx_plv.pks, xxx_plv.pkb, xxx_plv.dat) need to be checked out by the
developers, who then do a global search and replace (from the generic “XXX” to the specific application
short name. The package procedures and functions will then be similar to (for example):
 LGIS_PLV_PKG
 LGIS_PLVCMT_PKG
 LGIS_PLVTYPE_PKG

These revised SQL files should then be saved under the application specific name (e.g. lgis_plv.pks) and
checked back into the Repository.

Following a standard exception handler for database errors ensures that you can handle such errors
consistently and robustly. The code above is package-based, and covers the raising, handling and logging
of exceptions. Of course, each application will require different error handlers (e.g. error message text) and
indeed different courses of action (e.g. continue through with a warning, or terminate the current
transaction).

Although the source code is ‘standard’, each application will have its own set of XXX_PLVxxx_PKG
packages and tables, dedicated for this application’s sole use (i.e. no public synonyms).

7.3 Updating Bound Columns in Modules

As discussed in Module Design, display characteristics of bound items in modules are not automatically
updated when the underlying column is updated. This problem is compounded by the fact that columns
(and attributes) in a domain are not automatically updated when the domain itself is updated.

Therefore, it is a Ministry standard that developers propagate domain changes to columns in
domains prior to generating the modules.

This is done by running the Update Columns in a Domain utility. This can be accessed from the Utilities-
>Designer sub-menu of the Repository Object Navigator.

7.4 Preferences

Preferences are parameters that control aspects of the Generator's behavior. Three levels of preferences are
currently supported in the Generator:
• application level
• user level
• module level

The three levels of preferences are used in a hierarchical fashion by the Generator. If application level
preferences are set and the user and module level preferences are not set, the application level preferences
will be used by the Generator. If user level preferences are set and the module level preferences are not set,
the user level preferences will be used by the Generator.

 72

7.4.1 Objectives

Consistency in the use of Generator preference settings will result in consistent module coding styles.
Applications with consistent module coding styles are easier to enhance and maintain.

Using user level preferences is not recommended, a combination of application level and module level
preferences should be used. This way all users of the Generator have access to the preference settings.

Most applications will have one or more common module styles (e.g. data-entry, custom LOV, code table
maintenance, etc.). One way to encourage a consistent use of preference settings is to create a `preference
module' or a "named set" for each common module style with applicable preference settings and establish
an application standard to enforce the use of the `preference modules' as module level preferences at
generate time.

7.5 Code Tables

Usually, there are two different ways to create code tables within an application.

The first technique is to use a single massive code table for all of the information, with a 'code type' field
used to differentiate between the sub-types. The advantage of this approach is that it is easier to maintain;
the disadvantage is that referential integrity is more difficult to implement. This method is not acceptable
for Ministry applications.

The second technique is to create a separate (usually smaller) code table for each code type. This approach
makes referential integrity simpler (e.g.: simple foreign key constraints), but they are more difficult to
maintain (a separate form must be created for each code table).

The Ministry standard is to use separate code tables for each code type, allowing Designer to
generate the simple code maintenance forms. A single ‘common’ code table is not permitted.

7.6 Designer Generated Reference Codes - REF_CODES

Designer-generated reference codes are placed in a code table called CG_REF_CODES. This leads to name
space collisions if other applications also use CG_REF_CODES.

The Ministry standard is to use code tables named APPL_REF_CODES, where APPL is the
Application Short Name.

This is controlled via an option. In Design Editor, select Options -> Generator Options -> General.

 73

Figure 18: Generator Options

Select 'Container Wide Table' for Scope of Reference Code Table (repeat this step for each developer
workstation).

Figure 19: Reference Code Table Scope

It is the Ministry standard to reverse-engineer this <APPL_REF>_CODES table back into the
repository application, for documentation purposes.

Delivery of this table may be via an export, or via the DDL creation script and data load SQL script.

8 Maintenance Phase

8.1 Overall Guidelines

This section presents some overall guidelines to assist in keeping the Repository application current during
the maintenance phase.

 74

8.1.1 Synchronizing Table Definitions

Changes to tables must be initiated from within Designer, ideally from the logical model, or from the
server model table definition). It is not permissible to directly update the table definition in the database in
any ministry applications. All changes must be pushed from the Designer SCM repository to the target
environment

It is a Ministry standard that all table definitions be forward_engineered from the Designer 10g SCM
repository, and that the associated entiry be first updated prior to transforming the changes to the
server model. Their are exceptions to this such as journal tables, which must be reverse-engineered
and retrofitted to their appropriate entity. For clarification please contact the ministry SCM
Administrator.

See Capture Design of Server Model for more information on synchronizing the table definition in the
repository with its definition in the production database.

8.1.2 Synchronizing View Definitions

Changes to views must be initiated from within Designer (from the view definition). It is not permissible to
directly update the view definition in the database in any ministry environment. All changes must be
pushed from the Designer SCM repository to the target environment.

It is a Ministry standard that all view definitions be forward engineered from the Designer 10g SCM
repository, and that the associated view metadata in the server model be first updated prior to the
pushing the changes to the server model

See Capture Design of Server Model for more information on synchronizing the view definition in the
repository with its definition in the production database The process of capturing view definitions is the
same as capturing a table definition.

8.1.3 Synchronizing Domain Definitions

If the allowable values in a domain change, then these changes should be applied to the domain definitions
in the repository. Once confirmed, these changes must be propagated to the attributes and columns using
the domain.

This is performed via the Update Columns/Attributes in a Domain, found under the Utilities menu item of
the Design Editor.

Once the columns are updated, then the affected tables should be re-generated using the Generate Database
from Server Model utility. If the existing application was generated using Designer Version 1.3.2 or
previous, then you'll need to:

1. Find the name of the in-line check constraint (e.g. SYS_C00xxxx) in the USER_CONSTRAINTS or

ALL_CONSTRAINTS view

2. Drop the obsolete check constraint(s)

3. Manually write the 'alter table' statements, or

Run Generate Database from Server Model with a connection to the production database, which will
reconcile the differences and create a DDL file with the 'alter table' statements

 75

If the application was generated using Designer 2.1.2, 6.0 or above, then the domains will have been
enforced using named checked constraints (e.g. AVCON_xxxxx_). Designer's Generate Database from
Server Model will do the above steps for you, as the following screen shot illustrates:

Figure 20: Recreate Domain

This Generate Database from Server Model must be run with a connection to the production database;
otherwise, the utility will not be able to compare the repository definition against the production database
definition.

It is a Ministry standard to keep the domain definitions current and up-to-date with their constraint
implementations in the production database.

See Capture Design of Server Model for more information on synchronizing the domain definition in the
repository with its constraint implementation in the production database. The process of capturing domain
definitions is automatically done when capturing the table definition; the table being the one that has
columns under that particular domain.

8.1.4 Synchronizing Display Information / Comments / Help Text

If the details of a data element change, then these changes should be applied to the logical element (e.g.
attribute, entity) in the repository. Once confirmed, these changes must be propagated to the columns and
tables, using the Database Design Transformer.
• In the Table Mappings tab, select the updated entity(ies) in the run-set
• In the Other Mappings tab, de-select any un-affected attributes (i.e., select only the changed attributes)
• In the Run Options tab, select only Text as the element you want to modify

 76

Figure 21: Database Design Transformer Options

8.1.5 Synchronizing Entities with Tables

Synchronizing Table Definitions describes how to synchronize the table definitions. If a table was added
purely for physical database design reasons (e.g. sub-type implementations, special journaling tables, or
derived summary information), then this is all that is required. Otherwise, it is the Ministry standard to
update the logical data model.

This can be done manually, or by using the Table to Entity Retrofit Utility, under the Utilities->Designer
menu item of RON:

 77

Figure 22: Entity Retrofit

Note: This Retrofit will only process new tables, and not update an existing entity.

8.1.6 Synchronizing Module Definitions

If a forms module has been updated using Forms Builder, then it may be possible to reverse-engineer this
modified form using the Capture Design of Form utility (under the Utilities menu item).

 78

Figure 23: Capture Forms

This utility will an existing form (.fmb file) and create (or modify) the corresponding Repository module
definition If a Repository module definition already exists with the same name as the form you want to
capture, you have the option either to capture the form as a new module or to merge the captured module
with the existing Repository module.

During design capture, the utility creates:
• a new Repository module definition for the form being captured
• Repository window definitions for windows in the form
• Repository module components for each block in the form
• Repository base table usages for each base table block in the form
• Repository lookup table usages for each table in a list of values query in the form
• Repository bound and unbound items for each item and lookup item in each block in the form (except

for control block items displayed on vertical or horizontal toolbar canvases)

 79

 80

• Repository item groups for items on different tab pages of a tab canvas in the form
• Repository module arguments for each parameter in the form

This utility does not capture all the post-generated changes (see Design Capture of Forms), and so this is
suggested only for the simplest of forms (e.g. code maintenance forms).

For the same reason, Design Capture of Reports modules is also suggested only for the simplest of Reports.

8.1.7 Electronic Delivery of the Application

All development is done directly against the Ministry Repository, so no explicit delivery is required.
However, all vendors must perform a specific number of steps. For details of this standard process, please
refer to Section 8.4 (Promotion Management Procedures) of the Designer Repository Management Guide
(CS_TSA_Des_Mngmt_Guide.doc).

For a complete overview of the Ministry standard Promotion Model, see the Ministry’s Designer
Repository Management Guide (CS_TSA_Des_Mngmt_Guide.doc).

9 Designer Generation

Designer has a number of different generators available:
• Generate Server from Server Model
• Forms Generator
• Reports Generator
• Visual Basic Generator - not covered in these standards
• Web Server Generator - not covered in these standards
• MS Help Generator - not covered in these standards
• C++ Object Layer Generator - not covered in the standards

9.1 Generate Database from Server Model

The Generate Database from Server Model is a repository utility that produces SQL scripts that can be
used to create database objects. The Server Generator is used after the developer has finished the physical
database design, and produces DDL command files to build a "live" database.

The Server Generator creates a number of scripts with file extensions with the following conventions:

Database Objects Generated Oracle Scripts
<File_Prefix>.avt ALLOWABLE VALUES
<File_Prefix>.ccs CODE CONTROL SEQUENCES
<File_Prefix>.cls CLUSTER
<File_Prefix>.cli CLUSTER INDEXES
<File_Prefix>.con CONSTRAINTS
<File_Prefix>.db DATABASE
<File_Prefix>.dbl DATABASE LINKS
<File_Prefix>.dir DATABASE DIRECTORIES
<File_Prefix>.fnc FUNCTION
<File_Prefix>.grt ROLE/USER GRANTS (database)
<File_Prefix>.ind INDEX
<File_Prefix>.aqn NON-PERSISTENT QUEUES
<File_Prefix>.pks PACKAGE
<File_Prefix>.pkb PACKAGE BODY
<File_Prefix>.aqp Persistent Queues
<File_Prefix>.prc PROCEDURE
<File_Prefix>.prf PROFILE
<File_Prefix>.aqs QUEUE SUBSCRIBERS
<File_Prefix>.aqt QUEUE TABLES
<File_Prefix>.rpg REPLICATION GROUPS
<File_Prefix>.rob REPLICATION OBJECTS
<File_Prefix>.rle ROLES
<File_Prefix>.rgr ROLE GRANTS
<File_Prefix>.rbs ROLLBACK SEGMENT
<File_Prefix>.sqs SEQUENCE
<File_Prefix>.snp MATERIALIZED VIEW
<File_Prefix>.snl MATERIALIZED VIEW LOG
<File_Prefix>.syn SYNONYM
<File_Prefix>.tab TABLE (RELATIONAL and OBJECT)
<File_Prefix>.tbs TABLESPACE
<File_Prefix>.trg TRIGGER

TYPES <File_Prefix>.typ

 81

Database Objects Generated Oracle Scripts
<File_Prefix>.tyb TYPE METHOD
<File_Prefix>.usr USERS
<File_Prefix>.vw VIEW

Generating DDL should be done in at least two sets of scripts. The first set of scripts will likely have to be
run as SYSTEM or some other DBA, and will probably:
• create the necessary tablespaces (prompting for the directories for the data files)
• create the schema owner for the application
• grant any special privileges to the schema owner id

The second (and subsequent) set of scripts will be run as the schema owner and will create the database
objects.

The Target tab should have the following choices set:

• DDL Files Only should be set (unless you are running a Reconciliation Report, in which case you
select Database)

• Type should be Oracle10g depending on the target database
• File prefix should be set, so you know the names of the DDL files that are being generated
• Directory should be set, so you know the location of the DDL files that are being generated

Figure 24: Generate Server Model Options

 82

When generating DDL, the following options should be used:
Tab Options

General • Generate Indexes must be checked
• Generate Integrity Constraints must be checked
• Generate Comments must be checked
• Automatic Creation of REF_CODES must be checked
• Foreign Key Generation Required must be checked

Oracle Specific • Generate Triggers must be checked
• Generate Valid Value Constraints must be checked
• Generate Grants and Synonyms for Users and Roles must be checked
• Generate Distributed Capability should be checked if needed
• Assign Objects to Replication Code should be checked if needed

Figure 25: Database Generator Options

After the scripts are created, there may be three changes to the 'master' SQL script that may be required:
• if the scripts use '&' parameters to prompt for information then you will have to change SET SCAN

OFF to SET SCAN ON
• if you specified an explicit filename prefix, you should remove the extended pathname from the

commands where they are used. This is required because the paths are likely to be different when the
scripts are actually run, and one can assume that all files are in 'the current directory'

• the order of the file should be reviewed to ensure that:
o <File_Prefix>.tab is run before <File_Prefix>.con and <File_Prefix>.ind; with all three run

before
o <File_Prefix>.fnc, <File_Prefix>.prc, <File_Prefix>.pck, and <File_Prefix>.trg

In order to generate a specific implementation of the database objects (this is required to get the tablespace
names and storage parameters, among other implementation specific items), you should be on the DB

 83

Admin tab of the Design Editor, with your cursor on the database definition and user which will hold the
production database objects. The 'Objects' tab will show a database and user name at the top of the left and
right panes (otherwise, it says "no user").

Figure 26: Generate Server Model Objects

Once finished, the utility will display the status of the implementation:

Figure 27: DDL Generation

 84

9.1.1 Post-Generation Changes

All changes to the server model should be documented in the repository first, and then generated using the
'Generate Database from Server Model' utility.

It is the ministry standard that all changes to the server model “must” be made in the repository. It
is not acceptable to “hand-bomb” DDL and create new objects in the database and then reverse
engineer.

9.1.2 Reconcile Report

The Reconcile Report compares the database objects in the target database against the definitions in the
repository. This can be used to check through the changes that are required, or implement the changes
directly on the target database.

Unlike previous versions of Designer, there is no way to directly invoke this report. You invoke this report
as part of the Generate Database from Server Model utility, when the finished utility displays the DDL
Generation Complete dialog. By selecting 'View Report', the Reconcile Report is displayed in the default
text editor:

Figure 28: Reconcile Report

The Generate Database from Server Model must be run with a connection to the production database (e.g.
not "generate DDL to a script file"); otherwise, the utility will not be able to reconcile the repository
definitions against the production database definitions.

9.1.3 Capture Design of Server Model

This feature is useful where no metadata exists about a database schema and it is deemed necessary to
capture database objects and their implementation metadata back into the Designer 10g repository.
Designer will reverse-engineer database objects into the repository, updating an existing object where
necessary (e.g. add a new column to an existing table). The Generate menu item has Capture Design of >
Server Model to capture the production database definition into the repository.

 85

Figure 29: Capture Server Model

The checkboxes on the bottom provide options for reverse-engineering constraints, indexes and triggers.
These should always be captured, along with the table definitions, and should always be checked.

Note: Table comments are not captured into an existing table definition unless the table structure differs
(i.e. new column). This applies to the table's column comments as well. See Metalink Document
#1077093.6 for further information.

9.1.4 Capture Design of Supporting Tables

Designer automatically generates journal tables and ref_code (e.g. for enforcement of domains), but has no
method of recording storage parameters or comments against these.

Therefore, it is the Ministry standard to use reverse engineer (Design Capture of Server Model) these
tables back into the repository.

 86

Figure 30: Journal Tables reverse engineered

 87

10 Repository Extensions

The Designer Repository holds the meta-model of all the analysis/design elements and their properties.
This meta-model is implemented as a database schema of views and columns, and can be extended by
creating new properties, associations, or adding new properties to existing element types.

This is done via the User Extensibility facilities provided by the Repository Administration Utility.
Although external contractors are free to extend their own repositories, the Ministry cannot maintain these
extensions in its own repository.

Therefore, it is a Ministry standard to disallow repository extensions in the development of Ministry
applications.

 88

11 Summary

This document provides a set of standards and guidelines for the development of consistent and
maintainable application systems utilizing Oracle's Designer tool set.

The goal of any development standard is the delivery of quality software solutions. In the case of the
development of application systems, following these few simple rules can be the difference between the
success and failure of a project.

 89

12 Appendices

 90

12.1 Appendix A – Summary of Deliverables

Phase Deliverable Outputs Responsible Participating Min
QA

Reviews

Approv. Approv.
Sign-Off

QA Turn
around Ti

(Days)
 Prim. Sec.

Analysis Functional
Model

Functional Hierarchy
Diagram

CTR BA CTR, BA,
UC, DA

BA UC Project
Sponsor

10 (Functio
Design)

 Function to Entity
Matrix
(CRUD Matrix)

CTR BA CTR, BA,
UC, DA,
DBA

DA, BA UC Project
Sponsor

 Function Definition
Report

CTR BA CTR, BA,
DA, UC

BA UC Project
Sponsor

Entity
Relationship
Model

Entity Relationship
Diagrams (Conceptual
& Logical)

CTR DA CTR, DA,
BA, DBA,
UC

DA DA Project
Sponsor

10 (Entity
Relationship
Model)

 System Glossary
Report

CTR DA CTR, DA,
BA, UC,

DA DA Project
Sponsor

 Entity Definition
Report

CTR DA CTR, DA,
BA, UC

DA DA Project
Sponsor

 Entities and Their
Attributes Report

CTR, DA CTR, DA,
BA, UC

DA DA Project
Sponsor

 Entity Completeness
Checks Report

CTR, DA CTR, DA,
BA, UC

DA DA Project
Sponsor

 Domain Definition
Report

CTR , DA CTR, DA,
BA, UC,

DA DA Project
Sponsor

 Attributes In a
Domain Report

CTR, DA CTR, DA,
BA, UC

DA DA Project
Sponsor

Business Area
Model

Business Unit
Definition

CTR BA CTR, BA,
UC

BA UC Project
Sponsor

2 (Business
Area Model

 Business Unit to
Function Diagram

CTR BA CTR, BA,
UC

BA UC Project
Sponsor

Process Model Process Model
Diagram

CTR BA CTR, BA,
UC, DA

BA BA Project
Sponsor

10 (Process
Model)

Design Data Base
Design

Proposed Database
Design

CTR DBA CTR, DBA,
DA

DBA,
DA

DBA Project
Sponsor

5 (Data Bas
Design)

 Entity to Table
Implementation

CTR DBA CTR, DBA,
DA

DBA,
DA

DBA Project
Sponsor

 Table Definition
Report

CTR DBA CTR, DBA,
DA

DBA, DBA Project
Sponsor

 Server Model
Diagram

CTR DBA CTR, DBA DBA,
DA

DBA Project
Sponsor

 Database Table and
Index Size Estimates

CTR DBA CTR, DBA DBA,
DA

DBA Project
Sponsor

 Role Definition
(Design/Implement
Security)

CTR DBA CTR, DBA DBA,
DA

DBA Project
Sponsor

Module
Design

Modules in a
Container

CTR AA CTR, AA,
DBA

AA AA Project
Sponsor

5 (Module
Design)

 Module Definition CTR AA CTR, AA,
DBA

AA AA Project
Sponsor

 91

 92

Deliverable Outputs Responsible Participating Min
QA

Reviews

Approv. Approv.
Sign-Off

QA TurPhase n
around Ti

(Days)
 Prim. Sec.

 Module Network
Diagram

CTR AA CTR, AA,
DBA

AA AA Project
Sponsor

Build Data Base DDL Scripts CTR DBA CTR, DBA,
AA

DBA DBA Project
Sponsor

5 (D/B
Design)

 Complex SQL Query
Analysis

CTR DBA CTR, DBA,
AA

DBA DBA Project
Sponsor

Application Client-Side Modules CTR AA CTR, AA,
DBA

AA AA Project
Sponsor

5 (Applicati
Design)

 Ancillary Objects
(e.g. Help Text,
Scripts)

CTR AA CTR, AA,
BA

AA AA Project
Sponsor

Maint. Updated Repository
Configuration

DA,
DBA

 DBA, DA Project
Sponsor

 Microsoft VSS (for
non-Oracle tools)

?? ??

Legend:
BA – Ministry Business Analyst; DA – Ministry Data Administrator; DBA – Ministry Database
Administrator; AA – Ministry Application Analyst; UC – User Client; CTR – Contractor

12.2 Appendix B – Glossary of Terms

Term Definition
Application
Configuration
Manager

• This is the vendor’s delegate for the Ministry’s Repository Administrator, responsible for the
delivery of their specific application.

DWS • Development and Web Services
Role • This refers to the authority or role that a user is granted within the Designer Repository.

• The Repository Admin Utility is used to grant the roles. The two possible roles are USER and
MANAGER.

DBA • Data Base Administrator
DDL • Data Definition Language
LOV • List-of-values picklist
Meta-Model • A meta-model describes the types of elements and associations which are used when constructing

particular kinds of models.
Repository
Administrator
Group

• This is the group of people who are authorized to administer the Designer Repository.
• Often, these are a subset of the Database Administrators (DBA’s) who have extensive DESIGNER

experience. These people have been granted the MANAGER Case Role. These people may also
know the Repository Owner password.

Repository
Owner

• This is the Oracle userid under which the repository was built, and should be the owner of all the
applications within the repository.

• Access to this account should be limited to qualified personnel only

 93

12.3 Appendix C – Standard Approved Abbreviations

12.3.1 Mandatory Abbreviations

Verb or Noun Abbreviation
AVERAGE AVG
DESCRIPTION DESC
CODE CD
HECTARES HA
IDENTIFICATION ID
INDICATOR IND
MAXIMUM MAX
MINIMUM MIN
NUMBER NO
PERCENT PCT
SURROGATE KEY SKEY
TIME TM
TRANSACTION TXN
XREF XF
YEAR-TO-DATE YTD

12.3.2 Preferred Abbreviations

Verb or Noun Abbreviation Verb or Noun Abbreviation

ADDRESS ADDR ADMINISTRATION ADMIN
ALTERNATE ALT AMOUNT AMT
AMERICAN USA A PPLICATION APPL
AUTHORITY AUTH BUSINESS BUS
CANADIAN CDN CATEGORY CAT
CLASSIFICATION CLASS CLIENT CLI
COLLECTION CLCTN COLUMN COL
COMMENT CMT COMMISSION COMM
COMMITTEE CTTE COMPANY CO
CONDITION CONDTN CONTROL CTL
CONVERSION CNV COORDINATE COORD
CORPORATION CORP CORRECTION CRCTN
COUNT CNT CREDIT CR
DATE (Gregorian Date) DT DAY DY
DESTINATION DEST DEPARTMENT DEPT
DETAIL DTL DEVELOPMENT DEV

 94

Verb or Noun Abbreviation Verb or Noun Abbreviation
DIAMETER DIAM DISTRICT DIST
DIVISION DIV DOCUMENT DOC
EFFECTIVE EFF ELEMENT ELMNT
ERROR ERR ESTIMATE EST
EXECUTIVE EXEC EXPIRY EXP
FACTOR FCTR FEDERAL FED
GROUP GRP HEIGHT HGHT
HOUR HR INDEX INDX
INITIAL INIT INVENTORY INV
JURISDICTION JURIS LATITUDE LAT
LENGTH LEN LETTER LTR
LICENCE LIC LOAD LD
LOCATION LOCN LONGITUDE LONG
MANAGEMENT MGT METHOD MTHD
MINUTE MN MONTH MO
NAME NM ORGANIZATION ORG
PAYMENT PAY PERMIT PRMT
PIECE PCE POSITION POS
PREVIOUS PREV PRIMARY PRI
PRODUCT PROD PROJECT PROJ
QUANTITY QTY RECEIVED RECV
REFERRED REF REGION REG
REGISTRATION REGN RESPONSE CENTRE RCC
REQUEST RQST REQUIRED REQ
REQUIREMENT RQMT RETURN RET
REVENUE REV SCHEDULE SCHED
SCREEN SCR SEARCH SRCH
SECONDARY SEC SECTION SECT
SEQUENCE SEQ SERVICE SRVC
SOURCE SRCE SPECIES SPP
STATEMENT STMT STATUS STS
STATUTORY STAT STATISTICS STATS
TENURE TENR TEXT TXT
TIMESTAMP TS TITLE TTL
TOTAL TOT TREATMENT TRTMT
TYPE TYP USERID UID
VALUE VAL VERSION VER
VISITATION VISIT VOLUME VOL
WITHDRAWAL WD WEIGHT WGT
YEAR YR

 95

 96

12.4 Appendix D – Developer Guidelines

Due to “Merging” issues in the versioned repository, developers actively developing in the Repository
should note the following guidelines:
1. It is not necessary to check-out/check-in the application container (eg. LGIS) on a daily basis. It can

stay checked out until a configuration savepoint is reached. This will prevent unnecessary internal
versioning of the container in the repository.

2. Individual elements (e.g. LGIS_FIELD_GROUPS table) also don't have to be checked in on a daily
basis, unless a savepoint is desired. Even if an element is checked out and the user logs off the
repository will maintain the current state of the element and any changes made. This will also prevent
excessive versioning of elements.

Prior to creating or updating a UDS, if a file needs to be uploaded for delivery, the proper process is
to check out the current version in WA_DEVELOPMENT and upload (with overwrite) the new
version.

NOTE: Do not delete the file(s) in WA_DEVELOPMENT before uploading the new version. This
breaks the version tree for that particular object.

12.5 Appendix E – Developer SCM Guidelines

In conjunction with Oracle Repository SCM usage, developers performing post-generation changes on
Forms and/or Reports must use the proper Folder Structure in their application Container.

The Folder structure consists of the following:

admin Scripts used in delivery
bin Compiled executables (e.g. .fmx, .mmx, .plx)
data_conversion Data Conversion scripts and export files
docs user and system documentation
form_letter Document management templates
forms Source forms (.fmb, .pll, .mmb)
icons Forms .ico files
logs Output log files from processing scripts
misc DOT, ICO, and image files
reports Source reports (.rdf)
scripts Scripts used on a regular basis

For example, the STVCMS container would have the following Folder structure:

 97

 98

Once post-generation changes have begun, developers will need to download the source files down to their
local drive.

Upon release, there will need to be one final upload, to synchronize the Repository files with the files on
the file server. Note that you should first check-out the Repository file.

Once uploaded, these objects should be checked-in and then included in the UDS (see Section 4.2) for
migration.

For more information, please see the Designer on-line help, under:
• uploading files, uploading files or directories to the repository
• file systems, downloading files or containers to

	1 Introduction
	1.1 Target Audience
	1.2 Purpose
	1.3 Assumptions

	2 Security Access Policy
	3 Definitions
	3.1 Guideline
	3.2 Standard
	3.3 Related Definitions

	4 Application System Properties
	4.1 Application Naming
	4.2 Electronic Delivery of the Application

	5 Analysis Phase
	5.1 Overall Guidelines
	5.1.1 Referencing Objects in Text Descriptions
	5.1.2 Structured Notes

	5.2 Entity Relationship Modeling
	5.2.1 Objectives
	5.2.2 Deliverables
	5.2.2.1 Entity Relationship Diagrams (ERD)
	5.2.2.2 System Glossary Report
	5.2.2.3 Entity Definition Report
	5.2.2.4 Entities & Their Attributes Report
	5.2.2.5 Entity Completeness Checks
	5.2.2.6 Domain Definition Report
	5.2.2.7 Attributes in a Domain Report

	5.2.3 Entities
	5.2.4 Attributes
	5.2.5 Standard Entity Enhancements
	5.2.6 Relationships
	5.2.7 Domains

	5.3 Functional Modeling
	5.3.1 Objectives
	5.3.2 Deliverables
	5.3.2.1 Functional Hierarchy Diagram
	5.3.2.2 Function to Entity Matrix (CRUD Matrix)
	5.3.2.3 Function Detail Report

	5.3.3 Functions

	5.4 Business Processing Modelling
	5.4.1 Objectives
	5.4.2 Deliverables

	5.5 Business Areas
	5.5.1 Deliverables
	5.5.2 Business Units

	5.6 Business Rules Modelling

	6 Design Phase
	6.1 Overall Guidelines
	6.1.1 Referencing Objects in Text Descriptions
	6.1.2 Keeping logical data model current
	6.1.3 Electronic Delivery of the Application

	6.2 Database Design
	6.2.1 Objectives
	6.2.2 Deliverables
	6.2.2.1 Design Phase QA Checklist
	6.2.2.2 Proposed Database Design
	6.2.2.3 Entity to Table Report
	6.2.2.4 Table Definition Report
	6.2.2.5 Server Model Diagram
	6.2.2.6 Database Table and Index Size Estimates
	6.2.2.7 Role Definition Report

	6.2.3 Object Naming Conventions
	6.2.4 Database Design Transformer
	6.2.5 Standard Table Enhancements
	6.2.6 Journal Tables
	6.2.7 Databases
	6.2.8 Tablespaces
	6.2.9 Datafiles
	6.2.10 Tables
	6.2.11 Columns
	6.2.12 Views
	6.2.13 Sequences
	6.2.14 Constraints
	6.2.14.1 Primary Key Constraints
	6.2.14.2 Unique Key Constraints
	6.2.14.3 Foreign Key Constraints
	6.2.14.4 Check Constraints

	6.2.15 Indexes
	6.2.16 PL/SQL Definitions
	6.2.16.1 Best Practices for Coding
	6.2.16.1.1 Follow Ministry Coding Standards
	6.2.16.1.2 Use Packages instead of stand-alone procedures or functions
	6.2.16.1.3 Use Anchored Declarations
	6.2.16.1.4 Avoid Repetition of SQL Code
	6.2.16.1.5 Avoid excessively long procedures or functions
	6.2.16.1.6 Use Bind Variables instead of string literals
	6.2.16.1.7 Formalize Unit Testing

	6.2.16.2 Function, Packages, Procedures, and Cursors
	6.2.16.3 Triggers

	6.2.17 Storage Definitions
	6.2.18 Synonyms
	6.2.19 Database Object Grants
	6.2.20 SQL Statement Tuning
	6.2.20.1 COST vs. RULE Based Optimization
	6.2.20.2 Explain Plans
	6.2.20.3 Embedding of SQL in PL/SQL Code

	6.3 Module Design
	6.3.1 Objectives
	6.3.2 Deliverables
	6.3.2.1 Modules in a Container
	6.3.2.2 Module Definition
	6.3.2.3 Module Network Diagram

	6.3.3 Module Naming Conventions

	7 Build Phase
	7.1 Overall Guidelines
	7.1.1 Referencing Objects in Text Descriptions
	7.1.2 Keeping logical data model current
	7.1.3 Documenting Post-Generation Changes

	7.2 Implementation of Database Objects
	7.2.1 Users
	7.2.2 System and Application Roles
	7.2.2.1 System Level Roles
	7.2.2.2 Application Level Roles

	7.2.3 Table Implementations
	7.2.4 Sequence Implementations
	7.2.5 User Object Index Storages
	7.2.6 PL/SQL Modules

	7.3 Updating Bound Columns in Modules
	7.4 Preferences
	7.4.1 Objectives

	7.5 Code Tables
	7.6 Designer Generated Reference Codes - REF_CODES

	8 Maintenance Phase
	8.1 Overall Guidelines
	8.1.1 Synchronizing Table Definitions
	8.1.2 Synchronizing View Definitions
	8.1.3 Synchronizing Domain Definitions
	8.1.4 Synchronizing Display Information / Comments / Help Text
	8.1.5 Synchronizing Entities with Tables
	8.1.6 Synchronizing Module Definitions
	8.1.7 Electronic Delivery of the Application

	9 Designer Generation
	9.1 Generate Database from Server Model
	9.1.1 Post-Generation Changes
	9.1.2 Reconcile Report
	9.1.3 Capture Design of Server Model
	9.1.4 Capture Design of Supporting Tables

	10 Repository Extensions
	11 Summary
	12 Appendices
	12.1 Appendix A – Summary of Deliverables
	12.2 Appendix B – Glossary of Terms
	12.3 Appendix C – Standard Approved Abbreviations
	12.3.1 Mandatory Abbreviations
	12.3.2 Preferred Abbreviations

	12.4 Appendix D – Developer Guidelines
	12.5 Appendix E – Developer SCM Guidelines

