

SPECIFICATIONS:

Calculation of the Interior

Average Market Price

October 1, 2008

Revenue Branch

Table of Contents

1.	Source Data	1
2.	Selecting Marks to be Included in the Average Market Price Calculation	2
3.	Calculating the Market Price of Each Mark	4
4.	Calculating the Average Market Price	13
Appen	dix 1: District Average Number of Bidders	14
Appen	dix 2: Dead Saw Log Fraction by Point of Appraisal	15
Appen	dix 3: TOA Trend Factors	17
Appen in	dix 4: Explanation of Variables used in the Auction Dataset but not calculating the AMP	18

1. SOURCE DATA

Naming conventions for source data used throughout this document are as follows.

=	3 month average market values and other parameters published
	quarterly.
=	Interior Appraisal Manual.
=	refers to values on the corporate data base for each mark.
	refers to site data for the mark and cost estimates from current
	Interior Appraisal Manual.
=	refers to an appendix of this document.
=	refers to steps described in this document.
	=

2. SELECTING MARKS TO BE INCLUDED IN THE AVERAGE MARKET PRICE CALCULATION

The selection of Interior marks is done from a snapshot of the DBP01 database. The species records for the mark are extracted to ensure only appraised species are used. Volumes billed for all coniferous species over the period (12 month period beginning 14 months prior to the stumpage adjustment date) are then totalled into 2 groups: logs which receive the stand rate and low grade logs that are billed at the statutory minimum rate.

Select marks which meet the following criteria.

- 1. Mark is a stumpage mark.
- 2. Mark is appraised by the Interior method.
- 3. Mark is not part of BC Timber Sales.
- 4. Mark is from one of the following tenures:

Forest licence. Tree farm licence. Timber sale licence with allowable annual cut exceeding 10,000 cubic metres. Timber licence.

- 5. Mark has complete appraisal data and is quarterly adjustable.
- 6. Mark has a total cruise volume of 100 cubic metres or more.
- 7. Mark has a confirmed worksheet with an appraisal effective data not before 48 months prior to the stumpage adjustment date, and has not expired as of the stumpage adjustment date.
- 8. Mark has information for at least one of the following species: balsam, cedar, fir, hemlock larch, lodgepole pine, spruce, white pine or yellow pine.

Calculate the low grade and high grade volume billed for all coniferous saw log species.

9. Include volume billed for the above species and the following species: white bark pine and cypress. Do not include the volumes of special forest products. Only volumes from normal and cruise based billings are included.

Low grade volumes and values are based on the species and grades shown in the species low grade saw log factors table for the applicable date.

High grade volumes are based on all volumes except Grade Z and low grade volumes.

Calculate the total volume billed for each mark by adding the individual species low grade and high grade volumes.

Exclude any mark where the total volume billed is less than 1,000 cubic metres.

3. CALCULATING THE MARKET PRICE OF EACH MARK

		Units	Decimal Places	Source/ Value	Rounding
2.1 = /	selling price index stand value CONVOL	\$/m ³	2	S 2.1.2 S 2.1.1	yes
2.1.1 =	CONVOL sum of coniferous species cruise volumes	m ³ m ³	0	Mark	
2.1.2	stand value sum of species values	\$ \$	2	S 2.1.3	
2.1.3 = *	species value species selling price species cruise volume	\$ \$/m ³ m ³	2 0	S 2.1.4 Mark	
2.1.4 = *	species selling price species appraisal LRF species lumber AMV	\$/m ³ fbm/m ³ \$/fbm	2	S 2.1.5 S 2.1.6	
2.1.5 = +	species appraisal LRF species cruise LRF species LRF add-on	fbm/m ³ fbm/m ³ fbm/m ³	0 0 0	Mark LRF	
2.1.6 = /	species lumber AMV (fbm) species lumber AMV (Mbm) 1000	\$/fbm \$/Mbm	3 0	PAR	
2.2	exchange rate	US\$/C\$	4	PAR	yes
2.3 = /	Douglas fir fraction Douglas fir cruise volume CONVOL	fraction m ³	4 0	Mark S 2.1.1	yes
2.4	hembal fraction hembal volume CONVOL	fraction m ³	4 0	S 2.4.1 S 2.1.1	yes
2.4.1 = +	hembal volume hemlock cruise volume balsam cruise volume	m ³ m ³ m ³	0 0 0	Mark Mark	
2.5	cedar fraction cedar cruise volume CONVOL	fraction m ³	4 0	Mark S 2.1.1	yes

		Units	Decimal Places	Source/ Value	Rounding
2.7 =	LOGVOL natural logarithm (CONVOL/1000)		4	S 2.1.1	yes
2.8 = *	INVVPT 1 / average volume per tree (1- hembal fraction)		4	S 2.8.1 S 2.4	yes
2.8.1	average volume per tree sum of harvest method vpt prorates	m³/tree	4	S 2.8.2	
2.8.2 = * /	harvest method vpt prorate harvest method vpt harvest method volume HARVOL	m ³ /tree m ³ /tree m ³	2 0	Mark Mark S 2.8.3	
note: ir horse ha	h the above calculation, system $vpt = 0.428$ for arvest method				
2.8.3 =	HARVOL sum of all harvest method volumes, excluding specified operation volume.	m³ m³	0 0	Mark	yes
2.9 = /	deciduous fraction appraised deciduous volume TOTVOL	fraction m ³ m ³	4 0	Mark S 2.9.1	
2.9.1 = +	TOTVOL CONVOL appraised deciduous volume	m³ m³	0 0	S 2.1.1 Mark	
2.10 =	decay fraction sum of species decay percent prorates 100	fraction %	4	S 2.10.1	yes
2.10.1 = * /	species decay percent prorate species decay percent species cruise volume CONVOL	% %	0 0	Mark Mark S 2.1.1	

2.11average slope%2S 2.11.1y=sum of harvest method slope%%%Prorates%%Mark=harvest method slope%Mark*harvest method volumem³0/HARVOL0S 2.8.3note: in the above calculation, slope = 17.4% for horse harvest method%42.12partial cut fractionfraction=14y-CAPCUT% (no 80% limit)2/1001002.13cable yarding fractionfraction=(hi lead and grapple volumem³0+skyline volume)m³0/HARVOLS 2.8.3			Units	Decimal Places	Source/ Value	Rounding
2.11.1harvest method slope prorate%=harvest method slope%Mark*harvest method volumem³0/HARVOL0S 2.8.3note: in the above calculation, slope = 17.4% for horse harvest method0S 2.8.32.12partial cut fractionfraction=14y-CAPCUT% (no 80% limit)2Mark/IAM/1001004y2.13cable yarding fractionfraction4y=(hi lead and grapple volumem³0Mark+skyline volume)m³0Mark/HARVOLS 2.8.3S 2.8.3	2.11	average slope sum of harvest method slope Prorates	% %	2	S 2.11.1	yes
$= harvest method slope product \frac{1}{70} = harvest method slope \frac{9}{6} Mark* harvest method volume \frac{1}{30} Mark/ HARVOL \frac{1}{100} S 2.8.3note: in the above calculation, slope = 17.4% forhorse harvest method2.12 partial cut fraction fraction \frac{4}{100} y2.13 cable yarding fraction fraction \frac{4}{100} y= (hi lead and grapple volume \frac{1}{100} Mark+ skyline volume) \frac{1}{100} Mark/ HARVOL \frac{1}{100} Mark$	2 11 1	harvest method slope prorate	%			
-Indivest method slope n_3 Mark*harvest method volume m^3 0Mark/HARVOL0S 2.8.3note: in the above calculation, slope = 17.4% for horse harvest methodfraction2.12partial cut fractionfraction=14y-CAPCUT% (no 80% limit)2Mark/IAM/1001004y2.13cable yarding fractionfraction4y=(hi lead and grapple volume m^3 0Mark+skyline volume)m³0Mark/HARVOLS 2.8.3100	2.11.1	harvest method slope	/0 %		Mark	
/ HARVOL 0 S 2.8.3 note: in the above calculation, slope = 17.4% for horse harvest method 0 S 2.8.3 2.12 partial cut fraction fraction = 1 4 y - CAPCUT% (no 80% limit) 2 Mark/IAM / 100 fraction y 2.13 cable yarding fraction fraction 4 y = (hi lead and grapple volume m³ 0 Mark + skyline volume) m³ 0 Mark / HARVOL S 2.8.3 Y	*	harvest method volume	m ³	0	Mark	
note: in the above calculation, slope = 17.4% for horse harvest method 2.12 partial cut fraction fraction = 1 4 y - CAPCUT% (no 80% limit) 2 Mark/IAM / 100 2.13 cable yarding fraction fraction 4 y = (hi lead and grapple volume m ³ 0 Mark + skyline volume) m ³ 0 Mark / HARVOL S 2.8.3	/	HARVOL		0	S 2.8.3	
2.12 partial cut fraction fraction = 1 4 y - CAPCUT% (no 80% limit) 2 Mark/IAM / 100 2 Mark/IAM 2.13 cable yarding fraction fraction 4 y = (hi lead and grapple volume m³ 0 Mark + skyline volume) m³ 0 Mark / HARVOL S 2.8.3 S 2.8.3	note: in horse ha	the above calculation, slope = 17.4% for arvest method				
 = 1 CAPCUT% (no 80% limit) / 100 2.13 cable yarding fraction = (hi lead and grapple volume m³ Mark HARVOL Y y Mark/IAM y Mark S 2.8.3 	2.12	partial cut fraction	fraction			
 CAPCUT% (no 80% limit) 2 Mark/IAM 100 2.13 cable yarding fraction (hi lead and grapple volume m³ Mark + skyline volume) m³ Mark / HARVOL S 2.8.3 	=	1		4		yes
2.13cable yarding fractionfraction4y=(hi lead and grapple volumem³0Mark+skyline volume)m³0Mark/HARVOLS 2.8.3	- /	CAPCUT% (no 80% limit) 100		2	Mark/IAM	
=(hi lead and grapple volumem³0Mark+skyline volume)m³0Mark/HARVOLS 2.8.3	2.13	cable yarding fraction	fraction	4		yes
+ skyline volume) m ³ 0 Mark / HARVOL S 2.8.3	=	(hi lead and grapple volume	m ³	0	Mark	·
/ HARVOL S 2.8.3	+	skyline volume)	m ³	0	Mark	
	/	HARVOL			S 2.8.3	
2.14 heli fraction fraction 4 y	2.14	heli fraction	fraction	4		yes
$= helicopter yarding volume m^3 0 Mark$	=	helicopter yarding volume	m ³	0	Mark	
/ HARVOL S 2.8.3	/	HARVOL			S 2.8.3	
2.15 horse fraction fraction 4 y	2.15	horse fraction	fraction	4		yes
= horse logging harvest method m^3 0 Mark	=	horse logging harvest method	m³	0	Mark	
Volume		Volume				
/ HARVOL S 2.8.3	/	HARVOL			S 2.8.3	
2.16 fire damage fraction fraction 4 y	2.16	fire damage fraction	fraction	4		yes
= sum of fire damage percent % S 2.16.1	=	sum of fire damage percent	%		S 2.16.1	
Prorates		Prorates				
/ 100	/	100				
2.16.1 species fire damage percent %	2.16.1	species fire damage percent	%			
prorate		prorate	0/	0	Mont	
- species file damage percent % U Mark	= *	species ruise volume	% m3	0	Mark Mark	
/ CONVOL S 2.1.1	/	CONVOL	1110	U	S 2.1.1	
2.17 total cycle time hours 1	2 17	total cycle time	hours	1		
- primary cycle time hours 1 Mark	2.1/ _	primary cycle time	hours	1	Mark	
+ secondary cycle time hours 1 Mark	+	secondary cycle time	hours	1	Mark	

		Units	Decimal Places	Source/ Value	Rounding
2.20	Fort Nelson Peace 1 if Zone 9 0 otherwise		0	Mark	
2.21	2007 Auctions 1 for all marks		0	1	
2.22	DANB DANB looked up by district		1	APP 1	
2.23 = /	CPIF current CPI 109.3	ratio	4 1	PAR 109.3	yes
2.24	highway transportation 1 if highway transportation 0 if off-highway transportation		0	Mark	
2.25	green MPB and other pest fraction green MPB and other pest volume CONVOL	fraction m ³	4 0	S 2.25.1 S 2.1.1	yes
2.25.1 = +	green MPB and other pest volume MPB green attack volume other pest volume	$egin{array}{c} m^3 \ m^3 \ m^3 \ m^3 \end{array}$	0 0 0	Mark Mark	
2.26	red and grey MPB fraction red and grey MPB attack volume CONVOL	fraction m ³	4 0	S 2.26.1 S 2.1.1	yes
2.26.1 = +	red and grey MPB attack volume MPB red attack volume MPB grey attack volume	${f m}^3 {f m}^3 {f m}^3 {f m}^3$	0 0 0	Mark Mark	
2.27 = tree	LOGVPT natural logarithm (average volume per e)			S 2.8.1	

		Units	Decimal Places	Source/ Value	Rounding
3.1 = *	selling price contribution selling price index selling price coefficient CPIE	\$/m³ \$/m³ \$/m³	2	S 2.1 0.193 S 2 23	yes
3.2 = *	exchange rate contribution exchange rate exchange rate coefficient	\$/m³	2	S 2.2 -22.23	yes
3.3 = *	Douglas fir contribution Douglas fir fraction Douglas fir fraction coefficient	\$/m³	2	S 2.3 7.34	yes
3.4 = *	hembal contribution hembal fraction hembal fraction coefficient	\$/m³	2	S 2.4 -21.75	yes
3.5 = *	cedar contribution cedar fraction cedar fraction coefficient	\$/m³	2	S 2.5 37.24	yes
3.7 = *	LOGVOL contribution LOGVOL LOGVOL coefficient	\$/m³	2	S 2.7 2.36	yes
3.8 = *	INVVPT contribution INVVPT INVVPT coefficient	\$/m³	2	S 2.8 -1.37	yes
3.9 = *	deciduous contribution deciduous fraction deciduous fraction coefficient	\$/m³	2	S 2.9 -7.77	yes
3.10 = *	decay contribution decay fraction decay fraction coefficient	\$/m³	2	S 2.10 -19.43	yes
3.11 = *	slope contribution slope slope coefficient	\$/m³	2	S 2.11 -0.0244	yes
3.12 = *	partial cut contribution partial cut fraction partial cut coefficient	\$/m³	2	S 2.12 -3.88	yes

		Units	Decimal Places	Source/ Value	Rounding
3.13 = *	cable yarding contribution cable yarding fraction cable yarding fraction coefficient	\$/m³	2	S 2.13 -8.21	yes
3.14 = *	heli contribution heli fraction heli fraction coefficient	\$/m³	2	S 2.14 -61.08	yes
3.15 = *	horse contribution horse fraction horse fraction coefficient	\$/m³	2	S 2.15 -9.21	yes
3.16 = *	fire damage contribution fire damage fraction fire damage fraction coefficient	\$/m³	2	S 2.16 -16.14	yes
3.17 = *	cycle time contribution total cycle time cycle time coefficient	\$/m³	2	S 2.17 -1.75	yes
3.20 = *	Fort Nelson Peace contribution Fort Nelson Peace Fort Nelson Peace coefficient	\$/m³	2	S 2.20 -4.60	yes
3.21 = *	2007 auctions contribution 2007 auctions 2007 auctions coefficient	\$/m³	2	S 2.21 -3.86	yes
3.22 = *	DANB contribution DANB DANB coefficient	\$/m³	2	S 2.22 0.678	yes
3.24	highway transportation	\$/m³	2		yes
= *	highway transportation highway transportation coefficient	\$/m³		S 2.24 0.343	
3.25 = *	green and other pest contribution green MPB and other pest fraction green MPB and other pest coefficient	\$/m³	2	S 2.25 -6.79	yes

		Units	Decimal Places	Source/ Value	Rounding
3.26	red and grey MPB contribution	\$/m³	2		yes
=	red and grey MPB fraction			S 2.26	-
*	red and grey MPB coefficient			-9.10	
3.27	LOGVPT contribution	\$/m³	2		
=	LOGVPT			S 2.27	
*	LOGVPT coefficient			6.58	
<i>A</i> 1	real estimated winning hid PI G	\$/m³	2		Ves
т.1 _	maximum of 0.25 or:	ψΠ	2		yes
_	constant			50.80	
+	selling price contribution			S 3.1	
+	exchange rate contribution			\$3.2	
+	Douglas fir contribution			S 3.3	
+	hembal contribution			S 3.4	
+	cedar contribution			S 3.5	
+	LOGVOL contribution			S 3.7	
+	VPT variable contribution			S 3.8	
+	deciduous contribution			S 3.9	
+	decay contribution			S 3.10	
+	slope contribution			S 3.11	
+	partial cut contribution			S 3.12	
+	cable yarding contribution			S 3.13	
+	heli contribution			S 3.14	
+	horse contribution			S 3.15	
+	fire damage contribution			S 3.16	
+	cycle time contribution			S 3.17	
+	Fort Nelson Peace contribution			S 3.20	
+	2007 auctions			S 3.21	
+	DANB contribution			S 3.22	
+	highway transportation contribution			S 3.24	
+	green and other pest contribution			S 3.25	
+	red and grey MPB contribution			S 3.26	
+	LOGVPT contribution			S 3.27	
4.2	estimated winning bid	\$/m³	2		yes
=	maximum of 0.25 or:	.			
	real estimated winning bid	\$/m³		S 4.1	
*	CPIF			S 2.23	

Prepared by Revenue Branch, Ministry of Forests and Range (October 1, 2008)

10

		Units	Decimal Places	Source/ Value	Rounding
5.1	final TOA	\$/m³			
=	TOA subtotal 4			S 5.1.1	
+	return to forest management			S 5.1.7	
+	MLRC subtotal 2			S 5.1.8	
5.1.1	TOA subtotal 4	\$/m³	2		yes
=	TOA subtotal 3	\$/m³		S 5.1.3	
/	high grade fraction			S 5.1.6	
5.1.2	TOA subtotal 3	$/m^{3}$	2		yes
=	TOA subtotal 2	$/m^{3}$		S 5.1.2	
*	TOACPIF			S 5.3.1	
5.1.3	TOA subtotal 2	\$/m³	2		yes
=	TOA subtotal 1	\$/m³		S 5.1.4	-
*	TOA trend factor			S 5.1.5	
5.1.4	TOA subtotal 1				yes
=	forest planning and administration	\$/m³	2	Mark	-
+	road development	\$/m³	2	Mark	
+	road management	\$/m³	2	Mark	
+	basic silviculture	\$/m³	2	Mark	
5.1.5	TOA trend factor			APP 3	
5.1.6	high grade fraction	fraction	4		yes
=	mark high grade AMP volume	\$/m³	0	Mark	
/	mark AMP volume	\$/m³	0	Mark	
5.1.7	return to forest management	\$/m³	2		yes
=	TOA subtotal 4			S 5.1.1	
*	0.034			0.034	
5.1.8	MLRC subtotal 2	\$/m³	2		yes
=	MLRC subtotal 1			S 5.1.9	
/	high grade fraction			S 5.1.6	
5.1.9	MLRC subtotal 1	\$/m³	2		yes
=	MLRC	\$/m³	2	1.11	
*	TOACPIF			S 5.3.1	
5.2.1	final specified operations	\$/m³	2		yes
=	specified operations subtotal 1			S 5.2.2	
*	TOACPIF			S 5.3.1	

		Units	Decimal	Source/	Rounding
			Places	Value	
5.2.2	specified operations subtotal 1	\$/m³	2		yes
=	rail haul	\$/m³	2	Mark/IAM	
+	barge and ferry	\$/m³	2	Mark/IAM	
+	dump boom dewater and reload	\$/m³	2	Mark/IAM	
+	camp costs	\$/m³	2	Mark/IAM	
+	skyline	\$/m³	2	Mark/IAM	
+	lake tow	\$/m3	2	Mark IAM	
+	suitable secondary stand survey	\$/m3	2	Mark IAM	
5.3.1	TOACPIF	Ratio	4		yes
=	current CPI		1	PAR	
/	126.4			126.4	
6.1 =	preliminary MPS market price maximum of 0.25 or:	\$/m³	2		yes
	Estimated winning bid			S 4.2	
-	final TOA			S 5.1	
-	final specified operations			S 5.2.1	

		Units	Decimal Places	Source/ Value	Rounding
6.2	MPS market price	\$/m³	2		yes
=	maximum of 0.25 or:				
	preliminary MPS market price			S 6.1	
-	dead saw log adjustment			S 6.2.1	
note: i equ adj	f appraisal effective date is greater than or 1al to April 1, 2006, then dead saw log justment equals zero.				
6.2.1	dead saw log adjustment	\$/m³	2		yes
=	dead saw log volume differential			S 6.2.2	
*	dead saw log value differential			10.00	
6.2.2	dead saw log volume differential	N/A	2		yes
=	historic dead saw log fraction			S 6.2.3	
-	auction data set dead saw log fraction			0.184	
6.2.3	historic dead saw log fraction	N/A	2	Mark	
note: i	f mark data is insufficient (see Appendix 2),				
the apj	n look up dead saw log fraction by point of praisal in Appendix 2.				

4. CALCULATING THE AVERAGE MARKET PRICE

7.1 = /	average market price total AMP value total AMP volume	\$/m³	2	S 7.2.1 S 7.2.5	yes
7.2.1	total AMP value sum of mark AMP value	\$	2	S 7.2.2	yes
7.2.2 = *	mark AMP value mark high grade value mark low grade value	\$	2	Mark Mark	yes
7.2.3 = *	mark high grade value mark high grade volume MPS market price	\$	2	Mark S 6.2	yes
7.2.4 = *	mark low grade value mark low grade volume minimum stumpage rate	\$	2	Mark 0.25	yes
7.2.5 = +	total AMP volume sum of mark high grade volume sum of mark low grade volume	m³	0	Mark Mark	yes

APPENDIX 1: District Average Number of Bidders (DANB)

Forest District	DANB
100 Mile House	4.3
Arrow Boundary	3.2
Cascades	5.0
Central Cariboo	4.8
Chilcotin	2.1
Columbia	3.8
Fort Nelson	2.5
Fort St. James	2.9
Headwaters	4.8
Kalum	2.5
Kamloops	4.6
Kootenay Lake	3.9
Mackenzie	2.3
Nadina	5.1
Okanagan Shuswap	4.2
Peace	3.4
Prince George	3.5
Quesnel	4.4
Rocky Mountain	3.7
Skeena Stikine	3.0
Vanderhoof	2.7

APPENDIX 2: Dead Saw Log Fraction by Point of Appraisal

Mark specific data for historic dead saw log fraction is insufficient if: Volume billed prior to April 1, 2006 is less than 1000 cubic metres, or calculated dead saw log fraction is less than 0 or greater than 1.

Point of Appraisal	Dead Saw Log
	Fraction
100M	0.4410
ADLK	0.1105
ARMS	0.2321
BELK	0.2524
BOBA	0.1162
BSLK	0.3742
CAFL	0.0507
CANO	0.0818
CARN	0.0442
CAST	0.1168
CHET	0.0132
CHSM	0.3789
CLLK	0.5350
CRAI	0.0417
CRAN	0.0748
CRES	0.0758
ELKO	0.0731
ENGE	0.7078
FRLK	0.6781
FTJA	0.2590
FTJO	0.0112
FTNE	0.0326
GALL	0.0956
GRFO	0.0771
HAZE	0.0868
HOUS	0.1381
ISPI	0.5948
KAML	0.3374
KELO	0.1117
KITW	0.0153
LAVI	0.1053
LILL	0.0673
LSCK	0.2904
LUMB	0.0757

Point of Appraisal	Dead Saw Log		
	Fraction		
LYTT	0.1583		
MBRI	0.0778		
MERR	0.1566		
MIDW	0.0655		
MKEN	0.0576		
OKFA	0.1189		
PASI	0.0596		
PRGE	0.4034		
PRIN	0.0869		
QUES	0.6213		
RADI	0.0811		
REVE	0.0403		
SLOC	0.0582		
SMIT	0.1908		
STRA	0.4840		
TAYL	0.0154		
TERR	0.0087		
THRU	0.1294		
UPFR	0.1593		
VALE	0.0711		
VAND	0.5456		
VAVE	0.1237		
WEST	0.0615		
WILK	0.3990		
YMIR	0.0329		

APPENDIX 3: TOA Trend Factors

TOA values are trended based on appraisal effective date. Trend factors are as follows:

Appraisal Effective Date	TOA trend factor
November 1, 2002	0.811
November 1, 2004	0.805
July 1, 2007	0.996
July 1, 2008	1.000

APPENDIX 4: Explanation of Variables used in the Auction Dataset but not in calculating the AMP

Grade 3 Fraction --- fraction of coniferous volume harvest on the auction sale that was scaled as grade 3 --- This variable does not apply in the calculation of the AMP because there has been no grade 3 volume scaled since the April 1, 2006 change to Interior log grades. MPS is constructed so that policy in the final year of auctions sales (2007) is consistent with application. Since there was no grade 3 during 2007, the variable is always zero in application.

Competitive Deciduous --- 1 if auction sale sold under Section 7.5.1.5 of the IAM, zero otherwise --- This variable does not apply in calculating the AMP because no AMP eligible permits are sold under that section of the IAM. Therefore the Competitive Deciduous variable is always zero and the variable, and its impact on the deciduous fraction variable, can be ignored.

Insect Attack Code Indicator --- 1 if insect attack volumes are unavailable, zero otherwise ---This variable does not apply in calculating the AMP because insect attack volumes are determined for all AMP eligible permits, therefore the value is always zero.

Salvage --- 1 if total insect attack is greater than 1/3 of coniferous volume, zero otherwise ---This variable does not apply in calculating the AMP because in the structure of the estimated winning bid regression the salvage is multiplied by the insect attack code indicator. Since the insect attack code indicator is always zero for AMP permits, this product is also always zero.

2004, 2005 and 2006 Annual Dummy Variables --- 1 if the sale was sold during these years, zero otherwise --- These variable do not apply in calculating the AMP because in MPS applies the dummy variable from the latest year (2007) to all permits in application.

Decked Volume --- coniferous volume that has been previously felled and decked --- This variable does not apply in calculating the AMP because the practice of combining decked timber with standing timber only occurs in BCTS, and therefore no AMP permits will contain decked volume.

Second Quarter Auctions --- 1 if auction sold during the second quarter, zero otherwise --- This variable does apply but the average value of the variable from the auction dataset is applied in all cases and this constant value is added into the constant from the regressions, and therefore no longer appears explicitly in the equation.