### INDEX SITES FOR AQUATIC ECOREGIONS OF BRITISH COLUMBIA

Submitted to

Ministry of Environment, Lands and Parks Water Quality Branch Victoria, B.C.

# Prepared by

C.J. Perrin Limnotek Research and Development Inc., Vancouver, B.C.

and

C.A. Blyth AXYS Environmental Consulting Ltd. Sidney, B.C.

January 29, 1999

*Citation:* Perrin, C.J. and C.A. Blyth. 1999. Index sites for aquatic Ecoregions of British Columbia. Prepared by Limnotek Research and Development Inc. and AXYS Environmental Consulting for Ministry of Environment, Lands and Parks. Water Quality Branch. Victoria, B.C. 56p plus map.



Figure 1. Index sites in aquatic ecoregions of British Columbia.

## SUMMARY

The aquatic ecozone classification for British Columbia was further developed by selecting and assigning index lakes and streams to each aquatic Ecoregion. An index site was defined as:

- 1. a sampling location from which water quality data have been collected and can continue to be collected;
- 2. a location having ready access for routine sampling.
- 3. a location that is not affected by pollution sources or is affected less than other sites in the Ecoregion.
- 4. a location considered representative of general limnology and water quality in the Ecoregion in which it is present.

When maintained as an operational activity, compilation of data from index sites helps to:

- simplify searches via a graphical user interface for chemical characteristics of Ecoregions in B.C.
- provide zonal reference locations from around the Province that can be used in impact assessments, monitoring programs and Province-wide water management.

Three tasks were involved in selecting and mapping the index sites. First, the aquatic ecozone classification database (AECD) that was developed in phase 1 of the aquatic ecozone classification was searched to select candidate sites within each Ecoregion on the basis of data adequacy. A survey was then sent to water quality specialists in regional offices of BC Environment requesting recommendations on the selection of sites. Interactive discussion between the regional specialists and the project manager resulted in the final selection of sites. A colour themed map was then produced to display the distribution of index sites for streams and lakes throughout the Province.

A total of 55 index lakes and 50 index streams were selected among the 45 Ecoregions of British Columbia. With the exception of the very remote Hecate Lowland where only an index lake was selected, at least one stream and one lake or reservoir was selected from each Ecoregion. In some Ecoregions where large ecological variability existed, more than one lake or stream was selected. The sites are identified on a map that accompanies this report.

Sample sizes for each of the chemical attributes that characterised the sites in the existing AECD were generally small. 58% of the 170 lake site and attribute combinations had sample sizes  $\leq$ 10. 50% of the 158 stream site and attribute combinations had sample sizes  $\leq$ 10. Some sites where long term monitoring has been active had abundant data.

Water quality at 27% of the recommended lake sites and 28% of the stream sites was thought to be modified to some extent by land disturbance, point source discharges

or non-point source discharges of contaminants. All other sites were not affected by pollution sources. The impacted sites were thought to be least affected of all lakes and streams in the respective Ecoregions. Disturbance or pollution sources potentially affecting these sites included forest harvesting, agriculture, shoreline development (mainly cabins or houses on septic tanks), wastewater treatment plants, and low level metals transport from inactive mine sites.

Routine and standardised water monitoring is required to maintain index sites. It is recommended that water samples be collected seasonally and analysed for basic variables used in the aquatic ecozone classification plus variables of regional interest. Logistics of sample collections should be managed from regional offices, but data compilation should be organised centrally. Field costs may be reduced by using volunteers to collect samples under supervision of regional water quality specialists.

Some hard decisions are required for maintaining an index site network, particularly at times severe funding restrictions. There are great benefits to maintaining index sites but they come with some, albeit not large, direct and indirect costs associated with sample collection, lab services, data compilation, data management and ideally an interactive internet web site to facilitate access to information. The process will be highly cost effective in contributing to water management in B.C. over the long term, but there must be a sincere willingness to contribute and use the system to realise its greatest benefits and fully justify its costs.

## ACKNOWLEDGEMENTS

This project was completed with the assistance of several people. Dr. Rick Nordin (Ministry of Environment Lands and Parks (MOELP)) recognized the need for index sites within the aquatic ecozone classification and he was instrumental in implementing the project and accessing funding. Dr. Nordin was the contract manager at MOELP and we thank him for our many technical discussions and for considerable latitude in defining the scope of work. We thank all respondents to the questionnaire and all people who contributed to the selection of index sites. Those people in regional MOELP offices included: Bruce Carmichael (MOELP/Prince George), Bob Grace (MOELP/Kamloops), Jim Bryan and Vic Jensen (MOELP/Penticton), Brent Moore (MOELP/Surrey), Ian Sharpe (MOELP/Smithers), John Deniseger (MOELP/Nanaimo), Jennifer Simpson and Norm Zirnhelt (MOELP/Williams Lake), Julia Beatty Spence (MOELP/Nelson), and Les McDonald (MOELP/Cranbrook). After index sites were selected, Lindsey Giles (AXYS Environmental Consulting) ran overlay analyses to produce a table of chemical attributes for each index site and Allison Peacock (AXYS Environmental Consulting) produced the hard copy maps.

## TABLE OF CONTENTS

| SUM                             | MARY                                                                                                                                        | .111   |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------|
| ACK                             | NOWLEDGEMENTS                                                                                                                               | . V    |
| TABI                            | LE OF CONTENTS                                                                                                                              | VI     |
| LIST                            | OF FIGURES                                                                                                                                  | VII    |
| LIST                            | OF TABLES                                                                                                                                   | /111   |
| 1.0                             | INTRODUCTION                                                                                                                                | 1      |
| 2.0                             | DEFINITION OF AN INDEX SITE                                                                                                                 | 2      |
| 3.0                             | METHODS                                                                                                                                     | 4      |
| 3.1<br>3.2<br>3.3<br><b>4.0</b> | Data Base Search<br>Survey of local knowledge from regional offices<br>Final Selection of Index Sites and Mapping<br>RESULTS AND DISCUSSION | 5<br>6 |
| 4.1<br>4.2<br><b>5.0</b>        | Data base Search<br>Survey Results and Selection of Index Sites<br>RECOMMENDATIONS                                                          | 9      |
| 6.0                             | LIST OF REFERENCES                                                                                                                          | 45     |
|                                 | ENDIX A: NAMES OF WATERSHED GROUPS, ECOREGIONS AND PROVINCES SHOWING REVISIONS THROUGH JANUARY, 1999                                        | 47     |
|                                 | ENDIX B: EXAMPLE OF THE SURVEY DISTRIBUTED TO REQUEST<br>OMMENDATIONS FOR THE SELECTION OF INDEX SITES                                      | 53     |

## LIST OF FIGURES

### Page

Figure 1. Index sites in aquatic ecoregions of British Columbia......ii

## LIST OF TABLES

### Page

| Table 1. Recipients and respondents of the survey in which opinion on the selection of index sites was requested.                                          | 5  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2. Median and mean number of chemical parameters and number of samples in           AECD for the five sites having most compiled data, by Ecoregion. | 8  |
| Table 3. Recommended index lake and reservoir sites including site numbers that are shown on the accompanying map.                                         | 13 |
| Table 4. Recommended index stream sites including site numbers that are shown on the accompanying map.                                                     | 14 |
| Table 5. Scope of chemical attribute data in AECD for each index lake or reservoir                                                                         | 16 |
| Table 6. Scope of chemical attribute data in AECD for each index stream.                                                                                   | 22 |
| Table 7. General access to recommended index lake and reservoir sites and proximity to potential pollution sources.                                        | 33 |
| Table 8. General access to recommended index stream sites and proximity to potential pollution sources.                                                    | 35 |
| Table 9. General descriptive comments compiled for selected index lakes and reservoirs           from survey responses.                                    | 37 |
| Table 10. General descriptive comments compiled for selected index streams from survey responses.                                                          | 40 |

#### 1.0 INTRODUCTION

In the first phase of the Aquatic Ecozone Classification for B.C. (Perrin and Blyth 1998) a hierarchical framework was developed to describe regional variation in chemical characteristics of aquatic ecosystems in British Columbia. It involved organizing water quality data for the whole Province in three spatial strata: 245 watershed groups within 45 Ecoregions within 9 Ecoprovinces (Appendix A). The classification was an updated version of the regional lake productivity map originally completed by Northcote and Larkin (1964). Unlike the original Northcote and Larkin (1964) work, the present classification is supported with a data base (called the aquatic ecozone classification data base or AECD) containing more than 300,000 records of wide ranging chemical characteristics in streams and lakes. Data summaries can be interactively explored and manipulated using a graphical user interface in ArcView, the standard GIS used by the British Columbia Ministry of Environment Lands and Parks (MOELP). The classification system and data base is suitable for periodic updates using GIS procedures and it was designed to compliment the existing terrestrial ecoregion classification (Demarchi 1995) and biogeoclimatic classification (Krajina 1965), that have become standards for mapping and understanding regional variation in ecosystem structure in British Columbia.

Within the aquatic ecozone classification, the basic and smallest unit is a Watershed Group. Several Watershed Groups are called Ecoregions and groups of Ecoregions are called Ecoprovinces. Definitions reported by Perrin and Blyth (1998) are as follows:

- **Ecoprovince**: an area where there are consistent climatic processes, geology, lithology and relief that determine characteristics of aquatic ecosystems at the subcontinental level.
- **Ecoregion**: an area within an Ecoprovince where there is minor macroclimatic variation, and a characteristic lithology and geomorphology that can influence morphometry and surface chemistry of aquatic ecosystems. Large lakes, reservoirs and rivers characterize an Ecoregion and biogeochemical processes within those systems are recognized to influence water quality.
- Watershed Group: a precinct enclosing aquatic features at the sub-basin scale that is practical for detailed mapping of water quality characteristics.

Statistical attributes for a select list of water quality parameters were described and used by Perrin and Blyth (1998) to characterise the spatial variation in water quality across the Province. The short list of chemical parameters that was compiled quantitatively and by expert opinion included: TDS, alkalinity, pH, total phosphorus, colour, and suspended solids or turbidity (streams only) (Perrin and Blyth 1998). The chemical attributes were used in combination with descriptions of climatic, geological, lithological, biogeochemical and limnological features to provide a general description of water quality among and within Ecoprovinces.

Potential applications of the aquatic ecozone classification and user interface to the AECD are as follows:

- 1. Provide data to assess the status and trends in the quality of surface-water resources in British Columbia;
- 2. Provides easy access to water quality data in British Columbia;
- 3. Provides a framework for setting water quality objectives to ecozones;
- 4. Provides information for establishing zonal reference sites for long term monitoring of key water quality variables;
- Provides information to identify regional differences in the abundance of data pertaining to any variable of interest and thereby assist in planning data collection activities in the Province;
- 6. Provides descriptions of regional limnological and water quality characteristics;
- 7. Provides a data management system that will standardize data collection and improve data access for water quality assessments;
- 8. Provides a technical framework for preparation of an internet web site from which data can be examined and downloaded for optimizing time used for water quality assessments;
- 9. Provides for easy exchange of limnological information between scientists, resource managers, resource development companies, and resource interest groups.

In this phase 2 of the project, an index site will be selected for lakes and streams within each Ecoregion. Each site can be considered a location where typical water quality for an Ecoregion can be found. It is anticipated that the selection of these sites on the graphical user interface (GUI) will provide a quick reference to typical characteristics of water quality in any given Ecoregion. Objectives for the selection of index sites is to:

- simplify searches on the GUI for chemical characteristics of Ecoregions in B.C.
- provide zonal reference locations from around the Province that can be used in impact assessments and monitoring programs.
- provide quick reference to a summary of water quality data that is typical within any Ecoregion of B.C.

### 2.0 DEFINITION OF AN INDEX SITE

An index site can be defined as a location where typical water quality for an Ecoregion can be found and where water quality data can be routinely collected. To satisfy this definition, logistical and limnological criteria must be met as follows:

- 5. It is a sampling location from which water quality data have been collected and can continue to be collected;
- 6. It has ready access for routine sampling. Ready access in this respect means a site that has direct vehicle access and where necessary, a boat can be easily launched. Access by aircraft is generally not a criteria because the cost of routine sampling by air may be prohibitive. Ideally, most sites are close to routes that are regularly traveled and sampling can be completed by personnel from MOELP while en route to complete other tasks. Alternatively, sites are close to habitation where volunteers may be available or small contracts can be set up with local individuals to complete water sampling on an assigned frequency with little required travel time.
- It is not affected by pollution sources. Where a very large number of sites in an Ecoregion are characterized by water affected by pollution, a site that is least affected is selected.
- 8. It is considered representative of general limnology and water quality in the Ecoregion in which it is present.

The viability of an index site is dependant on the existence of data that can be used to describe water quality. For present purposes of selecting index sites, immediate availability of data is an asset, but sites may also be accepted if there is intent to support data collection in the future or data exists for the site but it is not yet on the data base used for the Aquatic Ecozone Classification. For this reason, index sites that are listed in this report are only recommended sites. Those which are presently supported with adequate and available data, can be used as index sites immediately, but those which do not presently have adequate data or the data are not in the data base are only recommended. They could be accepted pending additional sample collection and data analysis. The potential use of a recommended site will be dependant on funding, available time for personnel to collect data and have it logged into the data base, and a willingness to adopt an index site system of water quality data by regional offices.

For some Ecoregions, water quality data are sparse or non-existent. Where these sites are encountered, the requirement of having a data history will obviously have to be compromised in favour of the other criteria. In these situations, reliance is placed on local knowledge of access, proximity to pollution sources and whether the site is representative from a limnological viewpoint.

A focus of the Ecoregion descriptions by Perrin and Blyth (1998) was to interpret chemical attributes within an Ecoregion with respect to known climatic, physiographic, geological, biogeochemical, and limnological processes that can determine zonal variation. Expert opinion from specialists at a workshop that was run to assist in delineating ecozones (Perrin and Blyth 1998) indicated that biological indices should be avoided in describing zones because those indices are subject to seasonal variation that may confound zonal variation. For this reason, variables that are subject to biological control (e.g. chlorophyll <u>a</u> and dissolved oxygen concentrations) were not included in the variable list. This approach meant that zonal descriptions were mainly based on physical and inorganic chemical data.

To be sensitive to these dynamics, relatively small and moderate-sized streams and lakes are favoured in the selection of index sites within any one Ecoregion because they are more reactive to physico-chemical forces. Relatively large rivers and lakes were considered independent within an Ecoregion because their limnology is very different from that of small lakes and streams (e.g. Wetzel 1983, Vannote et al. 1980, Minshall et al. 1985). For this reason, a unique index site was established in a large lake, reservoir, or river if present in an Ecoregion in addition to the main index site being established on a representative smaller lake and stream. Applications of data collected from the large systems can be similar to those for the smaller steams and lakes as listed in Section 1.0 but they would be spatially limited to the large systems within Ecoregions. Examples of large systems include the Nechako Reservoir in the Nechako Plateau Ecoregion, Atlin Lake in the North Coastal Mountains Ecoregion, Babine Lake in the Babine Uplands Ecoregion, Okanagan Lake in the Okanagan Ecoregion, the Fraser River, and the Columbia River.

#### 3.0 METHODS

Three tasks were involved in selecting and mapping the index sites. First, the AECD was searched to select candidate sites within each ecoregion having adequate chemical data. A survey was then sent to regional offices of BC Environment requesting input of local knowledge and recommendations on the selection of sites. Interactive discussion resulted in the final selection of sites and a colour themed map was then produced to display the distribution of index sites for streams and lakes throughout the Province.

#### 3.1 Data Base Search

Using the AECD, standard sorting techniques in Visual dBase were used to select candidate stations within each Ecoregion. From the compiled data record, we selected the top 5 sites that had the greatest number of parameters sampled, the top 5 having the largest number of measurements, and the top 5 having the greatest data diversity in each Ecoregion. Diversity in this case was arbitrarily defined as number of measurements multiplied by number of parameters.

#### 3.2 Survey of local knowledge from regional offices

A survey was sent to regional BC Environment offices requesting input and recommendations on the selection of index sites from all Ecoregions within the relevant management areas. Impact assessment specialists in BC Environment offices were selected specifically because they routinely deal with water quality issues and they are more familiar with water quality characteristics in lakes and streams than other people around the Province. Many of these people were familiar with the ecozone classification process, having attended the workshop that occurred in Phase 1 of the ecozone project during which the first delineation of ecozones was completed. After the survey had been distributed, telephone calls were made to the survey recipients to clarify uncertainties and address questions. The time for responses to be completed was initially set at two weeks but then it was extended to whatever time was required to ensure that responses were received from all recipients. People responding to the survey and those indirectly providing information through consultation with recipients in regional offices are listed in Table 1.

| Name             | Office and Position                                   | Management Area   |
|------------------|-------------------------------------------------------|-------------------|
| Bruce Carmichael | MOELP, Prince George<br>Impact Assessment Biologist   | Omineca-Peace     |
| lan Sharpe       | MOELP, Smithers<br>Impact Assessment Biologist        | Skeena            |
| Brent Moore      | MOELP, Surrey<br>Environmental Impact Officer         | Lower Mainland    |
| John Deniseger   | MOELP, Nanaimo<br>Environmental Biologist             | Vancouver Island  |
| Jennifer Simpson | MEOLP, Williams Lake<br>Impact Assessment Biologist   | Caribou           |
| Norm Zirnhelt    | MOELP, Williams Lake<br>Environmental Section Head    | Caribou           |
| Bob Grace        | MOELP, Kamloops<br>Impact Assessment Biologist        | Southern Interior |
| Jim Bryan        | MOELP, Penticton<br>Head, Environmental<br>Assessment | Southern Interior |
| Vic Jensen       | MOELP, Penticton<br>Impact Assessment Biologist       | Southern Interior |

| Table 1. Recipients and respondents of the survey in w | which opinion on the selection of index sites |
|--------------------------------------------------------|-----------------------------------------------|
| was requested.                                         |                                               |

5

| Name                | Office and Position                             | Management Area |
|---------------------|-------------------------------------------------|-----------------|
| Julia Beatty Spence | MOELP, Nelson<br>Environment Section Head       | Kootenays       |
| es McDonald         | MOELP, Cranbrook<br>Impact Assessment Biologist | Kootenays       |

The survey asked for one lake site and one stream site to be recommended for each Ecoregion. The survey was structured as a letter (sample given in Appendix B), first giving background on the development of aquatic ecozones in British Columbia, and then providing criteria (as described in section 2.0) for the selection of index sites. For each Ecoregion within the relevant management area, information was supplied to assist the regional specialist in recommending an index stream and index lake. The information included:

- Map of B.C. Ecoregions within Ecoprovinces.
- a sorting of the AECD as described in Section 3.1, with identification of the top five lake and stream sites based on data availability for the relevant Ecoregions.
- Colour-themed map of the relevant management area showing the enclosed ecozones and locations of the top 5 candidate streams and lakes that resulted from the data search.

Recipients were asked to recommend sites that met the criteria described in section 2.0. While the data base search provided a short list of sites based on data adequacy, it was not sensitive to local logistical constraints that had to be considered for data collection over the long term. Issues of access, whether sites on the short list were representative of the Ecoregion and proximity to pollution sources could only be dealt with by direct consultation with the regional water quality specialists who have the local experience. It was anticipated that in some cases this process would yield sites for which data have not been collected. For example, abundant data from disturbed sites may meet the requirement for data adequacy but not the requirement that sites not be contaminated or affected by pollution sources. Local input corrected this problem by recommending sites that are remote from impacts despite the fact that data for those sites may be limited or even absent from the digital data base. In this respect, location took precedence over data adequacy in cases where one criteria or the other had to be used for site selection.

#### 3.3 Final Selection of Index Sites and Mapping

In the process of completing the survey, numerous discussions occurred between the regional water quality personnel and the project manager to resolve uncertainty and questions. Through this interactive process and from information In some cases, this discussion was not required. Criteria of data adequacy and proximity to pollution sources could be met and local input regarding access was all that was required to select sites from the short list of top 5 candidate sites. In these cases, the selection of sites by the regional people in the survey responses were accepted without discussion.

streams and one for lakes in each of the 45 Ecoregions was made.

Using the digital map template that was used for production of maps showing Ecoprovinces, Ecoregions, and Watershed Groups in the first phase of the Ecozone classification, another map was produced showing the location and name of all index lakes and streams. The base map which delineates Provincial boundaries, shorelines, lakes and streams is the BC portion of a 1:1,000,000 digital chart of the world. Polygons outlining the ecozones were digitized onto the base map, where watershed groups were the same as those published in the BC Watershed Atlas. All index sites were placed on the map and labeled using georeference information from the sampling location. Map production was completed using ArcView.

## 4.0 RESULTS AND DISCUSSION

### 4.1 Data base Search

Amount of data compiled for the top five sites among Ecoregions varied greatly (Table 2). Among the top 5 lake sites within Ecoregions, as few as 4 chemical parameters and 8 samples per site are recorded in AECD, mainly from Ecoregions that are relatively remote (e.g. Upper Fraser Highlands, Omineca Mountains). In contrast, many of the top 5 lake sites that have been regularly sampled in Ecoregions closer to habitation have a data record of up to 35 chemical parameters measured from >3,000 sample collections per site (e.g. Puget Basin, Okanagan, Sayward). The same variation showed up in data from the top 5 stream sites: a minimum of 3 parameters from only 3 samples per site in the Southern Inlets and Kinbasket Ecoregions compared to a maximum of 28 parameters from more than 2,000 sample collections per site from each of the Columbia Mountains and Southern Rockies.

In some of the more remote Ecoregions, data was particularly sparse, even to the point where there were <5 available sites having data. The lack of data from stream sites was particularly prevalent (e.g. Hecate Lowland, Kinbasket, Liard Plateau, Nechako Plateau, Owikeno Ranges, Skeena Mountains, Taiga Plains, Takla/Manson Plateau). For those Ecoregions where the number of sites was limited or water quality records do not

appear in AECD, the criteria of having a data history was dropped. Logistics, access, and proximity to known pollution sources were the main criteria used in the selection of index sites for those Ecoregions. The expectation in these cases was that sample collection from selected sites could and would be implemented in the future as part of an index site sampling plan (see recommendations in section 5.0).

| Ecoregion                |         | Lak    | (es    |      | Streams |        |        |      | Comment                             |
|--------------------------|---------|--------|--------|------|---------|--------|--------|------|-------------------------------------|
|                          | # paran | neters | # sam  | ples | # paran | neters | # sam  | ples | -                                   |
|                          | per s   | site   | pers   | site | per s   | site   | per s  |      | _                                   |
|                          | median  | mean   | median | mean | median  | mean   | median |      |                                     |
| Babine Upland            | 16      | 19     | 231    | 373  | 15      | 12     | 86     | 61   |                                     |
| Bulkley Basin            | 18      | 19     | 195    | 324  | 18      | 18     | 1274   | 1433 |                                     |
| Caribou Plateau          | 22      | 22     | 48     | 49   | 24      | 24     | 178    | 327  |                                     |
| Cassiar Ranges           | 16      | 15     | 48     | 44   | 19      | 18     | 64     | 64   |                                     |
| Central Interior Plateau | 21      | 20     | 176    | 222  | 21      | 21     | 530    | 640  |                                     |
| Chilcotin Ranges         | 18      | 21     | 33     | 40   | 17      | 18     | 102    | 101  |                                     |
| Columbia Mountains       | 25      | 24     | 1978   | 3548 | 16      | 16     | 2412   | 2061 |                                     |
| Dean River               | 13      | 12     | 24     | 22   | 18      | 16     | 31     | 32   |                                     |
| Eastern Pacific Ranges   | 12      | 13     | 12.5   | 25   | 26      | 26     | 145    | 210  |                                     |
| Exposed Fjords           | 20      | 22     | 32     | 35   | 13      | 13     | 310    | 464  |                                     |
| Georgia Basin            | 30      | 30     | 529    | 924  | 7       | 7      | 588    | 621  |                                     |
| Hecate Lowland           | 9       | 8      | 129    | 97   |         |        |        |      | no stream sites                     |
| Kinbasket                | 13      | 14     | 26     | 194  | 3       | 3      | 3      | 3    | 1 stream site<br>only               |
| Liard Plateau            | 10      | 10     | 24.5   | 39   | 15      | 15     | 29     | 29   | 1 stream site<br>only               |
| Lower Nechako            | 21      | 21     | 170    | 200  | 13      | 13     | 255    | 349  | - <b>J</b>                          |
| Muskwa Ranges            | 9       | 9      | 17     | 17   |         |        |        |      | 2 lake sites and no stream sites    |
| Nass Basin               | 16      | 16     | 16     | 21   | 11      | 11     | 18     | 18   | 2 stream sites<br>only              |
| Nass Ranges              | 15      | 15     | 43     | 112  | 15      | 15     | 578    | 464  | <b>cj</b>                           |
| Nechako Plateau          | 13      | 13     | 22     | 24   | 16      | 16     | 16     | 16   | 1 stream site<br>only               |
| Nimpkish                 | 23      | 22     | 163    | 131  | 6       | 6      | 14     | 17   | - ,                                 |
| North Coastal Mountains  | 24      | 24     | 29     | 168  | 20      | 20     | 519    | 477  |                                     |
| Northern Rockies         | 14      | 13     | 54     | 108  | 14      | 15     | 182    | 180  |                                     |
| Northern Pacific Ranges  | 12      | 10     | 12     | 13   | 21      | 17     | 36     | 35   |                                     |
| Okanagan                 | 26      | 27     | 3120   | 3311 | 16      | 18     | 1853   | 1660 |                                     |
| Omineca Mountains        | 4       | 7      | 8      | 15   | 12.5    | 13     | 45     | 45   | 2 stream sites only                 |
| Owikeno Ranges           | 10      | 10     | 82.5   | 83   |         |        |        |      | 2 lake sites and<br>no stream sites |
| Peace Plains             | 19      | 20     | 480    | 857  | 14      | 14     | 321    | 318  |                                     |
| Pothole Lakes            | 25      | 24     | 396    | 841  | 21      | 20     | 925    | 950  |                                     |
| Puget Basin              | 35      | 35     | 2473   | 3272 | 4       | 5      | 38     | 44   |                                     |

**Table 2.** Median and mean number of chemical parameters and number of samples in AECD for the five sites having most compiled data, by Ecoregion.

| Ecoregion                     | Lakes   |        |        | Streams |         |        | Comment |      |                        |
|-------------------------------|---------|--------|--------|---------|---------|--------|---------|------|------------------------|
| -                             | # paran | neters | # sam  | ples    | # paran | neters | # sam   | ples | -                      |
| -                             | per s   | ite    | pers   | site    | per s   | site   | per s   | site | -                      |
|                               | median  | mean   | median | mean    | median  | mean   | median  | mean |                        |
| Queen Charlotte Islands       | 25      | 24     | 129    | 112     | 6       | 7      | 45      | 67   |                        |
| Quesnel Highlands             | 23      | 24     | 147    | 361     | 21      | 21     | 283     | 328  |                        |
| Sayward                       | 30      | 31     | 3114   | 3322    | 7       | 7      | 240     | 350  |                        |
| Shuswap Highlands             | 26      | 26     | 1911   | 1745    | 24      | 24     | 1044    | 1039 |                        |
| Skeena Mountains              | 14      | 14     | 43     | 40      |         |        |         |      | no stream sites        |
| Southern Inlets               | 20      | 18     | 22     | 22      | 3       | 3      | 3       | 3    | 3 stream sites<br>only |
| Southern Pacific Ranges       | 30      | 29     | 393    | 696     | 28      | 28     | 433     | 439  |                        |
| Southern Rockies              | 17      | 19     | 33     | 47      | 16      | 16     | 2568    | 2712 |                        |
| Southern Selkirk<br>Mountains | 8       | 10     | 16     | 42      | 14      | 15     | 1211    | 1254 |                        |
| Stikine Plateau               | 16      | 16     | 48     | 47      | 20      | 20     | 172     | 450  |                        |
| Taiga Plains                  | 8       | 8      | 14.5   | 15      |         |        |         |      | no stream sites        |
| Takla/Manson Plateau          | 10      | 9      | 10     | 15      | 9       | 9      | 38      | 38   | 1 stream site<br>only  |
| Thompson Plateau              | 21      | 21     | 165    | 173     | 21      | 21     | 789     | 1033 |                        |
| Upper Fraser                  | 26      | 24     | 453    | 625     | 14      | 14     | 550     | 566  |                        |
| Upper Fraser Highlands        | 4       | 4      | 20     | 24      | 14      | 14     | 230     | 326  |                        |
| Windward Island<br>Mountains  | 30      | 29     | 778    | 1322    | 12      | 12     | 159     | 152  |                        |

#### 4.2 Survey Results and Selection of Index Sites

The survey was distributed to the regional MOELP offices in March, 1998 and all written responses were received by the end of July, 1998. Thereafter, discussion of the selections continued by telephone and email. All sites were selected for mapping by the end of October, 1998.

In completing the survey, suggestions were made to change four Ecoregion names and one Ecoregion boundary as originally defined by Perrin and Blyth (1998). The changes were accepted as follows:

- The Upper Fraser Trench was changed to Upper Fraser Highlands to reflect its high elevation characteristics;
- The Thompson-Okanagan Plateau was changed to the Thompson Plateau because the Ecoregion does not include areas of the Okanagan which is in the Ecoregion to the south;
- The Central Rocky Mountains was changed to the Northern Rockies because there was no Ecoregion with a Rocky Mountain name further to the north;
- The Bute Inlets was renamed Southern Inlets to avoid using a name that favoured one inlet over another;

 The Ecoregion originally called South Pacific Ranges was actually one small watershed group called Jervis Inlet. There was little justification in keeping it as a small Ecoregion unto itself and from a climatic point of view it can be considered part of the Georgia Basin as has been done in recent papers describing regional water quality (e.g. Young 1996). For this reason, South Pacific Ranges was retained as a watershed group called Jervis Inlet but assigned to the Georgia Basin Ecoregion.

The revised listing of Ecoregion names is provided in Appendix A.

Recommended index lakes and streams are listed in Tables 3 and 4 respectively. With the exception of the Hecate Lowland Ecoregion, at least one lake and one stream site was selected for each of the 45 Ecoregions. Due to inaccessibility for routine sampling, a stream site was not selected in the Hecate Lowlands. Where a large reservoir and many smaller lakes were dominant aquatic features, one lake site and a reservoir site was selected (e.g. Chilcotin Ranges, Nechako Plateau, Sayward, Southern Selkirk Mountains, Kinbasket). A large and small lake were assigned index status in some Ecoregions where one or two large lakes were present with a larger number of much smaller lakes (e.g. Southern Inlets, Windward Island Mountains, Columbia Mountains, Shuswap Highlands, and Babine Upland). Two stream sites (high and low elevation) were assigned where elevational variation that can influence water chemistry was a strong feature of the Ecoregion (e.g. Chilcotin Ranges). Where there were large and small rivers present in the same Ecoregion (e.g. Columbia Mountains, Southern Selkirk Mountains, Southern Pacific Ranges), a small and large stream index site was selected. The Georgia Basin was unique by including an index stream and lake on each of the mainland and Vancouver Island sides of the Ecoregion. In total, 55 index lake sites and 50 index stream sites were selected. The distribution of index site names and numbers as they are presently logged into AECD are shown in Figure 1.

84% of the selected lake sites and 82% of the stream sites were well known to the regional biologists who completed the survey or project team members. Four lake sites and three stream sites that were selected using the data base search were completely unknown, having not been visited by any people who were contacted and had not been examined with respect to water quality issues, despite some data history. These lakes included site E206391 in the Nechako Plateau, DFOS\_30 in the Hecate Lowland, DFOS\_3 in the Queen Charlottes, and RL5\_7 in the Upper Fraser Highland. The unknown streams included SROS\_bscl in the Nass Basin, SROS\_d2 in the Babine Upland, and SROS\_rcw4 in the Omineca Mountains. Other streams and lakes within the unknown category were familiar to regional biologists or project members but there was little or no data history from which to assess general water quality. These lakes included Atlin Lake in the North Coastal Mountains (one of the largest pristine lakes in the Province but without a data history), Owikeno Lake in the Owikeno Ranges, Connor Lake in the Southern Rockies, Boomerang Lake in the Babine Upland, Germansen Lake in the Omineca Mountains. The stream sites included Maclvor Creek in the Nechako Plateau,

Chapman Creek in the Georgia Basin, Theodosia River in the Southern Inlets, and the Liard River in the Liard Plateau. Despite uncertainties about the selection of these unfamiliar sites, no other sites appeared to be better choices in the respective Ecoregions.

80% of the lake sites and 70% of the stream sites were those in the top 5 sites in AECD having greatest number of water quality parameters measured, greatest number of samples collected, or greatest data diversity of all sites examined in the respective Ecoregions (Tables 3 and 4). Where a top 5 site, in terms of available data, was not selected, it was known to be affected by an anomalous pollution source that had affected the site historically or could affect water quality in the future or it was not considered representative of the Ecoregion. Alternative sites that were selected were known from local knowledge to be representative of the Ecoregion and separated from effects of land disturbance or other pollution sources as much as was considered typical of least disturbed lakes and streams in the Ecoregion.

Despite many of the sites being data-rich compared to other locations in the AECD, greatest sample sizes for each of the chemical attributes that characterised the sites were generally small (Tables 5 and 6). 58% of the 170 lake site and attribute combinations had sample sizes  $\leq$ 10 and 94% had sample sizes <100. Similarly, 50% of the 158 stream site and attribute combinations had sample sizes <100. In contrast, a few sites where long term monitoring has been active had abundant data. These sites included:

- Kootenay Lake (long term enrichment studies and restoration),
- Okanagan Lake (wastewater treatment monitoring and basin planning),
- Buttle Lake (long term mine impact monitoring),
- Lizard Lake (acid rain trend analysis),
- Kootenay River at Picture Valley (Federal/Provincial monitoring program),
- St. Mary River (control site for past Cominco discharge monitoring),
- Nechako River at Fort Fraser (monitoring for Kemano Completion and mitigation activities),
- Similkameen River (long term agriculture and mine impact monitoring)
- Elk River (mine impact monitoring)
- Columbia River at Birchbank (Federal/Provincial monitoring program)
- Nicola River at Spences Bridge (agriculture impact monitoring)
- Fraser River at Hansard (Federal/Provincial monitoring program).

While the recommended index sites did meet the criterion of having data, it was clear that at more than half of the sites, the amount of data was small and not adequate with which to conduct statistical analysis that may be required for meeting objectives of an index site system (Section 1.0). Data ranges and median values for the measured parameters are listed in Tables 5 and 6 and descriptions of chemical characteristics of

ecozones where the index sites are located was prepared by Perrin and Blyth (1998). More robust and really useful analyses that may include time series or repeated measures analysis or spatial and temporal comparisons are generally not possible with the available data that is logged into AECD. For this reason, data precision must be improved with routine water sample collections and potentially with sources of data that were not originally logged into AECD but are known to exist in independent data bases. A possible strategy for doing this is outlined in Section 5.0.

| Management        | Ecoprovince               | Ecoregion                    | Lake/reservoir Name               | Site Number      | In Top 5 Sites having |
|-------------------|---------------------------|------------------------------|-----------------------------------|------------------|-----------------------|
| Area              |                           |                              |                                   | 1101000          | most data in AECD?    |
| Skeena            | Central Interior          | Bulkley Basin                | Tyhee Lake                        | 1131009          | yes                   |
| Caribou           | Central Interior          | Caribou Plateau              | Crooked Lake near Center          | 1170017          | yes                   |
| Southern Interior | Central Interior          | Central Interior Plateau     | Watch Lake                        | E220537          | yes                   |
| Southern Interior | Central Interior          | Chilcotin Ranges             | Tyaughton Lake, centre            | 1131201          | no                    |
| Southern Interior | Central Interior          | Chilcotin Ranges             | Seton Lake at dam                 | E231397          | no                    |
| Caribou           | Central Interior          | Dean River                   | Nimpo Lk. At center               | E206952          | yes                   |
| Omineca-Peace     | Central Interior          | Lower Nechako                | Fraser Lake deep stn              | 400411           | yes                   |
| Skeena            | Central Interior          | Nechako Plateau              | unknown                           | E206391          | yes                   |
| Skeena            | Central Interior          | Nechako Plateau              | Ootsa Lake at Ootsa               |                  | no                    |
| Caribou           | Central Interior          | Pothole Lakes                | Lac La Hache off Emerald Is.      | 603015           | yes                   |
| Lower Mainland    | Coast and Mountains       | Eastern Pacific Ranges       | Kawkawa Lake                      | 300150           | yes                   |
| Skeena            | Coast and Mountains       | Exposed Fjords               | Lachmach Lake                     | E206345          | yes                   |
| Vancouver Island  | Coast and Mountains       | Georgia Basin                | Stocking Lake                     | E206290          | yes                   |
| Lower Mainland    | Coast and Mountains       | Georgia Basin                | Sakinaw Lake                      |                  | no                    |
| Skeena            | Coast and Mountains       | Hecate Lowland               | unknown                           | DFOS 30          | yes                   |
| Skeena            | Coast and Mountains       | Nass basin                   | Yellen L                          | E223605          | yes                   |
| Skeena            | Coast and Mountains       | Nass Ranges                  | Lakelse Lake                      | 400313           | yes                   |
| Vancouver Island  | Coast and Mountains       | Nimpkish                     | Quatse Lake                       | E216693          | yes                   |
| Skeena            | Coast and Mountains       | North Coastal Mountains      | Atlin Lake                        |                  | no                    |
| Caribou           | Coast and Mountains       | Northern Pacific Ranges      | Horn Lk at Deepest Pt.            | E206674          | yes                   |
| Caribou           | Coast and Mountains       | Owikeno Ranges               | Owikeno Lake                      |                  | no                    |
| Vancouver Island  | Coast and Mountains       | Puget Basin                  | Maxwell Lake on Saltspring Island | 1130022          | yes                   |
| Skeena            | Coast and Mountains       | Queen Charlotte Islands      | unknown                           | DFOS 3           | yes                   |
| Vancouver Island  | Coast and Mountains       | Sayward                      | Buttle Lake north                 | 130088           | yes                   |
| Vancouver Island  | Coast and Mountains       | Sayward                      | Upper Quinsam Lake                | 1130098          | no                    |
| Lower Mainland    | Coast and Mountains       | Southern Inlets              | Powell Lake                       |                  | no                    |
| Lower Mainland    | Coast and Mountains       | Southern Pacific Ranges      | Harrison Lake                     | 300044           | yes                   |
| Vancouver Island  | Coast and Mountains       | Windward Island Mountains    | Lizard Lake                       | E206283          | yes                   |
| Vancouver Island  | Coast and Mountains       | Windward Island Mountains    | Sproat Lake at outlet             | E218226          | no                    |
| Skeena            | Northern Boreal Mountains | Cassiar Ranges               | Jennings Lk.                      | 1130689          | yes                   |
| Omineca-Peace     | Northern Boreal Mountains | Liard Plateau                | Birches Lk.                       | 1132217          | yes                   |
| Omineca-Peace     | Northern Boreal Mountains | Muskwa Ranges                | Kluachesi Lk                      | 1132051          | yes                   |
| Skeena            | Northern Boreal Mountains | Stikine Plateau              | Butte Lake                        | E223362          | ,                     |
| Omineca-Peace     | Peace Plains              | Peace Plains                 | Swan Lake                         | 400935           | yes                   |
|                   |                           |                              |                                   | 400935<br>500236 | yes                   |
| Southern Interior | Southern Interior         | Okanagan<br>Thomanan Distagu | Okanagan Lake at Kelowna          | 603006           | yes                   |
| Southern Interior | Southern Interior         | Thomspon Plateau             | Nicola Lake at deepest point      | 003000           | yes                   |

**Table 3**. Recommended index lake and reservoir sites including site numbers that are shown on the accompanying map.

| Management        | Ecoprovince                 | Ecoregion                  | Lake/reservoir Name           | Site Number | In Top 5 Sites having |
|-------------------|-----------------------------|----------------------------|-------------------------------|-------------|-----------------------|
| Area              |                             |                            |                               |             | most data in AECD?    |
| Kootenays         | Southern Interior Mountains | Columbia Mountains         | Kootenay lake                 | 200034      | yes                   |
| Kootenays         | Southern Interior Mountains | Columbia Mountains         | Windermere Lake               | 200051      | yes                   |
| Kootenays         | Southern Interior Mountains | Kinbasket                  | Mica behind dam               | 1100501     | yes                   |
| Kootenays         | Southern Interior Mountains | Kinbasket                  | Blackwater                    | 1132233     | yes                   |
| Caribou           | Southern Interior Mountains | Quesnel Highlands          | Quesnel Lake                  |             | yes                   |
| Southern Interior | Southern Interior Mountains | Shuswap Highlands          | Mabel Lake at Tsuius Creek    | 500117      | yes                   |
| Southern Interior | Southern Interior Mountains | Shuswap Highlands          | Shuswap Lake west of Sorrento | 500123      | yes                   |
| Kootenays         | Southern Interior Mountains | Southern Rockies           | Connor Lake                   | E232242     | nc                    |
| Kootenays         | Southern Interior Mountains | Southern Selkirk Mountains | Lower Arrow                   | 200523      | nc                    |
| Kootenays         | Southern Interior Mountains | Southern Selkirk Mountains | Slocan Lake Midlake-Silverton | 200521      | yes                   |
| Omineca-Peace     | Southern Interior Mountains | Upper Fraser Highland      | unknown                       | RL5_7       | yes                   |
| Omineca-Peace     | Sub-Boreal Interior         | Babine Upland              | Stuart Lake                   | E206957     | yes                   |
| Skeena            | Sub-Boreal Interior         | Babine Upland              | Boomerang Lake                | 11300334    | yes                   |
| Omineca-Peace     | Sub-Boreal Interior         | Northern Rockies           | Azouzetta Lake deep stn       | E206655     | yes                   |
| Omineca-Peace     | Sub-Boreal Interior         | Omineca Mountains          | Germansen Lk                  | 1134023     | yes                   |
| Skeena            | Sub-Boreal Interior         | Skeena Mountains           | Bob Quinn Lake                | 1130342     | yes                   |
| Omineca-Peace     | Sub-Boreal Interior         | Takla Manson Plateau       | Burden Lk                     | 1134013     | yes                   |
| Omineca-Peace     | Sub-Boreal Interior         | Upper Fraser               | Bednesti Lk                   | 400490      | yes                   |
| Omineca-Peace     | Taiga Plains                | Taiga Plains               | Marion Lake                   | 1132029     | yes                   |

**Table 4.** Recommended index stream sites including site numbers that are shown on the accompanying map.

| Management<br>Area | Ecoprovince      | Ecoregion                | Stream Name                        | Site Number | In Top 5 Sites<br>having most<br>data in AECD? |
|--------------------|------------------|--------------------------|------------------------------------|-------------|------------------------------------------------|
| Skeena             | Central Interior | Bulkley Basin            | Bulkley River at Quick             | 920088      | yes                                            |
| Caribou            | Central Interior | Caribou Plateau          | Canim R. above Canim Falls         | 600051      | yes                                            |
| Southern Interior  | Central Interior | Central Interior Plateau | Bonaparte River u/s Clinton Cr.    | 600017      | yes                                            |
| Southern Interior  | Central Interior | Chilcotin Ranges         | Stein River near mouth             | 600027      | yes                                            |
| Southern Interior  | Central Interior | Chilcotin Ranges         | Cadwallader Creek u/s Bralorne     | E217521     | yes                                            |
| Caribou            | Central Interior | Dean River               | Dean River u/s Lodge Cr.           | 600042      | yes                                            |
| Omineca-Peace      | Central Interior | Lower Nechako            | Nechako River u/s of Fort Fraser   | 400629      | yes                                            |
| Skeena             | Central Interior | Nechako Plateau          | Maclvor Creek inflow to Ootsa Lake |             | no                                             |
| Caribou            | Central Interior | Pothole Lakes            | Bridge Creek at Horse Lake Rd.     | 600137      | no                                             |

| Management<br>Area | Ecoprovince                 | Ecoregion                  | Stream Name                            | Site Number        | In Top 5 Sites<br>having most<br>data in AECD? |
|--------------------|-----------------------------|----------------------------|----------------------------------------|--------------------|------------------------------------------------|
| Lower Mainland     | Coast and Mountains         | Eastern Pacific Ranges     | Silverhope Creek                       | 300048             | yes                                            |
| Skeena             | Coast and Mountains         | Exposed Fjords             | Kitimat River at bridge                | 430025             | yes                                            |
| Vancouver Island   | Coast and Mountains         | Georgia Basin              | Englishman River at highway            | 121580             | yes                                            |
| Lower Mainland     | Coast and Mountains         | Georgia Basin              | Chapman Creek                          | 300106             | n                                              |
| Skeena             | Coast and Mountains         | Hecate Lowland             | unknown                                | DFOS_30            | yes                                            |
| Skeena             | Coast and Mountains         | Nass Basin                 | unknown                                | SROS_bscl          | yes                                            |
| Skeena             | Coast and Mountains         | Nass Ranges                | Skeena River                           | 920092             | yes                                            |
| Vancouver Island   | Coast and Mountains         | Nimpkish                   | Tsitika River                          | E207676            | yes                                            |
| Skeena             | Coast and Mountains         | North Coastal Mountains    | Cascade Creek above Premier mine       | E220201            | n                                              |
| Caribou            | Coast and Mountains         | Northern Pacific Ranges    | McClinchy Creek                        | 600304             | yes                                            |
| Caribou            | Coast and Mountains         | Owikeno Ranges             | stream draining into Owikeno Lake      |                    | n                                              |
| Vancouver Island   | Coast and Mountains         | Puget Basin                | Shawnigan Creek at highway             | 127217             | yes                                            |
| Skeena             | Coast and Mountains         | Queen Charlotte Islands    | Yakoun River                           | 700173             | yes                                            |
| Vancouver Island   | Coast and Mountains         | Sayward                    | Salmon River at highway                | 127180             | yes                                            |
| Lower Mainland     | Coast and Mountains         | Southern Inlets            | Theodosia River                        |                    | 'n                                             |
| Lower Mainland     | Coast and Mountains         | Southern Pacific Ranges    | Norrish Creek                          | 300029             | yes                                            |
| Lower Mainland     | Coast and Mountains         | Southern Pacific Ranges    | Squamish River                         | 300194             | yes                                            |
| Vancouver Island   | Coast and Mountains         | Windward Island Mountains  | Gold River at highway                  | E207792            | 'n                                             |
| Omineca-Peace      | Northern Boreal Mountains   | Cassiar Ranges             | Galen Creek                            | 400403             | yes                                            |
| Omineca-Peace      | Northern Boreal Mountains   | Liard Plateau              | Liard River at Liard R.                |                    | yes                                            |
| Omineca-Peace      | Northern Boreal Mountains   | Muskwa Ranges              | Toad River at highway                  |                    | 'n                                             |
| Skeena             | Northern Boreal Mountains   | Stikine Plateau            | upper Bearskin Creek                   | E215755            | n                                              |
| Omineca-Peace      | Peace Plains                | Peace Plains               | Peace River 3.2 KM u/s of FSJ          | 400134             | yes                                            |
| Southern Interior  | Southern Interior           | Okanagan                   | Similkameen River                      | 500073             | yes                                            |
| Southern Interior  | Southern Interior           | Thomspon Plateau           | Nicola River near Spences Bridge       | 0600007 or E216848 | n                                              |
| Kootenay           | Southern Interior Mountains | Columbia Mountains         | Kootenay River @ Picture Valley        | 200038             | yes                                            |
| Kootenay           | Southern Interior Mountains | Columbia Mountains         | St. Mary River near Cominco Pump house | 200029             | yes                                            |
| Kootenay           | Southern Interior Mountains | Kinbasket                  | Blackwater Creek                       | E206765            | yes                                            |
| Caribou            | Southern Interior Mountains | Quesnel Highlands          | Caribou R. at Keithly Cr. Rd. Bridge   | 600035             | yes                                            |
| Southern Interior  | Southern Interior Mountains | Shuswap Highlands          | Eagle River at Solsqua Road Bridge     | 500025             | yes                                            |
| Kootenay           | Southern Interior Mountains | Southern Rockies           | Elk River @ Phillips                   | 200016             | yes                                            |
| Kootenay           | Southern Interior Mountains | Southern Selkirk Mountains | Columbia River @ Birchbank             | 200003             | yes                                            |
| Kootenay           | Southern Interior Mountains | Southern Selkirk Mountains | Slocan River near Passmore             | E213060            | n                                              |
| Omineca-Peace      | Southern Interior Mountains | Upper Fraser Highland      | Fraser River at Hansard, midstream     | E206580            | yes                                            |
| Skeena             | Sub-Boreal Interior         | Babine Upland              | unknown name                           | SROS_d2            | yes                                            |
| Omineca-Peace      | Sub-Boreal Interior         | Northern Rockies           | Murray River u/s of Quintette Coal     | E206322            | n                                              |
| Omineca-Peace      | Sub-Boreal Interior         | Omineca Mountains          | unknown                                | SROS_rcw4          | yes                                            |

| Management<br>Area | Ecoprovince         | Ecoregion            | Stream Name                     | Site Number | In Top 5 Sites<br>having most<br>data in AECD? |
|--------------------|---------------------|----------------------|---------------------------------|-------------|------------------------------------------------|
| Skeena             | Sub-Boreal Interior | Skeena Mountains     | Fulton River u/s hatchery       |             | no                                             |
| Omineca-Peace      | Sub-Boreal Interior | Takla Manson Plateau | Nation River                    | E209686     | yes                                            |
| Omineca-Peace      | Sub-Boreal Interior | Upper Fraser         | Salmon River                    | 400028      | no                                             |
| Omineca-Peace      | Taiga Plains        | Taiga Plains         | Muskwa River u/s of Fort Nelson |             | no                                             |

**Table 5**. Scope of chemical attribute data in AECD for each index lake or reservoir. Chemical parameters are those used for descriptions of ecozones as described by Perrin and Blyth (1998).

| ECOPROVINCE                 | ECOREGION                | SITE NAME         | SITE NUMBER | PARAMETER       | SAMPLE<br>SIZE | MIN     | MAX     | MEDIAN  |
|-----------------------------|--------------------------|-------------------|-------------|-----------------|----------------|---------|---------|---------|
| Sub-Boreal Interior         | Babine Upland            | Boomerang Lake    | 11300334    | no data in AECD |                |         |         |         |
| Sub-Boreal Interior         | Babine Upland            | Stuart Lake       | E206957     | ALK             | 2              | 44.300  | 44.600  | 44.600  |
| Sub-Boreal Interior         | Babine Upland            | Stuart Lake       | E206957     | PH              | 5              | 7.400   | 8.000   | 7.900   |
| Sub-Boreal Interior         | Babine Upland            | Stuart Lake       | E206957     | TDS             | 2              | 66.000  | 68.000  | 68.000  |
| Central Interior            | Bulkley Basin            | Tyhee Lake        | 1131009     | ALK             | 4              | 131.000 | 137.000 | 135.000 |
| Central Interior            | Bulkley Basin            | Tyhee Lake        | 1131009     | COL             | 10             | 5.000   | 15.000  | 5.000   |
| Central Interior            | Bulkley Basin            | Tyhee Lake        | 1131009     | PH              | 15             | 7.500   | 8.500   | 8.100   |
| Central Interior            | Bulkley Basin            | Tyhee Lake        | 1131009     | TSS             | 4              | 1.000   | 2.000   | 1.000   |
| Central Interior            | Bulkley Basin            | Tyhee Lake        | 1131009     | TURB            | 14             | 0.400   | 1.400   | 1.000   |
| Central Interior            | Caribou Plateau          | Crooked Lake      | 1170017     | PH              | 3              | 7.000   | 7.600   | 7.000   |
| Central Interior            | Caribou Plateau          | Crooked Lake      | 1170017     | TDS             | 3              | 30.000  | 32.000  | 30.000  |
| Northern Boreal Mountains   | Cassiar Ranges           | Jennings Lk.      | 1130689     | PH              | 2              | 7.200   | 7.200   | 7.200   |
| Northern Boreal Mountains   | Cassiar Ranges           | Jennings Lk.      | 1130689     | TDS             | 2              | 24.000  | 24.000  | 24.000  |
| Central Interior            | Central Interior Plateau | Watch Lake        | E220537     | ALK             | 3              | 216.000 | 241.000 | 222.000 |
| Central Interior            | Central Interior Plateau | Watch Lake        | E220537     | PH              | 3              | 8.200   | 8.700   | 8.600   |
| Central Interior            | Chilcotin Ranges         | Seton Lake at dam | E231397     | no data in AECD |                |         |         |         |
| Central Interior            | Chilcotin Ranges         | Tyaughton Lake    | 1131201     | no data in AECD |                |         |         |         |
| Southern Interior Mountains | Columbia Mountains       | Kootenay lake     | 200034      | ALK             | 694            | 16.200  | 87.000  | 65.900  |
| Southern Interior Mountains | Columbia Mountains       | Kootenay lake     | 200034      | COL             | 90             | 5.000   | 20.000  | 5.000   |
| Southern Interior Mountains | Columbia Mountains       | Kootenay lake     | 200034      | P_T             | 1028           | 0.003   | 0.121   | 0.005   |

16

| ECOPROVINCE                 | ECOREGION              | SITE NAME       | SITE NUMBER | PARAMETER | SAMPLE<br>SIZE | MIN     | MAX     | MEDIAN  |
|-----------------------------|------------------------|-----------------|-------------|-----------|----------------|---------|---------|---------|
| Southern Interior Mountains | Columbia Mountains     | Kootenay lake   | 200034      | PH        | 1574           | 5.500   | 9.400   | 8.000   |
| Southern Interior Mountains | Columbia Mountains     | Kootenay lake   | 200034      | TDS       | 536            | 64.000  | 144.000 | 100.000 |
| Southern Interior Mountains | Columbia Mountains     | Kootenay lake   | 200034      | TSS       | 265            | 1.000   | 4.000   | 1.000   |
| Southern Interior Mountains | Columbia Mountains     | Kootenay lake   | 200034      | TURB      | 921            | 0.100   | 22.000  | 0.400   |
| Southern Interior Mountains | Columbia Mountains     | Windermere Lake | 0200051     | ALK       | 31             | 51.000  | 135.000 | 99.000  |
| Southern Interior Mountains | Columbia Mountains     | Windermere Lake | 0200051     | COL       | 20             | 5.000   | 10.000  | 5.000   |
| Southern Interior Mountains | Columbia Mountains     | Windermere Lake | 0200051     | PH        | 70             | 8.000   | 8.990   | 8.400   |
| Southern Interior Mountains | Columbia Mountains     | Windermere Lake | 0200051     | TDS       | 35             | 110.000 | 444.000 | 166.000 |
| Southern Interior Mountains | Columbia Mountains     | Windermere Lake | 0200051     | TSS       | 14             | 1.000   | 3.000   | 1.000   |
| Southern Interior Mountains | Columbia Mountains     | Windermere Lake | 0200051     | TURB      | 38             | 0.400   | 7.100   | 0.900   |
| Central Interior            | Dean River             | Nimpo Lk.       | E206952     | ALK       | 3              | 98.900  | 100.000 | 99.100  |
| Central Interior            | Dean River             | Nimpo Lk.       | E206952     | PH        | 3              | 7.800   | 8.100   | 8.000   |
| Coast and Mountains         | Eastern Pacific Ranges | Kawkawa Lake    | 0300150     | ALK       | 4              | 36.145  | 40.348  | 37.269  |
| Coast and Mountains         | Eastern Pacific Ranges | Kawkawa Lake    | 0300150     | COL       | 3              | 5.000   | 5.000   | 5.000   |
| Coast and Mountains         | Eastern Pacific Ranges | Kawkawa Lake    | 0300150     | PH        | 4              | 7.498   | 7.862   | 7.780   |
| Coast and Mountains         | Eastern Pacific Ranges | Kawkawa Lake    | 0300150     | TDS       | 4              | 56.000  | 65.863  | 61.241  |
| Coast and Mountains         | Eastern Pacific Ranges | Kawkawa Lake    | 0300150     | TSS       | 2              | 1.442   | 1.710   | 1.710   |
| Coast and Mountains         | Eastern Pacific Ranges | Kawkawa Lake    | 0300150     | TURB      | 2              | 0.374   | 0.749   | 0.749   |
| Coast and Mountains         | Exposed Fjords         | Lachmach Lake   | E206345     | PH        | 1              | 6.000   | 6.000   | 6.000   |
| Coast and Mountains         | Exposed Fjords         | Lachmach Lake   | E206345     | TDS       | 3              | 10.000  | 10.000  | 10.000  |
| Coast and Mountains         | Exposed Fjords         | Lachmach Lake   | E206345     | TURB      | 1              | 0.500   | 0.500   | 0.500   |
| Coast and Mountains         | Georgia Basin          | Stocking Lake   | E206290     | ALK       | 13             | 6.900   | 11.100  | 9.900   |
| Coast and Mountains         | Georgia Basin          | Stocking Lake   | E206290     | COL       | 43             | 5.000   | 20.000  | 5.000   |
| Coast and Mountains         | Georgia Basin          | Stocking Lake   | E206290     | PH        | 79             | 5.700   | 7.600   | 7.027   |
| Coast and Mountains         | Georgia Basin          | Stocking Lake   | E206290     | TDS       | 82             | 12.000  | 42.000  | 24.000  |
| Coast and Mountains         | Georgia Basin          | Stocking Lake   | E206290     | TSS       | 7              | 1.000   | 2.000   | 1.000   |
| Coast and Mountains         | Georgia Basin          | Stocking Lake   | E206290     | TURB      | 39             | 0.200   | 1.200   | 0.400   |
| Coast and Mountains         | Hecate Lowland         |                 | DFOS_30     | TDS       | 5              | 13.300  | 21.000  | 14.000  |
| Southern Interior Mountains | Kinbasket              | Blackwater      | 1132233     | PH        | 2              | 8.200   | 8.200   | 8.200   |
| Southern Interior Mountains | Kinbasket              | Blackwater      | 1132233     | TDS       | 2              | 150.000 | 150.000 | 150.000 |
| Southern Interior Mountains | Kinbasket              | Mica behind dam | 1100501     | ALK       | 18             | 58.300  | 82.600  | 74.400  |
| Southern Interior Mountains | Kinbasket              | Mica behind dam | 1100501     | PH        | 36             | 7.000   | 8.200   | 7.900   |
| Southern Interior Mountains | Kinbasket              | Mica behind dam | 1100501     | TDS       | 12             | 82.000  | 96.000  | 86.000  |
| Southern Interior Mountains | Kinbasket              | Mica behind dam | 1100501     | TURB      | 30             | 0.400   | 2.400   | 0.800   |

| ECOPROVINCE               | ECOREGION               | SITE NAME            | SITE NUMBER | PARAMETER       | SAMPLE<br>SIZE | MIN     | MAX     | MEDIAN  |
|---------------------------|-------------------------|----------------------|-------------|-----------------|----------------|---------|---------|---------|
| Northern Boreal Mountains | Liard Plateau           | Birches Lk.          | 1132217     | PH              | 1              | 8.600   | 8.600   | 8.600   |
| Northern Boreal Mountains | Liard Plateau           | Birches Lk.          | 1132217     | TDS             | 1              | 392.000 | 392.000 | 392.000 |
| Central Interior          | Lower Nechako           | Fraser Lake deep stn | 0400411     | COL             | 4              | 5.000   | 5.000   | 5.000   |
| Central Interior          | Lower Nechako           | Fraser Lake deep stn | 0400411     | PH              | 29             | 7.300   | 8.200   | 7.800   |
| Central Interior          | Lower Nechako           | Fraser Lake deep stn | 0400411     | TDS             | 10             | 62.000  | 77.000  | 70.000  |
| Central Interior          | Lower Nechako           | Fraser Lake deep stn | 0400411     | TSS             | 10             | 1.000   | 3.000   | 2.000   |
| Central Interior          | Lower Nechako           | Fraser Lake deep stn | 0400411     | TURB            | 3              | 0.400   | 0.700   | 0.700   |
| Northern Boreal Mountains | Muskwa Ranges           | Kluachesi Lk         | 1132051     | PH              | 2              | 8.300   | 8.400   | 8.400   |
| Northern Boreal Mountains | Muskwa Ranges           | Kluachesi Lk         | 1132051     | TDS             | 2              | 206.000 | 206.000 | 206.000 |
| Coast and Mountains       | Nass Basin              | Yellen L             | E223605     | ALK             | 1              | 15.100  | 15.100  | 15.100  |
| Coast and Mountains       | Nass Basin              | Yellen L             | E223605     | PH              | 1              | 6.700   | 6.700   | 6.700   |
| Coast and Mountains       | Nass Basin              | Yellen L             | E223605     | TDS             | 1              | 38.000  | 38.000  | 38.000  |
| Coast and Mountains       | Nass Basin              | Yellen L             | E223605     | TSS             | 1              | 1.000   | 1.000   | 1.000   |
| Coast and Mountains       | Nass Ranges             | Lakelse Lake         | 0400313     | ALK             | 5              | 16.500  | 22.500  | 19.300  |
| Coast and Mountains       | Nass Ranges             | Lakelse Lake         | 0400313     | COL             | 7              | 5.000   | 30.000  | 15.000  |
| Coast and Mountains       | Nass Ranges             | Lakelse Lake         | 0400313     | PH              | 10             | 7.200   | 7.500   | 7.400   |
| Coast and Mountains       | Nass Ranges             | Lakelse Lake         | 0400313     | TDS             | 2              | 36.000  | 40.000  | 40.000  |
| Coast and Mountains       | Nass Ranges             | Lakelse Lake         | 0400313     | TSS             | 7              | 1.000   | 9.000   | 1.000   |
| Coast and Mountains       | Nass Ranges             | Lakelse Lake         | 0400313     | TURB            | 7              | 0.600   | 11.000  | 0.900   |
| Central Interior          | Nechako Plateau         | Ootsa Lake at Ootsa  |             | no data in AECD |                |         |         |         |
| Central Interior          | Nechako Plateau         |                      | E206391     | TDS             | 2              | 60.000  | 60.000  | 60.000  |
| Central Interior          | Nechako Plateau         |                      | E206391     | TURB            | 2              | 0.900   | 1.100   | 1.100   |
| Coast and Mountains       | Nimpkish                | Quatse Lake          | E216693     | ALK             | 3              | 5.500   | 5.900   | 5.700   |
| Coast and Mountains       | Nimpkish                | Quatse Lake          | E216693     | COL             | 10             | 55.000  | 100.000 | 80.000  |
| Coast and Mountains       | Nimpkish                | Quatse Lake          | E216693     | PH              | 3              | 6.100   | 6.300   | 6.200   |
| Coast and Mountains       | Nimpkish                | Quatse Lake          | E216693     | TSS             | 9              | 1.000   | 13.000  | 1.000   |
| Coast and Mountains       | Nimpkish                | Quatse Lake          | E216693     | TURB            | 9              | 0.400   | 1.600   | 0.600   |
| Coast and Mountains       | North Coastal Mountains | Atlin Lake           |             | no data in AECD |                |         |         |         |
| Coast and Mountains       | Northern Pacific Ranges | Horn Lk              | E206674     | ALK             | 2              | 124.000 | 128.000 | 128.000 |
| Coast and Mountains       | Northern Pacific Ranges | Horn Lk              | E206674     | PH              | 2              | 8.200   | 8.200   | 8.200   |
| Sub-Boreal Interior       | Northern Rockies        | Azouzetta Lake       | E206655     | ALK             | 1              | 82.700  | 82.700  | 82.700  |
| Sub-Boreal Interior       | Northern Rockies        | Azouzetta Lake       | E206655     | PH              | 3              | 7.800   | 8.000   | 7.800   |
| Sub-Boreal Interior       | Northern Rockies        | Azouzetta Lake       | E206655     | TDS             | 1              | 100.000 | 100.000 | 100.000 |
| Southern Interior         | Okanagan                | Okanagan Lake at     | 0500236     | ALK             | 23             | 106.000 | 112.000 | 110.000 |

| ECOPROVINCE         | ECOREGION         | SITE NAME                            | SITE NUMBER | PARAMETER | SAMPLE<br>SIZE | MIN     | MAX     | MEDIAN  |
|---------------------|-------------------|--------------------------------------|-------------|-----------|----------------|---------|---------|---------|
|                     |                   | Kelowna                              |             |           |                |         |         |         |
| Southern Interior   | Okanagan          | Okanagan Lake at<br>Kelowna          | 0500236     | COL       | 4              | 5.000   | 5.000   | 5.000   |
| Southern Interior   | Okanagan          | Okanagan Lake at<br>Kelowna          | 0500236     | PH        | 275            | 3.900   | 9.500   | 8.100   |
| Southern Interior   | Okanagan          | Okanagan Lake at<br>Kelowna          | 0500236     | TDS       | 29             | 156.000 | 170.000 | 162.000 |
| Southern Interior   | Okanagan          | Okanagan Lake at<br>Kelowna          | 0500236     | TSS       | 2              | 2.000   | 2.000   | 2.000   |
| Southern Interior   | Okanagan          | Okanagan Lake at<br>Kelowna          | 0500236     | TURB      | 54             | 0.200   | 0.900   | 0.500   |
| Sub-Boreal Interior | Omineca Mountains | Germansen Lk                         | 1134023     | PH        | 2              | 7.500   | 7.600   | 7.600   |
| Sub-Boreal Interior | Omineca Mountains | Germansen Lk                         | 1134023     | TDS       | 2              | 56.000  | 58.000  | 58.000  |
| Peace Plains        | Peace Plains      | Swan Lake                            | 0400935     | ALK       | 11             | 91.900  | 141.000 | 103.000 |
| Peace Plains        | Peace Plains      | Swan Lake                            | 0400935     | PH        | 18             | 7.300   | 8.300   | 8.000   |
| Peace Plains        | Peace Plains      | Swan Lake                            | 0400935     | TDS       | 11             | 150.000 | 206.000 | 160.000 |
| Peace Plains        | Peace Plains      | Swan Lake                            | 0400935     | TSS       | 2              | 4.000   | 4.000   | 4.000   |
| Peace Plains        | Peace Plains      | Swan Lake                            | 0400935     | TURB      | 9              | 3.900   | 8.200   | 7.400   |
| Central Interior    | Pothole Lakes     | Lac La Hache                         | 0603015     | ALK       | 15             | 247.000 | 263.000 | 252.000 |
| Central Interior    | Pothole Lakes     | Lac La Hache                         | 0603015     | COL       | 7              | 5.000   | 5.000   | 5.000   |
| Central Interior    | Pothole Lakes     | Lac La Hache                         | 0603015     | PH        | 79             | 8.100   | 8.800   | 8.500   |
| Central Interior    | Pothole Lakes     | Lac La Hache                         | 0603015     | TDS       | 22             | 260.000 | 486.000 | 284.000 |
| Central Interior    | Pothole Lakes     | Lac La Hache                         | 0603015     | TSS       | 8              | 1.000   | 3.000   | 1.000   |
| Central Interior    | Pothole Lakes     | Lac La Hache                         | 0603015     | TURB      | 17             | 0.200   | 2.800   | 0.700   |
| Coast and Mountains | Puget Basin       | Maxwell Lake on<br>Saltspring Island | 1130022     | ALK       | 23             | 12.400  | 16.700  | 13.600  |
| Coast and Mountains | Puget Basin       | Maxwell Lake on Saltspring Island    | 1130022     | COL       | 39             | 5.000   | 20.000  | 5.000   |
| Coast and Mountains | Puget Basin       | Maxwell Lake on Saltspring Island    | 1130022     | PH        | 115            | 5.910   | 7.800   | 7.100   |
| Coast and Mountains | Puget Basin       | Maxwell Lake on Saltspring Island    | 1130022     | TDS       | 91             | 16.000  | 56.000  | 40.000  |
| Coast and Mountains | Puget Basin       | Maxwell Lake on<br>Saltspring Island | 1130022     | TSS       | 17             | 1.000   | 3.000   | 1.000   |
| Coast and Mountains | Puget Basin       | Maxwell Lake on                      | 1130022     | TURB      | 49             | 0.200   | 1.800   | 0.600   |

Saltspring Island

| ECOPROVINCE                 | ECOREGION               | SITE NAME                        | SITE NUMBER | PARAMETER       | SAMPLE<br>SIZE | MIN     | MAX     | MEDIAN  |
|-----------------------------|-------------------------|----------------------------------|-------------|-----------------|----------------|---------|---------|---------|
| Coast and Mountains         | Queen Charlotte Islands |                                  | DFOS_3      | TDS             | 5              | 23.300  | 35.100  | 30.000  |
| Southern Interior Mountains | Quesnel Highlands       | Quesnel Lake                     |             | no data in AECD |                |         |         |         |
| Coast and Mountains         | Sayward                 | Buttle Lake north                | 0130088     | ALK             | 17             | 22.900  | 25.200  | 24.000  |
| Coast and Mountains         | Sayward                 | Buttle Lake north                | 0130088     | COL             | 10             | 5.000   | 5.000   | 5.000   |
| Coast and Mountains         | Sayward                 | Buttle Lake north                | 0130088     | PH              | 592            | 5.200   | 7.980   | 7.340   |
| Coast and Mountains         | Sayward                 | Buttle Lake north                | 0130088     | TSS             | 27             | 1.000   | 2.000   | 1.000   |
| Coast and Mountains         | Sayward                 | Buttle Lake north                | 0130088     | TURB            | 18             | 0.200   | 1.100   | 0.600   |
| Coast and Mountains         | Sayward                 | Upper Quinsam Lake               | 1130098     | ALK             | 8              | 8.300   | 22.100  | 20.800  |
| Coast and Mountains         | Sayward                 | Upper Quinsam Lake               | 1130098     | COL             | 11             | 5.000   | 10.000  | 5.000   |
| Coast and Mountains         | Sayward                 | Upper Quinsam Lake               | 1130098     | PH              | 53             | 6.140   | 7.400   | 7.060   |
| Coast and Mountains         | Sayward                 | Upper Quinsam Lake               | 1130098     | TSS             | 14             | 1.000   | 2.000   | 1.000   |
| Coast and Mountains         | Sayward                 | Upper Quinsam Lake               | 1130098     | TURB            | 12             | 0.200   | 1.000   | 0.400   |
| Southern Interior Mountains | Shuswap Highlands       | Mabel Lake at Tsuius<br>Creek    | 0500117     | ALK             | 15             | 32.500  | 44.900  | 43.000  |
| Southern Interior Mountains | Shuswap Highlands       | Mabel Lake at Tsuius<br>Creek    | 0500117     | COL             | 6              | 5.000   | 10.000  | 5.000   |
| Southern Interior Mountains | Shusw ap Highlands      | Mabel Lake at Tsuius<br>Creek    | 0500117     | PH              | 196            | 6.690   | 8.500   | 7.500   |
| Southern Interior Mountains | Shuswap Highlands       | Mabel Lake at Tsuius<br>Creek    | 0500117     | TDS             | 25             | 50.000  | 72.000  | 62.000  |
| Southern Interior Mountains | Shuswap Highlands       | Mabel Lake at Tsuius<br>Creek    |             | TSS             | 3              | 1.000   | 2.000   | 2.000   |
| Southern Interior Mountains | Shuswap Highlands       | Mabel Lake at Tsuius<br>Creek    | 0500117     | TURB            | 27             | 0.300   | 1.900   | 0.500   |
| Southern Interior Mountains | Shuswap Highlands       | Shuswap Lake west<br>of Sorrento | 0500123     | ALK             | 16             | 29.000  | 38.000  | 35.100  |
| Southern Interior Mountains | Shuswap Highlands       | Shuswap Lake west<br>of Sorrento | 0500123     | COL             | 11             | 5.000   | 10.000  | 5.000   |
| Southern Interior Mountains | Shuswap Highlands       | Shuswap Lake west<br>of Sorrento | 0500123     | PH              | 71             | 7.000   | 8.900   | 7.700   |
| Southern Interior Mountains | Shuswap Highlands       | Shuswap Lake west<br>of Sorrento | 0500123     | TDS             | 44             | 38.000  | 62.000  | 56.000  |
| Southern Interior Mountains | Shuswap Highlands       | Shuswap Lake west<br>of Sorrento | 0500123     | TSS             | 8              | 0.900   | 2.000   | 1.400   |
| Southern Interior Mountains | Shuswap Highlands       | Shuswap Lake west<br>of Sorrento | 0500123     | TURB            | 33             | 0.300   | 3.700   | 0.500   |
| Sub-Boreal Interior         | Skeena Mountains        | Bob Quinn Lake                   | 1130342     | TDS             | 2              | 154.000 | 166.000 | 166.000 |
|                             |                         |                                  |             |                 |                |         |         |         |

| ECOPROVINCE                 | ECOREGION                     | SITE NAME                         | SITE NUMBER | PARAMETER       | SAMPLE<br>SIZE | MIN     | MAX     | MEDIAN  |
|-----------------------------|-------------------------------|-----------------------------------|-------------|-----------------|----------------|---------|---------|---------|
| Coast and Mountains         | Southern Inlets               | Powell Lake                       |             | no data in AECD |                |         |         |         |
| Coast and Mountains         | Southern Inlets               | Sakinaw Lake                      |             | no data in AECD |                |         |         |         |
| Coast and Mountains         | Southern Pacific Ranges       | Harrison Lake                     | 0300044     | ALK             | 13             | 14.097  | 16.397  | 15.060  |
| Coast and Mountains         | Southern Pacific Ranges       | Harrison Lake                     | 0300044     | COL             | 5              | 5.000   | 5.000   | 5.000   |
| Coast and Mountains         | Southern Pacific Ranges       | Harrison Lake                     | 0300044     | PH              | 13             | 7.100   | 7.840   | 7.583   |
| Coast and Mountains         | Southern Pacific Ranges       | Harrison Lake                     | 0300044     | TDS             | 13             | 26.000  | 56.000  | 31.000  |
| Coast and Mountains         | Southern Pacific Ranges       | Harrison Lake                     | 0300044     | TSS             | 11             | 1.000   | 3.000   | 1.000   |
| Coast and Mountains         | Southern Pacific Ranges       | Harrison Lake                     | 0300044     | TURB            | 4              | 0.300   | 17.000  | 2.700   |
| Southern Interior Mountains | Southern Rockies              | Connor Lake                       | E232242     | no data in AECD |                |         |         |         |
| Southern Interior Mountains | Southern Selkirk<br>Mountains | Lower Arrow                       | 200523      | no data in AECD |                |         |         |         |
| Southern Interior Mountains | Southern Selkirk<br>Mountains | Slocan Lake Midlake-<br>Silverton | 0200521     | ALK             | 6              | 35.800  | 39.100  | 38.400  |
| Southern Interior Mountains | Southern Selkirk<br>Mountains | Slocan Lake Midlake-<br>Silverton | 0200521     | PH              | 6              | 7.400   | 7.800   | 7.600   |
| Southern Interior Mountains | Southern Selkirk<br>Mountains | Slocan Lake Midlake-<br>Silverton | 0200521     | TDS             | 6              | 48.000  | 62.000  | 60.000  |
| Southern Interior Mountains | Southern Selkirk<br>Mountains | Slocan Lake Midlake-<br>Silverton | 0200521     | TSS             | 6              | 1.000   | 1.000   | 1.000   |
| Northern Boreal Mountains   | Stikine Plateau               | Butte Lake                        | E223362     | ALK             | 3              | 26.200  | 26.500  | 26.300  |
| Northern Boreal Mountains   | Stikine Plateau               | Butte Lake                        | E223362     | PH              | 3              | 7.600   | 7.600   | 7.600   |
| Northern Boreal Mountains   | Stikine Plateau               | Butte Lake                        | E223362     | TDS             | 3              | 36.000  | 68.000  | 48.000  |
| Northern Boreal Mountains   | Stikine Plateau               | Butte Lake                        | E223362     | TSS             | 3              | 1.000   | 1.000   | 1.000   |
| Taiga Plains                | Taiga Plains                  | Marion Lake                       | 1132029     | PH              | 2              | 8.700   | 8.800   | 8.800   |
| Taiga Plains                | Taiga Plains                  | Marion Lake                       | 1132029     | TDS             | 2              | 144.000 | 146.000 | 146.000 |
| Sub-Boreal Interior         | Takla Manson Plateau          | Burden Lk                         | 1134013     | TDS             | 2              | 110.000 | 138.000 | 138.000 |
| Southern Interior           | Thomspon Plateau              | Nicola Lake                       | 0603006     | ALK             | 2              | 94.000  | 95.100  | 95.100  |
| Southern Interior           | Thomspon Plateau              | Nicola Lake                       | 0603006     | PH              | 4              | 7.700   | 8.000   | 8.000   |
| Southern Interior           | Thomspon Plateau              | Nicola Lake                       | 0603006     | TDS             | 2              | 128.000 | 136.000 | 136.000 |
| Sub-Boreal Interior         | Upper Fraser                  | Bednesti Lk                       | 0400490     | COL             | 1              | 5.000   | 5.000   | 5.000   |
| Sub-Boreal Interior         | Upper Fraser                  | Bednesti Lk                       | 0400490     | PH              | 13             | 7.300   | 8.000   | 7.600   |
| Sub-Boreal Interior         | Upper Fraser                  | Bednesti Lk                       | 0400490     | TDS             | 1              | 107.000 | 107.000 | 107.000 |
| Sub-Boreal Interior         | Upper Fraser                  | Bednesti Lk                       | 0400490     | TSS             | 1              | 3.000   | 3.000   | 3.000   |
| Sub-Boreal Interior         | Upper Fraser                  | Bednesti Lk                       | 0400490     | TURB            | 1              | 0.800   | 0.800   | 0.800   |
| Southern Interior Mountains | Upper Fraser Highland         |                                   | RL5_7       | TDS             | 1              | 338.000 | 338.000 | 338.000 |

| ECOPROVINCE         | ECOREGION                    | SITE NAME             | SITE NUMBER | PARAMETER | SAMPLE<br>SIZE | MIN    | MAX     | MEDIAN |
|---------------------|------------------------------|-----------------------|-------------|-----------|----------------|--------|---------|--------|
| Coast and Mountains | Windward Island<br>Mountains | Lizard Lake           | E206283     | ALK       | 14             | 8.900  | 16.500  | 11.200 |
| Coast and Mountains | Windward Island<br>Mountains | Lizard Lake           | E206283     | PH        | 123            | 5.990  | 8.000   | 7.070  |
| Coast and Mountains | Windward Island<br>Mountains | Lizard Lake           | E206283     | TDS       | 99             | 12.000 | 54.000  | 24.000 |
| Coast and Mountains | Windward Island<br>Mountains | Lizard Lake           | E206283     | TSS       | 7              | 1.000  | 2.000   | 1.000  |
| Coast and Mountains | Windward Island<br>Mountains | Lizard Lake           | E206283     | TURB      | 6              | 0.300  | 0.400   | 0.400  |
| Coast and Mountains | Windward Island<br>Mountains | Sproat Lake at outlet | E218226     | alk       | 28             | 3.600  | 31.900  | 14.900 |
| Coast and Mountains | Windward Island<br>Mountains | Sproat Lake at outlet | E218226     | col       | 6              | 5.000  | 15.000  | 8.000  |
| Coast and Mountains | Windward Island<br>Mountains | Sproat Lake at outlet | E218226     | T_P       | 15             | 0.003  | 0.012   | 0.004  |
| Coast and Mountains | Windward Island<br>Mountains | Sproat Lake at outlet | E218226     | PH        | 44             | 5.900  | 8.400   | 7.000  |
| Coast and Mountains | Windward Island<br>Mountains | Sproat Lake at outlet | E218226     | TDS       | 42             | 18.100 | 122.000 | 34.000 |

**Table 6**. Scope of chemical attribute data in AECD for each index stream. Chemical parameters are those used for descriptions of ecozones as described by Perrin and Blyth (1998).

| ECOPROVINCE         | ECOREGION     | SITE NAME              | SITE<br>NUMBER | PARAMETER | SAMPLE<br>SIZE | MIN    | MAX     | MEDIAN |
|---------------------|---------------|------------------------|----------------|-----------|----------------|--------|---------|--------|
| Sub-Boreal Interior | Babine Upland |                        | SROS_d2        | ALK       | 7              | 24.000 | 110.000 | 51.000 |
| Sub-Boreal Interior | Babine Upland |                        | SROS_d2        | PH        | 7              | 6.500  | 8.200   | 7.300  |
| Sub-Boreal Interior | Babine Upland |                        | SROS_d2        | TSS       | 7              | 69.000 | 129.000 | 88.000 |
| Sub-Boreal Interior | Babine Upland |                        | SROS_d2        | TURB      | 7              | 0.200  | 4.400   | 0.600  |
| Central Interior    | Bulkley Basin | Bulkley River at Quick | 0920088        | PH        | 146            | 6.300  | 7.900   | 7.400  |
| Central Interior    | Bulkley Basin | Bulkley River at Quick | 0920088        | TDS       | 22             | 32.000 | 108.000 | 42.000 |
| Central Interior    | Bulkley Basin | Bulkley River at Quick | 0920088        | TSS       | 63             | 1.000  | 178.000 | 5.000  |

| ECOPROVINCE                    | ECOREGION                | SITE NAME                          | SITE    | PARAMETER | SAMPLE | MIN    | MAX     | MEDIAN  |
|--------------------------------|--------------------------|------------------------------------|---------|-----------|--------|--------|---------|---------|
|                                |                          |                                    | NUMBER  |           | SIZE   |        |         |         |
| Central Interior               | Bulkley Basin            | Bulkley River at Quick             | 0920088 | TURB      | 141    | 0.100  | 85.000  | 2.300   |
| Central Interior               | Caribou Plateau          | Canim R. above Canim<br>Falls      | 0600051 | ALK       | 2      | 65.500 | 76.100  | 76.100  |
| Central Interior               | Caribou Plateau          | Canim R. above Canim<br>Falls      | 0600051 | PH        | 2      | 8.000  | 8.100   | 8.100   |
| Central Interior               | Caribou Plateau          | Canim R. above Canim<br>Falls      | 0600051 | TDS       | 2      | 94.000 | 100.000 | 100.000 |
| Central Interior               | Caribou Plateau          | Canim R. above Canim<br>Falls      | 0600051 | TURB      | 2      | 1.300  | 1.400   | 1.400   |
| Northern Boreal Mountains      | Cassiar Ranges           | Galen Creek                        | 0400403 | PH        | 6      | 6.600  | 7.800   | 7.300   |
| Northern Boreal Mountains      | Cassiar Ranges           | Galen Creek                        | 0400403 | TDS       | 2      | 78.000 | 88.000  | 88.000  |
| Northern Boreal Mountains      | Cassiar Ranges           | Galen Creek                        | 0400403 | TSS       | 5      | 1.000  | 1.000   | 1.000   |
| Northern Boreal Mountains      | Cassiar Ranges           | Galen Creek                        | 0400403 | TURB      | 2      | 0.200  | 0.400   | 0.400   |
| Central Interior               | Central Interior Plateau | Bonaparte River u/s<br>Clinton Cr. | 0600017 | PH        | 97     | 7.800  | 8.800   | 8.200   |
| Central Interior               | Central Interior Plateau | Bonaparte River u/s<br>Clinton Cr. | 0600017 | TDS       | 36     | 90.000 | 244.000 | 150.000 |
| Central Interior               | Central Interior Plateau | Bonaparte River u/s<br>Clinton Cr. | 0600017 | TSS       | 45     | 1.000  | 23.000  | 10.000  |
| Central Interior               | Central Interior Plateau | Bonaparte River u/s<br>Clinton Cr. | 0600017 | TURB      | 62     | 0.200  | 9.100   | 1.100   |
| Central Interior               | Chilcotin Ranges         | Cadwallader Creek u/s<br>Bralorne  | E217521 | PH        | 13     | 6.800  | 7.900   | 7.400   |
| Central Interior               | Chilcotin Ranges         | Cadwallader Creek u/s<br>Bralorne  | E217521 | TSS       | 13     | 1.000  | 212.000 | 7.000   |
| Central Interior               | Chilcotin Ranges         | Cadwallader Creek u/s<br>Bralorne  | E217521 | TURB      | 13     | 0.800  | 91.000  | 3.200   |
| Central Interior               | Chilcotin Ranges         | Stein River near mouth             | 0600027 | PH        | 17     | 7.100  | 7.900   | 7.500   |
| Central Interior               | Chilcotin Ranges         | Stein River near mouth             | 0600027 | TDS       | 9      | 22.000 | 72.000  | 44.000  |
| Central Interior               | Chilcotin Ranges         | Stein River near mouth             | 0600027 | TSS       | 3      | 2.000  | 2.000   | 2.000   |
| Central Interior               | Chilcotin Ranges         | Stein River near mouth             | 0600027 | TURB      | 9      | 0.600  | 21.000  | 1.300   |
| Southern Interior<br>Mountains | Columbia Mountains       | Kootenay River @ Picture<br>Valley | 0200038 | PH        | 353    | 7.100  | 9.100   | 8.100   |
| Southern Interior<br>Mountains | Columbia Mountains       | Kootenay River @ Picture Valley    | 0200038 | TDS       | 286    | 66.000 | 262.000 | 172.000 |
| Southern Interior<br>Mountains | Columbia Mountains       | Kootenay River @ Picture Valley    | 0200038 | TSS       | 293    | 1.000  | 462.000 | 6.000   |

| ECOPROVINCE                    | ECOREGION              | SITE NAME                                 | SITE<br>NUMBER | PARAMETER       | SAMPLE<br>SIZE | MIN    | MAX     | MEDIAN  |
|--------------------------------|------------------------|-------------------------------------------|----------------|-----------------|----------------|--------|---------|---------|
| Southern Interior              | Columbia Mountains     | Kootenay River @ Picture                  |                | TURB            | 181            | 0.800  | 230.000 | 5.600   |
| Mountains                      |                        | Valley                                    | 0200000        |                 |                | 0.000  | 2001000 | 0.000   |
| Southern Interior              | Columbia Mountains     | St. Mary River near                       | 0200029        | TDS             | 97             | 18.000 | 60.000  | 46.000  |
| Mountains                      |                        | Cominco Pump house                        |                |                 |                |        |         |         |
| Southern Interior              | Columbia Mountains     | St. Mary River near                       | 0200029        | TSS             | 59             | 1.000  | 102.000 | 1.000   |
| Mountains                      | Oshushis Maustaisa     | Cominco Pump house                        | 000000         |                 | 00             | 0.050  | 004 000 | 0 700   |
| Southern Interior<br>Mountains | Columbia Mountains     | St. Mary River near<br>Cominco Pump house | 0200029        | TURB            | 89             | 0.250  | 694.000 | 0.700   |
| Southern Interior              | Columbia Mountains     | St. Mary River near                       | 0200029        | PH              | 340            | 5.900  | 8.900   | 7.500   |
| Mountains                      |                        | Cominco Pump house                        | 0200020        |                 | 040            | 0.000  | 0.000   | 1.000   |
| Central Interior               | Dean River             | Dean River u/s Lodge Cr.                  | 0600042        | PH              | 10             | 7.500  | 8.200   | 8.000   |
| Central Interior               | Dean River             | Dean River u/s Lodge Cr.                  | 0600042        | TDS             | 7              | 78.000 | 156.000 | 146.000 |
| Central Interior               | Dean River             | Dean River u/s Lodge Cr.                  | 0600042        | TSS             | 1              | 4.000  | 4.000   | 4.000   |
| Central Interior               | Dean River             | Dean River u/s Lodge Cr.                  | 0600042        | TURB            | 7              | 0.700  | 2.600   | 1.300   |
| Coast and Mountains            | Eastern Pacific Ranges | Silverhope Creek                          | 0300048        | ALK             | 7              | 16.294 | 21.280  | 16.696  |
| Coast and Mountains            | Eastern Pacific Ranges | Silverhope Creek                          | 0300048        | COL             | 1              | 10.000 | 10.000  | 10.000  |
| Coast and Mountains            | Eastern Pacific Ranges | Silverhope Creek                          | 0300048        | PH              | 7              | 7.225  | 7.924   | 7.524   |
| Coast and Mountains            | Eastern Pacific Ranges | Silverhope Creek                          | 0300048        | TDS             | 7              | 26.552 | 36.000  | 32.181  |
| Coast and Mountains            | Eastern Pacific Ranges | Silverhope Creek                          | 0300048        | TSS             | 5              | 2.060  | 7.243   | 3.500   |
| Coast and Mountains            | Eastern Pacific Ranges | Silverhope Creek                          | 0300048        | TURB            | 2              | 0.693  | 2.477   | 2.477   |
| Coast and Mountains            | Exposed Fjords         | Kitimat River at bridge                   | 0430025        | PH              | 83             | 6.500  | 7.900   | 7.000   |
| Coast and Mountains            | Exposed Fjords         | Kitimat River at bridge                   | 0430025        | TDS             | 22             | 17.000 | 50.000  | 34.000  |
| Coast and Mountains            | Exposed Fjords         | Kitimat River at bridge                   | 0430025        | TSS             | 95             | 1.000  | 321.000 | 5.000   |
| Coast and Mountains            | Exposed Fjords         | Kitimat River at bridge                   | 0430025        | TURB            | 94             | 0.700  | 220.000 | 3.700   |
| Coast and Mountains            | Georgia Basin          | Englishman River at                       | 0121580        | PH              | 7              | 6.600  | 7.700   | 7.000   |
| Coast and Mountains            | Hecate Lowland         | 0 ,                                       |                | no data in AECD |                |        |         |         |
| Southern Interior<br>Mountains | Kinbasket              | Blackwater Creek                          | E206765        | PH              | 1              | 8.200  | 8.200   | 8.200   |
| Northern Boreal Mountains      | Liard Plateau          | Liard River                               | Liard River    | ALK             | 2              | 23.000 | 29.000  | 29.000  |
| Northern Boreal Mountains      | Liard Plateau          | Liard River                               | Liard River    | P_T             | 2              | 0.003  | 0.010   | 0.010   |
| Northern Boreal Mountains      | Liard Plateau          | Liard River                               | Liard River    | PH              | 2              | 6.900  | 7.200   | 7.200   |
| Northern Boreal Mountains      | Liard Plateau          | Liard River                               | Liard River    | TSS             | 2              | 1.000  | 1.000   | 1.000   |
| Northern Boreal Mountains      | Liard Plateau          | Liard River                               | Liard River    | TURB            | 2              | 1.000  | 1.200   | 1.200   |
| Central Interior               | Lower Nechako          | Nechako River u/s of Fort<br>Fraser       | 0400629        | PH              | 117            | 6.800  | 8.200   | 7.600   |

| ECOPROVINCE               | ECOREGION                  | SITE NAME                             | SITE      | PARAMETER       | SAMPLE | MIN    | MAX      | MEDIAN |
|---------------------------|----------------------------|---------------------------------------|-----------|-----------------|--------|--------|----------|--------|
|                           |                            |                                       | NUMBER    |                 | SIZE   |        |          |        |
| Central Interior          | Lower Nechako              | Nechako River u/s of Fort<br>Fraser   | 0400629   | TDS             | 21     | 36.000 | 54.000   | 42.000 |
| Central Interior          | Lower Nechako              | Nechako River u/s of Fort<br>Fraser   | 0400629   | TSS             | 16     | 2.000  | 56.000   | 3.000  |
| Central Interior          | Lower Nechako              | Nechako River u/s of Fort<br>Fraser   | 0400629   | TURB            | 25     | 0.400  | 18.000   | 1.400  |
| Northern Boreal Mountains | Muskwa Ranges              | Toad River at highway                 |           | no data in AECD |        |        |          |        |
| Coast and Mountains       | Nass Basin                 | unknown                               | SROS_bsc1 | ALK             | 2      | 39.000 | 67.000   | 67.000 |
| Coast and Mountains       | Nass Basin                 | unknown                               | SROS_bsc1 | PH              | 2      | 7.600  | 7.800    | 7.800  |
| Coast and Mountains       | Nass Basin                 | unknown                               | SROS_bsc1 | TSS             | 2      | 47.000 | 93.000   | 93.000 |
| Coast and Mountains       | Nass Basin                 | unknown                               | SROS_bsc1 | TURB            | 2      | 0.500  | 4.300    | 4.300  |
| Coast and Mountains       | Nass Ranges                | Skeena River                          | 0920092   | PH              | 166    | 7.200  | 8.100    | 7.700  |
| Coast and Mountains       | Nass Ranges                | Skeena River                          | 0920092   | TDS             | 24     | 1.000  | 86.000   | 64.000 |
| Coast and Mountains       | Nass Ranges                | Skeena River                          | 0920092   | TSS             | 149    | 1.000  | 1840.000 | 10.000 |
| Coast and Mountains       | Nass Ranges                | Skeena River                          | 0920092   | TURB            | 85     | 0.300  | 124.000  | 7.500  |
| Central Interior          | Nechako Plateau            | MacIvor Creek inflow to<br>Ootsa Lake |           | no data in AECD |        |        |          |        |
| Coast and Mountains       | Nimpkish                   | Tsitika River                         | E207676   | PH              | 10     | 6.200  | 7.700    | 6.900  |
| Coast and Mountains       | North Coastal<br>Mountains | Cascade Creek above<br>Premier mine   | E220201   | PH              | 1      | 7.600  | 7.600    | 7.600  |
| Coast and Mountains       | North Coastal<br>Mountains | Cascade Creek above<br>Premier mine   | E220201   | TSS             | 1      | 1.000  | 1.000    | 1.000  |
| Coast and Mountains       | Northern Pacific<br>Ranges | McClinchy Creek                       | 0600304   | ALK             | 1      | 39.531 | 39.531   | 39.531 |
| Coast and Mountains       | Northern Pacific<br>Ranges | McClinchy Creek                       | 0600304   | PH              | 1      | 7.539  | 7.539    | 7.539  |
| Coast and Mountains       | Northern Pacific<br>Ranges | McClinchy Creek                       | 0600304   | TDS             | 1      | 60.368 | 60.368   | 60.368 |
| Coast and Mountains       | Northern Pacific<br>Ranges | McClinchy Creek                       | 0600304   | TSS             | 1      | 2.289  | 2.289    | 2.289  |
| Coast and Mountains       | Northern Pacific<br>Ranges | McClinchy Creek                       | 0600304   | TURB            | 1      | 0.632  | 0.632    | 0.632  |
| Sub-Boreal Interior       | Northern Rockies           | Murray River u/s of<br>Quintette Coal | E206322   | PH              | 1      | 8.100  | 8.100    | 8.100  |
| Sub-Boreal Interior       | Northern Rockies           | Murray River u/s of<br>Quintette Coal | E206322   | TSS             | 3      | 1.000  | 54.000   | 50.000 |
| Sub-Boreal Interior       | Northern Rockies           | Murray River u/s of                   | E206322   | TURB            | 1      | 1.200  | 1.200    | 1.200  |
|                           |                            |                                       |           |                 |        |        |          |        |

| ECOPROVINCE                    | ECOREGION               | SITE NAME                              | SITE<br>NUMBER | PARAMETER | SAMPLE<br>SIZE | MIN     | MAX     | MEDIAN  |
|--------------------------------|-------------------------|----------------------------------------|----------------|-----------|----------------|---------|---------|---------|
|                                |                         | Quintette Coal                         |                |           | 0.22           |         |         |         |
| Southern Interior              | Okanagan                | Similkameen River                      | 0500073        | PH        | 254            | 5.500   | 9.200   | 8.000   |
| Southern Interior              | Okanagan                | Similkameen River                      | 0500073        | TDS       | 4              | 62.000  | 130.000 | 128.000 |
| Southern Interior              | Okanagan                | Similkameen River                      | 0500073        | TSS       | 166            | 1.000   | 412.000 | 2.000   |
| Southern Interior              | Okanagan                | Similkameen River                      | 0500073        | TURB      | 50             | 0.300   | 55.000  | 1.000   |
| Sub-Boreal Interior            | Omineca Mountains       | unknown                                | SROS_rcw4      | ALK       | 4              | 94.800  | 122.000 | 118.000 |
| Sub-Boreal Interior            | Omineca Mountains       | unknown                                | SROS_rcw4      | PH        | 4              | 7.920   | 8.100   | 8.050   |
| Sub-Boreal Interior            | Omineca Mountains       | unknown                                | SROS_rcw4      | TDS       | 4              | 154.000 | 203.000 | 199.000 |
| Sub-Boreal Interior            | Omineca Mountains       | unknown                                | SROS_rcw4      | TSS       | 4              | 1.000   | 2.000   | 2.000   |
| Sub-Boreal Interior            | Omineca Mountains       | unknown                                | SROS_rcw4      | TURB      | 4              | 0.310   | 2.680   | 0.690   |
| Peace Plains                   | Peace Plains            | Peace River 3.2 KM u/s of FSJ          | 0400134        | PH        | 44             | 7.900   | 8.300   | 8.200   |
| Peace Plains                   | Peace Plains            | Peace River 3.2 KM u/s of FSJ          | 0400134        | TDS       | 8              | 104.000 | 134.000 | 114.000 |
| Peace Plains                   | Peace Plains            | Peace River 3.2 KM u/s of FSJ          | 0400134        | TSS       | 29             | 1.000   | 770.000 | 16.000  |
| Peace Plains                   | Peace Plains            | Peace River 3.2 KM u/s of FSJ          | 0400134        | TURB      | 40             | 0.800   | 160.000 | 3.800   |
| Central Interior               | Pothole Lakes           | Bridge Creek at Horse<br>Lake Rd.      | 0600137        | PH        | 57             | 7.300   | 9.200   | 8.100   |
| Central Interior               | Pothole Lakes           | Bridge Creek at Horse<br>Lake Rd.      | 0600137        | TDS       | 19             | 160.000 | 326.000 | 176.000 |
| Central Interior               | Pothole Lakes           | Bridge Creek at Horse<br>Lake Rd.      | 0600137        | TSS       | 23             | 1.000   | 14.000  | 1.000   |
| Central Interior               | Pothole Lakes           | Bridge Creek at Horse<br>Lake Rd.      | 0600137        | TURB      | 109            | 0.100   | 2.000   | 0.600   |
| Coast and Mountains            | Puget Basin             | Shawnigan Creek at<br>highway          | 0127217        | PH        | 12             | 6.700   | 7.900   | 7.300   |
| Coast and Mountains            | Queen Charlotte Islands |                                        | 0700173        | PH        | 9              | 6.400   | 7.000   | 6.600   |
| Coast and Mountains            | Queen Charlotte Islands | Yakoun River                           | 0700173        | TDS       | 8              | 36.000  | 64.000  | 44.000  |
| Coast and Mountains            | Queen Charlotte Islands | Yakoun River                           | 0700173        | TSS       | 9              | 2.000   | 56.000  | 3.000   |
| Coast and Mountains            | Queen Charlotte Islands | Yakoun River                           | 0700173        | TURB      | 9              | 0.700   | 17.000  | 1.200   |
| Southern Interior<br>Mountains | Quesnel Highlands       | Caribou R. at Keithly Cr.<br>Rd. Bridg | 0600035        | PH        | 8              | 7.700   | 8.100   | 8.000   |
| Southern Interior<br>Mountains | Quesnel Highlands       | Caribou R. at Keithly Cr.<br>Rd. Bridg | 0600035        | TDS       | 2              | 64.000  | 80.000  | 80.000  |

| ECOPROVINCE                    | ECOREGION                  | SITE NAME                               | SITE<br>NUMBER | PARAMETER       | SAMPLE<br>SIZE | MIN    | MAX     | MEDIAN |
|--------------------------------|----------------------------|-----------------------------------------|----------------|-----------------|----------------|--------|---------|--------|
| Southern Interior<br>Mountains | Quesnel Highlands          | Caribou R. at Keithly Cr.<br>Rd. Bridg  | 0600035        | TSS             | 5              | 1.000  | 62.000  | 5.000  |
| Southern Interior<br>Mountains | Quesnel Highlands          | Caribou R. at Keithly Cr.<br>Rd. Bridg  | 0600035        | TURB            | 3              | 0.900  | 2.900   | 1.900  |
| Southern Interior<br>Mountains | Quesnel Highlands          | Caribou R. at Keithly Cr.<br>Rd. Bridge | 0600035        | ALK             | 3              | 45.100 | 61.600  | 53.600 |
| Coast and Mountains            | Sayward                    | Salmon River at highway                 | 0127180        | PH              | 2              | 7.000  | 7.000   | 7.000  |
| Southern Interior<br>Mountains | Shuswap Highlands          | Eagle River at Solsqua<br>Road Bridge   | 0500025        | PH              | 182            | 6.700  | 8.600   | 7.500  |
| Southern Interior<br>Mountains | Shuswap Highlands          | Eagle River at Solsqua<br>Road Bridge   | 0500025        | TDS             | 27             | 20.000 | 61.000  | 46.000 |
| Southern Interior<br>Mountains | Shuswap Highlands          | Eagle River at Solsqua<br>Road Bridge   | 0500025        | TSS             | 162            | 1.000  | 175.000 | 4.000  |
| Southern Interior<br>Mountains | Shuswap Highlands          | Eagle River at Solsqua<br>Road Bridge   | 0500025        | TURB            | 19             | 0.300  | 14.000  | 1.900  |
| Sub-Boreal Interior            | Skeena Mountains           | Fulton River u/s hatchery               |                | no data in AECD |                |        |         |        |
| Coast and Mountains            | Southern Inlets            | Chapman Creek                           | 0300106        | PH              | 28             | 5.900  | 7.400   | 6.800  |
| Coast and Mountains            | Southern Inlets            | Chapman Creek                           | 0300106        | TDS             | 22             | 10.000 | 52.000  | 26.000 |
| Coast and Mountains            | Southern Inlets            | Chapman Creek                           | 0300106        | TSS             | 20             | 1.000  | 49.000  | 1.000  |
| Coast and Mountains            | Southern Inlets            | Chapman Creek                           | 0300106        | TURB            | 15             | 0.100  | 14.000  | 0.500  |
| Coast and Mountains            | Southern Inlets            | Theodosia River                         |                | no data in AECD |                |        |         |        |
| Coast and Mountains            | Southern Pacific<br>Ranges | Norrish Creek                           | 0300029        | ALK             | 16             | 5.500  | 13.300  | 9.200  |
| Coast and Mountains            | Southern Pacific<br>Ranges | Norrish Creek                           | 0300029        | COL             | 2              | 5.000  | 6.300   | 6.300  |
| Coast and Mountains            | Southern Pacific<br>Ranges | Norrish Creek                           | 0300029        | PH              | 16             | 6.200  | 7.397   | 6.565  |
| Coast and Mountains            | Southern Pacific<br>Ranges | Norrish Creek                           | 0300029        | TDS             | 7              | 18.504 | 26.533  | 19.812 |
| Coast and Mountains            | Southern Pacific<br>Ranges | Norrish Creek                           | 0300029        | TSS             | 14             | 1.000  | 13.000  | 1.442  |
| Coast and Mountains            | Southern Pacific<br>Ranges | Norrish Creek                           | 0300029        | TURB            | 2              | 0.650  | 1.200   | 1.200  |
| Coast and Mountains            | Southern Pacific<br>Ranges | Squamish River                          | 0300194        | ALK             | 13             | 2.946  | 16.800  | 8.427  |
| Coast and Mountains            | Southern Pacific<br>Ranges | Squamish River                          | 0300194        | COL             | 4              | 5.000  | 12.247  | 8.660  |

| ECOPROVINCE                    | ECOREGION                     | SITE NAME                           | SITE<br>NUMBER          | PARAMETER       | SAMPLE<br>SIZE | MIN     | MAX     | MEDIAN  |
|--------------------------------|-------------------------------|-------------------------------------|-------------------------|-----------------|----------------|---------|---------|---------|
| Coast and Mountains            | Southern Pacific<br>Ranges    | Squamish River                      | 0300194                 | PH              | 13             | 6.349   | 7.425   | 6.900   |
| Coast and Mountains            | Southern Pacific<br>Ranges    | Squamish River                      | 0300194                 | TDS             | 13             | 12.000  | 44.000  | 21.878  |
| Coast and Mountains            | Southern Pacific<br>Ranges    | Squamish River                      | 0300194                 | TSS             | 9              | 1.000   | 28.928  | 2.000   |
| Coast and Mountains            | Southern Pacific<br>Ranges    | Squamish River                      | 0300194                 | TURB            | 4              | 0.400   | 32.000  | 2.900   |
| Southern Interior<br>Mountains | Southern Rockies              | Elk River @ Phillips                | 0200016                 | PH              | 374            | 6.600   | 9.000   | 8.300   |
| Southern Interior<br>Mountains | Southern Rockies              | Elk River @ Phillips                | 0200016                 | TDS             | 301            | 103.000 | 228.000 | 178.000 |
| Southern Interior<br>Mountains | Southern Rockies              | Elk River @ Phillips                | 0200016                 | TSS             | 292            | 0.000   | 713.000 | 4.000   |
| Southern Interior<br>Mountains | Southern Rockies              | Elk River @ Phillips                | 0200016                 | TURB            | 205            | 0.200   | 190.000 | 3.300   |
| Southern Interior<br>Mountains | Southern Selkirk<br>Mountains | Columbia River @<br>Birchbank       | 0200003                 | PH              | 324            | 5.500   | 8.500   | 7.900   |
| Southern Interior<br>Mountains | Southern Selkirk<br>Mountains | Columbia River @<br>Birchbank       | 0200003                 | TDS             | 111            | 45.000  | 155.000 | 80.000  |
| Southern Interior<br>Mountains | Southern Selkirk<br>Mountains | Columbia River @<br>Birchbank       | 0200003                 | TSS             | 331            | 1.000   | 11.000  | 1.000   |
| Southern Interior<br>Mountains | Southern Selkirk<br>Mountains | Columbia River @<br>Birchbank       | 0200003                 | TURB            | 124            | 0.200   | 9.000   | 0.600   |
| Southern Interior<br>Mountains | Southern Selkirk<br>Mountains | Slocan River near<br>Passmore       | E213060                 | PH              | 2              | 7.600   | 7.600   | 7.600   |
| Southern Interior<br>Mountains | Southern Selkirk<br>Mountains | Slocan River near<br>Passmore       | E213060                 | TURB            | 4              | 0.200   | 0.400   | 0.400   |
| Northern Boreal Mountains      |                               | upper Bearskin Creek                | E215755                 | PH              | 24             | 6.920   | 8.090   | 7.640   |
| Northern Boreal Mountains      | Stikine Plateau               | upper Bearskin Creek                | E215755                 | TSS             | 23             | 1.000   | 773.000 | 43.000  |
| Taiga Plains                   | Taiga Plains                  | Muskwa River u/s of Fort<br>Nelson  |                         | no data in AECD |                |         |         |         |
| Sub-Boreal Interior            | Takla Manson Plateau          | Nation River                        | E209686                 | PH              | 5              | 7.600   | 7.900   | 7.600   |
| Sub-Boreal Interior            | Takla Manson Plateau          | Nation River                        | E209686                 | TDS             | 5              | 68.000  | 82.000  | 72.000  |
| Sub-Boreal Interior            | Takla Manson Plateau          | Nation River                        | E209686                 | TURB            | 4              | 0.800   | 1.000   | 1.000   |
| Southern Interior              | Thomspon Plateau              | Nicola River near Spences<br>Bridge | s 0600007 or<br>E216848 | alk             | 3              | 159.000 | 237.000 | 233.000 |
| Southern Interior              | Thomspon Plateau              | Nicola River near Spences           |                         | col             | 2              | 5.000   | 40.000  | 40.000  |

| ECOPROVINCE                    | ECOREGION                    | SITE NAME                           | SITE<br>NUMBER          | PARAMETER | SAMPLE<br>SIZE | MIN    | MAX     | MEDIAN  |
|--------------------------------|------------------------------|-------------------------------------|-------------------------|-----------|----------------|--------|---------|---------|
|                                |                              | Bridge                              | E216848                 |           | SIZE           |        |         |         |
| Southern Interior              | Thomspon Plateau             | Nicola River near Spences<br>Bridge |                         | P_T       | 117            | 0.003  | 0.680   | 0.020   |
| Southern Interior              | Thomspon Plateau             | Nicola River near Spence<br>Bridge  | s 0600007 or<br>E216848 | PH        | 185            | 7.100  | 8.700   | 7.900   |
| Southern Interior              | Thomspon Plateau             | Nicola River near Spence<br>Bridge  | s 0600007 or<br>E216848 | TDS       | 25             | 36.000 | 426.000 | 78.000  |
| Southern Interior              | Thomspon Plateau             | Nicola River near Spence<br>Bridge  | s 0600007 or<br>E216848 | TSS       | 162            | 1.000  | 77.000  | 4.000   |
| Southern Interior              | Thomspon Plateau             | Nicola River near Spence<br>Bridge  | s 0600007 or<br>E216848 | TURB      | 16             | 0.160  | 6.100   | 1.500   |
| Sub-Boreal Interior            | Upper Fraser                 | Salmon River                        | 0400028                 | PH        | 18             | 7.200  | 8.200   | 7.700   |
| Sub-Boreal Interior            | Upper Fraser                 | Salmon River                        | 0400028                 | TDS       | 9              | 86.000 | 128.000 | 112.000 |
| Sub-Boreal Interior            | Upper Fraser                 | Salmon River                        | 0400028                 | TSS       | 14             | 2.000  | 163.000 | 5.000   |
| Sub-Boreal Interior            | Upper Fraser                 | Salmon River                        | 0400028                 | TURB      | 13             | 1.100  | 42.000  | 4.500   |
| Southern Interior<br>Mountains | Upper Fraser Highland        | Fraser River at Hansard             | E206580                 | PH        | 71             | 7.400  | 8.300   | 7.900   |
| Southern Interior<br>Mountains | Upper Fraser Highland        | Fraser River at Hansard             | E206580                 | TDS       | 209            | 40.000 | 342.000 | 102.000 |
| Southern Interior<br>Mountains | Upper Fraser Highland        | Fraser River at Hansard             | E206580                 | TSS       | 227            | 1.000  | 893.000 | 27.000  |
| Southern Interior<br>Mountains | Upper Fraser Highland        | Fraser River at Hansard             | E206580                 | TURB      | 2              | 1.600  | 18.000  | 18.000  |
| Coast and Mountains            | Windward Island<br>Mountains | Gold River at highway               | E207792                 | PH        | 18             | 7.000  | 7.800   | 7.500   |

Most index sites are easily accessible by vehicle and boat. Specific details of access are noted for many of the sites in Tables 7 and 8. Where a boat is required, these notes indicate the appropriate size of boat that should be used based on local knowledge of lake or reservoir surface conditions that can occur during inclement weather. In most regions, appropriate sized and fitted boats are available in MOELP inventory or through local charters.

Although we attempted to avoid sites that required aircraft support or long driving and boat time, even from closest communities, difficult logistics may limit routine access to at least three index lakes and one index stream which are located in some of the most remote Ecoregions. The only access to the Hecate lowland (lake site DFOS 30) is by aircraft or long boat ride from Kitimat or Prince Rupert. There is no index stream assigned in this Ecoregion that has data or is known as representative for water monitoring which means only the one lake site is identified for any sampling. Given its remote location and the fact that sampling has not been active in the area in the past, future sampling may have to be restricted to opportunities of travel through the area for other purposes, perhaps even combining efforts with seasonal coast guard cruises. Another difficult site may be the small lake station, E206391, located in the south eastern portion of the Nechako Plateau Ecoregion. It represents a small lake to contrast with Ootsa Lake in the Nechako Reservoir but is not close to any community and routine access may prove difficult. It may have to be dropped as an index site if sampling is logistically unreliable. Owikeno Lake and its inflow streams in the Owikeno Ranges are easily accessible by air from Bella Coola although a First Nations community, the Owikeno Band, is established at the lake outflow. An agreement with the Band may facilitate sample collection and shipment but if this option is not possible, water sampling may have to be opportunistically completed on irregular and potentially infreguent visits to the lake for other purposes.

Water quality at 27% of the recommended lake sites and 28% of the stream sites is potentially modified by land disturbance, point source discharges or non-point source discharges of contaminants (Tables 7 and 8). The degree of disturbance is undefined but it is thought to be small and may not be detectable in the short list of water quality parameters that was used for Ecozone delineation (Section 1.0). Potential modification of water quality is identified only because the sites were downstream of known disturbance from land uses. In all cases, the sites were thought to be least affected of all lakes and streams in the respective Ecoregions.

Tables 7 and 8 provide notes indicating sources of pollution where it is thought to be present. Six of the affected lake sites and 9 of the affected stream sites were downstream of areas where forest harvesting, agriculture, or both have been or are presently active. Shoreline development including cabins or houses on septic tanks potentially affected 6 of the lake sites and one stream site (Caribou River). Okanagan Lake and 2 stream sites are downstream of discharges of treated wastewater from treatment plants, however, Okanagan Lake receives treated wastewater from highly efficient tertiary treatment plants which may be contributing to nutrient depletion in the lake rather than enrichment. Buttle Lake which is the representative large lake in the Sayward Ecoregion is affected by metals transport from the Westmin Mine. The index site on Cadwallader Creek, the index stream of the Chilcotin Ecoregion, is upstream of Bralorne where mining was historically active. Anomalous metals concentrations may be present in Cadwallader Creek but in all other respects water quality is thought to be similar to that of other streams in the Ecoregion which are all exposed to glacial outwash and high weathering rates of the volcanic parent materials containing mineral deposits that are typical of the area.

Many of the index sites were important to include because of their past history as sites used for long term data collection or current importance as regional reference sites for more than just water quality purposes. Long term swings in the trophic status and water guality in Kootenay Lake (Ashley et al. 1997) and Okanagan Lake has been cause for long term study of the limnology, water guality, and processes supporting fish populations in those lakes, resulting in a compilation of extensive data over several decades which can be used as ideal index data. A large scale fishery restoration project has begun on the Arrow Lakes (K. Ashley, Ministry of Fisheries, Research, UBC, pers. comm.) which involves routine water quality monitoring, making it an ideal index location for the Southern Selkirk Ecoregion. As an important producer of sockeye salmon, long term water quality data have been compiled for Shuswap Lake (E. McIsaac, Dept. Fisheries and Oceans, SFU, pers. comm.). Water monitoring in Stocking Lake and Lizard Lake on Vancouver Island was part of the acid rain trend analysis for southern Vancouver Island because of their remote locations, unaffected by anthropogenic activities (J. Deniseger, MOELP, Nanaimo, pers. comm.). Resulting long term water quality data were collected from both lakes. Monitoring continues in Stocking Lake because it is a water supply for the community of Ladysmith. Stuart Lake (Babine Upland Ecoregion) is an important index location because of the long term fish-forestry research project that is active in the area (E. McIsaac, Dept. Fisheries and Oceans, SFU, pers. comm.). Ootsa Lake near Ootsa is an important reference location for monitoring as part of assessments of effects of underwater logging on water quality in large reservoirs (Perrin and McDevitt 1997). The Kootenay River at Picture Valley (Columbia Mountains), the Columbia River at Birchbank (Southern Selkirk Mountains), and the Fraser River at Hansard (Upper Fraser Highland) has been as active in the Federal/Provincial water monitoring program, having a long term data set that is valuable as a long term reference. The Salmon River in the Sayward Ecoregion has been the site of long term salmon restoration initiatives since the mid-1980's for which annual water quality monitoring has been a part (C. Wightman, MOELP, Nanaimo, pers. comm.). The Dean River site is a control monitoring location for assessment of effects of the discharge of treated wastewater to the Dean River from a wetland treatment system installed for the Ulkatcho Indian Band at Anahim Lake (Perrin 1998). Clearly it was

important to include these reference sites to take advantage of water quality data already collected to incorporate into the index site system.

Comments relevant to other sites are listed in Tables 9 and 10. This information provides additional insight into characteristics of the index sites over and above the criteria that were considered for site selection.

### Table 7. General access to recommended index lake and reservoir sites and proximity to potential pollution sources.

| Ecoprovince         | Ecoregion Lake/reservoir Name Access |                                      | Access                                        | Pollution*                                                                                                                                                                          |
|---------------------|--------------------------------------|--------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Central Interior    | Bulkley Basin                        | Tyhee Lake                           |                                               |                                                                                                                                                                                     |
| Central Interior    | Caribou Plateau                      | Crooked Lake near Center             | by road 120 km east of Williams L.            | NPS from forest harvesting                                                                                                                                                          |
| Central Interior    | Central Interior Plateau             | Watch Lake                           | via Hwy 97 and Green lake Road                | no pollution but some lakeside residences                                                                                                                                           |
| Central Interior    | Chilcotin Ranges                     | Tyaughton Lake, centre               | Bridge R. road to Tyax Mountain Resort        | no pollution except there is ground disposal of sewage from Tyax                                                                                                                    |
| Central Interior    | Chilcotin Ranges                     | Seton Lake at dam                    | from hydro dam at Lillooet                    | no pollution                                                                                                                                                                        |
| Central Interior    | Dean River                           | Nimpo Lk. At center                  | off Hwy 20                                    | limited NPS from forestry and agriculture.<br>Resorts on septic fields present                                                                                                      |
| Central Interior    | Lower Nechako                        | Fraser Lake deep stn                 | multiple launches                             | limited shore line development                                                                                                                                                      |
| Central Interior    | Nechako Plateau                      | E206391                              |                                               |                                                                                                                                                                                     |
| Central Interior    | Nechako Plateau                      | Ootsa Lake at Ootsa                  | >18' boat lauched from Ootsa                  | MeHg bioaccumulation remains active but no<br>other water quality problem                                                                                                           |
| Central Interior    | Pothole Lakes                        | Lac La Hache off Emerald Is.         | from Hwy 97                                   | some NPS from ranching                                                                                                                                                              |
| Coast and Mountains | Eastern Pacific Ranges               | Kawkawa Lake                         | drive to/small boat                           | resort development around shorezone                                                                                                                                                 |
| Coast and Mountains | Exposed Fjords                       | Lachmach Lake                        |                                               | no pollution                                                                                                                                                                        |
| Coast and Mountains | Georgia Basin                        | Stocking Lake                        | gravel road                                   | minimal                                                                                                                                                                             |
| Coast and Mountains | Georgia Basin                        | Sakinaw Lake                         | drive to boat launch                          | cabin development around shore                                                                                                                                                      |
| Coast and Mountains | Hecate Lowland                       | DFOS_30                              |                                               |                                                                                                                                                                                     |
| Coast and Mountains | Nass basin                           | Yellen L                             | small boat                                    | no pollution                                                                                                                                                                        |
| Coast and Mountains | Nass Ranges                          | Lakelse Lake                         |                                               | no pollution                                                                                                                                                                        |
| Coast and Mountains | Nimpkish                             | Quatse Lake                          | road and boat ramp                            | historic logging activities - this lake is used as<br>drinking water by the Mt Waddington Regional<br>District                                                                      |
| Coast and Mountains | North Coastal Mountains              | Atlin Lake                           | at Atlin                                      | no pollution                                                                                                                                                                        |
| Coast and Mountains | Northern Pacific Ranges              | Horn Lk at Deepest Pt.               | off Westbranch Rd. from Hwy 20                | limited NPS from forestry                                                                                                                                                           |
| Coast and Mountains | Owikeno Ranges                       | Owikeno Lake                         | by air from Bella Coola                       | no pollution                                                                                                                                                                        |
| Coast and Mountains | Puget Basin                          | Maxwell Lake on Saltspring<br>Island | ferry and road on Salt Spring Is.             | no pollution                                                                                                                                                                        |
| Coast and Mountains | Queen Charlotte Islands              | DFOS_3                               | road from Port Clements                       | no pollution                                                                                                                                                                        |
| Coast and Mountains | Sayward                              | Buttle Lake north                    | boat and approx 2.5 km from nearest boat ramp | within Strathcona Park but is subject to metal<br>pollution from Westmin Resources copper/zinc<br>mine. However, with the exception of<br>elevated metals (well below water quality |

LIMNOTEK January, 1999

| Ecoprovince Ec                 | Ecoregion                  | Lake/reservoir Name                 | Access                                                     | Pollution*                                                                                                                                                                                              |
|--------------------------------|----------------------------|-------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coast and Mountains Sa         | Sayward                    | Upper Quinsam Lake                  | logging road and boat ramp                                 | criteria at this site), water quality is very good.<br>forestry activity within the watershed, an old<br>abandoned iron mine is within the watershed<br>but is not considered a threat to water quality |
| Coast and Mountains So         | Southern Inlets            | Powell Lake                         | drive to/small boat                                        | no                                                                                                                                                                                                      |
| Coast and Mountains So         | Southern Pacific Ranges    | Harrison Lake                       | >16' boat                                                  | resort development at south end but may not be apparent in water chem                                                                                                                                   |
| Coast and Mountains W          | Vindward Island Mountains  | Lizard Lake                         | by public logging road                                     | small Forest Service campground has been expanded slightly and rebuilt recently                                                                                                                         |
| Coast and Mountains W          | Vindward Island Mountains  | Sproat Lake at outlet               | logging road and a short trail                             | upstream activities include semi rural<br>development around the eastern end of<br>Sproat Lake, and forestry activities                                                                                 |
| Northern Boreal Mountains Ca   | Cassiar Ranges             | Jennings Lk.                        |                                                            | no pollution                                                                                                                                                                                            |
| Northern Boreal Mountains Li   | iard Plateau               | Birches Lk.                         |                                                            | no pollution                                                                                                                                                                                            |
|                                | /luskwa Ranges             | Kluachesi Lk                        |                                                            | no pollution                                                                                                                                                                                            |
|                                | Stikine Plateau            | Butte Lake                          |                                                            |                                                                                                                                                                                                         |
|                                |                            | Swan Lake                           | road, boat at park launch                                  |                                                                                                                                                                                                         |
| Southern Interior O            | Dkanagan                   | Okanagan Lake at Kelowna            | >16' boat                                                  | shoreline development but tertiary treatment at major urban centres                                                                                                                                     |
| Southern Interior Th           | homspon Plateau            | Nicola Lake at deepest point        | via Hwy 5a north of Merritt; lots of launch sites          | no PS but substantial agricultural NPS and<br>some forestry NPS like all lakes in the<br>ecoregion. <100 residences around the lake.                                                                    |
| Southern Interior Mountains Co | Columbia Mountains         | Kootenay lake                       | >16' boat                                                  | no                                                                                                                                                                                                      |
| Southern Interior Mountains Co | Columbia Mountains         | Windermere Lake                     | drive to/small boat                                        | NPS from urban development                                                                                                                                                                              |
| Southern Interior Mountains Ki | Kinbasket                  | Mica behind dam                     | drive to/small boat                                        | no                                                                                                                                                                                                      |
|                                | Kinbasket                  | Blackwater                          | drive to/small boat                                        | no                                                                                                                                                                                                      |
|                                | Quesnel Highlands          | Quesnel Lake                        |                                                            |                                                                                                                                                                                                         |
| Southern Interior Mountains SI |                            | Mabel Lake at Tsuius Creek          | drive to/small boat                                        | least of medium size lakes in Okanagan                                                                                                                                                                  |
| Southern Interior Mountains SI | Shuswap Highlands          | Shuswap Lake west of<br>Sorrento    | launch from Scotch Creek Prov.<br>Park or west of Sorrento | extensive NPS from all Shuswap Highlands<br>but may not detectable: Bothwell data shows<br>the site is highly P-deficient                                                                               |
| Southern Interior Mountains So | Southern Rockies           | Connor Lake                         | drive to                                                   |                                                                                                                                                                                                         |
| Southern Interior Mountains So | Southern Selkirk Mountains | Lower Arrow                         | >16' boat                                                  | no pollution                                                                                                                                                                                            |
|                                |                            | Slocan Lake Midlake-Silverton RL5_7 | >16' boat                                                  | no pollution                                                                                                                                                                                            |
|                                |                            | Stuart Lake                         | launch from Ft. St. James                                  | no pollution                                                                                                                                                                                            |
| Sub-Boreal Interior Ba         | Babine Upland              | Boomerang Lake                      | unknown                                                    | no pollution                                                                                                                                                                                            |
| Sub-Boreal Interior No.        | Northern Rockies           | Azouzetta Lake deep stn             | >16' boat                                                  | no pollution                                                                                                                                                                                            |
| Sub-Boreal Interior O          | Omineca Mountains          | Germansen Lk                        | >16' boat                                                  | no pollution                                                                                                                                                                                            |

| Ecoprovince               | Ecoregion            | Lake/reservoir Name | Access              | Pollution*                                  |  |
|---------------------------|----------------------|---------------------|---------------------|---------------------------------------------|--|
| Sub-Boreal Interior       | Skeena Mountains     | Bob Quinn Lake      | drive to/small boat | no pollution                                |  |
| Sub-Boreal Interior       | Takla Manson Plateau | Burden Lk           |                     | no pollution                                |  |
| Sub-Boreal Interior       | Upper Fraser         | Bednesti Lk         | launch facilities   | seasonal residential homes on septic fields |  |
| Taiga Plains              | Taiga Plains         | Marion Lake         |                     | no pollution                                |  |
| *NPS refers to non-poin   | t source             |                     |                     |                                             |  |
| PS refers to point source | e                    |                     |                     |                                             |  |

**Table 8.** General access to recommended index stream sites and proximity to potential pollution sources

| Ecoprovince         | coprovince Ecoregion     |                                        | Access                             | Proximity to Pollution*                                                                                                                                     |
|---------------------|--------------------------|----------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Central Interior    | Bulkley Basin            | Bulkley River at Quick                 |                                    |                                                                                                                                                             |
| Central Interior    | Caribou Plateau          | Canim R. above Canim Falls             | on road to Mahood L.               | little NPS, possible Mo in Boss Cr./Eagle Cr.<br>Trib to Canim Lake                                                                                         |
| Central Interior    | Central Interior Plateau | Cr. road to bridge u/s Clinton Creek t |                                    | no PS pollution but there is sewage discharge<br>to Clinton Cr. And at Cache Cr. Some<br>agricultural and forestry NPS but much less<br>than at other sites |
| Central Interior    | Chilcotin Ranges         | Stein River near mouth                 | by road in Prov. Park              | no pollution                                                                                                                                                |
| Central Interior    | Chilcotin Ranges         | Cadwallader Creek u/s<br>Bralorne      | to Bralorne from Lillooet          | some forestry and residual mining impacts                                                                                                                   |
| Central Interior    | Dean River               | Dean River u/s Lodge Cr.               | Hwy 20                             | cattle and small feedlot operations, runoff from the community of Anahim Lk                                                                                 |
| Central Interior    | Lower Nechako            | Nechako River u/s of Fort<br>Fraser    | gravel road from Hwy               | no pollution                                                                                                                                                |
| Central Interior    | Nechako Plateau          | MacIvor Creek infow to<br>Ootsa Lake   | boat from Ootsa                    | no pollution                                                                                                                                                |
| Central Interior    | Pothole Lakes            | Bridge Creek at Horse Lake<br>Rd.      | on Horse Lk. Rd. at 100 mile House | some agriculture upstream                                                                                                                                   |
| Coast and Mountains | Eastern Pacific Ranges   | Silverhope Creek                       | drive to                           | no pollution                                                                                                                                                |
| Coast and Mountains | Exposed Fjords           | Kitimat River at bridge                | drive to                           | no pollution                                                                                                                                                |
| Coast and Mountains | Georgia Basin            | Englishman River at highway            | from the highway in Parksville     | main sources of contamination are upstream<br>land use such as agriculture and logging<br>which lead to elevated suspended solids<br>during storm events    |
| Coast and Mountains | Georgia Basin            | Chapman Creek                          | drive to                           | no pollution                                                                                                                                                |

| Ecoprovince                 | Ecoregion                  | Stream Name Access                                                         |                             | Proximity to Pollution*                                                                         |  |  |  |
|-----------------------------|----------------------------|----------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------|--|--|--|
| Coast and Mountains         | Hecate Lowland             | no streams sampled in this ecoregion                                       |                             |                                                                                                 |  |  |  |
| Coast and Mountains         | Nass basin                 | SROS_bscl                                                                  | drive to                    | no pollution                                                                                    |  |  |  |
| Coast and Mountains         | Nass Ranges                | Skeena River                                                               | drive to                    | forestry activities in watershed                                                                |  |  |  |
| Coast and Mountains         | Nimpkish                   | Tsitika River                                                              | highway and short trail     | forestry activities in watershed                                                                |  |  |  |
| Coast and Mountains         | North Coastal Mountains    | Cascade Creek above<br>Premier mine                                        | from Premier Mine           | upstream of mine effects                                                                        |  |  |  |
| Coast and Mountains         | Northern Pacific Ranges    | McClinchy Creek                                                            | Hwy 20                      | some agriculture and forest harvesting<br>upstream                                              |  |  |  |
| Coast and Mountains         | Owikeno Ranges             | inflow to Owikeno Lake                                                     | by air from Bella Coola     |                                                                                                 |  |  |  |
| Coast and Mountains         | Puget Basin                | Shawnigan Creek at<br>highway                                              | from the highway 1 crossing | upstream urban development and land disturbance                                                 |  |  |  |
| Coast and Mountains         | Queen Charlotte Islands    | Yakoun River                                                               | road from Port Clements     | upstream of Cinola but must check position                                                      |  |  |  |
| Coast and Mountains         | Sayward                    | Salmon River at highway                                                    | at the highway              | no pollution                                                                                    |  |  |  |
| Coast and Mountains         | Southern Inlets            | Theodosia River                                                            | drive to                    | no pollution                                                                                    |  |  |  |
| Coast and Mountains         | Southern Pacific Ranges    | Norrish Creek                                                              | drive to                    | no pollution                                                                                    |  |  |  |
| Coast and Mountains         | Southern Pacific Ranges    | Squamish River                                                             | drive to                    | forestry activities in watershed                                                                |  |  |  |
| Coast and Mountains         | Windward Island Mountains  | Gold River at highway                                                      | highway and bridge access   | on the outskirts of the town of Gold River                                                      |  |  |  |
| Northern Boreal Mountains   | Cassiar Ranges             | Galen Creek                                                                | remote road access          | control site u/s of old mine                                                                    |  |  |  |
| Northern Boreal Mountains   | Liard Plateau              | Liard River at Liard R.                                                    |                             |                                                                                                 |  |  |  |
| Northern Boreal Mountains   | Muskwa Ranges              | Toad River at highway                                                      |                             | no pollution                                                                                    |  |  |  |
| Northern Boreal Mountains   | Stikine Plateau            | upper Bearskin Creek                                                       |                             | above influence of goldenbear mine                                                              |  |  |  |
| Peace Plains                | Peace Plains               | Peace River 3.2 KM u/s of FSJ                                              | boat from Taylor launch     | upstream of Taylor, d/s of Williston Res                                                        |  |  |  |
| Southern Interior           | Okanagan                   | Similkameen River                                                          | drive to                    | mine drainage, channelisation, agricultural runoff                                              |  |  |  |
| Southern Interior           | Thomspon Plateau           | Nicola River near Spences<br>Bridge                                        | at Spences Bridge           | NPS agricultural pollution as is typical of all<br>streams in the ecoregion. Small mine seepage |  |  |  |
| Southern Interior Mountains | Columbia Mountains         | Kootenay River @ Picture<br>Valley                                         | drive to                    | no pollution                                                                                    |  |  |  |
| Southern Interior Mountains | Columbia Mountains         | St. Mary River near Cominco<br>Pump house                                  | drive to                    | u/s Sullivan: no pollution                                                                      |  |  |  |
| Southern Interior Mountains | Kinbasket                  | Blackwater Creek                                                           | drive to                    | no pollution                                                                                    |  |  |  |
| Southern Interior Mountains | Quesnel Highlands          | Caribou R. at Keithly Cr. Rd. from the likely Rd.<br>Bridge                |                             | possible NPS from scattered septic fields                                                       |  |  |  |
| Southern Interior Mountains | Shuswap Highlands          | Eagle River at Solsqua Road<br>Bridge                                      | Hwy 1 at Solsqua Road       | no pollution except Sicamous WTP discharges<br>downstream of site                               |  |  |  |
| Southern Interior Mountains | Southern Rockies           | Elk River @ Phillips                                                       | drive to                    | very far field from NPS and PS mining areas                                                     |  |  |  |
| Southern Interior Mountains | Southern Selkirk Mountains |                                                                            | drive to                    | d/s Celgar but very far field                                                                   |  |  |  |
|                             |                            | Columbia River @ Birchbank drive to<br>Slocan River near Passmore drive to |                             |                                                                                                 |  |  |  |

|                                                   | ovince Ecoregion                         |                                           | Access               | Proximity to Pollution*                       |  |
|---------------------------------------------------|------------------------------------------|-------------------------------------------|----------------------|-----------------------------------------------|--|
| Southern Interior Mountains Upper Fraser Highland |                                          | Fraser River at Hansard, midstream        | Upper Fraser Road    | no pollution                                  |  |
| Sub-Boreal Interior Ba                            | Babine Upland                            | SROS_d2                                   |                      | no pollution                                  |  |
| Sub-Boreal Interior No                            | Northern Rockies                         | Murray River u/s of Quintette Coal        | road access          | upstream of all mining disturbance downstream |  |
| Sub-Boreal Interior Oi                            | Omineca Mountains                        | SROS_rcw4                                 |                      |                                               |  |
|                                                   | Skeena Mountains<br>Fakla Manson Plateau | Fulton River u/s hatchery<br>Nation River | upstream of hatchery | no pollution<br>no pollution                  |  |
| Sub-Boreal Interior Up                            | Jpper Fraser                             | Salmon River                              | road access          | no pollution                                  |  |
| Taiga Plains Ta                                   | aiga Plains                              | Muskwa River u/s of Fort<br>Nelson        | boat or road         | upstream of municipal and industrial sources  |  |

**Table 9.** General descriptive comments compiled for selected index lakes and reservoirs from survey responses.

| Ecoregion                       | Lake/reservoir                  | Site    | General Comment                                                                                                                                    |
|---------------------------------|---------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | Name                            | Number  |                                                                                                                                                    |
| Bulkley Basin                   | Tyhee Lake                      | 1131009 |                                                                                                                                                    |
| Caribou Plateau                 | Crooked Lake near<br>Center     | 1170017 |                                                                                                                                                    |
| Central Interior<br>Plateau     | Watch Lake                      | E220537 | several years of data and collections are ongoing: not a Marl lake and not eutrophic from agricultural runoff                                      |
| Chilcotin Ranges                | Tyaughton Lake, centre          | 1131201 | good representative small lake that is relatively easy to get to in what is a remote area.                                                         |
| Chilcotin Ranges                | Seton Lake at dam               | E231397 | receives drainage from the Seton and Bridge systems and thereby covers a wide area of the ecoregion. It is a large reservoir with little draw down |
| Dean River                      | Nimpo Lk. At center             | E206952 | typical mesotrophic lake of the ecoregion, high recreational value, some data, easy to sample                                                      |
| Lower Nechako                   | Fraser Lake deep stn            | 400411  | high water quality and high recreational values                                                                                                    |
| Nechako Plateau                 |                                 | E206391 | small lake typical of the ecoregion south of Nechako Reservoir                                                                                     |
| Nechako Plateau                 | Ootsa Lake off of Ootsa         | l       | central in the largest reservoir of the ecoregion and 2nd largest in the Province                                                                  |
| Pothole Lakes                   | Lac La Hache off<br>Emerald Is. | 603015  | influence of ranching is present but less so than at other lakes of the ecoregion                                                                  |
| Eastern Pacific<br>Ranges       | Kawkawa Lake                    | 300150  | NPS nutrients from resort development are possible, high angler use                                                                                |
| Exposed Fjords<br>Georgia Basin | Lachmach Lake<br>Sakinaw Lake   | E206345 | salmon escapement monitoring site at outlet saline at depth                                                                                        |
| Georgia Basin                   | Stocking Lake                   | E206290 |                                                                                                                                                    |

| Ecoregion                       | Lake/reservoir                       | Site               | General Comment                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|--------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | Name                                 | Number             |                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |                                      |                    | isolated and is part of Ladysmith's drinking water supply. Thus, it is likely to retain good water quality over the                                                                                                                                                                                                                                                                                                            |
|                                 |                                      |                    | long term.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Hecate Lowland                  |                                      | _                  | remote area unknown                                                                                                                                                                                                                                                                                                                                                                                                            |
| Nass basin                      | Yellen L                             |                    | small lake typical of the upper Nass                                                                                                                                                                                                                                                                                                                                                                                           |
| Nass Ranges                     | Lakelse Lake                         | 400313             |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nimpkish                        | Quatse Lake                          | E216693            | data set is limited to 1992 data which focuses on metals, nutrients and plankton. Small lake that is fairly typical of the coloured low productivity lake in the Nimpkish Ecoregion. It is poorly buffered, has low alkalinity and hardness and a low mean pH.                                                                                                                                                                 |
| North Coastal<br>Mountains      | Atlin Lake                           |                    | no site established but is recommended because of easy access and pristine water quality (expected). It is also one of the largest lakes in the Province with no data!                                                                                                                                                                                                                                                         |
| Northern Pacific<br>Ranges      | Horn Lk at Deepest Pt.               | E206674            |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Owikeno Ranges                  | Owikeno Lake                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Puget Basin                     | Maxwell Lake on<br>Saltspring Island | 1130022            | 894 samples from 1984 thru 1998, a solid database on a wide variety of parameters including metals, general ions, phytoplankton, zooplankton, dissolved oxygen etc.Small to moderate sized oligotrophic lake was part of the Acid Rain/Trend Lake program on southern Vancouver Island. It is not subject to locally generated eutrophication as are many of the lake in this ecoregion (e.g. Langford, Quamichan, St. Mary's) |
| Queen Charlotte Isla            | ands                                 | DFOS_3             |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sayward                         | Buttle Lake north                    | 130088             | The lake lies in a glaciated U shaped valley, which drains the central Vancouver Island mountains. Snowmelt is considerable during the spring and early summer months. The lake level was raised by 9 meters in the 1950's and acts as a reservoir for hydroelectric power generation. Cannot be covered by any other lake within the ecoregion.                                                                               |
| Sayward                         | Upper Quinsam Lake                   | 1130098            | small to moderate sized oligotrophic lake located away from pollution sources.                                                                                                                                                                                                                                                                                                                                                 |
| Southern Inlets                 | Powell Lake                          |                    | high salinity at depth, high recreational value and it is in a community watershed. No EMS <sup>1</sup> data but there are no other EMS lakes in the ecoregion.                                                                                                                                                                                                                                                                |
| Southern Pacific<br>Ranges      | Harrison Lake                        | 300044             | oligatrophic large lake typical of the ecoregion, no development occurring or anticipated north of Hot Springs Hotel                                                                                                                                                                                                                                                                                                           |
| Windward Island<br>Mountains    | Lizard Lake                          | E206283            | This small to moderate sized oligotrophic lake was part of the Acid Rain/Trend Lake program on southern Vancouver Island. It is relatively isolated and is typical of the small to moderate sized lakes in this ecoregion. The watershed is subject to high rainfall, the lake is stocked with rainbow trout, and receives recreational use. It is not subject to locally generated eutrophication                             |
| Windward Island<br>Mountains    | Sproat Lake at outlet                | E218226            | One of several large lakes in the ecoregion including Great Central Lake, Sproat Lake, Kennedy Lake, Alice Lake<br>and Victoria Lake. Each of these lakes with the exception of Kennedy Lake lies in a glaciated U shaped valley.<br>These lakes are oligotrophic, subject to high precipitation and minimal disturbance other than forestry activity.                                                                         |
| Cassiar Ranges<br>Liard Plateau | Jennings Lk.<br>Birches Lk.          | 1130689<br>1132217 |                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Ecoregion             | Lake/reservoir                   | Site     | General Comment                                                                                                                                                                             |
|-----------------------|----------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Name                             | Number   |                                                                                                                                                                                             |
| Muskwa Ranges         | Kluachesi Lk                     | 1132051  |                                                                                                                                                                                             |
| Stikine Plateau       | Butte Lake                       | E223362  |                                                                                                                                                                                             |
| Peace Plains          | Swan Lake                        | 400935   | all ecoregion lakes are eutrophic                                                                                                                                                           |
| Okanagan              | Okanagan Lake at<br>Kelowna      | 500236   | Long term data record                                                                                                                                                                       |
| Thomspon Plateau      | Nicola Lake at deepest point     | 603006   | substantial data history to 1970's and monitoring continues. Second largest lake in the ecoregion                                                                                           |
| Columbia Mountains    | Kootenay lake                    | 200034   | long term data avail: site for Koot L. fertilization                                                                                                                                        |
| Columbia Mountains    | Windermere Lake                  | 200051   | NPS present but may not be detectable in water chem data                                                                                                                                    |
| Kinbasket             | Mica behind dam                  | 1100501  | representative of reservoir                                                                                                                                                                 |
| Kinbasket             | Blackwater                       | 1132233  | data collected prior to Mica                                                                                                                                                                |
| Quesnel Highlands     | Quesnel Lake                     |          |                                                                                                                                                                                             |
| Shuswap Highlands     | Mabel Lake at Tsuius<br>Creek    | 500117   | recommended as a 2nd lake site to capture low impact medium sized lake                                                                                                                      |
| Shuswap Highlands     | Shuswap Lake west of<br>Sorrento | 500123   | data record over several decades; present sampling 2 times per year                                                                                                                         |
| Southern Rockies      | Connor Lake                      | E232242  | new site but thought to best represent the ecoregion                                                                                                                                        |
| Southern Selkirk      | Lower Arrow                      | 200523   | Site is used for the future Arrow fertilization: ultraoligotrophic. Pretreatment water quality monitoring is ongoing.                                                                       |
| Mountains             |                                  |          |                                                                                                                                                                                             |
| Southern Selkirk      | Slocan Lake Midlake-             | 200521   |                                                                                                                                                                                             |
| Mountains             | Silverton                        |          |                                                                                                                                                                                             |
| Upper Fraser Highlan  | d                                | RL5_7    | unknown                                                                                                                                                                                     |
| Babine Upland         | Stuart Lake                      | E206957  | one of several large lakes and it receives drainage from most of the ecoregion which is unpolluted and relatively pristine. Large fish-forestry research project in the Stuart-Takla system |
| Babine Upland         | Boomerang Lake                   | 11300334 | smaller lake than Stuart. Thought to have high water quality but little data which is typical of all unpolluted lakes i the ecoregion                                                       |
| Northern Rockies      | Azouzetta Lake deep<br>stn       | E206655  | oligotrophic lake typical of ecoregion                                                                                                                                                      |
| Omineca Mountains     | Germansen Lk                     | 1134023  | little information but considered typical of ecoregion                                                                                                                                      |
| Skeena Mountains      | Bob Quinn Lake                   | 1130342  |                                                                                                                                                                                             |
| Takla Manson Plateau  | ı Burden Lk                      | 1134013  |                                                                                                                                                                                             |
| Upper Fraser          | Bednesti Lk                      | 400490   | mesotrophic typical, with relatively low development.                                                                                                                                       |
| Taiga Plains          | Marion Lake                      | 1132029  | · · · ·                                                                                                                                                                                     |
| *NPS refers to non-po | oint source                      |          |                                                                                                                                                                                             |
| PS refers to point so |                                  |          |                                                                                                                                                                                             |

<sup>1</sup>EMS refers to the Environmental Management System which is a data base used to compile water quality information in B.C.

 Table 10. General descriptive comments compiled for selected index streams from survey responses.

| Ecoregion                  | Stream Name                             | Site     | General Comment                                                                                                                                                                                                                                                                                                         |
|----------------------------|-----------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                          |                                         | Number   |                                                                                                                                                                                                                                                                                                                         |
| Bulkley Basin              | Bulkley River at Quick                  | 920088   |                                                                                                                                                                                                                                                                                                                         |
| Caribou Plateau            | Canim R. above Canim Falls              | 600051   |                                                                                                                                                                                                                                                                                                                         |
| Central Interior Plateau   | Bonaparte River u/s Clinton Cr.         | 600017   | substantial data history but no recent data:                                                                                                                                                                                                                                                                            |
| Chilcotin Ranges           | Stein River near mouth                  | 600027   | Only 31 data points from past monitoring but this is better than most other sites                                                                                                                                                                                                                                       |
| Chilcotin Ranges           | Cadwallader Creek u/s Bralorne          | E217521  | good high elevation site weathering volcanics which produce high TP and high glacial turbidity which<br>is typical of this part of the ecoregion                                                                                                                                                                        |
| Dean River                 | Dean River u/s Lodge Cr.                | 600042   | site is relatively contaminated with nutrients but is being monitored (May-Oct.) as part of assessment of lagoon-wetland treatment system for the Ulkatcho band. May want to change this site but no other could be recommended                                                                                         |
| Lower Nechako              | Nechako River u/s of Fort<br>Fraser     | 400629   | substantial data outside of EMS <sup>1</sup> exists because of ongoing fisheries work for Kemano settlement.<br>Drains large part of the ecoregion                                                                                                                                                                      |
| Nechako Plateau            | Maclvor Creek inflow to Ootsa Lal       | ke       | remote but is an ideal pristine stream draining a large elevation range in Tweedsmuir Provincial Park                                                                                                                                                                                                                   |
| Pothole Lakes              | Bridge Creek at Horse Lake Rd.          | 600137   | agricultural influence is typical throughout the ecoregion but effects are relatively small here compared to other streams.                                                                                                                                                                                             |
| Eastern Pacific Ranges     | Silverhope Creek                        | 300048   | typical of most streams draining Cascades; steep slopes, logging active or previously active                                                                                                                                                                                                                            |
| Exposed Fjords             | Kitimat River at bridge                 | 430025   |                                                                                                                                                                                                                                                                                                                         |
| Georgia Basin              | Chapman Creek                           | 300106   | sampled during the 1970's, but no recent data. No other stream has data.                                                                                                                                                                                                                                                |
| Georgia Basin              | Englishman River at highway             | 121580   | typical of the majority of the rivers in the area in that it is not headed by a large lake. While it does receive snow melt, it is a rain dominated river. This site was selected 2 to 3 years ago as a continuous monitoring site for flow, TSS, pH and conductance and as such is a relatively high priority location |
| Hecate Lowland             | no streams sampled in this<br>ecoregion | DFOS_30  | very small short streams draining to numerous small lakes. No stream monitoring in the ecoregion                                                                                                                                                                                                                        |
| Nass basin                 | unknown                                 | SROS_bsc | l site unknown                                                                                                                                                                                                                                                                                                          |
| Nass Ranges                | Skeena River                            | 920092   | main river that drains the whole ecoregion. Smaller rivers do not have data.                                                                                                                                                                                                                                            |
| Nimpkish                   | Tsitika River                           | E207676  | typical north Island stream, highly coloured , rainfall dominated hydrology, with no large lake in the headwaters                                                                                                                                                                                                       |
| North Coastal<br>Mountains | Cascade Creek above Premier mine        | E220201  |                                                                                                                                                                                                                                                                                                                         |
| Northern Pacific<br>Ranges | McClinchy Creek                         | 600304   |                                                                                                                                                                                                                                                                                                                         |
| Owikeno Ranges             | stream draining into Owikeno Lake       | Э        |                                                                                                                                                                                                                                                                                                                         |
| Puget Basin                | Shawnigan Creek at highway              | 127217   | Drains a semi-rural area headed by a moderate sized lake: Upstream disturbance is limited to semi rural development. The hydrology of the creek is typical of the area.                                                                                                                                                 |
| Queen Charlotte Islands    | Yakoun River                            | 700173   | typical coloured nutrient-deficient river of the QCI                                                                                                                                                                                                                                                                    |

Stream Name

Ecoregion

| General Comment                      |                      |
|--------------------------------------|----------------------|
| drains a large area of the ecoregion | Typical nutrient-def |

|                       |                                         | Number        |                                                                                                                                   |
|-----------------------|-----------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Sayward               | Salmon River at highway                 | 127180        | drains a large area of the ecoregion. Typical nutrient-deficient water. Fertilization active in headwaters for salmon restoration |
| Southern Inlets       | Theodosia River                         |               |                                                                                                                                   |
| Southern Pacific      | Norrish Creek                           | 300029        | good small stream site. sample taken from the east bank on the downstream side of Hawkins Pickle                                  |
| Ranges                |                                         |               | Road                                                                                                                              |
| Southern Pacific      | Squamish River                          | 300194        | high sediment load medium size river. Headwaters affected by logging. Extensive restoration work                                  |
| Ranges                |                                         |               | ongoing                                                                                                                           |
| Windward Island       | Gold River at highway                   | E207792       | drains the central Vancouver Island mountains. Snowmelt is significant during the spring months,                                  |
| Mountains             |                                         |               | while rainfall dominates flows during the winter months.                                                                          |
| Cassiar Ranges        | Galen Creek                             | 400403        | typical mountain habitat, small stream                                                                                            |
| Liard Plateau         | Liard River at Liard R.                 |               | Liard R. drains most of the ecoregion                                                                                             |
| Muskwa Ranges         | Toad River at highway                   |               |                                                                                                                                   |
| Stikine Plateau       | upper Bearskin Creek                    | E215755       |                                                                                                                                   |
| Peace Plains          | Peace River 3.2 KM u/s of FSJ           | 400134        | representative on a regional large river basis                                                                                    |
| Okanagan              | Similkameen River                       | 500073        |                                                                                                                                   |
| Thomspon Plateau      | Nicola River near Spences               |               | substantial data history and actively monitored                                                                                   |
|                       | Bridge                                  | E216848       |                                                                                                                                   |
| Columbia Mountains    | Kootenay River @ Picture<br>Valley      | 200038        | long term Fed and Prov. Site                                                                                                      |
| Columbia Mountains    | St. Mary River near Cominco             | 200029        | representative small river                                                                                                        |
|                       | Pump house                              |               |                                                                                                                                   |
| Kinbasket             | Blackwater Creek                        | E206765       | data collected prior to Mica                                                                                                      |
| Quesnel Highlands     | Caribou R. at Keithly Cr. Rd.<br>Bridge | 600035        |                                                                                                                                   |
| Shuswap Highlands     | Eagle River at Solsqua Road<br>Bridge   | 500025        | substantial data history but no recent data: Highly representative of Shuswap Highlands                                           |
| Southern Rockies      | Elk River @ Phillips                    | 200016        | major river of the ecoregion. As unaffected from pollution as a river gets in the region                                          |
| Southern Selkirk      | Columbia River @ Birchbank              | 200003        | u/s site for objectives monitoring: Fed and Prov. Site                                                                            |
| Mountains             |                                         |               |                                                                                                                                   |
| Southern Selkirk      | Slocan River near Passmore              | E213060       | mesocosm studies by Gerry Oliver completed near this site                                                                         |
| Mountains             |                                         |               |                                                                                                                                   |
| Upper Fraser Highland | Fraser River at Hansard,<br>midstream   | E206580       | control site for fed/prov water quality trend network. Drains the entire ecoregion                                                |
| Babine Upland         |                                         | SROS_d2       |                                                                                                                                   |
| Northern Rockies      | Murray River u/s of Quintette<br>Coal   | E206322       |                                                                                                                                   |
| Omineca Mountains     | unknown                                 | SROS_rcw<br>4 |                                                                                                                                   |

Site

Number

| Ecoregion                | Stream Name                     | Site    | General Comment                                                                                     |
|--------------------------|---------------------------------|---------|-----------------------------------------------------------------------------------------------------|
| -                        |                                 | Number  |                                                                                                     |
| Skeena Mountains         | Fulton River u/s hatchery       |         | no established Provincial site but data have been collected by DFO for hatchery operations (contact |
|                          |                                 |         | is Colin Harrison)                                                                                  |
| Takla Manson Plateau     | Nation River                    | E209686 | drains large area of ecoregion. Integrated measure of ecoregion water quality                       |
| Upper Fraser             | Salmon River                    | 400028  | mesotrophic typical, with relatively low development.                                               |
| Taiga Plains             | Muskwa River u/s of Fort Nelson |         | ecoregion contains several similar sized rivers                                                     |
| *NPS refers to non-point | nt source                       |         |                                                                                                     |
| PS refers to point sour  | се                              |         |                                                                                                     |

<sup>1</sup>EMS refers to the Environmental Management System which is a data base used to compile water quality information in B.C.

# 5.0 RECOMMENDATIONS

In Section 4.0 we showed that sample sizes of water quality data for the index sites, as it is presently logged into AECD, is generally small and needs to be increased to make the index sites useful in all areas of the Province. There are two tasks that can achieve this goal. First is compilation of existing data from the selected sites that may reside in sources outside of the EMS (EMS refers to the Environmental Management System which is a data base used to compile water quality information in B.C.) and AECD. Second is implementation of simple routine water sampling across all areas of the Province. This second task is a basic requirement of maintaining index sites and thus must be implemented regardless of whether the addition of data to AECD from the various existing sources is pursued. To make these activities happen in the present time of cut backs and general lack of funding, innovative strategies must be implemented. Some ideas are as follows.

We will first deal with routine sample collections. This process is a basic requirement of an index site system. To optimise MOELP personnel time and make the plan workable under the present regime of tight budgets, volunteers in communities close to some of the more remote sites should complete sample collections. This is a suggestion that was initially proposed by Bruce Carmichael (Omineca-Peace Management Region) in his response to the index site survey (Appendix A). Little training is required for collection of water samples for the analysis of the required parameters which makes the use of volunteers realistic. These people may be from rod and gun clubs, environment round table committees, and other local interest groups who would find participation with data collection rewarding as a contribution to a process that supports their own interests. BC Environment staff are familiar with the people in these groups and could name several people in their respective regions who would live near the sampling sites and be candidates to complete the sampling. BC Environment staff should complete the collections that are close to their places of work and they should direct the volunteer sample collections. A possible sampling frequency may be quarterly (e.g. once in each of spring, summer, fall and winter) which means that 5 to 12 streams and lakes would have to be sampled once in each season from each management area. The parameter list may be limited to the short list that was used in this project although others would ideally be added for site specific requirements considered important by regional MOELP water quality specialists if the lab budget is available to cover the added cost. An index site lab budget may have to be allocated if the fees cannot be covered within existing lab budgets. All data collected from index sites may be compiled into EMS at the lab (as part of the lab fee) and downloaded directly into AECD for improved characterisation of Ecoregion water quality over time. While the download is presently not a direct process, it could be simplified by writing some software dedicated to the task. This compilation, updated analysis, and overall coordination should happen centrally,

while the collection of data from the index sites may be a regional responsibility. Coordination would involve QAQC to ensure that the stream of selected data from regions is occurring according to the planned schedule, that samples are being handled correctly, and that the data is compiled correctly and made available Province wide, primarily through a dedicated internet web site having file download capability. An example of a site having related capabilities is the NAWQA (national water quality assessment program) that is managed by the US Geological Survey (www.usgs.gov) in the United States. After as little as 5 years of routine field sampling at each index site, there will 20 data points (4 seasons x 5 years) to add to the existing data summarised here in Tables 5 and 6. That is something with which to have confidence in running spatial and temporal analyses in various applications of the index site system across all areas of the Province and a major step forward in developing an index site system. Direct costs would be mainly limited to lab fees, assuming that coordination would remain within BC Environment.

The access and compilation of data into AECD from sources that have not yet been accessed may be considered optional. Of the index sites that have been selected, few or none may have been sampled outside of BC Environment activities. These sites are unlike a much larger number of sites where large project developments (e.g. mines and pulp mills) have occurred and data has been compiled by private and public companies usually via contractors or consultants for regulatory requirements. While data from control or reference sites at these locations may contribute to ecozone descriptions, no index sites recommended in this report are associated with major resource developments. For this reason, there may be little benefit in spending what could be substantial time on searching for data from private sources to improve precision of water quality data at the index sites. Notwithstanding this comment, there is an exception. Lower Arrow Lake was one of the large lake index sites for which no data are compiled in AECD (which also means there are no data for Lower Arrow in EMS). We know, however, that a multivear fish restoration project has been initiated in Lower Arrow and basic water sampling has been part of that work. The studies are being managed by the Fisheries Research Section of the Ministry of Fisheries at UBC. Data compiled by that office should be accessed and logged into AECD.

In the course of completing the index site survey, a frequent comment from the regional personnel was that time was a premium and that work load is so high that any added task that the index site project may bring to their schedules may not get done. Herein lies a dilemma with maintaining index sites. If the sites are to be recognised, maintained, and used, there is a cost to meeting that objective. There are direct lab costs. There are direct costs or time commitments required for data organisation, regular updating of information and for distribution of that data, ideally by maintaining an internet web site. There are also costs or time required from personnel in regional offices for maintaining sample collections from the field. If time is at a premium that does not allow for these extra tasks but there is a real willingness to develop index sites in aquatic

ecozones, another option is to privitise the process. There are not enough clients in B.C. for a company to take over the management of index sites and associated data bases and charge useage or access fees, but under contract, a company could assume all managerial, technical, and logistical tasks. This option would relieve work loads of BC Environment staff and provide ready access to water quality information that is routinely updated in all regions of the Province via the internet.

# 6.0 LIST OF REFERENCES

- Ashley, K.A., L.C. Thompson, D.C. Lasenby, L. McEachern, K.E. Smokorowski and D. Sebastian. Restoration of an interior lake ecosystem: the Kootenay Lake fertilization experiment. Water Qual. Res. J. Can. 32: 295-323.
- Demarchi, D.A. 1995. Ecoregions of British Columbia. 4th Edition map at 1:2,000,000 scale. Ministry of Environment, Lands and Parks. Wildlife Branch. Victoria, B.C.
- Krajina, V.J. 1965. Biogeoclimatic zones and biogeocoenoses of British Columbia. Ecology of Western North America 1:1-17.
- Minshall, G.W., K.W. Cummins, R.C. Petersen, C.E. Cushing, D.A. Bruns, J.R. Sedell, and R.L. Vannote. 1985. Developments in stream ecosystem theory. Can. J. Fish. Aquat. Sci. 42: 1045-1055.
- Northcote, T.G. and P.A. Larkin. 1964. An inventory and evaluation of the lakes of British Columbia with special reference to sport fish production. In: Inventory of the Natural Resources of British Columbia. pp 575-582. The British Columbia Natural Resources Conference.
- Perrin, C.J. 1998. Ulkatcho Indian Band community development: monitoring of the wastewater receiving environment, 1997-98. Report prepared for Borrett Engineering Inc. by Limnotek Research and Development Inc. 75p.
- Perrin, C.J. and C.A. McDevitt. 1998. Water quality impact assessment of Nechako Reservoir submerged timber salvage operations. Report prepared by B.C Research Inc. and Limnotek Research & Development Inc. for B.C. Ministry of Environment, Lands & Parks, Smithers, B.C. 65p plus appendices. 54p. plus appendices.
- Perrin, C.J. and C.A. Blyth. 1998. An ecozone classification for lakes and streams of British Columbia; Version 1.0. Report prepared by Limnotek Research and Development Inc. and AXYS Environmental Consulting Ltd. for Ministry of Environment, Lands and Parks. Water Quality Branch. Victoria, B.C. 95p plus map.
- Vannote, R.L., G.W. Minshall, K.W. Cummins, J.R. Sedell, and C.E. Cushing. 1980. The river continuum concept. Can. J. Fish. Aquat. Sci. 37: 130-137.

Wetzel, R.G. 1983. Limnology. Saunders College Publishing. New York.

Young, L.U. 1996. Water quality assessment. In: Levy, D.A., L.U. Young, and L.W. Dwernychuck. Ed. Strait of Georgia Fisheries Sustainability Review. Hatfield Consultants Ltd. 441p.

| APPENDIX A: Names of Watershed Groups, Ecoregions and Ecoprovinces |
|--------------------------------------------------------------------|
| showing revisions through January, 1999.                           |

| WATERSHED GROUP               | ECOREGION (as of                 | ECOREGION                                | ECOPROVINCE                                |
|-------------------------------|----------------------------------|------------------------------------------|--------------------------------------------|
|                               | Jan'99)                          | (previously reported                     |                                            |
|                               | (new names in bold)              | by Perrin and Blyth                      |                                            |
|                               |                                  | (1998))                                  |                                            |
| BULKLEY RIVER                 | Bulkley Basin                    | Bulkley Basin                            | Central Interior                           |
| MORICE RIVER                  | Bulkley Basin                    | Bulkley Basin                            | Central Interior                           |
| HORSEFLY RIVER                | Caribou Plateau                  | Caribou Plateau                          | Central Interior                           |
| MAHOOD LAKE                   | Caribou Plateau                  | Caribou Plateau                          | Central Interior                           |
| EUCHINIKO RIVER               | Central Interior Plateau         | Central Interior Plateau                 | Central Interior                           |
| BLACKWATER RIVER              | Central Interior Plateau         | Central Interior Plateau                 | Central Interior                           |
| EUCHINIKO LAKE                | Central Interior Plateau         | Central Interior Plateau                 | Central Interior                           |
| UPPER CHILCOTIN RIVER         | Central Interior Plateau         | Central Interior Plateau                 | Central Interior                           |
| LOWER CHILCOTIN RIVER         | Central Interior Plateau         | Central Interior Plateau                 | Central Interior                           |
| BIG CREEK                     | Central Interior Plateau         | Central Interior Plateau                 | Central Interior                           |
| DOG CREEK                     | Central Interior Plateau         | Central Interior Plateau                 | Central Interior                           |
| GREEN LAKE                    | Central Interior Plateau         | Central Interior Plateau                 | Central Interior                           |
| BIG BAR CREEK                 | Central Interior Plateau         | Central Interior Plateau                 | Central Interior                           |
| BONAPARTE RIVER               | Central Interior Plateau         | Central Interior Plateau                 | Central Interior                           |
| DEADMAN RIVER                 | Central Interior Plateau         | Central Interior Plateau                 | Central Interior                           |
| CHILKO RIVER                  | Chilcotin Ranges                 | Chilcotin Ranges                         | Central Interior                           |
| TASEKO RIVER                  | Chilcotin Ranges                 | Chilcotin Ranges                         | Central Interior                           |
| SETON LAKE                    | Chilcotin Ranges                 | Chilcotin Ranges                         | Central Interior                           |
| LOWER DEAN RIVER              | Dean River                       | Dean River                               | Central Interior                           |
| UPPER DEAN RIVER              | Dean River                       | Dean River                               | Central Interior                           |
| FRANCOIS LAKE                 | Lower Nechako                    | Lower Nechako                            | Central Interior                           |
| NECHAKO RIVER                 | Lower Nechako                    | Lower Nechako                            | Central Interior                           |
| CHESLATTA RIVER               | Lower Nechako                    | Lower Nechako                            | Central Interior                           |
| CHILAKO RIVER                 | Lower Nechako                    | Lower Nechako                            | Central Interior                           |
| UPPER NECHAKO RESERVOIR       | Nechako Plateau                  | Nechako Plateau                          | Central Interior                           |
| LOWER EUTSUK LAKE             | Nechako Plateau                  | Nechako Plateau                          | Central Interior                           |
| LOWER NECHAKO RESERVOIR       | Nechako Plateau                  | Nechako Plateau                          | Central Interior                           |
|                               | Nechako Plateau                  | Nechako Plateau                          | Central Interior                           |
| NAZKO RIVER                   | Pothole Lakes                    | Pothole Lakes                            | Central Interior                           |
| NARCOSLI CREEK                | Pothole Lakes                    | Pothole Lakes                            | Central Interior                           |
|                               | Pothole Lakes                    | Pothole Lakes                            | Central Interior                           |
| MIDDLE FRASER                 | Pothole Lakes                    | Pothole Lakes                            | Central Interior                           |
| SAN JOSE RIVER                | Pothole Lakes                    | Pothole Lakes                            | Central Interior                           |
| BRIDGE CREEK                  | Pothole Lakes                    | Pothole Lakes                            | Central Interior                           |
|                               | Southern Inlets                  | Bute Inlets                              | Coast and Mountains                        |
|                               | Southern Inlets                  | Bute Inlets                              | Coast and Mountains<br>Coast and Mountains |
| SEYMOUR INLET                 | Southern Inlets                  | Bute Inlets                              |                                            |
| FRASER CANYON<br>SKAGIT RIVER | Eastern Pacific Ranges           | Eastern Pacific Ranges                   | Coast and Mountains                        |
| KSHWAN RIVER                  | Eastern Pacific Ranges           | Eastern Pacific Ranges<br>Exposed Fjords | Coast and Mountains<br>Coast and Mountains |
| LOWER NASS RIVER              | Exposed Fjords                   | Exposed Fjords                           | Coast and Mountains                        |
| LOWER NASS RIVER              | Exposed Fjords<br>Exposed Fjords |                                          | Coast and Mountains                        |
| KITIMAT RIVER                 | Exposed Fjords                   | Exposed Fjords<br>Exposed Fjords         | Coast and Mountains                        |
| TSAYTIS RIVER                 | Exposed Fjords                   |                                          |                                            |
| KHUTZE RIVER                  | Exposed Fjords                   | Exposed Fjords<br>Exposed Fjords         | Coast and Mountains<br>Coast and Mountains |
| KITLOPE RIVER                 | Exposed Fjords                   | Exposed Fjords                           | Coast and Mountains                        |
| NASCALL RIVER                 | Exposed Fjords                   | Exposed Fjords                           | Coast and Mountains                        |
| NASCALL RIVER                 | Exposed Fjords                   | Exposed Fjords                           | Coast and Mountains                        |
| COMOX                         | Georgia Basin                    | Georgia Basin                            | Coast and Mountains                        |
| PARKSVILLE                    | Georgia Basin                    | Georgia Basin                            | Coast and Mountains                        |
| COWICHAN                      | Georgia Basin                    | Georgia Basin                            | Coast and Mountains                        |
|                               | Coorgia Daoin                    | Coorgia Baolin                           |                                            |

| WATERSHED GROUP            | ECOREGION (as of             | ECOREGION                   | ECOPROVINCE         |
|----------------------------|------------------------------|-----------------------------|---------------------|
|                            | Jan'99) (previously reported |                             |                     |
|                            | (new names in bold)          | by Perrin and Blyth (1998)) |                     |
| JERVIS INLET               | Georgia Basin                | South Pacific Ranges        | Coast and Mountains |
| WORK CHANNEL               | Hecate Lowland               | Hecate Lowland              | Coast and Mountains |
| PORCHER ISLAND             | Hecate Lowland               | Hecate Lowland              | Coast and Mountains |
| KUMOWDAH RIVER             | Hecate Lowland               | Hecate Lowland              | Coast and Mountains |
| NORTH BANKS ISLAND         | Hecate Lowland               | Hecate Lowland              | Coast and Mountains |
| MIDDLE BANKS ISLAND        | Hecate Lowland               | Hecate Lowland              | Coast and Mountains |
| KEECHA CREEK               | Hecate Lowland               | Hecate Lowland              | Coast and Mountains |
| LAREDO INLET               | Hecate Lowland               | Hecate Lowland              | Coast and Mountains |
| KITASU BAY                 | Hecate Lowland               | Hecate Lowland              | Coast and Mountains |
| NASCALL RIVER              | Hecate Lowland               | Hecate Lowland              | Coast and Mountains |
| NECLEETSCONNAY RIVER       | Hecate Lowland               | Hecate Lowland              | Coast and Mountains |
| LOWER BELL-IRVING RIVER    | Nass Basin                   | Nass Basin                  | Coast and Mountains |
| NASS RIVER                 | Nass Basin                   | Nass Basin                  | Coast and Mountains |
| KINSKUCH RIVER             | Nass Basin                   | Nass Basin                  | Coast and Mountains |
| KISPIOX RIVER              | Nass Ranges                  | Nass Ranges                 | Coast and Mountains |
| KALUM RIVER                | Nass Ranges                  | Nass Ranges                 | Coast and Mountains |
| ZYMOETZ RIVER              | Nass Ranges                  | Nass Ranges                 | Coast and Mountains |
| LAKELSE                    | Nass Ranges                  | Nass Ranges                 | Coast and Mountains |
| NORTHEAST VANCOUVER ISLAND | Nimpkish                     | Nimpkish                    | Coast and Mountains |
| NIMPKISH RIV ER            | Nimpkish                     | Nimpkish                    | Coast and Mountains |
| TSITIKA RIVER              | Nimpkish                     | Nimpkish                    | Coast and Mountains |
|                            | North Coastal Mountains      | North Coastal<br>Mountains  | Coast and Mountains |
| KUSAWA RIVER               | North Coastal Mountains      | North Coastal<br>Mountains  | Coast and Mountains |
| TUTSHI RIVER               | North Coastal Mountains      | North Coastal<br>Mountains  | Coast and Mountains |
| ATLIN LAKE                 | North Coastal Mountains      | North Coastal<br>Mountains  | Coast and Mountains |
| INKLIN RIVER               | North Coastal Mountains      | North Coastal<br>Mountains  | Coast and Mountains |
| BARRINGTON RIVER           | North Coastal Mountains      | North Coastal<br>Mountains  | Coast and Mountains |
| LOWER STIKINE RIVER        | North Coastal Mountains      | North Coastal<br>Mountains  | Coast and Mountains |
| LOWER ISKUT RIVER          | North Coastal Mountains      | North Coastal<br>Mountains  | Coast and Mountains |
| UNUK RIVER                 | North Coastal Mountains      | North Coastal<br>Mountains  | Coast and Mountains |
| BELLA COOLA RIVER          | Northern Pacific Ranges      | Northern Pacific<br>Ranges  | Coast and Mountains |
| ATNARKO RIVER              | Northern Pacific Ranges      | Northern Pacific<br>Ranges  | Coast and Mountains |
| KLINAKLINI RIVER           | Northern Pacific Ranges      | Northern Pacific<br>Ranges  | Coast and Mountains |
| HOMATHCO RIVER             | Northern Pacific Ranges      | Northern Pacific<br>Ranges  | Coast and Mountains |
| OWIKENO LAKE               | Owikeno Ranges               | Owikeno Ranges              | Coast and Mountains |
| NIEL CREEK                 | Owikeno Ranges               | Hecate Lowland              | Coast and Mountains |
| VICTORIA                   | Puget Basin                  | Puget Basin                 | Coast and Mountains |
| GRAHAM ISLAND              | Queen Charlotte Islands      | Queen Charlotte Islands     |                     |
| MORSBY ISLAND              | Queen Charlotte Islands      | Queen Charlotte Islands     |                     |
| SALMON RIVER               | Sayward                      | Sayward                     | Coast and Mountains |
| CAMPBELL RIVER             | Sayward                      | Sayward                     | Coast and Mountains |
| LILLOOET                   | Southern Pacific Ranges      | Ranges                      | Coast and Mountains |
| SQUAMISH                   | Southern Pacific Ranges      | Southern Pacific            | Coast and Mountains |

| WATERSHED GROUP       | ECOREGION (as of<br>Jan'99)  | ECOREGION<br>(previously reported | ECOPROVINCE               |  |
|-----------------------|------------------------------|-----------------------------------|---------------------------|--|
|                       | (new names in bold)          | by Perrin and Blyth (1998))       |                           |  |
|                       |                              | Ranges                            |                           |  |
| ARRISON RIVER         | Southern Pacific Ranges      | -                                 | Coast and Mountains       |  |
| OWER FRASER           | Southern Pacific Ranges      | •                                 | Coast and Mountains       |  |
| CHILLIWACK RIVER      | Southern Pacific Ranges      | Southern Pacific                  | Coast and Mountains       |  |
| HOLBERG               | Windward Island              | Ranges<br>Windward Island         | Coast and Mountains       |  |
| BROOKS PENINSULA      | Mountains<br>Windward Island | Mountains<br>Windward Island      | Coast and Mountains       |  |
| TAHSIS                | Mountains<br>Windward Island | Mountains<br>Windward Island      | Coast and Mountains       |  |
|                       | Mountains<br>Windward Island | Mountains<br>Windward Island      | Coast and Mountains       |  |
| GOLD RIVER            | Windward Island<br>Mountains | Windward Island<br>Mountains      | Coast and Mountains       |  |
| CLAYOQUOT             | Windward Island              | Windward Island                   | Coast and Mountains       |  |
|                       | Mountains<br>Windward Island | Mountains<br>Windward Island      | Coast and Mountains       |  |
| ALBERNI INLET         | Windward Island<br>Mountains | Windward Island<br>Mountains      | Coast and Mountains       |  |
| SAN JUAN RIVER        | Windward Island              | Windward Island                   | Coast and Mountains       |  |
|                       | Mountains                    | Mountains                         |                           |  |
| SWIFT RIVER           | Cassiar Ranges               | Cassiar Ranges                    | Northern Boreal Mountains |  |
| ITTLE RANCHERIA RIVER | Cassiar Ranges               | Cassiar Ranges                    | Northern Boreal Mountains |  |
| BLUE RIVER            | Cassiar Ranges               | Cassiar Ranges                    | Northern Boreal Mountains |  |
| ENNINGS RIVER         | Cassiar Ranges               | Cassiar Ranges                    | Northern Boreal Mountains |  |
| JPPER JENNINGS RIVER  | Cassiar Ranges               | Cassiar Ranges                    | Northern Boreal Mountains |  |
| DEASE LAKE            | Cassiar Ranges               | Cassiar Ranges                    | Northern Boreal Mountains |  |
| /IIDDLE DEASE RIVER   | Cassiar Ranges               | Cassiar Ranges                    | Northern Boreal Mountains |  |
| JPPER KECHIKA RIVER   | Cassiar Ranges               | Cassiar Ranges                    | Northern Boreal Mountains |  |
| CRY LAKE              | Cassiar Ranges               | Cassiar Ranges                    | Northern Boreal Mountains |  |
| TURNAGAIN RIVER       | Cassiar Ranges               | Cassiar Ranges                    | Northern Boreal Mountains |  |
| ROG RIVER             | Cassiar Ranges               | Cassiar Ranges                    | Northern Boreal Mountains |  |
| FOODOGGONE RIVER      | Cassiar Ranges               | Cassiar Ranges                    | Northern Boreal Mountains |  |
| CHUKACHIDA RIVER      | Cassiar Ranges               | Cassiar Ranges                    | Northern Boreal Mountains |  |
| NGENIKA RIVER         | Cassiar Ranges               | Cassiar Ranges                    | Northern Boreal Mountains |  |
| JPPER LIARD RIVER     | Liard Plateau                | Liard Plateau                     | Northern Boreal Mountains |  |
| COAL RIVER            | Liard Plateau                | Liard Plateau                     | Northern Boreal Mountains |  |
| LIARD RIVER           | Liard Plateau                | Liard Plateau                     | Northern Boreal Mountains |  |
| DEASE RIVER           | Liard Plateau                | Liard Plateau                     | Northern Boreal Mountains |  |
| OWER KECHIKA RIVER    | Liard Plateau                | Liard Plateau                     | Northern Boreal Mountains |  |
| DUNEDIN RIVER         | Muskwa Ranges                | Muskwa Ranges                     | Northern Boreal Mountains |  |
| BEAVER RIVER          | Muskwa Ranges                | Muskwa Ranges                     | Northern Boreal Mountains |  |
|                       | Muskwa Ranges                | Muskwa Ranges                     | Northern Boreal Mountains |  |
| MIDDLE MUSKWA RIVER   | Muskwa Ranges                | Muskwa Ranges                     | Northern Boreal Mountains |  |
|                       | Muskwa Ranges                | Muskwa Ranges                     | Northern Boreal Mountains |  |
| JPPER MUSKWA RIVER    | Muskwa Ranges                | Muskwa Ranges                     | Northern Boreal Mountains |  |
|                       | Muskwa Ranges                | Muskwa Ranges                     | Northern Boreal Mountains |  |
| JPPER PROPHET RIVER   | Muskwa Ranges                | Muskwa Ranges                     | Northern Boreal Mountains |  |
|                       | Muskwa Ranges                | Muskwa Ranges                     | Northern Boreal Mountains |  |
|                       | Stikine Plateau              | Stikine Plateau                   | Northern Boreal Mountains |  |
|                       | Stikine Plateau              | Stikine Plateau                   | Northern Boreal Mountains |  |
|                       | Stikine Plateau              | Stikine Plateau                   | Northern Boreal Mountains |  |
|                       | Stikine Plateau              | Stikine Plateau                   | Northern Boreal Mountains |  |
|                       | Stikine Plateau              | Stikine Plateau                   | Northern Boreal Mountains |  |
| SHESLAY RIVER         | Stikine Plateau              | Stikine Plateau                   | Northern Boreal Mountains |  |
|                       | Stikine Plateau              | Stikine Plateau                   | Northern Boreal Mountains |  |
| MIDDLE STIKINE RIVER  | Stikine Plateau              | Stikine Plateau                   | Northern Boreal Mountains |  |

| WATERSHED GROUP            | ECOREGION (as of               | ECOREGION                                   | ECOPROVINCE                 |
|----------------------------|--------------------------------|---------------------------------------------|-----------------------------|
|                            | Jan'99)<br>(new names in bold) | (previously reported<br>by Perrin and Blyth |                             |
|                            | (new names in bold)            | (1998))                                     |                             |
| PITMAN RIVER               | Stikine Plateau                | Stikine Plateau                             | Northern Boreal Mountains   |
| STIKINE RIVER              | Stikine Plateau                | Stikine Plateau                             | Northern Boreal Mountains   |
| KAKIDDI CREEK              | Stikine Plateau                | Stikine Plateau                             | Northern Boreal Mountains   |
| MESS CREEK                 | Stikine Plateau                | Stikine Plateau                             | Northern Boreal Mountains   |
| KLAPPAN RIVER              | Stikine Plateau                | Stikine Plateau                             | Northern Boreal Mountains   |
| UPPER STIKINE RIVER        | Stikine Plateau                | Stikine Plateau                             | Northern Boreal Mountains   |
| UPPER ISKUT RIVER          | Stikine Plateau                | Stikine Plateau                             | Northern Boreal Mountains   |
| SPATZIZI RIVER             | Stikine Plateau                | Stikine Plateau                             | Northern Boreal Mountains   |
| FIRESTEEL RIVER            | Stikine Plateau                | Stikine Plateau                             | Northern Boreal Mountains   |
| MILLIGAN CREEK             | Peace Plains                   | Peace Plains                                | Peace Plains                |
| UPPER BEATTON RIVER        | Peace Plains                   | Peace Plains                                | Peace Plains                |
| LOWER BEATTON RIVER        | Peace Plains                   | Peace Plains                                | Peace Plains                |
| UPPER HALFWAY RIVER        | Peace Plains                   | Peace Plains                                | Peace Plains                |
| LOWER HALFWAY RIVER        | Peace Plains                   | Peace Plains                                | Peace Plains                |
| LOWER PEACE RIVER          | Peace Plains                   | Peace Plains                                | Peace Plains                |
| UPPER PEACE RIVER          | Peace Plains                   | Peace Plains                                | Peace Plains                |
| KISKATINAW RIVER           | Peace Plains                   | Peace Plains                                | Peace Plains                |
| OKANAGAN RIVER             | Okanagan                       | Okanagan                                    | Southern Interior           |
| KETTLE RIVER               | Okanagan                       | Okanagan                                    | Southern Interior           |
| SIMILKAMEEN RIVER          | Okanagan                       | Okanagan                                    | Southern Interior           |
| THOMPSON RIVER             | Thompson Plateau               | Thompson-Okanagan<br>Plateau                | Southern Interior           |
| SOUTH THOMPSON RIVER       | Thompson Plateau               | Thompson-Okanagan<br>Plateau                | Southern Interior           |
| GUICHON CREEK              | Thompson Plateau               | Thompson-Okanagan<br>Plateau                | Southern Interior           |
| LOWER NICOLA RIVER         | Thompson Plateau               | Thompson-Okanagan<br>Plateau                | Southern Interior           |
| NICOLA RIVER               | Thompson Plateau               | Thompson-Okanagan<br>Plateau                | Southern Interior           |
| REVELSTOKE LAKE            | Columbia Mountains             | Columbia Mountains                          | Southern Interior Mountains |
| UPPER ARROW LAKE           | Columbia Mountains             | Columbia Mountains                          | Southern Interior Mountains |
| DUNCAN LAKE                | Columbia Mountains             | Columbia Mountains                          | Southern Interior Mountains |
| COLUMBIA RIVER             | Columbia Mountains             | Columbia Mountains                          | Southern Interior Mountains |
| BULL RIVER                 | Columbia Mountains             | Columbia Mountains                          | Southern Interior Mountains |
| ST. MARY RIVER             | Columbia Mountains             | Columbia Mountains                          | Southern Interior Mountains |
| KOOTENAY LAKE              | Columbia Mountains             | Columbia Mountains                          | Southern Interior Mountains |
| CANOE REACH                | Kinbasket                      | Kinbasket                                   | Southern Interior Mountains |
| COLUMBIA REACH             | Kinbasket                      | Kinbasket                                   | Southern Interior Mountains |
| WILLOW RIVER               | Quesnel Highlands              | Quesnel Highlands                           | Southern Interior Mountains |
| BOWRON                     | Quesnel Highlands              | Quesnel Highlands                           | Southern Interior Mountains |
| CARIBOO RIVER              | Quesnel Highlands              | Quesnel Highlands                           | Southern Interior Mountains |
| QUESNEL RIVER              | Quesnel Highlands              | Quesnel Highlands                           | Southern Interior Mountains |
| CLEARWATER RIVER           | Quesnel Highlands              | Quesnel Highlands                           | Southern Interior Mountains |
| MURTLE LAKE                | Quesnel Highlands              | Quesnel Highlands                           | Southern Interior Mountains |
| UPPER NORTH THOMPSON RIVER | Shuswap Highlands              | Shuswap Highlands                           | Southern Interior Mountains |
| ADAMS RIVER                | Shuswap Highlands              | Shuswap Highlands                           | Southern Interior Mountains |
| LOWER NORTH THOMPSON RIVER | Shuswap Highlands              | Shuswap Highlands                           | Southern Interior Mountains |
| SHUSWAP LAKE               | Shuswap Highlands              | Shuswap Highlands                           | Southern Interior Mountains |
|                            | Shuswap Highlands              | Shuswap Highlands                           | Southern Interior Mountains |
| KICKING HORSE RIVER        | Southern Rockies               | Southern Rockies                            | Southern Interior Mountains |
| KOOTENAY RIVER             | Southern Rockies               | Southern Rockies                            | Southern Interior Mountains |
|                            | Southern Rockies               | Southern Rockies                            | Southern Interior Mountains |
| SLOCAN RIVER               | Southern Selkirk<br>Mountains  | Southern Selkirk<br>Mountains               | Southern Interior Mountains |
| LOWER ARROW LAKE           | Southern Selkirk               | Southern Selkirk                            | Southern Interior Mountains |
|                            | Mountains                      | Mountains                                   |                             |

| WATERSHED GROUP         | ECOREGION (as of Jan'99) | ECOREGION<br>(previously reported | ECOPROVINCE                 |
|-------------------------|--------------------------|-----------------------------------|-----------------------------|
|                         | (new names in bold)      | by Perrin and Blyth (1998))       |                             |
| MORKILL RIVER           | Upper Fraser Highlands   | Upper Fraser Trench               | Southern Interior Mountains |
| UPPER FRASER RIVER      | Upper Fraser Highlands   | Upper Fraser Trench               | Southern Interior Mountains |
| BABINE LAKE             | Babine Upland            | Babine Upland                     | Sub-Boreal Interior         |
| MIDDLE RIVER            | Babine Upland            | Babine Upland                     | Sub-Boreal Interior         |
| LOWER TREMBLEUR LAKE    | Babine Upland            | Babine Upland                     | Sub-Boreal Interior         |
| UPPER TREMBLEUR LAKE    | Babine Upland            | Babine Upland                     | Sub-Boreal Interior         |
| STUART LAKE             | Babine Upland            | Babine Upland                     | Sub-Boreal Interior         |
| OSPIKA RIVER            | Northern Rockies         | Central Rocky<br>Mountains        | Sub-Boreal Interior         |
| PEACE ARM               | Northern Rockies         | Central Rocky<br>Mountains        | Sub-Boreal Interior         |
| PINE RIVER              | Northern Rockies         | Central Rocky<br>Mountains        | Sub-Boreal Interior         |
| PARSNIP ARM             | Northern Rockies         | Central Rocky<br>Mountains        | Sub-Boreal Interior         |
| MURRAY RIVER            | Northern Rockies         | Central Rocky<br>Mountains        | Sub-Boreal Interior         |
| SMOKY RIVER             | Northern Rockies         | Central Rocky<br>Mountains        | Sub-Boreal Interior         |
| PARSNIP RIVER           | Northern Rockies         | Central Rocky<br>Mountains        | Sub-Boreal Interior         |
| HERRICK CREEK           | Northern Rockies         | Central Rocky<br>Mountains        | Sub-Boreal Interior         |
| MCGREGOR RIVER          | Northern Rockies         | Central Rocky<br>Mountains        | Sub-Boreal Interior         |
| UPPER SKEENA RIVER      | Omineca Mountains        | Omineca Mountains                 | Sub-Boreal Interior         |
| FINLAY ARM              | Omineca Mountains        | Omineca Mountains                 | Sub-Boreal Interior         |
| SUSTUT RIVER            | Omineca Mountains        | Omineca Mountains                 | Sub-Boreal Interior         |
| MESILINKA RIVER         | Omineca Mountains        | Omineca Mountains                 | Sub-Boreal Interior         |
| LOWER OMINECA RIVER     | Omineca Mountains        | Omineca Mountains                 | Sub-Boreal Interior         |
| ISKUT RIVER             | Skeena Mountains         | Skeena Mountains                  | Sub-Boreal Interior         |
| UPPER BELL-IRVING RIVER | Skeena Mountains         | Skeena Mountains                  | Sub-Boreal Interior         |
| UPPER NASS RIVER        | Skeena Mountains         | Skeena Mountains                  | Sub-Boreal Interior         |
| TAYLOR RIVER            | Skeena Mountains         | Skeena Mountains                  | Sub-Boreal Interior         |
| MIDDLE SKEENA RIVER     | Skeena Mountains         | Skeena Mountains                  | Sub-Boreal Interior         |
| BABINE RIVER            | Skeena Mountains         | Skeena Mountains                  | Sub-Boreal Interior         |
| UPPER OMINECA RIVER     | Takla/Manson Plateau     | Takla/Manson Plateau              | Sub-Boreal Interior         |
| DRIFTWOOD RIVER         | Takla/Manson Plateau     | Takla/Manson Plateau              | Sub-Boreal Interior         |
| TAKLA LAKE              | Takla/Manson Plateau     | Takla/Manson Plateau              | Sub-Boreal Interior         |
| NATION RIVER            | Takla/Manson Plateau     | Takla/Manson Plateau              | Sub-Boreal Interior         |
| CARP LAKE               | Upper Fraser             | Upper Fraser                      | Sub-Boreal Interior         |
| SALMON RIVER            | Upper Fraser             | Upper Fraser                      | Sub-Boreal Interior         |
| CROOKED RIVER           | Upper Fraser             | Upper Fraser                      | Sub-Boreal Interior         |
| MUSKEG RIVER            | Upper Fraser             | Upper Fraser                      | Sub-Boreal Interior         |
| LOWER SALMON RIVER      | Upper Fraser             | Upper Fraser                      | Sub-Boreal Interior         |
| STUART RIVER            | Upper Fraser             | Upper Fraser                      | Sub-Boreal Interior         |
| TABOR RIVER             | Upper Fraser             | Upper Fraser                      | Sub-Boreal Interior         |
| LOWER CHILAKO RIVER     | Upper Fraser             | Upper Fraser                      | Sub-Boreal Interior         |
| COTTONWOOD RIVER        | Upper Fraser             | Upper Fraser                      | Sub-Boreal Interior         |
| UPPER PETITOT RIVER     | Taiga Plains             | Taiga Plains                      | Taiga Plains                |
| TSEA RIVER              | Taiga Plains             | Taiga Plains                      | Taiga Plains                |
| LOWER PETITOT RIVER     | Taiga Plains             | Taiga Plains                      | Taiga Plains                |
| SAHDOANAH CREEK         | Taiga Plains             | Taiga Plains                      | Taiga Plains                |
| LOWER FORT NELSON RIVER | Taiga Plains             | Taiga Plains                      | Taiga Plains                |
| SHEKILIE RIVER          | Taiga Plains             | Taiga Plains                      | Taiga Plains                |
| SAHTANEH RIVER          | Taiga Plains             | Taiga Plains                      | Taiga Plains                |
|                         | ~                        | ~                                 | -                           |

| WATERSHED GROUP           | ECOREGION (as of<br>Jan'99)<br>(new names in bold) | ECOREGION<br>(previously reported<br>by Perrin and Blyth<br>(1998)) | ECOPROVINCE  |
|---------------------------|----------------------------------------------------|---------------------------------------------------------------------|--------------|
| KOTCHO LAKE               | Taiga Plains                                       | Taiga Plains                                                        | Taiga Plains |
| LOWER MUSKWA RIVER        | Taiga Plains                                       | Taiga Plains                                                        | Taiga Plains |
| HAY RIVER                 | Taiga Plains                                       | Taiga Plains                                                        | Taiga Plains |
| UPPER FORT NELSON RIVER   | Taiga Plains                                       | Taiga Plains                                                        | Taiga Plains |
| LOWER PROPHET RIVER       | Taiga Plains                                       | Taiga Plains                                                        | Taiga Plains |
| FONTAS RIVER              | Taiga Plains                                       | Taiga Plains                                                        | Taiga Plains |
| KAHNTAH RIVER             | Taiga Plains                                       | Taiga Plains                                                        | Taiga Plains |
| MIDDLE PROPHET RIVER      | Taiga Plains                                       | Taiga Plains                                                        | Taiga Plains |
| LOWER SIKANNI CHIEF RIVER | Taiga Plains                                       | Taiga Plains                                                        | Taiga Plains |
| UPPER SIKANNI CHIEF RIVER | Taiga Plains                                       | Taiga Plains                                                        | Taiga Plains |

# APPENDIX B: Example of the survey distributed to request recommendations for the selection of Index Sites.

March 19, 1998

Mr. R. Grace Environmental Protection Ministry of Environment Lands and Parks 1259 Dalhousie Drive Kamloops, B.C. V2C 5Z5

Dear Mr. Grace;

This letter is a request for a small amount of your time to contribute to the selection of index water quality sites in your management region.

As you are aware, a hierarchical framework was developed for describing regional variation in chemical characteristics of aquatic ecosystems in British Columbia as the first phase of the Aquatic Ecozone Classification for B.C. (Perrin and Blyth 1998). It involved organizing water quality data for the whole province in three spatial strata: 245 watershed groups within 45 Ecoregions within 9 Ecoprovinces. These strata have been used in the production of maps, organization of a dedicated data base that supports the classification system, and in a graphical user interface that allows searches of data in large or small zones of interest. The map and GUI can now support searches of summary data in any region to provide information on background chemical characteristics for an area of interest. A map of Ecoregions within Ecoprovinces is enclosed for your reference. In phase 2 of the project, which is presently underway, we intend to select one index site for lakes and one for streams in each Ecoregion. The identification of these sites on the GUI will provide a quick reference to typical characteristics of water quality in any given Ecoregion. All of this work is being completed by Limnotek Research and Development Inc and AXYS Environmental Consulting under contract to the Water Management Branch (Dr. Rick Nordin is the contract manager).

#### **Outline of Index Site Selection**

Each index site is a location where typical water quality for an Ecoregion can be found. An index site can be defined by four criteria:

- it is a sampling location from which water quality data have been collected over several years and can continue to be collected;
- 10. it has ready access for routine sampling;
- 11. it is not affected by pollution sources and;
- 12. it is considered representative of general limnology and water quality in the Ecoregion in which it is present.

Using these criteria, we want to select, with your assistance, two sites for each Ecoregion within your management area. One site will be representative of lakes and one will be for streams. If an Ecoregion includes a very large lake or reservoir and many other

smaller water bodies, the establishment of an index site in that large system may also be warranted in addition to one other lake index site and a stream index site. This is because that large system may have unique chemical characteristics determined by internal control processes which are not found in the other lakes and streams. Examples may be the Nechako Reservoir to be representative of the Nechako Plateau Ecoregion, Atlin Lake in the North Coastal Mountains Ecoregion, Babine Lake in the Babine Uplands Ecoregion, or Okanagan Lake in the Okanagan Ecoregion.

The viability of an index site is dependant on the existence of data that can be used to describe details of water quality characteristics. For an index site to be accepted, that data must presently be available. A site may also be accepted if routine data collections are ongoing or there is intent and available funding to support data collection in the near future or data exists for the site but it is not yet on the data base used for the Aquatic Ecozone Classification. For this reason, index sites that are selected in this project are only recommended sites. Those which are presently supported with adequate and available data, can be used as index sites immediately, but those which do not presently have adequate data or the data are not in the data base will only be recommended and accepted pending additional work. The potential use of a recommended site will be dependant on funding, available time for personnel to collect data and have it logged into the data base, and a willingness to adopt an index site system of water quality data by regional offices.

Four tasks are involved in the establishment and description of the index sites:

- Database Search: This task is now complete. Using the summary database that was developed by Perrin and Blyth (1998), a search revealed sampling sites for each of lakes and streams in all Ecoregions that have long term data records for a wide range of chemical parameters. We selected the top 5 sites that have the greatest number of parameters sampled, the top 5 that have the largest number of measurements, and the top 5 that have the greatest data diversity in each Ecoregion. Diversity in this case was arbitrarily defined as number of measurements multiplied by number of parameters. A print-out of the results of the survey for your management area is enclosed for your reference.
- 2. Survey of Local Knowledge from Regional Offices: This is where you come in. We request input of local knowledge in the selection of sites. In terms of the above criteria used to define an index site, the data base search only dealt with aspects of existing data adequacy. Issues of access, whether the site is representative of the Ecoregion, and proximity to pollution sources can only be dealt with by direct consultation with regional water quality personnel who have the local experience.
- 3. **Site Mapping**: A colour map will be produced that shows the distribution and names of all stream and lake index sites. It will be formatted to accompany the map of aquatic ecozones produced in Phase 1 by Perrin and Blyth (1998).
- 4. **Description and Reporting of Index Sites**: For all selected sites that are supported with data, summary statistics will be downloaded from the Phase 1 database and compiled as a data report. That report will be supported with brief descriptions that outline characteristics of water quality for each index site.

# Here is our Request

Using the above criteria and a short list of sites that we have already prepared, we request that you select one index site for lakes and one for streams that you believe is representative of each Ecoregion of your management area. Where your management area divides an Ecoregion, we request that you discuss the selection of a site in that Ecoregion with your counterpart in the adjacent management area.

Enclosed material is supplied to assist you with the selection:

- Map of B.C. showing Ecoregions within Ecoprovinces
- Map of your management area showing the enclosed Ecoregions. Your management area is outlined in red. Ecoregions are outlined in green. Ecoprovince boundaries are outlined in blue. The top five lake and stream sites that are listed in the print-out from the data base search are located on this map.
- Listing of top 5 stream and lake sites for each Ecoregion in your management area. This listing is based on the data base search described above.

Ecoregions in your management area are as follows:

- 1. Shuswap Highlands
- 2. Quesnel Highlands (southern portion)
- 3. Central Interior Plateau (southern portion)
- 4. Thompson-Okanagan Plateau
- 5. Chilcotin Ranges (southern portion)

We request that you select one index lake site and one index stream site for each of these Ecoregions.

Each of your selections can be drawn as a circle right onto the map that is supplied or you can list them separately. Unless you know of extensive data that we have not considered which would rank a site in the top five in terms of data availability, please limit your choice from the short list that is enclosed and marked on the map. Remember that a criterion for an index site is that a history of water quality data is presently available. If you believe that none of the short listed sites are appropriate as index sites, you must supply data to describe an alternative. For each selection, we request a short rationale for why you selected that location. Criteria for that rationale should include but is not limited to the following list:

- 1. **Data history**. We already know about electronic data that has been compiled from EMS. We have records for all sites that are labeled on the map. Only make a comment about the extent of other data that does not show up on the enclosed short list. Where you identify other data, please provide a brief description of water quality for your selected site using the other data or send a summary of the data for us to prepare an interpretation.
- 2. **Site access**. An index site should have easy access. Describe road or air access, launch facilities, and distance from a location where sampling would be based, and number of times per year that the site could be sampled assuming funding was available to do so.
- 3. **Proximity to pollution sources that you aware of**. An index site should not be affected by pollution sources. Where a very large number of sites in an Ecoregion are characterized by water affected by pollution, please attempt to select a site that is

least affected. Identify pollution sites, indicate the approximate distance the index site is away from those pollution sources and indicate the type of pollution that is found near the index site (e.g. point source mine water discharge or non-point source agricultural drainage).

4. Is the selected index site representative of the Ecoregion? Criteria to note in particular are lake or stream size and trophic status relative to most others in the Ecoregion (don't recommend an oligotrophic lake in an Ecoregion where mesotrophic or eutrophic lakes are typical and unrelated to pollution).

For some Ecoregions, water quality data are sparse or non-existent. If you encounter one of these areas, the requirement of having a data history for a selected site will obviously have to be compromised in favour of the other criteria. In these situations, please rely on your local knowledge of access, proximity to pollution sources and whether the site is representative from a limnological viewpoint to make your selection. It is expected, however, that to have any idea of whether a site is representative, at least some water quality data will have been collected. For this reason, we do not expect that a site will be recommended without any data and a rationale from you to support that selection.

# How to do it

You can make your selections by circling the sites on the map sheet and returning it to us along with a table of notes justifying your selection. Alternatively, keep the map and just make up a table for each index site on which the site is identified. A table of notes should include but is not limited to the following items:

- Name of management area
- Ecoregion name
- Name of person who prepared the response
- Name of the stream or lake site
- Site number as indicated on the map
- Data history (if the site is not already on the map, please provide data and an interpretation to support your selection of the site)
- Site access (brief notes)
- proximity to pollution sources (brief notes)
- reasons why the site is representative (lake or stream size and trophic status relative to others in the Ecoregion).

# **Dates, Deadlines and Questions**

I understand that your time is very limited and for that reason, keep the responses short and concise. I expect that most of the information that is required here is in your head and you should not have to look up reference material.

I would appreciate receiving your site selections by March 31, 1998. If you cannot provide all information by that date, just identify the sites and get them back to me so that maps

which locate the index sites can be produced. I will then follow up either by phone or email to get the outstanding information.

Because time is of the essence, please return the information either by email or courier. The email address is <u>cperrin@istar.ca</u>. The Limnotek street address is:

Limnotek 4035 West 14 Avenue Vancouver, B.C. V6R 2X3

With your response, let me know if you have not yet received a copy of the Aquatic Ecozone map for B.C. If not, I will arrange to have one sent to you.

If you have any questions related to this survey, please call Chris Perrin at Limnotek (604-222-3546 or email <u>cperrin@istar.ca</u>) or Ann Blyth at AXYS Environmental Consulting (250-656-0881 or email <u>ablyth@axys.com</u>). Chris Perrin is managing the project and will prepare the final site selections while Ann Blyth is providing the GIS and mapping requirements. Chris Perrin will be away from his office for 3 days from March 23 through 25 but will be able to address any questions thereafter. During that period, please call Ann Blyth with any questions.

Finally, I greatly appreciate you taking the time to contribute to this selection of index sites. Your input is essential and most important in making the project successful.

Thanks again!

Yours truly; LIMNOTEK RESEARCH AND DEVELOPMENT INC.

C. J. Perrin, MSc, (RPBio) Senior Systems Ecologist

cc. Ann Blyth, AXYS Environmental Consulting, Sidney, B.C. (604-656-0881)