SURVEY OF SELENIUM IN WATER, ZOOPLANKTON AND FISH IN LAKE KOOCANUSA, BRITISH COLUMBIA, 2008

Report prepared for Environmental Protection, Kootenay Region, British Columbia Ministry of Environment on behalf of the Elk Valley Selenium Task Force

By

Les McDonald, RP Bio Spirogyra Scientific Consulting Cranbrook, B.C.

July 2009

Disclaimer

Interpretations and opinions expressed in this report are solely those of author.

Executive Summary

In August of 2008, a survey of selenium (Se) in water, zooplankton and fish (with a focus on kokanee) in Lake Koocanusa, upstream and downstream of the Elk River confluence, was conducted by Kootenay Region, Environmental Protection staff. Selenium is elevated in the Elk River as a result of coal mining within the basin, averaging 4.26 μ g/L in 2008, compared to 0.09 μ g/L in the Kootenay River. The goal of this study was to determine metals concentration, specifically Se, above and below inputs from the Elk River, to answer the following questions: 1) Are there risks to the aquatic environment, based on a comparison with current aquatic life water quality guidelines and tissue-based thresholds; 2) Do these data corroborate historical data for Lake Koocanusa, where available; and 3) Are there significant differences in concentrations among the sites?

Historic flow gauging and water quality monitoring indicate that while the Elk River supplies approximately 26% of the water flowing into Lake Koocanusa, in 2008 it was responsible for 95% of the total Se loading. The Se loading from the Elk River in 2008 was estimated to be 10 t/yr, a 5-fold increase from 1.9 t/yr in 1986.

In this survey the influence of Se loadings from the Elk River on water column concentrations in Lake Koocanusa was apparent, with an average of $0.11 \mu g/L$ upstream, $1.33 \mu g/L$ in the Elk River forebay, and $0.84 \mu g/L$ at a location 17 km below the confluence, all differences being statistically significant. At all three locations, surface water Se concentrations were higher near the bottom of the reservoir compared to the surface, probably as a result of uptake by bacteria and phytoplankton in surface waters and subsequent downward transport due to settling.

The 8 to 12 fold increases in water-column Se at the downstream sites were not reflected in zooplankton uptake from the same locations, where respective averages were 2.89, 3.25, and $3.11 \,\mu g$ Se/g dw, and these differences were not statistically significant.

Research has found that the major pathway of Se bioaccumulation in fish is food-chain transfer rather than direct uptake from water, thus Se concentrations in kokanee should more resemble those of the zooplankton than the water-column. This was indeed found to be the case in this survey, with mean kokanee whole body Se of 2.11, 2.49, and 2.61 μ g/g dw from the same water and zooplankton sampling locations, respectively. Only the difference between the Kikomun (2.11) and Rexford (2.61) site means were found to be statistically significant. As was the case for zooplankton, kokanee whole-body Se did not exhibit the 8 to 12 fold increases at the downstream sites observed in the water-column.

Based on recent research in the scientific literature, the reason for the lack of Se bioaccumulation in zooplankton, despite large increases in water concentrations, is hypothesized to be due to

limited uptake by the phytoplankton on which they feed, caused by local water chemistry. The dominant form of Se entering the reservoir from the Elk River is believed to be selenate, the least bioavailable form, and its uptake by phytoplankton, is further inhibited by elevated sulphate concentrations, which enter the reservoir from both the Elk and Kootenay Rivers. Selenate uptake by phytoplankton, transfer to upper tropic levels has been reported in the literature to take over a week in laboratory studies and thus may not occur in Lake Koocanusa until nearer the Libby Dam, 70 km downstream. These hypotheses need to be confirmed through additional sampling.

A similar, though less extensive survey was carried out in 2002, in which sampling was only conducted at the upstream site. Zooplankton Se concentrations in 2002 at this site were similar to 2008 (i.e., 2 to 3 μ g Se/g dw), while concentrations in kokanee were higher in 2002. Kokanee muscle tissue averaged 2.4 μ g Se/g dw in 2002 versus 1.82 μ g Se/g dw in 2008, while ovary tissue averaged 6.6 μ g Se/g dw in 2002 versus 3.43 μ g Se/g dw in 2008. Whether these differences are a reflection of annual variation (i.e., fish movement and feeding patterns), differences in sampling and analytical methods, or a real decrease in tissue Se is unknown. Over this 6-year period, the average annual total Se concentration in the Elk River just upstream of the reservoir has risen from 2.4 to 4.26 μ g/L.

Peamouth chub were also sampled in 2008, but only at a downstream site near Rexford, Montana. This species was found to contain significantly more Se than kokanee from the same location. Both species were sampled in pre-spawning condition to allow analysis of egg Se, but because peamouth spawn in the spring, kokanee in the fall, samples were taken in May and September respectively. Whether the higher Se in peamouth was due to the time of year, species differences in Se bioaccumulation or differences in diet is not known. The benthic invertebrates which, in addition to zooplankton, form a part of the peamouth's diet, were not sampled in this survey and, based on research conducted in other ecosystems, may bioaccumulate greater quantities of Se than zooplankton from the same waters.

None of the data generated from this survey were found to exceed British Columbia Se guidelines for the protection of aquatic life for water (i.e., 2.0 μ g/L as a mean of at least 5 samples over a 30 day period) or fish tissue (i.e., (interim) whole body concentration of 1.0 μ g Se/g ww as a mean of 5 independent samples). Though the guideline for water could not be properly evaluated because sampling was only carried out over a two day period in August, only 2 of 29 sample results exceeded 2.0 μ g/L by a small amount (i.e., the highest result was 2.73 μ g/L.

Data were also evaluated using the recently-developed Elk Valley Selenium Monitoring and Management Framework and it's step-wise water/biota monitoring triggers, which, if exceeded, prompt certain additional monitoring and management efforts. None of these triggers were exceeded in Lake Koocanusa in 2008 suggesting that no additional ramp-up efforts in terms of monitoring or management need be taken at this time. The Framework does recommend the maintenance of a basic monitoring program even when triggers are not exceeded.

Recommendations were made to repeat this survey in approximately three years, with a number of changes. Some of the more important of these recommended changes include:

- Analysis of water samples for Se speciation (i.e., selenate, selenite, organoselenide);
- Sampling benthic invertebrates, fed on by certain species of fish, that may bioaccumulate Se at greater rates than zooplankton from the same site;
- Sampling additional fish species, prioritized on the basis of the potential exposure to Se through food-chain relationships. Future surveys should eventually sample the Se content of all species present in the reservoir;
- The inclusion of additional sample sites farther down the reservoir, including at least one at Forebay, just upstream of the Libby Dam; and
- The inclusion of stable isotope ratio techniques, that have been employed successfully in the upper Elk River watershed, to identify Se uptake by various primary producers (phytoplankton, detrital microbial flora living on the bottom sediments) and confirm trophic transfer relationships.

Acknowledgements

This study was co-funded provided by Teck Coal and the B.C. Ministry of Environment. Coordination and management of this project was handled by Jolene Raggett, Environmental Protection, Kootenay Region, B.C. Ministry of Environment (MoE). The field and fish processing team consisted of Jolene Raggett, Jody Frenette, Paul Saso, Chris Marsh, Alison Neufeld, Carrie Morita, and John Bell (B.C. MoE). Fish samples were kindly supplied by Mike Hensler and his staff from Montana Fish, Wildlife and Parks.

The author wishes to thank the following draft report reviewers for greatly improving the final product: Julia Beatty, Jody Frenette, and Jolene Raggett, B.C. MoE; Dr. Peter Chapman, Golder Associates Ltd.; Carla Fraser, Teck Coal; Guy Gilron, Teck Resources; and Pat Shaw, Environment Canada. Finally, thanks to Dana Diotte, B.C. MoE, for drafting the maps.

Table of Contents

Page

Executive Summary ii								
Acknowledgements v								
Table of Contents vi								
List of	Figures	vii						
List of	Tables.	viii						
1.0	Introduction							
2.0	Methods							
	2.1	Quality Assurance						
3.0	Results							
	3.1	Water						
	3.2	Zooplankton						
	3.3	Fish						
		3.3.1 Kokanee						
		3.3.2 Peamouth chub 20						
4.0	Discus	sion						
5.0	Recommendations							
6.0	6.0 References 31							
List of Appendices								

List of Figures

Figure		Page
1	Total Selenium in the Elk River at Highway 93	2
2	Total Selenium in the Kootenay River at Fenwick Station	. 3
3	Water and Zooplankton Sample Sites	6
4	Kikomun Site Water and Zooplankton Replicates	7
5	Elk River Site Water and Zooplankton Replicates	8
6	Gold Creek Site Water and Zooplankton Replicates	9
7	Fish Capture Sites – Canadian Reach	10
8	Fish Capture Sites – United States Reach	11
9	Water Column Total Selenium in Lake Koocanusa, August 2008	15
10	Selenium Net Zooplankton in Lake Koocanusa, August 2008	17
11	Selenium in Lake Koocanusa Kokanee: Site Comparisons	21
12	Comparison of Selenium in Kokanee and Peamouth Chub from Lake Koocanusa, U.S. Border to Rexford Reach in 2008	22

List of Tables

Table		Page
1	Water Column Total Selenium in Lake Koocanusa, August 2008	14
2	Selenium in Net Zooplankton in Lake Koocanusa, August 2008	17
3	Mean Whole Body Selenium Wet Weights in Fish from Lake	
	Koocanusa (2008)	18
4	Selenium in Kokanee from Lake Koocanusa, 2008	19
5	Selenium in Peamouth Chub from U.S. Border to Rexford, May 2008	20

1.0 Introduction

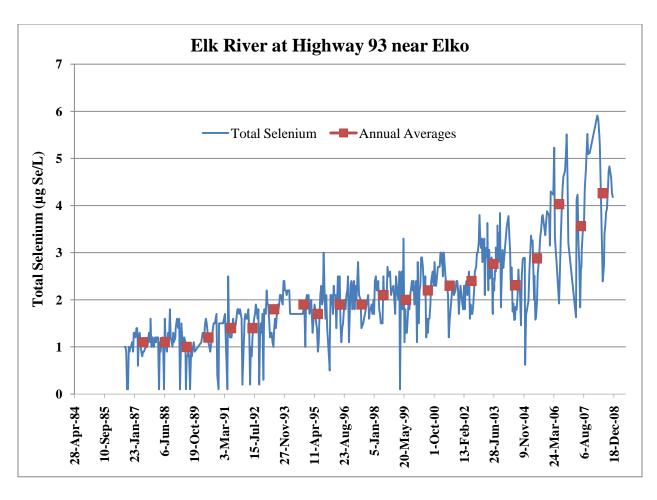
The potentially toxic nature of elevated water-borne selenium (Se) has been well established for over the past three decades (Eisler, 1985). When bioaccumulated by the female via food chain and transferred to the yolk of developing eggs, Se has been found to cause reproductive failure and teratogenic deformities in developing embryos of fish (Lemly, 1993) and aquatic birds (Ohlendorf *et al.*, 1986). This mode of toxic response is a controversial issue, with no consistent response threshold and considerable variability in species sensitivity arising from contemporary research (Holm *et al.*, 2005; Kennedy *et al.*, 2000; Lemly, 1993; Rudolph, 2008).

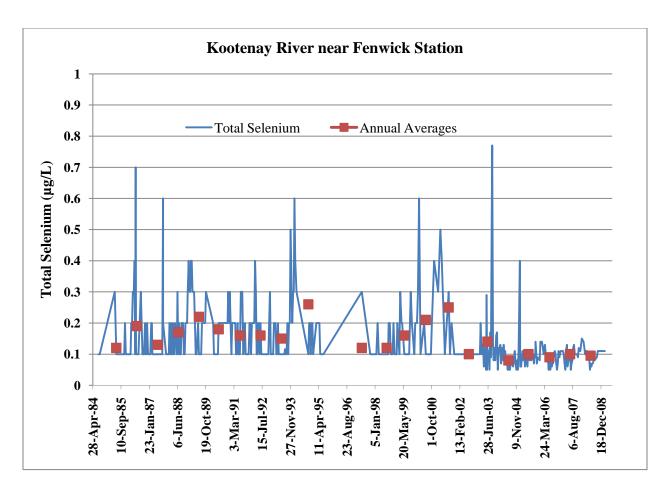
The release of significant quantities of soluble Se from surface coal mining operations into the Elk River system was first discovered in 1995, followed in 1996 by an initial survey of Se in water, sediment and biota conducted in 1996 (McDonald and Strosher, 1998). In the years since this discovery, there have been numerous studies conducted in the vicinity of the coal mines to determine the magnitude of Se bioaccumulation in the aquatic ecosystem and any potential toxic effects in various receptor species of fish, birds and amphibians (see Appendix 2 in Canton *et al.*, 2008).

The Elk River is one of three major rivers feeding Lake Koocanusa and has been reported to supply 26% of the mean annual flow into the reservoir. The other two major inflowing rivers are the Kootenay River, supplying 62% of the mean annual flow, and the Bull River, providing 11% (Hamilton *et al.*, 1990).

Selenium, in addition to numerous other water quality variables, has been monitored bi-weekly on the Elk River, at the Highway 93 Bridge just above its entry into Lake Koocanusa, since 1986. This monitoring has been conducted under the B.C. – Canada Water Quality Monitoring Agreement, a joint effort of the two levels of government to gather long-term water chemistry data on important waterways throughout the province (Env. Can., 2008). Data from this site have been summarized by Wipperman and Weber (1997), B.C. Min. Environ. (2000) and most recently by Swain (2007), and have been reproduced graphically in McDonald and Strosher (1998) and Golder Associates (2007). Unfortunately, the latest synopsis (Swain, 2007) only included data from 1997 to 2005. Figure 1 includes all data for total Se at this site from 1986 to 2008, and clearly indicates that there is an increasing trend over this 22-year period from around 1 μ g/L in 1986 to 5 μ g/L in 2008 (Env. Can., 2008). Total Se at this site on the Elk River now routinely exceeds British Columbia's 2 μ g/L Se guideline for the protection of aquatic life (Nagpal, 2001).

A site on the Kootenay River (Fenwick Station), located just upstream of Lake Koocanusa at full pool, has been similarly sampled bi-weekly since 1986 (Env. Can., 2008). Selenium




Figure 1. Total Selenium in the Elk River at Highway 93

(data from Env. Can. web site http://www.waterquality.ec.gc.ca/EN/navigation/search.htm accessed May 2009)

concentrations in the Kootenay River are much lower than in the Elk River and show no distinct trends over time (Figure 2). In March 2003 the total Se analytical method detection limit (MDL) for this program was decreased from 0.1 to 0.05 μ g Se/L. Prior to March 2003, 25% of the results on the Kootenay River were flagged as less the than the MDL, compared to 8% after, suggesting that the recent data more accurately represent the actual concentrations of total Se at this site. Note that the value axis (y-axis) scale of Figure 2 is approximately one tenth that of Figure 1.

Calculations for estimating the loading of Se from each of these three rivers into Lake Koocanusa are detailed in Appendix I. Total Se loading estimates for the Elk River indicate a 5fold increase over the 22 year sampling record, 1986 to 2008, from 1912 kg/yr to 10,183 kg/yr. This represents an average increase of 376 kg Se/yr or 19.7% per year, based on the 1986 loading. Total Se loadings for the Kootenay River at Fenwick, upstream of the reservoir

Figure 2. Total Selenium in the Kootenay River at Fenwick Station

(data from Env. Can. web site http://www.waterquality.ec.gc.ca/EN/navigation/search.htm accessed May 2009)

at full pool, were estimated to average 489 kg Se/yr in 2008. While comparable water quality monitoring has not been implemented on the Bull River, the 2008 loading, proportional to that of the Kootenay River, was estimated to be 87 kg Se/yr. The total Se loading to Lake Koocanusa from these three major inflowing rivers for 2008 can thus be estimated as:

10,183 kg (Elk River) + 489 kg (Kootenay River) + 87 kg (Bull River) = 10,759 kg/yr.

Based on these rough estimates, the Elk River, which provides approximately 26% of the water to Lake Koocanusa, appeared, in 2008, to provide 95% of the total Se loading. The trend in Figure 1 suggests that, in the absence of effective mitigation measures, the Se loading from the Elk River to Lake Koocanusa will continue to rise into the future.

An initial survey of Se bioaccumulation in net zooplankton (that portion of the zooplankton community captured by a plankton net with a particular mesh size, this typically includes larger crustacea, allowing smaller rotifers, etc., to pass through) and kokanee (*Oncorhynchus nerka*) in

Lake Koocanusa was conducted in 2002, using Kinbasket Reservoir on the Columbia River, 350 km to the north, as a reference site (McDonald 2005). This study reported that there was no significant difference in the Se concentrations in axial muscle, liver and egg tissue from eight female kokanee from Lake Koocanusa compared with that from six kokanee from Kinbasket Reservoir. Duplicate zooplankton hauls done on each reservoir also differed very little, both hauls from Kinbasket containing 0.1 μ g Se/g wet wt., compared to 0.2 μ g Se/g wet wt. from Koocanusa. In 2002, fish and zooplankton samples from Lake Koocanusa were taken only from the vicinity of Kikomun Creek, approximately 10 km upstream from where the Elk River enters the reservoir, and consequently may have not been representative of tissue Se concentrations in biota located downstream.

The goal of this study, as outlined in the Ministry of Environment's *Study Plan: 2008 Selenium Survey of Koocanusa Reservoir* attached to the contract with Spirogyra Scientific Consulting, "is to determine concentrations of metals, specifically selenium, in three specific ecosystem compartments: water, zooplankton and fish tissue, within Lake Koocanusa above and below inputs from the Elk River."

"The resulting data will be used to evaluate the following:

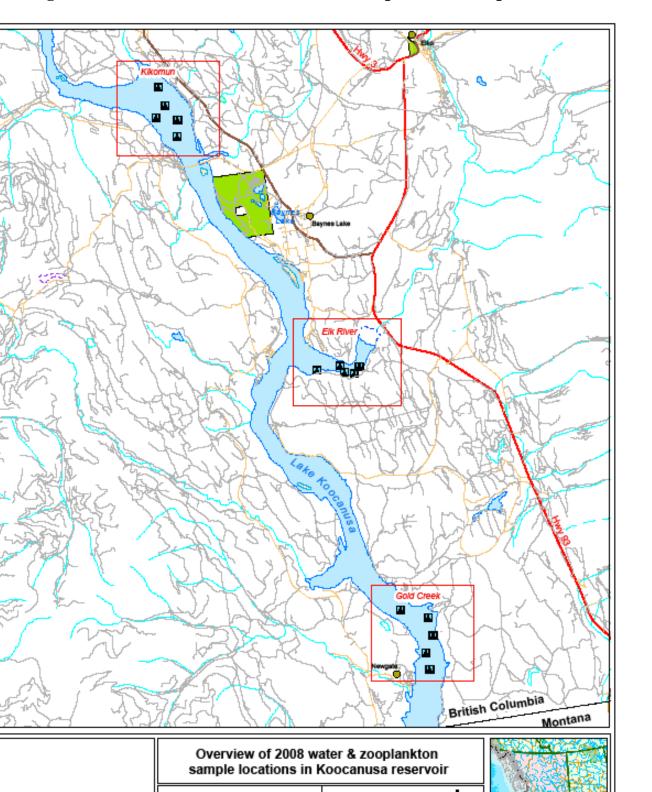
- 1. Are there risks to the aquatic environment, based on a comparison with current aquatic life water quality guidelines and tissue-based thresholds?
- 2. Do these data corroborate historical data for Lake Koocanusa (Hamilton, *et al.*, 1990; McDonald, 2005), where available?
- 3. Are significant differences in concentrations among the sites?"

To address these goals, five sub-samples of water and zooplankton were sampled at each of three locations along the reservoir, near Kikomun (upstream of the Elk River), off the Elk River, and just upstream of the U.S. border in August 2008. Two species of fish, kokanee (*Oncorhynchus nerka*), and peamouth chub (*Mylocheilus caurinus*), were also sampled at similar locations. In order to compare data with the 2002 survey, egg and muscle tissue were analyzed, as well as whole body. To ensure adequate egg tissue could be collected, each species was sampled in prespawning condition. Thus, kokanee, a fall-spawner, were captured at Kikomun, just upstream of the Elk River, and the Rexford area in early September. Peamouth, a spring-spawner, were sampled in May in the Rexford area, just south of the U.S. border, but could not be sampled at the upstream sites because the reservoir was too low at this time of year.

The design of this study was developed by the Elk Valley Selenium Task Force. Field sampling for water and zooplankton was carried out by staff from B.C. MoE. Fish samples were provided by the Montana Department of Fish, Wildlife and Parks, who have conducted gill net surveys of the reservoir since its impoundment in the mid-1970's (Hoffman *et al.*, 2002).

2.0 Methods

Water and zooplankton sampling was conducted by staff from B.C. Environmental Protection, Kootenay Region between August 5 and 7, 2008 at three locations along the reservoir (Figure 3):


- Koocanusa at Kikomun Creek Bailey Bridge (EMS # E272043);
- Koocanusa at Elk River (EMS # E272044); and,
- Koocanusa Gold Creek to U.S. Border (EMS # E272045)

At each site, five sub-samples of water and zooplankton were taken a few hundred meters apart to provide spatial replication (Figures 4, 5, and 6). At each replicate location, the following data were collected:

- GPS UTM coordinates were recorded using a Garmin eTrex Venture® receiver.
- Depth, temperature, dissolved oxygen, conductivity, pH and chlorophyll *a* were recorded using a Hydrolab Surveyor 4A data logger and a model MS5 Sonde.
- At 1 m below the surface, and 1 m off the bottom, discrete water samples were taken using a 5 L Van Dorn bottle. These were dispensed into clean polyethylene bottles provided by the laboratory, with no preservatives added, placed in coolers on ice and shipped via ground courier to Maxxam Analytics in Burnaby, BC at the end of each day, arriving the following day.
- A 10-minute horizontal zooplankton tow was conducted using a 50 cm diameter net with a 150 µm mesh at a depth of 1 to 5 m. Samples were rinsed through a 150 µm mesh to remove the water and placed in 125 ml glass jars. These samples were held on ice and frozen at the end of each day. All samples were held in a -20°C freezer until they were shipped frozen to Maxxam Analytics on August 11, 2008. At the laboratory, the samples were stored at -20°C until they were analyzed.

Site information (site and replicate numbers, sample dates and times, UTM coordinates, and field notes) can be found in Appendix II. Parameters analyzed, analytical methods, and reportable detection limits (RDLs) for water and biological tissue (i.e., zooplankton and fish) samples are listed in Appendix III.

Fish were captured by Montana Fish, Wildlife and Parks as part of their annual fish indexing surveys, conducted since impoundment. Spawning female peamouth chub were captured by overnight gill-net sets on May 13/14, 2008 at 12 sites in the Rexford, MT area, from just south of the Canada-US border to just south of the Tobacco River confluence (Figure 8). Spawning female kokanee were captured similarly on September 15/16, 2008 at 8 of the 12 peamouth sites in the Rexford area (Figure 8) and at 8 locations in Canada (Figure 7), extending from just north of Kikomun Creek to the Elk River confluence.

MoE - EP

Integrated Land

anagement Bu

Highway

Town

Arterial Road Local Road Unknown Road

Figure 3 Lake Koocanusa Water and Zooplankton Sample Sites

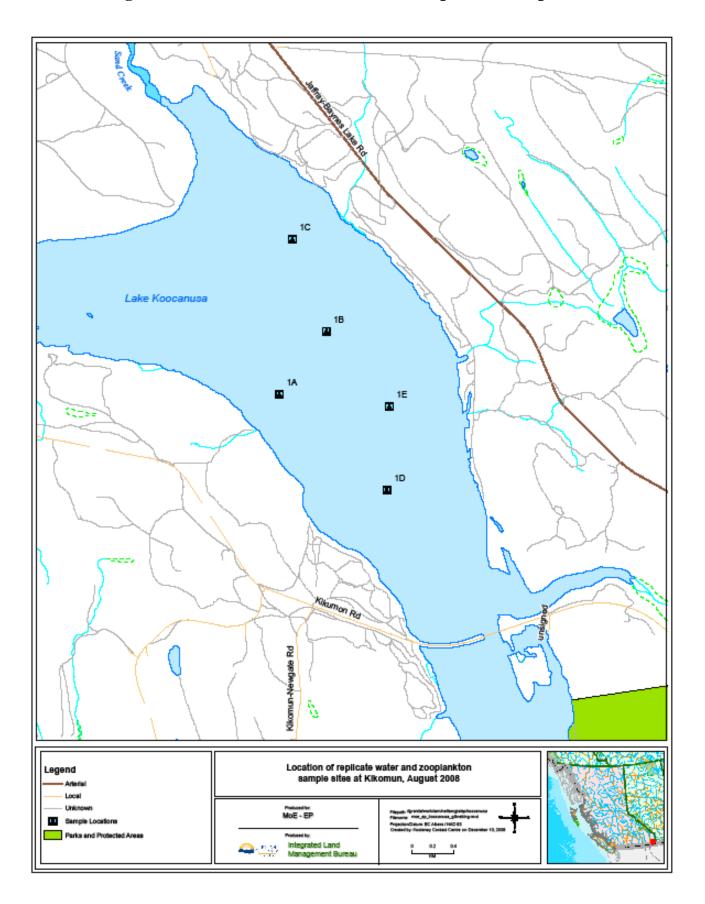


Figure 4 Kikomun Site Water and Zooplankton Replicates

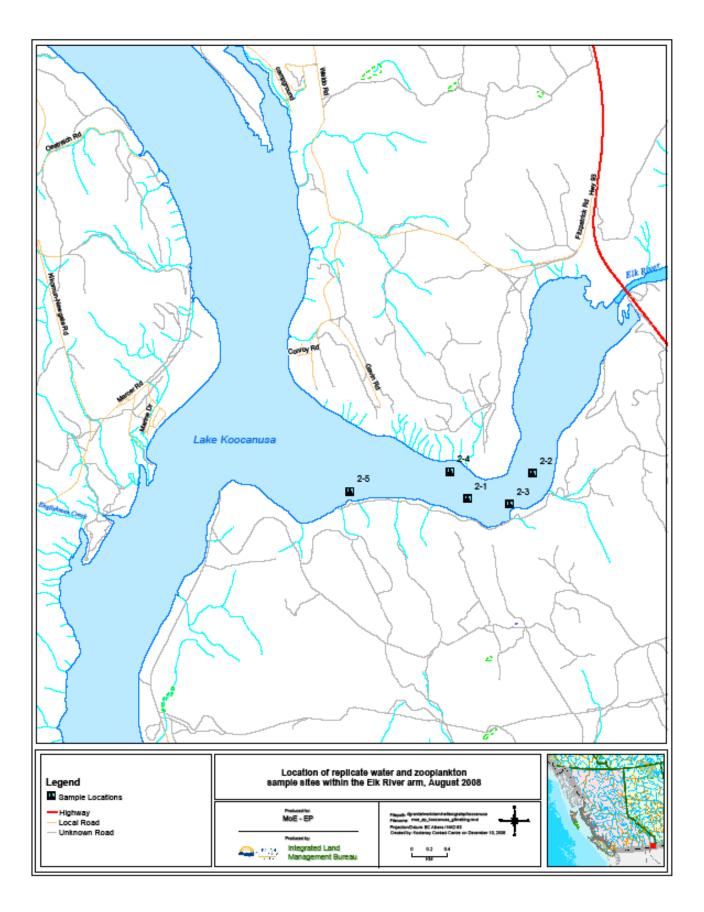


Figure 5 Elk River Site Water and Zooplankton Replicates

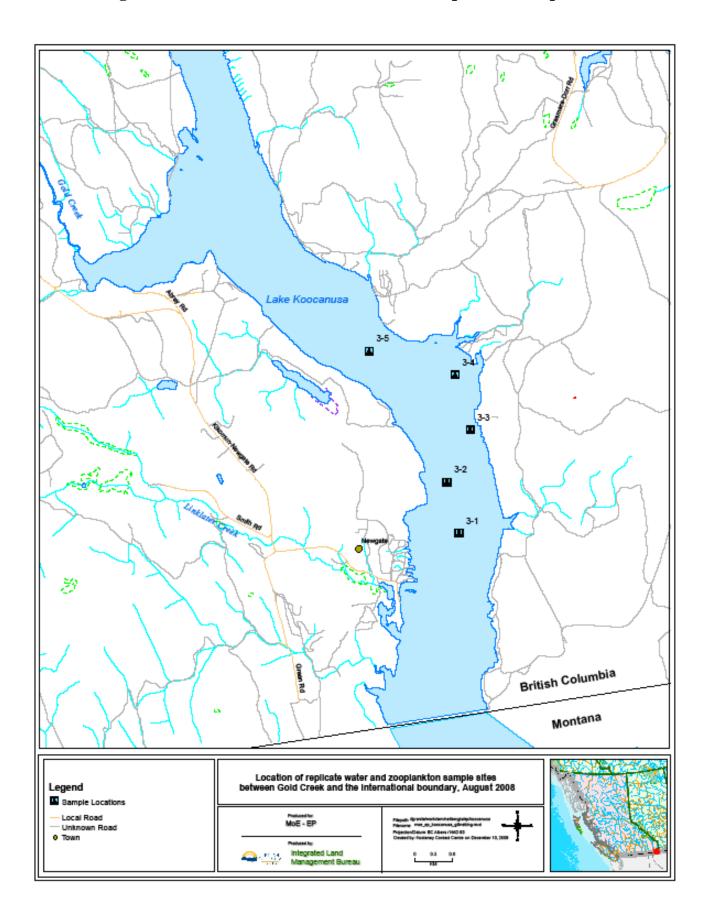


Figure 6 Gold Creek Site Water and Zooplankton Replicates

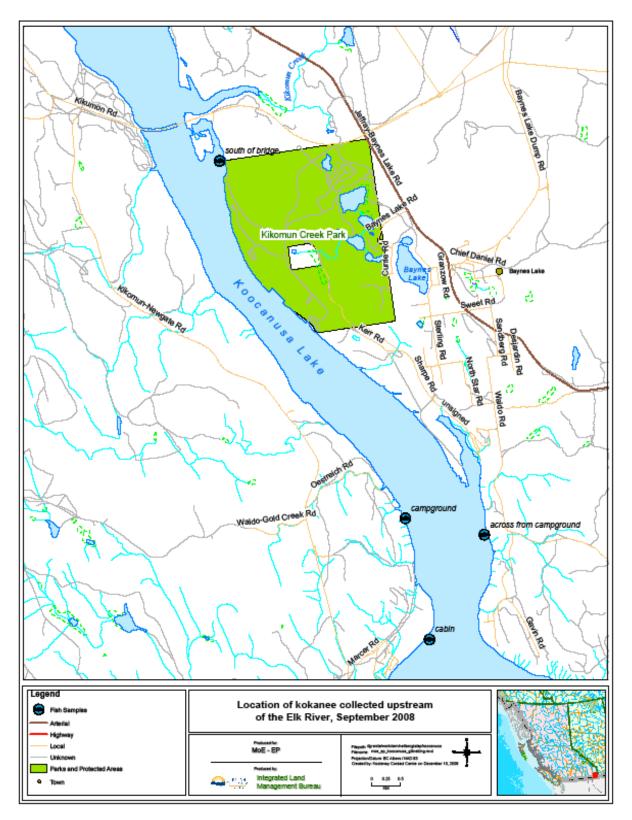


Figure 7 Fish Capture Sites – Canadian Reach

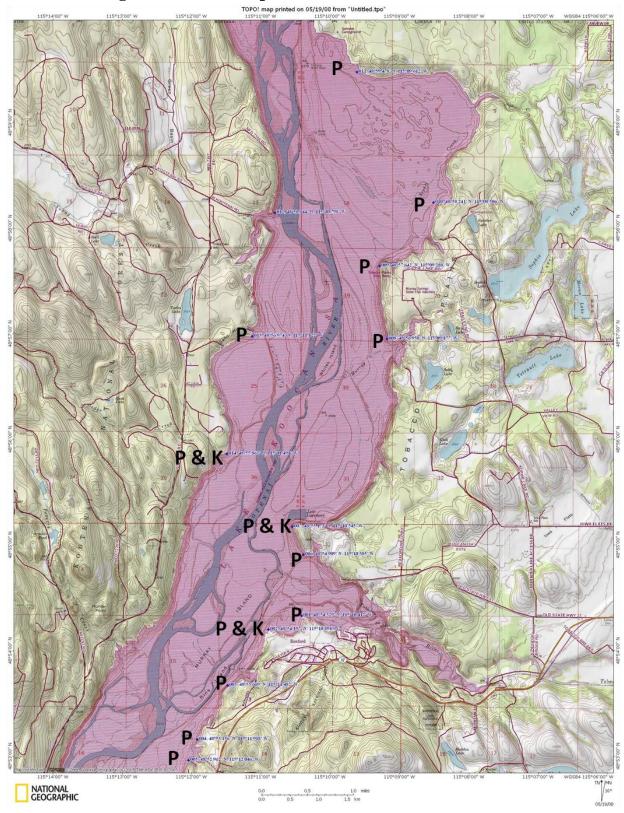


Figure 8 Fish Capture Sites – United States Reach

K = Kokanee (September 16/17, 2008)

Fish were frozen whole in individually labelled Ziploc bags immediately after capture and held at -20°C. To obtain samples of axial muscle and ovary, a subset of fish were partially thawed and processed on October 20 and 21, 2008 using current standard methods (USEPA 2000). These tissues were placed in individual labelled whirl-pack bags and re-frozen after processing. All samples were shipped to Maxxam Analytics, where they were held frozen until analysis.

For all zooplankton and fish tissue samples, the water content (% moisture) was determined analytically, and used to convert wet weight analyses to dry weights, thereby normalizing for water content, (Appendices VIII and X). This conversion was done using the following formula:

Dry weight $(mg/kg) = \frac{\text{Wet weight } (mg/kg)}{(100 - \% \text{ moisture}) \times 0.01}$

The statistical significance of the different Se concentrations in water, zooplankton and fish collected from various sites and depths were compared using Analysis of Variance (ANOVA) ($p \le 0.05$). These calculations, and the accompanying comparison graphs, were conducted using the Analyse-it® version 2.12 add-in software for Microsoft Excel. All other tables and graphs were produced using Microsoft Excel 2007.

2.1 Quality Assurance/Quality Control

All analytical results in this study were transcribed by the author from laboratory certificates of analysis into the tables found in Appendices VI, V, VIII, and X. Transcription accuracy was verified by the author by double checking all table data entries against the certificates of analysis at a later date from that of the original entry. All results are stored on the B.C. MoE's EMS database under the respective site numbers. Original Certificates of Analysis are available from the B.C. MoE Environmental Protection office in Nelson, B.C.

Quality Assurance (QA)/Quality Control (QC) of the analytical results in this study fall into two categories, laboratory QA/QC and field QA/QC. The former involves the efforts of the laboratory to ensure that the precision, accuracy and level of contamination of its operations meet best laboratory practices, and begins with the accreditation of the analytical laboratory, Maxxam Analytics, with the Canadian Association for Laboratory Accreditation Inc. (CALA). The latter includes efforts by the study team to ensure that field methods did not introduce unacceptable sources of contamination or error. Full details of both laboratory and field QA/QC are provided in Appendix IV. For the purposes of this report only QA/QC for total Se are summarized below.

Laboratory QA/QC consisted of blanks, duplicates, reference standards and sample spikes with known quantities of the analyte of interest in each batch of regular samples. All laboratory QA/QC data for Se

were critically evaluated to determine adherence with CALA's QC criteria. Based on this evaluation, all data met these criteria.

Field QA/QC for water sampling included a duplicate sample at the Elk River site plus a field blank, and an equipment blank on the Van Dorn sampler. Based on the same duplicate and blank QC criteria as those employed by Maxxam Analytics (\pm 25% RPD and < RDL), all field QA/QC total Se samples were within acceptable limits.

Field QA/QC for biological tissues consisted of duplicate samples for fish axial muscle and ovary. Duplicate axial muscle samples consisted of one sample from either side of the same fish. Duplicate ovary samples consisted of splitting the egg mass in half. No zooplankton duplicates were done in this survey. All fish tissue Se duplicate samples were within control limits.

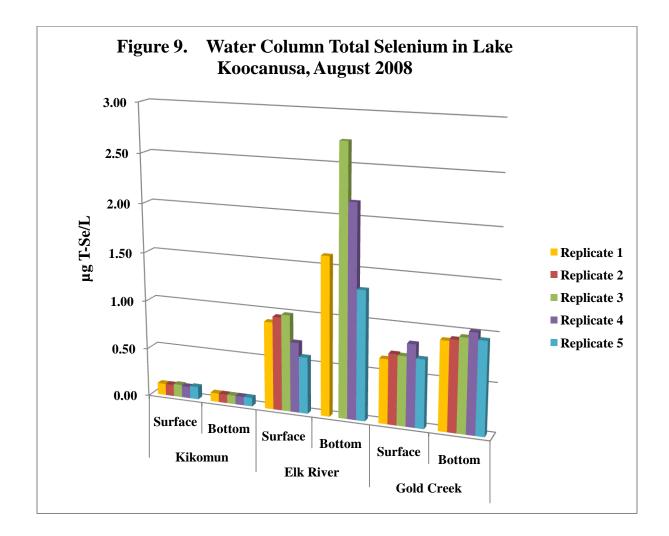
3.0 Results

A complete list of results for all the parameters analyzed is provided in Appendix V (water), VIII (zooplankton), and X (fish). For the purposes of this report, a detailed synopsis and assessment has only been completed for Se.

3.1 Water

Results of total Se analyses of water samples collected at the three sites along the reservoir are summarized in Table 1, and presented graphically in Figure 9. As previously mentioned, each "site" was comprised of 5 spatial replicate samples taken roughly 100 m apart. At each of these replicate locations, a sample was taken at 1 m below the surface and 1 m off the bottom. Reservoir depth at each site differed substantially from 2 to 7 m at the Elk River to 23 to 30 m at Gold Creek (Appendix II).

Table 1	Water Column Total Selenium in Lake Koocanusa, August 2008.
---------	---


Site	Donth			Replicate	Moon	Site Mean	Site SD		
Site	Depth	1	2	3	4	5	Mean	Site wear	Site 3D
Kikomun	Surface	0.12	0.12	0.13	0.12	0.13	0.12	0.11	0.018
KIKOIIIUII	Bottom	0.09	0.09	0.09	0.09	0.09	0.09	0.11	
Elk River	Surface	0.90	0.96	0.99	0.72	0.58	0.83	1 22	0.72
EIK RIVEI	Bottom	1.62		2.73	2.16	1.32	1.96	1.33	
Cold Crook	Surface	0.66	0.72	0.71	0.84	0.70	0.73	0.94	0.13
Gold Creek	Bottom	0.91	0.93	0.96	1.02	0.95	0.95	0.84	
Notes:									
1. All results in μg/L.									
2 Samples taken August 5 $_{-}$ 7 2008									

2. Samples taken August 5 - 7, 2008.

3. All surface samples were taken at 1 m depth, bottom sample depths vary: 6 - 8 m at Kikomun;
3 - 7 m at the Elk River; 23 to 30 m at Gold Creek.

4. No bottom sample taken at Elk River, Replicate 2 as total depth was 1.98 m.

When Se concentrations in the replicate water samples are averaged by site and depth, none of the means exceeded the BC Aquatic Life Guideline (ALG) of 2 μ g/L, although this cannot be considered a true evaluation of the guideline, which is intended to be a temporal mean of at least 5 samples taken over a 30-day period. Two of the individual grab samples did, however, exceed this ALG value. Additionally, five of the 29 individual Se results exceeded the current CCME national guideline for the protection of aquatic life of 1 μ g/L by small margins; the maximum concentration observed being 2.73 μ g/L.

When the water column total Se data were analyzed using a two-way analysis of variance (ANOVA), site location and depth being the two influencing factors (Appendix VI-A), differences in both cases were found to be statistically significant (p < 0.0001). There was also a significant and strong interaction between depth and site location on the overall variance (p < 0.0001) making it difficult to determine whether site location or depth was the main factor affecting water column Se concentration.

It must be noted that two conditions required for ANOVA tests, normal distribution of results and equal sample population size, were not precisely met by these data. It is reasonable to expect that the concentration of Se, or any other variable, at various points throughout reservoir large, well mixed body of water like Lake Koocanusa, would be normally distributed. The skewed nature of the results at the Elk River site is probably a function of turbulent mixing of higher-Se water from the river and lower-Se water of the reservoir. In terms of equal sample populations, there was no bottom sample taken at replicate 2 at the Elk River site because it was too shallow (i.e., 1.98 m depth). Analyse-it® statistical add-in for Excel would not perform the ANOVA without a matching value for all depths at all sites so a

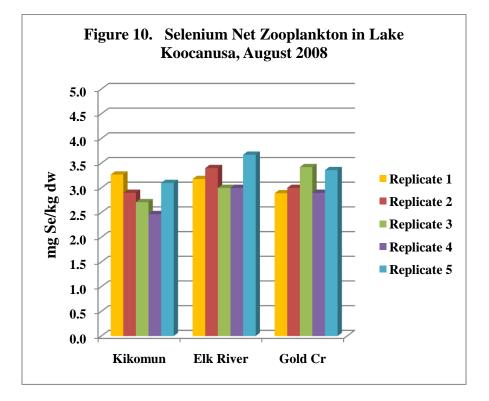
value of 2.50 μ g/L, based on the surface to bottom relationships at the other four replicates (see Figure 7), was inserted (Appendix VI-A).

While active mixing is a reasonable explanation for the large replicate sample variance in the Elk River forebay, it would seem an unlikely cause of surface-bottom differences at the Gold Creek site, 17 km farther downstream where the reservoir was 28 to 30 m deep. The probable reason for higher concentrations in bottom samples at this site is uptake by bacteria and phytoplankton near the surface followed by settling and accumulation in the deeper strata (Simmons and Wallschläger, 2005). The lack of complete mixing of the water column at this site at the time of sampling was evidenced by the 10 °C gradient from surface to bottom (Appendix VII).

When surface and bottom samples from each site are pooled and analyzed by a one-way ANOVA, followed by Tukey's multiple comparison procedure, the differences between the mean water column Se at all sites were found to be significant (p<0.0001) (Appendix VI-B).

In summary, the Se loading from the Elk River caused the water column total Se concentration in Canadian portion of Lake Koocanusa in August 2008 to increase approximately 8-fold, from 0.11 μ g/L at the upstream Kikomun site to 0.84 μ g/L at the Gold Creek site, approximately 30 km downstream. Off the mouth of the Elk River, 13 km below Kikomun, the mean total Se concentration (1.33 μ g/L) was 12-fold higher than upstream and the results more variable.

3.2 **Zooplankton**


Data for all parameters analyzed for net zooplankton samples are provided in Appendix VIII. The subappendix for each site includes a table of the original laboratory analyses in wet weights plus the percent moisture of each replicate sample. Beside each of these tables is a table of dry weight conversions for parameters that were found above the minimum RDL.

Zooplankton dry weight Se calculations from Appendix VIII are summarized in Table 2 and presented graphically in Figure 10. Unlike the water samples, Se in net zooplankton did not differ significantly from site to site and exhibited considerably lower intra-site sample variance (one-way ANOVA (p > 0.05), Appendix IX).

Sito			Cito Maan					
Site	1	2	3	4	5	Site Mean	Site SD	
Kikomun	3.27	2.90	2.71	2.47	3.10	2.89	0.32	
Elk River	3.18	3.40	3.00	3.00	3.67	3.25	0.29	
Gold Creek	2.89	3.00	3.42	2.90	3.36	3.11	0.26	
Notes:								
1. All results in mg Se/kg Dry wt.								

Table 2 Selenium in Net Zooplankton in Lake Koocanusa, August 2008.

2. Samples taken August 5 - 7, 2008.

3.3 Fish

Analytical data for all fish tissue are presented Appendix X, including wet weights and dry weights conversions as for zooplankton.

The gill net sites, established by Montana Fish, Wildlife, did not match precisely the water and zooplankton sampling sites established by B.C. MoE (Figures 7 and 8) so fish from various locations were pooled to provide the best match (Tables 4 and 5). Kokanee were captured in September near Kikomun, upstream of the Elk River, and above the Tobacco River confluence in Montana (Figures 7 and 8). Peamouth chub were captured in May but only in the reach from the U.S. border south to the Tobacco River confluence (Figure 8). The timing of sample collection was necessary to target ovary tissue from these two species, which spawn at different times of the year. It should be noted that this difference may confound comparisons of tissue Se concentrations.

The B.C. interim guideline for Se in fish tissue is $1.0 \ \mu g \ Se/g$ of body weight (i.e., whole body) on a wet weight basis as a mean of at least 5 independent samples (Nagpal, 2001). To facilitate evaluation of fish Se concentration data gathered in this survey against this guideline whole body wet weight results from Appendix X have been averaged and summarized in Table 3. This guideline was not exceeded at any of the sites for either species.

Species	Location	Mean (µg Se/g ww)	SD (µg Se/g ww)	n
	Kikomun	0.51	0.01	3
Kokanee	Elk River	0.56	0.06	7
	Border to Rexford	0.57	0.08	10
Peamouth	Border to Rexford	0.85	0.15	10

Table 3Mean Whole Body Selenium Wet Weights in Fish from Lake Koocanusa (2008)

3.3.1 Kokanee

Selenium concentrations (expressed in μ g/g dry weight) in kokanee whole body, axial muscle and ovary tissue pooled into the three sites described above are listed in Table 4 and compared graphically in Figure 11. It is apparent from this Figure 11 that ovary tissue in kokanee had higher concentrations of Se (site means ranging from 3.43 to 3.93 μ g Se/g dw) than axial muscle (site means ranging from 1.77 to 1.89 μ g Se/g dw), with whole body levels being intermediate to both (site means ranging from 2.10 to 2.61 μ g Se/g dw). The site means for each tissue were analyzed using one-way ANOVA's, and in cases where the F-statistic confirmed that the site means were significantly different (p ≤0.05), Tukey's multiple comparison procedure was used to find out which site means for each tissue were significantly different (Appendix XII).

Table 4Selenium in Kokanee from Lake Koocanusa, 2008

Tissue			Fish N	umber (App	endix X-A,	B, C) Resi	ults in µg Se	e/g DW		
Whole	1	3	5	7	9	11	13	15	17	19
Body	1.85	2.44	2.30	2.17	2.70	2.28	2.35	2.48	2.58	2.46
Axial	2	4	6	8	10	12	14	16	18	20
Muscle	1.79	1.86	2.05	1.56	1.91	1.60	1.95	1.86	1.48	1.81
•	2	4	6	8	10	12	14	16	18	20
Ovary	3.24	3.24	3.66	male fish	3.86	3.75	3.53	4.61	2.78	3.72

United States Reach (U.S. - Canada border to Rexford)

Tissue			Fish N	umber (App	endix X-D,	E, F) Resu	ılts in μg Se	e/g DW		
Whole	21	23	25	27	29	31	33	35	37	39
Body	2.43	2.33	3.19	2.81	2.46	2.87	2.54	2.56	2.42	2.52
Axial	22	24	26	28	30	32	34	36	38	40
Muscle	1.95	1.90	1.55	1.96	2.28	1.85	1.70	1.50	1.83	2.38
Quant	22	24	26	28	30	32	34	36	38	40
Ovary	3.51	4.80	4.10	4.72	3.31	3.51	3.43	male fish	4.48	3.54

Site Groupings for Statistical Comparisons

Kokane	Kokanee: Whole Body Se							
Kikomun	Elk River	Rexford						
1.85	2.44	2.43						
2.30	2.70	2.33						
2.17	2.28	3.19						
	2.35	2.81						
	2.48	2.46						
	2.58	2.87						
	2.46	2.54						
		2.56						
		2.42						
		2.52						

Kokar	Kokanee: Axial Muscle							
Kikomun	ikomun Elk River							
1.86	1.79	1.95						
2.05	1.91	1.90						
1.56	1.60	1.55						
	1.95	1.96						
	1.86	2.28						
	1.48	1.85						
	1.81	1.70						
		1.50						
		1.83						
		2.38						

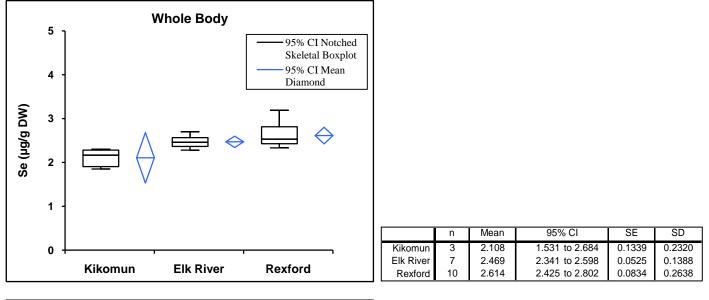
Ko	Kokanee: Ovary							
Kikomun	Elk River	Rexford						
3.24	3.24	3.51						
3.66	3.86	4.80						
3.41	3.75	4.10						
	3.53	4.72						
	4.61	3.31						
	2.78	3.51						
	3.72	3.43						
		4.48						
		3.54						

Site Groupings: Kikomun = South of bridge; Elk River = Across from campground + North of cabin; Rexford = U.S. Reach.

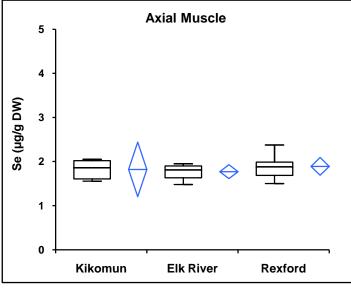
Fictitious result added (median of other 2) because software requires at least 3 values for graphing (Figure 8). Value not included in statistical analyses.

These analyses indicated that the only statistically-significant difference was between the Kikomun and Rexford sites for whole body Se (Appendix XII-A). For the sample sizes available (only n = 3 at Kikomun), there was no evidence that the differences between any of the other site means were statistically significant (i.e., all samples came from the same population).

3.3.2 Peamouth Chub


Peamouth chub were only collected at one site reach from the International Border south to Rexford, so an evaluation of spatial trends in Se content in this species along the reservoir, in relation to the Elk River source, cannot be conducted. The Se content, on a dry weight basis, in peamouth captured in this reach is summarized in Table 5.

Tissue			Fish No. (A	Appendix 3	X-G, H, I)	Results i	η μg Se/g α	dry weight			Mean	SD
Whole	1	3	5	7	9	11	13	15	17	19	wean	
Body	3.68	3.14	3.13	2.36	4.15	3.46	2.74	3.70	3.63	3.77	3.38	0.54
Axial	2	4	6	8	10	12	14	16	18	20		
Muscle	2.33	1.75	5.35	2.60	2.79	2.32	4.37	6.42	2.33	2.78	3.30	1.54
0	2	4	6	8	10	12	14	16	18	20		
Ovary	5.00	5.64	11.34	9.25	10.24	5.64	8.50	9.69	6.43	6.49	7.82	2.25


Table 5Selenium in Peamouth Chub from U.S. Border to Rexford, May 2008

These data can, however, be compared with the Se content in kokanee captured from the same reach, keeping in mind that the spawning fish were captured at different times of year (i.e., peamouth were captured in May, the kokanee in September). Peamouth from this part of the reservoir were found to contain greater quantities of Se, particularly in ovary tissue which was approximately twice the Se concentration as kokanee ovary (Figure 12). In both Figures 11 and 12 the scale of the x-axis of the three graphs for whole body, muscle and ovary is identical in order to ensure accurate visual comparison, but was increased from a maximum of 5 to 12 μ g Se/g dw in Figure 12 to accommodate higher Se concentrations in peamouth.

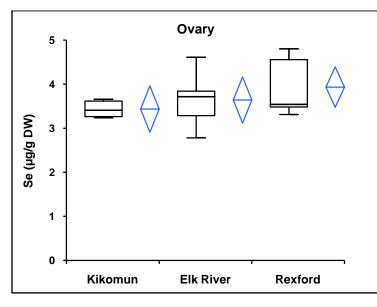
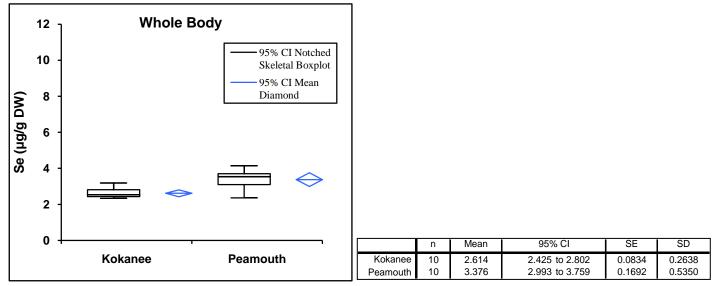
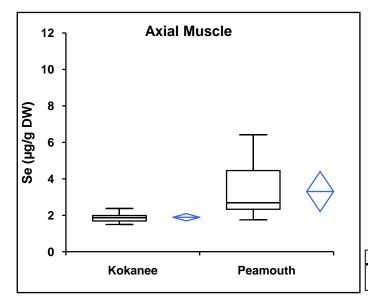

The different Se content of these two species was compared using one-way ANOVA and Tukey's multiple comparison procedures (Appendix XIII). These tests confirmed that mean Se concentrations in whole body, muscle and ovary of kokanee and peamouth chub captured in the reach from the international border to Rexford in 2008 were significantly different (p < 0.05). What cannot be determined from these data is whether these differences are due to sampling at different times (i.e., peamouth in May, kokanee in September) or the result of real differences in the relative bioaccumulation of Se by each species.

Figure 11 Selenium in Lake Koocanusa Kokanee: Site Comparisons




	n	Mean	95% CI	SE	SD
Kikomun	3	1.821	1.202 to 2.440	0.1439	0.2492
Elk River	7	1.771	1.613 to 1.929	0.0646	0.1710
Rexford	10	1.890	1.689 to 2.091	0.0887	0.2805

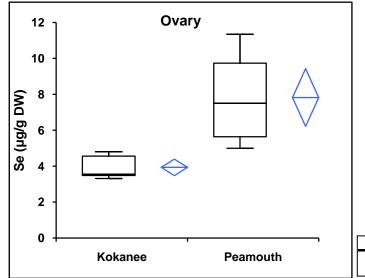

	n	Mean	95% CI	SE	SD
Kikomun	3	3.434	2.907 to 3.962	0.1226	0.2124
Elk River	7	3.640	3.116 to 4.163	0.2140	0.5663
Rexford	9	3.933	3.474 to 4.391	0.1989	0.5966

Figure 12 Comparison of Selenium in Kokanee and Peamouth Chub from Lake Koocanusa, U.S. Border to Rexford Reach in 2008.

	n	Mean	95% CI	SE	SD
Kokanee	10	1.890	1.689 to 2.091	0.0887	0.2805
Peamouth	10	3.304	2.202 to 4.406	0.4870	1.5401

n	Mean	95% CI	SE	SD
Peamouth Kokanee 9	3.933	3.474 to 4.391	0.1989	0.5966
Peamouth 10	7.822	6.215 to 9.429	0.7103	2.2462

4.0 Discussion

One of the goals of this study was to determine if there were risks to the aquatic environment, as determined by comparing results against water quality guidelines and tissue-based thresholds. Comparisons of data with B.C. guidelines for the protection of aquatic life have been done in the results section above and are not repeated here. However, in 2008, a panel of Se experts proposed a framework for the monitoring and management of Se in the Elk Valley, including Se concentration triggers (Canton *et al.*, 2008). Data from this survey have been evaluated against these triggers.

The monitoring and management framework, intended to be a step-wise process, established Se concentration triggers for water, invertebrate (receptor diet) tissue and receptor species tissues. The triggers serve as a guide for additional monitoring activities and mitigation efforts, depending on whether they are exceeded or not. While the expert report does not specifically mention applying the framework as far downstream as Lake Koocanusa, evaluating the results of this survey against these recently established Se concentration triggers for river system immediately upstream is considered prudent.

The water trigger is the BC ALG and thus cannot be properly evaluated in Lake Koocanusa until there is the appropriate temporal mean available (at least 5 samples in 30 days).

The invertebrate trigger is 5 μ g Se/g dw as a mean of triplicate samples from a site. Zooplankton was the only invertebrate sampled in this study, and none of the net zooplankton Se site means from Lake Koocanusa exceeded this trigger. The trigger was also not exceeded by taking the 3 highest values from each site nor even taking the 3 highest values from all 15 hauls (mean = 3.50 μ g Se/g dw). Canton *et al.* (2008) suggest that exceeding the invertebrate trigger should lead to further Se monitoring in the appropriate fish, amphibian or bird receptors plus consideration of Se management options.

The fish tissue trigger is a whole body concentration of 6 μ g Se/g dw and is intended to apply to a sampling location mean. None of the fish site means from Lake Koocanusa exceeded this value in 2008, the highest being peamouth chub from the Rexford area, which had a whole body mean of 3.38 μ g Se/g dw. Exceeding the fish tissue whole body Se trigger by less than 20% prompts additional confirmatory sampling and if the trigger is exceeded by greater than 20% a Se management plan should developed and implemented with the intent of reducing Se inputs to the system (Canton *et al.*, 2008).

When the Elk Valley Selenium Monitoring and Management Framework, developed for the upper basin in 2008, is used evaluate the results of this survey in Lake Koocanusa, none of the triggers were exceeded, meaning there is no need to move to the next steps for monitoring and management. In the upper basin, the framework recommends maintaining a basic water and invertebrate tissue monitoring program even when the triggers are not exceeded. An equivalent program for Lake Koocanusa, plus suggestions for further investigation into Se uptake and trophic transfer, is recommended below. Another goal of this survey was to compare the current findings with those of a similar, though less extensive survey conducted in 2002 (McDonald, 2005), and any other available historic data. The 2002 survey sampled zooplankton and kokanee from the Kikomun area only, upstream of the Elk River, but water samples were not taken. The B.C. Ministry of Environment conducted routine sampling of water and plankton from the Canadian portion of Lake Koocanusa from 1972 to 1991, but Se was never included in the analyses (Hamilton, *et al.*, 1990).

In 2002 duplicate zooplankton hauls from Kikomun each contained 1 μ g Se/g dw, with dry weights calculated using an assumed 80% moisture (McDonald, 2005). When the average percent moisture measured in 2008 of 90% (n = 15) is used, the 2002 dry weights become 2 μ g Se/g dw. Higher analytical detection limits in 2002 notwithstanding, these results are similar to the 2008 Kikomun mean of 2.89 μ g Se/g dw. The 2008 means from the Elk River (3.25 μ g Se/g dw) and Gold Creek (3.11 μ g Se/g dw), downstream of the Se source, were not statistically different from that of the Kikomun site. Given the higher detection limit and small sample size in 2002, it is not possible to determine if zooplankton Se has risen significantly over the past 6 years.

McDonald (2005) also sampled net zooplankton Se content in Kinbasket Reservoir, a reference site located 350 km north on the Columbia River, and found duplicate hauls contained 1 μ g Se/g dw (similarly adjusted using the 2008 percent moisture data). This was similar to a net zooplankton sample from Connor Lake, a remote lake located on the western, non-coal bearing side of the Elk River valley, which contained 1.03 μ g Se/g dw (McDonald and Strosher, 2000), and might be considered background for non-seleniferous lakes in south-eastern British Columbia, though additional confirmatory data are needed.

Whole body fish tissue analysis was not done in 2002, but the mean concentration in axial muscle from kokanee captured at Kikomun was $2.4 \pm 0.2 \ \mu g \ Se/g \ dw \ (n = 8)$ and $6.6 \pm 1.4 \ \mu g \ Se/g \ dw \ (n = 8)$ in ovary tissue (McDonald, 2005). These ovary Se dry weight results from 2002 have been re-calculated as above using the average percent moisture analyses from 2008 (62%) instead of the assumed value used by McDonald (2005) (70%). Muscle dry weights reported by McDonald (2005) needed no adjustment because the assumed moisture content (78%) matched that measured in 2008. The corrected kokanee tissue Se found in 2002 at Kikomun were higher than those found in 2008 when mean axial muscle and ovary concentrations were $1.82 \pm 0.25 \ \mu g \ Se/g \ dw \ (n = 3)$ and $3.43 \pm 0.21 \ \mu g \ Se/g \ dw \ (n = 3)$ respectively, the latter being half that found in 2002.

Higher kokanee muscle and ovary Se in 2002 compared to 2008 is puzzling considering that the Se loading from the Elk River nearly doubled over this period, insofar as it is reflected in an increase in the mean annual concentration at the Highway 93 site, from 2.4 μ g/L in 2002 to 4.26 μ g/L in 2008 (Figure 1). This may be due to the lower analytical detection limits employed in 2008, 0.01 μ g Se/g ww down from 0.1 μ g Se/g ww in 2002, or simply annual variation.

The final objective of this study was to examine the distribution of Se content in the water column, zooplankton, and kokanee in relation to the Elk River Se source.

Based on sampling at three sites, water column concentrations showed the combined influence of the influx of Se from the Elk River and the downstream flow vector operating in the reservoir. The lowest concentrations were found upstream of the Elk River at Kikomun (mean = $0.11 \pm 0.02 \mu g/L$), which were similar to those farther above in the Kootenay River ($0.07 \mu g/L$ the month before), and the highest concentrations were found in the Elk River forebay (mean = $1.33 \pm 0.72 \mu g/L$), reflective of the elevated levels in the Elk River upstream ($3.58 \mu g/L$ the month before). The deeper, more completely mixed Gold Creek reach downstream had Se concentrations intermediate to these other two sites (mean = $0.84 \pm 0.13 \mu g/L$). Site differences in water column Se were statistically significant in all cases (p<0.0001).

Despite a 12-fold increase in water-borne Se concentrations at the Elk River forebay and 8-fold increase at Gold Creek, over the Kikomun site upstream, mean net zooplankton Se from the same sites did not differ significantly. Food-chain transfer has long been recognized as the major pathway for Se bioaccumulation in aquatic consumer organisms (Sandholm *et al.*, 1973; Simmons and Wallschläger, 2005). Given the lack of significant Se bioaccumulation in zooplankton, a primary consumer, it is not surprising that kokanee, a secondary consumer feeding mainly on the former, did not show significantly elevated tissue levels.

The mobility of fish to feed, prior to capture, throughout the 40 km long reach, from Kikomun to Rexford, Mo, where fish were sampled, was recognized as a potentially confounding factor for interpreting Se bioaccumulation in fish captured along this reach. Zooplankton, though mobile over short distances and subject to displacement by water currents, are unlikely to move between sites several kilometres apart. The failure of zooplankton in this vicinity of Lake Koocanusa to bioaccumulate Se in response to large increases in total Se concentrations in the water they inhabit warrants further discussion.

Though invertebrates and fish can bioaccumulate Se directly from water, organoselenides being the most bioavailable form, followed by selenite, then selenate, the major pathway is through the diet of these consumer organisms (Orr *et al.*, 2006). The major entry point of water-borne Se into aquatic biota, however, is via the uptake of inorganic oxyanions (selenate and selenite) by algae, bacteria and macrophytes and biotransformation into selenoamino acids, which are further transformed into selenoproteins by consumers (invertebrates and fish) (Maier and Knight 1994; Orr *et al.*, 2006). The uptake of Se from water by primary producers has recently been described as the "enrichment function, and considered to be "the single largest step in the bioaccumulation of Se" (Chapman, *et al.*, 2009).

Macrophyte community development in littoral areas is severely limited in Lake Koocanusa due to the large annual draw-down, which leaves algae and bacteria, both pelagic and benthic, to play the major role in Se uptake and biotransformation.

In a recent review of Se biogeochemistry and ecotoxicology, Simmons and Wallschläger (2005) suggest that selenite, found in mildly reducing environments, is more bioavailable to algae and cyanobacteria than selenate, which dominates in alkaline, oxidizing conditions. Selenium is released from the coal mines into the Elk River predominantly as selenate, selenite being largely undetectable mine drainage (Day, 2004). Since reducing conditions, where conversion to selenite would occur, are unlikely to be encountered in the river or Canadian portion of the reservoir, it is reasonable to assume that most of the total Se in the water column of Lake Koocanusa, immediately downstream of the Elk River, is selenate. This can easily be confirmed by further sampling and analysis for Se speciation at the Elk River site (Figure 1) and in the reservoir.

In laboratory experiments Riedel, *et al.* (1996) observed the uptake of selenate by phytoplankton, followed by a transformation to, and release of, selenite, but the process took 10 days. The rate of water movement through Lake Koocanusa is not known but the uptake of Se by phytoplankton, and subsequent trophic transfer to zooplankton, may not be significant until farther down the reservoir.

Another factor that may explain the lack of significant Se bioaccumulation by zooplankton in this study is the presence of elevated concentrations of sulphate, which has been found to inhibit the uptake of selenate by algae and invertebrates (Simmons and Wallschläger, 2005). The concentration of sulphate in the reservoir, across all sites sampled in 2008, averaged about 22 mg/L (Appendix V), and both the Elk and Kootenay Rivers, just upstream of Lake Koocanusa, annually range from 15 to 50 mg/L (Env. Can., 2009). Large quantities of sulphate are released by coal mining into the Elk River, with concentrations as high as 700 mg/L in mine drainage (Day, 2004), 20 to 100 mg/L immediately downstream, and 6 mg/L or less above mine activity (MEMPR-ERIP, 2009). The source of sulphate in the Kootenay River is probably gypsum mine activity upstream of Canal Flats (MEMPR, 2008), where the annual range is 10 to 60 mg/L, versus 5 to 10 mg/L farther upstream in Kootenay National Park at Kootenay Crossing (Env. Can., 2009).

In summary, the limited bioaccumulation of Se by zooplankton in response to elevated water concentrations, observed in this study, may be due to limited uptake the phytoplankton and bacteria on which they feed. Uptake by these primary producers is limited because the Se in the water column is predominantly selenate, the least bioavailable form, and is further inhibited by elevated sulphate. Confirmation of this hypothesis will require analysis of water samples for Se species and an examination of Se uptake by the primary producers in the reservoir, possibly using the stable isotope techniques employed by Orr *et al.* (2006) in the upper watershed, to confirm food-chain relationships and biotransformation factors.

Orr *et al.* (2006), summarizing the literature, describe the bottom sediments in aquatic ecosystems as the ultimate sink for Se, due to the uptake of Se by algae and bacteria and subsequent deposition through settling. Selenium content in water samples in this study from the deeper, downstream Gold Creek site were consistent with this observation. Total Se in surface samples at this site averaged $0.73 \pm 0.07 \mu g/L$ while samples from around 28 m, 1 m off the bottom, averaged $0.95 \pm 0.04 \mu g/L$ (n=5 in each case), this difference being significant as determined by one-way ANOVA (p=0.0002). The water column at this site at the time of sampling was not subject to complete vertical mixing as evidenced by the 10°C gradient from surface to bottom. The accumulation of Se in bottom sediments is followed by uptake by the microbial flora colonizing the deposited detritus, biotransformation to organoselenides and consumption by benthic consumer organisms (Orr *et al.*, 2006).

Orr *et al.* (2006) concluded that the greater Se uptake in exposed lentic areas, compared to lotic, in the Elk Valley near the coal mines, was the result of uptake and biotransformation of Se oxyanions to organoselenium by macrophytes and bacteria colonizing the sediment and detritus, which accumulates at a much greater rate due to greater hydraulic retention times. Though the wetlands and off-channel ponds studied by these authors differ greatly from a large reservoir like Lake Koocanusa, the potential importance uptake and cycling of Se by benthic detrital food-chains in the reservoir should not be overlooked.

Evidence has been found to suggest that Se uptake and cycling by the sediment-linked processes in lakes and reservoirs may exceed that of pelagic processes. In a study of Se uptake by caged golden shiner (*Notemigonus crysoleucas*) in Se-contaminated Hyco Reservoir, fish exposed to the sediments accumulated more Se than those suspended in the water column (Woock, 1984). McDonald and Strosher (2000) reported a concentration of 2.66 μ g Se/g DW in epibenthic amphipods from Connor Lake, a remote alpine reference lake, in which the net zooplankton yielded a concentration of 1.03 μ g Se/g dw.

In this survey, the significantly greater bioaccumulation of Se by peamouth chub, compared to kokanee, from the same site (though sampled 4 months apart) may have been due to a greater propensity on the part of that species to bioaccumulate Se, or to higher levels of Se in its diet. Peamouth, like kokanee, feed on zooplankton, but are more opportunistic feeders with a broader range of diet including benthic insect larvae (e.g., chironomids, mayflies, caddisflies), molluscs and small fishes (Scott and Crossman, 1979). Selenium bioaccumulation in benthic invertebrates was not evaluated in this survey. Future surveys should consider adding this component to determine the relative exposure risk to benthic feeding fishes, perhaps in conjunction with the use of stable isotope ratios, mentioned above, to confirm food-chain relationships and biotransformation factors.

The findings of this survey and the above discussion of related information from the literature raises several important questions:

- 1. Though zooplankton 17 km downstream of the Elk River source did not bioaccumulate significant Se despite an 8-fold increase in water concentration, do zooplankton 70 km farther downstream near the Libby Dam bioaccumulate significantly more Se due to uptake and biotransformation processes along the reservoir?
- 2. Depending on the answer to #1, do kokanee, and other species of fish, nearer the dam bioaccumulate relatively more Se than those nearer the U.S. border?
- 3. Do benthic invertebrates bioaccumulate more Se than zooplankton because the net accumulation of Se in bottom sediments is readily taken up by detrital bacteria and algae, biotransformed to organoselenides and bioaccumulated by consumer organisms.
- 4. Depending on the answer to #3, do benthic feeding fishes bioaccumulate relatively more Se than pelagic feeding fishes from the same part of the reservoir?

Other questions concerning Se uptake and cycling in the reservoir, critical to answering the above, include:

- 5. What is the proportion of each form of Se (selenate, selenite, organoselenide) in the Elk River as it enters Lake Koocanusa?
- 6. If the assumption that most of the Se enters as selenate, the least bioavailable form, is correct (to be confirmed by #5), is there a shift to more bioavailable forms farther down the reservoir due to uptake and transformation processes?

The additional monitoring and research required to answer these questions are included in the following recommendations.

5.0 Recommendations

The following recommendations for future monitoring and research are based on the findings of the 2008 survey and related information from the scientific literature. They pertain to Lake Koocanusa in its entirety, which lies across the border between Canada and the United States.

- It is recommended that a survey similar to this one be conducted again in approximately 3 years (2011) to evaluate trends in this downstream lentic environment, but with consideration for the following additions and modifications.
- Water sample analysis should include Se speciation, selenate and selenite at a minimum to confirm the dominant form of Se and determine if biotransformation of selenate to selenite and organic forms occurs further downstream within the reservoir. Such analysis should also be carried out on several samples from the long-term site on Elk River at Highway 93.
- In future surveys, water and zooplankton sampling should be carried out as in 2008. However, the Elk River site, where river and reservoir water is actively mixing, need not be sampled (sample Kikomun and Gold Creek). The number of samples collected at each site should be reviewed using power analysis to ensure adequate replication to evaluate statistical significance.
- Water and zooplankton sampling should also be conducted at a site just upstream of the Libby Dam, in the area referred to as Forebay to evaluate whether the pelagic food chain within the reservoir takes longer to transform and accumulate Se.
- In addition to net zooplankton, logistical problems notwithstanding (e.g., separating phyto- from zooplankton), an effort should be made to sample net phytoplankton for Se content at the same locations. Information on Se uptake at the base of the food-web, recently termed the 'enrichment function', may help explain why large increases in water-borne Se are not reflected by similar increases in primary consumer (zooplankton) bioaccumulation.
- Benthic invertebrates, as a potential source of food-chain Se exposure, should be sampled at Kikomun, Gold Creek and at other sites downstream as determined by the fish sampled (i.e., when benthivores are being sampled). Benthic consumer Se bioaccumulation can be compared to zooplankton values from the same location to evaluate the respective roles of each of these communities in reservoir Se uptake and cycling.
- In the U.S. portion of the reservoir, fish should be sampled at Rexford and at Forebay, just upstream of the Libby Dam in the vicinity of the water/plankton/invertebrate sampling.

- Consideration should be given to utilizing the stable isotope ratio techniques employed by Orr, *et al.* (2006) in studying Se uptake and cycling in lotic and lentic areas in the upper Elk River. Such techniques could be applied to Se uptake and transformation by primary producers and consumers in the benthic and pelagic communities to confirm food-chain associations and the relative importance of each to Se cycling in the reservoir.
- In addition to kokanee and peamouth chub, other species of fish inhabiting the reservoir should also be sampled as various species accumulate Se at different rates based on life history characteristics. Hoffman *et al.* (2002) reports the presence of the following additional species in the reservoir: rainbow trout, Kamloops rainbow trout, westslope cutthroat trout, bull trout (char), mountain whitefish, burbot, northern pike minnow, redside shiner, largescale sucker, longnose sucker, and yellow perch. Successive surveys of Lake Koocanusa should eventually sample the Se content of all these species, prioritized on the basis of potential food-chain exposure to Se.
- Future fish tissue Se analysis need only include whole body and ovary. Including axial muscle in the 2008 survey was important for comparison to historical data, which did not include whole body analysis, now the "tissue" of choice for Se assessments.

6.0 References

- BC Min. Environ., Lands and Parks, and Environ. Can. Water Quality Trends in Selected British Columbia Water Bodies. March 2000. <u>http://www.waterquality.ec.gc.ca/web/Environment~Canada/Water~Quality~Web/assets/images/English/WatTrend</u> Feb29.pdf
- Canton, S.P., A.F. Fairbrother, A.D. Lemly, H.M. Ohlendorf, L.E. McDonald, and D.D.
 MacDonald. *Experts Workshop on the Evaluation and Management of Selenium in the Elk Valley, British Columbia: Workshop Summary Report.* Prepared for: Environ. Protect. Div., B.C.
 Min. of Environ. April (revised August) 2008.
- Chapman, P.M., W.J. Adams, M.L. Brooks, C.G. Delos, S.N. Luoma, W.A. Maher, H.M. Ohlendorf, T.S. Presser, D.P. Shaw. 2009. Ecological assessment of selenium in the aquatic environment: Summary of a SETAC Pellston Workshop. Pensacola FL (USA): Society of Environmental Toxicology and Chemistry (SETAC).
- Day, S. *Evaluation of Selenium Geochemistry Elkview Coal Mine*. Report prepared for Elk Valley Coal Corp., SRK Consulting (Canada) Inc., Vancouver, B.C. Nov. 2004
- Eisler, R. Selenium Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. US Dept. of the Interior, Fish and Wildlife Serv., Biol. Rep. 85(1.5). Oct. 1985.
- Environment Canada, Pacific and Yukon Region Water Quality Monitoring Program: Data Online (Web site accessed Oct 2008 to Jan 2009): <u>http://www.waterquality.ec.gc.ca/EN/navigation/search.htm</u>
- Golder Associates. 2007. Selenium Status Report 2005/2006. Elk River Valley, B.C. Report 3. Elk Valley Selenium Task Force, Sparwood, BC, Canada.
- Hamilton, H.R., L.R. Linton, P. Chow-Fraser, B. Taylor, and D. Frenet. Koocanusa Reservoir State of Aquatic Environment 1972 – 1988. Prepared by Hydroqual Canada Ltd., Calgary, AB for Waste Man. Br., B.C. Min. of Environ. March 1990.
- Hoffman, G., B. Marotz, J. DeShazer, L. Garrow, T. Ostrowski and J. Dunnigan. *Mitigation for the Construction and Operation of Libby Dam*. Annual Report 2000, Mont. Fish, Wildlife and Parks. Sept. 2002.
- Holm, J., Palace, V., Siwik, P., Sterling, G., Evans, R., Baron, C., Werner, J., and Wautier, K. 2005. Developmental effects of bioaccumulated selenium in eggs and larvae of two salmonid species. Environ. Toxicol. Chem. 24: 2373–2381.

- Kennedy, C.J., L.E. McDonald, R. Loveridge, and M.M. Strosher. 2000. The effect of bioaccumulated selenium on mortalities and deformities in the eggs, larvae and fry of a wild population of cutthroat trout (*Oncorhyncus clarki lewisi*). Arch. Environ. Contam. Toxicol. 39: 46-52.
- Lemly, A.D., 1993. Guidelines for evaluating selenium data from aquatic monitoring and assessment studies. Environ. Mon. and Assess. 28: 83-100.
- Maier, K.J. and A.W. Knight. 1994. Ecotoxicology of selenium in freshwater systems. Rev. Environ. Contam. Toxicol. 134: 31-48.
- McDonald, L.E. and M.M. Strosher. 1998. Selenium Mobilization from Surface Coal Mining in the Elk River Basin, British Columbia: A Survey of Water, Sediment and Biota. B.C. Pollution Prevention, Cranbrook, B.C., Sept. 1998. 56p. <u>http://www.env.gov.bc.ca/wat/wq/studies/seleniumelk.pdf</u>
- McDonald, L.E. and M.M. Strosher. 2000. Selenium in the Elk River Basin, British Columbia: A Review of Findings and Discussion of Implications for Assessment and Management. Proc. 24th Annual British Columbia Mine Reclamation Symposium, Williams Lake, B.C., June 19-22, 2000.
- McDonald, L.E. 2005. Selenium Bioaccumulation Survey of Lake Koocanusa and Kinbasket Reservoir (2002). Env. Protect., B.C. Min. of Environ., Cranbrook, B.C. Dec 2005. 12 p.
- Min. of Energy, Mines and Petroleum Resources (MEMPR). Coal Map on *The Map Place* web page. Accessed March 2009. <u>http://webmap.em.gov.bc.ca/mapplace/minpot/coal.cfm</u>
- Min. of Energy, Mines and Petroleum Resources, Environmental Resource Information Project (MEMPR-ERIP), Baseline Surveys (Crowsnest Coal Field). Web page accessed May 2009. http://www.empr.gov.bc.ca/OG/oilandgas/EnvironmentalStewardshipProgram/ERIP/Pages/default.aspx
- Min. of Energy, Mines and Petroleum Resources (MEMPR), *Exploration and Mining in British Columbia 2007*. Mining and Minerals Div., Victoria, B.C. Jan. 2008. 86 p. <u>http://www.empr.gov.bc.ca/MACR/EnergyAndMiningOpportunities/Documents/ExplorationandMininginBritishCol</u> <u>umbia2007.pdf</u>
- Nagpal, N.K. Ambient Water Quality Guidelines for Selenium. Env. Prot. Div., B.C. Min. of Environ. August 2001. <u>http://www.env.gov.bc.ca/wat/wq/BCguidelines/selenium/selenium.html</u>
- Ohlendorf, H.A., D.J. Hoffman, M.K. Saiki, and T.W. Aldrich. 1986. Embryonic mortality and abnormalities of aquatic birds: Apparent impacts of selenium from irrigation drainwater. Sci. Tot. Environ. 52: 49-63.

- Orr, P.L., K.R. Guiguer, and C.K. Russel. 2006. Food chain transfer of selenium in lentic and lotic habitats of a western Canadian watershed. Ecotoxicol. Environ. Saf. 63: 175-188.
- Riedel, G.F., J.G. Sanders, and C.C. Gilmour. 1996. Uptake, transformation, and impact of selenium in freshwater phytoplankton and bacterioplankton communities. Aq. Microbial Ecol. 11: 43-51.
- Rudolph, B., I. Andreller, and C.J. Kennedy. 2008. Reproductive success, early life stage development, and survival of westslope cutthroat trout (*Oncorhynchus clarki lewisi*) exposed to elevated selenium in an area of active coal mining. Environ. Sci. Technol. 42(8): 3109-3114.
- Sandholm, M., M.R. Jennings, and W.G. Brumbaugh. 1973. Uptake of selenium by aquatic organisms. Limnol. Oceanogr. 18: 496-499.
- Scott, W.B. and E.J. Crossman. *Freshwater Fishes of Canada*. Fish. Res. Bd. Can., Bull. 184. 1979 ed., Dept. Fish. Oceans, Ottawa, Can.
- Simmons, D.B.D. and D. Wallschläger. 2005. A Critical Review of the Biogeochemistry and Ecotoxicology of Selenium in Lotic and Lentic Environments. Environ. Toxicol. Chem. 24: 1331-1343.
- Swain, L.G. Water Quality Assessment of Elk River at Highway 93 near Elko (1968-2005). Canada-BC Water Qual. Mon. Agreement; Prepared for BC Min. of Environ. and Environ. Can. March 2007. <u>http://www.env.gov.bc.ca/wat/wq/quality/elk_riv_hwy93/elk_hwy93_05.pdf</u>
- US Environmental Protection Agency. 2000. Guidance for Assessing Chemical Contamination Data for Use in Fish Advisories: Vol. 1 Fish Sampling and Analysis, 3rd ed. EPA 823-B-00-007, Nov 2000. <u>http://www.epa.gov/waterscience/fish/advice/volume1/index.html</u>.
- Water Survey of Canada, Environ. Can., Real-Time Hydrometric Data. (Web site accessed Oct 2008 to Jan 2009): <u>http://scitech.pyr.ec.gc.ca/waterweb/formnav.asp?lang=0</u>
- Wipperman, B. and T.N. Webber. State of Water Quality of Elk River at Highway 93 (Phillips Bridge) 1984-1995. Canada-BC Water Qual. Mon. Agreement. Prepared for BC Min. of Environ. and Environ. Can., Feb. 1997.
- Woock, S.E., 1984. Accumulation of selenium by golden shiners, *Notemigonus crysoleucas*.
 Hyco Reservoir N.C. cage study 1981-1982. Carolina Power and Light Company, New Hill, NC 19 pp. As cited in Orr *et al.* (2006).

LIST OF APPENDICES

Appendix I	Calculations for Selenium Loading to Lake Koocanusa
Appendix II	Site Information and Field Notes
Appendix III	Analytical Methods and Detection Limits
III-A	Water Samples
III-B	Biological Tissue Samples
Appendix IV	Quality Assurance/Quality Control
Appendix V	Water Chemistry Analyses
V-A	Kikomun
V-B	Elk River
V-C	Gold Creek
Appendix VI-A	Total Selenium in Water: Two-Way ANOVA
Appendix VI-B	Total Selenium in Water: One-Way ANOVA
Appendix VII	Hydrolab Profile Data
Appendix VIII	Net Zooplankton Analysis
VIII-A	Kikomun
VIII-B	Elk River
VIII-C	Gold Creek
Appendix IX	Selenium in Net Zooplankton: One-Way ANOVA
Appendix X	Fish Tissue Analyses
X-A	Kokanee Whole Body – Canadian Reach
X-B	Kokanee Axial Muscle – Canadian Reach

X-C	Kokanee Ovary – Canadian Reach
X-D	Kokanee Whole Body – United States Reach
X-E	Kokanee Axial Muscle – United States Reach
X-F	Kokanee Ovary – United States Reach
X-G	Peamouth Chub Whole Body – United States Reach
Х-Н	Peamouth Chub Axial Muscle – United States Reach
X-I	Peamouth Chub Ovary – United States Reach
Appendix XI	Fish Field Data
XI-A	Kokanee
XI-B	Peamouth Chub
Appendix XII	Selenium in Kokanee: Site Comparison ANOVA's
XII-A	Whole Body
XII-B	Axial Muscle
XII-C	Ovary
Appendix XIII	Selenium in Kokanee versus Peamouth: ANOVA's
XIII-A	Whole Body
XIII-B	Axial Muscle
XIII-C	Ovary

Appendix I Calculations for Selenium Loading to Lake Koocanusa

Flows in the Elk River are typical of streams in mountainous terrain in Western North America, with minima occurring in late winter followed by 10-fold greater maxima in the early summer due to melting snowpack. For the period of record, 1924 to 1996, the lowest mean monthly discharge at the Phillips Bridge site (08NK005) was observed in February (i.e., 20.4 m³/s) and highest in June (i.e., 258 m³/s) (Water Survey of Can., 2008).

The mass loading of Se delivered by the Elk River into Lake Koocanusa can be calculated using the average mean monthly discharge (i.e., $75.8 \text{ m}^3/\text{s}$) over the 72-year gauging record and the total Se concentrations sampled at the same site since 1986. In 1986, the average total Se concentration at this site was 0.8 µg/L (n = 14), yielding an average loading of 5.24 kg/d or 1912 kg/yr. In 2008, the average Se concentration at this site on the Elk River was 4.26 µg/L (n = 18), resulting in an average loading of 27.9 kg/d or 10,183 kg/yr, a 5-fold increase over this 22-year period. This represents an increase in Se loading of 376 kg/yr or 19.7% per year, based on the 1986 loading. It must be stressed that these loadings are approximate, being based on a mean of 10 to 20 total Se grab samples per year and one period-of-record average monthly flow.

The actual mean monthly discharge in 1986 (i.e., 78.6 m^3 /s) was similar to the period-of-record average, but annual averages (since 1934, the first year with data for every month) have ranged from 39.6 m^3 /s in 1944 to 112 m^3 /s in 1974. Unfortunately, this gauging station was shut down in 1996, so there are no flow data available after this period.

The Kootenay River at Fort Steele (08NG065), the closest flow gauging station to the Fenwick Station water quality monitoring site, has been gauged since 1963, and continues to be in operation. For the period of record: 1963 to 2007, the lowest mean monthly discharge was recorded in February (i.e., 37.1 m^3/s) and highest in June (i.e., 638 m^3/s) (Water Survey of Canada, 2008).

Using the same method of calculation as that applied for the Elk River (above), the mass loading of Se delivered by the Kootenay River to Lake Koocanusa can be calculated using the average mean monthly discharge (i.e., 173 m^3 /s) over the 42-year gauging record at the Fort Steele site, and the total Se concentrations analyzed at the Fenwick Station site. For comparison purposes, only the 2008 loading has been calculated because earlier MDLs were inadequate to calculate a meaningful loading. In 2008, the average total Se concentration in the Kootenay River at this site was 0.09 µg/L (n = 15) resulting in an average loading of 1.34 kg/d or 489 kg/yr.

Comparable calculations for the Bull River are not possible because, although this stream has flow gauging (Bull River near Wardner 08NG002), comparable water quality monitoring has never been implemented. The geology of the Bull River basin is dominated by Palaeozoic sediments, similar to the large portions of the Kootenay River basin, but unlike the Mesozoic-dominated Elk River valley (Min.

Energy, Mines and Petrol. Res., 2009). This, plus the relative small amount of industrial development or settlement in the basin, makes it reasonable to assume that total Se concentrations in the Bull River would be similar to those in the Kootenay River. Using the percentages of average annual flow contribution to Lake Koocanusa mentioned above of 62% for the Kootenay River and 11% for the Bull River, the proportional average annual loading for 2008 would be approximately $(11/62 \times 489 =) 87 \text{ kg/yr}$.

The total Se loading to Lake Koocanusa for 2008 can now be estimated as:

10,183 kg (Elk River) + 489 kg (Kootenay River) + 87 kg (Bull River) = 10,759 kg/yr.

Based on these rough estimates, the Elk River, which provides approximately 26% of the water to Lake Koocanusa, in 2008, appeared to provide some 95% of the total Se loading. The trend in Figure 1 suggests that, in the absence of effective mitigation measures, the Se loading from the Elk River to Lake Koocanusa will continue to rise into the future.

Appendix II Site Information and Field Notes

Site #	Date	Time	UTM	UTM	Secchi (m)	Total Depth (m)	Notes
Kikomun							
1B	05-Aug-08	10:10	624501	5460326	4.9	9.8	Water samples @ 1 m and 8 m. Zooplankton green/brown in colour with some red copepods.
1A	05-Aug-08	11:45	624330	5460334	4.7	9.7	Water samples @ 1 m and 8 m. Zooplankton green/brown in colour with some red copepods.
1C	05-Aug-08	12:45	624220	5461959	4.7	8.1	Water samples @ 1 m and 6 m. Zooplankton similar to previous sites.
1D	05-Aug-08	14:30	624810	5459445	5.0	9.6	Water samples @ 1 m and 7 m. Zooplankton similar to previous sites. Additional individual zooplankton moisture sample collected here.
1E	05-Aug-08	13:45	624937	5460242	4.7	9.7	Water samples @ 1 m and 7 m. Zooplankton similar to previous sites, althoguh less abundant. May have towed at slightly shallower depth (i.e., 1 - 2 m).
Gold Cr.							
3-1	06-Aug-08	9:30	633719	5431938	7.1	28.2	Water samples @ 1 m and 23 m. Zooplankton similar to previous sites. More periphyton (slimy brown) observed at site 3.
3-2	06-Aug-08	10:45	633632	5432775	6.8	17.4	Water samples @ 1 m and 14 m.
3-3	06-Aug-08	11:30	634106	5433558	6.8	35.0	Water samples @ 1 m and 30 m.
3-4	06-Aug-08	12:15	633981	5434466	6.8	29.0	Water samples at 1 m and 25 m.
3-5	06-Aug-08	13:30	632668	5435019	7.3	30.6	Water samples at 1 m and 25 m. Additional individual zooplankton moisture sample at this site.
Elk R.							
2-1	06-Aug-08	14:45	631447	5446936	to bottom	3.5	Water samples at 1 m and 3 m. QC samples collected here - site replicate, field blank, equipment blank. Zooplankton extremely abundant relative to other sites.
2-2	07-Aug-08	9:15	632216	5447126	to bottom	2.0	Water samples ONLY at 1 m due to shallow depth. Lots of fish visible, John Bell thought they were suckers.
2-3	07-Aug-08	10:15	631910	5446812	to bottom	3.6	Water samples at 1 m and 3 m.
2-4	07-Aug-08	11:00	631289	5447269	to bottom	5.0	Water samples @ 1 m and 3.5 m.
2-5	07-Aug-08	11:45	630131	5447191	7.3	8.9	Water samples @ 1 m and 7 m.

Appendix III-A Analytical Methods and Detection Limits: Water Samples

Variable	Units	Analytical Method (Maxxam Analytics Inc., Burnaby, B.C.)	RDL *
рН		BRN SOP-00264 R2.0, Based on SM-4500H+B	0.1
Total Hardness	mg/L	Calculated as CaCO ₃	0.5
Total Suspended Solids (non-filterable residue)	mg/L	BRN SOP-00277 R2.0, Based on SM-2540 D	4
Total Dissolved Solids (filterable residue)	mg/L	ING443 Rev 5.1, APHA 2540C	10
Total Alkalinity	mg/L	BRN SOP-00264 R2.0, Based on SM 2320B	0.5
Sulphate : Diss	mg/L	Automated Colourimetry, BRN SOP-00243 R1.0, Based on EPA 375.4	0.5
Chloride: Diss	mg/L	Automated Colourimetry, BRN SOP-00234 R1.0, Based on EPA 325.2	0.5
Ammonia (N)	mg/L	BRN SOP-00221 R3.0, Based on SM-4500MH3G	0.005
Nitrite (N)	mg/L	BRN SOP-00233 R1.0, EPA 353.2	0.002
Nitrate (N)	mg/L	Calculated from (NO2 + NO3) - NO2	0.002
Nitrate + Nitrite (N)	mg/L	BRN SOP-00233 R1.0, Based on EPA 353.2	0.002
Total Organic Nitrogen (N)	mg/L	Calculated from TKN + NH_4	0.02
Total Kjeldahl Nitrogen (N)	mg/L	Calculated from TN - (NO2 + NO3)	0.02
Total Nitrogen (N)	mg/L	BRN SOP-00242 R2.0, Based on SM-4500N C	0.02
Orthophosphate (P)	mg/L	BRN WOP-00235 R3.0, SM 4500 PF (Konelab)	0.001
Total Phosphorus (P)	mg/L	BRN WOP-00236 R4.0, SM 4500	0.002
Calcium	mg/L	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.05
Magnesium	mg/L	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.05
Potassium	mg/L	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.05
Sodium	mg/L	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.05
Sulphur	mg/L	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.05
Aluminium	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.2
Antimony	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.02
Arsenic	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.02
Barium	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.02
Beryllium	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.01
Bismuth	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.005
Boron	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	50
Cadmium	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.005
Chromium	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.1
Cobalt	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.005
Copper	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.05
Iron	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	1
Lead	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.005
Lithium	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.5
Manganese	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.05
Molybdenum	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.05
Nickel	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.02
Selenium	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.04
Silicon	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	100
Silver	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.005
Stontium	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.05
Thallium	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.002
Tin	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.01
Titanium	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.5
Uranium	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.002
Vanadium	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.2
Zinc	μg/L	ICPMS Low Level (total), BRN SOP-00206, Based on EPA 200.8	0.1

* RDL = Reportable Detection Limit, calculated using raw data.

Appendix III-B Analytical Methods and Detection Limits: Biological Tissue Samples

Variable	Units	Analytical Method (Maxxam Analytics Inc., Burnaby, B.C.)	RDL *
Moisture	%	BRN SOP-00321 R3.0, Ont MOE -E 3139	0.3
Aluminium	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	1
Antimony	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.1
Arsenic	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.01
Barium	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.1
Beryllium	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.1
Bismuth	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.1
Boron	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	5
Cadmium	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.01
Calcium	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	10
Chromium	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.5
Cobalt	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.1
Copper	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.5
Iron	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	10
Lead	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.01
Magnesium	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	10
Manganese	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.1
Mercury	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.01
Molybdenum	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.1
Nickel	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.1
Phosphorus	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	10
Potassium	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	10
Selenium	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.01
Silver	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.05
Sodium	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	10
Strontium	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.1
Thallium	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.05
Tin	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.1
Titanium	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	1
Uranium	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.05
Vanadium	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	2
Zinc	mg/kg	CRC ICPMS (total), BRN SOP-00206, Based on EPA 200.8	0.1

* RDL = Reportable Detection Limit, calculated using raw data.

Note: the units "\mu g/g" and "mg/kg", whether wet weight or dry weight, are identical and can be used interchangeably.

Appendix IV Quality Assurance/Quality Control

Maxxam Analytics' QC criteria for water samples are as follows:

Matrix spikes and spikes	75 to 125% recovery
Blanks	< Reportable Detection Limit (RDL) (0.04 µg/L for total Se)
Duplicates	< 25% Relative Percent Difference (RPD)

Maxxam includes the batch QC results with each certificate of analysis. These documents are not included in this report but can be obtained from the BC Environmental Protection office in Nelson, BC.

In the eight QA batches for the seven certificates of analysis for water sample analyses, the total Se QC criteria (listed above) were met in all the spikes, matrix spikes, and blanks. In four of the batches, the RPD for the duplicates was reported as "non-calculable", meaning that analyte concentrations in both the sample and duplicate were less than 5 times the RDL. In the other four batches, the duplicate QC criteria were met.

Maxxam Analytics' QC criteria for the biological tissue samples are as follows:

Matrix spikes, spikes and QC standards	75 to 125% recovery
Blanks	< RDL (0.01 µg/g wet wt. for Se)
Duplicates	< 35% RPD

Batch QA for Se in the three zooplankton tissue certificates of analysis were all within QC limits. The Se batch QA for the seventeen fish tissue certificates of analysis were all within QC limits, except for four blanks, which all reported concentrations of $0.02 \ \mu g \ Se/g \ ww$.

Field QA/QC for water sampling included taking one duplicate sample at the Elk River site plus a field blank, and an equipment blank on the Van Dorn sampler. The field blank involved filling the standard sample bottles with de-ionized water prior to field deployment, transporting them into the field along with the regular samples, opening the lid for 10 seconds at the site, and shipping along with the regular samples. The purpose of the field blank was to confirm that there was no contamination introduced from the sample bottles, transport, or sampling handling procedures. The Van Dorn sampler blank involved adding de-ionized water to the Van Dorn bottle, after rinsing with same, then drawing samples in the same fashion as regular sampling, with the intention of detecting any contamination introduced from the Van Dorn sampler itself. Duplicate samples were taken from the Van Dorn sampler sequentially.

Results of the water sampling field QA/QC are listed in Table IV-1. Based on the same duplicate and blank QC criteria as those employed by Maxxam Analytics (± 25% RPD and < RDL), all field QA/QC total Se samples were within control limits.

Variable	Units	E272044 1m (Repl #1)	Duplicate	RPD (%)	Field Blank	Van Dorn Blank
рН		8.3	8.4	1.2	5.7	6.4
Total Hardness	mg/L	98.9	109	9.3	<0.5	<0.5
Total Suspended Solids	mg/L	<4	<4	n/a	<4	<4
Total Dissolved Solids	mg/L	130	130	0.0	<10	<10
Total Alkalinity	mg/L	98	98	0.0	<0.5	0.9
Sulphate : Diss	mg/L	18	19	5.3	<0.5	<0.5
Chloride: Diss	mg/L	1.9	1.9	0.0	<0.5	<0.5
Ammonia (N)	mg/L	<0.005	<0.005	n/a	< 0.005	<0.005
Nitrite (N)	mg/L	0.009	<0.002	n/a	<0.002	<0.002
Nitrate (N)	mg/L	0.069	0.077	10.4	<0.002	0.003
Total Organic Nitrogen (N)	mg/L	0.06	0.06	0.0	0.06	<0.02
Total Nitrogen (N)	mg/L	0.14	0.14	0.0	0.06	<0.02
Orthophosphate (P)	mg/L	0.002	0.002	0.0	0.001	<0.001
Total Phosphorus (P)	mg/L	0.005	0.005	0.0	0.002	<0.002
Total Metals by ICPMS						
Calcium	mg/L	27.2	30.0	9.3	< 0.05	0.05
Magnesium	mg/L	7.50	8.29	9.5	<0.05	<0.05
Potassium	mg/L	0.37	0.41	9.8	<0.05	<0.05
Sodium	mg/L	1.96	2.10	6.7	< 0.05	<0.05
Sulphur	mg/L	8	8	0.0	<3	<3
Aluminium	μg/L	5.9	6.5	9.2	<0.2	1.3
Antimony	μg/L	0.05	0.05	0.0	<0.02	<0.02
Arsenic	μg/L	0.30	0.29	3.4	<0.02	<0.02
Barium	μg/L	34.3	37.5	8.5	<0.02	0.07
Beryllium	μg/L	<0.01	<0.01	n/a	<0.01	<0.01
Bismuth	μg/L	<0.005	<0.005	n/a	<0.005	< 0.005
Boron	μg/L	<50	<50	n/a	<50	<50
Cadmium	μg/L	0.013	0.019	30.0	<0.005	<0.005
Chromium	μg/L	<0.1	<0.1	n/a	<0.1	<0.1
Cobalt	μg/L	0.018	0.024	25.0	<0.005	<0.005
Copper	μg/L	0.32	0.44	27.3	<0.05	0.16
Iron	μg/L	3	4	25.0	<1	<1
Lead	μg/L	0.089	0.146	39.0	<0.005	0.042
Lithium	μg/L	1.6	1.6	0.0	<0.5	<0.5
Manganese	μg/L	0.75	0.87	13.8	<0.05	<0.05
Molybdenum	μg/L	0.61	0.63	3.2	<0.05	<0.05
Nickel	μg/L	1.24	2.50	50.4	<0.02	0.44
Selenium	μg/L	0.90	0.82	9.8	<0.04	<0.04
Silicon	μg/L	1620	1640	1.2	<100	<100
Silver	μg/L	<0.005	<0.005	n/a	<0.005	<0.005
Stontium	μg/L	98.4	107	8.0	<0.05	<0.05
Thallium	μg/L	0.003	0.004	25.0	<0.002	<0.002
Tin	μg/L	<0.01	<0.01	n/a	<0.01	<0.01
Titanium	μg/L	<0.5	0.5	n/a	<0.5	<0.5
Uranium	μg/L	0.556	0.589	5.6	<0.002	<0.002
Vanadium	μg/L	<0.2	<0.2	n/a	<0.2	<0.2
Zinc	μg/L	2.1	3.3	36.4	<0.1	2.8

Table IV-1. Field QA for Water Samples

Exceeds RPD criteria of ± 25% or exceeds Reportable Detection Limit in Blanks

Field QA/QC for biological tissues consisted of duplicate samples for fish axial muscle and ovary intended to evaluate sampling, processing, plus analytical error, for a given analyte. Duplicate axial muscle samples consisted of one sample from either side of the same fish. Duplicate ovary samples consisted of splitting the egg mass in half. No zooplankton duplicates were done in this survey.

Fish tissue field duplicate results are listed in Table IV-2. Based on the same duplicate QC criterion that were employed by Maxxam Analytics (i.e., \pm 25% RPD), all fish tissue Se duplicate samples were within control limits.

		C	Canadian Rea	ich (E272043)		Un	ited States R	each (E273984)		Uni	ited States R	each (E273984)	
		Fish No. (ti	ssue)	Fish No. (ti	ssue)	Fish No. (ti	ssue)	Fish No. (t	issue)	Fish No. (ti	ssue)	Fish No. (ti	ssue)
Variable	Units	KO-10 (muscle)	Duplicate	KO-10 (ovary)	Duplicate	KO-40 (muscle)	Duplicate	KO-40 (ovary)	Duplicate	PCC-10 (muscle)	Duplicate	PCC-10 (ovary)	Duplicate
Moisture	%	78	78	58	62	84	82	63	61	81	81	No result	67
Total Metals by ICPMS													
Aluminium	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	<1
Antimony	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arsenic	mg/kg	0.03	0.03	0.04	0.04	0.03	0.03	0.03	0.03	0.06	0.06	0.08	0.10
Barium	mg/kg	<0.1	<0.1	0.2	0.2	<0.1	<0.1	0.2	0.2	0.9	0.7	1.0	1.0
Beryllium	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bismuth	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Boron	mg/kg	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Cadmium	mg/kg	<0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	0.03	0.02
Calcium	mg/kg	141	123	510	503	74	108	471	481	759	247	101	128
Chromium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Copper	mg/kg	0.7	0.5	13.6	14.3	0.8	0.6	10.1	11.0	<0.5	0.6	1.4	1.4
Iron	mg/kg	<10	<10	23	21	<10	<10	17	17	<10	10	33	34
Lead	mg/kg	<0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01
Magnesium	mg/kg	257	252	580	580	233	210	468	489	310	263	293	307
Manganese	mg/kg	<0.1	<0.1	1.2	1.2	<0.1	<0.1	0.8	0.8	0.3	0.2	1.6	1.8
Mercury	mg/kg	0.05	0.05	0.01	0.01	0.05	0.04	<0.01	< 0.01	0.18	0.17	0.02	0.01
Molybdenum	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	0.2	0.2	0.2	0.2	0.1	0.2	0.1	0.2	0.2	0.1	<0.1	0.2
Phosphorus	mg/kg	2500	2340	4280	4400	2360	2220	3990	4050	2560	2150	4740	5010
Potassium	mg/kg	3680	3520	2750	2800	3500	3260	3060	3130	3800	3560	2720	2770
Selenium	mg/kg	0.42	0.43	1.62	1.48	0.38	0.35	1.31	1.28	0.53	0.56	3.38	3.49
Silver	mg/kg	<0.05	<0.05	<0.05	0.06	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Sodium	mg/kg	686	590	705	675	784	821	837	894	498	516	541	568
Strontium	mg/kg	<0.1	<0.1	0.7	0.7	<0.1	<0.1	0.7	0.7	0.9	0.2	0.1	0.2
Thallium	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Tin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Vanadium	mg/kg	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc	mg/kg	8.7	6.4	39.7	36.9	8.4	7.0	27.6	28.9	8.3	10.5	29.0	28.8

Table IV-2. Field QA for Fish Samples

Exceeds RPD criteria of ± 25%

Appendix V

Water Data

APPENDIX V-A

Water Data: Kikomun Bridge

Site Average 8.3 108 4 142 94 22 2.7 <0.005 0.002 0.042 0.06 0.11 0.002 0.004 0.004 0.004 0.004 0.004
8.3 108 4 142 94 22 2.7 <0.005 0.002 0.042 0.06 0.11 0.002 0.004 29.4 8.38 0.41
108 4 142 94 22 2.7 <0.005 0.002 0.042 0.06 0.11 0.002 0.004 29.4 8.38 0.41
4 142 94 22 2.7 <0.005 0.002 0.042 0.06 0.11 0.002 0.004 29.4 8.38 0.41
142 94 22 2.7 <0.005 0.002 0.042 0.06 0.11 0.002 0.004 29.4 8.38 0.41
94 22 2.7 <0.005 0.002 0.042 0.06 0.11 0.002 0.004 29.4 8.38 0.41
22 2.7 <0.005 0.002 0.042 0.06 0.11 0.002 0.004 29.4 8.38 0.41
2.7 <0.005 0.002 0.042 0.06 0.11 0.002 0.004 29.4 8.38 0.41
<0.005 0.002 0.042 0.06 0.11 0.002 0.004 29.4 8.38 0.41
0.002 0.042 0.06 0.11 0.002 0.004 29.4 8.38 0.41
0.042 0.06 0.11 0.002 0.004 29.4 8.38 0.41
0.06 0.11 0.002 0.004 29.4 8.38 0.41
0.11 0.002 0.004 29.4 8.38 0.41
0.002 0.004 29.4 8.38 0.41
0.004 29.4 8.38 0.41
29.4 8.38 0.41
8.38 0.41
8.38 0.41
8.38 0.41
0.41
-
1
2.92
8
14.9
0.03
0.33
29.0
< 0.01
<0.005
<50
0.040
0.2
0.036
0.47
15
0.191
1.1
2.29
0.67
4.39
0.11
1842
<0.005
118
0.003
< 0.01
<0.5
0.609
<0.2
5.2
5

APPENDIX V-B

Water Data: Elk River

		Repli	cate 1	Replie	cate 2	Repli	cate 3	Repli	cate 4	Repli	cate 5			C ¹¹
Sample	Time	06/08/20	008 14:45	07/08/2	008 9:15	07/08/20	008 10:15	07/08/20	008 11:00	07/08/20	008 11:45	Surface	Bottom	Site
Variable	Units	1 m	3m	1 m		1 m	3m	1 m	3.5m	1 m	7m	Average	Average	Average
рН		8.3	8.3	8.4		8.3	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4
Total Hardness	mg/L	98.9	118	114		110	136	102	125	106	115	106	124	114
Total Suspended Solids	mg/L	<4	<4	<4		<4	5	<4	<4	<4	<4	<4	<4	<4
Total Dissolved Solids	mg/L	130	150	130		140	180	130	140	120	160	130	158	142
Total Alkalinity	mg/L	98	110	100		99	120	96	110	97	100	98	110	103
Sulphate : Diss	mg/L	18	25	21		20	29	19	25	19	22	19	25	22
Chloride: Diss	mg/L	1.9	1.8	1.9		1.7	1.5	2.0	1.5	1.7	1.6	1.8	1.6	1.7
Ammonia (N)	mg/L	< 0.005	<0.005	0.021		0.030	< 0.005	0.012	0.007	0.008	0.010	0.015	0.007	0.016
Nitrite (N)	mg/L	0.009	0.002	0.003		0.002	0.002	0.002	0.002	< 0.002	0.002	0.002	0.002	0.003
Nitrate (N)	mg/L	0.069	0.181	0.096	м	0.094	0.350	0.059	0.213	0.041	0.159	0.072	0.226	0.140
Total Organic Nitrogen (N)	mg/L	0.06	0.10	0.06	allo	0.03	0.03	0.06	0.03	0.06	0.05	0.05	0.05	0.05
Total Nitrogen (N)	mg/L	0.14	0.29	0.18	al	0.15	0.38	0.13	0.25	0.11	0.22	0.14	0.29	0.21
Orthophosphate (P)	mg/L	0.002	0.005	< 0.001	ЧS	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	0.002	0.003
Total Phosphorus (P)	mg/L	0.005	0.009	0.003	0	0.005	0.003	0.003	0.003	0.002	<0.002	0.004	0.004	0.004
,	0,				0									
Total Metals by ICPMS					Т									
Calcium	mg/L	27.2	32.1	31.2	e,	30.3	37.1	28.0	34.3	29.1	31.4	29.2	33.7	31.2
Magnesium	mg/L	7.50	9.07	8.64	pl	8.38	10.50	7.88	9.61	8.05	8.89	8.09	9.52	8.72
Potassium	mg/L	0.37	0.41	0.41	n	0.40	0.43	0.40	0.42	0.40	0.40	0.40	0.42	0.40
Sodium	mg/L	1.96	2.05	2.15	Sa	2.09	1.90	2.11	2.05	2.18	2.10	2.10	2.03	2.07
Sulphur	mg/L	8	9	8		8	11	7	9	7	9	8	10	8
Aluminium	μg/L	5.9	6.3	7.2	°N	5.3	7.9	5.9	6.1	7.5	7.9	6.4	7.1	6.7
Antimony	μg/L	0.05	0.05	0.04		0.04	0.05	0.04	0.05	0.04	0.04	0.04	0.05	0.04
Arsenic	μg/L	0.30	0.31	0.29		0.29	0.28	0.26	0.28	0.29	0.28	0.29	0.29	0.29
Barium	μg/L	34.3	41.9	39.2		37.7	54.7	35.3	46.8	34.1	41.9	36.1	46.3	40.7
Beryllium	μg/L	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01
Bismuth	μg/L	< 0.005	<0.005	<0.005		< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005
Boron	μg/L	<50	<50	<50		<50	<50	<50	<50	<50	<50	<50	<50	<50
Cadmium	μg/L	0.013	0.016	0.025		0.014	0.025	0.019	0.025	0.016	0.017	0.017	0.021	0.019
Chromium	μg/L	<0.1	<0.1	<0.1		<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Cobalt	μg/L	0.018	0.020	0.025		0.017	0.023	0.019	0.019	0.020	0.021	0.020	0.021	0.020
Copper	μg/L	0.32	0.32	0.36		0.36	0.34	0.58	0.47	0.49	0.36	0.42	0.37	0.40
Iron	μg/L	3	8	5		4	12	4	9	5	7	4	9	6
Lead	μg/L	0.089	0.055	0.060		0.051	0.059	0.060	0.062	0.059	0.049	0.064	0.056	0.060
Lithium	μg/L	1.6	2.1	1.7		1.7	3.2	1.5	2.5	1.4	2.0	1.6	2.5	2.0
Manganese	μg/L	0.75	1.70	1.05		0.78	2.73	0.72	1.41	0.76	1.47	0.81	1.83	1.26
Molybdenum	μg/L	0.61	0.68	0.65		0.65	0.85	0.60	0.75	0.62	0.69	0.63	0.74	0.68
Nickel	μg/L	1.24	0.67	1.02		0.61	0.81	0.77	0.70	0.82	0.42	0.89	0.65	0.78
Selenium	µg/L	0.90	1.62	0.96		0.99	2.73	0.72	2.16	0.58	1.32	0.83	1.96	1.33
Silicon	μg/L	1620	1920	1510		1480	1700	1400	1970	1440	1600	1490	1798	1627
Silver	μg/L	< 0.005	<0.005	<0.005		< 0.005	0.005	< 0.005	<0.005	0.005	<0.005	< 0.005	< 0.005	<0.005
Stontium	μg/L	98	109	110		107	127	105	120	106	113	105	117	111
Thallium	μg/L	0.003	0.004	0.003		0.003	0.004	0.002	0.003	0.003	0.003	0.003	0.004	0.003
Tin	μg/L	<0.01	<0.01	<0.01		<0.01	< 0.01	0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01
Titanium	μg/L	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
Uranium	μg/L	0.556	0.596	0.560		0.543	0.637	0.533	0.652	0.538	0.570	0.546	0.6	0.576
Vanadium	μg/L	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc	μg/L	2.1	1.7	4.2		2.5	3.2	4.8	4.6	2.7	2.8	3.3	3.1	3.2

APPENDIX V-C

Water Data: Gold Creek

Sample dist: Algosi 6, 2008 Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5 Surface Replicate 7 Variable 1m 2m 10.45 11.3 12.15 13.3 13.3 13.3 Variable Nerrage Nerrage<
Variable Units 1 m 2 m 1 m 3 m 1 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 1 m 2 m 1 m 1 m 2 m 1 m <th< th=""></th<>
Total Hardness mg/L 115 110 99.8 114 98.5 110 98 104 97.4 115 102 111 100 Total Suspended Solids mg/L 140 130 130 130 130 130 140 126 136 133 140 126 136 133 140 126 136 133 140 126 136 133 140 126 136 133 140 126 136 133 140 126 136 133 140 126 136 133 140 177 18 13< 18 17 18 138 17 18 131 111 100 111 100 103 140 120 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 1020 0.002 0.002 0.002 0.002 0.002
Total Suspended Solids mg/L c.4 4 4.4 c.4 c
Total Dissolved Solids mg/L 140 130 140 120 140 120 140 120 130 130 140 126 136 131 Total Akalainity mg/L 17 17 17 18 21 18 19 17 17 18 13 18 17 18 Chloride: Diss mg/L 2 2.2 1.9 2.2 1.8 1.8 12 1.6 2 8.7 1.9 3.3 2.6 Armonia (N) mg/L 0.002 <0.002
Total Dissolved Solids mg/L 140 130 140 120 140 120 130 130 130 126 136 131 Total Alkalinity mg/L 17 17 17 18 121 18 19 17 17 18 13 18 13 18 17 18 Chloride: Diss mg/L 2 2.2 1.9 2.2 1.8 1.8 2 1.6 2 8.7 1.9 3.3 2.6 Armonia (N) mg/L 0.002 0.003 0.014 0.02 0.03 0.011 0.22 0.03 0.022 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Total Aklainity mg/L 94 96 95 100 95 97 95 98 95 98 17 Sulphate : Diss mg/L 17 17 18 21 18 19 17 17 18 13 18 17 18 Chloride: Diss mg/L 2 2.2 1.9 2.2 1.8 1.8 1.8 2 1.6 2 8.7 1.9 3.3 2.6 Ammonia (N) mg/L 0.002 <0.002
Sulphate : Diss mg/L 17 17 18 19 17 18 13 18 17 18 Chloride: Diss mg/L 2.005 <0.005
Ammonia (N) mg/L <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.003 <0.11 <0.02 <0.002 <0.002 <0.002 <0.003 <0.11 <0.22 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002<
Ammonia (N) mg/L <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.003 <0.11 <0.02 <0.003 <0.12 <0.038 <0.24 <0.039 <0.11 <0.27 <0.13 Total Organic Nitrogen (N) mg/L 0.002 0.003 0.002 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002<
Nitrate (N) mg/L 0.04 0.236 0.039 0.175 0.037 0.253 0.038 0.24 0.039 0.244 0.039 0.230 0.13 Total Organic Nitrogen (N) mg/L 0.09 0.03 0.11 0.02 0.05 0.04 0.07 0.03 0.06 0.07 0.44 0.03 Total Nitrogen (N) mg/L 0.022 0.004 0.004
Total Organic Nitrogen (N) mg/L 0.09 0.03 0.1 0.02 0.05 0.04 0.07 0.04 0.03 0.06 0.07 0.04 0.03 0.06 0.07 0.04 0.03 0.06 0.07 0.04 0.03 0.01 0.03 0.01 0.02 0.03 0.01 0.02 0.002 </td
Total Organic Nitrogen (N) mg/L 0.09 0.03 0.1 0.02 0.05 0.04 0.07 0.04 0.03 0.06 0.07 0.04 0.03 0.06 0.07 0.04 0.03 0.06 0.07 0.04 0.03 0.01 0.03 0.01 0.02 0.03 0.01 0.02 0.002 </td
Total Nirrogen (N) mg/L 0.13 0.26 0.14 0.21 0.09 0.3 0.12 0.28 0.07 0.3 0.11 0.27 0.13 Orthophosphate (P) mg/L 0.002 0.003 0.002 0.002 0.003 0.002 0.001 0.002 0.001 0.002 0.002 0.003 0.002 0.001 0.002 0.001 0.002 0.002 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0
Orthophosphate (P) mg/L 0.002 0.003 0.002 0.002 0.003 0.002 0.001 0.002 0.002 0.003 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.003 0.004 0.003 0.002 0.001 0.002
Total Phosphorus (P) mg/L 0.003 0.004 0.005 0.004 0.005 0.005 0.003 0.004 0.003 0.004 0.001 0.018 0.311 </td
Total Metals by ICPMS mg/L 31.7 30.9 27.5 31.2 27.1 30.5 27.0 28.8 26.8 32.1 28.0 30.7 29.4 Magnesium mg/L 8.71 8.12 7.53 8.79 7.50 8.25 7.43 7.83 7.43 8.42 7.72 8.28 0.42 0.39 0.44 0.45 0.40 0.38 0.42 0.39 0.38 0.37 0.42 0.39 0.41 0.45 0.40 0.38 0.42 0.39 0.38 0.37 0.42 0.39 0.41 0.44 0.49 0.41 0.44 0.49 0.41 0.44 0.49 0.41 0.44 0.49 0.41 0.44 0.49 0.41 0.44 0.49 0.41 1.49 9.3 6.6 18.3 8.5 13.1 7.3 15.3 9.2 14.6 11.5 Antimony µg/L 0.04 0.04 0.05 0.04 0.05 0.04 0.06 </td
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Magnesium mg/L 8.71 8.12 7.53 8.79 7.50 8.25 7.43 7.83 7.43 8.42 7.72 8.28 8.00 Potassium mg/L 0.45 0.40 0.38 0.41 0.38 0.42 0.39 0.38 0.37 0.42 0.39 0.41 0.44 Sodium mg/L 2.24 1.92 2.03 2.27 1.99 2.06 1.96 1.79 1.95 1.93 2.03 1.99 2.05 Sulphur mg/L 7 7 7 9 7
Potassium mg/L 0.45 0.40 0.38 0.41 0.38 0.42 0.39 0.38 0.37 0.42 0.39 0.41 0.44 Sodium mg/L 2.24 1.92 2.03 2.27 1.99 2.06 1.96 1.79 1.95 1.93 2.03 1.99 2.05 Sulphur mg/L 7 7 7 9 7 <
Sodium mg/L 2.24 1.92 2.03 2.27 1.99 2.06 1.96 1.79 1.93 1.93 2.03 1.99 2.05 Sulphur mg/L 7
Sulphur mg/L 7
Aluminium µg/L 8.8 17.0 14.9 9.3 6.6 18.3 8.5 13.1 7.3 15.3 9.2 14.6 11.4 Antimony µg/L 0.04 0.04 0.05 0.04 0.06 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.06 0.04 0.05 0.04 0.06 0.04 0.05 0.04 0.06 0.04 0.05 0.04 0.05 0.04 0.06 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.01 <0.01
Antimony μg/L 0.04 0.04 0.05 0.04 0.06 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.05 0.04 0.05 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.06 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.05 Barium μg/L 38.6 38.9 33.8 39.0 33.6 41.7 33.7 37.0 33.8 40.9 34.7 39.5 37.7 Beryllium μg/L <0.015 <0.015 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <th< td=""></th<>
Antimony μg/L 0.04 0.04 0.05 0.04 0.06 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.05 0.04 0.05 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.06 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.05 Barium μg/L 38.6 38.9 33.8 39.0 33.6 41.7 33.7 37.0 33.8 40.9 34.7 39.5 37.7 Beryllium μg/L <0.015 <0.015 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <th< td=""></th<>
Barium μg/L 38.6 38.9 33.8 39.0 33.6 41.7 33.7 37.0 33.8 40.9 34.7 39.5 37.1 Beryllium μg/L <0.01
Beryllium μg/L <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <
Bismuth μg/L <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005<
Bismuth μg/L <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005<
Cadmium µg/L 0.021 0.035 0.024 0.026 0.011 0.024 0.014 0.007 0.033 0.015 0.026 0.02 Chromium µg/L 0.1 <0.1 0.1 0.6 <0.1 1.3 <0.1 0.5 0.1 0.33 Cobalt µg/L 0.024 0.028 0.021 0.019 0.023 0.019 0.020 0.020 0.026 0.021 0.024 0.02 Copper µg/L 0.49 0.41 0.42 0.41 0.38 0.49 0.53 0.43 0.51 0.43 0.47 0.43 0.43
Chromium µg/L 0.1 <0.1 0.2 0.2 0.1 0.1 0.6 <0.1 1.3 <0.1 0.5 0.1 0.3 Cobalt µg/L 0.024 0.028 0.021 0.021 0.019 0.023 0.019 0.020 0.020 0.026 0.021 0.024 0.02 Copper µg/L 0.49 0.41 0.42 0.41 0.38 0.49 0.53 0.43 0.51 0.43 0.47 0.43 0.43
Cobalt μg/L 0.024 0.028 0.021 0.019 0.023 0.019 0.020 0.020 0.026 0.021 0.024 0.02 Copper μg/L 0.49 0.41 0.42 0.41 0.38 0.49 0.53 0.43 0.51 0.43 0.47 0.43 0.47
Cobalt µg/L 0.024 0.028 0.021 0.019 0.023 0.019 0.020 0.020 0.026 0.021 0.024 0.02 Copper µg/L 0.49 0.41 0.42 0.41 0.38 0.49 0.53 0.43 0.51 0.43 0.47 0.43 0.43
lron ug/L 3 16 7 8 3 13 4 9 3 15 4 12 8
Lead µg/L 0.132 0.142 0.055 0.087 0.043 0.090 0.062 0.052 0.077 0.078 0.074 0.090 0.08
Lithium µg/L 1.5 1.6 1.4 1.9 1.3 1.8 1.4 1.6 1.4 1.7 1.4 1.7 1.6
Manganese µg/L 0.73 2.46 1.31 1.77 0.65 2.00 0.68 1.14 0.80 2.20 0.83 1.91 1.33
Molybdenum µg/L 0.60 0.59 0.58 0.73 0.58 0.66 0.58 0.59 0.58 0.64 0.58 0.64 0.58 0.64
Nickel µg/L 1.92 1.60 0.83 2.62 0.57 0.88 0.59 0.99 0.57 1.24 0.90 1.47 1.18
Selenium µg/L 0.66 0.91 0.72 0.93 0.71 0.96 0.84 1.02 0.70 0.95 0.73 0.95 0.84
Silicon µg/L 1500 1980 1500 1850 1520 2290 1760 2270 1510 2310 1558 2140 184
Silver μg/L <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.0
Stontium µg/L 107.0 102.0 95.6 116.0 94.9 107.0 94.9 95.9 97.3 107.0 97.9 105.6 101.
Thallium µg/L 0.003 0.004 0.002 0.005 0.003 0.004 0.002 0.004 0.003 0.004 0.003 0.004 0.003
Tin µg/L <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.
Titanium µg/L <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Uranium µg/L 0.626 0.592 0.580 0.615 0.562 0.619 0.559 0.556 0.569 0.607 0.579 0.598 0.58
Vanadium µg/L <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
Zinc µg/L 3.6 5.9 2.9 3.7 1.1 4.0 1.3 2.1 1.9 7.4 2.2 4.6 3.4

APPENDIX VI-A

Total Selenium in Water: Two-Way ANOVA

	Water Co	olumn Total	Se (ug/L)
Depth	Kikomun	Elk River	Gold Cr
surface	0.12	0.90	0.66
surface	0.12	0.96	0.72
surface	0.13	0.99	0.71
surface	0.12	0.72	0.84
surface	0.13	0.58	0.70
bottom	0.09	1.62	0.91
bottom	0.09	2.50	0.93
bottom	0.09	2.73	0.96
bottom	0.09	2.16	1.02
bottom	0.09	1.32	0.95

(Missing result, estimated value added to balance ANOVA)

Test	Compara Gray	ups - 2-way ANG			🛯 🖣 Ana	lyse-it v2.12
Test	Compare Grou	1ps - 2-way And	UVA			
	Data by Sites, I	Depth				
Performed by	Les				Date	23 October 2008
	_					
n	30					
01					00	
Sites	n	Mean	SE	Pooled SE	SD	
Kikomun	10	0.107	0.0058	0.0801	0.018	
Elk River	10	1.448	0.2435	0.0801	0.770	
Gold Cr	10	0.840	0.0415	0.0801	0.131	
Depth		Mean	SE	Pooled SE	SD	
Depin						
surface	15	0.560	0.0871	0.0654	0.337	
bottom	15	1.037	0.2311	0.0654	0.895	
Source of variation	Sum squares	DF	Mean square	F statistic	Critical F	р
Sites	9.017	2	4.509	70.23	3.40	<0.0001
Depth	1.704	1	1.704	26.54	4.20	<0.0001
Sites × Depth		2	1.124	17.51	3.40	<0.0001
Residual	1.541	24	0.064			
Total	14.510	29				

APPENDIX VI-B

Total Selenium in Water: One-Way ANOVA

Water Co	olumn Total	Se (ug/L)
Kikomun	Elk River	Gold Cr
0.12	0.90	0.66
0.12	0.96	0.72
0.13	0.99	0.71
0.12	0.72	0.84
0.13	0.58	0.70
0.09	1.62	0.91
0.09	2.73	0.93
0.09	2.16	0.96
0.09	1.32	1.02
0.09		0.95

Test	Compare Grou	ps - 1-way ANO	VA		• ~ Ana	lyse-it	v2.
Performed by	Groups: Kikomu Les				Date	19 December 2	:008
n	29						
		l	I	1	l		
Groups	n	Mean	SE	Pooled SE	SD		
Kikomun	10	0.107	0.0058	0.1281	0.018	•	
Elk River	9	1.331	0.2388	0.1350	0.716		
Gold Cr	10	0.840	0.0415	0.1281	0.131		
Source of variation	Sum squares	DF	Mean square	F statistic	Critical F	р	_
Groups	7.252	2	3.626	22.11	3.40	<0.0001	
Residual	4.263	26	0.164				
Total	11.515	28					
Tukey							
Contrast	Difference	95%	% CI				
Kikomun v Elk River	-1.224	-1.686	to -0.762	(significant)			
Kikomun v Gold Cr	-0.733	-1.183	to -0.283	(significant)			
Elk River v Gold Cr	0.491	0.029	to 0.953	(significant)			

Site	Depth (m)	Temperature (°C)	Conductivity (µS/cm)	DO (mg/L)	Cl a (ug/L)
Kikomun					
1B	1	18.78	219	9.84	0.42
1B	8	15.51	227	9.94	0.78
1A	1	18.90	219	9.86	0.40
1A	8	15.34	227	9.95	0.59
1C	1	18.79	219	9.95	0.39
1C	6	16.38	223	9.45	1.21
1D					
1D					
1E	1	19.11	219	9.86	0.47
1E	7	15.86	226	10.03	1.03
Gold Cre	ek				
3-1	1	20.40	211	9.31	0.85
3-1	23	10.76	211	8.49	0.83
3-2	1	20.58	211	9.21	0.95
3-2	14	16.69	235	8.15	1.07
3-3	1	20.38	212	9.23	0.84
3-3	30	9.46	220	8.19	0.72
3-4	1	20.24	212	9.34	0.49
3-4	25	10.42	211	8.57	0.60
3-5	1	20.78	212	9.26	0.79
3-5	25	10.52	213	8.04	0.75
Elk River	•				
2-1	1	20.96	221	9.11	0.45
2-1	3	19.47	246	9.30	0.50
2-2	1	19.10	271	9.07	0.74
2-3	1	20.15	241	9.29	0.86
2-3	3	18.62	261	9.04	0.72
2-4	1	20.89	217	9.35	0.99
2-4	3.5	19.77	250	9.38	0.72
2-5	1	20.44	215	9.56	0.71
2-5	7	19.01	229	9.50	0.95

Appen	dix VII	Hydrolab	Profile Data

APPENDIX VIII-A

Net Zooplankton Data: Kikomun Bridge

Wet Weights		Replicate 1	Replicate 2	Replicate 3	Replicate 4	Replicate 5
Samp	Sample Time		11:45	12:45	13:45	14:30
Variable	Units					
Moisture	%	89	90	93	85	90
Total Metals by ICPMS						
Aluminium	mg/kg	31	65	28	46	19
Antimony	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arsenic	mg/kg	0.28	0.29	0.19	0.41	0.23
Barium	mg/kg	3.4	3.6	2.9	2.8	2.7
Beryllium	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bismuth	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Boron	mg/kg	<5	<5	<5	<5	<5
Cadmium	mg/kg	0.09	0.07	0.05	0.09	0.08
Calcium	mg/kg	5430	5770	5080	3800	4120
Chromium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt	mg/kg	0.1	0.1	<0.1	0.1	<0.1
Copper	mg/kg	1.0	0.8	0.6	1.1	0.8
Iron	mg/kg	59	118	52	120	41
Lead	mg/kg	0.08	0.11	0.05	0.16	0.06
Magnesium	mg/kg	203	231	151	243	164
Manganese	mg/kg	6.9	7.7	5.0	7.9	5.9
Mercury	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
Molybdenum	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	0.4	0.4	0.2	0.4	0.1
Phosphorus	mg/kg	1970	1850	1610	1990	1820
Potassium	mg/kg	1150	873	623	1110	907
Selenium	mg/kg	0.36	0.29	0.19	0.37	0.31
Silver	mg/kg	<0.05	<0.05	<0.05	<0.05	< 0.05
Sodium	mg/kg	687	554	407	525	579
Strontium	mg/kg	12.2	13.1	11.4	8.3	9.2
Thallium	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Tin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	mg/kg	<1	1	<1	1	<1
Uranium	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Vanadium	mg/kg	<2	<2	<2	<2	<2
Zinc	mg/kg	9.3	8.1	5.9	9.6	8.9

Dry Weights	Dry Weights		Replicate 2	Replicate 3	Replicate 4	Replicate 5
Samp	le Time	10:10	11:45	12:45	13:45	14:30
Variable	Units					
Total Metals by ICPMS						
Aluminium	mg/kg	282	650	400	307	190
Antimony	mg/kg					
Arsenic	mg/kg	2.55	2.90	2.71	2.73	2.30
Barium	mg/kg	30.9	36.0	41.4	18.7	27.0
Beryllium	mg/kg					
Bismuth	mg/kg					
Boron	mg/kg					
Cadmium	mg/kg	0.82	0.70	0.71	0.60	0.80
Calcium	mg/kg	49364	57700	72571	25333	41200
Chromium	mg/kg					
Cobalt	mg/kg					
Copper	mg/kg	9.1	8.0	8.6	7.3	8.0
Iron	mg/kg	536	1180	743	800	410
Lead	mg/kg	0.73	1.10	0.71	1.07	0.60
Magnesium	mg/kg	1845	2310	2157	1620	1640
Manganese	mg/kg	62.7	77.0	71.4	52.7	59.0
Mercury	mg/kg					
Molybdenum	mg/kg					
Nickel	mg/kg					
Phosphorus	mg/kg	17909	18500	23000	13267	18200
Potassium	mg/kg	10455	8730	8900	7400	9070
Selenium	mg/kg	3.27	2.90	2.71	2.47	3.10
Silver	mg/kg					
Sodium	mg/kg	6245	5540	5814	3500	5790
Strontium	mg/kg	110.9	131.0	162.9	55.3	92.0
Thallium	mg/kg					
Tin	mg/kg					
Titanium	mg/kg					
Uranium	mg/kg					
Vanadium	mg/kg					
Zinc	mg/kg	84.5	81.0	84.3	64.0	89.0

APPENDIX VIII-B

Net Zooplankton Data: Elk River

Wet Weights		Replicate 1	Replicate 2	Replicate 3	Replicate 4	Replicate 5
San	nple Time	14:45	9:15	10:15	11:00	11:45
Variable	Units					
Moisture	%	89	90	91	92	91
Total Metals by ICPMS						
Aluminium	mg/kg	11	9	6	7	17
Antimony	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arsenic	mg/kg	0.33	0.25	0.24	0.25	0.26
Barium	mg/kg	1.3	2.7	1.4	1.1	3.7
Beryllium	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bismuth	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Boron	mg/kg	<5	<5	<5	<5	<5
Cadmium	mg/kg	0.19	0.20	0.14	0.12	0.13
Calcium	mg/kg	976	1240	750	968	4800
Chromium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Copper	mg/kg	1.0	0.7	0.7	0.6	0.8
Iron	mg/kg	27	29	20	20	40
Lead	mg/kg	0.04	0.03	0.03	0.02	0.07
Magnesium	mg/kg	132	126	91	96	155
Manganese	mg/kg	5.6	3.8	3.4	2.7	5.9
Mercury	mg/kg	< 0.01	<0.01	<0.01	<0.01	<0.01
Molybdenum	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	0.1	<0.1	<0.1	<0.1	0.1
Phosphorus	mg/kg	1350	1310	1060	905	1950
Potassium	mg/kg	1200	993	1080	968	898
Selenium	mg/kg	0.35	0.34	0.27	0.24	0.33
Silver	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Sodium	mg/kg	737	613	664	651	642
Strontium	mg/kg	2.3	2.9	1.8	2.2	9.3
Thallium	mg/kg	< 0.05	<0.05	<0.05	<0.05	<0.05
Tin	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Titanium	mg/kg	<1	<1	<1	<1	<1
Uranium	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Vanadium	mg/kg	<2	<2	<2	<2	<2
Zinc	mg/kg	9.3	7.7	7.1	6.2	9.0

Dry Weights		Replicate 1	Replicate 2	Replicate 3	Replicate 4	Replicate 5
Samp	le Time	14:45	9:15	10:15	11:00	11:45
Variable	Units					
Total Metals by ICPMS						
Aluminium	mg/kg	100	90	67	88	189
Antimony	mg/kg					
Arsenic	mg/kg	3.00	2.50	2.67	3.13	2.89
Barium	mg/kg	11.8	27.0	15.6	13.8	41.1
Beryllium	mg/kg					
Bismuth	mg/kg					
Boron	mg/kg					
Cadmium	mg/kg	1.73	2.00	1.56	1.50	1.44
Calcium	mg/kg	8873	12400	8333	12100	53333
Chromium	mg/kg					
Cobalt	mg/kg					
Copper	mg/kg	9.1	7.0	7.8	7.5	8.9
Iron	mg/kg	245	290	222	250	444
Lead	mg/kg	0.36	0.30	0.33	0.25	0.78
Magnesium	mg/kg	1200	1260	1011	1200	1722
Manganese	mg/kg	50.9	38.0	37.8	33.8	65.6
Mercury	mg/kg					
Molybdenum	mg/kg					
Nickel	mg/kg					
Phosphorus	mg/kg	12273	13100	11778	11313	21667
Potassium	mg/kg	10909	9930	12000	12100	9978
Selenium	mg/kg	3.18	3.40	3.00	3.00	3.67
Silver	mg/kg					
Sodium	mg/kg	6700	6130	7378	8138	7133
Strontium	mg/kg	20.9	29.0	20.0	27.5	103.3
Thallium	mg/kg					
Tin	mg/kg					
Titanium	mg/kg					
Uranium	mg/kg					
Vanadium	mg/kg					
Zinc	mg/kg	84.5	77.0	78.9	77.5	100.0

APPENDIX VIII-C

Net Zooplankton Data: Gold Creek

Wet Weights		Replicate 1	Replicate 2	Replicate 3	Replicate 4	Replicate 5	5 Dry Weights		Replica
S	ample Time	9:30	10:45	11:30	12:15	13:30	Sam	ple Time	9:3
Variable	Units						Variable	Units	
Moisture	%	91	91	88	90	89			
Total Metals by ICPMS							Total Metals by ICPMS		
Aluminium	mg/kg	29	22	14	39	15	Aluminium	mg/kg	32
Antimony	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	Antimony	mg/kg	
Arsenic	mg/kg	0.26	0.24	0.32	0.28	0.32	Arsenic	mg/kg	2.8
Barium	mg/kg	2.3	2.7	3.1	2.5	2.8	Barium	mg/kg	25.
Beryllium	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	Beryllium	mg/kg	
Bismuth	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	Bismuth	mg/kg	
Boron	mg/kg	<5	<5	<5	<5	<5	Boron	mg/kg	
Cadmium	mg/kg	0.09	0.10	0.14	0.11	0.12	Cadmium	mg/kg	1.0
Calcium	mg/kg	2580	2840	4000	3290	3870	Calcium	mg/kg	286
Chromium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	Chromium	mg/kg	
Cobalt	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	Cobalt	mg/kg	
Copper	mg/kg	0.6	0.7	0.8	0.7	0.8	Copper	mg/kg	6.
Iron	mg/kg	49	36	31	72	31	Iron	mg/kg	54
Lead	mg/kg	0.05	0.03	0.04	0.52	0.04	Lead	mg/kg	0.5
Magnesium	mg/kg	135	134	168	186	163	Magnesium	mg/kg	150
Manganese	mg/kg	5.8	6.1	6.6	6.0	6.1	Manganese	mg/kg	64.
Mercury	mg/kg	< 0.01	< 0.01	<0.01	<0.01	<0.01	Mercury	mg/kg	
Molybdenum	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	Molybdenum	mg/kg	
Nickel	mg/kg	0.2	<0.1	0.2	0.2	0.1	Nickel	mg/kg	
Phosphorus	mg/kg	1360	1650	2200	1540	1800	Phosphorus	mg/kg	151
Potassium	mg/kg	810	789	1070	840	1060	Potassium	mg/kg	900
Selenium	mg/kg	0.26	0.27	0.41	0.29	0.37	Selenium	mg/kg	2.8
Silver	mg/kg	< 0.05	< 0.05	<0.05	<0.05	<0.05	Silver	mg/kg	
Sodium	mg/kg	536	462	653	528	691	Sodium	mg/kg	595
Strontium	mg/kg	5.3	5.8	8.0	6.4	7.9	Strontium	mg/kg	58.
Thallium	mg/kg	< 0.05	< 0.05	<0.05	<0.05	<0.05	Thallium	mg/kg	
Tin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	Tin	mg/kg	
Titanium	mg/kg	1	<1	<1	<1	<1	Titanium	mg/kg	
Uranium	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	Uranium	mg/kg	
Vanadium	mg/kg	<2	<2	<2	<2	<2	Vanadium	mg/kg	
Zinc	mg/kg	7.2	7.6	10.1	7.8	8.7	Zinc	mg/kg	80.

Dry Weights		Replicate 1	Replicate 2	Replicate 3	Replicate 4	Replicate 5
Samp	e Time	9:30	10:45	11:30	12:15	13:30
Variable	Units					
Total Metals by ICPMS						
Aluminium	mg/kg	322	244	117	390	136
Antimony	mg/kg					
Arsenic	mg/kg	2.89	2.67	2.67	2.80	2.91
Barium	mg/kg	25.6	30.0	25.8	25.0	25.5
Beryllium	mg/kg					
Bismuth	mg/kg					
Boron	mg/kg					
Cadmium	mg/kg	1.00	1.11	1.17	1.10	1.09
Calcium	mg/kg	28667	31556	33333	32900	35182
Chromium	mg/kg					
Cobalt	mg/kg					
Copper	mg/kg	6.7	7.8	6.7	7.0	7.3
Iron	mg/kg	544	400	258	720	282
Lead	mg/kg	0.56	0.33	0.33	5.20	0.36
Magnesium	mg/kg	1500	1489	1400	1860	1482
Manganese	mg/kg	64.4	67.8	55.0	60.0	55.5
Mercury	mg/kg					
Molybdenum	mg/kg					
Nickel	mg/kg					
Phosphorus	mg/kg	15111	18333	18333	15400	16364
Potassium	mg/kg	9000	8767	8917	8400	9636
Selenium	mg/kg	2.89	3.00	3.42	2.90	3.36
Silver	mg/kg					
Sodium	mg/kg	5956	5133	5442	5280	6282
Strontium	mg/kg	58.9	64.4	66.7	64.0	71.8
Thallium	mg/kg					
Tin	mg/kg					
Titanium	mg/kg					
Uranium	mg/kg					
Vanadium	mg/kg					
Zinc	mg/kg	80.0	84.4	84.2	78.0	79.1

APPENDIX IX Selenium in Net Zooplankton: One-Way ANOVA

(mg	Se/kg dry	wt.)
Kikomun	Elk River	Gold Cr
3.27	3.18	2.89
2.90	3.40	3.00
2.71	3.00	3.42
2.47	3.00	2.90
3.10	3.67	3.36

Test	Compare Group	s - 1-way ANOV/	4		• • A	nalyse-it [.] _{v2.12}
Performed by	Zooplankton (mg Les	Se/kg dry wL): Ki	ikomun, Elk River,	Gold Cr	Date	15 December 2008
n	15					
Zooplankton (mg Se/kg dry wt.)	n	Mean	SE	Pooled SE	SD	
Kikomun	5	2.890	0.1410	0.1284	0.315	
Elk River	5 5	3.250	0.1282 0.1147	0.1284 0.1284	0.287 0.256	
Gold Cr	5	3.114	0.1147	0.1204	0.230	
Source of variation	Sum squares	DF	Mean square	F statistic	р	
ooplankton (mg Se/kg dry wt.)	0.330	2	0.165	2.00	0.1774	
Residual	0.989	12	0.082			
Total	1.320	14	I			
Tukey						
Contrast	Difference	955	% CI			
Kikomun v Elk River	-0.360	-0.844	to 0.124	•		
Kikomun v Gold Cr	-0.224	-0.708	to 0.260			
Elk River v Gold Cr	0.136	-0.348	to 0.620			

APPENDIX X

FISH TISSUE ANALYSIS

Appendix X-A Kokanee Whole Body – Canadian Reach (Kikomun to Elk River)

Kokanee - Whole Bo	dy		Sample dat	e: Septemb	er 16, 2008		Sampled b	y: Montana	ı Fish, Wildli	ife & Parks											
					Wet W	/eights									Dry W	/eights					
Variable	Units	KO-01	KO-03	KO-05	KO-07	KO-09	KO-11	KO-13	KO-15	KO-17	KO-19	KO-01	KO-03	KO-05	KO-07	KO-09	KO-11	KO-13	KO-15	KO-17	KO-19
Moisture Total Metals by ICPMS	%	73	82	77	76	77	75	77	79	76	76										
Aluminium	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1										
Antimony	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1										
Arsenic	mg/kg	0.07	0.04	0.05	0.07	0.04	0.07	0.08	0.05	0.05	0.05	0.26	0.22	0.22	0.29	0.17	0.28	0.35	0.24	0.21	0.21
Barium	mg/kg	0.3	0.3	0.3	0.5	0.3	0.3	0.4	0.7	0.3	0.4	1.1	1.7	1.3	2.1	1.3	1.2	1.7	3.3	1.3	1.7
Beryllium	mg/kg	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1										
Bismuth	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1										
Boron	mg/kg	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5										
Cadmium	mg/kg	< 0.01	<0.01	<0.01	0.01	<0.01	<0.01	0.01	<0.01	< 0.01	<0.01										
Calcium	mg/kg	2390	2920	3510	4050	2800	2170	3580	6310	2130	5140	8852	16222	15261	16875	12174	8680	15565	30048	8875	21417
Chromium	mg/kg	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5										
Cobalt	mg/kg	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1										
Copper	mg/kg	1.8	1.5	2.2	2.6	2.6	3.5	2.1	2.5	2.7	2.8	6.7	8.3	9.6	10.8	11.3	14.0	9.1	11.9	11.3	11.7
Iron	mg/kg	15	17	17	14	15	15	16	19	14	17	56	94	74	58	65	60	70	90	58	71
Lead	mg/kg	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01										
Magnesium	mg/kg	326	255	277	354	298	324	303	334	312	370	1207	1417	1204	1475	1296	1296	1317	1590	1300	1542
Manganese	mg/kg	0.5	0.6	0.6	0.9	0.7	0.7	0.7	1.1	0.7	1.0	1.9	3.3	2.6	3.8	3.0	2.8	3.0	5.2	2.9	4.2
Mercury	mg/kg	0.02	0.03	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03										
Molybdenum	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1										
Nickel	mg/kg	0.2	0.4	0.2	0.2	0.1	0.2	0.2	0.5	0.1	0.2	0.7	2.2	0.9	0.8	0.4	0.8	0.9	2.4	0.4	0.8
Phosphorus	mg/kg	3880	3740	4480	4940	4030	3780	4670	5910	3810	5520	14370	20778	19478	20583	17522	15120	20304	28143	15875	23000
Potassium	mg/kg	3440	3140	3380	3450	3370	3230	3600	3230	3260	3440	12741	17444	14696	14375	14652	12920	15652	15381	13583	14333
Selenium	mg/kg	0.50	0.44	0.53	0.52	0.62	0.57	0.54	0.52	0.62	0.59	1.85	2.44	2.30	2.17	2.70	2.28	2.35	2.48	2.58	2.46
Silver	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05										
Sodium	mg/kg	549	1000	753	835	949	361	812	1120	824	945	2033	5556	3274	3479	4126	1444	3530	5333	3433	3938
Strontium	mg/kg	1.8	2.3	2.2	3.2	2.0	1.7	2.4	4.7	1.7	3.5	6.7	12.8	9.6	13.3	8.7	6.8	10.4	22.4	7.1	14.6
Thallium	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05										
Tin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Titanium	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1										
Uranium	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05										
Vanadium	mg/kg	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2										
Zinc	mg/kg	24.5	32.1	22.1	48.1	28.6	28.2	39.7	40.1	38.9	32.8	90.7	178.3	96.1	200.4	124.3	112.8	172.6	191.0	162.1	136.7

Appendix X-B Kokanee Axial Muscle – Canadian Reach (Kikomun to Elk River)

Kokanee - Axial Muscle

Sample date: September 16, 2008

Sampled by: Montana Fish, Wildlife & Parks

					Wet W	/eights									Dry W	/eights					
Variable	Units	KO-02	KO-04	KO-06	KO-08	KO-10	KO-12	KO-14	KO-16	KO-18	KO-20	KO-02	KO-04	KO-06	KO-08	KO-10	KO-12	KO-14	KO-16	KO-18	KO-20
Moisture Total Metals by ICPMS	%	81	79	80	73	78	80	81	78	77	79										
Aluminium	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1										
Antimony	mg/kg	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Arsenic	mg/kg	0.02	0.03	0.02	0.04	0.03	0.02	0.02	0.04	0.03	0.02	0.11	0.14	0.10	0.15	0.14	0.10	0.11	0.18	0.13	0.10
Barium	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1										
Beryllium	mg/kg	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1										
Bismuth	mg/kg	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1										
Boron	mg/kg	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5										
Cadmium	mg/kg	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01										
Calcium	mg/kg	90	81	95	224	141	186	190	90	146	86	474	386	475	830	641	930	1000	409	635	410
Chromium	mg/kg	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5										
Cobalt	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Copper	mg/kg	0.6	0.8	< 0.5	<0.5	0.7	<0.5	<0.5	0.6	< 0.5	0.6	3.2	3.8	<2.5	<1.9	3.2	<2.5	<2.6	2.7	<2.2	2.9
Iron	mg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10										
Lead	mg/kg	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01										
Magnesium	mg/kg	243	258	242	279	257	245	263	246	273	258	1279	1229	1210	1033	1168	1225	1384	1118	1187	1229
Manganese	mg/kg	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1										
Mercury	mg/kg	0.04	0.05	0.06	0.03	0.05	0.04	0.04	0.05	0.04	0.04										
Molybdenum	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Nickel	mg/kg	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.2	0.5	0.5	0.5	0.4	0.9	0.5	0.5	0.5	0.4	1.0
Phosphorus	mg/kg	2240	2360	2260	2610	2500	2280	2500	2170	2330	2400	11789	11238	11300	9667	11364	11400	13158	9864	10130	11429
Potassium	mg/kg	3490	3450	3510	3710	3680	3470	3780	3280	3440	3590	18368	16429	17550	13741	16727	17350	19895	14909	14957	17095
Selenium	mg/kg	0.34	0.39	0.41	0.42	0.42	0.32	0.37	0.41	0.34	0.38	1.79	1.86	2.05	1.56	1.91	1.60	1.95	1.86	1.48	1.81
Silver	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05										
Sodium	mg/kg	840	660	450	390	686	609	379	606	458	482	4421	3143	2250	1444	3118	3045	1995	2755	1991	2295
Strontium	mg/kg	<0.1	< 0.1	<0.1	0.2	< 0.1	0.1	0.1	<0.1	0.1	<0.1										
Thallium	mg/kg	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05										
Tin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Titanium	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1										
Uranium	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05										
Vanadium	mg/kg	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2										
Zinc	mg/kg	7.5	6.1	3.8	9.2	8.7	5.3	9.2	6.4	6.0	6.6	39.5	29.0	19.0	34.1	39.5	26.5	48.4	29.1	26.1	31.4

Page | **59**

Appendix X-C Kokanee Ovary – Canadian Reach (Kikomun to Elk River)

Kokanee - Ovary

Sample date: September 16, 2008 Sampled by: Montana Fish, Wildlife & Parks

					Wet W	/eights								Dry W	/eights				
Variable	Units	KO-02	KO-04	KO-06	KO-10	KO-12	KO-14	KO-16	KO-18	KO-20	KO-02	KO-04	KO-06	KO-10	KO-12	KO-14	KO-16	KO-18	KO-20
Moisture	%	66	66	62	58	60	60	64	59	61									
Total Metals by ICPMS																			
Aluminium	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1									
Antimony	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1									
Arsenic	mg/kg	0.03	0.03	0.06	0.04	0.03	0.03	0.03	0.06	0.04	0.09	0.09	0.16	0.10	0.08	0.08	0.08	0.15	0.10
Barium	mg/kg	0.1	0.2	0.2	0.2	0.1	0.1	0.1	0.2	0.2	0.3	0.6	0.5	0.5	0.3	0.3	0.3	0.5	0.5
Beryllium	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1									
Bismuth	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1									
Boron	mg/kg	<5	<5	<5	<5	<5	<5	<5	<5	<5									
Cadmium	mg/kg	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01									
Calcium	mg/kg	429	538	408	510	511	442	356	520	498	1262	1582	1074	1214	1278	1105	989	1268	1277
Chromium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5									
Cobalt	mg/kg	<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1									
Copper	mg/kg	9.0	13.3	15.9	13.6	14.6	11.7	17.5	10.7	17.1	26.5	39.1	41.8	32.4	36.5	29.3	48.6	26.1	43.8
Iron	mg/kg	16	16	19	23	22	18	17	18	18	47	47	50	55	55	45	47	44	46
Lead	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01									
Magnesium	mg/kg	493	509	510	580	556	490	499	600	581	1450	1497	1342	1381	1390	1225	1386	1463	1490
Manganese	mg/kg	1.0	1.0	0.8	1.2	1.0	0.9	0.8	1.5	0.8	2.9	2.9	2.1	2.9	2.5	2.3	2.2	3.7	2.1
Mercury	mg/kg	0.01	<0.01	0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01									
Molybdenum	mg/kg	<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1									
Nickel	mg/kg	0.1	0.1	0.1	0.2	0.1	< 0.1	0.1	0.1	0.1	0.3	0.3	0.3	0.5	0.3	<0.3	0.3	0.2	0.3
Phosphorus	mg/kg	3790	3980	4240	4280	4390	4160	3900	4370	4280	11147	11706	11158	10190	10975	10400	10833	10659	10974
Potassium	mg/kg	2400	2460	2130	2750	2120	2220	2360	2190	2190	7059	7235	5605	6548	5300	5550	6556	5341	5615
Selenium	mg/kg	1.10	1.10	1.39	1.62	1.50	1.41	1.66	1.14	1.45	3.24	3.24	3.66	3.86	3.75	3.53	4.61	2.78	3.72
Silver	mg/kg	<0.05	<0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05									
Sodium	mg/kg	979	835	698	705	692	604	770	563	579	2879	2456	1837	1679	1730	1510	2139	1373	1485
Strontium	mg/kg	0.5	0.7	0.8	0.7	0.6	0.6	0.5	0.9	0.8	1.5	2.1	2.1	1.7	1.5	1.5	1.4	2.2	2.1
Thallium	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05									
Tin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1									
Titanium	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1									
Uranium	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05									
Vanadium	mg/kg	<2	<2	<2	<2	<2	<2	<2	<2	<2									
Zinc	mg/kg	35.1	28.2	44.0	39.7	42.1	32.2	28.9	36.3	32.4	103.2	82.9	115.8	94.5	105.3	80.5	80.3	88.5	83.1

Appendix X-D Kokanee Whole Body – United States Reach (Border to Rexford)

Kokanee - Whole Body

Sample date: September 16, 2008

Sampled by: Montana Fish, Wildlife & Parks

				Wet W	/eights										D	ry Weigh	its				
Variable	Units	KO-21	KO-23	KO-25	KO-27	KO-29	KO-31	KO-33	KO-35	KO-37	KO-39	KO-21	KO-23	KO-25	KO-27	KO-29	KO-31	KO-33	KO-35	KO-37	KO-39
Moisture	%	79	76	79	79	74	77	76	82	81	79										
Total Metals by ICPMS																					
Aluminium	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1										
Antimony	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Arsenic	mg/kg	0.04	0.07	0.10	0.04	0.07	0.05	0.06	0.04	0.06	0.05	0.19	0.29	0.48	0.19	0.27	0.22	0.25	0.22	0.32	0.24
Barium	mg/kg	0.5	0.6	0.6	0.4	0.4	0.4	0.3	0.5	0.3	0.4	2.4	2.5	2.9	1.9	1.5	1.7	1.3	2.8	1.6	1.9
Beryllium	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Bismuth	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Boron	mg/kg	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5										
Cadmium	mg/kg	<0.01	<0.01	< 0.01	<0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01										
Calcium	mg/kg	5390	4380	6150	3810	3860	3880	2550	6000	2330	3210	25667	18250	29286	18143	14846	16870	10625	33333	12263	15286
Chromium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5										
Cobalt	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Copper	mg/kg	2.3	2.6	3.0	2.6	3.0	2.7	2.8	1.9	1.3	2.2	11.0	10.8	14.3	12.4	11.5	11.7	11.7	10.6	6.8	10.5
Iron	mg/kg	15	19	20	15	19	20	19	18	17	17	71	79	95	71	73	87	79	100	89	81
Lead	mg/kg	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	<0.01										
Magnesium	mg/kg	333	334	378	319	347	352	325	338	237	294	1586	1392	1800	1519	1335	1530	1354	1878	1247	1400
Manganese	mg/kg	1.2	1.2	1.0	0.6	0.9	0.8	0.6	1.3	0.4	0.9	5.7	5.0	4.8	2.9	3.5	3.5	2.5	7.2	2.1	4.3
Mercury	mg/kg	0.03	0.03	0.04	0.03	0.03	0.03	0.03	0.02	0.03	0.03										
Molybdenum	mg/kg	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1										
Nickel	mg/kg	0.2	0.2	0.3	0.2	0.2	0.1	0.2	0.2	0.2	0.2	1.0	0.8	1.4	1.0	0.8	0.4	0.8	1.1	1.1	1.0
Phosphorus	mg/kg	5300	5040	6280	4570	4890	4760	4060	5530	3410	4180	25238	21000	29905	21762	18808	20696	16917	30722	17947	19905
Potassium	mg/kg	2990	3310	3660	3090	3570	3080	3430	2900	3190	3380	14238	13792	17429	14714	13731	13391	14292	16111	16789	16095
Selenium	mg/kg	0.51	0.56	0.67	0.59	0.64	0.66	0.61	0.46	0.46	0.53	2.43	2.33	3.19	2.81	2.46	2.87	2.54	2.56	2.42	2.52
Silver	mg/kg	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05										
Sodium	mg/kg	874	874	808	939	786	967	513	924	1030	1020	4162	3642	3848	4471	3023	4204	2138	5133	5421	4857
Strontium	mg/kg	3.9	3.4	4.5	2.6	2.9	2.7	1.9	4.2	1.8	2.5	18.6	14.2	21.4	12.4	11.2	11.7	7.9	23.3	9.5	11.9
Thallium	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05										
Tin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Titanium	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1										
Uranium	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05										
Vanadium	mg/kg	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2										
Zinc	mg/kg	31.4	38.1	39.1	58.9	51.7	47.3	30.2	37.0	39.0	29.1	149.5	158.8	186.2	280.5	198.8	205.7	125.8	205.6	205.3	138.6

Appendix X-E Kokanee Axial Muscle – United States Reach (Border to Rexford)

Kokanee - Axial Muscle

Sample date: September 16, 2008

Sampled by: Montana Fish, Wildlife & Parks

					Wet V	Veights					
Variable	Units	KO-22	KO-24	KO-26	KO-28	KO-30	KO-32	KO-34	KO-36	KO-38	KO-40
Moisture Fotal Metals by ICPMS	%	79	79	78	75	82	80	80	76	76	84
luminium	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Antimony	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arsenic	mg/kg	0.03	0.03	0.02	0.03	0.04	0.03	0.02	0.04	0.05	0.03
Barium	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beryllium	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bismuth	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Boron	mg/kg	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Cadmium	mg/kg	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01
Calcium	mg/kg	72	87	438	319	485	470	46	85	267	74
hromium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
obalt	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Copper	mg/kg	0.6	0.8	<0.5	<0.5	<0.5	<0.5	0.7	0.8	<0.5	0.8
ron	mg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
.ead	mg/kg	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01
Magnesium	mg/kg	237	278	260	305	214	242	233	219	296	233
/langanese	mg/kg	<0.1	<0.1	0.1	<0.1	0.1	0.1	<0.1	<0.1	0.1	<0.1
/lercury	mg/kg	0.06	0.05	0.04	0.04	0.05	0.03	0.04	0.04	0.04	0.05
Volybdenum	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	0.3	<0.1	<0.1	0.1	2.0	0.1	0.1	<0.1	0.2	0.1
hosphorus	mg/kg	2310	2700	2540	2860	2410	2400	2240	2080	2750	2360
Potassium	mg/kg	3400	3910	3530	4000	3400	3460	3370	3190	3920	3500
Selenium	mg/kg	0.41	0.40	0.34	0.49	0.41	0.37	0.34	0.36	0.44	0.38
ilver	mg/kg	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Sodium	mg/kg	754	618	458	498	810	550	600	577	330	784
Strontium	mg/kg	<0.1	<0.1	0.3	0.2	0.3	0.4	< 0.1	<0.1	0.2	<0.1
hallium	mg/kg	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium	mg/kg	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Vanadium	mg/kg	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc	mg/kg	6.4	8.6	5.2	7.4	8.3	6.4	9.2	6.8	9.0	8.4

Appendix X-F Kokanee Ovary – United States Reach (Border to Rexford)

Kokanee - Ovary

Sample date: September 16, 2008

Sampled by: Montana Fish, Wildlife & Parks

					Wet W	/eights							Dry W	/eights					
Variable	Units	KO-22	KO-24	KO-26	KO-28	KO-30	KO-32	KO-34	KO-38	KO-40	KO-22	KO-24	KO-26	KO-28	KO-30	KO-32	KO-34	KO-38	KO-40
Moisture Total Metals by ICPMS	%	61	70	58	61	65	59	60	56	63									
Aluminium	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1									
Antimony	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1									
Arsenic	mg/kg	0.03	0.03	0.04	0.06	0.03	0.05	0.04	0.08	0.03	0.10	0.10	0.10	0.15	0.09	0.12	0.10	0.18	0.08
Barium	mg/kg	0.2	0.1	0.2	0.3	0.1	0.2	0.2	0.2	0.2	0.5	0.3	0.5	0.8	0.3	0.5	0.5	0.5	0.5
Beryllium	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1									
Bismuth	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1									
Boron	mg/kg	<5	<5	<5	<5	<5	<5	<5	<5	<5									
Cadmium	mg/kg	<0.01	<0.01	< 0.01	0.05	<0.01	<0.01	<0.01	0.01	<0.01									
Calcium	mg/kg	468	403	527	2570	547	449	485	497	471	1200	1343	1255	6590	1563	1095	1213	1130	1273
Chromium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5									
Cobalt	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1									
Copper	mg/kg	15.9	11.5	13.9	23.9	11.6	10.3	13.3	17.3	10.1	40.8	38.3	33.1	61.3	33.1	25.1	33.3	39.3	27.3
Iron	mg/kg	22	20	18	210	17	18	16	27	17	56	67	43	538	49	44	40	61	46
Lead	mg/kg	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01									
Magnesium	mg/kg	549	448	569	300	538	609	573	632	468	1408	1493	1355	769	1537	1485	1433	1436	1265
Manganese	mg/kg	1.3	0.9	1.1	2.5	0.9	0.8	0.8	1.6	0.8	3.3	3.0	2.6	6.4	2.6	2.0	2.0	3.6	2.2
Mercury	mg/kg	0.01	0.01	<0.01	0.03	<0.01	<0.01	< 0.01	<0.01	< 0.01									
Molybdenum	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1									
Nickel	mg/kg	<0.1	0.1	0.1	<0.1	0.3	0.1	0.1	0.1	0.1	<0.3	0.3	0.2	<0.3	0.9	0.2	0.3	0.2	0.3
Phosphorus	mg/kg	3990	3670	4420	4130	3800	4650	4720	4540	3990	10231	12233	10524	10590	10857	11341	11800	10318	10784
Potassium	mg/kg	2940	2860	2590	3420	2860	2550	2420	2410	3060	7538	9533	6167	8769	8171	6220	6050	5477	8270
Selenium	mg/kg	1.37	1.44	1.72	1.84	1.16	1.44	1.37	1.97	1.31	3.51	4.80	4.10	4.72	3.31	3.51	3.43	4.48	3.54
Silver	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	<0.05									
Sodium	mg/kg	873	1020	649	964	747	518	663	589	837	2238	3400	1545	2472	2134	1263	1658	1339	2262
Strontium	mg/kg	0.7	0.6	0.7	1.9	0.6	0.7	0.7	0.7	0.7	1.8	2.0	1.7	4.9	1.7	1.7	1.8	1.6	1.9
Thallium	mg/kg	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05									
Tin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1									
Titanium	mg/kg	<1	<1	<1	2	<1	<1	<1	<1	<1									
Uranium	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05									
Vanadium	mg/kg	<2	<2	<2	<2	<2	<2	<2	<2	<2									
Zinc	mg/kg	37.0	33.6	35.2	141.0	29.6	40.2	27.4	57.5	27.6	94.9	112.0	83.8	361.5	84.6	98.0	68.5	130.7	74.6

P a g e | **63**

Appendix X-G Peamouth Chub Whole Body – United States Reach (Border to Rexford)

Peamouth Chub - V	Vhole B	ody	Sample dat	te: May 14,	2008		Sampled b	y: Montana	Fish, Wildli	fe & Parks											
					Wet W	/eights									Dry W	eights					
Variable	Units	PCC-01	PCC-03	PCC-05	PCC-07	PCC-09	PCC-11	PCC-13	PCC-15	PCC-17	PCC-19	PCC-01	PCC-03	PCC-05	PCC-07	PCC-09	PCC-11	PCC-13	PCC-15	PCC-17	PCC-19
Moisture	%	75	72	76	75	74	74	77	77	76	74										
Total Metals by ICPMS																					
Aluminium	mg/kg	<1	80	38	9	29	31	<1	34	54	56										
Antimony	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Arsenic	mg/kg	0.09	0.17	0.10	0.07	0.15	0.11	0.06	0.11	0.15	0.16	0.36	0.61	0.42	0.28	0.58	0.42	0.26	0.48	0.63	0.62
Barium	mg/kg	3.5	4.2	2.9	3.3	3.3	3.5	2.1	3.8	4.6	4.7	14.0	15.0	12.1	13.2	12.7	13.5	9.1	16.5	19.2	18.1
Beryllium	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1										
Bismuth	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Boron	mg/kg	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5										
Cadmium	mg/kg	0.06	0.03	0.05	0.05	0.02	0.01	0.05	0.03	0.05	0.05	0.24	0.11	0.21	0.20	0.08	0.04	0.22	0.13	0.21	0.19
Calcium	mg/kg	11200	8590	4850	9030	5210	5730	12100	6610	9710	12500	44800	30679	20208	36120	20038	22038	52609	28739	40458	48077
Chromium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5										
Cobalt	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Copper	mg/kg	0.7	1.2	1.4	0.8	0.8	0.8	0.6	0.8	1.4	0.9	2.8	4.3	5.8	3.2	3.1	3.1	2.6	3.5	5.8	3.5
Iron	mg/kg	16	171	87	33	79	74	19	81	112	116	64	611	363	132	304	285	83	352	467	446
Lead	mg/kg	0.02	0.10	0.07	0.04	0.05	0.08	0.01	0.07	0.09	0.11	0.08	0.36	0.29	0.16	0.19	0.31	0.04	0.30	0.38	0.42
Magnesium	mg/kg	441	632	412	421	373	389	437	413	461	513	1764	2257	1717	1684	1435	1496	1900	1796	1921	1973
Manganese	mg/kg	2.4	7.7	4.3	3.9	2.6	3.1	1.6	3.7	5.2	5.3	9.6	27.5	17.9	15.6	10.0	11.9	7.0	16.1	21.7	20.4
Mercury	mg/kg	0.10	0.09	0.14	0.17	0.11	0.08	0.14	0.17	0.13	0.07										
Molybdenum	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Nickel	mg/kg	0.2	0.3	0.4	0.2	0.3	0.3	0.2	0.3	0.3	0.3	0.8	1.1	1.7	0.8	1.2	1.2	0.9	1.3	1.3	1.2
Phosphorus	mg/kg	9170	6780	5080	7800	5390	5260	9480	5810	7760	9430	36680	24214	21167	31200	20731	20231	41217	25261	32333	36269
Potassium	mg/kg	3300	3400	3190	3180	3110	3130	3310	3130	2990	2860	13200	12143	13292	12720	11962	12038	14391	13609	12458	11000
Selenium	mg/kg	0.92	0.88	0.75	0.59	1.08	0.90	0.63	0.85	0.87	0.98	3.68	3.14	3.13	2.36	4.15	3.46	2.74	3.70	3.63	3.77
Silver	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05										
Sodium	mg/kg	704	716	651	969	741	728	799	711	698	694	2816	2557	2713	3876	2850	2800	3474	3091	2908	2669
Strontium	mg/kg	12.9	10.6	6.2	11.4	5.7	7.0	14.8	7.6	12.5	13.1	51.6	37.9	25.8	45.6	21.9	26.9	64.3	33.0	52.1	50.4
Thallium	mg/kg	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05										
Tin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Titanium	mg/kg	<1	2	<1	<1	1	1	<1	<1	1	2										
Uranium	mg/kg	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05										
Vanadium	mg/kg	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2										
Zinc	mg/kg	26.8	24.2	26.2	31.2	22.0	12.6	26.7	19.2	25.7	21.3	107.2	86.4	109.2	124.8	84.6	48.5	116.1	83.5	107.1	81.9
2	9/ 16	20.0	- 1.2	20.2	51.2	12.0	12.0	20.7	10.2	20.7	21.5	107.2	00.4	100.2	12 7.0	0 7.0	.5.5	110.1	65.5	107.1	01.5

Appendix X-H Peamouth Chub Axial Muscle – United States Reach (Border to Rexford)

Peamouth Chub - A	xial Mu	uscle	Sample dat	te: May 14,	2008		Sampled by	y: Montana	ı Fish, Wildli	ife & Parks											
					Wet W	/eights									Dry W	/eights					
Variable	Units	PCC-02	PCC-04	PCC-06	PCC-08	PCC-10	PCC-12	PCC14	PCC-16	PCC-18	PCC-20	PCC-02	PCC-04	PCC-06	PCC-08	PCC-10	PCC-12	PCC14	PCC-16	PCC-18	PCC-20
Moisture	%	82	80	80	80	81	81	81	81	79	82										
Total Metals by ICPMS																					
Aluminium	mg/kg	<1	<1	<1	<1	<1	<1	1	<1	2	<1										
Antimony	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Arsenic	mg/kg	0.03	0.04	0.07	0.04	0.06	0.05	0.04	0.06	0.04	0.05	0.17	0.20	0.35	0.20	0.32	0.26	0.21	0.32	0.19	0.28
Barium	mg/kg	0.5	0.2	0.3	0.3	0.9	0.5	0.3	0.2	0.6	0.4	2.8	1.0	1.5	1.5	4.7	2.6	1.6	1.1	2.9	2.2
Beryllium	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Bismuth	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Boron	mg/kg	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5										
Cadmium	mg/kg	<0.01	< 0.01	< 0.01	0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01										
Calcium	mg/kg	559	543	486	698	759	832	503	370	406	1060	3106	2715	2430	3490	3995	4379	2647	1947	1933	5889
Chromium	mg/kg	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5										
Cobalt	mg/kg	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1										
Copper	mg/kg	0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5										
Iron	mg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10										
Lead	mg/kg	<0.01	< 0.01	< 0.01	<0.01	<0.01	0.01	<0.01	< 0.01	< 0.01	0.01										
Magnesium	mg/kg	251	280	300	280	310	251	313	307	270	276	1394	1400	1500	1400	1632	1321	1647	1616	1286	1533
Manganese	mg/kg	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.2	0.3	0.4	1.1	1.0	1.5	1.5	1.6	1.6	1.6	1.1	1.4	2.2
Mercury	mg/kg	0.24	0.34	0.10	0.32	0.18	0.19	0.14	0.12	0.14	0.13										
Molybdenum	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Nickel	mg/kg	0.2	0.2	0.2	<0.1	0.2	0.1	< 0.1	0.2	0.2	<0.1	1.1	1.0	1.0	<0.5	1.1	0.5	< 0.5	1.1	1.0	<0.6
Phosphorus	mg/kg	2170	2260	2300	2380	2560	2240	2290	2390	2190	2590	12056	11300	11500	11900	13474	11789	12053	12579	10429	14389
Potassium	mg/kg	3280	3390	3620	3610	3800	3390	3570	3770	3420	3620	18222	16950	18100	18050	20000	17842	18789	19842	16286	20111
Selenium	mg/kg	0.42	0.35	1.07	0.52	0.53	0.44	0.83	1.22	0.49	0.50	2.33	1.75	5.35	2.60	2.79	2.32	4.37	6.42	2.33	2.78
Silver	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05										
Sodium	mg/kg	401	417	317	574	498	448	399	364	366	438	2228	2085	1585	2870	2621	2358	2100	1916	1743	2433
Strontium	mg/kg	0.7	0.6	0.5	0.9	0.9	1.0	0.5	0.3	0.4	1.2	3.9	3.0	2.5	4.5	4.7	5.3	2.6	1.6	1.9	6.7
Thallium	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05										
Tin	mg/kg	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1										
Titanium	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1										
Uranium	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05										
Vanadium	mg/kg	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2										
Zinc	mg/kg	13.0	11.1	6.0	10.0	8.3	10.0	8.1	7.2	12.0	7.2	72.2	55.5	30.0	50.0	43.7	52.6	42.6	37.9	57.1	40.0

Exceeds human consumption guideline for >350 g fish/week (0.3 mg/kg ww)

Exceeds human consumption guideline for >525 g fish/week (0.2 mg/kg ww)

Exceeds human consumption guideline for >1050 g fish/week (0.1 mg/kg ww)

Appendix X-I Peamouth Chub Ovary – United States Reach (Border to Rexford)

			Jampie ua	te: May 14,	2008		Sampled b	y: Montana	a Fish, Wildli	ife & Parks												
					Wet W	/eights										Dry W	eights					
Variable	Units	PCC-02	PCC-04	PCC-06	PCC-08	PCC-10	PCC-12	PCC-14	PCC-16	PCC-18	PCC-20	PCC-0	2 PCC	-04	PCC-06	PCC-08	PCC-10	PCC-12	PCC-14	PCC-16	PCC-18	PCC-20
Moisture	%	68	64	65	72	67	67	64	65	65	65											
Total Metals by ICPMS																						
Aluminium	mg/kg	<1	<1	<1	2	1	6	<1	<1	3	<1											
Antimony	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1											
Arsenic	mg/kg	0.06	0.05	0.10	0.05	0.08	0.09	0.05	0.09	0.07	0.08	0.19	0.1	4	0.29	0.18	0.24	0.27	0.14	0.26	0.20	0.23
Barium	mg/kg	0.7	0.5	0.3	0.7	1.0	1.1	0.5	0.4	0.9	0.5	2.2	1	4	0.9	2.5	3.0	3.3	1.4	1.1	2.6	1.4
Beryllium	mg/kg	<0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1											
Bismuth	mg/kg	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1											
Boron	mg/kg	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5											
Cadmium	mg/kg	0.02	0.02	0.01	0.07	0.03	0.01	0.02	< 0.01	< 0.01	0.01	0.06	0.0	6	0.03	0.25	0.09	0.03	0.06	< 0.03	< 0.03	0.03
Calcium	mg/kg	114	141	123	219	101	170	85	95	117	100	356	39	2	351	782	306	515	236	271	334	286
Chromium	mg/kg	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5											
Cobalt	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1											
Copper	mg/kg	1.0	1.0	1.0	0.8	1.4	1.4	1.1	0.9	1.1	0.8	3.1	2	.8	2.9	2.9	4.2	4.2	3.1	2.6	3.1	2.3
Iron	mg/kg	24	24	28	38	33	44	23	25	28	28	75	e	7	80	136	100	133	64	71	80	80
Lead	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	0.01	< 0.01											
Magnesium	mg/kg	284	291	295	325	293	307	294	296	306	302	888	80	8	843	1161	888	930	817	846	874	863
Manganese	mg/kg	1.9	2.3	1.5	2.7	1.6	2.7	2.5	1.2	3.5	2.0	5.9	6	4	4.3	9.6	4.8	8.2	6.9	3.4	10.0	5.7
Mercury	mg/kg	0.02	0.03	< 0.01	0.03	0.02	0.02	< 0.01	< 0.01	< 0.01	0.01											
Molybdenum	mg/kg	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1											
Nickel	mg/kg	0.2	0.1	0.2	<0.1	<0.1	0.2	<0.1	<0.1	0.2	0.2	0.6	0	.3	0.6	<0.4	< 0.3	0.6	< 0.3	< 0.3	0.6	0.6
Phosphorus	mg/kg	3950	4240	4550	3460	4740	4160	4740	4710	4590	4850	12344	1177	8	13000	12357	14364	12606	13167	13457	13114	13857
Potassium	mg/kg	2300	2520	2490	2570	2720	2520	2640	2440	2690	2760	7188	700	0	7114	9179	8242	7636	7333	6971	7686	7886
Selenium	mg/kg	1.60	2.03	3.97	2.59	3.38	1.86	3.06	3.39	2.25	2.27	5.00	5.6	4	11.34	9.25	10.24	5.64	8.50	9.69	6.43	6.49
Silver	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05											
Sodium	mg/kg	433	547	434	731	541	615	487	518	501	601	1353	151	9	1240	2611	1639	1864	1353	1480	1431	1717
Strontium	mg/kg	0.1	0.1	0.1	0.3	0.1	0.2	<0.1	<0.1	0.2	0.1	0.3	0	3	0.3	1.1	0.3	0.6	< 0.3	< 0.3	0.6	0.3
Thallium	mg/kg	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05											
Tin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1											
Titanium	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1											
Uranium	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05											
Vanadium	mg/kg	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2											
Zinc	mg/kg	36.8	38.9	32.5	36.9	29.0	39.9	33.3	32.8	32.3	32.3	115.0	108	1	92.9	131.8	87.9	120.9	92.5	93.7	92.3	92.3

Appendix XI-A

Fish Field Data: Kokanee

Canadian R	each (E272043, Kikom	un to Elk Riv	/er)		
Fish ID	Length (cm, nose to	Weight (g)	Location	Tissue	Notes
T ISH ID	end of tail)	Weight (g)	Eocation	analyzed	Notes
N-KO-01	27.6	190	South of bridge	WB	
N-KO-02	27.4	200	North of cabin	O, M	
N-KO-03	27.6	172	North of cabin	WB	
N-KO-04	28.5	194	South of bridge	O, M	
N-KO-05	25.5	158	South of bridge	WB	
N-KO-06	29.8	226	South of bridge	O, M	
N-KO-07	27.5	178	South of bridge	WB	
N-KO-08	28.2	194	South of bridge	O, M	Male (ID'd during dissection). Only muscle sampled.
N-KO-09	26.5	170	North of cabin	WB	
N-KO-10	28.1	180	Across from campground	O, M	Replicate eggs and muscle from this fish.
N-KO-11	29.0	231	Across from campground	WB	
N-KO-12	26.6	184	Across from campground	O, M	
N-KO-13	28.2	180	Across from campground	WB	
N-KO-14	25.6	139	Across from campground	O, M	
N-KO-15	26.9	163	Across from campground	WB	
N-KO-16	27.8	220	Across from campground	O, M	
N-KO-17	27.7	212	Across from campground	WB	
N-KO-18	26.8	180	Across from campground	O, M	
N-KO-19	28.2	213	Across from campground	WB	
N-KO-20	26.9	170	Across from campground	O, M	
Mean	27.5	188			

Ca

United States Reach (Border to Rexford)

Fish ID	Length (cm, nose to end of tail)	Weight (g)	Location	Tissue analyzed	Notes
S-KO-21	27.1	177	S point Tobacco	WB	
S-KO-22	25.5	149	S point Tobacco	O, M	
S-KO-23	27.1	165	N point Murray	WB	
S-KO-24	27.5	175	N point Murray	O, M	Not many eggs - may have already spawned.
S-KO-25	28.5	196	N point Murray	WB	
S-KO-26	27.2	180	N point Murray	O, M	
S-KO-27	26.1	165	N point Murray	WB	
S-KO-28	29.5	212	N point Murray	O, M	Not many eggs - may have already spawned.
S-KO-29	27.4	172	N point Murray	WB	
S-KO-30	26.4	170	N point Murray	O, M	
S-KO-31	27.1	173	N point Murray	WB	
S-KO-32	27.0	182	N point Murray	O, M	
S-KO-33	28.2	201	N point Murray	WB	
S-KO-34	27.0	186	N point Murray	O, M	
S-KO-35	28.4	190	Sandhill	WB	
S-KO-36	27.5	172	Sandhill	O, M	Male (ID'd during dissection). Only muscle sampled.
S-KO-37	27.0	150	Sandhill	WB	
S-KO-38	26.6	162	Sandhill	O, M	
S-KO-39	27.6	180	Sandhill	WB	
S-KO-40	27.6	184	Sandhill	O, M	
Mean	27.3	177			

1. Where possible, scales and otoliths obtained for aging. Many fish absorbing scales so often difficult to obtain. Also, many fish head's were crushed or severed during removal from gill net, so difficult to locate otoliths.

2. Random observation of 10 stomach contents found they were empty or contained well digested brown "gush" - likely digested plankton. No evidence of terrestrial or aquatic invertebrates.

Appendix XI-B

Fish Field Data: Peamouth Chub

Fish ID	Length (cm, nose to end of tail)	Weight (g)	Tissue analyzed	Notes
S-PCC-1	27.5	189	WB	
S-PCC-2	27.6	180	O, M	
S-PCC-3	26.0	162	WB	
S-PCC-4	28.5	201	O, M	
S-PCC-5	26.7	180	WB	
S-PCC-6	27.9	211	O, M	
S-PCC-7	28.0	198	WB	
S-PCC-8	27.5	173	O, M	
S-PCC-9	29.5	261	WB	
S-PCC-10	28.5	211	O, M	
S-PCC-11	29.8	259	WB	
S-PCC-12	28.6	203	O, M	
S-PCC-13	28.0	180	WB	
S-PCC-14	27.0	192	O, M	
S-PCC-15	29.2	224	WB	
S-PCC-16	27.5	200	О, М	
S-PCC-17	26.5	158	WB	
S-PCC-18	24.5	157	O, M	
S-PCC-19	27.3	191	WB	
S-PCC-20	28.5	209	O, M	
Mean	27.7	197		

United	States	Reach	(Border	to	Rexford)
onnea	oluco	1.cuon		···	iteriora,

1. Observation of 10 stomach contents found they were empty or contained well digested brown "gush" - likely digested plankton. No evidence of terrestrial or aquatic invertebrates. Fish stored 5 months frozen prior to dissection.

APPENDIX XII

SELENIUM IN KOKANEE SITE COMPARISON ANOVA's

Appendix XII-A	Kokanee Sample Sites:	Whole Body One-Way ANOVA
----------------	-----------------------	--------------------------

Test	Compare Groups	s - 1-way ANOVA			• • •	nalyse-it [.] _{v2.1}
Performed by	Kokanee: Whole Les	e Body Se: Kikor	nun, Elk River, F	Rexford	Date	15 December 2008
n	20					
					0.5	
Kokanee: Whole Body Se	n	Mean	SE	Pooled SE	SD	-
Kikomun Elk River	3 7	2.108 2.469	0.1339 0.0525	0.1291 0.0845	0.232 0.139	
Rexford	10	2.409	0.0834	0.0845	0.264	
			•			
Source of variation	Sum squares	DF	Mean square	F statistic	р	_
Kokanee: Whole Body Se	0.594	2	0.297	5.94	0.0110	-
Residual	0.849	17	0.050			
Total	1.443	19	I			
Tukey						
Contrast	Difference	959	% CI			
Kikomun v Elk River	-0.362	-0.758 to 0.034		-		
Kikomun v Rexford	-0.506	-0.883	to -0.128	(significant)		
Elk River v Rexford	-0.144	-0.427	to 0.138			

Appendix XII-B Kokanee Sample Sites: Axial Muscle One-Way ANOVA

Tect	Compare Group	s - 1-way ANOV	Δ		• • A	nalyse-it [.] 🗤
1051	compare croup	3 - 1-way Autovi	~			
		Muscle Se: Kiko	omun, Elk River, l	Rexford		
Performed by	Les				Date	15 December 200
n	20					
			1			
Kokanee Axial Muscle Se	n	Mean	SE	Pooled SE	SD	
Kikomun	3	1.821	0.1439	0.1406	0.249	
Elk River	7	1.771	0.0646	0.0920	0.171	
Rexford	10	1.890	0.0887	0.0770	0.280	
Source of variation	Sum squares	DF	Mean square	F statistic	р	
Kokanee Axial Muscle Se	0.059	2	0.030	0.50	0.6146	
Residual	1.008	17	0.059	-		
Total	1.067	19				
Tukey						
Contrast	Difference	95	% CI			
Kikomun v Elk River	0.050	-0.381	to 0.481	•		
Kikomun v Rexford	-0.069	-0.480) to 0.342			
Elk River v Rexford	-0.119	-0.427	' to 0.189			

Appendix XII-C Kokanee Sample Sites: Ovary One-Way ANOVA

					 A	nalyse-it [.] 、
Test	Compare Groups	s - 1-way ANOV	A			2
Performed by	Kokanee Ovary Les	Se: Kikomun,	Elk River, Rexford	ł	Date	15 December 20
n	18					
Kokanee: Ovary Se	n	Mean	SE	Pooled SE	SD	
Kikomun	2	3.447	0.2113	0.4025	0.299	
Elk River	7	3.640	0.2140	0.2152	0.566	
Rexford	9	3.933	0.1989	0.1898	0.597	
Source of variation	Sum squares	DF	Mean square	F statistic	р	
Kokanee: Ovary Se	0.566	2	0.283	0.87	0.4380	
Residual	4.861	15	0.324			
Total	5.426	17				
Tukey						
Contrast	Difference	95	% CI			
Kikomun v Elk River	-0.193	-1.379) to 0.993			
Kikomun v Rexford	-0.486	-1.642	2 to 0.670			
Elk River v Rexford	-0.293	-1.038	3 to 0.452			

Appendix XIII-A Selenium in Kokanee versus Peamouth: Whole Body One-Way ANOVA

					• ° A	nalyse-it v2.
Test	Compare Groups	s - 1-way ANOVA	۱.			¥2.
Performed by	Whole Body Se Les	: Kokanee ≠ F	Date	15 December 2008		
n	20					
Whate Darty Ca	_	Maan	05	Dealed OF	<u>CD</u>	
Whole Body Se	n	Mean	SE	Pooled SE	SD	
Kokanee	10 10	2.614 3.376	0.0834 0.1692	0.1334 0.1334	0.264 0.535	
Peamouth	10	0.070	0.1032	0.1004	0.000	
Source of variation	Sum squares	DF	Mean square	F statistic	р	
Whole Body Se	2.907	1	2.907	16.34	0.0008	
Residual	3.203	18	0.178			
Total	6.109	19	I			
Tukey						
Contrast	Difference	95	5% CI			
Kokanee v Peamouth	-0.762	1 150	9 to -0.366	(significant)		

Appendix XIII-B Selenium in Kokanee versus Peamouth: Axial Muscle One-Way ANOVA

					• "• <i>A</i>	nalyse-it
Test	Compare Group	s - 1-way ANO	VA			
	Axial Muscle Se	e: Kokanee ≠	Peamouth			
Performed by	Les				Date	15 December 200
n	20					
	1		1			
Axial Muscle Se	n	Mean	SE	Pooled SE	SD	
Kokanee	10	1.890	0.0887	0.3500	0.280	
Peamouth	10	3.304	0.4870	0.3500	1.540	
Source of variation	Sum squares	DF	Mean square	F statistic	р	
Axial Muscle Se	9.996	1	9.996	8.16	0.0105	
Residual	22.055	18	1.225			
Total	32.051	19				
Tukey						
Contrast	Difference	95	5% CI	_		
Kokanee v Peamouth	-1.414	-2.45	4 to -0.374	(significant)		

Test	Compare Groups	s - 1-way ANOVA			. 7.4	nalyse-it * _{v2.12}
Performed by	Ovary Se: Koka Les	nee ≠ Peamou	th		Date	15 December 2008
n	19					
Ovary Se	n	Mean	SE	Pooled SE	SD	
Kokanee Peamouth	9 10	3.933 7.822	0.1989 0.7103	0.5616 0.5328	0.597 2.246	
Source of variation	Sum squares	DF	Mean square	F statistic	р	
Ovary Se Residual Total	71.658 48.257 119.914	1 17 18	71.658 2.839	25.24	0.0001	
Tukey Contrast	Difference		% CI	_		
Kokanee v Peamouth	-3.889	-5.523	to -2.256	(significant)		

Appendix XIII-C Selenium in Kokanee versus Peamouth: Ovary One-Way ANOVA