Ministry of Transportation and Highways Province of British Columbia


## Highway 1 (North Vancouver to Surrey) Monitoring and Evaluation Program

Phase II HOV Evaluation \& TMP Baseline


Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program
Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

## Table of Contents

EXECUTIVE SUMMARY ..... ES-1
1 INTRODUCTION ..... 1
1.1 Phase II Study Cost and Objectives ..... 1
2 HOV MONITORING \& EVALUATION ..... 4
2.1 Objective 1: Increase Person Movement Throughput ..... 7
2.2 Objective 2: Provide Travel Time Savings ..... 31
2.3 Objective 3: Improve Trip Travel Time Reliability ..... 36
2.4 Objective 4: Increase Per-Lane Efficiency ..... 39
2.5 Objective 5: Minimize Negative Impacts ON General Purpose (GP) Lanes ..... 42
2.6 Objective 6: Maintain Safety ..... 47
2.7 Оbjective 7: Оbtain Compliance. ..... 53
2.8 Objective 8: AcQuire Public Acceptance and Satisfaction ..... 57
3 TMP MONITORING \& EVALUATION ..... 67
3.1 Objective 1: Reduce/Manage Recurrent Congestion. ..... 69
3.2 ObJECTIVE 2: Reduce/Manage Non-ReCURRENT CONGESTION ..... 78
3.3 Objective 3: Improve Safety ..... 99
3.4 Objective 4: Optimize Efficient Use of Capacity ..... 102
3.5 Objective 5: Acquire Public Support and Satisfaction ..... 109
4 NETWORK IMPACTS ..... 112
4.1 PHASE II CONDITIONS ..... 112
4.2 IMPACTS SINCE PHASE I ..... 128
5 SUMMARY \& CONCLUSIONS ..... 139
5.1 HOV Evaluation \& Benefits Summary ..... 140
5.2 TMP Baseline \& FSP Benefits ..... 141 Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)
List of Acronyms ..... $v$
List of Definitions ..... $v i$
Exhibit ES-1- Study Section ..... 1
Exhibit ES-2 - Before \& After AVO Changes by Screenline ..... 8
Exhibit ES-3-Before \& After Person Throughput at the Central Portion of the HOV Section ..... 9
Exhibit ES-4-Before \& After HOV Market Share Changes by Screenline ..... 10
Exhibit ES-5 - HOV/FSP Corridor Phase II Travel Time and Speed Comparison ..... 11
Exhibit ES-6-Existing \& New HOVs versus TCH \& Route Switching HOVs ..... 13
Exhibit ES-7- Before and After Comparisons of Study Section Travel Times ..... 15
Exhibit ES-8 - Incident Duration Comparisons ..... 16
Exhibit ES-9- Percent Difference in Claim Frequency by Project Phase ..... 17
Exhibit ES-10 - Safety Impact Contributing Factors. ..... 18
Exhibit 1.1.1-Study Section ..... 2
Exhibit 1.1.2 - Phase II Data Collection Tasks .....  3
Exhibit 2.1 - Before \& After Peak Hour Traffic Volumes ..... 5
Exhibit 2.1.1 - Mainline Vehicle Occupancies - Combined Lanes - Weekday Peak Period ..... 9
Exhibit 2.1.2 - Mainline Vehicle Occupancies - GP vs HOV Lanes - Weekday Peak Period ..... 10
Exhibit 2.1.3 - Mainline Vehicle Occupancies - Combined Lanes - Sunday Peak Period. ..... 11
Exhibit 2.1.4 - Mainline Vehicle Occupancies - GP vs HOV Lanes - Sunday Peak Period ..... 12
Exhibit 2.1.5 - Mainline Vehicle Classification - Combined Lanes - Weekday Peak Period ..... 13
Exhibit 2.1.6 - Mainline Vehicle Classification - GP vs HOV Lanes - Weekday Peak Period ..... 14
Exhibit 2.1.7 - Mainline Vehicle Classification - Combined Lanes - Sunday Peak Period ..... 15
Exhibit 2.1.8 - Mainline Vehicle Classification - GP vs HOV Lanes - Sunday Peak Period ..... 16
Exhibit 2.1.9 - Weekday AM Peak Period AVOs By Screenline ..... 18
Exhibit 2.1.10 - Weekday MID-DAY Peak Period AVOs By Screenline ..... 19
Exhibit 2.1.11 - Weekday PM Peak Period AVOs By Screenline ..... 20
Exhibit 2.1.12A - Summary of "Before" \& "After" AVOs at Screenlines. ..... 21
Exhibit 2.1.12B - Before \& After Person Throughput at the Central Portion of the HOV Section ..... 22
Exhibit 2.1.13 - Weekday AM Peak Period EB Market Share By Screenline ..... 23
Exhibit 2.1.14 - Weekday AM Peak Period WB Market Share By Screenline ..... 24
Exhibit 2.1.15 - Weekday MID-DAY Peak Period EB Market Share By Screenline ..... 25
Exhibit 2.1.16 - Weekday MID-DAY Peak Period WB Market Share By Screenline ..... 26
Exhibit 2.1.17 - Weekday PM Peak Period EB Market Share By Screenline. ..... 27
Exhibit 2.1.18 - Weekday PM Peak Period WB Market Share By Screenline ..... 28
Exhibit 2.1.19 - Summary of "Before" \& "After" HOV Market Share ..... 29
Exhibit 2.2.1 - Phase II HOV Section Travel Time, Speed, and Delay Summary ..... 32
Exhibit 2.2.2 - Weekday Peak Period - Average Speeds \& Travel Time Savings - Before \& After HOV Lanes ..... 33
Exhibit 2.2.3 - Weekday Peak Period - Travel Time Savings and Statistical Analysis ..... 34
Exhibit 2.2.4 - HOV/FSP Corridor Phase II Travel Time and Speed Comparison ..... 35
Exhibit 2.3.1 - Phase II Average Speeds with Standard Deviations ..... 37
Exhibit 2.3.2 - Weekday Peak Period - Trip Reliability Analysis ..... 38
Exhibit 2.4.1 - Highway 1 Westbound Per Lane Efficiency (Phase II) ..... 40
Exhibit 2.4.2 - Highway 1 Eastbound Per Lane Efficiency (Phase II). ..... 40
Exhibit 2.4.3 - Peak Period Before \& After Per Lane Efficiency ..... 41
Exhibit 2.5.1 - Phase II Summary of Mainline LOS - Weekday Peak Hour ..... 43
Exhibit 2.5.2 - Before \& After Mainline LOS - AM Peak Hour ..... 45
Exhibit 2.5.3 - Before \& After Mainline LOS - PM Peak Hour ..... 46

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)
Exhibit 2.6.1 - Frequency of Claims and Total Cost of All Claims ..... 49
Exhibit 2.6.2 - Frequency of Claims by Severity ..... 50
Exhibit 2.6.3 - Frequency of Claims by Vehicle Type ..... 50
Exhibit 2.6.4 - Frequency of Claims by Municipality ..... 51
Exhibit 2.6.5 - Statistical Significance of Safety Analysis ..... 52
Exhibit 2.7.1 - Compliance Rates ..... 54
Exhibit 2.7.2 - Weekly Average Person Hours of Enforcement ..... 55
Exhibit 2.7.3 - Total HOV Occupancy and Other Offences ..... 55
Exhibit 2.7.4 - Hourly Average Violations Rate ..... 56
Exhibit 2.8.0-Highway 1 User Survey Response Statistics ..... 57
Exhibit 2.8.1 - Existing \& New HOVs versus TCH \& Route Switching HOVs ..... 58
Exhibit 2.8.2A - Summary of Motorist Survey - General ..... 60
Exhibit 2.8.2B - Summary of Motorist Survey - Observation \& Opinions 1 ..... 61
Exhibit 2.8.2C - Summary of Motorist Survey - Observation \& Opinions 2 ..... 62
Exhibit 2.8.2D - Summary of Motorist Survey - Comments \& Suggestions ..... 63
Exhibit 2.8.2E - Summary of Motorist Survey - Comments \& Suggestions (Suggestions on HOV Facility) ..... 64
Exhibit 2.8.3 - Breakdown of Stakeholders Responses ..... 65
Exhibit 2.8.4 - Summary of Stakeholders Responses ..... 66
Exhibit 3.1.1 - Highway 1 Travel Time, Speed, and Delay Summary(Phase II) ..... 70
Exhibit 3.1.2B - Before and After Comparisons of Study Section travel Times ..... 71
Exhibit 3.1.2A - Weekday Peak Period - Average Speeds and Travel Time Savings (Before \& After HOV) ..... 72
Exhibit 3.1.3 - Weekday Peak Period - Travel Time Statistical Analysis ..... 73
Exhibit 3.1.4 - Weekday Eastbound Average Speed Thematic Map ..... 74
Exhibit 3.1.5 - Weekday Westbound Average Speed Thematic Map ..... 75
Exhibit 3.1.6 - Approach Queue Length Survey Summary (Fall 1999) ..... 76
Exhibit 3.2.1 - Weekday Eastbound Travel Speeds During Incident Conditions. ..... 79
Exhibit 3.2.2 - Weekday Westbound Travel Speeds During Incident Conditions ..... 80
Exhibit 3.2.3 - Incident Observation Coverage \& Methods ..... 82
Exhibit 3.2.4 - Incident Data Logging ..... 83
Exhibit 3.2.5 - FSP Incident Data Summary ..... 85
Exhibit 3.2.6 - FSP \& Other Agency Response Time Averages ..... 86
Exhibit 3.2.7 - CCTV / Video Taped Incident Data Summary (North Vancouver \& Surrey) ..... 88
Exhibit 3.2.8 - North Shore maintenance contractor Incident Data Summary. ..... 89
Exhibit 3.2.9 - Summary of Incident Duration Data for all Methods ..... 90
Exhibit 3.2.10 - Derivation of Delay Due to Incidents ..... 91
Exhibit 3.2.11A - Average and Total Delays \& Costs due to Incidents with Lane Blockages. ..... 92
Exhibit 3.2.11B - Average and Total Delays \& Costs due to Incidents with Shoulder Blockages ..... 92
Exhibit 3.2.12 - Annual Cost of Delay due to Incidents with Lane \& Shoulder Blockages ..... 93
Exhibit 3.2.13 - Average Available Capacity of Highway 1 Study Segment ..... 93
Exhibit 3.2.14-FSP Actions ..... 95
Exhibit 3.2.15-Average Incident Duration Before and After FSP ..... 96
Exhibit 3.2.16-Linear Relationship of Average Incident Duration to the Cost of Delay ..... 97
Exhibit 3.2.17 - Summary of Incident Delay Costs (in Millions \$) ..... 97
Exhibit 3.2.18 - Benefit/Cost Ratios Of Selected Programs ..... 98
Exhibit 3.3.1 - Percent Difference in Claim Frequency by Project Phase ..... 100
Exhibit 3.3.2 - Safety Impact Contributing Factors ..... 100
Exhibit 3.4.1 - Mainline Volume, Speed, and LOS - Phase II. ..... 104
Exhibit 3.4.2 - AM Peak LOS Phase I and II Comparison ..... 105
Exhibit 3.4.3 - PM Peak LOS Phase I and II Comparison ..... 106
Exhibit 3.4.4 - Mainline Vehicular and Person Throughput Phase I and II Comparison ..... 107
Exhibit 3.4.5 - Total Vehicular and Person Throughput Across the Centre Screenline - Phase II. ..... 108
Exhibit 3.5.1 - Motorist Survey - FSP Related Responses ..... 110
Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)
Exhibit 3.5.2 - Stakeholders Survey - FSP Related Responses ..... 111
Exhibit 4.1.1 - Mechanical Count Stations Along Parallel Routes ..... 112
Exhibit 4.1.2 - Peak Hour Traffic Volume at Count Stations ..... 112
Exhibit 4.1.3 - Vehicle Classification \& Occupancy Survey ..... 113
Exhibit 4.1.4 - Parallel Route Vehicle Occupancies - Weekday Peak Period ..... 114
Exhibit 4.1.5 - Parallel Route Vehicle Classification - Weekday Peak Period ..... 115
Exhibit 4.1.6-Parallel Route Travel Time Survey Locations ..... 116
Exhibit 4.1.9 - Parallel Route Travel Time ..... 117
Exhibit 4.1.7 - Northern Parallel Route Time-Distance Diagram ..... 118
Exhibit 4.1.8 - Southern Parallel Route Time-Distance Diagram ..... 119
Exhibit 4.1.10-Parallel Route Average Travel Time \& Speed ..... 120
Exhibit 4.1.11 - AM Peak Hour Intersection Capacity Analysis ..... 122
Exhibit 4.1.12 - MID-DAY Peak Hour Intersection Capacity Analysis ..... 124
Exhibit 4.1.13 - PM Peak Hour Intersection Capacity Analysis ..... 126
Exhibit 4.2.1 - Parallel Route Before \& After Peak Hour Movement ..... 129
Exhibit 4.2.2 - Parallel Route Before \& After AVOs- AM Peak Period ..... 130
Exhibit 4.2.3 - Parallel Route Before \& After AVOs- MID-DAY Peak Period ..... 131
Exhibit 4.2.4 - Parallel Route Before \& After AVOs- PM Peak Period ..... 132
Exhibit 4.2.5 - Comparison of Highway 1 \& Parallel Route Travel Time \& Speed ..... 133
Exhibit 4.2.6 - Parallel Route Before \& After - Intersection Volume ..... 135
Exhibit 4.2.7-Before \& After LOS - AM Peak Hour ..... 136
Exhibit 4.2.8 - Before \& After LOS - MID-DAY Peak Hour ..... 137
Exhibit 4.2.9 - Before \& After LOS - PM Peak Hour ..... 138

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program
Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

## List of Acronyms

| AID | Automatic Incident Detection |
| :--- | :--- |
| AVO | Average Vehicle Occupancy |
| FSP | Freeway Service Patrols |
| GP | General Purpose |
| HAS | Highway Accident System (MoTH) |
| HOV | High Occupancy Vehicles |
| ICBC | Insurance Corporation of British Columbia |
| MOE | Measure(s) of Effectiveness |
| MoTH | B.C. Ministry of Transportation \& Highways |
| MVA | Motor vehicle Accident |
| Phase I | Prior to the start of the construction of the HOV lanes in October 1997 |
| Phase II | Subsequent to the opening of the HOV lanes on October 28, 1998 |
| Phase III | After HOV and FSP improvements |
| SOV | Single Occupant Vehicle |
| TAS | Traffic Accident System (ICBC) |
| TCH | Trans Canada Highway |
| TMP | Traffic Management Program |

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program

## List of Definitions

| AM Peak Hour | 7:00 AM to 8:00 AM |
| :--- | :--- |
| AM Peak Period | 6:00 AM to 9:00 AM |
| Mid-day Peak Hour | 12:00 PM to 1:00 PM |
| Mid-day Peak Period | 11:00 AM to 1:00 PM |
| PM Peak Hour | 4:00 PM to 5:00 PM |
| PM Peak Period | 3:00 PM to 6:00 PM (to 6:30 or 7:00 PM for some analysis) |


| Mainline | Trans Canada Highway / Highway 1 (TCH) <br> Study Corridor <br> Mainline \& Parallel Routes (North: Lougheed Highway, etc., South: <br> Canada Way, Pattullo Bridge, etc.) |
| :--- | :--- |
| HOV-FSP Section | Mainline, Grandview Highway (Vancouver/Burnaby border) to Lougheed <br> Highway (Cape Horn) Interchange at west end of Port Mann Bridge <br> (Surrey/Coquitlam border), i.e. Highway 1 in Burnaby-Coquitlam |
| Study Section | Mainline, Lynn Valley Road in North Vancouver to Highway 15 (176 Street) <br> in Surrey |
| Screenline 1 | Centre Screenline (TCH, Lougheed Highway at Gaglardi, Canada Way at |
| Screenline 2 | 10 Ah Avenue) <br> King Edward Screenline (TCH, Lougheed Highway at King Edward) |
| Screenline 3 | Fraser River Screenline (Port Mann Bridge, Pattullo Bridge) |
| Screenline 4 | Second Narrows Bridge |
| Screenline 5 | East Screenline (Lougheed Highway, Mary Hill Bypass) |

Exhibit ES-1- Study Section

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program
Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

## Executive Summary

## KEY Findings (Highway 1 HOV-FSP Section "Before/After" Comparison)

1. Person throughput in the central portion of the HOV section has increased by approximately $40 \%$ (or 4500 persons) in the morning (6:00 AM to 9:00 AM) westbound peak direction, and $72 \%$ (or 6700 persons) in the evening (3:00 PM to 6:00 PM) peak direction.
2. Overall traffic volumes in the central portion of the HOV section have increased by approximately $55 \%$ in the peak hour directions, and about $15 \%$ in the off-peak hour directions.
3. HOV lane peak hour volumes are about 1100 vph east of Kensington Avenue in the AM westbound peak direction, and about 1250 vph east of Sprott Street in the PM eastbound peak direction.
4. Average Vehicle Occupancy (AVO) in the central portion of Highway 1 has increased about $5 \%$ to $6 \%$ in both peak period directions.
5. The overall peak direction High Occupancy Vehicle (HOV) versus Single Occupant Vehicle (SOV) split is between $25 \%$ to $30 \%$ HOV and $70 \%$ to $75 \%$ SOV.
6. Average Vehicle Occupancy on TCH at the Port Mann Bridge has increased approximately 3.3 to $6.2 \%$, while the Pattullo Bridge AVOs have decreased approximately 2.5 to $3.6 \%$.
7. Travel time savings are about 20 minutes (64\%) for HOV, and 12 minutes (36\%) for GP traffic in the afternoon eastbound peak hour direction; as well as 7 minutes (44\%) for HOV, and 2 minutes (11\%) for GP traffic in the morning westbound peak hour direction.
8. HOV lane travel time reliability has increased by $24 \%$ in the morning westbound peak hour direction, and $13 \%$ in the afternoon eastbound peak hour direction.
9. In the peak hour direction, "Per Lane Efficiency" has increased $31 \%$ in the morning and $106 \%$ in the afternoon.
10. Levels of Service (LOS) for the GP lanes have improved generally from LOS F to E and D .
11. HOV rule compliance is $85-95 \%$.
12. FSP deal with approximately 300 incidents per month ( 10 per day).
13. A reduction in average incident time duration of approximately $50 \%$ compared to Phase I, and 43\% compared to locations without FSP is observed.
14. The total annual cost of delay due to incidents in the FSP section has decreased about $40 \%$, from $\$ 46$ Million before to $\$ 28$ Million after the HOV and FSP improvement projects.
15. Potential capacity, currently lost due to incident impacts (to be regained by TMP) is between $10 \%$ to $15 \%$ in the peak periods, which at a $1.4 \%$ growth rate could defer infrastructure expenditures by as much as 10 years.

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program
Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

## Executive Summary

16. ICBC crash claims have decreased about $25 \%$, and the cost of claims has decreased about 48\% or about \$4.6 Million, after HOV and FSP improvements.
17. Almost all of the Stakeholder respondents, especially the RCMP, find the FSP to be a clear asset in incident response and clearance.
18. The Highway 1 Motorist Surveys taken after HOV-FSP implementation indicate that:

- About $28 \%$ of the HOV are new carpools, while $72 \%$ were already carpooling.
- About $60 \%$ of the HOV were previously on the TCH, while $40 \%$ switched from the parallel routes.
- About $17 \%$ of the HOV were new carpools formed by SOV on the TCH, while $11 \%$ were new carpools formed by SOV from the parallel routes; and, about $43 \%$ of the HOV were old carpools already on the TCH, while $29 \%$ were old carpools formerly on the parallel routes.
- About $93 \%$ of the SOV were already on the TCH, while $7 \%$ switched from the parallel routes.
- Approximately $52 \%$ of motorists often see the FSP vehicles responding to incidents.
- Approximately $10 \%$ of all respondents have been helped by, or know someone who has been helped by the FSP.
- Approximately $89 \%$ of HOV and $74 \%$ of SOV motorists believe that the designated number of occupants for the HOV lanes should be 2 or more persons (existing rule).
- Approximately $30 \%$ of the SOV said they would be encouraged to become HOV users if their hours of work permitted it, while $20 \%$ require a "good rideshare opportunity" to become HOV users.
- More than $85 \%$ of HOV and $70 \%$ of SOV motorists are satisfied with the HOV and FSP operations.


## RECOMMENDATIONS

It is recommended that:

1. ICBC look at continuing the FSP initiative, and together with BCTFA/MoTH consider expediting the evolution of FSP into the proposed TMP coordinated Roadside Assistance/Emergency Service Patrols.
2. The ICBC Crash Claims Contravention project team consider following up the use of the Highway 1 HOV-FSP section as a prototype for calibrating MV104 trend data and for "piloting" the transition to the proposed new and more comprehensive "consolidated" Police MV104/ICBC claims database.

## Executive Summary

3. Consideration be given to extension of the HOV lanes along the TCH corridor, through the Cassiar Tunnel and possibly over the Second Narrows Bridge, as well as across the Port Mann Bridge, in order to extend the advantages, generate new carpools, and maximize the use of available capacity.
4. The safety analysis of the HOV-FSP section be updated using a complete sample of data from Police, ICBC, and MoTH databases (when the 1999 data is available). Also, additional pre-TMP accident data should be collected using the FSP as an additional source of incident data collection within the HOV portion of the Highway 1.
5. Further accident data analysis and research of experience in other jurisdictions be conducted to estimate more accurately the relative impact of the accident increasing/reducing factors involved in the TCH-HOV-TMP project.
6. Consideration be given to periodic monitoring of the HOV lanes to determine if the improved travel time and trip time reliability, safety and satisfaction incentives are maintained, and to measure the effectiveness of future improvements.
7. A follow-up (Phase III) of this study and report be included as part of the TMP "pilot" project.
8. The scope and timing of the TMP pilot project deployment be coordinated closely with other improvements along the corridor, such that a few fundamental data surveys are made as part of each project.

## INTRODUCTION

Improving traffic management measures by encouraging higher occupant modes of travel through High Occupancy Vehicle (HOV) facilities, and through the deployment of Intelligent Transportation System (ITS) applications, represent two ways of efficiently accommodating increasing travel demands on existing highways.

The Ministry of Transportation and Highways (MoTH) has several major projects underway, targeted at improving person travel accessibility, encouraging more efficient usage of roadway infrastructure, improving travel safety, and improving air quality.

1. HOV Project: a BCTFA-funded $\$ 62$ million widening of the Trans Canada Highway (TCH) from 4 to 6 lanes to provide 2 HOV lanes, over a distance of 16 km from Grandview Highway in Burnaby to Lougheed Highway (Cape Horn) Interchange in Coquitlam. The HOV Project on Highway 1 opened October 28, 1998, and included the following physical components:

- Six laning with provision of median HOV lanes;
- Various ramp improvements,
- Additional lighting;
- Continuous median barrier;
- Wider median shoulders where possible.

2. FSP Project: an ICBC-funded ( $\$ 1.6$ million over 3 years) deployment of Freeway Service Patrols (FSP) started on January 4, 1999 as a forerunner or "precursor" to the proposed TMP coordinated Roadside Assistance/Emergency Service Patrols. This service is designed to assist motorists by detecting, responding to, and clearing, traffic incidents more quickly. The service includes a tow truck and a push truck with appropriate equipment, as well as a temporary Traffic Management Centre (trailer with radio and CCTV), to provide the following services:

- CCTV monitoring for quick detection and response;
- Tow or push disabled vehicles:
- Provide jump starts, gas, water, and minor repairs:
- Remove debris and clean up spills;
- Transport motorists and pedestrians from the Freeway;
- Provide temporary traffic control;
- Record or log all incidents.

3. TMP Pilot Project: a BCTFA-funded $\$ 25$ million initiative, over 4 years, as the first phase of a long-range plan aimed at managing traffic congestion, encouraging more efficient use of roadway infrastructure, improving travel safety, and improving air quality along a 34 km stretch of Highway 1. Subject to further review and clarification, this pilot program includes the section of Highway 1, between Lynn Valley Road in North Vancouver and 160 Street in Surrey, and will include the application of ITS technologies with interagency coordination. The TMP

## Executive Summary

demonstration "pilot" project will deploy two key transportation user service applications on Highway 1, i.e. Incident Management and Traveler Information. The current project scope involves interagency coordination through a Traffic Management Centre to manage the following components:

- Fibre optic communications backbone,
- Coordinated Roadside Assistance/Emergency Service Patrols,
- Digital cameras and automatic incident detection systems;
- Toll-free motorist cell-phone incident reporting system;
- Changeable message signs and other traffic information/control devices;
- Internet and Radio/TV traffic information programming;
- Supporting hardware and software systems, etc.

4. Other Related Projects (not part of Phase II Study): include the following recently completed or proposed near-term future projects:

- Lougheed westbound on-ramp near Coleman Avenue (with ramp signal control) opened Dec. 15, 1999;
- Lougheed westbound on-ramp at Cape Horn I/C - closed Dec. 15, 1999;
- Mary Hill Bypass westbound on-ramp at Cape Horn I/C - proposed;
- Port Mann Bridge 5-laning and HOV lane extension - proposed.

The HOV, FSP, and TMP initiatives are intended to increase the operational lifecycle of this critical urban section of the TCH corridor by optimizing person throughput, providing Incident Management and Traveler Information services, thus reducing delays, improving safety, and minimizing impacts to the environment.

As part of its program evaluation mandate, MoTH retained IBI Group in August of 1997 (prior to the construction of the HOV lanes) to develop and implement Phase I of a staged monitoring and evaluation methodology for evaluating the incremental benefits of the HOV lanes and the TMP pilot project as it unfolds.

IBI Group carried out the first phase of that program which included the collection and analysis of related traffic data to establish a "before" baseline prior to implementation of the HOV and TMP projects. Data for the Phase I "before" study was collected in September/October 1997.

Two years later (one year after the opening of the HOV lanes October 28, 1999), IBI Group carried out Phase II of the TCH Monitoring and Evaluation Program data collection. This report presents the analyses and findings of this Phase II "after" study. In addition to the evaluation of the HOV lanes, this report evaluates and documents the benefits of the ICBC-funded FSP deployment starting January 4, 1999. Also, the Phase II study is intended to provide a secondary baseline for measuring the benefits of further evolution of the FSP and the initiation of other TMP components described above.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Executive Summary

## Study Cost and Objectives

The overall BCTFA-funded "Before/After" (Phase I \& II) TCH-HOV Evaluation \& TMP Baseline study cost approximately $\$ 1 / 2$ Million, but over $3 / 4$ of that is reusable survey data, such as traffic counts, travel times, vehicle occupancy, incident frequency, etc.

This Phase II report reveals that HOV and FSP objectives have been achieved, and that MOEs and baselines for the TMP are reliable. The report also reveals more general and aggregate improvements resulting from the array of improvements along the Highway 1 sections between North Vancouver and Surrey. Attributing these benefits to specific improvements is however difficult because the contributing factors are so numerous and overlapping.

The HOV-FSP Section covers the 16 km of TCH between Grandview Highway and Cape Horn, while the TMP section lies within the 34 km stretch of the TCH between the Lynn Valley Road overpass in North Vancouver and 160 Street overpass in Surrey. The Study Section (Lynn Valley Road to 176 Street) is shown in ES-1 (at the beginning of this Executive Summary). The Study Corridor includes parallel arterial roadways that provide alternate routes for Highway 1 traffic in these sections.

The primary objectives of the Phase II Monitoring and Evaluation Program were defined as follows:
$\checkmark$ Review HOV and TMP Measures of Effectiveness (MOEs) identified in Phase I and confirm the application of the developed methodology for a quantitative evaluation of the MOEs for both "before" and "after" surveys.
$\checkmark$ Coordinate and conduct data collection activities for the "after" HOV conditions, the "after" FSP conditions, and the "before" TMP conditions.
$\checkmark$ Analyze all the data collected and compare before and after statistics to document HOV and FSP/CCTV benefits, and any background changes affecting the TMP second baseline travel patterns.

## HOV MONITORING \& EVALUATION

By providing higher travel speed and lower travel time variability, the HOV facility is expected to encourage a modal shift to higher occupancy vehicles, resulting in an increase in the person carrying throughput of the highway, optimization of travel speeds, more reliable travel times and a reduction in energy consumption and vehicle emissions due to reduced delays and congestion.

In order to evaluate these expected benefits, eight objectives were defined:

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

## Executive Summary

1. Increase Person Movement Throughput;
2. Provide Travel Time Savings;
3. Improve Trip Travel Time Reliability;
4. Increase Per-Lane Efficiency;
5. Minimize Negative Impacts on General Purpose (GP) Lanes;
6. Maintain Safety;
7. Obtain Compliance
8. Acquire Public and Stakeholder Acceptance \& Satisfaction

For each of these objectives, measures of effectiveness (MOEs) were defined. These MOEs dictated the traffic data requirements to measure the degree of achievement of each of the objectives. The evaluation relative to each of the objectives is described below.

## HOV Objective 1: Increase Person Movement Throughput

The new HOV lanes have significantly increased the person movement throughput along the HOV section of TCH and its parallel routes during the peak periods. The key MOEs for measuring increases in person throughput are before and after Average Vehicle Occupancy comparisons, and before and after comparisons of HOV market share.

Overall traffic volumes in the central portion of the HOV section have increased by approximately $55 \%$ in the peak hour directions, and about $15 \%$ in the off-peak hour directions.

## Average Vehicle Occupancy (AVO)

Peak direction AVOs have increased by approximately 2.5\% to $4.4 \%$ along the Centre screenline (TCH, Lougheed Highway, and Canada Way) near the Gaglardi interchange, and between $5.3 \%$ and $9.4 \%$ across the King Edward Screenline (TCH and Lougheed Highway) near Brunette. Increases in AVO across the screenlines have been significant on the TCH , without significant decreases on the parallel routes, confirming that the HOV lanes have induced the generation of new carpools. Exhibit ES-2 provides a summary of before and after AVOs.

Exhibit ES-2 - Before \& After AVO Changes by Screenline

| WESTBOUND <br> AM PEAK PERIOD | September 1997 <br> AVO | September 1999 <br> AVO | \% Difference |  |
| :--- | :---: | :---: | :---: | :---: |
| Centre Screenline: Lougheed, TCH, <br> Canada Way (West of King Edward) | 1.14 | 1.19 | $+4.4 \%$ |  |
| King Edward Screenline: Lougheed, <br> TCH (east of Brunette) | 1.13 | 1.19 | $+5.3 \%$ |  |
| Fraser River Screenline: Pattullo Bridge, <br> Port Mann Bridge | 1.16 | 1.19 | $+2.6 \%$ |  |
| Second Narrows Screenline: Second <br> Narrows Bridge only | 1.11 | 1.13 | $+1.9 \%$ |  |

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT) Executive Summary

| EASTBOUND <br> PM PEAK PERIOD | September 1997 <br> AVO | September 1999 <br> AVO | \% Difference |
| :--- | :---: | :---: | :---: |
| Centre Screenline: Lougheed, TCH, <br> Canada Way (West of King Edward) | 1.24 | 1.27 | $+2.4 \%$ |
| King Edward Screenline: Lougheed, <br> TCH (east of Brunette) | 1.17 | 1.28 | $+9.4 \%$ |
| Fraser River Screenline: Pattullo Bridge, <br> Port Mann Bridge | 1.20 | 1.23 | $+2.5 \%$ |
| Second Narrows Screenline: Second <br> Narrows Bridge only | 1.20 | 1.23 | $+2.9 \%$ |

Some diversions in existing HOVs have been observed across the Fraser River screenline (Pattullo Bridge and Port Mann Bridge), where the TCH/Port Mann Bridge AVOs have increased significantly (approximately 3.3 to $6.2 \%$ ), while the Pattullo Bridge AVOs have decreased significantly (approximately 2.5 to $3.6 \%$ ).

## Person Throughput

In general AVOs are the best measure of person throughput because they are normalized by the before and after number of vehicles. Raw person throughput data can also be used to measure the degree to which this objective is achieved, but are not as reliable since traffic volume variations can significantly sway results. Using the AVOs and the available short count data collected during September of 1997 and 1999, changes in person throughput along Highway 1 near Gaglardi interchange (central and representative portion of the HOV section) are summarized in Exhibit ES-3.

Exhibit ES-3-Before \& After Person Throughput at the Central Portion of the HOV Section

| Highway at Gaglardi Interchange (Central Portion of HOV Section) |  |  |  |
| :--- | :---: | :---: | :---: |
| Peak Period / Direction <br> Person Throughput | Before | After | \% Change |
| AM Period (6:00-9:00) <br> Westbound | 11,200 | 15,700 | $40 \%$ |
| PM Period (3:00-6:00) <br> Eastbound | 9,200 | 15,900 | $72 \%$ |

Review of the person volume data indicates that total person movement throughput along the Highway 1 HOV Section has increased by approximately $40 \%$ in the AM westbound peak direction, and $72 \%$ in the PM eastbound peak direction. When interpreted with the overall AVO increase observations across all screenlines, it can be confirmed that the increase in person throughput is due to an increase in higher occupant modes, and not just an increase in traffic volumes. The increase in person throughput beyond normal growth can be accounted for by attraction of SOVs and HOVs from parallel routes (such as Lougheed Highway and Canada Way / Pattullo Bridge), and by satisfaction of latent demand (where more people are able to make the trip they want when they want, etc).

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT)

Executive Summary

## HOV Market Share

Significant increases in HOV market share have been observed primarily in the peak direction. Specifically, the percentage of people in the HOVs has increased between 9\% and $12 \%$ across the King Edward screenline, 2\% to $4 \%$ across the Centre screenline, and $3 \%$ to $5 \%$ across the Fraser River screenline during the AM and PM peak directions. Exhibit ES-4 provides a tabulation of before and after HOV market share percentages.

Exhibit ES-4-Before \& After HOV Market Share Changes by Screenline

| AM PESTBOUND \% of People in HOVs  <br>    <br>  September 1997 September 1999 |  |  |  |
| :--- | :---: | :---: | :---: |
|  | $27 \%$ | $29 \%$ | $+2 \%$ |
| King Edward Screenline: <br> Lougheed, TCH (east of Brunette) | $20 \%$ | $29 \%$ | $+9 \%$ |
| Fraser River Screenline: Pattullo <br> Bridge, Port Mann Bridge | $25 \%$ | $30 \%$ | $+5 \%$ |
| Second Narrows Screenline: <br> Second Narrows Bridge only | $17 \%$ | $21 \%$ | $+4 \%$ |


| EASTBOUND <br>  <br> PM PEAK PERIOD | \% of People in HOVs |  | \% Difference |
| :--- | :---: | :---: | :---: |
|  | September 1997 | September 1999 |  |
| Centre Screenline: Lougheed, <br> TCH, Canada Way (near Gaglardi) | $34 \%$ | $38 \%$ | $+4 \%$ |
| King Edward Screenline: <br> Lougheed, TCH (east of Brunette) | $27 \%$ | $39 \%$ | $+12 \%$ |
| Fraser River Screenline: Pattullo <br> Bridge, Port Mann Bridge | $31 \%$ | $34 \%$ | $+3 \%$ |
| Second Narrows Screenline: <br> Second Narrows Bridge only | $29 \%$ | $33 \%$ | $+4 \%$ |

## HOV Objective 2: Provide Travel Time Savings

The new HOV lanes provide significant travel time savings to HOVs relative to Phase I conditions prior to the construction of the HOV lanes, and relative to adjacent current GP traffic (Phase II). In the AM peak period westbound, HOVs save 7.3 minutes compared to travel times in Phase I, and 5.6 minutes compared to the GP traffic currently in the lanes next to them. In the PM peak period eastbound, HOVs save 20.3 minutes compared to travel times in Phase I, and 8.7 minutes compared to the GP traffic currently next to them. All of the savings were found to be statistically significant at the 95\% level.

Exhibit ES-5 provides a tabulation of travel time comparisons travel times along the HOV/FSP corridor parallel routes. It can be observed that the Highway 1 travel times are consistently lower than the parallel routes, predominantly due to the arterial nature of those routes. It is interesting to note that the parallel route travel times are lower in the peak direction, than in the off-peak, illustrating the benefits of signal coordination.

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT)

Executive Summary
Exhibit ES-5 - HOV/FSP Corridor Phase II Travel Time and Speed Comparison


## HOV Objective 3: Improve Trip Time Reliability

Variances in average speeds along the HOV lanes were also observed to be significantly lower when compared to Phase I variances, and when compared to current GP variances in average speed. In the westbound AM peak direction, HOV trip time reliability has increased by $27 \%$ and $24 \%$ relative to previous (Phase I) conditions, and current (Phase II) GP conditions, respectively. In the eastbound PM peak direction, HOV trip time reliability has increased by $13 \%$ and $17 \%$ relative to Phase I conditions, and current GP conditions, respectively. All of the differences were found to be statistically significant at the $95 \%$ level.

## HOV Objective 4: Increase Per Lane Efficiency

An increase in the efficiency of the HOV section has been observed, as measured by increased person throughput and increased operating speeds (averaged for all three lanes). In the peak directions, the per lane efficiency has increased by 31\% for the westbound AM peak period, and an astounding $106 \%$ for the PM peak period eastbound, clearly showing the efficiency improvements when capacity is utilized to its potential with higher occupant modes of travel.

## HOV Objective 5: Minimize Negative Impacts on GP Lanes

The new HOV lanes have not adversely affected the GP lane operations, as measured in terms of average GP speeds and levels of service. Average GP speeds have increased in all periods and directions as a result of the additional capacity and the absorption of existing HOVs by the new lanes. Although not an objective to improve conditions for GP traffic, some of the GP travel times savings were also observed to be statistically significant. LOS were also observed to improve for the GP lanes, increasing from LOS F to E and D in the peak directions.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Executive Summary

## HOV Objective 6: Maintain Safety

The assessment of safety impacts to the HOV/FSP section was based on comparisons of crash claims data, as obtained from ICBC's claims database, for the periods before, during and after construction of the HOV lanes. It was initially intended to use MoTH's Highway Accident System (HAS) which is based on the ICBC's Traffic Accident System (TAS) and Police MV104 accident database; however, this data was not available at the time of this project.

Comparisons of the claims data indicate a noticeable increase in the number of accident related claims during the construction period, but a dramatic decrease in the frequency of claims and total associated claim costs after the construction of the HOV facility and the FSP service. Specifically, when compared to the total number of annualized claims prior to construction of the HOV lanes, claims increased by $22 \%$ during construction, but decreased (from the pre-construction phase) by $25 \%$ in the year subsequent to the HOV and FSP operations. In terms of cost of claims, the costs increased by approximately $\$ 400,000$ during construction of the HOV lanes, but decreased by $\$ 4.6$ million from before construction, expressed on an annual basis.

Although claims data is not a comprehensive source of safety data, the general reduction in accident claims tentatively confirms that safety has been maintained along the Highway 1 HOV and FSP section since the construction of the HOV lanes and deployment of the FSP.

## HOV Objective 7: Obtain Compliance

HOV lane compliance rates were observed to be satisfactory in all periods and directions, ranging between 90 to $95 \%$, except near the east terminus of the eastbound HOV lanes where AM compliance rates of $85 \%$ were observed. The proximity of the measurements to the terminus of the lanes suggests that during peak conditions, GP traffic may enter the HOV lanes close to its terminus. Nevertheless, most agencies including MoTH target a minimum compliance rate of $85 \%$. The TCH HOV lanes clearly achieve this.

Comparison of 2+ HOV compliance data six months after the HOV lanes opened, versus one year after, indicates consistency in the results, with compliance rates increasing between 6 to $11 \%$ near the Gaglardi interchange, and decreasing by 3 to $8 \%$ near the Cape Horn terminus of the HOV lanes

Analysis of all HOV-related offences (including 2+ non-compliance) since the opening of the lanes indicates that the frequency of offences has not increased or decreased. However, the allocation of enforcement resources has been optimized by starting out with higher levels of enhanced enforcement and accordingly reducing the effort to the required amount of enforcement to maintain standards.

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program
Phase II hOV Evaluation \& tMP Baseline (FINAL REPORT)

## Executive Summary

## HOV Objective 8: Acquire Public Acceptance and Satisfaction

Information, observation, and opinion seeking surveys were distributed to TCH motorists, as well as to a selected sample of stakeholders, to document acceptance and satisfaction with the HOV lanes. Based on responses from approximately 566 motorists on Highway 1 (with an appropriate $30 \%$ to $70 \%$ HOV and SOV split), public acceptance and satisfaction was observed to be very high (stakeholders even higher).

Exhibit ES-6 below summarizes the critical attributes of the full sample of HOV respondents, broken down by whether they are newly formed or existing, and whether they were already on the TCH or switched from parallel routes.

Exhibit ES-6 - Existing \& New HOVs versus TCH \& Route Switching HOVs

| TCH Sample of HOV Users | Already on Highway 1 | Switched from Parallel Routes | Totals |
| :---: | :---: | :---: | :---: |
| Existing HOVs <br> (i.e. already carpooling prior to HOV lanes) | 43\% | 29\% | 72\% |
| New HOVs <br> (i.e. carpooling after HOV lanes) | 17\% | 11\% | 28\% |
| Totals | 60\% | 40\% | 100\% |

Of the sample of all HOV users, the surveys indicate that:

- About $28 \%$ of the are new carpools, while $72 \%$ were already carpooling.
- About $60 \%$ of were already on the TCH, while $40 \%$ switched from the parallel routes.
- About $17 \%$ of the HOVs were new carpools formed by SOVs on the TCH, while $11 \%$ were new carpools formed by SOVs on the parallel routes.
- About $43 \%$ of the HOVs were carpools already existing on the TCH, while $29 \%$ were carpools already on the parallel routes.
Results were consistent irrespective of the respondents' mode of travel and confirm that for most of the acceptance and satisfaction accounts used (relating to HOV benefits and safety), more than $70 \%$ of SOVs and $85 \%$ of HOVs are satisfied. Also, approximately $89 \%$ of HOV and $74 \%$ of SOV motorists believe that the designated number of occupants for the HOV lanes should be 2 or more persons (existing rule).

Primary issues raised by the respondents related to HOV expansion and improvements across the Port Mann Bridge, as well as the need for additional enforcement. Only 23\% of the SOVs indicated a desire to limit the HOV lanes to peak periods only.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT)

Executive Summary

## Summary of HOV Benefits

All of the HOV project objectives have been achieved, with expected benefits attained:

1. Person movement throughput has increased significantly through the formation of new carpools, as opposed to merely diversion of existing HOV traffic from other parallel facilities
2. HOVs experience significant travel time savings in both peak periods and directions
3. Trip times are significantly more reliable for HOV traffic
4. Per lane efficiency during the peak directions has significantly increased due to the movement of more persons at optimum average speeds
5. GP lanes have not been adversely affected but operate better now due to the added capacity
6. Safety has not been compromised, with the total frequency and cost of claims decreasing
7. Compliance is above the desired $85 \%$ minimum for all directions and time periods
8. More than $70 \%$ of the SOVs and $85 \%$ of the HOVs view the HOV lanes as a benefit to their transportation system and are satisfied with its benefits.

## TMP MONITORING \& EVALUATION

The TMP is intended to increase the efficiency and operational lifecycle of this critical urban section of the Highway 1 corridor by providing Incident Management and Traveler Information services, and thus improving vehicle throughput, reducing delays due to incidents, and reducing accidents.

Similar to the HOV evaluation, a set of objectives was defined to evaluate the benefits expected from the TMP as well as interim benefits associated with the FSP. The objectives identified were:

1. Reduce/Manage Recurrent Congestion
2. Reduce/Manage Non-Recurrent Congestion
3. Improve Safety
4. Optimize Efficient Use of Capacity
5. Acquire Public Acceptance \& Satisfaction

Using the MOE's and data requirements identified for the TMP evaluation objectives, a second baseline of data were collected and analyzed for the TMP to reflect pre-and post-HOV conditions. Where applicable, the FSP benefits were evaluated as part of the TMP objectives of reduced non-recurrent congestion and improved safety. Relevant before and after comparisons were made in an attempt to differentiate the changes due to HOV, FSP and TMP,

## TMP Objective 1: Reduce/Manage Recurrent Congestion

Recurrent congestion is due to regular, daily high levels of traffic relative to capacity, which regularly create traffic congestion and delays. The primary MOE for measuring the reduction in recurring congestion is average speeds and travel times along the entire

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& tMP Baseline (FINAL REPORT)

Executive Summary
length of the Study section. Exhibit ES-7 below tabulates before and after travel time estimates, providing a breakdown by the key study sections. Differences between Phase I and II travel times within the North Vancouver and Surrey sections were observed to be negligible; this was expected since no major improvements were implemented in these sections since Phase I. The results do indicate an "end to end" (Lynn Valley Road to 176 Street) travel time saving of 13.8 minutes for the eastbound PM peak period, confirming that the benefits of the HOV and FSP improvements are significant and extend well beyond the boundaries of the HOV / FSP section.

Exhibit ES-7- Before and After Comparisons of Study Section Travel Times

| Travel Time Comparisons <br> (Minutes) | AM Peak Direction (WB) |  |  | PM Peak Direction (EB) |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Before | After | Savings | Before | After | Savings |
| North Vancouver \& Vancouver Section: <br> Lynn Valley to Grandview Highway | 15.7 | 17.1 | $\mathbf{- 1 . 4}$ | 8.7 | 8.2 | $\mathbf{0 . 5}$ |
| Vancouver Coquitlam <br> HOV \& FSP Section | 16.7 | 14.9 | $\mathbf{1 . 8}$ | 32 | 20.3 | $\mathbf{1 1 . 7}$ |
| Coquitlam \& Surrey Section: Cape <br> Horn to 176 Street | 8.2 | 7.4 | $\mathbf{0 . 8}$ | 8.8 | 7.2 | $\mathbf{1 . 6}$ |
| Lynn Valley to 176 Street <br> Total Study Section | $\mathbf{4 0 . 6}$ | $\mathbf{3 9 . 4}$ | $\mathbf{1 . 2}$ | $\mathbf{4 9 . 5}$ | $\mathbf{3 5 . 7}$ | $\mathbf{1 3 . 8}$ |

This second baseline of travel time data for evaluating the TMP complements the Phase I baseline well, is statistically reliable, and will permit separating the effects of the HOV and "precursor" FSP improvements from other forthcoming TMP improvements. Phase III "after" evaluation of TMP should reflect more significant savings along this length of the Study section due to improved traffic management and traveler information services. Collection of Phase III travel time data will be more efficient, if volume and speed data are extractable from an Automatic Incident Detection (AID) system.

## TMP Objective 2: Reduce/Manage Non-Recurrent Congestion

Non-recurrent congestion results from random traffic incidents, such as accidents and stalls, which reduce available capacity by blocking lanes and/or shoulders and therefore delay the flow of traffic.

Non-recurrent congestion can be reduced and managed by reducing the overall duration of incidents, by detecting, responding, and clearing incidents faster. The primary MOE for this objective is reduced incident durations. A supporting MOE, which is a function of incident duration, is reduced delay due to incident blockages.

A substantial database of incident data (such as type, location, time, direction, response time, lane blockages, and clearance times) was logged during Phase I and Phase II using the FSP traffic management centre, temporary CCTV installed specifically for this project, and the North Shore maintenance contractor. This data has been used to evaluate the FSP, in terms of this objective of managing and reducing non-recurrent congestion. Comparisons are made between Phase I incident data capturing the no FSP scenario, the Phase II data capturing the with FSP scenario for the HOV-FSP section,

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT)

## Executive Summary

and the Phase II data without FSP scenario using data from other sections of the Study corridor. The data has also been used to establish a post-HOV and pre-TMP baseline of data for the TMP.

## Incident Duration

A comparison of the Phase I and II incident duration data is provided in Exhibit ES-6 below.

Exhibit ES-8 - Incident Duration Comparisons

| Incident Data Source | Coverage Area | Average Response Time (min) | Average Clearance Time (min) | Average Incident Duration (min) |
| :---: | :---: | :---: | :---: | :---: |
| Phase I <br> (Visual Observations) | HOV/FSP Section | 23.0 | 19.0 | 41.0 |
| Phase II FSP Data Logs | HOV/FSP Section | 7.1 | 13.8 | 21.0 |
| Phase II CCTV \& Video-taping | North Vancouver Section | 23.7 | 38.9 | 61.5 |
| CCTV \& Video-taping | Surrey Section | 3.4 | 13.4 | 14.8 |
|  | Average of Both Sections | 10.3 | 22.0 | 29.3 |
| Phase II North Shore Contractor | First Avenue to 2nd Narrows | 19.7 |  | 19.7 |

Specific conclusions drawn include:

- FSP Evaluation: The FSP currently respond to approximately 300 incidents per month. In the HOV and FSP section of the corridor, the average incident duration has been reduced by approximately $50 \%$, from 41 minutes to 21 minutes. This reduction is the result of a reduction in response times from 23 minutes down to 7 minutes, and a reduction in average incident clearance time from 19 minutes to 14 minutes, clearly reflecting the benefits of CCTV monitoring and FSP incident response, and clearance.
- TMP Baseline: Along the North Vancouver and Surrey sections of the study corridor where maintenance contractor service vehicles are present, but without FSP/CCTV, the average incident duration is 30 minutes. In both cases, the incident duration is comprised of approximately one-third response time and twothird clearance time. Along the HOV and FSP section of the corridor, the average duration of incidents is 21 minutes with FSP (Phase II), and 41 minutes without FSP (Phase I).


## Delay Due to Incident Lane \& Shoulder Blockage

The incident data were also used to estimate delays and costs resulting from lane and shoulder blockages. It is observed that incidents involving lane blockages comprised $18 \%$ of all incidents at an annualized user cost of $\$ 13.5$ million, while the remaining $82 \%$ of incidents resulting in shoulder blockages cost users over $\$ 14.7$ million. It was further

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program
Phase II hOV Evaluation \& TMP Baseline (Final REPORT)

## Executive Summary

determined that the average frequency and duration of lane and shoulder blockages, during the peak directions, results in a $15 \%$ reduction in capacity.

Incident user cost estimates were also used to further demonstrate FSP benefits. Linear regression techniques were used to determine a relationship between average incident duration and the cost of delays due to incidents. It was estimated that the reduction in incident durations from 41 minutes to 21 minutes translates to an approximate $\$ 18$ million dollar reduction in user costs attributable to incident delays.

## TMP Objective 3: Improve Safety

Safety analysis of the TCH was limited to the analysis presented under the HOV safety objective. This analysis identified a significant decrease in the frequency of accident claims and associated costs since the opening of the HOV lanes.

Exhibit ES-9- Percent Difference in Claim Frequency by Project Phase


Exhibit ES-9 provides a summary of the increase and decrease in accident claim frequencies when comparing pre HOV lane conditions to post HOV and pre-FSP, and post-HOV and FSP conditions. An approximate $25 \%$ reduction in crashes is observed when comparing the safety performance of the Highway 1 study section before and after the HOV and FSP improvement projects.

Preliminary analysis by MoTH, of raw MV104 accident data obtained from the Police, indicates a $10 \%$ reduction in crashes when comparing the safety performance of the Highway 1 study section before and after the HOV and FSP improvement projects. However, temporary enhanced Police enforcement (paid by BCTFA) may have led to an increase in MV104 reporting after the HOV-FSP improvements (this following a few years of decreased reporting starting in 1996). The MV104 accident reports generally make up $25 \%$ to $30 \%$ of the ICBC claims data on crashes.

A portion of the above $10 \%$ to $25 \%$ crash reduction benefits may be attributable to improved incident response, management, and clearance by the FSP, but is difficult to separate from potential safety benefits of other improvements along the HOV and FSP

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT)

## Executive Summary

segment. Exhibit ES-10 below provides a tabulated summary of potential safety impacts associated with changes in the HOV and FSP segment of Highway 1.

Exhibit ES-10 - Safety Impact Contributing Factors

| Contributing Factors | Potential Safety Impact |
| :--- | :---: |
| Fsp | $\checkmark$ Positive |
| Continuous lighting | $\checkmark$ Positive |
| Traffic growth | $\times$ Negative |
| Addition of Capacity through six Laning of Highway 1 | $\checkmark$ Positive |
| Continuous median barrier | $\checkmark$ Positive |
| Provision of 3 meter left shoulder where possible | $\checkmark$ Positive |
| Less stop and go | $\times$ Positive |
| HOV versus GP Speed Differential with weaving | $\times$ Negative |
| Additional lane ends and merge conflicts | $\times$ Negative |

Prior to implementation, it was estimated that the ICBC Freeway Service Patrols and *4444 incident reporting system (CCTV detection was used instead of *4444) would improve safety by clearing incidents more quickly, and thereby reduce accidents by 5 12\% (TMP Business Plan, by Delcan, 1995; and ICBC Review of Systems for Freeways, by Hamilton Associates, 1997). Although the $25 \%$ reduction in collision claims made to ICBC since the construction of the HOV lanes and the deployment of the FSP cannot be broken down, it does tentatively confirm that the safety benefits of recent improvements along the HOV and FSP sections of Highway 1 are substantial and may equal or exceed earlier estimates.

## TMP Objective 4: Efficient Use of Capacity

This objective is intended to demonstrate that the utilization of capacity between the mainline and the parallel routes is optimized, especially during non-recurrent (incident) congestion when traffic may divert to adjacent routes with spare capacity. The MOE proposed for this objective is total person throughput across key screenlines which reflect diversion impacts, such as across TCH, Lougheed Highway and Canada Way near the Gaglardi interchange. Baseline throughput data has been collected, for future comparisons after the deployment of the TMP pilot project.

## TMP Objective 5: Public Acceptance and Satisfaction

At this point, prior to the deployment of the TMP pilot project service applications, the public acceptance and satisfaction questions were limited to FSP and general questions on the impacts and benefits of responding to and clearing incidents faster. Survey results were based on a large sample of TCH users and a smaller sample of transportation agencies stakeholders. Approximately $60 \%$ of TCH users, and $90 \%$ of the stakeholders often see the FSP respond to traffic incidents and agree that clearing incidents quickly minimizes congestion and leads to secondary benefits like improved air quality and lower fuel consumption. Almost all of the stakeholder respondents, especially the RCMP, find the FSP to be a clear asset in incident response and clearance.

COLUMBIA
Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

## Executive Summary

All of the fundamental traffic data elements required to support the evaluation of the TMP pilot project have been collected for pre and post-HOV conditions consistent with the recommended study methodology and evaluation methodologies used for other similar evaluations. The following results have been derived during this secondary baseline of the TMP pilot project evaluation:

## Summary of Phase II TMP Baseline \& FSP Benefits

$\checkmark$ Statistically reliable travel time data has been collected to complement the same data collected in Phase I for the evaluation of reductions in recurrent congestion delays. Marginal differences were observed between Phase I and II, except in the PM peak eastbound direction where significant travel time savings were observed ( 13.8 minutes) primarily due to the benefits associated with the HOV and FSP sections.
$\checkmark$ The database of incident data has been expanded to include over 800 incidents. A reduction in average incident duration times of approximately 50\% on sections patrolled by the FSP compared to Phase I, Total user cost of delay due to incident lane blockages has been reduced from \$46M to \$28M per year due to the FSP and overall improved operations with the HOV lanes. Potential capacity to be gained with TMP is between $10 \%$ to $15 \%$, which at a $1.4 \%$ annual growth rate, could defer infrastructure expenditures by 10 years.
$\checkmark$ All collision data, available at the time of the study, was collected for establishing a second post-HOV and pre-TMP baseline for measuring improved safety. Claims data from ICBC was used to compare frequency of accidents before, during, and after construction of the HOV lanes, and after deployment of the FSP. The accident analysis indicated substantial crash claims reductions as a result of the HOV and FSP implementation programs.
$\checkmark$ Average speed, volume and occupancy data have been used to establish baseline throughput estimates across the west screenline of TCH, Canada Way, and Lougheed Highway at Gaglardi for throughput comparisons with the post TMP data.
$\checkmark$ Public acceptance and satisfaction with the FSP is high, with approximately $60 \%$ of the respondents aware of the FSP, and the benefits of short incident duration times due to improved traffic management.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

## 1 INTRODUCTION

The purpose of this report is to summarize the methodology, analyses, and results of Phase II of the Trans Canada Highway (TCH) monitoring and evaluation program. This three phase program began in August of 1997 (prior to the construction of the HOV lanes) to develop a staged monitoring and evaluation methodology for evaluating the incremental benefits of the High Occupancy Vehicle (HOV) lanes opened on October 28, 1999, and the Traffic Management Program (TMP) pilot project as it unfolds.

The Phase I Study was completed in March of 1998 and established a "before" baseline representing conditions prior to implementation of the HOV and TMP projects. Data for the Phase I study was collected in September/October 1997.

In September of 1999, approximately one year after the opening of the HOV lanes, data collection for this Phase II Study began. This report presents the analyses and findings of the Phase II study which includes the evaluation of the HOV lanes, and establishes a second baseline for the TMP to represent post-HOV conditions.

### 1.1 Phase II Study Cost and Objectives

The overall BCTFA-funded "Before/After" (Phase I \& II) TCH-HOV Evaluation \& TMP Baseline study cost approximately $\$ 1 / 2$ Million, but over $3 / 4$ of that is reusable survey data, such as traffic counts, travel times, vehicle occupancy, incident frequency, etc.

The HOV-FSP Section covers the 16 km of TCH between Grandview Highway and Cape Horn, while the TMP section lies within the 34 km stretch of the TCH between the Lynn Valley Road overpass in North Vancouver and 176 Street overpass in Surrey. The Study section is shown in Exhibit 1.1.1. The Study Corridor includes parallel arterial roadways that provide alternate routes for Highway 1 traffic in these sections.

The primary objectives of the Phase II Monitoring and Evaluation Program were defined as follows:
$\checkmark$ Review HOV and TMP Measures of Effectiveness (MOEs) identified in Phase I and confirm the application of the developed methodology for a quantitative evaluation of the MOEs for both "before" and "after" surveys.
$\checkmark$ Coordinate and conduct data collection activities for the "after" HOV conditions, the "after" FSP conditions, and the "before" TMP conditions.
$\checkmark$ Analyze all the data collected and compare before and after statistics to document HOV and FSP/CCTV benefits, and any background changes affecting the TMP secondary baseline travel patterns.

|  | Ministry of Transportation \& Highways |
| :---: | :---: |
|  | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program |
|  | Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT) |

Exhibit 1.1.1-Study Section

| , | Ministry of Transportation \& Highways |
| :---: | :---: |
|  | highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase il hov Evaluation \& TMP Baseline (FINAL REPORT) |

In meeting these objectives, the Phase II study included a comprehensive data collection program (see Appendices bound separately) comprising the following surveys tabulated in Exhibit 1.1.2:

## Exhibit 1.1.2 - Phase II Data Collection Tasks

| Description |
| :--- |
| Data Collection - Trans Canada Highway |
| 24 Hour Mechanical Counts |
| Travel Time/Speed/Delay Survey |
| Trip Reliability Surveys |
| Vehicle Classification and Occupancy Counts |
| Incident Logging \& Observation |
| Data Collection - Network/Parallel routes |
| 24 Hour Mechanical Counts |
| Intersection Counts |
| Vehicle Classification and Occupancy Counts |
| Travel Time Survey |
| Motorists \& Stakeholders Survey |
| Motorist Survey |
| Stakeholder Survey |
| Queue Length Survey |

The Phase I and II data collection programs were generally identical, except:

- mainline travel time surveys were doubled to cover both HOV and GP lanes;
- small sample parallel route travel time surveys were added;
- motorist and stakeholder observation and opinion surveys were conducted.

Both the Phase I and II data collection programs were carried out during the same time period, i.e. late August to early October of 1997 and 1999 respectively.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

## 2 HOV MONITORING \& EVALUATION

The benefits of HOV facilities are realized by a shift to higher-occupancy vehicles, such as carpools, vanpools and buses, resulting in an increase in vehicle occupancy and person carrying throughput of the highway corridor, an increase in average travel speeds on the less congested HOV lanes, more reliable trip travel times, and a reduction in energy consumption and vehicle emissions.

Recognizing these potential benefits, the Province of British Columbia has invested in a $\$ 62$ million HOV project - spanning a 16 kilometre stretch of the Trans-Canada Highway between the Cape Horn and Grandview interchanges. The highway has been widened from 4 lanes to six lanes, with the new lane in each direction reserved for 2+ car pools, van pools, buses and motorcycles on a 24 hour basis. Construction of the project began in October of 1997, and the facility was open for public use on October 28, 1998.

In August of 1997, prior to the construction of the HOV lanes, IBI Group developed a monitoring and evaluation framework to evaluate the (then proposed) Highway 1 HOV lanes, as well as the future TMP relative to the expected benefits. The evaluation framework was structured around the definition of clear and concise "objectives" and associated Measures of Effectiveness (MOEs) to measure the extent to which they are achieved.

This framework reflected previous work by MoTH, and by other agencies for similar evaluations. Specifically, MoTH's draft HOV Operations Implementation Manual for the Trans Canada Highway HOV facility was used as a reference for the objectives and the measures of effectiveness, along with other literature and research including the Texas Transportation Institute document entitled An Assessment of High Occupancy Vehicle Facilities in North America. The evaluation objectives are:

1. Increase Person Movement Throughput;
2. Provide Travel Time Savings;
3. Improve Trip Travel Time Reliability;
4. Increase Per-Lane Efficiency;
5. Minimize Negative Impacts on General Purpose (GP) Lanes;
6. Maintain Safety;
7. Obtain Compliance
8. Acquire Public and Stakeholder Acceptance \& Satisfaction

The data collection program for the Phase I evaluation framework began at the end of August and finished in October of 1997, forming a pre-HOV baseline. In September/October of 1999, the complimentary collection of Phase II post-HOV data supporting the above objectives and their MOEs was completed. Motorist and Stakeholder opinion surveys were carried out in December, 1999.

The following sections describe the Phase II data collected, followed by a "before" and "after" comparison of the data supporting each MOE. Each of the objectives identified for evaluation is discussed in the following sub-sections:

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT)

- Description of Objective;
- Measures of Effectiveness (MOEs);
- Data Requirements;
- Phase II Data;
- Before \& After Evaluation;
- Recommendations For Future Phases.

As indicated, each of the objectives is described independently, relative to the MOEs identified and their associated data requirements. Where applicable, additional context is provided by comparing the results from one objective to another to demonstrate the consistency in achieving HOV objectives. These objectives and analysis are also discussed in context of impacts to the parallel routes.

## Traffic Volumes

As broader basis for data comparison, Exhibit 2.1 presents traffic volumes along the Study Section for the peak hour (7:00 to 8:00 AM and 4:00 to 5:00 PM), before and after introduction of the HOV lanes. Overall traffic volumes in the central portion of the HOV section have increased by approximately $55 \%$ in the peak hour directions, and about $15 \%$ in the off-peak hour directions. This is expected since capacity has been increased. Comparatively, traffic volumes in the off-peak directions and North Vancouver and Surrey Sections have increased between 2 to 20\%

Exhibit 2.1 - Before \& After Peak Hour Traffic Volumes

| COMBINED | WEST BOUND |  |  |  |  |  |  |  | EAST BOUND |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HIGHWAY SEGMENT | \# of Lanes |  | AM-PEAK HR. |  |  | PM-PEAK HR. |  |  | \# of Lanes |  | AM-PEAK HR. |  |  | PM-PEAK HR. |  |  |
| EAST OF | Before | After | Before | After | \% Diff | Before | After | \% Diff | Before | After | Before | After | \% Diff | Before | After | \% Diff |
| 104 | 2 | 2 | n/a | 3355 | - | n/a | 3731 | - | 2 | 2 | 2980 | 2774 | -7\% | 3480 | 3398 | -2\% |
| 152 | 2 | 2 | 2680 | 2920 | 9\% | 2740 | 2871 | 5\% | 2 | 2 | 2480 | 2494 | 1\% | 2545 | 2716 | 7\% |
| Cape Horn | 2 | 2 | 3690 | 4176 | 13\% | 3905 | 4008 | 3\% | 2 | 2 | 3755 | 3900 | 4\% | 3875 | 3949 | 2\% |
| Brunette | 2 | 3 | 3060 | 3740 | 22\% | 2400 | 2462 | 3\% | 2 | 3 | n/a | 3933 | - | 2970 | 4239 | 43\% |
| Stormont | 2 | 3 | n/a | 4254 | - | n/a | 3011 | - | 2 | 3 | 3080 | 3411 | 11\% | 2358 | 3938 | 67\% |
| Deer Lake | 2 | 3 | 2520 | 4730 | 88\% | 2625 | 3608 | 37\% | 2 | 3 | 3180 | 3212 | 1\% | 2490 | 4623 | 86\% |
| Sprott | 2 | 3 | 3410 | 4950 | 45\% | 2440 | 3946 | 62\% | 2 | 3 | 3495 | 3246 | -7\% | 2875 | 4690 | 63\% |
| Willingdon | 2 | 3 | 3905 | 5294 | 36\% | 3820 | 4297 | 12\% | 2 | 3 | 3830 | 4085 | 7\% | 3140 | 4986 | 59\% |
| Grandview | 2 | 3 | 3840 | 4336 | 13\% | 3950 | 3642 | -8\% | 2 | 3 | 4220 | 4459 | 6\% | 3360 | 4754 | 42\% |
| Boundary | 2 | 2 | 2700 | 3527 | 31\% | 2870 | 3361 | 17\% | 2 | 2 | 3090 | 3013 | -2\% | 2505 | 3109 | 24\% |
| 1st Ave | 2 | 2 | 3170 | 4011 | 27\% | 3470 | 3979 | 15\% | 2 | 2 | 3810 | 3784 | -1\% | 3070 | 3639 | 19\% |
| Cassiar | 2 | 2 | 2980 | 3372 | 13\% | 3660 | 3111 | -15\% | 2 | 2 | 3985 | 4183 | 5\% | 3385 | 3990 | 18\% |
| McGill | 2 | 2 | 2420 | 2739 | 13\% | 3230 | 2651 | -18\% | 2 | 2 | 3715 | 3858 | 4\% | 2860 | 3268 | 14\% |
| 2nd Narrows | 3 | 3 | 3780 | 4124 | 9\% | 5260 | 5585 | 6\% | 3 | 3 | 5515 | 5910 | 7\% | 4615 | 5057 | 10\% |
| Fern | 2 | 2 | n/a | 2338 | - | 3930 | 3893 | -1\% | 2 | 2 | n/a | 2612 | - | n/a | 1811 | - |
| Lynn Valley | 2 | 2 | 2135 | 2254 | 6\% | 2970 | 3107 | 5\% | 2 | 2 | 2410 | 2667 | 11\% | 2270 | 2943 | 30\% |

The following sections present the "before" and "after" evaluation of each of the eight objectives of the HOV project. The exhibits that demonstrate the results of each evaluation are presented following the description of each objective.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT)

## NOTE:

Details of the traffic volume, occupancy, and travel time data are included in many of the exhibits throughout this report, as well as in the separately bound Appendices which also include 24 hour graphs of traffic volume data at key stations along the TCH.

Digital traffic volume data, at 15 minute increments, is also available on MoTH's Traffic Information Management System (TIMS).

### 2.1 Objective 1: Increase Person Movement Throughput

### 2.1.1 Description of Objective

The focus of this objective is to increase the movement throughput of a congested roadway in terms of the number of people, rather than the number of vehicles. This objective is achieved when the Average Vehicle Occupancy (AVO) level of a roadway increases. It is desirable that this increase result from a modal shift from single occupant vehicles to carpools, vanpools and public transit as a result of the improved travel times in the HOV facility, and not the result of attraction/diversion of existing HOVs from adjacent lanes or routes.

### 2.1.2 MOEs

Specific MOEs which were selected to evaluate the achievement of this objective are:

- increase in average vehicle occupancy;
- increase in the number of vanpools and carpools;
- increase in bus ridership.

No current Coast Mountain BusLink (formerly BC Transit) service on Highway 1.

### 2.1.3 Data Requirements

In order to measure the MOEs identified above, the "before" and "after" data collection included:

- vehicle counts;
- vehicle occupancy counts;
- vehicle classifications (vanpool, carpool, buses, motorcycles).

These MOEs were measured on all roadways in the corridor, including Highway 1 and the parallel routes on Canada Way and Lougheed Highway, in order to distinguish between induced HOV usage on TCH, and diverted HOVs from parallel routes.

### 2.1.4 Phase /I Data

All of the data requirements for the MOEs identified above have been obtained through the vehicle occupancy and classification count surveys (documented in Appendix A-2). This information has been compiled and analyzed to establish the post-HOV conditions for each MOE.

### 2.1.4.1 Vehicle Occupancy Data

The details of the collected occupancy data are summarized in the following exhibits:

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

- Exhibit 2.1.1 presents the weekday peak period AVOs, for the AM, Mid-day, and PM peak periods, at all 4 stations along the mainline.
- Exhibit 2.1.2 presents the weekday peak period AVOs, for the AM, Mid-day, and PM peak periods, at the stations within the HOV section and include breakdown of the characteristics by lane type (i.e. GP versus HOV);
- Exhibit 2.1.3 and 2.1.4 present the above referenced data for the weekend (Sunday) conditions. Sundays were chosen to represent the weekend conditions to provide a non-business baseline and account for social and recreational trips.

Weekday vehicle occupancies are observed to be lowest during the AM period which comprises largely work trips, highest during the mid-day period which comprises the least proportion of work trips, and between the two extremes for the PM period which comprises a combination of work and non-work trips. Weekend occupancies are much higher than average, as they comprise mostly social / recreational trips.

Exhibits 2.1.1 to 2.1.4 also include a breakdown of the percentages of carpools, vanpools, and buses.

### 2.1.4.2 Vehicle Classification Data

The following exhibits provide a further breakdown by vehicle classification (i.e. cars, trucks, motorcycles, buses, and taxis):

- Exhibit 2.1.5 presents the weekday peak period vehicle classification data, for the AM, Mid-day, and PM peak period, at all 4 stations along the mainline (corridor averages are provided in the table below);
- Exhibit 2.1.6 presents the weekday peak period vehicle classification data, for the AM, Mid-day, and PM peak period, at the stations within the HOV section and include breakdown of the characteristics by lane type (i.e. GP versus HOV);
- Exhibits 2.1.7 and to 2.1.8 present the above referenced data for the weekend (Sunday) conditions

Generally, cars comprise approximately $90 \%$ of the traffic stream on Highway 1, followed by approximately 4 to $8 \%$ trucks, with motorcycles, bicycles (Second Narrows Bridge only), buses, and taxis comprising less than $1 \%$ each. Truck traffic tends to be relatively constant throughout the day, but represents a higher proportion of total vehicles during the mid-day as a result of the lower number of car trips. The volume of truck traffic along individual parallel routes may be lower than on the mainline, but the proportion of trucks to cars is higher.

| 4 | Ministry of Transportation \& Highways |
| :---: | :---: |
|  | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program |
| BRITISH <br> COLIMBBA | Phase Il hov evaluation \& tMP Baseline (Final report) |

Exhibit 2.1.1 - Mainline Vehicle Occupancies - Combined Lanes - Weekday Peak Period


| WESTBOUND |  |  |  |  |  |  |  |  |  |  | Bus <br> Occupants |  | Taxi Occupants |  | Total Occupants | Vehicle Occupancy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 Occupant |  | 2 Occupants |  | 3 Occupants |  | 4+ Occupants |  | Van Pools |  |  |  |  |  |  |  |
| Second Narrows Bridge |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 8589 | 87.4\% | 1050 | 10.7\% | 69 | 0.7\% | 30 | 0 | 1 | 0.0\% | 666 | 5.7\% | 85 | 0.7\% | 11773 | 1.13 |
| Noon Peak Period | 4995 | 79.0\% | 1087 | 17.2\% | 123 | 1.9\% | 62 | 1.0\% | 0 | 0.0\% | 167 | 2.1\% | 70 | 0.9\% | 8023 | 1.24 |
| PM Peak Period | 11141 | 82.4\% | 1961 | 14.5\% | 228 | 1.7\% | 89 | 0.7\% | 1 | 0.0\% | 983 | 5.7\% | 114 | 0.7\% | 17206 | 1.20 |
| Gaglardi |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 7984 | 79.2\% | 1825 | 18.1\% | 227 | 2.3\% | 26 | 0 | 6 | 0.1\% | 136 | 1.1\% | 9 | 0.1\% | 12600 | 1.24 |
| Noon Peak Period | 4841 | 77.6\% | 1164 | 18.7\% | 177 | 2.8\% | 43 | 0.7\% | 0 | 0.0\% | 64 | 0.8\% | 13 | 0.2\% | 7949 | 1.26 |
| PM Peak Period | 7865 | 79.4\% | 1725 | 17.4\% | 204 | 2.1\% | 70 | 0.7\% | 0 | 0.0\% | 1202 | 9.0\% | 18 | 0.1\% | 13427 | 1.24 |
| Cape Horn |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 7077 | 80.3\% | 1553 | 17.6\% | 144 | 1.6\% | 34 | 0 | 1 | 0.0\% | 87 | 0.8\% | 2 | 0.0\% | 10846 | 1.22 |
| Noon Peak Period | 4411 | 74.0\% | 1383 | 23.2\% | 90 | 1.5\% | 57 | 1.0\% | 0 | 0.0\% | 24 | 0.3\% | 20 | 0.3\% | 7719 | 1.29 |
| PM Peak Period | 5138 | 71.8\% | 1719 | 24.0\% | 166 | 2.3\% | 93 | 1.3\% | 0 | 0.0\% | 1057 | 10.0\% | 20 | 0.2\% | 10523 | 1.33 |
| Port Mann Bridge |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 7286 | 82.8\% | 1322 | 15.0\% | 137 | 1.6\% | 41 | 0 | 8 | 0.1\% | 241 | 2.2\% | 1 | 0.0\% | 10795 | 1.20 |
| Noon Peak Period | 4589 | 76.7\% | 1199 | 20.0\% | 134 | 2.2\% | 46 | 0.8\% | 0 | 0.0\% | 55 | 0.7\% | 17 | 0.2\% | 7645 | 1.27 |
| PM Peak Period | 8808 | 77.7\% | 2049 | 18.1\% | 302 | 2.7\% | 139 | 1.2\% | 7 | 0.1\% | 1077 | 6.9\% | 15 | 0.1\% | 15502 | 1.27 |

Note:
Single Occupant Vehicles include Cars, Trucks, Motorcycles, and Bicycles
Occupancy \%s = Number of Vehicles in each Occupancy Category/Total number of Vehicles
Bus Occupancy \%s = Number of Bus Occupants/Total Number of Occupants
Vehicle Occupancy = Total Occupants/Total Vehicles (excluding Buses and Taxis)

Exhibit 2.1.2 - Mainline Vehicle Occupancies - GP vs HOV Lanes - Weekday Peak Period

EASTBOUND

| GP Lanes Combined |  |  |  |  |  |  |  |  |  |  | Bus Occupants |  | Taxi Occupants |  | Total Occupants | Vehicle Occupancy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 Occupant |  | 2 Occupants |  | 3 Occupants |  | 4+ Occupants |  | Van Pools |  |  |  |  |  |  |  |
| Gaglardi |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 6852 | 94.3\% | 353 | 4.9\% | 30 | 0.4\% | 14 | 0.2\% | 0 | 0.0\% | 207 | 2.6\% | 5 | 0.1\% | 7916 | 1.06 |
| Noon Peak Period | 4885 | 88.3\% | 535 | 9.7\% | 63 | 1.1\% | 31 | 0.6\% | 0 | 0.0\% | 50 | 0.8\% | 21 | 0.3\% | 6339 | 1.14 |
| PM Peak Period | 9460 | 95.2\% | 393 | 4.0\% | 53 | 0.5\% | 21 | 0.2\% | 0 | 0.0\% | 13 | 0.1\% | 2 | 0.0\% | 10504 | 1.06 |
| Cape Horn |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 7173 | 94.3\% | 374 | 4.9\% | 30 | 0.4\% | 10 | 0.1\% | 4 | 0.1\% | 73 | 0.9\% | 3 | 0.0\% | 8151 | 1.06 |
| Noon Peak Period | 5022 | 87.1\% | 652 | 11.3\% | 50 | 0.9\% | 24 | 0.4\% | 0 | 0.0\% | 44 | 0.7\% | 13 | 0.2\% | 6629 | 1.14 |
| PM Peak Period | 8833 | 91.9\% | 685 | 7.1\% | 64 | 0.7\% | 23 | 0.2\% | 0 | 0.0\% | 11 | 0.1\% | 1 | 0.0\% | 10499 | 1.09 |


| HOV Lane |  |  |  |  |  |  |  |  |  |  | Bus <br> Occupants |  | Taxi Occupants |  | Total Occupants | Vehicle Occupancy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 Occupant |  | 2 Occupants |  | 3 Occupants |  | 4+ Occupants |  | Van Pools |  |  |  |  |  |  |  |
| Gaglardi |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 65 | 8.2\% | 566 | 71.8\% | 110 | 14.0\% | 22 | 2.8\% | 1 | 0.1\% | 481 | 22.8\% | 8 | 0.4\% | 2110 | 2.12 |
| Noon Peak Period | 51 | 5.9\% | 644 | 74.4\% | 141 | 16.3\% | 24 | 2.8\% | 0 | 0.0\% | 116 | 5.9\% | 6 | 0.3\% | 1980 | 2.16 |
| PM Peak Period | 217 | 7.0\% | 2383 | 76.4\% | 409 | 13.1\% | 87 | 2.8\% | 7 | 0.2\% | 104 | 1.5\% | 15 | 0.2\% | 6719 | 2.13 |
| Cape Horn |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 161 | 21.5\% | 409 | 54.7\% | 81 | 10.8\% | 81 | 10.8\% | 0 | 0.0\% | 12 | 0.8\% | 5 | 0.3\% | 1563 | 2.11 |
| Noon Peak Period | 71 | 9.0\% | 506 | 64.1\% | 132 | 16.7\% | 75 | 9.5\% | 0 | 0.0\% | 4 | 0.2\% | 2 | 0.1\% | 1785 | 2.27 |
| PM Peak Period | 269 | 11.1\% | 1760 | 72.5\% | 263 | 10.8\% | 114 | 4.7\% | 10 | 0.4\% | 8 | 0.2\% | 5 | 0.1\% | 5107 | 2.11 |

## WESTBOUND

| GP Lanes Combined |  |  |  |  |  |  |  |  |  |  | Bus Occupants |  | Taxi Occupants |  | Total Occupants | Vehicle Occupancy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 Occupant |  | 2 Occupants |  | 3 Occupants |  | 4+ Occupants |  | Van Pools |  |  |  |  |  |  |  |
| Gaglardi |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 7773 | 98.5\% | 108 | 1.4\% | 8 | 0.1\% | 4 | 0.1\% | 1 | 0.0\% | 0 | 0.0\% | 0 | 0.0\% | 8035 | 1.02 |
| Noon Peak Period | 4767 | 88.1\% | 544 | 10.1\% | 61 | 1.1\% | 32 | 0.6\% | 0 | 0.0\% | 2 | 0.0\% | 10 | 0.2\% | 6178 | 1.14 |
| PM Peak Period | 7767 | 89.0\% | 802 | 9.2\% | 90 | 1.0\% | 50 | 0.6\% | 0 | 0.0\% | 455 | 4.4\% | 8 | 0.1\% | 10304 | 1.13 |
| Cape Horn |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 6931 | 94.6\% | 354 | 4.8\% | 28 | 0.4\% | 15 | 0.2\% | 1 | 0.0\% | 1 | 0.0\% | 0 | 0.0\% | 7790 | 1.06 |
| Noon Peak Period | 4330 | 85.6\% | 619 | 12.2\% | 55 | 1.1\% | 42 | 0.8\% | 0 | 0.0\% | 24 | 0.4\% | 6 | 0.1\% | 5931 | 1.17 |
| PM Peak Period | 5083 | 83.5\% | 833 | 13.7\% | 102 | 1.7\% | 56 | 0.9\% | 0 | 0.0\% | 55 | 0.7\% | 6 | 0.1\% | 7340 | 1.20 |


| HOV Lane |  |  |  |  |  |  |  |  |  |  | Bus Occupants |  | Taxi Occupants |  | Total Occupants | Vehicle Occupancy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 Occupant |  | 2 Occupants |  | 3 Occupants |  | 4+ Occupants |  | Van Pools |  |  |  |  |  |  |  |
| Gaglardi |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 211 | 9.6\% | 1717 | 78.5\% | 219 | 10.0\% | 22 | 1.0\% | 5 | 0.2\% | 136 | 3.0\% | 9 | 0.2\% | 4565 | 2.03 |
| Noon Peak Period | 74 | 8.9\% | 620 | 75.0\% | 116 | 14.0\% | 11 | 1.3\% | 0 | 0.0\% | 62 | 3.5\% | 3 | 0.2\% | 1771 | 2.08 |
| PM Peak Period | 98 | 8.3\% | 923 | 78.4\% | 114 | 9.7\% | 20 | 1.7\% | 0 | 0.0\% | 747 | 23.9\% | 10 | 0.3\% | 3123 | 2.05 |
| Cape Horn |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 146 | 9.8\% | 1199 | 80.6\% | 116 | 7.8\% | 19 | 1.3\% | 0 | 0.0\% | 86 | 2.8\% | 2 | 0.1\% | 3056 | 2.01 |
| Noon Peak Period | 81 | 9.0\% | 764 | 84.6\% | 35 | 3.9\% | 15 | 1.7\% | 0 | 0.0\% | 0 | 0.0\% | 14 | 0.8\% | 1788 | 1.98 |
| PM Peak Period | 55 | 5.1\% | 886 | 82.9\% | 64 | 6.0\% | 37 | 3.5\% | 0 | 0.0\% | 1002 | 31.5\% | 14 | 0.4\% | 3183 | 2.08 |

Exhibit 2.1.3 - Mainline Vehicle Occupancies - Combined Lanes - Sunday Peak Period

|  | EASTBOUND |  |  |  |  |  |  |  |  |  | Bus Occupants |  | Taxi Occupants |  | Total Occupants | Vehicle Occupancy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 Occupant |  | 2 Occupants |  | 3 Occupants |  | 4+ Occupants |  | Van Pools |  |  |  |  |  |  |  |
| econd Narrows Bridge | 2008 | 78.9\% | 444 | 17.5\% | 44 | 1.7\% | 16 | 0 | 0 | 0.0\% | 29 | 0.9\% | 40 | 1.3\% | 3161 | 1.23 |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 3573 | 51.4\% | 2693 | 38.8\% | 391 | 5.6\% | 248 | 3.6\% | 2 | 0.0\% | 410 | 3.5\% | 44 | 0.4\% | 11590 | 1.61 |
| PM Peak Period | 5234 | 49.5\% | 4170 | 39.4\% |  |  |  |  |  |  |  |  |  |  |  |  |
| Gaglardi | 1934 | 67.2\% | 709 | 24.6\% | 141 | $4.9 \%$ | 62 | 0 | 3 | 0.1\% | 482 | 10.6\% | 12 | 0.3\% | 4535 | 1.42 |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 3455 | 49.9\% | 2711 | 39.1\% | 496 | 7.2\% | 246 | 3.6\% | 1 | 0.0\% | 38 | 0.3\% | 22 | 0.2\% | 11415 | 1.64 |
| PM Peak Period | 5975 | 47.2\% | 4942 | 39.0\% | 1189 | 9.4\% | 527 | 4.2\% | 1 | 0.0\% | 210 | 1.0\% | 29 | 0.1\% | 21779 | 1.70 |
| Cape Horn | 2165 | 68.9\% | 797 | 25.4\% | 104 | 3.3\% | 46 | 0 | 0 | 0.0\% | 323 | 7.0\% | 10 | 0.2\% | 4588 | 1.37 |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 3351 | 50.1\% | 2638 | 39.4\% | 420 | 6.3\% | 268 | 4.0\% | 1 | 0.0\% | 161 | 1.4\% | 14 | 0.1\% | 11140 | 1.64 |
| PM Peak Period | 5320 | 47.3\% | 4483 | 39.9\% | 822 | 7.3\% | 591 | 5.3\% | 2 | 0.0\% | 155 | 0.8\% | 27 | 0.1\% | 19310 | 1.71 |
|  | 2532 | 76.6\% | 618 | 18.7\% | 95 | 2.9\% | 34 | 0 | 0 | 0.0\% | 87 | 2.0\% | 6 | 0.1\% | 4282 | 1.28 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 3449 | 49.8\% | 2800 | 40.5\% | 420 | 6.1\% | 240 | 3.5\% | , | 0.0\% | 171 | 1.5\% | 11 | 0.1\% | 11451 | 1.63 |
| PM Peak Period | 5056 | 49.2\% | 4092 39.8\% |  | 693 | 6.7\% | 421 | 4.1\% | 0 | 0.0\% | 122 | 0.7\% | 15 | 0.1\% | 17140 | 1.66 |


| WESTBOUND |  |  |  |  |  |  |  |  |  |  | Bus <br> Occupants |  | Taxi Occupants |  | Total Occupants | Vehicle Occupancy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 Occupant |  | 2 Occupants |  | 3 Occupants |  | 4+ Occupants |  | Van Pools |  |  |  |  |  |  |  |
| Second Narrows Bridge |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 1964 | 66.7\% | 740 | 25.1\% | 117 | 4.0\% | 77 | 0 | 0 | 0.0\% | 40 | 1.0\% | 50 | 1.2\% | 4193 | 1.42 |
| Noon Peak Period | 3143 | 45.1\% | 2961 | 42.5\% | 494 | 7.1\% | 351 | 5.0\% | 0 | 0.0\% | 119 | 1.0\% | 30 | 0.2\% | 12100 | 1.72 |
| PM Peak Period | 5002 | 45.5\% | 4562 | 41.5\% | 853 | 7.8\% | 530 | 4.8\% | 2 | 0.0\% | 471 | 2.4\% | 62 | 0.3\% | 19350 | 1.72 |
| Gaglardi |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 2480 | 68.3\% | 895 | 24.6\% | 176 | 4.8\% | 68 | 0 | 0 | 0.0\% | 37 | 0.7\% | 8 | 0.2\% | 5115 | 1.40 |
| Noon Peak Period | 3290 | 45.2\% | 2953 | 40.6\% | 653 | 9.0\% | 356 | 4.9\% | 0 | 0.0\% | 267 | 2.1\% | 20 | 0.2\% | 12866 | 1.73 |
| PM Peak Period | 4500 | 44.0\% | 4332 | 42.4\% | 894 | 8.7\% | 467 | 4.6\% | 2 | 0.0\% | 904 | 4.9\% | 4 | 0.0\% | 18634 | 1.74 |
| Cape Horn |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 2295 | 68.7\% | 790 | 23.7\% | 142 | 4.3\% | 91 | 0 | 6 | 0.2\% | 47 | 1.0\% | 10 | 0.2\% | 4758 | 1.41 |
| Noon Peak Period | 3116 | 48.9\% | 2494 | 39.2\% | 489 | 7.7\% | 248 | 3.9\% | 0 | 0.0\% | 222 | 2.1\% | 30 | 0.3\% | 10815 | 1.66 |
| PM Peak Period | 4178 | 42.5\% | 4148 | 42.2\% | 983 | 10.0\% | 480 | 4.9\% | 0 | 0.0\% | 638 | 3.5\% | 4 | 0.0\% | 17985 | 1.77 |
| Port Mann Bridge |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 2024 | 69.5\% | 655 | 22.5\% | 132 | 4.5\% | 85 | 0 | 1 | 0.0\% | 12 | 0.3\% | 4 | 0.1\% | 4092 | 1.41 |
| Noon Peak Period | 3073 | 47.5\% | 2902 | 44.9\% | 0 | 0.0\% | 468 | 7.2\% | 0 | 0.0\% | 199 | 1.8\% | 16 | 0.1\% | 10964 | 1.67 |
| PM Peak Period | 3784 | 39.3\% | 4242 | 44.1\% | 724 | 7.5\% | 843 | 8.8\% | 0 | 0.0\% | 412 | 2.3\% | 7 | 0.0\% | 18231 | 1.86 |

Note:
Single Occupant Vehicles include Cars, Trucks, Motorcycles, and Bicycles
Occupancy \%s = Number of Vehicles in each Occupancy Category/Total number of Vehicles
Bus Occupancy \%s = Number of Bus Occupants/Total Number of Occupants
Vehicle Occupancy = Total Occupants/Total Vehicles (excluding Buses and Taxis)

Exhibit 2.1.4 - Mainline Vehicle Occupancies - GP vs HOV Lanes - Sunday Peak Period
EASTBOUND

| GP Lanes Combined |  |  |  |  |  |  |  |  |  |  | Bus Occupants |  | Taxi Occupants |  | Total Occupants | Vehicle Occupancy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 Occupant |  | 2 Occupants |  | 3 Occupants |  | 4+ Occupants |  | Van Pools |  |  |  |  |  |  |  |
| Gaglardi |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 1889 | 76.9\% | 443 | 18.0\% | 70 | 2.9\% | 33 | 1.3\% | 3 | 0.1\% | 238 | 7.0\% | 11 | 0.3\% | 3384 | 1.29 |
| Noon Peak Period | 3257 | 65.2\% | 1394 | 27.9\% | 201 | 4.0\% | 131 | 2.6\% | 1 | 0.0\% | 35 | 0.5\% | 12 | 0.2\% | 7225 | 1.44 |
| PM Peak Period | 5648 | 65.5\% | 2339 | 27.1\% | 380 | 4.4\% | 243 | 2.8\% | 1 | 0.0\% | 96 | 0.8\% | 12 | 0.1\% | 12552 | 1.45 |
| Cape Horn |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 2119 | 78.2\% | 527 | 19.4\% | 35 | 1.3\% | 16 | 0.6\% | 0 | 0.0\% | 89 | 2.6\% | 7 | 0.2\% | 3438 | 1.24 |
| Noon Peak Period | 3175 | 64.8\% | 1374 | 28.0\% | 172 | 3.5\% | 171 | 3.5\% | 0 | 0.0\% | 51 | 0.7\% | 9 | 0.1\% | 7183 | 1.46 |
| PM Peak Period | 5082 | 62.5\% | 2336 | 28.7\% | 356 | 4.4\% | 348 | 4.3\% | 0 | 0.0\% | 90 | 0.7\% | 13 | 0.1\% | 12317 | 1.50 |


| HOV Lane |  |  |  |  |  |  |  |  |  |  | Bus Occupants |  | Taxi Occupants |  | Total Occupants | Vehicle Occupancy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 Occupant |  | 2 Occupants |  | 3 Occupants |  | 4+ Occupants |  | Van Pools |  |  |  |  |  |  |  |
| Gaglardi |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 45 | 10.6\% | 266 | 62.9\% | 71 | 16.8\% | 29 | 6.9\% | 0 | 0.0\% | 244 | 21.2\% | 1 | 0.1\% | 1151 | 2.20 |
| Noon Peak Period | 198 | 10.2\% | 1317 | 68.1\% | 295 | 15.3\% | 115 | 5.9\% | 0 | 0.0\% | 3 | 0.1\% | 10 | 0.2\% | 4190 | 2.17 |
| PM Peak Period | 327 | 8.1\% | 2603 | 64.4\% | 809 | 20.0\% | 284 | 7.0\% | 0 | 0.0\% | 114 | 1.2\% | 17 | 0.2\% | 9227 | 2.26 |
| Cape Horn |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 46 | 10.7\% | 270 | 62.8\% | 69 | 16.0\% | 30 | 7.0\% | 0 | 0.0\% | 234 | 20.3\% | 3 | 0.3\% | 1150 | 2.20 |
| Noon Peak Period | 176 | 9.8\% | 1264 | 70.6\% | 248 | 13.8\% | 97 | 5.4\% | 1 | 0.1\% | 110 | 2.8\% | 5 | 0.1\% | 3957 | 2.15 |
| PM Peak Period | 238 | 7.7\% | 2147 | 69.0\% | 466 | 15.0\% | 243 | 7.8\% | 2 | 0.1\% | 65 | 0.9\% | 14 | 0.2\% | 6993 | 2.23 |

## WESTBOUND

| GP Lanes Combined | 1 Occupant |  | 2 Occupants |  | 3 Occupants |  | 4+ Occupants |  | Van Pools |  | Bus Occupants |  | Taxi Occupants |  | Total Occupants | Vehicle Occupancy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Gaglardi | 2442 | 78.3\% | 563 | 18.1\% | 68 | 2.2\% | 36 | 1.2\% | 0 | 0.0\% | 4 | 0.1\% | 6 | 0.2\% | 3926 | 1.26 |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 3213 | 61.4\% | 1604 | 30.6\% | 216 | 4.1\% | 192 | 3.7\% | 0 | 0.0\% | 85 | 1.1\% | 12 | 0.2\% | 7934 | 1.50 |
| PM Peak Period | 4361 | 59.4\% | 2377 | 32.4\% | 334 | 4.5\% | 261 | 3.6\% | 0 | 0.0\% | 172 | 1.5\% | 2 | 0.0\% | 11335 | 1.52 |
| Cape Horn | 2257 | 78.5\% | 501 | 17.4\% | 63 | 2.2\% | 44 | 1.5\% | 0 | 0.0\% | 44 | 1.2\% | 7 | 0.2\% | 3675 | 1.26 |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 2986 | 63.7\% | 1345 | 28.7\% | 197 | 4.2\% | 146 | 3.1\% | 0 | 0.0\% | 131 | 1.9\% | 15 | 0.2\% | 6997 | 1.47 |
| PM Peak Period | 3938 | 57.0\% | 2196 | 31.8\% | 479 | 6.9\% | 288 | 4.2\% | 0 | 0.0\% | 193 | 1.7\% | 4 | 0.0\% | 11116 | 1.58 |


| HOV Lane |  |  |  |  |  |  |  |  |  |  | Bus Occupants |  | Taxi Occupants |  | Total Occupants | Vehicle Occupancy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 Occupant |  | 2 Occupants |  | 3 Occupants |  | 4+ Occupants |  | Van Pools |  |  |  |  |  |  |  |
| Gaglardi |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 38 | 7.4\% | 332 | 64.3\% | 108 | 20.9\% | 32 | 6.2\% | 0 | 0.0\% | 33 | 2.8\% | 2 | 0.2\% | 1189 | 2.26 |
| Noon Peak Period | 77 | 3.8\% | 1349 | 66.2\% | 437 | 21.5\% | 164 | 8.1\% | 0 | 0.0\% | 182 | 3.7\% | 8 | 0.2\% | 4932 | 2.34 |
| PM Peak Period | 139 | 4.8\% | 1955 | 67.7\% | 560 | 19.4\% | 206 | 7.1\% | 2 | 0.1\% | 732 | 10.0\% | 2 | 0.0\% | 7299 | 2.29 |
| Cape Horn |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 38 | 8.2\% | 289 | 62.3\% | 79 | 17.0\% | 47 | 10.1\% | 6 | 1.3\% | 3 | 0.3\% | 3 | 0.3\% | 1083 | 2.35 |
| Noon Peak Period | 130 | 7.7\% | 1149 | 68.3\% | 292 | 17.3\% | 102 | 6.1\% | 0 | 0.0\% | 91 | 2.4\% | 15 | 0.4\% | 3818 | 2.22 |
| PM Peak Period | 240 | 8.3\% | 1952 | 67.1\% | 504 | 17.3\% | 192 | 6.6\% | 0 | 0.0\% | 445 | 6.5\% | 0 | 0.0\% | 6869 | 2.22 |


| 4 | Ministry of Transportation \& Highways |
| :---: | :---: |
|  | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program |
| BRITISH <br> COLIMBBA | Phase Il hov evaluation \& tMP Baseline (Final report) |

Exhibit 2.1.5-Mainline Vehicle Classification - Combined Lanes - Weekday Peak Period

EASTBOUND

|  | Cars |  | Trucks |  | Motorcycles |  | Bicycles |  | Buses |  | Taxi |  | Total Vehicles |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Second Narrows Bridge | 12907 | 95.9\% | 389 | 2.9\% | 63 | 0.5\% | 9 | 0.1\% | 42 | 0.3\% | 51 | 0.4\% | 13461 | 100\% |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 6291 | 91.0\% | 540 | 7.8\% | 33 | 0.5\% | 4 | 0.1\% | 16 | 0.2\% | 27 | 0.4\% | 6911 | 100\% |
| PM Peak Period | 13542 | 94.0\% | 588 | 4.1\% | 110 | 0.8\% | 31 | 0.2\% | 66 | 0.5\% | 65 | 0.5\% | 14402 | 100\% |
| Gaglardi | $7603 \mid 94.4 \%$ |  | 371 | $4.6 \%$ | 39 | 0.5\% | 0 | 0.0\% | 29 | 0.4\% | 12 | 0.1\% | 8054 | 100\% |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 5738 | 89.9\% | 615 | 9.6\% | 4 | 0.1\% | 0 | 0.0\% | 5 | 0.1\% | 18 | 0.3\% | 6380 | 100\% |
| PM Peak Period | 12340 | 94.5\% | 587 | 4.5\% | 103 | 0.8\% | 0 | 0.0\% | 10 | 0.1\% | 13 | 0.1\% | 13053 | 100\% |
| Cape Horn | 7384 | 88.4\% | 907 | 10.9\% | 32 | 0.4\% | 0 | 0.0\% | 23 | 0.3\% | 7 | 0.1\% | 8353 | 100\% |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 5512 | 84.1\% | 1002 | 15.3\% | 18 | 0.3\% | 0 | 0.0\% | 9 | 0.1\% | 12 | 0.2\% | 6553 | 100\% |
| PM Peak Period | 11125 | 92.4\% | 809 | 6.7\% | 87 | 0.7\% | 0 | 0.0\% | 10 | 0.1\% | 5 | 0.0\% | 12036 | 100\% |
| Port Mann Bridge | 8190 | 89.8\% | 862 | 9.5\% | 43 | 0.5\% | 0 | 0.0\% | 17 | 0.2\% | 7 | 0.1\% | 9119 | 100\% |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 5394 | 84.6\% | 938 | 14.7\% | 30 | 0.5\% | 0 | 0.0\% | 6 | 0.1\% | 6 | 0.1\% | 6374 | 100\% |
| PM Peak Period | 10575 | 91.8\% | 838 | 7.3\% | 85 | 0.7\% | 0 | 0.0\% | 8 | 0.1\% | 11 | 0.1\% | 11517 | 100\% |

WESTBOUND

|  | Cars |  | Trucks |  | Motorcycles |  | Bicycles |  | Buses |  | Taxi |  | Total Vehicles |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Second Narrows Bridge | 9033 | 91.9\% | 581 | 5.9\% | 66 | 0.7\% | 59 | 0.6\% | 51 | 0.5\% | 40 | 0.4\% | 9830 | 100\% |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 5653 | 89.4\% | 572 | 9.0\% | 31 | 0.5\% | 11 | 0.2\% | 16 | 0.3\% | 39 | 0.6\% | 6322 | 100\% |
| PM Peak Period | 12863 | 95.1\% | 358 | 2.6\% | 122 | 0.9\% | 77 | 0.6\% | 33 | 0.2\% | 67 | 0.5\% | 13520 | 100\% |
| Gaglardi | $\begin{array}{c\|c\|} \hline 9419 & 93.4 \% \\ \hline \end{array}$ |  | 589 | 5.8\% | 60 | 0.6\% | 0 | 0.0\% | 9 | 0.1\% | 5 | 0.0\% | 10082 | 100\% |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 5577 | 89.4\% | 610 | 9.8\% | 38 | 0.6\% | 0 | 0.0\% | 6 | 0.1\% | 8 | 0.1\% | 6239 | 100\% |
| PM Peak Period | 9367 | 94.5\% | 426 | 4.3\% | 71 | 0.7\% | 0 | 0.0\% | 32 | 0.3\% | 11 | 0.1\% | 9907 | 100\% |
| Cape Horn | 8108 | 91.9\% | 655 | 7.4\% | 46 | 0.5\% | 0 | 0.0\% | 8 | 0.1\% | 1 | 0.0\% | 8818 | 100\% |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 5141 | 86.3\% | 759 | 12.7\% | 41 | 0.7\% | 0 | 0.0\% | 5 | 0.1\% | 14 | 0.2\% | 5960 | 100\% |
| PM Peak Period | 6650 | 92.9\% | 422 | 5.9\% | 44 | 0.6\% | 0 | 0.0\% | 27 | 0.4\% | 12 | 0.2\% | 7155 | 100\% |
| Port Mann Bridge | 8073 | 91.7\% | 681 | 7.7\% | 40 | 0.5\% | 0 | 0.0\% | 7 | 0.1\% | 1 | 0.0\% | 8802 | 100\% |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 5150 | 86.1\% | 782 | 13.1\% | 36 | 0.6\% | 0 | 0.0\% | 7 | 0.1\% | 9 | 0.2\% | 5984 | 100\% |
| PM Peak Period | 10535 | 92.9\% | 706 | 6.2\% | 64 | 0.6\% | 0 | 0.0\% | 29 | 0.3\% | 9 | 0.1\% | 11343 | 100\% |

# Ministry of Transportation \& Highways <br> Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT) 

Exhibit 2.1.6 - Mainline Vehicle Classification - GP vs HOV Lanes - Weekday Peak Period

## EASTBOUND

| GP Lanes Combined | Cars |  | Trucks |  | Motorcycles |  | Bicycles |  | Buses |  | Taxi |  | Total Vehicles |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gaglardi | 6881 | 94.7\% | 362 | 5.0\% | 6 | 0.1\% | 0 | 0.0\% | 12 | 0.2\% | 5 | 0.1\% | 7266 | 100\% |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 4907 | 88.7\% | 603 | 10.9\% | 4 | 0.1\% | 0 | 0.0\% | 2 | 0.0\% | 15 | 0.3\% | 5531 | 100\% |
| PM Peak Period | 9388 | 94.5\% | 531 | 5.3\% | 8 | 0.1\% | 0 | 0.0\% | 4 | 0.0\% | 2 | 0.0\% | 9933 | 100\% |
| Cape Horn | 6692 88.0\% |  | 896 | 11.8\% | 3 | 0.0\% | 0 |  | 11 |  | 3 | 0.0\% | 7605 | 100\% |
| AM Peak Period |  |  | 0.0\% |  |  |  |  | 0.1\% |  |  |  |  |  |  |
| Noon Peak Period | 4757 | 82.5\% |  | 990 | 17.2\% | 1 | 0.0\% | 0 | 0.0\% | 5 | 0.1\% | 10 | 0.2\% | 5763 | 100\% |
| PM Peak Period | 8839 | 92.0\% | 755 | 7.9\% | 11 | 0.1\% | 0 | 0.0\% | 2 | 0.0\% | 1 | 0.0\% | 9608 | 100\% |


| HOV Lane | Cars |  | Trucks |  | Motorcycles |  | Bicycles |  | Buses |  | Taxi |  | Total Vehicles |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gaglardi | 722 | 91.6\% | 9 | 1.1\% | 33 | 4.2\% | 0 | 0.0\% | 17 | 2.2\% | 7 | 0.9\% | 788 | 100\% |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 831 | 96.0\% | 12 | 1.4\% | 17 | 2.0\% | 0 | 0.0\% | 3 | 0.3\% | 3 | 0.3\% | 866 | 100\% |
| PM Peak Period | 2952 | 94.6\% | 56 | 1.8\% | 95 | 3.0\% | 0 | 0.0\% | 6 | 0.2\% | 11 | 0.4\% | 3120 | 100\% |
| Cape Horn |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 692 | 92.5\% | 11 | 1.5\% | 29 | 3.9\% | 0 | 0.0\% | 12 | 1.6\% | 4 | 0.5\% | 748 | 100\% |
| Noon Peak Period | 755 | 95.6\% | 12 | 1.5\% | 17 | 2.2\% | 0 | 0.0\% | 4 | 0.5\% | 2 | 0.3\% | 790 | 100\% |
| PM Peak Period | 2286 | 94.2\% | 54 | 2.2\% | 76 | 3.1\% | 0 | 0.0\% | 8 | 0.3\% | 4 | 0.2\% | 2428 | 100\% |

WESTBOUND

| GP Lanes Combined | Cars |  | Trucks |  | Motorcycles |  | Bicycles |  | Buses |  | Taxi |  | Total Vehicles |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gaglardi | 7354 | 93.2\% | 539 | 6.8\% | 1 | 0.0\% | 0 | 0.0\% | 0 | 0.0\% | 0 | 0.0\% | 7894 | 100\% |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 4799 | 88.7\% | 590 | 10.9\% | 15 | 0.3\% | 0 | 0.0\% | 2 | 0.0\% | 6 | 0.1\% | 5412 | 100\% |
| PM Peak Period | 8274 | 94.8\% | 411 | 4.7\% | 24 | 0.3\% | 0 | 0.0\% | 14 | 0.2\% | 6 | 0.1\% | 8729 | 100\% |
| Cape Horn |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 6692 | 91.3\% | 633 | 8.6\% | 4 | 0.1\% | 0 | 0.0\% | 1 | 0.0\% | 0 | 0.0\% | 7330 | 100\% |
| Noon Peak Period | 4283 | 84.7\% | 746 | 14.8\% | 17 | 0.3\% | 0 | 0.0\% | 5 | 0.1\% | 6 | 0.1\% | 5057 | 100\% |
| PM Peak Period | 5641 | 92.7\% | 413 | 6.8\% | 20 | 0.3\% | 0 | 0.0\% | 6 | 0.1\% | 6 | 0.1\% | 6086 | 100\% |


| HOV Lane | Cars |  | Trucks |  | Motorcycles |  | Bicycles |  | Buses |  | Taxi |  | Total Vehicles |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gaglardi |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 2065 | 94.4\% | 50 | 2.3\% | 59 | 2.7\% | 0 | 0.0\% | 9 | 0.4\% | 5 | 0.2\% | 2188 | 100\% |
| Noon Peak Period | 778 | 94.1\% | 20 | 2.4\% | 23 | 2.8\% | 0 | 0.0\% | 4 | 0.5\% | 2 | 0.2\% | 827 | 100\% |
| PM Peak Period | 1093 | 92.8\% | 15 | 1.3\% | 47 | 4.0\% | 0 | 0.0\% | 18 | 1.5\% | 5 | 0.4\% | 1178 | 100\% |
| Cape Horn |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 1416 | 95.2\% | 22 | 1.5\% | 42 | 2.8\% | 0 | 0.0\% | 7 | 0.5\% | 1 | 0.1\% | 1488 | 100\% |
| Noon Peak Period | 858 | 95.0\% | 13 | 1.4\% | 24 | 2.7\% | 0 | 0.0\% | 0 | 0.0\% | 8 | 0.9\% | 903 | 100\% |
| PM Peak Period | 1009 | 94.4\% | 9 | 0.8\% | 24 | 2.2\% | 0 | 0.0\% | 21 | 2.0\% | 6 | 0.6\% | 1069 | 100\% |


| 1 | Ministry of Transportation \& Highways |
| :---: | :---: |
|  | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program |
| BRITISH <br> COLUMBIA | Phase il hov Evaluation \& tMP Baseline (Final report) |

Exhibit 2.1.7-Mainline Vehicle Classification - Combined Lanes - Sunday Peak Period

## EASTBOUND

|  | Cars |  | Trucks |  | Motorcycles |  | Bicycles |  | Buses |  | Taxi |  | Total Vehicles |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Second Narrows Bridge | 2442 | 96.0\% | 49 | 1.9\% | 21 | 0.8\% | 0 | 0.0\% | 4 | 0.2\% | 28 | 1.1\% | 2544 | 100\% |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 6781 | 97.6\% | 67 | 1.0\% | 59 | 0.8\% | 0 | 0.0\% | 14 | 0.2\% | 28 | 0.4\% | 6949 | 100\% |
| PM Peak Period | 10336 | 97.8\% | 102 | 1.0\% | 76 | 0.7\% | 0 | 0.0\% | 25 | 0.2\% | 33 | 0.3\% | 10572 | 100\% |
| Gaglardi | 2718 | 94.4\% | 98 | 3.4\% | 33 | 1.1\% | 0 | 0.0\% | 20 | 0.7\% | 10 | 0.3\% | 2879 | 100\% |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 6730 | 97.1\% | 118 | 1.7\% | 61 | 0.9\% | 0 | 0.0\% | 4 | 0.1\% | 16 | 0.2\% | 6929 | 100\% |
| PM Peak Period | 12386 | 97.8\% | 156 | 1.2\% | 92 | 0.7\% | 0 | 0.0\% | 15 | 0.1\% | 19 | 0.1\% | 12668 | 100\% |
| Cape Horn | 2957 | 94.1\% | 120 | 3.8\% | 35 | 1.1\% | 0 | 0.0\% | 20 | 0.6\% | 9 | 0.3\% | 3141 | 100\% |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 6471 | 96.7\% | 151 | 2.3\% | 56 | 0.8\% | 0 | 0.0\% | 5 | 0.1\% | 8 | 0.1\% | 6691 | 100\% |
| PM Peak Period | 10970 | 97.5\% | 179 | 1.6\% | 69 | 0.6\% | 0 | 0.0\% | 11 | 0.1\% | 17 | 0.2\% | 11246 | 100\% |
| Port Mann Bridge | 2827 | 85.5\% | 401 | 12.1\% | 51 | 1.5\% | 0 | 0.0\% | 22 | 0.7\% | 5 | 0.2\% | 3306 | 100\% |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 6552 | 94.7\% | 315 | 4.6\% | 42 | 0.6\% | 0 | 0.0\% | 7 | 0.1\% | 5 | 0.1\% | 6921 | 100\% |
| PM Peak Period | 10009 | 97.3\% | 197 | 1.9\% | 56 | 0.5\% | 0 | 0.0\% | 12 | 0.1\% | 10 | 0.1\% | 10284 | 100\% |

## WESTBOUND

|  | Cars |  | Trucks |  | Motorcycles |  | Bicycles |  | Buses |  | Taxi |  | Total Vehicles |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Second Narrows Bridge |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 2801 | 95.1\% | 54 | 1.8\% | 43 | 1.5\% | 0 | 0.0\% | 16 | 0.5\% | 30 | 1.0\% | 2944 | 100\% |
| Noon Peak Period | 6776 | 97.1\% | 77 | 1.1\% | 92 | 1.3\% | 4 | 0.1\% | 9 | 0.1\% | 17 | 0.2\% | 6975 | 100\% |
| PM Peak Period | 10731 | 97.5\% | 103 | 0.9\% | 113 | 1.0\% | 2 | 0.0\% | 23 | 0.2\% | 31 | 0.3\% | 11003 | 100\% |
| Gaglardi |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 3501 | 96.4\% | 86 | 2.4\% | 32 | 0.9\% | 0 | 0.0\% | 8 | 0.2\% | 6 | 0.2\% | 3633 | 100\% |
| Noon Peak Period | 7102 | 97.7\% | 88 | 1.2\% | 62 | 0.9\% | 0 | 0.0\% | 8 | 0.1\% | 11 | 0.2\% | 7271 | 100\% |
| PM Peak Period | 9957 | 97.4\% | 147 | 1.4\% | 91 | 0.9\% | 0 | 0.0\% | 29 | 0.3\% | 4 | 0.0\% | 10228 | 100\% |
| Cape Horn |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 3168 | 94.9\% | 121 | 3.6\% | 35 | 1.0\% | 0 | 0.0\% | 8 | 0.2\% | 8 | 0.2\% | 3340 | 100\% |
| Noon Peak Period | 6167 | 96.8\% | 129 | 2.0\% | 51 | 0.8\% | 0 | 0.0\% | 10 | 0.2\% | 13 | 0.2\% | 6370 | 100\% |
| PM Peak Period | 9484 | 96.6\% | 179 | 1.8\% | 126 | 1.3\% | 0 | 0.0\% | 28 | 0.3\% | 3 | 0.0\% | 9820 | 100\% |
| Port Mann Bridge |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 2739 | 94.0\% | 127 | 4.4\% | 31 | 1.1\% | 0 | 0.0\% | 12 | 0.4\% | 4 | 0.1\% | 2913 | 100\% |
| Noon Peak Period | 6223 | 96.3\% | 155 | 2.4\% | 65 | 1.0\% | 0 | 0.0\% | 9 | 0.1\% | 12 | 0.2\% | 6464 | 100\% |
| PM Peak Period | 9284 | 96.5\% | 204 | 2.1\% | 105 | 1.1\% | 0 | 0.0\% | 23 | 0.2\% | 6 | 0.1\% | 9622 | 100\% |

# Ministry of Transportation \& Highways <br> Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT) 

Exhibit 2.1.8-Mainline Vehicle Classification - GP vs HOV Lanes - Sunday Peak Period

## EASTBOUND

| GP Lanes Combined | Cars |  | Trucks |  | Motorcycles |  | Bicycles |  | Buses |  | Taxi |  | Total Vehicles |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gaglardi |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 2330 | 94.9\% | 97 | 3.9\% | 11 | 0.4\% | 0 | 0.0\% | 9 | 0.4\% | 9 | 0.4\% | 2456 | 100\% |
| Noon Peak Period | 4851 | 97.1\% | 111 | 2.2\% | 22 | 0.4\% | 0 | 0.0\% | 1 | 0.0\% | 10 | 0.2\% | 4995 | 100\% |
| PM Peak Period | 8430 | 97.7\% | 141 | 1.6\% | 40 | 0.5\% | 0 | 0.0\% | 7 | 0.1\% | 10 | 0.1\% | 8628 | 100\% |
| Cape Horn |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 2562 | 94.5\% | 120 | 4.4\% | 15 | 0.6\% | 0 | 0.0\% | 8 | 0.3\% | 6 | 0.2\% | 2711 | 100\% |
| Noon Peak Period | 4721 | 96.3\% | 148 | 3.0\% | 23 | 0.5\% | 0 | 0.0\% | 2 | 0.0\% | 6 | 0.1\% | 4900 | 100\% |
| PM Peak Period | 7927 | 97.4\% | 174 | 2.1\% | 21 | 0.3\% | 0 | 0.0\% | 4 | 0.0\% | 9 | 0.1\% | 8135 | 100\% |


| HOV Lane | Cars |  | Trucks |  | Motorcycles |  | Bicycles |  | Buses |  | Taxi |  | Total Vehicles |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gaglardi |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 388 | 91.7\% | 1 | 0.2\% | 22 | 5.2\% | 0 | 0.0\% | 11 | 2.6\% | 1 | 0.2\% | 423 | 100\% |
| Noon Peak Period | 1879 | 97.2\% | 7 | 0.4\% | 39 | 2.0\% | 0 | 0.0\% | 3 | 0.2\% | 6 | 0.3\% | 1934 | 100\% |
| PM Peak Period | 3956 | 97.9\% | 15 | 0.4\% | 52 | 1.3\% | 0 | 0.0\% | 8 | 0.2\% | 9 | 0.2\% | 4040 | 100\% |
| Cape Horn |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 395 | 91.9\% | 0 | 0.0\% | 20 | 4.7\% | 0 | 0.0\% | 12 | 2.8\% | 3 | 0.7\% | 430 | 100\% |
| Noon Peak Period | 1750 | 97.7\% | 3 | 0.2\% | 33 | 1.8\% | 0 | 0.0\% | 3 | 0.2\% | 2 | 0.1\% | 1791 | 100\% |
| PM Peak Period | 3043 | 97.8\% | 5 | 0.2\% | 48 | 1.5\% | 0 | 0.0\% | 7 | 0.2\% | 8 | 0.3\% | 3111 | 100\% |

## WESTBOUND

| GP Lanes Combined | Cars |  | Trucks |  | Motorcycles |  | Bicycles |  | Buses |  | Taxi |  | Total Vehicles |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gaglardi | 3002 | 96.3\% | 85 | 2.7\% | 22 | 0.7\% | 0 | 0.0\% | 4 | 0.1\% | 4 | 0.1\% | 3117 | 100\% |
| AM Peak Period |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noon Peak Period | 5103 | 97.5\% | 86 | 1.6\% | 36 | 0.7\% | 0 | 0.0\% | 2 | 0.0\% | 7 | 0.1\% | 5234 | 100\% |
| PM Peak Period | 7147 | 97.3\% | 139 | 1.9\% | 47 | 0.6\% | 0 | 0.0\% | 7 | 0.1\% | 2 | 0.0\% | 7342 | 100\% |
| Cape Horn |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 2726 | 94.8\% | 121 | 4.2\% | 18 | 0.6\% | 0 | 0.0\% | 5 | 0.2\% | 6 | 0.2\% | 2876 | 100\% |
| Noon Peak Period | 4512 | 96.3\% | 128 | 2.7\% | 34 | 0.7\% | 0 | 0.0\% | 5 | 0.1\% | 8 | 0.2\% | 4687 | 100\% |
| PM Peak Period | 6680 | 96.6\% | 179 | 2.6\% | 42 | 0.6\% | 0 | 0.0\% | 8 | 0.1\% | 3 | 0.0\% | 6912 | 100\% |


| HOV Lane | Cars |  | Trucks |  | Motorcycles |  | Bicycles |  | Buses |  | Taxi |  | Total Vehicles |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gaglardi |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 499 | 96.7\% | 1 | 0.2\% | 10 | 1.9\% | 0 | 0.0\% | 4 | 0.8\% | 2 | 0.4\% | 516 | 100\% |
| Noon Peak Period | 1999 | 98.1\% | 2 | 0.1\% | 26 | 1.3\% | 0 | 0.0\% | 6 | 0.3\% | 4 | 0.2\% | 2037 | 100\% |
| PM Peak Period | 2810 | 97.4\% | 8 | 0.3\% | 44 | 1.5\% | 0 | 0.0\% | 22 | 0.8\% | 2 | 0.1\% | 2886 | 100\% |
| Cape Horn |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Peak Period | 442 | 95.3\% | 0 | 0.0\% | 17 | 3.7\% | 0 | 0.0\% | 3 | 0.6\% | 2 | 0.4\% | 464 | 100\% |
| Noon Peak Period | 1655 | 98.3\% | 1 | 0.1\% | 17 | 1.0\% | 0 | 0.0\% | 5 | 0.3\% | 5 | 0.3\% | 1683 | 100\% |
| PM Peak Period | 2804 | 96.4\% | 0 | 0.0\% | 84 | 2.9\% | 0 | 0.0\% | 20 | 0.7\% | 0 | 0.0\% | 2908 | 100\% |

### 2.1.5 Before \& After Evaluation

Using data documented in the Phase I Monitoring and Evaluation study and the Phase II "after" data presented above, the MOEs have been used to compare before and after conditions and measure the extent to which the objective of increasing vehicle occupancy has been achieved.

### 2.1.5.1 Increase in AVO

Measuring an increase in AVOs represents the key MOE for evaluating this objective. Exhibits 2.1.9 to 2.1.11 present the "before" and "after" comparisons of AVO along the HOV section, as well as the parallel routes for the weekday AM peak, mid-day peak, and PM peak periods respectively. All of the AVO measurement comparisons were analyzed for their statistical significance at a $95 \%$ confidence limit. On this basis, the minimum AVO required to establish a significant increase is also presented in the exhibits.

## TCH - HOV section AVOs

The results indicate that a statistically significant increase in AVO has occurred during the weekday AM and PM peak period, especially in the peak directions.

- Westbound, in the AM peak period, AVOs have increased from 1.16 to 1.24 in the HOV section.
- Eastbound, in the PM peak period, AVOs have increased from 1.25 to 1.31 in the HOV section.


## Parallel Routes AVOs

The exhibits also show the change in AVO along the parallel routes (along with a minimum indication showing whether the reduction is statistically significant at the $95 \%$ confidence limit). A statistically significant reduction in AVO along the parallel routes would suggest that the increase in AVO along the TCH was attributed to a diversion of existing HOVs from the parallel routes onto the TCH.

It is observed that the majority of the reductions in AVO along the parallel routes are not statistically significant at a 95\% confidence limit. Therefore, these non-significant changes in AVOs along the parallel routes indicate that mainline increases in AVO are mostly due to the formation of new carpools.

Along the Fraser River Screenline a significant reduction in AVO is observed on the Pattullo Bridge, with a corresponding significant increase in AVO along the Port Mann Bridge, suggesting a diversion of HOVs from the Pattullo Bridge onto the Port Mann Bridge to take advantage of a portion of the HOV facility. Additional significant AVO reductions are observed along Lougheed Highway (at the east "control" Screenline), confirming the general trend in AVO reduction regionally.

Exhibit 2.1.9 - Weekday AM Peak Period AVOs By Screenline

| 1 | Ministry of Transportation \& Highways |
| :---: | :---: |
|  | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program |
| BRITISH <br> COLUMBIA | Phase il hov Evaluation \& tMP Baseline (Final report) |

Exhibit 2.1.10 - Weekday MID-DAY Peak Period AVOs By Screenline

Exhibit 2.1.11 - Weekday PM Peak Period AVOs By Screenline

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

## Overall Screenline AVOs

When considering AVOs across the screenlines analyzed, the results confirm that the person throughput of the HOV section has increased significantly in the weekday AM and PM peak periods. The following tables provide a summary of the "before" and "after" screenline AVOs for the peak directions, at screenlines across the HOV facility, and also at the screenlines at either end of the HOV facility, the Port Mann and Pattullo Bridge in the east and the Second Narrows in the west.

Exhibit 2.1.12A - Summary of "Before" \& "After" AVOs at Screenlines

| WESTBOUND AM PEAK PERIOD | September 1997 AVO | $\text { September } 1999$ AVO | \% Difference |
| :---: | :---: | :---: | :---: |
| Centre Screenline: Lougheed, TCH, Canada Way (near Gaglardi) | 1.14 | 1.19 | +4.4\% |
| King Edward Screenline: Lougheed, TCH (east of Brunette) | 1.13 | 1.19 | +5.3 \% |
| Fraser River Screenline: <br> Pattullo Bridge Port Mann Bridge Subtotal | $\begin{aligned} & 1.19 \\ & 1.13 \\ & 1.16 \end{aligned}$ | $\begin{aligned} & 1.16 \\ & 1.20 \\ & 1.19 \end{aligned}$ | $\begin{aligned} & -2.6 \% \\ & +6.2 \% \\ & +2.6 \% \end{aligned}$ |
| Second Narrows Screenline: Second Narrows Bridge only | 1.11 | 1.13 | + 1.9\% |


| EASTBOUND PM PEAK PERIOD | September 1997 AVO | September 1999 AVO | \% Difference |
| :---: | :---: | :---: | :---: |
| Centre Screenline: Lougheed, TCH, Canada Way (near Gaglardi) | 1.24 | 1.27 | + 2.4 \% |
| King Edward Screenline: <br> Lougheed, TCH (east of Brunette) | 1.17 | 1.28 | +9.4\% |
| Fraser River Screenline: <br> Pattullo Bridge Port Mann Bridge Subtotal | $\begin{aligned} & 1.24 \\ & 1.16 \\ & \mathbf{1 . 2 0} \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.20 \\ & 1.26 \\ & \mathbf{1 . 2 3} \\ & \hline \end{aligned}$ | $\begin{aligned} & -3.2 \% \\ & +8.6 \% \\ & +2.5 \% \end{aligned}$ |
| Second Narrows Screenline: Second Narrows Bridge only | 1.20 | 1.23 | +2.9 \% |

The AVOs across the screenlines indicate that the increase in vehicle occupancy is greatest across King Edward screenline, where travelers experienced the greatest benefits of the HOV lanes. AVO increases are less but still significant, across the Centre screenline at Gaglardi and the east and west ends. Some diversions in existing HOVs have been observed across the Fraser River screenline (Pattullo Bridge and Port Mann Bridge), where the TCH / Port Mann Bridge AVOs have increased significantly (approximately 3.3 to $6.2 \%$ ), while the Pattullo Bridge AVOs have decreased significantly (approximately 2.5 to $3.6 \%$ ). Diversions are also observed across the Centre Screenline in the eastbound PM peak direction where Lougheed Highway AVOs decrease by 2.5\% while TCH AVOs increase by $4.8 \%$, both without significant decreases along Canada Way.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

In general AVOs are the best measure of person throughput because they are normalized by the before and after number of vehicles. Raw person throughput data can also be used to measure the degree to which this objective is achieved, but is not as reliable since traffic volume variations can significantly sway results. Using the AVOs and the available short count data collected during September of 1997 and 1999, changes in person throughput along Highway 1 near Gaglardi interchange (central and representative portion of the HOV section) are summarized in Exhibit 2.1.12B.

Exhibit 2.1.12B - Before \& After Person Throughput at the Central Portion of the HOV Section

| Highway at Gaglardf Interchange (Central Portion of HOV Section) |  |  |  |
| :--- | :---: | :---: | :---: |
| Peak Period / Direction <br> Person Throughput | Before | After | \% Change |
| AM Period (6:00-9:00) <br> Westbound | 11,200 | 15,700 | $40 \%$ |
| PM Period (3:00-6:00) <br> Eastbound | 9,200 | 15,900 | $72 \%$ |

Review of the person volume data indicates that total person movement throughput along the Highway 1 HOV Section has increased by approximately $40 \%$ in the AM westbound peak direction, and $72 \%$ in the PM eastbound peak direction. When interpreted with the overall AVO increase observations across all screenlines, it can be confirmed that the increase in person throughput is due to an increase in higher occupant modes, and not just an increase in traffic volumes. The increase in person throughput beyond normal growth can be accounted for by attraction of SOVs and HOVs from parallel routes (such as Lougheed Highway and Canada Way / Pattullo Bridge), and by satisfaction of latent demand (where more people are able to make the trip they want when they want, etc).

### 2.1.5.2 Increase in the Number of Vanpools and Carpools

Measuring an increase in the number of carpools and vanpools across each screenline is another measure of the mode shift. Exhibits 2.1.13 and 2.1.18 present the "before and after" HOV market shares by time of day and direction of travel - across the screenlines.

It is significant to note that in all cases, the HOV market share has increased across the screenlines considered. Specifically, the following AM peak and PM peak increases were observed:

Exhibit 2.1.13 - Weekday AM Peak Period EB Market Share By Screenline

| 1 | Ministry of Transportation \& Highways |
| :---: | :---: |
|  | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program |
| BRITISH <br> COLUMBIA | Phase il hov Evaluation \& tMP Baseline (Final report) |

Exhibit 2.1.14 - Weekday AM Peak Period WB Market Share By Screenline

Exhibit 2.1.15 - Weekday MID-DAY Peak Period EB Market Share By Screenline

Exhibit 2.1.16 - Weekday MID-DAY Peak Period WB Market Share By Screenline

|  | Ministry of Transportation \& Highways |
| :---: | :---: |
| BRITISH <br> Columbia | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT) |

Exhibit 2.1.17 - Weekday PM Peak Period EB Market Share By Screenline

|  | Ministry of Transportation \& Highways |
| :---: | :---: |
| BRITISH <br> Columbia | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT) |

Exhibit 2.1.18 - Weekday PM Peak Period WB Market Share By Screenline

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 2.1.19-Summary of "Before" \& "After" HOV Market Share

| WESTBOUND AM PEAK PERIOD | \% of People in HOVs |  | \% Difference |
| :---: | :---: | :---: | :---: |
|  | September 1997 | September 1999 |  |
| Centre Screenline: Lougheed, TCH, Canada Way (near Gaglardi) | 27 \% | 29 \% | +2\% |
| King Edward Screenline: Lougheed, TCH (east of Brunette) | 20 \% | 29 \% | +9\% |
| Fraser River Screenline: <br> Pattullo Bridge Port Mann Bridge Subtotal | $\begin{aligned} & 12 \% \\ & 12 \% \\ & 25 \% \end{aligned}$ | $\begin{aligned} & 14 \% \\ & 15 \% \\ & 30 \% \end{aligned}$ | $\begin{aligned} & +2 \% \\ & +3 \% \\ & +5 \% \\ & \hline \end{aligned}$ |
| Second Narrows Screenline: Second Narrows Bridge only | 17 \% | 21 \% | +4\% |


| EASTBOUND PM PEAK PERIOD | \% of People in HOVs |  | \% Difference |
| :---: | :---: | :---: | :---: |
|  | September 1997 | September 1999 |  |
| Centre Screenline: Lougheed, TCH, Canada Way (near Gaglardi) | 34 \% | 38 \% | +4\% |
| King Edward Screenline: Lougheed, TCH (east of Brunette) | 27 \% | 39 \% | +12\% |
| Fraser River Screenline: <br> Pattullo Bridge Port Mann Bridge Subtotal | $\begin{aligned} & 19 \% \\ & 12 \% \\ & 31 \% \end{aligned}$ | $\begin{aligned} & 15 \% \\ & 19 \% \\ & 34 \% \end{aligned}$ | $\begin{aligned} & -4 \% \\ & +7 \% \\ & +3 \% \\ & \hline \end{aligned}$ |
| Fraser River Screenline: Pattullo Bridge, Port Mann Bridge | 31 \% | 34 \% | +3\% |
| Second Narrows Screenline: Second Narrows Bridge only | 29 \% | 33 \% | +4\% |

Again, the shift to HOV mode is most pronounced across the King Edward screenline at King Edward, with less, but still significant increases across the other screenlines. This suggests that the greatest modal shifts are achieved for trips which involve the greatest portion of their route on the HOV facility. Therefore, extension of the HOV facility will encourage even greater shifts to the HOV mode for trips served by the extended facility.

### 2.1.5.3 Increase in Bus Ridership

Similar to encouraging the generation of new carpools, an effective HOV facility should lead to an increase in bus ridership where applicable. As indicated in the terms of reference for this study, the estimation of TransLink bus occupancies does not apply to the data collection program, as there are currently no transit buses operating along the length of the TCH corridor. The data collected did nevertheless separately classify other types of "buses" (i.e. tour, etc.). Cost Mountain Buslink may take advantage of the HOV lanes in the near future.

COLUMBIA
Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

### 2.1.6 Recommendations for Future Phases

Periodic monitoring of vehicle occupancies along the HOV section and the parallel routes should be carried out to determine if these early benefits are sustained over time.

Monitoring of this key indicator will also allow the variability and trends of these benefits to be tracked over time, and indicate when appropriate traffic management measures may be necessary to support changes in the HOV and SOV profiles.

### 2.2 Objective 2: Provide Travel Time Savings

### 2.2.1 Description of Objective

The focus of this objective is to provide eligible HOVs with travel time savings over the length of the HOV facility to encourage greater HOV use. Achievement of this objective is critical to the success of an HOV facility, since travel time savings is one of the key incentives for commuters to switch to a high occupancy mode.

### 2.2.2 MOES

Specific MOEs which were selected to evaluate the achievement of the objective are:

- lower travel time along the HOV lanes in comparison to the pre-HOV GP lanes.
- lower travel time along the HOV lanes in comparison to the post-HOV GP lanes;


### 2.2.3 Data Requirements

In order to measure the MOEs identified above, data collection must include:

- "before" travel time measurements in the general purpose lanes;
- "after" travel time measurements in both the HOV and GP lanes.


### 2.2.4 Phase /I Data

Phase II travel times were obtained along the full length of the Study section, from Lynn Valley Road in North Vancouver to the 176 Street Interchange in Surrey. The HOV section is a subset of this full section, approximately from the Grandview Highway overpass to the Cape Horn interchange, is used herein for the evaluation of the HOV lanes. Details of the data are presented in Appendix A-3.

Exhibit 2.2.1 provides a tabulated summary of the travel time data obtained for the HOV lanes, along with calculated average speeds and the delay (compared to free-flow conditions). The data is categorized by time period and lane type.

The Phase II travel time data is consistent with the Phase I data, in that general purpose traffic lanes experience the highest delays in the peak directions - at approximately 5.2 minutes in the AM peak period westbound, and 9.8 minutes in the PM peak period eastbound. HOV traffic on the other hand, experience no delays in the AM peak period westbound, and minimal delays in the PM peak period eastbound, at approximately 1.7 minutes.

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 2.2.1 - Phase II HOV Section Travel Time, Speed, and Delay Summary

| WEEKDAY EASTBOUND |
| :--- |
| Lane Type | Segment



Note: Delays are estimated by subtracting the surveyed travel times from a free-flow travel time at $90 \mathrm{~km} / \mathrm{hr}$

### 2.2.5 Before \& After HOV Lanes Evaluation

The "before" and "after" comparison of average travel speeds along the HOV section was used to measure the achievement of this objective. Exhibit 2.2.2 provides a graphical summary of average travel speeds and travel time savings along the HOV section for GP traffic before the construction of the HOV lanes, current GP traffic, and current HOV traffic. The comparisons indicate that savings are highest in the peak directions:

## PM Peak Period - Eastbound

- HOV traffic save 20.3 minutes when compared to GP travel times before the construction of the HOV lanes, while currently saving 8.7 minutes when compared to current GP travel times.
- GP traffic save 11.7 minutes when compared to GP travel times before the construction of the HOV lanes.


## AM Peak Period Westbound

- HOV traffic save 7.3 minutes when compared to GP travel times before the construction of the HOV lanes, while currently saving 5.6 minutes when compared to current GP travel times.
- GP traffic save a 1.8 minutes when compared to GP travel times before the construction of the HOV lanes.

Note: Travel time benefits beyond the HOV section are discussed in Section 3.1.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 2.2.2 - Weekday Peak Period - Average Speeds \& Travel Time Savings - Before \& After HOV Lanes



Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Additional travel time savings are observed in the westbound PM peak period, likely attributed to higher occupant recreational trips. HOV travel time savings are observed to be 4.6 minutes if compared to GP travel times before the construction of the HOV lanes, and 1.1 minutes if compared to current GP travel times. Before and after GP travel time savings are observed at 3.5 minutes during this same period.

All data were analyzed to confirm that sample sizes were statistically reliable as shown in Exhibit 2.2.3. The before and after comparisons were also analyzed to determine if differences and travel time savings were significant at a $95 \%$ confidence limit. It was found that all sample sizes are statistically reliable (i.e. samples were sufficient to make all measured differences significant), and that travel time savings are significant for all periods and directions, and traffic, except for GP traffic during the AM peak period in both directions.

Exhibit 2.2.3 - Weekday Peak Period - Travel Time Savings and Statistical Analysis


NOTE: Shading indicates peak direction

## Comparison with Parallel Route Travel Times

Exhibit 2.2.4 provides a comparative tabulation of average travel times and speeds along the HOV-FSP Section versus adjacent parallel routes in the corridor. It can be observed that the Highway 1 travel times are consistently lower than the parallel routes, predominantly due to the arterial nature of those routes. Travel times on the northern parallel (Lougheed Highway) route are lower in the peak direction, than in the off-peak, illustrating the benefits of signal coordination. Comparatively, travel times on the southern route (Canada Way / Pattullo Bridge) are higher in the peak direction - as this section has limited signal coordination.

Exhibit 2.2.4-HOV/FSP Corridor Phase II Travel Time and Speed Comparison

| HIGHWAY 1 vs NORTHERN <br> PARALLEL ROUTE | Distance <br> $\mathbf{( k m )}$ |
| :---: | :---: |
| Highway 1 |  |
| Northern Route | 16.2 |
| Note: Highway 1 - Boundary Road to Cape Horn |  |


| EASTBOUND |  |  |  |
| :---: | :---: | :---: | :---: |
| AM |  | PM |  |
| Travel Time <br> (min) | Speed <br> $(\mathbf{k m} / \mathbf{h r})$ | Travel Time <br> (min) | Speed <br> $(\mathbf{k m} / \mathbf{h r})$ |
| 11.7 | 83 | 22.0 | 44 |
| 18.8 | 51 | 24.6 | 39 |


| WESTBOUND |  |  |  |
| :---: | :---: | :---: | :---: |
| AM |  | PM |  |
| Travel Time <br> (min) | Speed <br> (km/hr) | Travel Time <br> (min) | Speed <br> (km/hr) |
| 16.1 | 60 | 13.1 | 73 |
| 31.9 | 30 | 28.4 | 33 |

Norhthern Route - Boundary Road to United Blvd

| HIGHWAY 1 vs SOUTHERN PARALLEL ROUTE | $\begin{gathered} \text { Distance } \\ (k m) \end{gathered}$ | EASTBOUND |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM |  | PM |  |
|  |  | Travel Time (min) | Speed (km/hr) | Travel Time (min) | $\begin{aligned} & \text { Speed } \\ & (k m / \mathrm{hr}) \end{aligned}$ |
| Highway 1 | 22.6 | 16.6 | 81 | 27.9 | 48 |
| Southern Route | 22.3 | 31.4 | 43 | 44.0 | 30 |


| WESTBOUND |  |  |  |
| :---: | :---: | :---: | :---: |
| AM |  | PM |  |
| Travel Time <br> (min) | Speed <br> (km/hr) | Travel Time <br> (min) | Speed <br> (km/hr) |
| 27.2 | 49 | 19.4 | 69 |
| 45.2 | 30 | 44.0 | 30 |

Southern Route - Boundary Road to 104 Ave / 160 Street

* Two tables are presented above since the two parallel routes are compared to Highway 1 over different distances, i.e. the northern Lougheed Highway Route is parallel over an approximate 16km section (same as the HOV-FSP section), while the southern Canada Way / Pattullo Bridge route is covers a 22 km section extending into Surrey.


### 2.2.6 Recommendations for Future Phases

A competitive travel time, with significant savings relative to the pre HOV conditions or the current GP conditions is the primary incentive for encouraging a shift to the HOV mode. This important indicator should also be monitored on a regular basis in order to ensure that travel time advantages for the HOVs are sustained over time.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

### 2.3 Objective 3: Improve Trip Travel Time Reliability

### 2.3.1 Description of Objective

The focus of this objective is to provide eligible HOVs with improved travel time reliability along the HOV facility. Achievement of this objective, in addition to the travel time advantage over the GP lanes, is also critical to HOV usage, since travel time reliability is also a key incentive for commuters to switch to a high-occupancy mode.

### 2.3.2 MOEs

Specific MOEs which were selected to evaluate the achievement of this objective are:

- lower variance in travel times along the HOV lanes in comparison to the pre-HOV GP lanes;
- lower variance in travel times along the HOV lanes in comparison to the post-HOV GP lanes;


### 2.3.3 Data Requirements

In order to measure the MOEs identified above, the data collection program included:

- "before" variance in average speeds in the GP lanes over the length of the HOV facility.
- "after" variance in average vehicle speeds in both the HOV and GP lanes over the length of the facility.


### 2.3.4 Phase /I Data

This objective builds on the benefits of the travel time savings objective by providing HOV lane users with a more reliable trip time in comparison to the GP lane users (both before and after construction of the HOV lanes). The achievement of this objective is measured by comparing the variances in average vehicle speeds along the HOV section. Details of the data supporting this MOE are presented in Appendix A-3. The travel time surveys for this MOE were designed specifically for the purpose of evaluating trip time reliability. The surveys were carried out along the length of the HOV corridor over a 20 day period, during the morning and afternoon peak periods.

Exhibit 2.3.1 provides a tabulated summary of the average speeds measured along the GP and HOV lanes of the corridor, along with their standard deviations, by direction and time period. The results of Phase II trip reliability data are consistent with the Phase I findings, in that general purpose traffic experience the highest trip time variability in the peak directions.

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program
Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 2.3.1 - Phase II Average Speeds with Standard Deviations

| Trip Travel Time <br> Reliability | Average <br> Speed | Standard <br> Deviation | Average <br> Speed | Standard <br> Deviation |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 88 | 8.0 | 53 | 19.0 |  |
| GP Lanes | 88 | 2.0 | 79 | 11.0 |  |
| HOV Lane | 90 |  |  |  |  |
| Westbound |  | 17.0 | 88 | 11.0 |  |
| GP Lanes | 63 | 5.0 | 94 | 7.0 |  |
| HOV Lane | 91 |  |  |  |  |
| * Shading Indicates peak Direction |  |  |  |  |  |

### 2.3.5 Before \& After Evaluation

Comparisons of average speed standard deviations for GP traffic before and after the construction of the HOV lanes, and for HOV traffic, provide a measurable indication of the achievement of this objective. Exhibit 2.3.2 provides a graphical summary of these comparisons, whereby the standard deviations are presented as a percentage of the average speed. For the peak directions, the comparisons indicate that:

- Westbound AM Peak Period - HOV travel time reliability has improved by $27 \%$ relative to GP operations prior to the construction of the HOV lanes. Furthermore, the results indicate that HOV trip time reliability is $24 \%$ higher when compared to current operations of GP traffic.
- Eastbound PM Peak Period - HOV travel time reliability has improved by $13 \%$ relative to GP operations prior to the construction of the HOV lanes. However, the results indicate that HOV trip time reliability is $17 \%$ higher when compared to current operations of GP traffic.

For the off-peak direction, HOV trip time reliability improvements are 15\% (eastbound AM peak period) and $24 \%$ (westbound PM peak period) relative to GP operations prior to construction of the HOV lanes, and 8\% (eastbound AM peak period) and 11\% (westbound PM peak period) relative to current GP operations.

Some improvements ( $3 \%$ to $13 \%$ ) in trip time reliability were also observed for the GP traffic before and after construction of the HOV lanes. This is no doubt due to attracting the existing HOV traffic from the GP lanes to the HOV lanes, thus making GP operations better (except for the eastbound PM peak period where "before" GP to "after" GP declined 4\%).

Exhibit 2.3.2 also presents the statistical analysis of the trip time reliability analysis to ensure that observed benefits are statistically significant. The analysis indicates that all of the key benefits are statistically significant to a $95 \%$ confidence limit. Before and after benefits to GP traffic during the AM peak period are observed not to be significant to a $95 \%$ confidence limit, at the same time these benefits are not relevant to the achievement of this objective.

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 2.3.2 - Weekday Peak Period - Trip Reliability Analysis


| TRIP RELIABILITY <br> (standard deviation of average speed as a \% of the mean) |  | AM - Peak |  | PM - Peak |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | WB | EB | WB | EB |
|  | Before GP | 33\% | 18\% | 35\% | 31\% |
|  | After GP | 30\% | 10\% | 22\% | 35\% |
|  | After HOV | 6\% | 3\% | 11\% | 18\% |
|  |  | AM - Peak |  | PM - Peak |  |
|  |  | WB | EB | WB | EB |
| TRIP RELIABILITY CHANGES <br> (standard deviation of average speed as a \% of the mean) | Before GP to After HOV | 27\% | 15\% | 24\% | 13\% |
|  | Before GP to After GP | 3\% | 8\% | 13\% | -4\% |
|  | After GP to After HOV | 24\% | 8\% | 11\% | 17\% |
|  |  | AM - Peak |  | PM - Peak |  |
|  |  | WB | EB | WB | EB |
| SIGNIFICANT SAVINGS | Before GP to After HOV | YES | YES | YES | YES |
| IN TRIP RELIABILITY ? | Before GP to After GP | NO | YES | YES | YES |
|  | After GP to After HOV | YES | YES | YES | YES |
|  | NOTE: Shading indicates peak direction |  |  |  |  |

### 2.4 Objective 4: Increase Per-Lane Efficiency

### 2.4.1 Description of Objective

The focus of this objective is to increase the per-lane efficiency of the highway facility expressed in terms of person-kilometres per hour. Since HOV lanes facilitate the movement of higher person-volumes at higher speeds, the overall efficiency of the highway facility is expected to improve.

### 2.4.2 MOEs

The MOE selected to evaluate the achievement of this objective is based on a comparison of the per-lane efficiency of the highway prior to the provision of HOV lanes, with the per-lane efficiency of the GP and HOV lanes after the implementation of the HOV facility. Per-lane efficiency is calculated by multiplying the person-volume on the highway with the average highway operating speed, as given by the following equation:

$$
\text { Efficiency }=\frac{p p v \times v_{\text {avg }}}{1000 \times(n)}
$$

## where:

| Efficiency | $=$ Peak Hour Per-lane Efficiency (1,000 Person - Kilometres/ Hour) |
| :--- | :--- |
| $p p v$ | $=$ Average Per-lane Peak Hour Person Volume (AVO x Vehicles) |
| $v_{\text {avg }}$ | $=$ Average Recorded Speed (kilometers per hour) |
| $n$ | $=$ Number of Lanes |

For the "after" conditions, the facility per-lane efficiency is the weighted combination of the per-lane efficiency of the GP lanes with the HOV lanes.

### 2.4.3 Data Requirements

In order to measure the MOEs identified above, data collection included:

- "before" and "after" vehicle occupancy counts on a lane basis;
- "before" and "after" vehicle average speeds in the GP and HOV lanes;


### 2.4.4 Phase // Data

As indicated by the data requirements for this MOE, achievement of this objective is essentially a function of the "increase in AVO" and "lower travel time" objectives.

Exhibits 2.4.1 and 2.4.2 present (Phase II) eastbound westbound per lane efficiency calculations respectively. Interpretation of the Phase II data is not possible without

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase il hov Evaluation \& TMP Baseline (FINAL REPORT)
comparison with the "before" data in order to determine the increase or decrease in perlane efficiency, in the peak and mid-day periods and directions. On its own, a low value for per-lane efficiency does not indicate an inefficient facility, as it could be either a function of low person volumes (i.e. for off-peak conditions and directions) or low speeds (during peak periods). For peak period directions, this MOE shows the compound impact of higher person volumes and speeds on person throughput. The following Phase II per lane efficiencies are computed for a screenline west of Gaglardi Way, and are compared with the Phase I efficiencies for the same location in section 2.4.5 Before and After Evaluation.

Exhibit 2.4.1 - Highway 1 Westbound Per Lane Efficiency (Phase II)

| WESTBOUND DEER LAKE | WEEKDAY |  |  |  |  |  | SUNDAY |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | AY |  |  |  |  |  |  |  |  |
|  | GP | HOV |
| \# of Lanes | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
| Traffic Volumes | 2919 | 1095 | 2359 | 491 | 2647 | 500 | 1705 | 393 | 2377 | 1042 | 2167 | 949 |
| AVO | 1.04 | 2.02 | 1.16 | 2.03 | 1.16 | 2.06 | 1.26 | 2.30 | 1.48 | 2.28 | 1.55 | 2.26 |
| Total Occupants | 3037 | 2212 | 2725 | 996 | 3082 | 1032 | 2153 | 906 | 3525 | 2376 | 3363 | 2144 |
| Average Speeds | 60 | 93 | 68 | 92 | 76 | 92 | 91 | 90 | 90 | 90 | 89 | 90 |
| Per Lane Efficiency | 91 | 205 | 93 | 92 | 118 | 95 | 98 | 82 | 159 | 214 | 149 | 193 |
| Average Efficiency | 129 |  | 93 |  | 110 |  | 92 |  | 177 |  | 164 |  |

Exhibit 2.4.2 - Highway 1 Eastbound Per Lane Efficiency (Phase II)

| EASTBOUND GAGLARDI | WEEKDAY |  |  |  |  |  | SUNDAY |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | GP | HOV |
| \# of Lanes | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
| Traffic Volumes | 2784 | 350 | 2472 | 494 | 2699 | 1037 | 1414 | 348 | 2217 | 973 | 2411 | 1142 |
| AVO | 1.06 | 2.12 | 1.14 | 2.21 | 1.07 | 2.12 | 1.26 | 2.20 | 1.45 | 2.16 | 1.47 | 2.25 |
| Total Occupants | 2960 | 741 | 2818 | 1095 | 2900 | 2197 | 1786 | 767 | 3211 | 2102 | 3555 | 2566 |
| Average Speeds | 87 | 93 | 67 | 86 | 47 | 79 | 92 | 90 | 87 | 90 | 88 | 90 |
| Per Lane Efficiency | 129 | 69 | 94 | 94 | 68 | 175 | 82 | 69 | 140 | 189 | 156 | 231 |
| Average Efficiency | 109 |  | 94 |  | 103 |  | 78 |  | 157 |  | 181 |  |

### 2.4.5 Before \& After Evaluation

Exhibits 2.4 .3 provides a graphical summary of the per-lane efficiency indicator before and after the construction of the HOV lanes - by direction and time period - for weekday and weekend conditions. As in Phase I, the per lane efficiency indicator is computed using a screenline west of the Gaglardi interchange.

The before and after comparison reflects statistically significant increases in both peak directions, AM period westbound and PM period eastbound. In the peak directions, per lane efficiency has increased by $31 \%$ for the westbound AM peak period, and an astounding $106 \%$ for the PM peak period eastbound, clearly showing the efficiency improvements when capacity is utilized to its potential with higher occupant modes of travel. Both mid-day periods and off-peak directions reflect a reduction in per lane efficiency, since during these off-peak directions volumes are lower, and the speed advantages of the HOV facility are not as pronounced.

|  | Ministry of Transportation \& Highways |
| :---: | :---: |
| BRITISH <br> Columbia | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT) |

Exhibit 2.4.3-Peak Period Before \& After Per Lane Efficiency

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

### 2.5 Objective 5: Minimize Negative Impacts On General Purpose (GP) LANES

### 2.5.1 Description of Objective

The focus of this objective is to minimize adverse impacts to the operations of GP traffic as a result of the introduction of the HOV facility.

### 2.5.2 MOEs

The primary MOE that can be used to evaluate the achievement of this objective is a comparison of average GP lane operating speeds before and after introduction of the HOV facility. A secondary MOE is the Level of Service (LOS) along the GP lanes within the HOV section. However, this MOE may underestimate the improvement since the operation of the GP lanes in the "before" conditions was capacity constrained and experienced breakdown during the peak periods.

### 2.5.3 Data Requirements

In support of the MOEs identified above, the following data were collected:

- "before" and "after" vehicle counts by lane type;
- "before" and "after" vehicle average speeds by lane type;


### 2.5.4 Phase /I Data

The GP lane average speed data were presented in detail as part of the objectives associated with improving travel times and trip time reliability objectives. Exhibit 2.2.2 should be used as a reference for baseline speed data along the GP lanes within the HOV section.

Exhibit 2.5.1 provides a summary of the "after" LOS calculations along the GP and HOV lanes. Along the GP lanes, LOS are observed to range between E and D for the peak AM westbound and PM eastbound directions. In the off-peak directions, GP lane LOS are observed to be predominantly $C$ or better, except near the Grandview Highway interchange, where eastbound AM peak LOS are observed to be E.

### 2.5.5 Before \& After Evaluation

Again with reference to Exhibit 2.2.2, before and after average speeds in the GP lanes within the HOV section were observed to improve in all periods and directions. Although the AM period improvements are not statistically significant at a $95 \%$ confidence limit, the overall results indicate that this objective has been achieved and the introduction of the HOV lanes has not adversely affected the operation of the GP lanes.

# Ministry of Transportation \& Highways <br> Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT) 

Exhibit 2.5.1 - Phase II Summary of Mainline LOS - Weekday Peak Hour

| AM EB | PHASE 2 (GP) |  |  | PHASE 2 (HOV) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Highway Segment East of | Avg. Speed | Highway <br> Volume | LOS | Avg. Speed | Highway <br> Volume | LOS |
|  |  |  |  |  |  |  |
| Grandview | 63 | 3500 | E | 88 | 345 | A |
| Willingdon | 78 |  |  |  |  |  |
| Sprott | 88 | 2424 | C | 97 | 327 | A |
| Deer Lake | 87 |  |  |  |  |  |
| Stormont | 89 | 2784 | D | 92 | 350 | A |
| Brunette | 78 |  |  |  |  |  |
|  |  |  |  |  |  |  |


| AM WB | PHASE 2 (GP) |  |  | PHASE 2 (HOV) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Highway Segment East of | Avg. Speed | Highway <br> Volume | LOS | Avg. Speed | Highway <br> Volume | LOS |
| Willingdon | 64 | 3337 | E | 94 | 999 | C |
| Sprott | 45 |  |  |  |  |  |
| Deer Lake | 43 | 2919 | E | 88 | 1095 | C |
| Stormont | 44 |  |  |  |  |  |
| Brunette | 78 | 2955 | D | 87 | 689 | B |
|  |  |  |  |  |  |  |


| PM EB | PHASE 2 (GP) |  |  | PHASE 2 (HOV) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Avg. Speed | Highway <br> Volume | LOS | Avg. Speed | Highway <br> Volume | LOS |
|  |  |  |  |  |  |  |
| Grandview | 87 | 3333 | D | 85 | 893 | B |
| Willingdon | 71 |  |  |  |  |  |
| Sprott | 77 | 2871 | D | 95 | 1149 | C |
| Deer Lake | 66 |  |  |  |  |  |
| Stormont | 71 | 2699 | D | 86 | 1037 | C |
| Brunette | 28 |  |  |  |  |  |
|  |  |  |  |  |  |  |


| PM wB | PHASE 2 (GP) |  |  | PHASE 2 (HOV) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Highway Segment East of | Avg. Speed | Highway <br> Volume | LOS | Avg. Speed | Highway <br> Volume | LOS |
|  |  |  |  |  |  |  |
| Willingdon | 89 | 3040 | D | 96 | 602 | B |
| Sprott | 83 |  |  |  |  |  |
| Deer Lake | 92 | 2647 | C | 93 | 500 | A |
| Stormont | 87 |  |  |  |  |  |
| Brunette | 85 | 1949 | B | 89 | 363 | A |
|  |  |  |  |  |  |  |

NOTE: Shading indicates peak direction
AM-Peak Hour - 0700-0800
PM-Peak Hour - 1600-1700

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program

Exhibits 2.5.2 and 2.5.3 provide a graphical summary of before and after LOS calculations along the HOV section, for the AM peak and PM peak periods respectively. The results confirm the observed improvements to GP operations, whereby the predominantly F levels of service from Phase I are now observed at LOS E or D after the introduction of the HOV lanes. It should be noted that in some cases the actual improvement may be much higher than a mere increase from LOS F to E , since during Phase I it was observed that eastbound traffic experienced flow breakdown in the PM peak period.

| 1 | Ministry of Transportation \& Highways |
| :---: | :---: |
|  | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program |
| BRITISH <br> COLUMBIA | Phase il hov Evaluation \& tMP Baseline (Final report) |

Exhibit 2.5.2-Before \& After Mainline LOS - AM Peak Hour

| 1 | Ministry of Transportation \& Highways |
| :---: | :---: |
|  | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program |
| BRITISH <br> COLUMBIA | Phase il hov Evaluation \& tMP Baseline (Final report) |

Exhibit 2.5.3-Before \& After Mainline LOS - PM Peak Hour

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

### 2.6 Objective 6: Maintain Safety

### 2.6.1 Description of Objective

The focus of this objective is to ensure that safety of the HOV section of Highway 1 is not compromised as a result of the introduction of the HOV lanes, and that as a minimum, the safety levels existing prior to the construction of the HOV lanes are maintained.

### 2.6.2 MOES

The specific MOE which can be used to evaluate the achievement of this objective is "collision rate" which can be broken down into the following categories:

- frequency of collisions by time period (year, month, day of week, and time of day),
- severity of collisions,
- type of collision,
- number of vehicles involved in each collision,
- number of injuries involved in each collision,
- contributing factors to collision,
- spatial distribution of collisions,
- collision severity ratios, and
- collision rates.


### 2.6.3 Data Requirements

The evaluation methodology developed for this project during Phase I identified the primary source of the first two phases of the project (i.e. before TMP) to be MoTH's Highway Accident System (HAS). Using this data source, the Phase 1 safety analysis was carried out for the full 34-kilometer section of the TCH which comprises the Study Section. Several safety performance targets were identified for the analysis including collision frequency, collision rate, collision severity, as well as temporal, spatial and other characteristic trends. The Phase I analysis recognized the potential differences between 1992 to 1995 reporting level and 1996 reporting levels which were believed to be reduced due to limited accident attendance by the Police. The Phase II effort was to use the HAS database as source, with an attempt to account for variations in the Police reporting of accidents.

Unfortunately however, shortly after the commencement of the Phase II study, MoTH staff advised the project team that the HAS database has not been fully updated to include post-HOV data, and that this component of the study should either be postponed, or carried out using an alternate source of collision data to measure safety impacts.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL Report)

Subsequent to review of available data sources, the accident claims database maintained by the Insurance Corporation of British Columbia (ICBC) was identified as one source of potential safety data. Although the details and quality of the data were questionable for carrying out a detailed safety analysis similar to Phase I, it was determined that the ICBC claims data could provide a relatively stable comparison of claims before, during, and after construction of the HOV lanes.

On this basis, permission was granted by ICBC to access the database and use an unofficial querying tool to extract the necessary data. ICBC is currently developing a database application for this type of claims records analysis; in the interim, ICBC's Road Improvement Program has developed a tool to access the claims data informally. Therefore, it should be noted that although these data are actual claims data, they have not been officially released by ICBC.

### 2.6.4 Phase / \& // Data

Using this alternate source of data required the querying of data prior to, during, and subsequent to the construction of the HOV lanes, so that an unbiased comparison could be carried out.

The claims data used for this analysis was extracted based on a specific selection criteria. The identification of the location of a claim occurrence was a challenging aspect of this effort, whereby a logical combination of text fields within a claim were used to develop specific querying criteria. For this investigation, the following selection criteria was used:

1. Claim location occurring on:

Hwy 1
or Hwy1 (no space)
or \# 1
or Highway 1
or TCH
or Trans
2. Claim occurred in the city of:

Burnaby
or Coquitlam
or New Westminster
or Port Coquitlam

Note that variations of the City names were also included in the search routine (i.e., Coquitlam , Coquit., Coq., etc.). The cities selected in this investigation were selected because the entire city is within the Study Section. This is necessary because it is not possible (at this point) to define longitudinal boundaries within a municipality. Therefore, the cities of North Vancouver and Surrey were omitted because the TCH extends far beyond the Study Section within those municipal boundaries.

### 2.6.5 Before \& After Evaluation

Since the safety evaluation completed in the Phase I report was not useful in this Phase II review (for the reasons specified earlier), it was necessary to redo the analysis for the

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)
"pre-implementation" safety performance using the claims records as well. Four periods were used for this safety investigation:

1. Pre-HOV:
2. HOV Construction:
3. Post-HOV/Pre-FSP:
4. Post-FSP:

Oct. 1/96 to Sept. 30/97 (365 days)
Oct. 1/97 to Oct. 28/98 (393 days)
Oct. 29/98 to Jan. 3/99 (67 days)
Jan. 4/99 to Sept 30/99 (270 days)

A series of high-level aggregate measures were identified to for comparing the "PreHOV", "HOV Construction", "Post-HOV/Pre-FSP" and "Post-FSP" conditions. These measures were limited to the useable fields queried from the claims data. The aggregate measures included the following:

- Frequency of All Claims
- Frequency of Claims by Severity
- Frequency of Claims by Municipality
- Frequency of Claims by Vehicle Type
- Total Claim Costs

Exhibit 2.6.1 provides a summary of the annualized total frequency of claims, and the total claim costs.

Exhibit 2.6.1-Frequency of Claims and Total Cost of All Claims



Compared to before HOV construction, analysis of the annualized data indicates that total number of claims increased by $22 \%$ during construction of the HOV lanes, but decreased by $25 \%$ after the opening of the HOV lanes and introduction of the FSP. At the same time the total annualized cost of claims increased by $\$ 400,000$ during construction of the HOV lanes, but decreased by $\$ 4.6$ million after the opening of the HOV lanes and introduction of the FSP.

Since it can often take a considerable amount of time to settle an auto insurance claim, the total cost of claims may not be accurate due to outstanding claims - especially relating to the recent "after" data. However, the data obtained from ICBC includes an

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (Final report)
outstanding reserve estimate associated with each unprocessed claim and this value is used in the total cost summary.

Exhibits 2.6.2 through to 2.6 .4 provide a summary of claim frequencies by severity, vehicle type, and municipality respectively.

Exhibit 2.6.2-Frequency of Claims by Severity


Exhibit 2.6.3-Frequency of Claims by Vehicle Type


Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (Final REPORT)

Exhibit 2.6.4 - Frequency of Claims by Municipality


The pre-HOV, HOV construction and post HOV/FSP comparisons of the claims data, as categorized by accident severity, vehicle type, and municipality seem consistent with the total frequency and claim cost data, i.e. in all cases an increase in claims is observed during the construction phase, and a decrease after the construction of the HOV lanes, when compared to conditions prior to the HOV lanes.

The observed reduction in crash claims is attributable to the combination of HOV improvements (such as the provision of 3 m left shoulders and continuous median barriers) and FSP improvement (faster incident detection and response) along the HOV section of Highway 1.

These are presented in further detail in Section 3.3 of this report. The potential for safety benefits associated with the provision of continuous lighting between the interchanges (as part of the HOV lanes construction) should however be noted. According to the Journal of Illuminating Engineering Society (Summer 1999), some jurisdictions have observed reductions of up to $40 \%$ in the frequency of night-time accidents as a result of continuous lighting. Using pre-HOV collision data (1992 to 1997), MoTH estimates that approximately $20 \%$ of crashes along the HOV section occurred during unlit or half-lit conditions (see Appendix 10), suggesting that potential benefits of illumination could range between 0 to $8 \%$ of these night-time crashes. Actual reduction of night-time crashes along lit and unlit sections of Highway 1 will require comparison of comparable before and after crash data with sufficient detail to distinguish between unlit and lit locations.

## Significance of Results

A simple, modified $t$-test ( t ) was used to calculate and compare with the normal Z-value of 1.960 at the 95 percent significance level. This would provide an indication whether the change in claim frequency between time periods was statistically significant or not. A second statistical test (chi-square test, $\chi 2$ ) was also performed to test the significance

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)
of the safety analysis results. The calculated chi-square value was also tested for a $95 \%$ confidence limit. This test is considered to be somewhat superior to the t-test. However, it should be noted that the relevance and robustness of these statistical tests is considered somewhat marginal for the data presented herein. Significance tests were completed to evaluate the 'before' to the 'after' periods as well as 'during' to the 'after' periods. The results are as follows:

Exhibit 2.6.5 - Statistical Significance of Safety Analysis

| Aggregate Safety Performance Measure | $\begin{aligned} & \text { 'Pre-HOV' } \\ & \text { to } \\ & \text { 'Post-FSP' } \end{aligned}$ | 'HOV Construction' to 'Post-FSP' | ```"Post-HOV / Pre-FSP' to 'Post-FSP'``` |
| :---: | :---: | :---: | :---: |
|  | $\chi_{c}{ }^{2}-\text { test }$ | $\chi_{c}{ }^{2}$ - test | $\chi_{c}{ }^{2}$ - test |
| Frequency Of Total Claims | $\begin{gathered} \text { Significant } \\ 57.8 \\ \hline \end{gathered}$ | Significant 181.7 | $\begin{gathered} \text { Significant } \\ 88.0 \\ \hline \end{gathered}$ |
| Frequency Of Fatal Claims | $\begin{gathered} \hline \text { Insignificant } \\ 0.05 \end{gathered}$ | $\begin{gathered} \hline \text { Insignificant } \\ 0.07 \end{gathered}$ | $\begin{gathered} \hline \text { Insignificant } \\ 0.25 \end{gathered}$ |
| Frequency Of Injury Claims | $\begin{gathered} \text { Significant } \\ 33.3 \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Significant } \\ 119.7 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Significant } \\ 60.1 \\ \hline \end{gathered}$ |
| Frequency Of Damage Claims | $\begin{gathered} \text { Significant } \\ 25.7 \end{gathered}$ | $\begin{gathered} \text { Significant } \\ 68.9 \end{gathered}$ | $\begin{gathered} \text { Significant } \\ 32.7 \end{gathered}$ |
| Frequency Of Claims in Burnaby | $\begin{gathered} \text { Significant } \\ 8.0 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Significant } \\ 125.8 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Significant } \\ 40.4 \\ \hline \end{gathered}$ |
| Frequency Of Claims in New Westminster | $\begin{gathered} \hline \text { Insignificant } \\ 0.61 \end{gathered}$ | $\begin{gathered} \hline \text { Insignificant } \\ 0.23 \end{gathered}$ | Insignificant 0.04 |
| Frequency Of Claims in Coquitlam | Significant 30.3 | Significant 50.1 | $\begin{gathered} \text { Significant } \\ 85.0 \end{gathered}$ |
| Frequency Of Passenger Vehicle Claims | $\begin{gathered} \text { Significant } \\ 59.3 \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Significant } \\ 167.6 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Significant } \\ 97.1 \end{gathered}$ |
| Frequency Of Commercial Vehicle Claims | $\begin{gathered} \hline \text { Insignificant } \\ 3.28 \end{gathered}$ | $\begin{gathered} \text { Significant } \\ 36.3 \end{gathered}$ | $\begin{gathered} \text { Significant } \\ 17.4 \end{gathered}$ |
| Frequency Of Motorcycle Claims | $\begin{gathered} \text { Insignificant } \\ 2.95 \end{gathered}$ | $\begin{gathered} \hline \text { Insignificant } \\ 2.64 \end{gathered}$ | Significant $11.4$ |

Overall, the trends investigated in this cursory review seem to indicate that the implementation of the HOV lanes on the TCH has "maintained safety", not degrading it, and has to some extent improved it.

The robustness of this safety evaluation is unknown. This statement is made because of the lack of experience associated with the analysis of crash claims data and the highlevel aggregate indicators presented. However, given the lack of other road safety data available at this point, the claims data provides the most suitable means to evaluate safety.

### 2.6.6 Recommendations for Future Phases

It will be useful to replicate the detailed safety analysis undertaken in Phase I prior to implementation of the TMP pilot service applications using the HAS database.

### 2.7 Objective 7: Obtain Compliance

### 2.7.1 Description of Objective

The focus of this objective is to protect the travel time savings and reliability of the HOV facility from being diminished by SOVs using the HOV lanes.

### 2.7.2 MOES

The MOEs selected to evaluate the achievement of this objective are:

- Compliance rate, calculated as the percentage of eligible vehicles observed in the HOV lane divided by the total number of vehicles in the HOV lane over that same period.
- Number of HOV violators


### 2.7.3 Data Requirements

In support of the MOEs identified above, the following data were collected:

- Vehicle occupancy and classification data
- Enforcement statistics


### 2.7.4 Phase /I Evaluation

Based on the vehicle occupancy and classification data presented in section 2.1 of this report, Exhibit 2.7.1 below provides a comparison of the current (September 99) HOV lane compliance rate with a March 1999 HOV compliance rate (using occupancy data collected by MoTH in March 1999) at approximately the same locations.

A very high compliance rate of $93 \%$ to $96 \%$ is observed for all periods and directions, except for the eastbound AM peak period near the east terminus of the HOV lanes at the Cape Horn interchange where the compliance rate is observed to be $82 \%$.

Comparison with the March 99 data shows an increase in HOV compliances by approximately $6 \%$ to $11 \%$ near Gaglardi interchange while a slight reduction of $3 \%$ to $8 \%$ is observed near Cape Horn interchange.

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 2.7.1-Compliance Rates


Overall, the compliance rates are observed to meet the minimum requirement of $85 \%$ set by MoTH. One of the reasons for low compliance rates near the east terminus of the HOV section may be the proximity of the measurements to the terminus of the lanes. It has been observed that during peak conditions, some GP traffic enters the HOV lanes just before they end.

Exhibit 2.7.2 provides a summary of the weekly average person hours of enhanced enforcement along the HOV section of Highway 1. It can be observed that the enforcement hours were reduced from 140 hours per week in November 1998 to 73 hours per week in March 1999, and to approximately 30 hours per week since May 1999.

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program
Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 2.7.2 - Weekly Average Person Hours of Enforcement


Exhibit 2.7.3 - Total HOV Occupancy and Other Offences


Note: 1. No. of offences between Jan-99 \& March-99 are average of the total 3-month offences
2. Other offences refer to Commercial vehicle in HOV lane, Unsafe Lane Changes, Cross Solid Line, Following Too Closely, Speeding etc...

Exhibit 2.7.3 presents the number of monthly offences over the same time period. The observed number of offences follows a similar downward trend as in the enforcement hours, whereby the monthly violations are found to decrease from 824 total offences in November 1998 to approximately 695 in March 1999, and further reduced to approximately 300 after May 1999.

Since the reduction in the number of violations could be due to the reduced enforcement hours (i.e. violators are not being caught), the average number of ticketed offences per hour of enforcement was also calculated, and is presented in Exhibit 2.7.4.


Exhibit 2.7.4 - Hourly Average Violations Rate


Note: Hourly Average Violations rate = Total number of offences / Total number of enforcement hours

It can be observed from Exhibit 2.7.4 that except for October 1999, the average HOV related offenses per hour of enforcement has remained relatively constant as the total enforcement hours were reduced. This suggests that the police have gained experience and efficiency in HOV enforcement, and can maximize the number of tickets issued within the less enhanced enforcement program.

Future considerations could include the use of a user reporting telephone service (snitch line), similar to Washington State's HERO program, where TCH users can report HOV lane violations using a free cellular telephone number.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

### 2.8 Objective 8: Acquire Public Acceptance and Satisfaction

### 2.8.1 Description of Objective

The focus of this objective is to determine if, or confirm that the users of Highway 1 accept the introduction of the HOV facility as an improvement to their transportation system and are satisfied with the benefits they receive from it as users.

### 2.8.2 MOES

The MOE for this objective is direct input from Highway 1 motorists and stakeholder agencies through information, observation, and opinion surveys.

### 2.8.3 Data Requirements

User satisfaction levels were obtained through the distribution of 2000 mail-back surveys at the following locations:
$\checkmark$ Westbound Highway 1 off-ramp at First Avenue
$\checkmark$ Eastbound Highway 1 off-ramp at 104 Avenue
$\checkmark$ West and Eastbound Highway 1 off-ramps at Gaglardi Way

### 2.8.4 Phase /I Data

Exhibit 2.8.0 below provides a summary of the response rate for SOV and HOV drivers relative to the 566 returns from the 2000 questionnaires handed out.

Exhibit 2.8.0-Highway 1 User Survey Response Statistics

| SURVEY LOCATION |  | HOV DRIVER |  | SOV DRIVER |  | TOTAL |  | \# Questionnaires Handed Out | \% Return |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \# | \% Distribution by Location | \# | \% Distribution by Location | \# | \% Distribution by Location |  |  |
| 1 | 104 Ave (PM EB) | 47 | 28\% | 118 | 30\% | 165 | 29\% | 800 | 21\% |
| 2 | 1st Ave (AM WB) | 103 | 61\% | 209 | 53\% | 312 | 55\% | 800 | 39\% |
| 3 | Gaglardi (AM \& PM) | 18 | 11\% | 71 | 18\% | 89 | 16\% | 400 | 22\% |
|  | Total Questionnaires Received | 168 |  | 398 |  | 566 |  | 2000 | 28\% |
|  | \% of Driver Type | 30\% |  | 70\% |  |  |  |  |  |

The results indicate that the split between HOV and SOV respondents was $30 \%$ versus $70 \%$ respectively for the peak directions. This is very consistent with the market share

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)
statistics presented in section 2.1 of this report - where peak direction market shares ranged between $25 \%$ to $30 \%$ HOVs and $70 \%$ to $75 \%$ SOVs. Exhibits 2.8.2A to 2.8.2E provide a tabulation of the surveys results pertaining to the HOV facility. The following is a brief summary of the response highlights.

### 2.8.4.1 Motorist Survey

Approximately $30 \%$ of the respondents were HOVs and $70 \%$ were SOVs. Also, approximately $62 \%$ of the HOVs, and $64 \%$ of the SOVs use the TCH five or more times per week. Exhibit 2.8.1 below summarizes the critical attributes of the full sample of HOV respondents, broken down by whether they were newly formed or existing carpools, and whether they were already on the TCH or switched from parallel routes.

Exhibit 2.8.1-Existing \& New HOVs versus TCH \& Route Switching HOVs

| TCH Sample of HOV Users | Already on <br> Highway 1 | Switched from <br> Parallel Routes | Totals |
| :--- | :---: | :---: | :---: |
| Existing HOVs <br> (i.e. already carpooling prior to HOV lanes) | $43 \%$ | $29 \%$ | $72 \%$ |
| New HOVs <br> (i.e. carpooling after HOV lanes) | $17 \%$ | $11 \%$ | $28 \%$ |
| Totals |  |  |  |

Of the sample of all HOV users, the surveys indicate that:

- About $28 \%$ of the are new carpools, while $72 \%$ were already carpooling.
- About $60 \%$ of were already on the TCH, while $40 \%$ switched from the parallel routes.
- About $17 \%$ of the HOVs were new carpools formed by SOVs on the TCH, while $11 \%$ were new carpools formed by SOVs on the parallel routes.
- About $43 \%$ of the HOVs were carpools already existing on the TCH, while $29 \%$ were carpools already on the parallel routes.


## HOV Acceptance

$\checkmark$ Approximately $94 \%$ of the HOVs and $76 \%$ of the SOVs believe that the designated number of occupants for the HOV lanes should be 2 or more persons
$\checkmark$ Approximately $76 \%$ of the HOVs and $57 \%$ of the SOVs believe that the HOV lanes are being adequately used
$\checkmark$ Approximately $86 \%$ of the HOVs and $69 \%$ of the SOVs believe that the HOV lanes are convenient to use
$\checkmark$ Approximately $71 \%$ of the HOVs and $54 \%$ of the SOVs believe that the HOV lanes are safe

## HOV Satisfaction

$\checkmark$ Approximately $92 \%$ of the HOVs and $86 \%$ of the SOVs believe that the HOV lanes are faster than the regular lanes
$\checkmark$ Approximately $86 \%$ of the HOVs and $69 \%$ of the SOVs believe that the HOV have more predictable travel times
$\checkmark$ Approximately $80 \%$ of the HOVs and $87 \%$ of the SOVs believe that traffic in the HOV lanes move at or above the speed limit but not "too fast"

## Issues

$\checkmark$ Approximately $62 \%$ of the HOVs and $71 \%$ of the SOVs believe that roadside enforcement causes distraction and results in vehicle slowdowns
$\checkmark$ Approximately $54 \%$ of the HOVs and $50 \%$ of the SOVs believe that there is too much unnecessary weaving in and out of the HOV lanes
$\checkmark$ Approximately $30 \%$ of the SOV would be encouraged to become an HOV user if their hours of work permitted it, while $20 \%$ require a "good rideshare opportunity" to become an HOV user

## Comments

$\checkmark$ Approximately $40 \%$ of the HOVs and $32 \%$ of the SOVs commented that more enforcement is needed
$\checkmark$ Approximately $18 \%$ of the HOVs suggested "more HOV" (i.e. expansion along Highway 1 and other routes)
$\checkmark$ Approximately $23 \%$ of the SOVs commented that the HOV lanes should be open to all traffic during off-peak hours.

## Ministry of Transportation \& Highways <br> Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase il hov Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 2.8.2A - Summary of Motorist Survey - General

|  | HOV DRIVER |  | SOV DRIVER |  | TOTAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# | \% | \# | \% | \# | \% |
| Less than once a week | 8 | 5\% | 29 | 7\% | 37 | 7\% |
| Once a week | 8 | 5\% | 13 | 3\% | 21 | 4\% |
| 2-4 times per week | 29 | 17\% | 68 | 17\% | 97 | 17\% |
| 5 times per week | 73 | 43\% | 185 | 47\% | 258 | 46\% |
| 6-7 times per week | 32 | 19\% | 69 | 17\% | 101 | 18\% |
| Other | 18 | 11\% | 33 | 8\% | 51 | 9\% |
| TOTAL | 168 | 100\% | 397 | 100\% | 565 | 100\% |




Exhibit 2.8.2B - Summary of Motorist Survey - Observation \& Opinions 1


|  | HOV DRIVER |  | SOV DRIVER |  | TOTAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# | \% | \# | \% | \# | \% |
| Strongly Agree | 111 | 66\% | 185 | 47\% | 296 | 53\% |
| Somewhat Agree | 44 | 26\% | 154 | 39\% | 198 | 35\% |
| Neutral | 4 | 2\% | 31 | 8\% | 35 | 6\% |
| Somewhat Disagree | 4 | 2\% | 19 | 5\% | 23 | 4\% |
| Strongly Disagree | 4 | 2\% | 3 | 1\% | 7 | 1\% |
| TOTAL | 167 | 100\% | 392 | 100\% | 559 | 100\% |


|  | HOV DRIVER |  | SOV DRIVER |  | TOTAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# | \% | \# | \% | \# | \% |
| Strongly Agree | 89 | 54\% | 120 | 31\% | 209 | 38\% |
| Somewhat Agree | 52 | 32\% | 149 | 38\% | 201 | 36\% |
| Neutral | 16 | 10\% | 88 | 23\% | 104 | 19\% |
| Somewhat Disagree | 6 | 4\% | 21 | 5\% | 27 | 5\% |
| Strongly Disagree | 2 | 1\% | 11 | 3\% | 13 | 2\% |
| TOTAL | 165 | 100\% | 389 | 100\% | 554 | 100\% |


|  | HOV DRIVER |  | SOV DRIVER |  | TOTAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# | \% | \# | \% | \# | \% |
| Strongly Agree | 100 | 60\% | 139 | 35\% | 239 | 43\% |
| Somewhat Agree | 43 | 26\% | 134 | 34\% | 177 | 32\% |
| Neutral | 14 | 8\% | 58 | 15\% | 72 | 13\% |
| Somewhat Disagree | 4 | 2\% | 34 | 9\% | 38 | 7\% |
| Strongly Disagree | 6 | 4\% | 27 | 7\% | 33 | 6\% |
| TOTAL | 167 | 100\% | 392 | 100\% | 559 | 100\% |



|  | HOV DRIVER |  | SOV DRIVER |  | TOTAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# | \% | \# | \% | \# | \% |
| Strongly Agree | 87 | 53\% | 155 | 40\% | 242 | 44\% |
| Somewhat Agree | 44 | 27\% | 64 | 16\% | 108 | 19\% |
| Neutral | 25 | 15\% | 103 | 26\% | 128 | 23\% |
| Somewhat Disagree | 4 | 2\% | 34 | 9\% | 38 | 7\% |
| Strongly Disagree | 5 | 3\% | 35 | 9\% | 40 | 7\% |
| TOTAL | 165 | 100\% | 391 | 100\% | 556 | 100\% |

Exhibit 2.8.2C - Summary of Motorist Survey - Observation \& Opinions 2

|  | HOV DRIVER |  | SOV DRIVER |  | TOTAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# | \% | \# | \% | \# | \% |
| Strongly Agree | 51 | 31\% | 168 | 43\% | 219 | 39\% |
| Somewhat Agree | 51 | 31\% | 109 | 28\% | 160 | 29\% |
| Neutral | 30 | 18\% | 54 | 14\% | 84 | 15\% |
| Somewhat Disagree | 16 | 10\% | 34 | 9\% | 50 | 9\% |
| Strongly Disagree | 17 | 10\% | 28 | 7\% | 45 | 8\% |
| TOTAL | 165 | 100\% | 393 | 100\% | 558 | 100\% |


|  | HOV DRIVER |  | SOV DRIVER |  | TOTAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# | \% | \# | \% | \# | \% |
| Strongly Agree | 39 | 23\% | 87 | 22\% | 126 | 23\% |
| Somewhat Agree | 51 | 31\% | 109 | 28\% | 160 | 29\% |
| Neutral | 37 | 22\% | 109 | 28\% | 146 | 26\% |
| Somewhat Disagree | 27 | 16\% | 62 | 16\% | 89 | 16\% |
| Strongly Disagree | 13 | 8\% | 25 | 6\% | 38 | 7\% |
| TOTAL | 167 | 100\% | 392 | 100\% | 559 | 100\% |


|  | HOV DRIVER |  | SOV DRIVER |  | TOTAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# | \% | \# | \% | \# | \% |
| Very slowly | 1 | 1\% | 6 | 2\% | 7 | 1\% |
| Belowspeed limit | 24 | 14\% | 14 | 4\% | 38 | 7\% |
| At speed limit | 82 | 49\% | 187 | 49\% | 269 | 49\% |
| Above speed limit | 51 | 31\% | 146 | 38\% | 197 | 36\% |
| Too Fast | 8 | 5\% | 29 | 8\% | 37 | 7\% |
| TOTAL | 166 | 100\% | 382 | 100\% | 548 | 100\% |


|  | HOV DRIVER |  | SOV DRIVER |  | TOTAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# | \% | \# | \% | \# | \% |
| 1 or more persons | 11 | 7\% | 91 | 24\% | 102 | 19\% |
| 2 or more persons | 148 | 89\% | 284 | 74\% | 432 | 78\% |
| 3 or more persons | 8 | 5\% | 9 | 2\% | 17 | 3\% |
| 4 or more persons | 0 | 0\% | 0 | 0\% | 0 | 0\% |
| TOTAL | 167 | 100\% | 384 | 100\% | 551 | 100\% |

3.11 I would be encouraged or motivated to become an HOV lane user if:

|  | HOV DRIVER |  | SOV DRIVER |  | TOTAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# | \% | \# | \% | \# | \% |
| If a good rideshare opportunity were available | 43 | 19\% | 126 | 20\% | 169 | 20\% |
| If there were a network of HOV priority lanes | 63 | 27\% | 60 | 9\% | 123 | 14\% |
| If more convenient Park/Ride lots were available | 25 | 11\% | 47 | 7\% | 72 | 8\% |
| If there were a free regional ridematch program | 18 | 8\% | 47 | 7\% | 65 | 8\% |
| If my employer subsidized a vanpool | 19 | 8\% | 41 | 6\% | 60 | 7\% |
| If there were free parking for HOV users at work | 36 | 16\% | 51 | 8\% | 87 | 10\% |
| My hours of work do not permit me to carpool | 19 | 8\% | 188 | 30\% | 207 | 24\% |
| Nothing would motivate me to carpool | 8 | 3\% | 75 | 12\% | 83 | 10\% |
| TOTAL | 231 | 100\% | 635 | 100\% | 866 | 100\% |


| 4 | Ministry of Transportation \& Highways |
| :---: | :---: |
|  | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program |
| BRITISH <br> COLUMBIA | Phase il hov Evaluation \& tMP Baseline (FINAL REPORT) |

Exhibit 2.8.2D - Summary of Motorist Survey - Comments \& Suggestions

| HOV SUGGESTIONS ON |  |  |
| :---: | :---: | :---: |
| HOV | \# | \% |
| Barriers on HOV | 2 | 3\% |
| Dotted lines too short | 5 | 7\% |
| HOV Abuse | 1 | 1\% |
| HOV is good | 11 | 15\% |
| More Enforcement | 29 | 40\% |
| More HOV | 13 | 18\% |
| Open HOV @ off peak | 6 | 8\% |
| Open HOV @ peak | 1 | 1\% |
| Open HOV for all | 2 | 3\% |
| Open HOV for trucks \& commercial vehs | 1 | 1\% |
| Unsafe to cross over | 2 | 3\% |
| Total | 73 | 100\% |
| BRIDGE | \# | \% |
| Build more bridges | 12 | 67\% |
| Merge problems | 4 | 22\% |
| More Enforcement | 1 | 6\% |
| Put in lane separators | 1 | 6\% |
| Total | 18 | 100\% |
| GENERAL | \# | \% |
| Build more lanes | 1 | 6\% |
| Improve ramps | 1 | 6\% |
| Improvement noticed | 2 | 13\% |
| More Enforcement | 4 | 25\% |
| Other | 8 | 50\% |
| Total | 16 | 100\% |


| SOV SUGGESTIONS ON |  |  |
| :---: | :---: | :---: |
| HOV | \# | \% |
| Dotted lines too short | 4 | 4\% |
| Encourage carpool | 2 | 2\% |
| Higher speed limit | 1 | 1\% |
| HOV Abuse | 3 | 3\% |
| HOV improves traffic flow | 1 | 1\% |
| HOV is good | 8 | 7\% |
| HOV under utilized | 5 | 5\% |
| More Enforcement | 35 | 32\% |
| More HOV | 9 | 8\% |
| More signage for HOV merge | 1 | 1\% |
| Open HOV @ off peak | 26 | 23\% |
| Open HOV @ peak | 2 | 2\% |
| Open HOV for all | 11 | 10\% |
| Open HOV for trucks \& commercial vehs | 1 | 1\% |
| Other | 1 | 1\% |
| Remove HOV | 1 | 1\% |
| Total | 111 | 100\% |
| BRIDGE | \# | \% |
| Build more bridges | 62 | 70\% |
| Introduce toll bridge | 6 | 7\% |
| Merge problems | 18 | 20\% |
| Overflow lane on bridge | 1 | 1\% |
| Queues problems | 1 | 1\% |
| Total | 88 | 99\% |
| GENERAL | \# | \% |
| Build more freeway | 4 | 11\% |
| Build more lanes | 5 | 13\% |
| Improve ramps | 3 | 8\% |
| Improvement noticed | 1 | 3\% |
| More Enforcement | 4 | 11\% |
| Other | 18 | 47\% |
| Restriction for trucks \& commerctal vehs | 3 | 8\% |
| Total | 38 | 92\% |

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 2.8.2E - Summary of Motorist Survey - Comments \& Suggestions (Suggestions on HOV Facility)



Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

### 2.8.4.2 Stakeholder Survey

A similar survey (with additional questions on data sharing and FSP/local services interaction) was also distributed to project stakeholders, comprised primarily of the RCMP, BC Trucking Association members, municipalities along the Study Section, and TransLink. A total of 60 responses were received. The breakdown of the stakeholder responses is presented in Exhibit 2.8.3 below.

Exhibit 2.8.3-Breakdown of Stakeholders Responses


Note: BCTA (BC Trucking Association is comprised of their sample of trucking companies.
The following is a brief summary of their responses relating to the HOV questions. Exhibit 2.8.4.

## HOV Acceptance

$\checkmark$ Approximately $92 \%$ of Stakeholders believe that the designated number of occupants for the HOV lanes should be 2 or more persons
$\checkmark$ Approximately $54 \%$ of the Stakeholders believe that the HOV lanes are being adequately used
$\checkmark$ Approximately $81 \%$ of the Stakeholders believe that the HOV lanes are convenient to use
$\checkmark$ Approximately $60 \%$ of the Stakeholders believe that the HOV lanes are safe

## HOV Satisfaction

$\checkmark$ Approximately $90 \%$ of the Stakeholders believe that the HOV lanes are faster than the regular lanes
$\checkmark$ Approximately $67 \%$ of the Stakeholders believe that the HOV have more predictable travel times
$\checkmark$ Approximately $93 \%$ of the Stakeholders believe that traffic in the HOV lanes moves at or above the speed limit but not "too fast"

| 4 | Ministry of Transportation \& Highways |
| :---: | :---: |
|  | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program |
| BRITISH <br> COLIMBBA | Phase Il hov evaluation \& tMP Baseline (Final report) |

Exhibit 2.8.4 - Summary of Stakeholders Responses

|  | Question |  |  |  |  | Strongly Disagree | səsuodsəy ł0 ıəqunN \|ełO』 | $\stackrel{\downarrow}{\stackrel{1}{\circ}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.1 | The HOV lanes are being adequately used | 10\% | 44\% | 8\% | 24\% | 14\% | 59 | 100\% |
| 1.2 | The HOV lanes are faster than the regular lanes | 47\% | 43\% | 5\% | 2\% | $3 \%$ | 60 | 100\% |
| 1.3 | The HOV lanes have more predictable travel times than the regular lanes | 32\% | 35\% | 20\% | 8\% | 5\% | 60 | 100\% |
| 1.4 | The HOV lanes are convenient to use | 38\% | 43\% | 10\% | 8\% | 0\% | 60 | 100\% |
| 1.5 | The HOV lanes are safe | 23\% | 37\% | 28\% | 10\% | 2\% | 60 | 100\% |
| 1.6 | More HOV enforcement is needed | 54\% | 27\% | 8\% | 7\% | 3\% | 59 | 100\% |
| 1.7 | Roadside enforcement causes distraction, and results in vehicle slowdowns | 22\% | 36\% | 15\% | 22\% | 5\% | 59 | 100\% |
| 1.8 | There is too much unnecessary weaving in and out of the HOV lanes | 33\% | 32\% | 17\% | 13\% | 5\% | 60 | 100\% |
|  | Total Number of Responses | 155 | 177 | 67 | 56 | 22 | 477 |  |



| Question |  |  |  |  |  |  | $\begin{aligned} & \text { 亿 } \\ & \stackrel{1}{\circ} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.10 | The designated minimum number of persons per vehicle in the Highway 1 HOV lanes should be | 8\% | 77\% | 13\% | 2\% | 60 | 100\% |
|  | Total Number of Responses | 5 | 46 | 8 | 1 | 60 |  |

[Last printed 7/7/2015 11:39:00 AM]

## 3 TMP MONITORING \& EVALUATION

In order to better manage traffic growth in the face of limited capital resources, the Province of British Columbia has been proactively implementing demand management and traffic management measures along the congested corridors of the Lower Mainland. MoTH has a Traffic Management Program (TMP) aimed at taking advantage of Intelligent Transportation System (ITS) technologies for improving the safety and efficiency of the highway network in the Lower Mainland.

The first (pilot) phase of the TMP is a $\$ 25$ million initiative, over 4 years. This is the first phase of an evolving long-range plan aimed at managing traffic congestion, encouraging more efficient use of roadway infrastructure, improving travel safety, and improving air quality along a 34 km stretch of Highway 1 . Subject to further review and clarification, this pilot program includes the section of Highway 1, between Lynn Valley Road in North Vancouver and 160 Street in Surrey, and will include the application of ITS technologies with interagency coordination. The TMP demonstration "pilot" project will deploy two key transportation user service applications on Highway 1, Incident Management and Traveler Information. The TMP pilot project will incorporate the deployment of various components of the two key user service applications. The scope (currently under review) involves the following components:

- Fibre optic communications backbone,
- Coordinated Roadside Assistance/Emergency Service Patrols,
- Digital cameras and automatic incident detection systems;
- Toll-free motorist cell-phone incident reporting system;
- Changeable message signs and other traffic information/control devices;
- Internet and Radio/TV traffic information programming;
- Supporting hardware and software systems, etc.

The TMP is intended to improve efficiency and increase the operational lifecycle of this critical urban section of the Highway 1 corridor by providing Incident Management and Traveler Information services, and thus improving vehicle throughput, reducing delays due to incidents, and reducing accidents, etc.

As an interim traffic management measure, and precursor to the TMP Coordinated Roadside Assistance/Emergency Service Patrols, the FSP were deployed shortly after the opening of the HOV lanes. The FSP project, an ICBC-funded (\$1.6 million over 3 years) deployment of Freeway Service Patrols (FSP), started on January 4, 1999. This service is designed to assist motorists by detecting, responding to, and clearing, traffic incidents more quickly. The service includes a tow truck and a push truck with appropriate equipment, as well as a temporary Traffic Management Centre (trailer with radio and CCTV), to provide the following services:

- CCTV monitoring for quick detection and response;
- Tow or push disabled vehicles:
- Provide jump starts, gas, water, and minor repairs:
- Remove debris and clean up spills;
- Transport motorists and pedestrians from the Freeway;
- Provide temporary traffic control;
- Record or log all incidents.

Although the overall objectives of the HOV, TMP and FSP projects are intended to serve common transportation goals, the evaluation of these projects differ. Whereas the evaluation of an HOV facility is based on the introduction of HOV lanes alone, the "before" and "after" evaluation of TMP is based on a number of different - yet mutually supportive - service applications implemented and integrated over time.

The benefits of an integrated traffic management system, through a common centre such as the TMP-proposed Traffic Management Center (TMC), is expected to be far greater than the sum of the benefits of the individual components.

In order to evaluate the TMP pilot implementation, 5 objectives are defined along with their measures of effectiveness and data requirements. The objectives proposed for this evaluation are:

1. Reduce/Manage Recurrent congestion;
2. Reduce/Manage Non-Recurrent congestion;
3. Improve Safety;
4. Optimize Efficient Use of capacity;
5. Acquire Public Acceptance \& Satisfaction.

These objectives were identified to allow the evaluation of TMP benefits as a coordinated and integrated system. Each of the objectives identified for evaluation is discussed in the following sub-sections:

- Description of Objective;
- Measures of Effectiveness (MOEs);
- Data Requirements;
- Phase II Data;
- Recommendations For Future Phases.

The analysis of the TMP objectives under Phase II is limited to the establishing of a second baseline representing post-HOV but pre-TMP conditions. Therefore "before" and "after" comparisons are only provided for discussion, and where applicable. For example, before and after comparisons are provided for the objective of reducing nonrecurrent congestion, since the introduction of the FSP between Phases I and II has had a direct impact on this MOE (as well as safety), and associated benefits therefore need to be documented.

### 3.1 Objective 1: Reduce/Manage Recurrent Congestion

### 3.1.1 Description of Objective

The focus of this objective is to better manage recurring congestion (congestion that typically occurs everyday due to high volume to capacity ratio), and thus to reduce associated delays, by using the capabilities of real-time traffic/road monitoring and various traveler information systems. Congestion occurs as traffic volumes approach capacity, during peak periods. By monitoring the status of traffic and road conditions on a real-time basis, various traveler information media can be used to inform motorists of prevailing conditions. Motorists can then make informed decisions to divert to alternate routes, or change their trip time and/or mode.

### 3.1.2 MOEs

Specific MOEs selected to evaluate the achievement of this objective are:

- increase in average speeds;

In the Phase III before and after evaluation of the TMP pilot project, the "increase in average speeds" MOE can be used to estimate the extent to which achieving this objective (i.e. managing recurrent congestion) has helped to defer infrastructure expenditures. Such an estimate assumes a minimum peak direction operating speed threshold below which highway infrastructure expenditures are justified. Before and after comparisons of average peak direction speeds may then be compared against this threshold to determine the extent of deferred expenditures.

- reduction in total travel times;
- reduction in queues along the Study Section and its approaches.


### 3.1.3 Data Requirements

In order to measure the MOEs identified above, the "before" and "after" data collection included:

- vehicle average speeds, as obtained from travel time, speed and delay surveys;
- supplementary queue measurement data.

Phase I vehicular queue lengths were observed at interchanges along the Highway 1 Study Section using aerial photographs and videos. This method was abandoned in Phase II since it was proven to be costly and the data were not very representative. Queue measurements in Phase II included actual user estimates obtained through a "motorist observations" survey. Prior to the introduction of the TMP user services, additional estimates of approach queues will need to be obtained to represent "before" conditions.

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program
Phase II HOV Evaluation \& TMP Baseline (Final report)

### 3.1.4 Phase // Data (Pre-TMP)

### 3.1.4.1 Average Speed and Travel Time

The primary measure for quantifying the benefits of congestion management have been identified as total travel times and average speeds, "before" and "after" the implementation of specific TMP user services.

The Phase II TMP baseline travel time data were obtained along the full length of the Study Section from 176 Street in Surrey to Lynn Valley Road in North Vancouver. Details of the data are presented in Appendix A-3.

Exhibit 3.1.1 provides a tabulated summary of the Phase II travel time data obtained for the Study Section, along with calculated average speeds, and the delay experienced when compared to free-flow conditions. The data is categorized by weekday and Sunday conditions, and time period.

Exhibit 3.1.1 - Highway 1 Travel Time, Speed, and Delay Summary(Phase II)

|  |  | Distance (km) | WEEKDAY EASTBOUND |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Type | Segment |  | Average Travel Time (minutes) |  | Average Speed (km/hr) |  | Delay (minutes) |  |
|  |  |  | AM | PM | AM | PM | AM | PM |
| GP | Lynn Valley to 176 St. | 33.73 | 26.7 | 35.7 | 78 | 59 | 4.3 | 13.2 |

## WEEKDAY WESTBOUND

| Lane Type | Segment | Distance (km) | Average Travel Time (minutes) |  | Average Speed (km/hr) |  | Delay (minutes) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | AM | PM | AM | PM | AM | PM |
| GP | 176 St. to Lynn Valley | 33.74 | 39.4 | 33.3 | 52 | 65 | 16.9 | 10.9 |

SUNDAY EASTBOUND

| Lane Type | Segment | Distance (km) | Average Travel Time (minutes) |  | Average Speed (km/hr) |  | Delay (minutes) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | AM | PM | AM | PM | AM | PM |
| GP | Lynn Valley to 176 St. | 33.73 | 10.3 | 9.5 | 92 | 91 | 0.0 | 0.0 |

## SUNDAY WESTBOUND

| Lane Type | Segment | Distance (km) | Average Travel Time (minutes) |  | Average Speed (km/hr) |  | Delay (minutes) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | AM | PM | AM | PM | AM | PM |
| GP | 176 St. to Lynn Valley | 33.74 | 10.7 | 9.6 | 88 | 89 | 0.0 | 0.0 |

Note: Delay is estimated by subtracting the surveyed travel times
from a free-flow travel time at $90 \mathrm{~km} / \mathrm{hr}$
The Phase II travel time data is consistent with the Phase I data, in that general purpose traffic experienced the highest delays in the peak directions - at approximately 16.9 minutes in the AM peak period westbound, and 13.2 minutes in the PM peak period eastbound. Comparatively, no delays were observed in any of the time period and direction combinations for the Sunday condition.

In general, it can be observed that for the full Study Section, the average delays are higher when compared against similar data for the HOV section (presented in section 2.2.4 of this report). This is the result of collecting data over a longer length of corridor and the fact that the peak direction and period are in opposing directions east and west of First Avenue (i.e. during the AM period, the peak direction is westbound from 176 Street to First Avenue and eastbound from Lynn Valley Road to First Avenue). Therefore, when comparing average speeds along the full Study Section for a given time period, peak and off-peak direction data are mixed.

The before and after comparison of average travel speeds along Highway 1 can be used to measure the achievement of this objective. Although the travel time, speed and delay data presented herein is to represent baseline conditions for the evaluation of TMP benefits relative to recurring congestion delays, a comparison of Phase I and II data is provided to reflect changes over the full Study Section of Highway 1, since Phase I.

Exhibit 3.1.2A provides a graphical summary of average traveling speeds along the Study Section for GP traffic before and after the construction of the HOV lanes. The comparisons indicate negligible differences in all time periods and directions, except for eastbound traffic in the PM peak period where travel time savings of approximately 13.8 minutes are observed when compared to travel times before the construction of the HOV lanes. The breakdown of these times, by the study subsections (North Vancouver, HOV/FSP, and Surrey) is provided in Exhibit 3.1.2B. This breakdown confirms that the 13.8 minute savings observed along the full Study Section is concentrated in the HOV/FSP section with negligible changes in travel time beyond.

Exhibit 3.1.2B - Before and After Comparisons of Study Section travel Times

| Travel Time Comparisons <br> (Minutes) | AM Peak Direction (WB) |  |  | PM Peak Direction (EB) |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Before | After | Savings | Before | After | Savings |
| North Vancouver \& Vancouver Section: <br> Lynn Valley to Grandview Highway | 15.7 | 17.1 | $\mathbf{- 1 . 4}$ | 8.7 | 8.2 | $\mathbf{0 . 5}$ |
| Vancouver Coquitlam <br> HOV \& FSP Section | 16.7 | 14.9 | $\mathbf{1 . 8}$ | 32 | 20.3 | $\mathbf{1 1 . 7}$ |
| Coquitlam \& Surrey Section: Cape <br> Horn to 176 Street | 8.2 | 7.4 | $\mathbf{0 . 8}$ | 8.8 | 7.2 | $\mathbf{1 . 6}$ |
| Lynn Valley to 176 Street <br> Total Study Section | $\mathbf{4 0 . 6}$ | $\mathbf{3 9 . 4}$ | $\mathbf{1 . 2}$ | $\mathbf{4 9 . 5}$ | $\mathbf{3 5 . 7}$ | $\mathbf{1 3 . 8}$ |

* Note: Although not reflected in the Coquitlam/Surrey travel time measurements, westbound AM peak queue lengths along the approach to the Port Mann Bridge have been observed to extend "normally" to 176 St. since the opening of the HOV lanes.

All data were analyzed to confirm that sample sizes are statistically reliable. As tabulated in Exhibit 3.1.3, the before and after comparisons were also analyzed to determine if differences and travel time savings are significant at a $95 \%$ confidence limit. While the size of the sample data were found to be statistically adequate, the before and after differences were not found to be significant, except for eastbound traffic during the PM peak period. This is an expected result since the TMP user service applications have yet to be implemented (except for the FSP/CCTV "precursor"), and HOV benefits do not extend to the boundaries of the Study Section.

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 3.1.2A - Weekday Peak Period - Average Speeds and Travel Time Savings (Before \& After HOV)



Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 3.1.3 - Weekday Peak Period - Travel Time Statistical Analysis

|  |  | AM - Peak |  | PM - Peak |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | WB | EB | WB | EB |
| TRAVEL TIMES(minutes) | Before GP | 40.6 | 28.4 | 33.9 | 49.5 |
|  | After GP | 39.4 | 26.7 | 33.3 | 35.7 |
|  |  | AM - Peak |  | PM - Peak |  |
|  |  | WB | EB | WB | EB |
| TRAVEL TIME SAVINGS (minutes) | Before GP to After GP | 1.2 | 1.6 | 0.6 | 13.8 |
|  |  | AM - Peak |  | PM - Peak |  |
| SIGNIFICANT TRAVEL |  | WB | EB | WB | EB |
| TIME SAVINGS ? | Before GP to After GP | No | No | No | YES |

Exhibits 3.1.4 and 3.1.5 provide an alternate representation of the Phase II average speed measurement data, using a thematic map to represent speeds in time and space.

### 3.1.4.2 Supplementary Queue Measurement Data

Queue measurements were limited to a survey of TCH commuter observations, using a set of questions for 25 on-ramp approaches to the TCH. Exhibit 3.1.6 is a graphical presentation of the results from a sample of 66 responses. Generally speaking, the approaching queues towards Highway 1 are found to be long especially during the AM period on Brunette Avenue. Long PM queues were reported at 104 Ave eastbound, 152 Street northbound, Lougheed (Coleman), Brunette Ave and Grandview Highway.

Peak queues on the Highway, as observed by Ministry staff and traffic reporters from one local radio station, in the Fall of 1999, were normally:

- Highway 1 Westbound from Port Mann Bridge back to 176 Street in the AM peak.
- Highway 1 Eastbound from Port Mann Bridge back to Gaglardi Way in the PM peak.
- Highway 1 Eastbound from 2nd Narrows Bridge back to midway up the "Cut" towards Lynn Valley Road in the AM peak.

This queue length survey method provides only a general idea of the current queuing conditions on Highway 1 within the study area due to the low sample size and the absence of more precise time and distance measuring systems. Further queue length study is therefore recommended through field observations (perhaps supported by micro-simulation techniques), especially for the assessment of various traffic management measures.

|  | Ministry of Transportation \& Highways |
| :---: | :---: |
| BRITISH <br> Columbia | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT) |

Exhibit 3.1.4 - Weekday Eastbound Average Speed Thematic Map

|  | Ministry of Transportation \& Highways |
| :---: | :---: |
| BRITISH <br> Columbia | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT) |

Exhibit 3.1.5 - Weekday Westbound Average Speed Thematic Map

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 3.1.6 - Approach Queue Length Survey Summary (Fall 1999)


Ministry of Transportation \& Highways Highway 1 (NORTH Vancouver to Surrey) - Monitoring \& Evaluation Program

### 3.1.5 Phase III (Post-TMP) "After" Evaluation

In Phase III of this evaluation program, if a Traffic Management Centre (TMC) is in place, it would integrate the traffic monitoring and traveler information functions of the TMP within the pilot corridor. At that time, post-TMP "after" travel time data could be obtained for comparative evaluation against the "before" TMP travel time data obtained after opening of the HOV lanes, and documented in this report.

The collection of post-TMP travel time data will benefit from the availability of a continuous pool of real time data. Specifically, speed data may be available from an Automatic Incident Detection (AID) system, at increments equal to the spacing of the vehicle detection stations and can be aggregated into overall travel time and speed representations.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

### 3.2 Objective 2: Reduce/Manage Non-Recurrent Congestion

### 3.2.1 Description of Objective

The focus of this objective is to reduce the impacts associated with non-recurrent congestion (i.e. congestion resulting from incidents). Major impacts of non-recurrent congestion include vehicular delay and accident risk resulting from lane blockage or other traffic impedance. The FSP and temporary CCTV precursors to the TMP are expected to accomplish this objective to some degree. The future provision of better incident detection, improved incident response and clearance times, advanced incident management, and interagency coordination, as well as up-to-date traveler information, will further reduce these impacts.

### 3.2.2 MOEs

The specific MOEs selected to evaluate the achievement of this objective are:

## - reduction in incident duration

Incident duration is the time between the occurrence of an incident and the clearance of the incident to remove a lane blockage or other impedance. This time period is comprised of three intervals: occurrence to detection, detection to response, and response to clearance of the incident.

- reduction in vehicular delay due to incidents

Vehicular delay due to non-recurrent congestion is calculated as a function of incident duration and the number of lanes blocked. Here, the duration over which one or more lanes and/or a shoulder is blocked, is used to estimate the reduction in available capacity, and the resulting vehicular and person delays.

For illustrative purposes, the magnitude of impacts resulting from incidents is presented in Exhibits 3.2.1 and 3.2.2 which provide eastbound and westbound thematic maps of average speeds as observed during incident conditions. Comparing these exhibits with the non-incident thematic maps presented in Exhibits 3.1.4 and 3.1.5 (section 3.1 Reduce/Manage Recurrent Congestion) illustrates the impacts of an incident, in time and space, in terms of average operating speeds.

Exhibit 3.2.1 - Weekday Eastbound Travel Speeds During Incident Conditions

|  | Ministry of Transportation \& Highways |
| :---: | :---: |
| BRITISH <br> Columbia | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT) |

Exhibit 3.2.2 - Weekday Westbound Travel Speeds During Incident Conditions

### 3.2.3 Data Requirements

As input to the above MOEs, the "before" and "after" data collection must include incident observation and logging to record separately the occurrence/detection time, response time and clearance times. Exhibit 3.2 .3 provides a graphical summary of the incident observation methodology and coverage along Highway 1 for both the Phase I and II efforts. The methodology of the incident observation and logging effort can be summarized as follows:

- Phase I
- Visual observations at high elevations using binoculars (approximate 60\% coverage of the corridor between Port Mann Bridge and First Avenue
- Phase II
- Temporary CCTV and video-taping (along North Vancouver \& Surrey Sections)
- Custom Incident Logging Sheets (filled out at the FSP control centre)
- North Shore maintenance contractor incident logs (Second Narrows Bridge to First Avenue)

Exhibit 3.2.4 provides a summary of the various data collection programs and coverage in terms of the data elements that were captured, and the ratio of the total incidents logged per hour per kilometre per lane. The ratios illustrate the sensitivities associated with the collection of incident data, but confirm consistency in "a logging incident rate" between all of the incident data logging techniques.

As illustrated in Exhibit 3.2.4, the data collected by the FSP is broken down into two categories. The first category is for all the incidents detected by the FSP patrol vehicles, while the second category is for all the incidents detected at the FSP control centre using the temporary CCTV cameras. The point of distinction is that the time of incident occurrence is not known for the first category - since those incidents were already in progress when detected by the FSP vehicle. Therefore, the sample of incident data collected at the FSP control centre is more complete since the detection and occurrence times are the same.

The manual/binocular technique used in Phase I, and the CCTV and video-taping technique used in Phase II, both provide the true incident occurrence time as well. However, the format of the data received from the North Shore maintenance contractor does not reflect whether the incidents were detected by their control centre, or their maintenance duty vehicles.

### 3.2.4 Phase /I Data

The incidents data collected in Phase II can be used to support both of the MOEs identified for this objective, and are presented in the following subsections. Furthermore, comparison of the Phase I and Phase II data can be used to evaluate the interim benefits of the FSP, prior to the implementation of the TMP pilot project service applications.

|  | Ministry of Transportation \& Highways |
| :---: | :---: |
| BRITISH <br> Columbia | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT) |

Exhibit 3.2.3 - Incident Observation Coverage \& Methods

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program
Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 3.2.4-Incident Data Logging


| Incident Logging | PHASE I | PHASE II |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Visual (with binoculars) | Freeway Service Patrol | North Shore Maintenance Contractor | Video Camera |
| Days of Coverage | 15 | 76 | 30 | 20 |
| Hours of Coverage per Day | (varied) | 24 | 24 | 12 |
| Hours of Coverage | 98 | 1824 | 720 | 240 |
| Length of Coverage (km) | 12.0 | 20.4 | 6.4 | 4.0 |
| Number of Lanes | 4 | 6 | 5.5 | 4 |
| Number of Incidents Recorded | 24 | 811 | 77 | 19 |
| RATIO | 0.00510 | 0.00364 | 0.00304 | 0.00495 |

NOTE : RATIO = No. of Incidents per hour per km per lane
There were total 877 FSP Incidents recorded while only 811 records contained sufficient data for the analysis

### 3.2.4.1 Reduction of Incident Duration

The duration of an incident is defined as the length of time between the occurrence of an incident to its removal. This duration is comprised of two key elements, the time between occurrence and response (response time), and the time between response and clearance (clearance time), The following is a detailed summary of these time elements, as captured by the three incident data sources used in Phase II.

## - FSP - Incident Data

As indicated earlier, the FSP used custom incident logging sheets developed for this project and fully logged approximately 800 incidents over a two and a half month period - which translates to an incident logging rate of approximately 0.004 incidents per hour per kilometre per lane, or about 10 logged incidents per day in the HOVFSP Section. These incidents were logged between the west terminus of the HOV lanes at Grandview Highway and the west side of the Port Mann Bridge.

Exhibit 3.2.5 provides a tabulation of the incident response and clearance times logged by the FSP, using the sample of incidents detected at the FSP centre. Average of response time, clearance time, and incident duration are provided by incident type (weighed by the frequency of each incident type), time period, direction, and approximate location (limited to interchange boundaries). The results indicate that within the FSP coverage area:

```
Response times average 7.1 minutes
\checkmark ~ C l e a r a n c e ~ t i m e s ~ a v e r a g e ~ 1 3 . 8 ~ m i n u t e s
\checkmark ~ T o t a l ~ i n c i d e n t ~ d u r a t i o n ~ a v e r a g e ~ 2 1 . 0 ~ m i n u t e s .
```

Note: Benefits associated with the FSP are discussed separately in Section 3.2.5, so that comparisons can be made with all of the incident data and MOEs.

Exhibit 3.2.6 tabulates a further breakdown of the FSP incident data in terms of the order of response between FSP, RCMP, emergency services, and other tow services, along with the order of their arrival. Here, the first four tables provide an average response time, by these other agencies, in order of arrival from $1^{\text {st }}$ response to the $4^{\text {th }}$ response (to the same incident) respectively. The bottom table provides an average response time for each agency (irrespective of the order of arrival):
$\checkmark$ FSP 7.9 minutes (this average includes times when FSP was not first response)
$\checkmark$ RCMP 8.6 minutes
$\checkmark$ Ambulance 8 minutes
$\checkmark$ Fire 7.7 minutes
$\checkmark$ Other tow services 58 minutes
$\checkmark$ Other responses 22.2 minutes

# Ministry of Transportation \& Highways <br> Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase il hov Evaluation \& TMP Baseline (FINAL REPORT) 

Exhibit 3.2.5 - FSP Incident Data Summary

| A | INCIDENTS |  | AVERAGE INCIDENT DURATION |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. | \% | RESPONSE TIME |  | CLEARANCE TIME |  | INCIDENT DURATION |  |
|  |  |  | Duration (min) | Standard <br> Deviation | Duration (min) | Standard Deviation | Duration (min) | Standard <br> Deviation |
| Material Spill | 3 | 2\% | 4.7 | 1.2 | 3.0 | 5.2 | 7.7 | 4.7 |
| Motor Vehicle Accident | 20 | 14\% | 6.2 | 5.6 | 22.5 | 18.5 | 28.7 | 19.5 |
| Other | 15 | 11\% | 5.4 | 3.3 | 4.0 | 9.3 | 9.4 | 10.0 |
| Vehicle Breakdown | 101 | 72\% | 7.7 | 8.9 | 13.0 | 30.5 | 20.7 | 30.9 |
| Vehicle Fire | 2 | 1\% | 2.5 | 2.1 | 60.5 | 64.3 | 63.0 | 66.5 |
| TOTAL | 141 | 100\% | 7.1 | 8.0 | 13.8 | 28.4 | 21.0 | 28.8 |


| B $\quad$ DIRECTION |  | INCIDENTS |  | AVERAGE INCIDENT DURATION |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | No. | \% | RESPONSE TIME |  | CLEARANCE TIME |  | INCIDENT DURATION |  |
|  |  | Duration (min) |  | Standard Deviation | Duration (min) | Standard Deviation | Duration (min) | Standard Deviation |
| EB |  |  | 75 | 52\% | 8.0 | 10.1 | 16.4 | 35.0 | 24.4 | 35.1 |
| WB |  | 68 | 48\% | 6.1 | 4.4 | 10.6 | 17.7 | 16.6 | 18.7 |
|  | TOTAL | 143 | 100\% | 7.1 | 7.9 | 13.6 | 28.2 | 20.7 | 28.7 |


| C $\begin{aligned} & \\ & \\ & \\ & \\ & \text { PERIOD }\end{aligned}$ | INCIDENTS |  | AVERAGE INCIDENT DURATION |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. | \% | RESPONSE TIME |  | CLEARANCE TIME |  | INCIDENT DURATION |  |
|  |  |  | Duration (min) | Standard Deviation | Duration (min) | Standard <br> Deviation | Duration (min) | Standard Deviation |
| AM | 50 | 35\% | 5.4 | 3.1 | 14.2 | 19.5 | 19.5 | 19.8 |
| PM | 93 | 65\% | 8.0 | 9.5 | 13.4 | 32.0 | 21.4 | 32.5 |
| TOTAL | 143 | 100\% | 7.1 | 7.9 | 13.6 | 28.2 | 20.7 | 28.7 |



## NOTE:

1. RESPONSE TIME = Time between Incident Occurrence/Detection \& 1st Response to Incident
2. CLEARANCE TIME = Time between Incident 1st Response to Incident \& Incident Clearance
3. INCIDENT DURATION = Time between Incident Occurrence/Detection \& Incident Clearance
4. The variation between the total number of incidents results from incomplete records being excluded from a category.

For example, if a record did not have the "direction" of travel recorded, it would still be included in all other summaries except for the one by direction.
[Last printed 7/7/2015 11:39:00 AM]

| ( | Ministry of Transportation \& Highways |
| :---: | :---: |
|  | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program |
| BRIIISH <br> COLUMBIA | Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT) |

Exhibit 3.2.6 - FSP \& Other Agency Response Time Averages

- CCTV \& Video Taped- Incident Data

Temporary CCTV and video taping stations were installed at the following locations to supplement the collection of incident data in the Study Section:

- 160 Street - WB Off-ramp: 1 Camera westbound
- 152 Street Overpass: 2 Cameras east and westbound
- South of Port Mann Bridge: 2 Cameras east and westbound
- Fern Street Overpass: 2 Cameras east and westbound
- Mountain Highway Overpass: 2 Cameras east and westbound

The CCTV and video taping technique was proposed to cover these areas, since other techniques such as manual observations could not be made due to the lack of high elevation observation points.

Incident data logged using the above CCTV and video taping stations were not only important in supplementing the sample data, but also to provide a reference group of data representative of the sections of the corridor that are not served by the FSP. Specifically, the North Vancouver sections are served by the North Shore maintenance contractor (tow truck stationed at the Second Narrows Bridge). However, the north shore service does not include CCTV camera monitoring except at the Second Narrows Bridge and Cassiar Tunnel. In the Surrey section there is a maintenance contractor tow truck stationed at the Port Mann Bridge, but there is no permanent CCTV incident monitoring service.

As summarized earlier, this source of incident data collection led to the logging of 19 incidents over a 20 day period - which translates to an incident logging rate of approximately 0.005 incidents per hour per kilometre per lane.

Exhibit 3.2.7 provides a tabulation of the incident response and clearance times as logged by the method. Weighted averages of response time, clearance time, and incident duration are provided by incident type, time period, direction, and approximate location (limited to interchange boundaries).

The summary of incident data by location indicates that approximately half of the incidents occurred just east of the Port Mann Bridge; these incidents are observed to have a very short response time of approximately 3.4 minutes due to the proximity of towing services stationed near the Port Mann Bridge. The response times in the North Vancouver sections are higher, ranging between 7 and 12 minutes.

On average, for the sections of Highway 1 not served by the FSP, the results indicate the following:

```
Response times average 10.3 minutes
Clearance times average 22.0 minutes
Total incident duration average 29.3 minutes.
```

Average incident duration times are much higher in this section due to the lack of monitoring, and the associated longer response times to managing and clearing the incident.

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (final REPORT)

Exhibit 3.2.7 - CCTV / Video Taped Incident Data Summary (North Vancouver \& Surrey)

| A $\quad$ A | INCIDENTS |  | AVERAGE INCIDENT DURATION |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. | \% | RESPONSE TIME |  | CLEARANCE TIME |  | INCIDENT DURATION |  |
|  |  |  | $\begin{gathered} \text { Duration } \\ (\min ) \end{gathered}$ | Standard <br> Deviation | $\begin{gathered} \text { Duration } \\ (\min ) \end{gathered}$ | Standard <br> Deviation | Duration <br> (min) | Standard <br> Deviation |
| Motor Vehicle Accident | 5 | 26\% | 5.8 | 6.1 | 40.0 | 26.5 | 36.8 | 32.1 |
| Other | 3 | 16\% | 15.5 | 17.7 | 13.0 | 17.0 | 38.0 | 16.5 |
| Vehicle Breakdown | 11 | 58\% | 11.2 | 20.1 | 16.0 | 22.3 | 23.5 | 38.2 |
| TOTAL | 19 | 100\% | 10.3 | 16.5 | 22.0 | 24.2 | 29.3 | 33.4 |


| B DIRECTION |  | INCIDENTS |  | AVERAGE INCIDENT DURATION |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | No. | \% | RESPONSE TIME |  | CLEARANCE TIME |  | INCIDENT DURATION |  |
|  |  |  |  | Duration (min) | Standard Deviation | Duration (min) | Standard Deviation | Duration (min) | Standard <br> Deviation |
| EB |  | 7 | 37\% | 3.6 | 4.2 | 23.8 | 30.7 | 21.6 | 28.3 |
| WB |  | 12 | 63\% | 13.7 | 19.4 | 21.1 | 22.1 | 33.8 | 36.5 |
|  | TOTAL | 19 | 100\% | 10.3 | 16.5 | 22.0 | 24.2 | 29.3 | 33.4 |


| C DIRECTION |  | INCIDENTS |  | AVERAGE INCIDENT DURATION |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | No. | \% | RESPONSE TIME |  | CLEARANCE TIME |  | INCIDENT DURATION |  |
|  |  | $\begin{gathered} \hline \text { Duration } \\ (\mathrm{min}) \end{gathered}$ |  | Standard <br> Deviation | Duration (min) | Standard <br> Deviation | Duration (min) | Standard <br> Deviation |
| AM |  |  | 7 | 37\% | 18.8 | 25.4 | 22.4 | 27.5 | 37.9 | 46.4 |
| PM |  | 12 | 63\% | 6.1 | 8.7 | 21.8 | 23.9 | 24.3 | 24.1 |
|  | TOTAL | 19 | 100\% | 10.3 | 16.5 | 22.0 | 24.2 | 29.3 | 33.4 |


| D LOCATION | INCIDENTS |  | AVERAGE INCIDENT DURATION |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. | \% | RESPONSE TIME |  | CLEARANCE TIME |  | INCIDENT DURATION |  |
|  |  |  | Duration (min) | Standard <br> Deviation | Duration (min) | Standard <br> Deviation | Duration (min) | Standard <br> Deviation |
| 152 Street Underpass | 2 | 11\% | 15.5 | 17.7 | 13.0 | 17.0 | 28.5 | 0.7 |
| Fern Street Underpass | 1 | 5\% |  |  |  |  | 11.0 |  |
| Lynn Creek Bridge | 1 | 5\% | 11.0 |  | 47.0 |  | 58.0 |  |
| Mountain Highway Underpass | 5 | 26\% | 26.3 | 23.9 | 37.3 | 25.2 | 62.2 | 40.6 |
| Port Mann Bridge - East End | 10 | 53\% | 1.0 | 1.1 | 13.5 | 22.9 | 12.0 | 21.0 |
| TOTAL | 19 | 100\% | 10.3 | 16.5 | 22.0 | 24.2 | 29.3 | 33.4 |

## - North Shore maintenance contractor - Incident Data

Incident data collected by the North Shore maintenance contractor was obtained to supplement the sample of data. The existing logs maintained by the North Shore maintenance contractor were used for this effort; although the incident response time is not recorded on their incident log sheets, the incident detection and clearance times are - thus permitting the computation of incident duration to support this MOE.

As summarized earlier, the North Shore maintenance contractor logged 77 incidents over a one month period - which translates to an incident logging rate of approximately 0.003 incidents per hour per kilometre per lane. These incidents were logged between the Cassiar Tunnel and Lynn Valley Road in North Vancouver.

Exhibit 3.2.8 provides a tabulation of the incident duration averages as logged by the North Shore maintenance contractor. Weighted averages of the incident duration are provided by incident type, time period, direction, and approximate location (limited to interchange boundaries). The results indicate that within this coverage area, the total incident duration average is approximately $\mathbf{2 0}$ minutes.

## Ministry of Transportation \& Highways <br> Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 3.2.8 - North Shore maintenance contractor Incident Data Summary

| A | INCIDENTS |  | INCIDENT DURATION |  |
| :---: | :---: | :---: | :---: | :---: |
|  | No. | $\%$ | Duration <br> $(\mathbf{m i n})$ | Standard <br> Deviation |
| Abondoned Vehicle | 1 | $1 \%$ | 50.0 |  |
| Dead Animal | 3 | $4 \%$ | 0.0 | 0.0 |
| Debris | 12 | $16 \%$ | 4.4 | 4.3 |
| Motor Vehicle Accident | 12 | $16 \%$ | 52.8 | 81.7 |
| Other | 1 | $1 \%$ | 14.0 |  |
| Stall | 45 | $58 \%$ | 14.2 | 16.9 |
| Suicide | 3 | $4 \%$ | 43.3 | 29.2 |
|  | $\mathbf{7 7}$ | $\mathbf{1 0 0} \%$ | $\mathbf{1 9 . 7}$ | $\mathbf{3 7 . 9}$ |


| B | INCIDENTS |  | INCIDENT DURATION |  |
| :---: | :---: | :---: | :---: | :---: |
|  | No. | $\%$ | Duration <br> $(\mathbf{m i n})$ | Standard <br> Deviation |
|  | 46 | $63 \%$ | 12.7 | 14.4 |
| WB | 27 | $37 \%$ | 18.5 | 23.5 |
|  | TOTAL | $\mathbf{7 3}$ | $\mathbf{1 0 0} \%$ | $\mathbf{1 4 . 9}$ |


|  | INCIDENTS |  | INCIDENT DURATION |  |
| :---: | :---: | :---: | :---: | :---: |
| C PERIOD | No. | $\%$ | Duration <br> $(\mathbf{m i n})$ | Standard <br> Deviation |
| AM |  | 29 | $38 \%$ | 26.2 |
| PM | 48 | $62 \%$ | 15.8 | 20.1 |
|  | TOTAL | $\mathbf{7 7}$ | $\mathbf{1 0 0 \%}$ | $\mathbf{1 9 . 7}$ |


|  | INCIDENTS |  | INCIDENT DURATION |  |
| :---: | :---: | :---: | :---: | :---: |
| PERIOD | No. | $\%$ | Duration <br> $(\mathbf{m i n})$ | Standard <br> Deviation |
| 1st Ave | 4 | $5 \%$ | 12.3 | 4.1 |
| 2nd Narrows Bridge | 45 | $58 \%$ | 15.3 | 20.5 |
| Cassiar Tunnel | 7 | $9 \%$ | 6.6 | 6.6 |
| Fern | 5 | $6 \%$ | 15.4 | 27.5 |
| Hastings / Cassiar Int | 6 | $8 \%$ | 66.0 | 115.9 |
| Lynn Creek Bridge | 1 | $1 \%$ | 66.0 |  |
| Lynn Valley | 5 | $6 \%$ | 14.8 | 15.6 |
| Main | 1 | $1 \%$ | 4.0 |  |
| McGill I/C | 1 | $1 \%$ | 39.0 |  |
| Mountain Hwy | 2 | $3 \%$ | 39.0 | 15.6 |
| Grand Total | $\mathbf{7 7}$ | $\mathbf{1 0 0} \%$ | $\mathbf{1 9 . 7}$ | $\mathbf{3 7 . 9}$ |

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

The following table provides a summary of the incident duration data presented above, as observed using the 3 methods used in Phase II and relative to the Phase I method.

Exhibit 3.2.9 - Summary of Incident Duration Data for all Methods

| Incident Data Source | Coverage Area | Average Response Time (min) | Average Clearance Time (min) | Average Incident Duration (min) |
| :---: | :---: | :---: | :---: | :---: |
| Phase I <br> (Visual Observations) | HOV/FSP Section | 23.0 | 19.0 | 41.0 |
| Phase II FSP Data Logs | HOV/FSP Section | 7.1 | 13.8 | 21.0 |
| Phase II CCTV \& Video-taping | North Vancouver Section Surrey Section | $\begin{aligned} & 23.7 \\ & 3.4 \text { * } \end{aligned}$ | $\begin{aligned} & 38.9 \\ & 13.4 \end{aligned}$ | $\begin{aligned} & 61.5 \\ & 14.8 \\ & \hline \end{aligned}$ |
|  | Average of Both Sections | 10.3 | 22.0 | 29.3 |
| Phase II <br> North Shore Contractor | First Avenue to 2nd Narrows | 19.7 * |  | 19.7 |

* Low due to the proximity of tow trucks stationed at the Port Mann and Second Narrow Bridges.

The following key observations can be made:

- For the HOV-FSP Section of Highway 1, the reduction between the observed incident duration before and after the introduction of the FSP is approximately 20 minutes, and reflects the benefits of the FSP responding to incidents more quickly. (These and other FSP benefits are discussed further in section 3.2.5).
- For the non-HOV-FSP sections of the corridor, the response times are much higher ( 10.3 minutes) with the average incident duration ranging between 20 and 30 minutes (up to $43 \%$ ) higher than the HOV/FSP section.
- Phase 1 data, combined with Phase II data within the non-HOV/FSP sections of the Study Section, can be used as a baseline to evaluate coordinated TMP Roadside Assistance and Emergency Service Patrols relative to conditions when TMP was initially planned, i.e. pre-HOV and FSP.


### 3.2.4.2 Reduction of Delays Due to Incidents

The delay that is caused by an incident is a function of three key factors, the duration of time over which one or more lanes of travel is blocked, the duration of time over which queues dissipate and capacity is restored, and the delays associated with distractions and "rubber-necking" of vehicles slowing down due to an incident on the shoulder.

These data (i.e. duration and number of lanes blocked) were logged by the FSP using the custom incident logging forms prepared for this project. The same information was also logged using the video taped incident data. Of the approximately 800 incidents that were logged, 130 involved some form of lane blockage - of which 39 were Motor Vehicle Accidents (MVAs), 81 were vehicle breakdowns, and 10 due to other incidents such as vehicle fires etc.

Exhibit 3.2.10 below, provides a graphical illustration of the parameters involved in estimating vehicular delay caused by an incident.

Exhibit 3.2.10-Derivation of Delay Due to Incidents


Using the above approach and parameters, the vehicle hours of delay resulting from each incident was calculated as the area of the triangle formed by hourly demand, restricted flow rate, and service flow rate (close to capacity flow). For each incident, freeway demand was estimated from the 24-hour traffic count data and time of incident, the restricted flow rate was calculated as a function of the number and type of lanes blocked, and the service flow rate was assumed at 1900 vehicles per hour, per lane.

Estimating the restricted flow rate as a function of the lanes blocked incorporated the following reduction factors:

- Shoulder only blocked - $26 \%$ capacity reduction
- One of two lanes blocked - 68\% capacity reduction
- Two of two lanes blocked - 100\% capacity reduction

Since $99 \%$ of the incidents occurred in the GP lanes, the analysis was based on a twolane facility - with the assumption that GP traffic did not have access to available capacity in the HOV lanes.

The analysis was split between the 130 incidents which involved the blockage of one or both of the through GP lanes, and the 603 incidents which involved the blockage of the shoulder. For each scenario, the total vehicular delay resulting from all incidents was calculated by "summing up" all of the "delay triangles" described above. Furthermore, total person-delays were also calculated by multiplying the vehicular delays with the AVOs calculated for the incident's time period and approximate location.

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT)

Finally, the total user cost was calculated by multiplying the person-delays with the following factors (taken from the TMP Business Plan):

- \$ 10.00 per hour for vehicle drivers
- \$ 8.00 per hour for vehicle passengers
- $\$ 75.00$ per hour for trucks

Exhibit 3.2.11A provides a tabulated summary of the average delays and queues caused by the 130 incidents which involved one or more blocked lanes. The last two columns summarize the total delay and total user cost due to the incidents over the observation period between September $1^{\text {st }} 1999$ and November 15 ${ }^{\text {th }}$ 1999. Exhibit 3.2.11B provides the same information for the remaining 603 incidents which involved the blockage of the shoulder lane.

Exhibit 3.2.11A - Average and Total Delays \& Costs due to Incidents with Lane Blockages

| Lane Block | INCIDENTS |  | AVERAGE DELAY |  | AVERAGE QUEUE LENGTH |  | TOTAL DELAY (veh hrs) | TOTAL INCIDENT COST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | No. | \% | Delay (veh hrs) | Standard <br> Deviation | Length (km) | Standard <br> Deviation |  |  |
| Motor Vehicle Accident | 39 | 30\% | 1334 | 1991 | 2.6 | 2.8 | 52044 | \$770,521 |
| Other | 8 | 6\% | 371 | 446 | 1.5 | 1.2 | 2964 | \$51,321 |
| Vehicle Breakdown | 81 | 62\% | 482 | 827 | 1.2 | 1.4 | 39065 | \$623,376 |
| Vehicle Fire | 2 | 2\% | 5999 | 7984 | 8.9 | 10.1 | 11999 | \$173,930 |
| TOTAL | 130 | 100\% | 816 | 1636 | 1.8 | 2.4 | 106071 | \$1,619,147 |

Exhibit 3.2.11B - Average and Total Delays \& Costs due to Incidents with Shoulder Blockages

| Shoulder Block | INCIDENTS |  | AVERAGE DELAY |  | AVERAGE QUEUE LENGTH |  | TOTAL DELAY (veh hrs) | TOTAL INCIDENT COST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | No. | \% | Delay (veh hrs) | Standard Deviation | Length (km) | Standard Deviation |  |  |
| Material Spill | 4 | 1\% | 61 | 42 | 0.2 | 0.1 | 245 | \$5,068 |
| Motor Vehicle Accident | 37 | 6\% | 239 | 439 | 0.3 | 0.6 | 8860 | \$181,156 |
| Other | 100 | 17\% | 229 | 1261 | 0.1 | 0.5 | 22904 | \$322,378 |
| Vehicle Breakdown | 462 | 77\% | 167 | 526 | 0.2 | 0.7 | 77087 | \$1,628,865 |
| TOTAL | 603 | 100\% | 181 | 697 | 0.2 | 0.7 | 109097 | \$2,137,468 |

Based on the above, the estimated cost to the users, over the two and a half month observation period was approximately $\$ 1.62$ million due to lane blockages and an astounding $\$ 2.14$ million due to the remaining incidents, totaling to $\$ 3.76$ million of user costs resulting from incidents.

When extrapolated (divided by 53 days of observation and multiplied by 365 days per year) to an annual value, the costs amount to $\$ 13.51$ million due to lane blockages and $\$ 14.72$ million due to the remaining incidents involving a shoulder blockage, totaling to

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)
$\$ 28.23$ million in annual user costs resulting from incidents. The annual cost breakdown by incident type is presented in Exhibit 3.2.12 below.

Exhibit 3.2.12 - Annual Cost of Delay due to Incidents with Lane \& Shoulder Blockages

| Lane Block |  |
| :---: | :---: |
| Type |  |
| ANNUAL COST |  |
| Motor Vehicle Accident | $\$ 7,459,374$ |
| Other | $\$ 543,775$ |
| Vehicle Breakdown | $\$ 4,309,721$ |
| Vehicle Fire | $\$ 1,197,817$ |
| TOTAL | $\$ 13,510,687$ |


| Shoulder Block |  |
| :---: | :---: |
| Type | ANNUAL COST |
| Material Spill | $\$ 34,905$ |
| Motor Vehicle Accident | $\$ 1,247,586$ |
| Other | $\$ 2,220,150$ |
| Vehicle Breakdown | $\$ 11,217,657$ |
| TOTAL | $\$ \mathbf{1 4 , 7 2 0 , 2 9 9}$ |

The user costs described above are not the only costs that result from traffic incidents. To the commuter, as well as the operating agency, the proportion of time that lanes are blocked means that a portion of available capacity is lost. Therefore, depending on the "demand to capacity" threshold used by an agency to trigger investment in additional infrastructure, regaining capacity through improved incident detection, management, and response will help in deferring such expenditures.

To illustrate this benefit, the incident data collected and analyzed herein has been used to determine the average available capacity of the Highway 1 study segment, by direction and time period. This estimate is summarized in Exhibit 3.2.13 below:

Exhibit 3.2.13 - Average Available Capacity of Highway 1 Study Segment

| Average <br> Service Flow <br> Rate | AM | PM |
| :---: | :---: | :---: |
| Eastbound | $90 \%$ | $\mathbf{8 8} \%$ |
| Westbound | $\mathbf{8 6 \%}$ | $94 \%$ |

On this basis for example, recovering the existing 14\% potential of the PM peak direction service flow rate would help defer the trigger for infrastructure investment. Using the $1.4 \%$ growth in AADT (average between 1995 and 1997) at Port Mann Bridge as an example, a $14 \%$ addition to capacity could accommodate traffic for an additional 10 years.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT)

### 3.2.5 Before \& After Evaluation of the FSP

Although the FSP initiative is not an official component of the TMP pilot project, it can be treated as a "precursor" to the TMP, since the benefits of the FSP contribute to this objective of better managing recurrent congestion. This Phase II project includes an evaluation of the FSP based on the pre-HOV/FSP and post-HOV/FSP incident data presented herein. This evaluation is necessary for the following two reasons:
$\checkmark$ to make a rudimentary demonstration of the benefits of patrol services on freeways, especially those relating to improved incident response and management, and therefore duration.
$\checkmark$ to measure the incremental benefit of the FSP so that the coordinated TMP Roadside Assistance and Emergency Service Patrols application can be evaluated against both the pre-HOV/FSP and post-HOV/FSP conditions.

The FSP initiative was introduced January 4, 1999 in the new HOV lane section of Highway 1. The mandated coverage of the FSP is along Highway 1, between First Avenue and the Cape Horn interchange, although they are sometimes observed to assist motorists as far as the east side of the Port Mann Bridge.

The FSP are required to assist during traffic incidents by providing jump-starts, gas, water, minor repairs/service such as assistance with changing flat tires etc. The FSP are also responsible to assist other responding agencies such as the RCMP and emergency services for incident management. The FSP also assist in the removal of vehicles from blocked lanes by towing (one of the incident response vehicles is a tow truck) or pushing vehicles with the FSP vehicles. Where this is not possible in a safe manner, the FSP protect the incident by "shadowing" it from oncoming traffic, i.e. stationing the FSP vehicle behind the incident and illuminating a flashing arrow to safely divert traffic to other lanes. On top of the standard equipment required to perform these tasks, the FSP are also equipped with tube delineators and signs for indicating "ACCIDENT AHEAD", "RIGHT LANE CLOSED", and "LEFT LANE CLOSED" messages.

Based on the incident statistics logged by the FSP for this project, the actions taken by the FSP over the data collection period are summarized below in Exhibit 3.2.14.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (Final REPORT)

Exhibit 3.2.14-FSP Actions


The two MOEs cited in this section (reduction of incident duration and reduction of delays due to incidents) are applied herein to present the interim benefit of the Highway 1 FSP initiative.

### 3.2.5.1 Reduction of Incident Duration

This MOE can be applied using two different data comparisons.

1. First, the Phase I and II average incident duration and standard deviation data can be compared to determine FSP benefits pre and post-construction of the HOV lanes.
2. Second, the Phase II data can be split into the sections of Highway 1 which are not served by the FSP to demonstrate the benefits of FSP during the current post-HOV conditions.

The benefits of FSP in terms of incident duration are summarized below in Exhibit 3.2.15.

Exhibit 3.2.15-Average Incident Duration Before and After FSP


A significant decrease in the average duration of traffic incidents can be observed since the opening of the HOV lanes and the introduction of the FSP. As presented earlier, this reduction is attributable to the reduction of average response times down from 23.0 minutes (observed in Phase I) to an average of 7.1 minutes by the FSP (observed in Phase II).

The reduction in response time has led to a reduction of approximately $50 \%$ in the average incident duration. This reduction not only shows the benefit of the FSP, but also the potential of benefits that could be derived from the full set of incident detection, management, and response measures associated with the TMP.

### 3.2.5.2 Reduction of Delays due to Incidents

Naturally, the reduced duration of incidents minimizes the delays caused by that incident. Using the vehicular delay and user cost statistics presented earlier, Exhibit 3.2.16 illustrates the linear relationship between incident duration and the cost of the incident delays to the users.

Using this relationship, comparing the cost of an incident lasting approximately 41 minutes (as estimated to be the before FSP incident duration average) and the cost of an incident lasting 22 minutes (as estimated for current conditions) we can observe that the average cost of an incident has been reduced from $\$ 12,000$ to $\$ 7,000$, a $40 \%$ reduction.

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program
Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 3.2.16 - Linear Relationship of Average Incident Duration to the Cost of Delay


The total annual cost to users, due to incidents involving the blockage of lanes and or shoulders, was estimated at approximately $\$ 28$ million, comprised of $\$ 13.5$ million for lane blockages and $\$ 14.7$ million for shoulder blockages. This estimate was based on the incident data collected by the FSP during this Phase II project, and reflects a 40\% reduction in incident costs as estimated above. Therefore, without FSP, the total potential user cost of the incidents could have been in the range of $\$ 46$ million.

The current expenditure on FSP is quoted by ICBC at $\$ 1.6$ million over three years, or $\$$ 533,000 per year. Benefits and costs can be estimated as follows:

Exhibit 3.2.17 - Summary of Incident Delay Costs (in Millions \$)

| Summary of Delay Costs and Benefits | Lane <br> Blockage | Shoulder <br> Blockage | Total |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase I Annual Delay Cost (no FSP) | 22.5 | 24.5 | 47.0 |  |  |  |  |
| 40\% Reduction in Delay | 9.0 | 9.8 | 18.8 |  |  |  |  |
| Phase II Annual Delay Cost (with FSP) | 13.5 | 14.7 | 28.2 |  |  |  |  |
| Annual FSP Cost |  | $\mathbf{0 . 5 3 3}$ |  |  |  |  |  |
| Benefit to Cost Ratio | $\mathbf{1 6 . 9}$ | $\mathbf{1 8 . 4}$ | $\mathbf{3 5 . 3}$ |  |  |  |  |
|  |  |  |  |  | $\mathbf{1 7 : \mathbf { 1 }}$ | $\mathbf{1 8 : 1}$ | $\mathbf{3 5 : \mathbf { 1 }}$ |

The benefit to cost ratio estimated using total user delays is $35: 1$. The range of benefit to cost ratio is estimated at $17: 1$ to $35: 1$, since the highest benefits relate to the incidents
which block lanes, and are quickly cleared to the shoulder by the FSP. These results are comparable with the "higher end" of US results on service patrol benefits and costs which indicate service patrol benefits to range between $2: 1$ to $17: 1$. Exhibit 3.2.18 provides a comparison of some US benefit to cost ratios for service patrols. US benefit to cost ratios are predominantly lower than that measured for the FSP, likely due to the higher annual cost of operating those services observed to typically exceed \$US 1 million annually.

Exhibit 3.2.18 - Benefit/Cost Ratios Of Selected Programs

| Location | Program | Benefit/cost | Year |
| :--- | :--- | :--- | :--- |
| Charlotte, NC | Motorist Assistance Patrol | $7.6: 1$ | 1993 |
| Chicago | Emergency Traffic Patrol | $7.0: 1$ | 1990 |
| Denver | Mile-High Courtesy Patrol | $13.5: 1$ | 1993 |
| Houston | Motorist Assistance Program | $6.6: 1$ | 1994 |
| Houston | Motorist Assistance Program | $7.0: 1$ | 1991 |
| Houston | Freeway Courtesy Patrol | $2.0: 1$ | 1973 |
| Los Angeles | Freeway Service Patrol | $11.0: 1$ | 1993 |
| Minneapolis | Highway Helper | $2.3: 1$ | 1994 |

### 3.2.5.3 Reduction in Crashes

A reduction in incident response times, improved incident management, and shorter clearance times can also contribute towards the reduction of secondary collisions.

The insurance claims data presented in section 2.6 of this report reflected a reduction of $25 \%$ when comparing the total frequency if claims before the construction of the HOV lanes with claims subsequent to the opening of the HOV lanes and deployment of the FSP, Similarly, the data also reflected a reduction of $48 \%$ in total claim costs when making the same comparison.

Although this potential reduction should be confirmed using additional crash data, and calibrated Police MV104 accident data, it is anticipated that the estimate of potential crash reduction is attributable to a combination of accident increasing and decreasing factors associated with the HOV and FSP improvements. This is explained further in Section 3.3 Improve Safety.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (Final REPORT)

### 3.3 Objective 3: Improve Safety

### 3.3.1 Description of Objective

The focus of this objective is to improve the overall safety of the highway facility as a result of the provision of incident management and traveler information.

### 3.3.2 MOES

Specific MOEs which were selected to evaluate the achievement of this objective are:

- reduction in primary collisions, achieved by improving traffic flow by reducing stop and go conditions
- reduction in secondary collisions

Secondary collisions are caused when vehicles approaching an incident causing lane blockage, or a queue resulting from slowdown due to shoulder blockage and/or an earlier incident downstream, are unable to stop in time to safely join the end of the queue, or run into other crashed vehicles. The TMP is expected to reduce the incident duration time, thus reducing the queue length and collision risk.

### 3.3.3 Data Requirements

In order to establish the MOEs identified above, data collection included "before" and "after":

- collision data;
- incident observations and logging.


### 3.3.4 Phase /I Data

Data collected under Phase II was intended to act as a second baseline for the pre-TMP conditions, with the Phase I data being the prime baseline representing pre-HOV and TMP conditions. Phase II safety data were to be retrieved from the HAS database as in Phase I. As described in section 2.6 Maintain Safety (HOV Monitoring \& Evaluation) these data were not available at the time of this project; therefore, efforts associated with the data and analysis of this objective were replaced with the collection, analysis, and reporting of both Phase I and II data using the ICBC claims database. Analysis of these data is presented in Section 2.6 of this report.

Exhibit 3.3.1 provides a summary of the key result obtained from the analysis of the claims data.

Exhibit 3.3.1 - Percent Difference in Claim Frequency by Project Phase


Exhibit 3.3.1 provides a summary of the increase and decrease in accident claim frequencies when comparing pre-HOV lane conditions to post-HOV and pre-FSP, and post-HOV and FSP conditions. An approximate $25 \%$ reduction in crashes is observed when comparing the safety performance of the Highway 1 study section before and after the HOV and FSP improvement projects.

Preliminary analysis by MoTH, on MV104 accident data obtained from the Police, indicates a $10 \%$ reduction in crashes when comparing the safety performance of the Highway 1 study section before and after the HOV and FSP improvement projects. However, temporary enhanced Police enforcement (paid by BCTFA) may have led to an increase in MV104 reporting after the HOV-FSP improvements (this following a few years of decreased reporting between 1996 and 1999). The MV104 accident reports generally make up $25 \%$ to $30 \%$ of the ICBC claims data on crashes.

A portion of the above $10 \%$ to $25 \%$ crash reduction benefits may be attributable to improved incident response, management, and clearance by the FSP, but is difficult to separate from potential safety benefits of other improvements along the HOV and FSP segment. Exhibit 3.3.2 below provides a tabulated summary of potential safety impacts associated with changes in the HOV and FSP segment of Highway 1.

Exhibit 3.3.2 - Safety Impact Contributing Factors

Contributing Factors

| FSP | $\checkmark$ Positive |
| :--- | :---: |
| Continuous Lighting | $\checkmark$ Positive |
| Traffic Growth | $\times$ Negative |
| Addition of Capacity through six Laning of Highway 1 | $\checkmark$ Positive |
| Continuous median barrier | $\checkmark$ Positive |
| Provision of 3 meter left shoulder where possible | $\checkmark$ Positive |
| Less stop and go | $\checkmark$ Positive |
| HOV versus GP Speed Differential with weaving | $\times$ Negative |
| Additional lane ends and merge conflicts | $\times$ Negative |

Prior to implementation, it was estimated that the ICBC Freeway Service Patrols and *4444 incident reporting system (CCTV detection was used instead of *4444) would improve safety by clearing incidents more quickly, and thereby reduce accidents by $5-$ 12\% (TMP Business Plan, by Delcan, 1995; and ICBC Review of Systems for Freeways, by Hamilton Associates, 1997). Although the $25 \%$ reduction in collision claims made to ICBC since the construction of the HOV lanes and the deployment of the FSP cannot be broken down, it does tentatively confirm that the safety benefits of recent improvements along the HOV and FSP sections of Highway 1 are substantial and may equal or exceed earlier estimates.

### 3.3.5 Future Requirements

It should be noted that the detailed MV104 accident report data, collected as part of the Phase I project (extracted from MoTH's HAS database for the period 1992 to 1996), is still representative of pre-TMP conditions. However, due to the evolving state of preTMP conditions (i.e. addition of HOV, introduction of the FSP, installation of a ramp signal at the new Coleman on-ramp, and the upcoming widening of the Port Mann Bridge), the baseline crash data for TMP needs to be updated and analyzed incrementally to reflect changes in relation to the TMP evolution.

The FSP proved to be a valuable incident data collection source in the Phase II project. Using detailed incident logging sheets, the FSP control center recorded information regarding over 800 traffic incidents along the HOV/FSP section of Highway 1. This recording mechanism can be modified to include further crash details.

On this basis, the Phase I crash data can be used to represent conditions prior to the HOV and FSP initiatives, while the ongoing recording of incidents by the FSP would capture the crash rate of that section of Highway 1 as it evolves towards the TMP pilot user service applications. Post-TMP crash data may be collected at the TMC using an incident management database.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (Final REPORT)

### 3.4 Objective 4: Optimize Efficient Use of Capacity

### 3.4.1 Description of Objective

The focus of this objective is to optimize the efficient use of available capacity on Highway 1 corridor including parallel routes when there is congestion on the mainline.

### 3.4.2 MOES

The MOE which can be used to evaluate the achievement of this objective is the optimization of person throughput along the TCH (including its parallel routes).

As indicated in the Phase I study, this MOE can be used at two levels:

1. A "static" measurement of the throughput (vehicles $x$ occupants $x$ average speed) along the mainline and parallel routes "before" and "after" implementation of TMP. As throughput is a function of level of service, this measurement (i.e. LOS) provides a snap-shot of the relative utilization of capacity between two parallel corridors.
2. A "dynamic" measurement of throughput between the mainline and parallel routes after implementation of the TMP - and during congestion/incident conditions - using real-time monitoring along the mainline and parallel route diversion points.

Unlike the representation of "throughput" used in the HOV objectives evaluation, the required representation for TMP objectives evaluation includes the "factoring in" of before and after speeds. The addition of the "speed" dimension to throughput is required since TMP benefits expected to improved flow can be captured through comparison of average operating speeds. On this basis the unit of throughput is person-kilometers per hour.

### 3.4.3 Data Requirements

The dynamic or real-time measurement of throughput along the TCH and its parallel corridors will require, as a minimum, the TMP traffic monitoring and information services to be in place, along with selected monitoring stations located either at the key diversion points between the TCH and its parallel routes, or along the parallel routes. Alternatively, estimates of the traffic diversion ability and capacity of the corridor can be made using micro-simulation techniques, such as with the INTEGRATION software.

This Phase II second baseline of the pre-TMP conditions has used the static throughput estimates also used in Phase I. On this basis, the following "before" and "after" data is required for this MOE:

- vehicle counts;
- vehicle occupancies;
- average speeds;

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

### 3.4.4 Phase // Data

Consistent with the Phase I methodology, since the person throughput of the corridor is a function of the peak hour levels of service (i.e. volumes and speeds), a capacity analysis of the mainline interchange segments was first performed to establish the current LOS of Highway 1.

The levels of service for the highway segments between the Lynn Valley Interchange and the 176 Street Interchange were calculated based on vehicle average speeds collected during September 1999 and the methods outlined in the 1994 Highway Capacity Manual. Exhibits 3.4 .1 provides a tabulated summary of the analysis. Exhibits 3.4.2 and 3.4.3 provide a graphical comparison of LOS along the TCH before and after construction of the HOV lanes. Again, caution must be used in the interpretation of these results (due to the capacity constrained operations and traffic flow breakdown of highway operations prior to the construction of the HOV lanes).

Consistent with the Phase I results, peak direction LOS in the non-HOV portions of the TCH are observed to be predominantly E or F, while the LOS along the HOV portion are improved (as reported on in section 2.5 of this report).

## Vehicular and Person Throughput

As the intent of the TMP is to optimize the use of existing facilities, while reducing the need to construct new facilities, the measurement of throughput has been identified as a static means of comparing the performance of parallel facilities before and after introduction of the TMP pilot project. Throughput (normalized to reflect level of service) may be defined as the product of occupancy rate, vehicular volume, and travel speed, and can be expressed as person-kilometres per hour. (Calculation of throughput is similar to the Per-lane Efficiency calculation used for HOV evaluation, except that it is not on a per-lane basis). Increased throughput will indicate more efficient use of the existing available capacity.

Exhibit 3.4.4 provides a tabulated summary of throughput along the full Highway 1, with a distinction of GP and HOV lanes in the applicable segments. These throughput estimates can be used as a baseline for measuring the throughput along the TCH segments after the completion of the TMP pilot project. The interpretation of the throughput for this objective must be across a screenline to ensure the maximization of the use of capacity along the TCH and its parallel routes. Exhibit 3.4.5 tabulates the Phase II measured throughput along the centre screenline. The baseline estimates of vehicular and person throughput show that the highest throughput is achieved in the PM peak hour, where the peak direction eastbound person throughput is approximately 503,000 persons per kilometre per hour, and 464,000 persons per kilometre per hour for the westbound PM peak hour. The AM peak hour throughput westbound is observed at 443,000 persons per kilometre per hour.

Reviewing the parallel route components of the screenline, it can be observed that the vehicular and person throughput is significantly less than the mainline, due to their arterial nature, presence of traffic signals, along with lower overall average speeds (ranging between 30 to 50 kilometres per hour) and lower vehicle occupancies.

| Ministry of Transportation \& Highways |  |
| :---: | :--- |
| BRITISH | HIGHWAY 1 (NORTH VANCOUVER TO SURREY) - MONITORING \& EvaLUATION PROGRAM |
| COLUMBIA | PHASE II HOV EvaLUATION \& TMP BASELINE (FINAL REPORT) |

Exhibit 3.4.1 - Mainline Volume, Speed, and LOS - Phase II

| AM EB | PHASE 2 (GP) |  |  | PHASE 2 (HOV) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Highway Segment East of | Avg. Speed | Highway Volume | LOS | Avg. Speed | Highway Volume | LOS |
| Lynn Valley | 43 | 2667 | E |  |  |  |
| Fern | 24 | 2612 | F |  |  |  |
| 2nd Narrows | 46 | 5910 | F |  |  |  |
| McGill | 75 | 3858 | E |  |  |  |
| Cassiar | 85 | 4183 | E |  |  |  |
| 1st Ave. | 91 | 3784 | D |  |  |  |
| Boundary | 63 | 3013 | E |  |  |  |
| Grandview | 63 | 3500 | E | 88 | 345 | A |
| Willingdon | 78 |  |  |  |  |  |
| Sprott | 88 | 2424 | C | 97 | 327 | A |
| Deer Lake | 87 |  |  |  |  |  |
| Stormont | 89 | 2784 | D | 92 | 350 | A |
| Brunette | 78 |  |  |  |  |  |
| Cape Horn | 38 | 3900 | F |  |  |  |
| 152 | 90 | 2494 | C |  |  |  |
| 104 | 89 | 2774 | D |  |  |  |


| AM WB | PHASE 2 (GP) |  |  | PHASE 2 (HOV) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Highway Segment East of | Avg. Speed | Highway Volume | LOS | Avg. Speed | Highway Volume | LOS |
| Lynn Valley | 56 | 2254 | E |  |  |  |
| Fern | 67 | 2338 | D |  |  |  |
| 2nd Narrows | 69 | 4124 | D |  |  |  |
| McGill | 83 | 2739 | D |  |  |  |
| Cassiar | 75 | 3372 | E |  |  |  |
| 1st Ave. | 72 | 4011 | E |  |  |  |
| Boundary | 58 | 3527 | E |  |  |  |
| Grandview | 81 | 4336 | E |  |  |  |
| Willingdon | 64 | 3337 | E | 94 | 999 | C |
| Sprott | 45 |  |  |  |  |  |
| Deer Lake | 43 | 2919 | E | 88 | 1095 | C |
| Stormont | 44 |  |  |  |  |  |
| Brunette | 78 | 2955 | D | 87 | 689 | B |
| Cape Horn | 82 | 4176 | E |  |  |  |
| 152 | 25 | 2920 | F |  |  |  |
| 104 | 19 | 3355 | F |  |  |  |


| PM EB | PHASE 2 (GP) |  |  | PHASE 2 (HOV) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Highway Segment East of | Avg. Speed | Highway Volume | LOS | Avg. Speed | Highway Volume | LOS |
| Lynn Valley | 87 | 2943 | D |  |  |  |
| Fern | 81 | 1811 | C |  |  |  |
| 2nd Narrows | 59 | 5057 | E |  |  |  |
| McGill | 84 | 3268 | D |  |  |  |
| Cassiar | 83 | 3990 | E |  |  |  |
| 1st Ave. | 82 | 3639 | D |  |  |  |
| Boundary | 81 | 3109 | E |  |  |  |
| Grandview | 87 | 3333 | D | 85 | 893 | B |
| Willingdon | 71 |  |  |  |  |  |
| Sprott | 77 | 2871 | D | 95 | 1149 | C |
| Deer Lake | 66 |  |  |  |  |  |
| Stormont | 71 | 2699 | D | 86 | 1037 | C |
| Brunette | 28 |  |  |  |  |  |
| Cape Horn | 21 | 3949 | F |  |  |  |
| 152 | 89 | 2716 | C |  |  |  |
| 104 | 89 | 3398 | D |  |  |  |


| PM WB | PHASE 2 (GP) |  |  | PHASE 2 (HOV) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Highway Segment East of | Avg. Speed | Highway Volume | LOS | Avg. Speed | Highway Volume | LOS |
| Lynn Valley | 58 | 3107 | E |  |  |  |
| Fern | 44 | 3893 | F |  |  |  |
| 2nd Narrows | 34 | 5585 | F |  |  |  |
| McGill | 32 | 2651 | F |  |  |  |
| Cassiar | 28 | 3111 | F |  |  |  |
| 1st Ave. | 39 | 3979 | F |  |  |  |
| Boundary | 36 | 3361 | F |  |  |  |
| Grandview | 44 | 3642 | F |  |  |  |
| Willingdon | 89 | 3040 | D | 96 | 602 | B |
| Sprott | 83 |  |  |  |  |  |
| Deer Lake | 92 | 2647 | C | 93 | 500 | A |
| Stormont | 87 |  |  |  |  |  |
| Brunette | 85 | 1949 | B | 89 | 363 | A |
| Cape Horn | 81 | 4008 | E |  |  |  |
| 152 | 41 | 2871 | E |  |  |  |
| 104 | 71 | 3731 | E |  |  |  |


| 1 | Ministry of Transportation \& Highways |
| :---: | :---: |
|  | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program |
| BRITISH <br> COLUMBIA | Phase il hov Evaluation \& tMP Baseline (Final report) |

Exhibit 3.4.2 - AM Peak LOS Phase I and II Comparison

| 4 | Ministry of Transportation \& Highways |
| :---: | :---: |
|  | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program |
| BRITISH | Phase Il hov evaluation \& tMP Baseline (FINAL REPORT) |

Exhibit 3.4.3 - PM Peak LOS Phase I and II Comparison

Exhibit 3.4.4 - Mainline Vehicular and Person Throughput Phase I and II Comparison

| AM EB | PHASE 1 |  |  |  |  | PHASE 2 (GP) |  |  | PHASE 2 (HOV) |  |  | PHASE 2 (GP \& HOV) |  | COMPARISON |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Highway Segment East of | Avg. Speed | Highway Volume | AVO | Vehicle Throughput | Person Throughput | Avg. Speed | Highway Volume | AVO | Avg. Speed | Highway Volume | AVO | Combined Vehicle Throughput | Combined Person Throughput | Vehicle Throughput | Person Throughput |
| Lynn Valley |  | 2410 | 1.11 |  |  | 43 | 2667 | 1.1 |  |  |  | 115447 | 126991 |  |  |
| Fern | 48 | n/a | 1.11 |  |  | 24 | 2612 | 1.1 |  |  |  | 61686 | 67855 |  |  |
| 2nd Narrows | 47 | 5515 | 1.11 | 259205 | 287718 | 46 | 5910 | 1.1 |  |  |  | 273103 | 300413 | 5\% | 4\% |
| McGill | 81 | 3715 | 1.14 | 300915 | 343043 | 75 | 3858 | 1.1 |  |  |  | 289911 | 318903 | -4\% | -7\% |
| Cassiar | 82 | 3985 | 1.14 | 326770 | 372518 | 85 | 4183 | 1.1 |  |  |  | 356908 | 392599 | 9\% | 5\% |
| 1st Ave. | 84 | 3810 | 1.14 | 320040 | 364846 | 91 | 3784 | 1.16 |  |  |  | 344509 | 399630 | 8\% | 10\% |
| Boundary | 66 | 3090 | 1.13 | 203940 | 230452 | 63 | 3013 | 1.16 |  |  |  | 190418 | 220885 | -7\% | -4\% |
| Grandview | 61 | 4220 | 1.13 | 257420 | 290885 | 63 | 3500 | 1.06 | 88 | 345 | 2.12 | 249482 | 296592 | -3\% | 2\% |
| Willingdon | 71 | 3830 | 1.13 | 271930 | 307281 | 78 |  |  |  |  |  |  |  |  |  |
| Sprott | 83 | 3495 | 1.13 | 290085 | 327796 | 88 | 2424 | 1.06 | 97 | 327 | 2.12 | 245015 | 293293 | -16\% | -11\% |
| Deer Lake | 83 | 3180 | 1.12 | 263940 | 295613 | 87 |  |  |  |  |  |  |  |  |  |
| Stormont | 76 | 3080 | 1.12 | 234080 | 262170 | 89 | 2784 | 1.06 | 92 | 350 | 2.12 | 280211 | 331275 | 20\% | 26\% |
| Brunette | 73 | n/a | 1.12 |  |  | 78 |  |  |  |  |  |  |  |  |  |
| Cape Horn | 68 | 3755 | 1.13 | 255340 | 288534 | 38 | 3900 | 1.16 |  |  |  | 146888 | 170390 | -42\% | -41\% |
| 152 | 82 | 2480 | 1.12 | 203360 | 227763 | 90 | 2494 | 1.15 |  |  |  | 224850 | 258577 | 11\% | 14\% |
| 104 | 92 | 2980 | 1.12 | 274160 | 307059 | 89 | 2774 | 1.15 |  |  |  | 247061 | 284120 | -10\% | -7\% |


| AM WB | PHASE 1 |  |  |  |  | PHASE 2 (GP) |  |  | PHASE 2 (HOV) |  |  | PHASE 2 (GP \& HOV) |  | COMPARISON |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Highway Segment East of | Avg. Speed | Highway Volume | AVO | Vehicle Throughput | Person Throughput | Avg. Speed | Highway Volume | AVO | Avg. Speed | Highway Volume | AVO | Combined Vehicle Throughput | Combined Person Throughput | Vehicle Throughput | Person Throughput |
| Lynn Valley | 63 | 2135 | 1.11 | 134505 | 149301 | 56 | 2254 | 1.13 |  |  |  | 125392 | 141693 | -7\% | -5\% |
| Fern | 78 | n/a | 1.11 |  |  | 67 | 2338 | 1.13 |  |  |  | 155856 | 176117 |  |  |
| 2nd Narrows | 66 | 3780 | 1.11 | 249480 | 276923 | 69 | 4124 | 1.13 |  |  |  | 283997 | 320917 | 14\% | 16\% |
| McGill | 77 | 2420 | 1.14 | 186340 | 212428 | 83 | 2739 | 1.13 |  |  |  | 227514 | 257090 | 22\% | 21\% |
| Cassiar | 83 | 2980 | 1.14 | 247340 | 281968 | 75 | 3372 | 1.13 |  |  |  | 254456 | 287536 | 3\% | 2\% |
| 1st Ave. | 82 | 3170 | 1.14 | 259940 | 296332 | 72 | 4011 | 1.24 |  |  |  | 290446 | 360153 | 12\% | 22\% |
| Boundary | 99 | 2700 | 1.14 | 267300 | 304722 | 58 | 3527 | 1.24 |  |  |  | 204450 | 253518 | -24\% | -17\% |
| Grandview | 65 | 3840 | 1.13 | 249600 | 282048 | 81 | 4336 | 1.24 |  |  |  | 352633 | 437264 | 41\% | 55\% |
| Willingdon | 77 | 3905 | 1.16 | 300685 | 348795 | 64 | 3337 | 1.02 | 94 | 999 | 2.03 | 307982 | 409253 | 2\% | 17\% |
| Sprott | 57 | 3410 | 1.16 | 194370 | 225469 | 45 |  |  |  |  |  |  |  |  |  |
| Deer Lake | 37 | 2520 | 1.16 | 93240 | 108158 | 43 | 2919 | 1.02 | 88 | 1095 | 2.03 | 221762 | 323039 | 138\% | 199\% |
| Stormont | 46 | n/a | 1.16 |  |  | 44 |  |  |  |  |  |  |  |  |  |
| Brunette | 75 | 3060 | 1.15 | 229500 | 263925 | 78 | 2955 | 1.06 | 87 | 689 | 2.03 | 289833 | 365384 | 26\% | 38\% |
| Cape Horn | 70 | 3690 | 1.15 | 258300 | 297045 | 82 | 4176 | 1.22 |  |  |  | 342817 | 418237 | 33\% | 41\% |
| 152 | 30 | 2680 | 1.13 | 80400 | 90852 | 25 | 2920 | 1.2 |  |  |  | 73935 | 88722 | -8\% | -2\% |
| 104 | 24 | n/a | 1.13 |  |  | 19 | 3355 | 1.2 |  |  |  | 62702 | 75243 |  |  |


| PM EB | PHASE 1 |  |  |  |  | PHASE 2 (GP) |  |  | PHASE 2 (HOV) |  |  | PHASE 2 (GP \& HOV) |  | COMPARISON |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Highway Segment East of | Avg. Speed | Highway Volume | AVO | Vehicle Throughput | Person Throughput | Avg. Speed | Highway Volume | AVO | Avg. Speed | Highway Volume | AVO | Combined Vehicle Throughput | Combined Person Throughput | Vehicle Throughput | Person Throughput |
| Lynn Valley |  | 2270 | 1.2 |  |  | 87 | 2943 | 1.23 |  |  |  | 256672 | 315706 |  |  |
| Fern | 69 | n/a | 1.2 |  |  | 81 | 1811 | 1.23 |  |  |  | 146741 | 180492 |  |  |
| 2nd Narrows | 67 | 4615 | 1.2 | 309205 | 371046 | 59 | 5057 | 1.23 |  |  |  | 298708 | 367410 | -3\% | -1\% |
| McGill | 82 | 2860 | 1.2 | 234520 | 281424 | 84 | 3268 | 1.23 |  |  |  | 275481 | 338842 | 17\% | 20\% |
| Cassiar | 84 | 3385 | 1.2 | 284340 | 341208 | 83 | 3990 | 1.23 |  |  |  | 330295 | 406262 | 16\% | 19\% |
| 1st Ave. | 84 | 3070 | 1.21 | 257880 | 312035 | 82 | 3639 | 1.31 |  |  |  | 298143 | 390567 | 16\% | 25\% |
| Boundary | 59 | 2505 | 1.21 | 147795 | 178832 | 81 | 3109 | 1.31 |  |  |  | 252025 | 330153 | 71\% | 85\% |
| Grandview | 56 | 3360 | 1.26 | 188160 | 237082 | 87 | 3333 | 1.06 | 85 | 893 | 2.13 | 367483 | 470937 | 95\% | 99\% |
| Willingdon | 64 | 3140 | 1.26 | 200960 | 253210 | 71 |  |  |  |  |  |  |  |  |  |
| Sprott | 59 | 2875 | 1.26 | 169625 | 213728 | 77 | 2871 | 1.06 | 95 | 1149 | 2.13 | 330262 | 466463 | 95\% | 118\% |
| Deer Lake | 50 | 2490 | 1.25 | 124500 | 155625 | 66 |  |  |  |  |  |  |  |  |  |
| Stormont | 28 | 2358 | 1.25 | 66024 | 82530 | 71 | 2699 | 1.06 | 86 | 1037 | 2.13 | 280122 | 392108 | 324\% | 375\% |
| Brunette | 25 | 2970 | 1.25 | 74250 | 92813 | 28 |  |  |  |  |  |  |  |  |  |
| Cape Horn | 38 | 3875 | 1.16 | 147250 | 170810 | 21 | 3949 | 1.3 |  |  |  | 84721 | 110137 | -42\% | -36\% |
| 152 | 82 | 2545 | 1.16 | 208690 | 242080 | 89 | 2716 | 1.27 |  |  |  | 240699 | 305687 | 15\% | 26\% |
| 104 | 86 | 3480 | 1.16 | 299280 | 347165 | 89 | 3398 | 1.27 |  |  |  | 303643 | 385626 | 1\% | 11\% |


| PM WB | PHASE 1 |  |  |  |  | PHASE 2 (GP) |  |  | PHASE 2 (HOV) |  |  | PHASE 2 (GP \& HOV) |  | COMPARISON |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Highway Segment East of | Avg. Speed | Highway Volume | AVO | Vehicle Throughput | Person Throughput | Avg. Speed | Highway Volume | AVO | Avg. Speed | Highway Volume | AVO | Combined Vehicle Throughput | Combined Person Throughput | Vehicle Throughput | Person Throughput |
| Lynn Valley | 59 | 2970 | 1.15 | 175230 | 201515 | 58 | 3107 | 1.2 |  |  |  | 179493 | 215391 | 2\% | 7\% |
| Fern | 84 | 3930 | 1.15 | 330120 | 379638 | 44 | 3893 | 1.2 |  |  |  | 170777 | 204932 | -48\% | -46\% |
| 2nd Narrows | 62 | 5260 | 1.15 | 326120 | 375038 | 34 | 5585 | 1.2 |  |  |  | 191400 | 229680 | -41\% | -39\% |
| McGill | 67 | 3230 | 1.23 | 216410 | 266184 | 32 | 2651 | 1.2 |  |  |  | 84222 | 101066 | -61\% | -62\% |
| Cassiar | 69 | 3660 | 1.23 | 252540 | 310624 | 28 | 3111 | 1.2 |  |  |  | 86065 | 103278 | -66\% | -67\% |
| 1st Ave. | 79 | 3470 | 1.23 | 274130 | 337180 | 39 | 3979 | 1.24 |  |  |  | 155428 | 192730 | -43\% | -43\% |
| Boundary | 109 | 2870 | 1.23 | 312830 | 384781 | 36 | 3361 | 1.24 |  |  |  | 119564 | 148259 | -62\% | -61\% |
| Grandview | 67 | 3950 | 1.24 | 264650 | 328166 | 44 | 3642 | 1.24 |  |  |  | 161008 | 199650 | -39\% | -39\% |
| Willingdon | 80 | 3820 | 1.24 | 305600 | 378944 | 89 | 3040 | 1.13 | 96 | 602 | 2.05 | 329857 | 425938 | 8\% | 12\% |
| Sprott | 80 | 2440 | 1.24 | 195200 | 242048 | 83 |  |  |  |  |  |  |  |  |  |
| Deer Lake | 71 | 2625 | 1.24 | 186375 | 231105 | 92 | 2647 | 1.13 | 93 | 500 | 2.05 | 290504 | 371205 | 56\% | 61\% |
| Stormont | 88 | n/a | 1.24 |  |  | 87 |  |  |  |  |  |  |  |  |  |
| Brunette | 85 | 2400 | 1.27 | 204000 | 259080 | 85 | 1949 | 1.2 | 89 | 363 | 2.05 | 198384 | 265492 | -3\% | 2\% |
| Cape Horn | 89 | 3905 | 1.27 | 347545 | 441382 | 81 | 4008 | 1.33 |  |  |  | 326478 | 434216 | -6\% | -2\% |
| 152 | 41 | 2740 | 1.24 | 112340 | 139302 | 41 | 2871 | 1.27 |  |  |  | 117424 | 149128 | 5\% | 7\% |
| 104 | 74 | n/a | 1.24 |  |  | 71 | 3731 | 1.27 |  |  |  | 264169 | 335495 |  |  |

# Ministry of Transportation \& Highways <br> Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT) 

Exhibit 3.4.5-Total Vehicular and Person Throughput Across the Centre Screenline - Phase II

| AM EB | SCREENLINE VEHICLE/PERSON THROUGHPUT |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CENTRE SCREENLINE | Avg. Speed | Highway <br> Volume | AVO | Vehicle <br> Throughput | Person <br> Throughput |
| TCH (GP) @ Gaglardi | 89 | 2784 | 1.06 | 247899 | 262773 |
| TCH (HOV) @ Gaglardi | 92 | 350 | 2.12 | 32312 | 68502 |
| Lougheed Hwy @ North Rd | 40 | 473 | 1.14 | 18873 | 21515 |
| Canada Way @ 10th Ave | 45 | 728 | 1.16 | 32833 | 38086 |
| TOTAL |  |  |  | $\mathbf{3 3 1 9 1 7}$ | $\mathbf{3 9 0 8 7 6}$ |


| AM WB | SCREENLINE VEHICLE/PERSON THROUGHPUT |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CENTRE SCREENLINE | Avg. Speed | Highway <br> Volume | AVO | Vehicle <br> Throughput | Person <br> Throughput |
| TCH (GP) @ Deer Lake | 43 | 2919 | 1.02 | 125879 | 128397 |
| TCH (HOV) @ Deer Lake | 88 | 1095 | 2.03 | 95883 | 194642 |
| Lougheed Hwy @ North Rd | 50 | 1240 | 1.12 | 61504 | 68884 |
| Canada Way @ 10th Ave | 35 | 1239 | 1.18 | 43613 | 51463 |
| TOTAL |  |  |  | $\mathbf{3 2 6 8 7 9}$ | $\mathbf{4 4 3 3 8 6}$ |


| PM EB | SCREENLINE VEHICLE/PERSON THROUGHPUT |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CENTRE SCREENLINE | Avg. Speed | Highway <br> Volume | AVO | Vehicle <br> Throughput | Person <br> Throughput |
| TCH (GP) @ Gaglardi | 71 | 2699 | 1.06 | 191170 | 202640 |
| TCH (HOV) @ Gaglardi | 86 | 1037 | 2.13 | 88952 | 189467 |
| Lougheed Hwy @ North Rd | 36 | 1425 | 1.19 | 51015 | 60708 |
| Canada Way @ 10th Ave | 28 | 1447 | 1.25 | 40227 | 50283 |
| TOTAL |  |  |  | $\mathbf{3 7 1 3 6 4}$ | $\mathbf{5 0 3 0 9 9}$ |


| PM WB | SCREENLINE VEHICLE/PERSON THROUGHPUT |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CENTRE SCREENLINE | Avg. Speed | Highway Volume | AVO | Vehicle Throughput | Person Throughput |
| TCH (GP) @ Deer Lake | 92 | 2647 | 1.13 | 243835 | 275534 |
| TCH (HOV) @ Deer Lake | 93 | 500 | 2.05 | 46669 | 95671 |
| Lougheed Hwy @ North Rd | 49 | 845 | 1.30 | 41152 | 53497 |
| Canada Way @ 10th Ave | 31 | 998 | 1.28 | 31038 | 39728 |
| TOTAL |  |  |  | 362694 | 464430 |

Note: Shading indicates peak direction
All average speeds were the average link travel speed from previous landmark

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT)

### 3.5 Objective 5: Acquire Public Support and Satisfaction

### 3.5.1 Description of Objective

The focus of this objective is to ensure that the users of Highway 1 support the traffic management measures involving the service patrols and ITS technologies and are satisfied with the benefits they receive from it as users.

### 3.5.2 MOES

The MOE for this objective is direct input from Highway 1 users through opinion surveys.

### 3.5.3 Data Requirements

User information, observations and opinions were solicited for this objective through the distribution to motorists of 2000 mail-back surveys (also used for the HOV related questions) at the following locations:
$\checkmark$ Westbound Highway 1 off-ramp at First Avenue
$\checkmark$ Eastbound Highway 1 off-ramp at 104 Avenue
$\checkmark$ West and Eastbound Highway 1 off-ramps at Gaglardi Way
The non-HOV questions included in the surveys related primarily to the benefits of freeway service patrols, since the FSP was also introduced on January 4, 1999. Except for FSP questions, TMP related questions were excluded from the surveys for Phase II. Questions of user opinion relating to acceptance, satisfaction, and responses to post TMP service applications such as pre-trip and en-route traveler information will need to be surveyed in Phase III.

### 3.5.4 Phase /I Data

The main statistics associated with the sample of survey respondents was presented in section 2.8 and Exhibit 2.8.1, as these results were obtained from the same survey used for the HOV public acceptance and satisfaction objective.

Exhibit 3.5.1 provides a tabulation of the user surveys results pertaining to FSP. It can be observed from this exhibit that of all the HOV and SOV respondents:
$\checkmark 51 \%$ often see the FSP vehicles responding to incidents
$\checkmark 52 \%$ agree that clearing incidents quickly helps minimize delays and congestion
$\checkmark 57 \%$ agree that minimizing congestion results in reduced fuel consumption and improved air quality

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 3.5.1 - Motorist Survey - FSP Related Responses

|  | HOV DRIVER |  | SOV DRIVER |  | TOTAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# | \% | \# | \% | \# | \% |
| Strongly Agree | 39 | 24\% | 80 | 21\% | 119 | 22\% |
| Somewhat Agree | 46 | 28\% | 111 | 29\% | 157 | 29\% |
| Neutral | 41 | 25\% | 107 | 28\% | 148 | 27\% |
| Somewhat Disagree | 19 | 12\% | 54 | 14\% | 73 | 13\% |
| Strongly Disagree | 19 | 12\% | 34 | 9\% | 53 | 10\% |
| TOTAL | 164 | 100\% | 386 | 100\% | 550 | 100\% |

Quick clearing of accidents, vehicle breakdowns, spills, etc., by the Freeway Service Patrols have helped minimize
4.2 delay and traffic congestion

|  | HOV DRIVER |  | SOV DRIVER |  | TOTAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# | \% | \# | \% | \# | \% |
| Strongly Agree | 34 | 21\% | 81 | 21\% | 115 | 21\% |
| Somewhat Agree | 58 | 36\% | 110 | 29\% | 168 | 31\% |
| Neutral | 47 | 29\% | 134 | 35\% | 181 | 33\% |
| Somewhat Disagree | 14 | 9\% | 38 | 10\% | 52 | 9\% |
| Strongly Disagree | 10 | 6\% | 22 | 6\% | 32 | 6\% |
| TOTAL | 163 | 100\% | 385 | 100\% | 548 | 100\% |

Random incidents and accidents cause more traffic delays and congestion than routine peak period traffic
4.3 volumes

|  | HOV DRIVER |  | SOV DRIVER |  | TOTAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# | \% | \# | \% | \# | \% |
| Strongly Agree | 65 | 40\% | 144 | 37\% | 209 | 38\% |
| Somewhat Agree | 48 | 29\% | 108 | 28\% | 156 | 28\% |
| Neutral | 23 | 14\% | 66 | 17\% | 89 | 16\% |
| Somewhat Disagree | 20 | 12\% | 44 | 11\% | 64 | 12\% |
| Strongly Disagree | 7 | 4\% | 25 | 6\% | 32 | 6\% |
| TOTAL | 163 | 100\% | 387 | 100\% | 550 | 100\% |

By helping to minimize traffic congestion, the Freeway Service Patrols also help reduce fuel consumption and improve overall air quality

|  | HOV DRIVER |  | SOV DRIVER |  | TOTAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# | \% | \# | \% | \# | \% |
| Strongly Agree | 48 | 30\% | 79 | 21\% | 127 | 24\% |
| Somewhat Agree | 51 | 32\% | 125 | 33\% | 176 | 33\% |
| Neutral | 39 | 24\% | 116 | 31\% | 155 | 29\% |
| Somewhat Disagree | 14 | 9\% | 29 | 8\% | 43 | 8\% |
| Strongly Disagree | 8 | 5\% | 30 | 8\% | 38 | 7\% |
| TOTAL | 160 | 100\% | 379 | 100\% | 539 | 100\% |


|  | HOV DRIVER |  | SOV DRIVER |  | TOTAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# | \% | \# | \% | \# | \% |
| Yes I Have | 6 | 4\% | 18 | 5\% | 24 | 4\% |
| Yes I know someone | 10 | 6\% | 14 | 4\% | 24 | 4\% |
| No | 151 | 90\% | 348 | 92\% | 499 | 91\% |
| TOTAL | 167 | 100\% | 380 | 100\% | 547 | 100\% |


| 4 | Ministry of Transportation \& Highways |
| :---: | :---: |
| BRITISH | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hoV Evaluation \& tmp Baseline (final Report |
| COlumbia | PhASE II HOV EVALUATION \& TMP BASELINE (FINAL REPORT) |

$\checkmark$ Approximately $66 \%$ of all respondents (HOV and SOV) agree that random incidents cause more traffic delays and congestion than routine peak period traffic volumes
$\checkmark$ Approximately $9 \%$ of all respondents (HOV and SOV) have been helped by, or know someone who has been helped by the FSP

As indicated in section 2.8 of this report, a similar survey was also distributed to a group of key project stakeholders. Exhibit 3.5 .3 provides a tabulated summary of the FSP related responses by the stakeholders.

Exhibit 3.5.2-Stakeholders Survey - FSP Related Responses

|  | Question |  |  |  |  |  |  | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.1 | Random incidents and accidents cause more traffic delays and congestion than routine peak period traffic volumes | 20\% | 37\% | 17\% | 17\% | 8\% | 59 | 100\% |
| 2.2 | Quick clearing of accidents, vehicle breakdowns, spills, etc., by the Freeway Service Patrols helps minimize delay and traffic congestion | 60\% | 32\% | 7\% | 2\% | 0\% | 60 | 100\% |
| 2.3 | By helping to minimize traffic congestion, the Freeway Service Patrols also help reduce fuel consumption, and improve overall air quality, as well as defer infrastructure requirements | 28\% | 37\% | 32\% | 3\% | 0\% | 60 | 100\% |
| 2.4 | The yellow Freeway Service Patrol vehicles are frequently visible clearing crashes, assisting disabled vehicles, cleaning up after spills, etc., (between the Port Mann Bridge and Grandview Highway) | 32\% | 31\% | 29\% | 8\% | 0\% | 59 | 100\% |
|  | TOTAL NUMBER OF RESPONSES | 84 | 81 | 50 | 18 | 5 | 238 |  |

The stakeholder agencies were also asked to comment on their own traffic and road data collection programs, in terms of electronic management and exchange capabilities (internally and externally), and their observations on the interaction of FSP with local services. Few respondents answered these questions. The municipal and regional agencies only indicated that they do collect some traffic data (like traffic counts and information pertaining to traffic control signals etc.) and store it electronically.

## 4 NETWORK IMPACTS

An important requirement of the monitoring program is to determine impacts of the HOV facility and the TMP pilot project on the parallel routes within the Study Corridor. Network impacts have been discussed throughout the report in conjunction with the HOV and TMP evaluations. The purpose of this section is to document the network data collection and analysis within a stand-alone chapter. This portion of the data collection program relates to collecting mechanical counts, vehicle classification/occupancy data, travel time/speed data and intersection turning movement counts on adjacent intersections and parallel routes. This data has been used throughout the other sections of the report to determine whether there has been a modal shift in traffic, whether there is an increase in HOV usage, and whether there has been any impact on users of the parallel routes as a result of shift in traffic to/from Highway 1.

### 4.1 PHASE II CONDITIONS

### 4.1.1 Traffic Volumes

24 hour traffic volumes were collected at 5 count stations along the parallel routes north and south of Highway 1 as summarized in Exhibit 4.1.1. Count data at Pattullo Bridge, Lougheed at Boundary Road and Lougheed at Colony Farm Road were not available at the time of this study due to the transfer of the count stations to the municipalities, which caused delay in obtaining the data (these data should be obtained by MoTH when available in the future and appended to the Phase II data collected in this project). In addition to these data, manual intersection turning movement counts were also collected along Lougheed Highway and Canada Way and is further elaborated in section 4.1.4.

Exhibit 4.1.1-Mechanical Count Stations Along Parallel Routes

| On | Location |
| :---: | :---: |
| Lougheed Highway (Route 7) | 0.2 km east of North Road |
| Lougheed Highway (Route 7) | west of King Edward Street |
| Barnet Highway (Route 7A) | 0.1 km west of Route 7 at Pine Tree Way |
| Mary Hill Bypass | 0.8 km east of United Boulevard |
| Canada Way | west of $10^{\text {ih }}$ Avenue |

Note: Traffic count data along 104 Ave was collected using intersection counts
Exhibit 4.1.2 below presents the tabulated summary of the peak hour traffic volumes on the parallel routes by direction and time period.

Exhibit 4.1.2-Peak Hour Traffic Volume at Count Stations

| LOCATION | EASTBOUND |  |  | WESTBOUND |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Route 7/ North Road | AM | NOON | PM | AM | NOON | PM |
| Route 7A/ Route 7 | 873 | 781 | 1425 | 1240 | 902 | 845 |
| Mary Hill Bypass/ United Blvd | 1316 | 1294 | 1721 | 1859 | 1311 | 1490 |
| Route 7/ King Edward Street | 1069 | 1431 | 2767 | 2449 | 1341 | 1341 |
| Canada Way/10 ${ }^{\text {th }}$ Avenue | 728 | 901 | 1423 | 2589 | 1849 | 1846 |
| 2028 |  |  |  |  |  |  |

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (Final REPORT)

### 4.1.2 Vehicle Classification \& Occupancy Surveys

The data collection program included vehicle classification and occupancy surveys along the specified parallel routes at the following stations (Exhibit 4.1.3):

Exhibit 4.1.3-Vehicle Classification \& Occupancy Survey

| ON | LOCATION |
| :---: | :---: |
| Lougheed Highway | West of Gaglardi Way |
| Lougheed Highway | West of King Edward Street |
| Lougheed Highway | West of Colony Farm Road |
| Canada Way | West of $10^{\text {th }}$ Ave |
| Barnet Highway | West of Pine Tree Way |
| Pattullo Bridge | South End |
| Mary Hill Bypass | East of United Boulevard |

The details of the collected occupancy data have been summarized into the following exhibits:

- Exhibit 4.1.4 presents the weekday peak period AVOs, for the AM, Mid-day, and PM peak hours, at all 7 stations along the parallel routes.
- Exhibit 4.1.5 presents the weekday peak period vehicle classification data, for the AM, Mid-day, and PM periods, at all 7 stations along the parallel routes.

The lowest vehicle occupancy is observed during the AM period which comprises largely work trips and trucks, and highest in the mid-day period with the exception of Pattullo Bridge, Barnet Highway and Lougheed Highway, which has the highest occupancy during the PM peak in the eastbound direction away from downtown.

Generally, cars comprise approximately $80-90 \%$ of the traffic stream, followed by approximately 3 to $18 \%$ trucks, with motorcycles, buses, and taxis comprising less than $2 \%$ each. Truck traffic tends to be relatively constant throughout the day except at Mary Hill Bypass and Lougheed Highway (west of Gaglardi) in which a higher proportion of trucks were observed (12-17\%). The proportion of truck traffic along the parallel routes is much higher than on the mainline.

### 4.1.3 Travel Times

The Phase I study recommended the collection of travel time statistics along the parallel routes. A small sample of Phase II travel time surveys were included along the parallel routes as a baseline for future analysis of the network impacts due to enhancement of the mainline. From the Phase I study, the corridor of influence was identified as: Lougheed Highway - Mary Hill Bypass corridor and Canada Way - Pattullo Bridge corridor. Exhibit 4.1.6 illustrate the following parallel routes:
BRITISH
Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase il hov Evaluation \& tMP baseline (FINAL REPORT)

Exhibit 4.1.4 - Parallel Route Vehicle Occupancies - Weekday Peak Period

| EASTBOUND |  |  |  |  |  |  |  |  |  |  | Bus <br> Occupants |  | Taxi Occupants |  | Total Occupants | Vehicle Occupancy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 Occupant |  | 2 Occupants |  | 3 Occupants |  | 4+ Occupants |  | Van Pools |  |  |  |  |  |  |  |
| Canada Way - West of 10th Avenue |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 1543 | 84.7\% | 217 | 11.9\% | 28 | 1.5\% | 6 | 0.3\% | 0 | 0.0\% | 180 | 7.9\% | 19 | 0.8\% | 2284 | 1.16 |
| Noon Period | 1168 | 78.9\% | 241 | 16.3\% | 35 | 2.4\% | 11 | 0.7\% | 0 | 0.0\% | 90 | 4.7\% | 25 | 1.3\% | 1914 | 1.24 |
| PM Period | 2913 | 78.6\% | 619 | 16.7\% | 99 | 2.7\% | 37 | 1.0\% | 0 | 0.0\% | 325 | 6.6\% | 23 | 0.5\% | 4944 | 1.25 |
| Lougheed Highway - West of Gaglardi Way |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 1588 | 86.0\% | 201 | 10.9\% | 26 | 1.4\% | 5 | 0.3\% | 1 | 0.1\% | 173 | 7.6\% | 6 | 0.3\% | 2273 | 1.15 |
| Noon Period | 1750 | 80.1\% | 340 | 15.6\% | 52 | 2.4\% | 20 | 0.9\% | 0 | 0.0\% | 225 | 7.8\% | 9 | 0.3\% | 2900 | 1.23 |
| PM Period | 4092 | 83.1\% | 695 | 14.1\% | 80 | 1.6\% | 30 | 0.6\% | 0 | 0.0\% | 377 | 6.1\% | 6 | 0.1\% | 6225 | 1.19 |
| Lougheed Highway - West of King Edward |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 2722 | 88.6\% | 280 | 9.1\% | 26 | 0.8\% | 8 | 0.3\% | 1 | 0.0\% | 304 | 8.2\% | 25 | 0.7\% | 3727 | 1.12 |
| Noon Period | 1717 | 77.9\% | 410 | 18.6\% | 36 | 1.6\% | 23 | 1.0\% | 0 | 0.0\% | 74 | 2.6\% | 7 | 0.2\% | 2818 | 1.25 |
| PM Period | 4153 | 79.9\% | 867 | 16.7\% | 90 | 1.7\% | 39 | 0.7\% | 0 | 0.0\% | 332 | 5.0\% | 29 | 0.4\% | 6674 | 1.23 |
| Lougheed Highway - West of Colony Farm Road |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 2544 | 88.1\% | 256 | 8.9\% | 29 | 1.0\% | 14 | 0.5\% | 0 | 0.0\% | 141 | 4.2\% | 19 | 0.6\% | 3359 | 1.13 |
| Noon Period | 2375 | 79.0\% | 524 | 17.4\% | 69 | 2.3\% | 21 | 0.7\% | 1 | 0.0\% | 84 | 2.2\% | 12 | 0.3\% | 3816 | 1.24 |
| PM Period | 5994 | 82.9\% | 1032 | 14.3\% | 128 | 1.8\% | 45 | 0.6\% | 3 | 0.0\% | 466 | 5.1\% | 27 | 0.3\% | 9133 | 1.20 |
| Barnet Highway - West of Pine Tree Way |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 1755 | 78.6\% | 321 | 14.4\% | 62 | 2.8\% | 20 | 0.9\% | 1 | 0.0\% | 752 | 21.9\% | 10 | 0.3\% | 3431 | 1.24 |
| Noon Period | 1842 | 72.9\% | 543 | 21.5\% | 75 | 3.0\% | 25 | 1.0\% | 0 | 0.0\% | 457 | 12.3\% | 15 | 0.4\% | 3725 | 1.31 |
| PM Period | 3713 | 73.5\% | 1019 | 20.2\% | 158 | 3.1\% | 58 | 1.1\% | 0 | 0.0\% | 1185 | 15.5\% | 19 | 0.2\% | 7661 | 1.30 |
| Pattullo Bridge |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 4327 | 89.8\% | 411 | 8.5\% | 53 | 1.1\% | 9 | 0.2\% | 0 | 0.0\% | 71 | 1.3\% | 15 | 0.3\% | 5430 | 1.11 |
| Noon Period | 2742 | 76.5\% | 694 | 19.4\% | 83 | 2.3\% | 42 | 1.2\% | 0 | 0.0\% | 0 | 0.0\% | 31 | 0.7\% | 4578 | 1.28 |
| PM Period | 9858 | 83.3\% | 1646 | 13.9\% | 210 | 1.8\% | 76 | 0.6\% | 2 | 0.0\% | 144 | 1.0\% | 48 | 0.3\% | 14288 | 1.20 |
| Mary Hill Bypass |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 2705 | 88.8\% | 273 | 9.0\% | 25 | 0.8\% | 22 | 0.7\% | 0 | 0.0\% | 435 | 11.3\% | 0 | 0.0\% | 3849 | 1.13 |
| Noon Period | 2258 | 80.9\% | 457 | 16.4\% | 46 | 1.6\% | 6 | 0.2\% | 0 | 0.0\% | 32 | 0.9\% | 3 | 0.1\% | 3369 | 1.20 |
| PM Period | 6941 | 84.0\% | 1144 | 13.8\% | 81 | 1.0\% | 50 | 0.6\% | 4 | 0.0\% | 201 | 2.0\% | 7 | 0.1\% | 9904 | 1.18 |



Note:
Single Occupant Vehicles include Cars, Trucks, Motorcycles, and Bicycles
Occupancy \%s = Number of Vehicles in each Occupancy Category/Total number of Vehicles
Bus Occupancy \%s = Number of Bus Occupants/Total Number of Occupants
Vehicle Occupancy = Total Occupants/Total Vehicles (excluding Buses and Taxis)

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase il hov Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 4.1.5 - Parallel Route Vehicle Classification - Weekday Peak Period
EASTBOUND

|  | Cars |  | Trucks |  | Motorcycles |  | Bicycles |  | Buses |  | Taxi |  | Total Vehicles |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Canada Way - West of 10th Avenue |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 1723 | 94.6\% | 63 | 3.5\% | 8 | 0.4\% | 0 | 0.0\% | 16 | 0.9\% | 11 | 0.6\% | 1821 | 100\% |
| Noon Period | 1377 | 93.0\% | 75 | 5.1\% | 2 | 0.1\% | 1 | 0.1\% | 9 | 0.6\% | 16 | 1.1\% | 1480 | 100\% |
| PM Period | 3557 | 96.0\% | 93 | 2.5\% | 13 | 0.4\% | 5 | 0.1\% | 20 | 0.5\% | 17 | 0.5\% | 3705 | 100\% |
| Lougheed Highway - West of Gaglardi Way |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 1485 | 80.4\% | 329 | 17.8\% | 7 | 0.4\% | 0 | 0.0\% | 20 | 1.1\% | 5 | 0.3\% | 1846 | 100\% |
| Noon Period | 1884 | 86.2\% | 271 | 12.4\% | 6 | 0.3\% | 1 | 0.0\% | 17 | 0.8\% | 6 | 0.3\% | 2185 | 100\% |
| PM Period | 4642 | 94.3\% | 222 | 4.5\% | 14 | 0.3\% | 19 | 0.4\% | 24 | 0.5\% | 4 | 0.1\% | 4925 | 100\% |
| Lougheed Highway - West of King Edward |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 2749 | 89.5\% | 254 | 8.3\% | 14 | 0.5\% | 20 | 0.7\% | 18 | 0.6\% | 16 | 0.5\% | 3071 | 100\% |
| Noon Period | 2043 | 92.7\% | 139 | 6.3\% | 6 | 0.3\% | 0 | 0.0\% | 9 | 0.4\% | 6 | 0.3\% | 2203 | 100\% |
| PM Period | 4898 | 94.2\% | 214 | 4.1\% | 40 | 0.8\% | 11 | 0.2\% | 19 | 0.4\% | 19 | 0.4\% | 5201 | 100\% |
| Lougheed Highway - West of Colony Farm Road |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 2589 | 89.6\% | 238 | 8.2\% | 14 | 0.5\% | 2 | 0.1\% | 31 | 1.1\% | 15 | 0.5\% | 2889 | 100\% |
| Noon Period | 2797 | 93.0\% | 182 | 6.1\% | 11 | 0.4\% | 0 | 0.0\% | 11 | 0.4\% | 6 | 0.2\% | 3007 | 100\% |
| PM Period | 6974 | 96.4\% | 176 | 2.4\% | 42 | 0.6\% | 10 | 0.1\% | 17 | 0.2\% | 13 | 0.2\% | 7232 | 100\% |
| Barnet Highway - West of Pine Tree Way |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 2040 | 91.4\% | 107 | 4.8\% | 10 | 0.4\% | 7 | 0.3\% | 60 | 2.7\% | 8 | 0.4\% | 2232 | 100\% |
| Noon Period | 2328 | 92.1\% | 139 | 5.5\% | 10 | 0.4\% | 11 | 0.4\% | 29 | 1.1\% | 10 | 0.4\% | 2527 | 100\% |
| PM Period | 4786 | 94.8\% | 136 | 2.7\% | 35 | 0.7\% | 8 | 0.2\% | 71 | 1.4\% | 14 | 0.3\% | 5050 | 100\% |
| Pattullo Bridge |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 4544 | 94.3\% | 210 | 4.4\% | 24 | 0.5\% | 22 | 0.5\% | 5 | 0.1\% | 13 | 0.3\% | 4818 | 100\% |
| Noon Period | 3289 | 91.8\% | 251 | 7.0\% | 17 | 0.5\% | 4 | 0.1\% | 2 | 0.1\% | 19 | 0.5\% | 3582 | 100\% |
| PM Period | 11303 | 95.5\% | 393 | 3.3\% | 89 | 0.8\% | 7 | 0.1\% | 8 | 0.1\% | 31 | 0.3\% | 11831 | 100\% |
| Mary Hill Bypass |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 2637 | 86.6\% | 376 | 12.3\% | 12 | 0.4\% | 5 | 0.2\% | 15 | 0.5\% | 0 | 0.0\% | 3045 | 100\% |
| Noon Period | 2373 | 85.1\% | 386 | 13.8\% | 18 | 0.6\% | 0 | 0.0\% | 11 | 0.4\% | 2 | 0.1\% | 2790 | 100\% |
| PM Period | 7729 | 93.5\% | 460 | 5.6\% | 55 | 0.7\% | 6 | 0.1\% | 7 | 0.1\% | 6 | 0.1\% | 8263 | 100\% |

## WESTBOUND

|  | Cars |  | Trucks |  | Motorcycles |  | Bicycles |  | Buses |  | Taxi |  | Total Vehicles |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Canada Way - West of 10th Avenue |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 2643 | 96.0\% | 68 | 2.5\% | 11 | 0.4\% | 3 | 0.1\% | 19 | 0.7\% | 8 | 0.3\% | 2752 | 100\% |
| Noon Period | 1374 | 93.5\% | 63 | 4.3\% | 9 | 0.6\% | 0 | 0.0\% | 9 | 0.6\% | 15 | 1.0\% | 1470 | 100\% |
| PM Period | 2752 | 96.2\% | 57 | 2.0\% | 15 | 0.5\% | 3 | 0.1\% | 16 | 0.6\% | 17 | 0.6\% | 2860 | 100\% |
| Lougheed Highway - West of Gaglardi Way |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 4676 | 93.1\% | 270 | 5.4\% | 22 | 0.4\% | 29 | 0.6\% | 22 | 0.4\% | 5 | 0.1\% | 5024 | 100\% |
| Noon Period | 2038 | 87.1\% | 261 | 11.2\% | 9 | 0.4\% | 3 | 0.1\% | 20 | 0.9\% | 8 | 0.3\% | 2339 | 100\% |
| PM Period | 3108 | 91.0\% | 251 | 7.3\% | 10 | 0.3\% | 9 | 0.3\% | 27 | 0.8\% | 10 | 0.3\% | 3415 | 100\% |
| Lougheed Highway - West of King Edward |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 4119 | 89.7\% | 408 | 8.9\% | 14 | 0.3\% | 20 | 0.4\% | 24 | 0.5\% | 8 | 0.2\% | 4593 | 100\% |
| Noon Period | 2586 | 87.9\% | 318 | 10.8\% | 11 | 0.4\% | 0 | 0.0\% | 18 | 0.6\% | 9 | 0.3\% | 2942 | 100\% |
| PM Period | 4596 | 91.9\% | 325 | 6.5\% | 28 | 0.6\% | 11 | 0.2\% | 29 | 0.6\% | 14 | 0.3\% | 5003 | 100\% |
| Lougheed Highway - West of Colony Farm Road |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 4241 | 95.5\% | 151 | 3.4\% | 19 | 0.4\% | 10 | 0.2\% | 14 | 0.3\% | 5 | 0.1\% | 4440 | 100\% |
| Noon Period | 2794 | 91.0\% | 250 | 8.1\% | 9 | 0.3\% | 1 | 0.0\% | 8 | 0.3\% | 7 | 0.2\% | 3069 | 100\% |
| PM Period | 2725 | 92.8\% | 167 | 5.7\% | 11 | 0.4\% | 4 | 0.1\% | 17 | 0.6\% | 13 | 0.4\% | 2937 | 100\% |
| Barnet Highway - West of Pine Tree Way |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 4981 | 94.9\% | 209 | 4.0\% | 35 | 0.7\% | 10 | 0.2\% | 6 | 0.1\% | 9 | 0.2\% | 5250 | 100\% |
| Noon Period | 2441 | 91.8\% | 175 | 6.6\% | 23 | 0.9\% | 9 | 0.3\% | 1 | 0.0\% | 11 | 0.4\% | 2660 | 100\% |
| PM Period | 5095 | 96.6\% | 135 | 2.6\% | 14 | 0.3\% | 8 | 0.2\% | 13 | 0.2\% | 12 | 0.2\% | 5277 | 100\% |
| Pattullo Bridge |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 8615 | 95.2\% | 342 | 3.8\% | 46 | 0.5\% | 0 | 0.0\% | 8 | 0.1\% | 35 | 0.4\% | 9046 | 100\% |
| Noon Period | 3558 | 92.7\% | 238 | 6.2\% | 26 | 0.7\% | 0 | 0.0\% | 2 | 0.1\% | 16 | 0.4\% | 3840 | 100\% |
| PM Period | 7303 | 95.8\% | 237 | 3.1\% | 54 | 0.7\% | 0 | 0.0\% | 7 | 0.1\% | 20 | 0.3\% | 7621 | 100\% |
| Mary Hill Bypass |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AM Period | 5604 | 92.6\% | 390 | 6.4\% | 29 | 0.5\% | 12 | 0.2\% | 7 | 0.1\% | 8 | 0.1\% | 6050 | 100\% |
| Noon Period | 2297 | 84.2\% | 403 | 14.8\% | 11 | 0.4\% | 0 | 0.0\% | 13 | 0.5\% | 3 | 0.1\% | 2727 | 100\% |
| PM Period | 3599 | 89.7\% | 357 | 8.9\% | 30 | 0.7\% | 4 | 0.1\% | 16 | 0.4\% | 7 | 0.2\% | 4013 | 100\% |


|  | Ministry of Transportation \& Highways |
| :---: | :---: |
| BRITISH <br> Columbia | Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT) |

Exhibit 4.1.6-Parallel Route Travel Time Survey Locations

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

- Northern Route ( 24.1 km ): Between Lougheed Highway/Boundary Road and Mary Hill Bypass/Lougheed Highway via Lougheed Highway, United Boulevard and Mary Hill Bypass
- Southern Route (22.3km): Between Canada Way/Boundary Road and 104 Avenue/160 Street via Canada Way, McBride Boulevard, Pattullo Bridge, King George Highway, and 104 Avenue

The travel time-distance plots of the northern and southern routes are shown in Exhibit 4.1.7 and 4.1.8 respectively by direction and time period.

It can be seen that the travel times in the non-peak direction are more consistent while the peak direction travel times have a larger variance. The maximum, minimum and average travel times are tabulated in Exhibit 4.1.9.

Exhibit 4.1.9-Parallel Route Travel Time

| PERIOD | DIR |  | NORTHERN ROUTE <br> TRAVEL TIME (MIN) | SOUTHERN ROUTE <br> TRAVEL TIME (MIN) |
| :---: | :---: | :---: | :---: | :---: |
| AM-PEAK | EB | MAX | 30.3 | 39.2 |
|  |  | MIN | 26.2 | 28.3 |
|  |  | AVERAGE | 28.1 | 31.4 |
|  | WB | MAX | 65.1 | 58.9 |
|  |  | MIN | 30.9 | 35.1 |
|  |  | AVERAGE | 45.3 | 45.2 |
| PM-PEAK | EB | MAX | 42.7 | 49.5 |
|  |  | MIN | 30.3 | 36.5 |
|  |  | AVERAGE | 35 | 42.8 |
|  | WB | MAX | 46.2 | 37.4 |
|  |  | MIN | 31.4 | 34.6 |
|  |  | AVERAGE | 37.2 | 36 |

Note: Shading indicates peak direction
It should be noted that only six AM and six PM peak period return travel time runs were collected, thus contributing to variance high variances above.

Exhibit 4.1.10 presents the summary charts of the end-to-end average travel time and speed for both parallel routes.

- The off-peak direction average travel speed during AM peak period is found to be approximately $20 \mathrm{~km} / \mathrm{hr}$ faster on the northern route and $13 \mathrm{~km} / \mathrm{hr}$ faster on the southern route when comparing to the peak direction speed. However, during the PM peak period the average travel speeds are relatively constant with the off-peak direction slightly faster than the peak direction (slower for the northern route).
- In the peak direction, traffic on both routes are observed to travel at approximately 30 $\mathrm{km} / \mathrm{hr}$ (AM westbound), and between 31 and $41 \mathrm{~km} / \mathrm{hr}$ along the southern and northern routes respectively (PM eastbound direction).

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program
Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)
Exhibit 4.1.7 - Northern Parallel Route Time-Distance Diagram


NOTE: Shaded area indicate peak direction

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 4.1.8 - Southern Parallel Route Time-Distance Diagram


NOTE: Shaded area indicate peak direction

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (Final REPORT)

Exhibit 4.1.10-Parallel Route Average Travel Time \& Speed


Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program

### 4.1.4 Intersection Capacities

Manual peak hour turning movement counts at major intersections along the adjacent parallel routes were collected to evaluate the existing intersection performance, and to determine the availability of any spare capacity at these intersections. The parallel route AM, Mid-Day and PM peak hour turning movement intersection counts as well as the level of service analysis are summarized in Exhibit 4.1.11, 4.1.12 and 4.1.13 respectively.

The results indicate that the majority of the intersections evaluated along the parallel routes are operating near capacity during the weekday peak periods, and the opportunity for the redistribution of traffic from Highway 1 onto the parallel routes may therefore be limited during these time periods.

Exhibit 4.1.11 - AM Peak Hour Intersection Capacity Analysis

| AM-PEAK HOUR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E/W | N/S |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  | INTERSECTION |  |
| StREET | StREET |  |  | L | T | R | L | T | R | L | T | R | L | T | R | DELAY | LOS |
| Fern | Route 1 EB Ramp |  | Lane | 1 | 2 |  |  | 1 | 1 |  |  |  | 2 |  |  |  |  |
|  |  |  | Volume | 364 | 740 |  |  | 564 | 378 |  |  |  | 445 |  | 67 |  |  |
|  |  |  | v/c | 0.81 | 0.31 |  |  | 0.83 | 0.22 |  |  |  | 0.71 |  | 0.04 |  |  |
|  |  | Lane Gp | Delay | 43.2 | 5.2 |  |  | 35.3 | 0.3 |  |  |  | 37.6 |  | 0.0+ |  |  |
|  |  |  | LOS | D | A |  |  | D | A |  |  |  | D |  | A |  |  |
|  |  | Approach | Delay |  | 17.8 |  |  | 22.1 |  |  |  |  |  | 33.1 |  |  |  |
|  |  |  | LOS |  | B |  |  | C |  |  |  |  |  | C |  | 23 | C |
| Fern | Mountain Hwy |  | Lane |  |  |  | 1 |  | 1 |  | 1 | 1 | 1 | 1 |  |  |  |
|  |  |  | Volume |  |  |  | 337 |  | 270 |  | 90 | 234 | 835 | 409 |  |  |  |
|  |  |  | v/c |  |  |  | 0.85 |  | 0.23 |  | 0.23 | 0.28 | 0.83 |  |  |  |  |
|  |  | Lane Gp | Delay |  |  |  | 57 |  | 5.9 |  | 30.3 | 14.3 | 17.4 |  |  |  |  |
|  |  |  | LOS |  |  |  | E |  | A |  | C | B | B |  |  |  |  |
|  |  | Approach | Delay |  |  |  |  | 35.5 |  |  | 19.1 |  |  |  |  |  |  |
|  |  |  | LOS |  |  |  |  | D |  |  | B |  |  |  |  |  |  |
| Mt Seymour Parkway | Fern |  | Lane |  |  |  | $1>$ | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 |  |  |
|  |  |  | Volume |  |  |  | 772 | 827 | 170 | 114 | 1147 | 670 | 83 | 240 | 300 |  |  |
|  |  |  | v/c |  |  |  | 0.74 | 0.65 | 0.1 | 0.33 | 1.04 | 0.23 | 0.45 | 0.16 | 0.18 |  |  |
|  |  | Lane Gp | Delay |  |  |  | 30.8 | 25.2 | 0.1 | 31.4 | 136.5 | 0.2 | 59.3 | 19.8 | 0.2 |  |  |
|  |  |  | LOS |  |  |  | C | C | A | C | F | A | E | B | A |  |  |
|  |  | Approach | Delay |  |  |  |  | 24.9 |  |  | 86 |  |  | 16.4 |  |  |  |
|  |  |  | LOS |  |  |  |  | C |  |  | F |  |  | B |  | 54.2 | D |
| Main St | Mountain Hwy |  | Lane | 1 | 2 | < | 1 | 2 | < | > | 2 | 1 | 1 | 1 | < |  |  |
|  |  |  | Volume | 116 | 1472 | 13 | 172 | 1432 | 141 | 46 | 29 | 235 | 396 | 222 | 24 |  |  |
|  |  |  | v/c | 0.56 | 1.04 |  | 0.83 | 1.11 |  |  | 0.35 | 0.15 | 1.67 | 0.99 |  |  |  |
|  |  | Lane Gp | Delay | 51.2 | 123.3 |  | 77.6 | 230.3 |  |  | 49 | 0.2 |  | 141.3 |  |  |  |
|  |  |  | LOS | D | F |  | E | F |  |  | D | A |  | F |  |  |  |
|  |  | Approach | Delay |  | 118.1 |  |  | 215.1 |  |  | 13.1 |  |  |  |  |  |  |
|  |  |  | LOS |  | F |  |  | F |  |  | B |  |  |  |  |  |  |
| Grandview Ave | Boundary Rd |  | Lane |  | 2 | 1 |  | 2 | 1 | 1 | 2 | 1 | 1 | 3 | < |  |  |
|  |  |  | Volume |  | 1176 | 608 |  | 1417 | 70 | 427 | 1473 | 273 | 63 | 1188 | 94 |  |  |
|  |  |  | v/c |  | 0.89 | 0.36 |  | 1.07 | 0.11 | 0.84 | 1.45 | 0.16 | 0.18 | 1.22 |  |  |  |
|  |  | Lane Gp | Delay |  | 42.8 | 0.6 |  | 181.4 | 22.8 | 57.8 | 862.3 | 0.2 | 42 | 447.8 |  |  |  |
|  |  |  | LOS |  | D | A |  | F | C | E | F | A | D | F |  |  |  |
|  |  | Approach | Delay |  | 29.5 |  |  | 174.8 |  |  | 603.5 |  |  | 428.7 |  |  |  |
|  |  |  | LOS |  | C |  |  | F |  |  | F |  |  | F |  | 325.6 | F |
| Route 7A | Cassiar |  | Lane | 1 | 3 | 1 | 1 | 3 | 1 | 2 | 2 | 1 | 2 | 2 |  |  |  |
|  |  |  | Volume | 45 | 529 | 215 | 86 | 1779 | 898 | 507 | 38 | 52 | 510 | 50 | 72 |  |  |
|  |  |  | v/c | 0.17 | 0.4 | 0.12 | 0.33 | 1.36 | 0.74 | 0.67 | 0.05 | 0.03 | 0.67 | 0.06 | 0.04 |  |  |
|  |  | Lane Gp | Delay | 50.7 | 41.3 | 0.2 | 53.8 | 697.5 | 16.4 | 51.5 | 40.4 | 0.0+ | 51.6 | 40.6 | 0.0+ |  |  |
|  |  |  | LOS | D | D | A | D | F | B | D | D | A | D | D | A |  |  |
|  |  | Approach | Delay |  | 31.5 |  |  | 470.8 |  |  | 46.7 |  |  | 45.4 |  |  |  |
|  |  |  | LOS |  | C |  |  | F |  |  | D |  |  | D |  | 291.5 | F |
| Route 7 | Willingdon |  | Lane | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 3 | < | 1 | 3 | < |  |  |
|  |  |  | Volume | 98 | 979 | 95 | 362 | 1732 | 187 | 165 | 422 | 190 | 181 | 872 | 90 |  |  |
|  |  |  | v/c | 0.55 | 0.73 | 0.05 | 1.14 | 1.06 | 0.11 | 0.77 | 0.71 |  | 0.85 | 1.11 |  |  |  |
|  |  | Lane Gp | Delay | 77.9 | 44.2 | 0.1 | 349.9 | 172.1 | 0.1 | 92.4 | 65.7 |  | 107.3 | 276 |  |  |  |
|  |  |  | LOS | E | D | A | F | F | A | F | E |  | F | F |  |  |  |
|  |  | Approach | Delay |  | 43.8 |  |  | 187.8 |  |  | 71.5 |  |  | 249 |  |  |  |
|  |  |  | LOS |  | D |  |  | F |  |  | E |  |  | F |  | 152.8 | F |
| Canada Way | Willingdon |  | Lane | 1 | 2 | < | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 |  |  |
|  |  |  | Volume | 240 | 683 | 136 | 123 | 644 | 390 | 145 | 894 | 130 | 464 | 1237 | 253 |  |  |
|  |  |  | v/c | 0.94 | 0.72 |  | 0.96 | 0.72 | 0.22 | 0.57 | 1 | 0.07 | 1.23 | 1.09 | 0.14 |  |  |
|  |  | Lane Gp | Delay | 128 | 46.2 |  | 189.4 | 53.4 | 0.3 | 65.3 | 115.9 | 0.1 | 495 | 222.1 | 0.2 |  |  |
|  |  |  | LOS | F | D |  | F | D | A | E | F | A | F | F | A |  |  |
|  |  | Approach | Delay |  | 64.9 |  |  | 51.7 |  |  | 97.8 |  |  | 261.6 |  |  |  |
|  |  |  | LOS |  | E |  |  | D |  |  | F |  |  | F |  | 148 | F |
| Canada Way | Kensington |  | Lane | 1 | 2 |  |  | 2 | 1 |  |  |  | 2 |  | 1 |  |  |
|  |  |  | Volume | 308 | 398 |  |  | 1176 | 1321 |  |  |  | 1035 |  | 840 |  |  |
|  |  |  | v/c | 0.72 | 0.41 |  |  | 1.22 | 0.75 |  |  |  | 0.74 |  | 0.48 |  |  |
|  |  | Lane Gp | Delay | 65.8 | 44.9 |  |  | 456.1 | 3.3 |  |  |  | 40.1 |  | 1 |  |  |
|  |  |  | LOS | E | D |  |  | F | A |  |  |  | D |  | A |  |  |
|  |  | Approach | Delay |  | 54 |  |  | 228.5 |  |  |  |  |  | 23.6 |  |  |  |
|  |  |  | LOS |  | D |  |  | F |  |  |  |  |  | C |  | 151 | F |
| Sprott | Kensington |  | Lane | $1>$ | 1 | < | > | 1 | < | 1 | 1 | < |  | 1 | 1 |  |  |
|  |  |  | Volume | 376 | 10 | 107 | 37 | 105 | 2 | 324 | 440 | 13 |  | 773 | 1164 |  |  |
|  |  |  | v/c | 0.76 | 1.27 |  |  | 1.27 |  | 1.06 | 0.4 |  |  | 0.93 | 0.71 |  |  |
|  |  | Lane Gp | Delay | 77.1 | 576.9 |  |  | 608 |  | 222.1 | 11.9 |  |  | 57.9 | 2.7 |  |  |
|  |  |  | LOS | E | F |  |  | F |  | F | B |  |  | E | A |  |  |
|  |  | Approach | Delay |  | 386.2 |  |  | 608 |  |  | 99.7 |  |  | 26.1 |  |  |  |
|  |  |  | LOS |  | F |  |  | F |  |  | F |  |  | C |  | 181.9 | F |


| Ministry of Transportation \& Highways |  |
| :---: | :--- |
| BRisish | HIGHWAY 1 (NORTH VANCOUVER TO SURREY) - MONITORING \& EvaLUATION PROGRAM |
| COLUMBIA | PHASE II HOV EvaLUATION \& TMP BASELINE (FINAL REPORT) |

Exhibit 4.1.11 Cont...

| AM-PEAK HOUR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E/W | N/S |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  | INTERSECTION |  |
| Street | StREET |  |  | L | T | R | L | T | R | L | T | R | L | T | R | DELAY | LOS |
| Cariboo | Gaglardi |  | Lane |  |  |  | 1 |  | 1 |  | 2 | 1 | 1 | 2 |  |  |  |
|  |  |  | Volume |  |  |  | 547 |  | 377 |  | 965 | 338 | 630 | 923 |  |  |  |
|  |  |  | v/c |  |  |  | 1.37 |  | 0.23 |  | 1.27 | 0.2 | 0.89 |  |  |  |  |
|  |  | Lane Gp | Delay |  |  |  | 726.6 |  | 0.3 |  | 527.9 | 0.3 | 48.1 |  |  |  |  |
|  |  |  | LOS |  |  |  | F |  | A |  | F | A | D |  |  |  |  |
|  |  | Approach | Delay |  |  |  |  | 448.4 |  |  | 401.5 |  |  |  |  |  |  |
|  |  |  | LOS |  |  |  |  | F |  |  | F |  |  |  |  |  |  |
| Braid | Brunette |  | Lane | 2 | 1 | 1 | 1 | 1 | 1 | > | 3 | < | 1 | 2 | 1 |  |  |
|  |  |  | Volume | 524 | 79 | 24 | 38 | 26 | 61 | 2 | 1159 | 45 | 144 | 1557 | 842 |  |  |
|  |  |  | v/c | 1.01 | 0.28 | 0.01 | 0.33 | 0.22 | 0.04 |  | 0.73 |  | 0.44 | 0.81 | 0.52 |  |  |
|  |  | Lane Gp | Delay | 119 | 33.3 | 0.0+ | 44.6 | 41 | 0.0+ |  | 25.5 |  | 15.3 | 17.5 | 1.2 |  |  |
|  |  |  | LOS | F | C | A | D | D | A |  | C |  | B | B | A |  |  |
|  |  | Approach | Delay |  | 104 |  |  | 23.2 |  |  | 25.5 |  |  | 12.4 |  |  |  |
|  |  |  | LOS |  | F |  |  | C |  |  | C |  |  | B |  | 35.1 | D |
| Mary Hill Bypass | United Blvd |  | Lane | 1 | 2 |  | 1 |  | 2 |  | 2 | 1 | 2 | 2 |  |  |  |
|  |  |  | Volume | 107 | 547 |  | 2081 |  | 780 |  | 144 | 51 | 489 | 372 |  |  |  |
|  |  |  | v/c | 0.51 | 1.31 |  | 3.32 |  | 0.35 |  | 0.58 | 0.04 | 1.21 |  |  |  |  |
|  |  | Lane Gp | Delay | 59.9 | 629.8 |  |  |  | 0.3 |  | 66.6 | 0.0+ | 451.2 |  |  |  |  |
|  |  |  | LOS | E | F |  |  |  | A |  | E | A | F |  |  |  |  |
|  |  | Approach | Delay |  | 536.6 |  |  |  |  |  | 50.5 |  |  |  |  |  |  |
|  |  |  | LOS |  | F |  |  |  |  |  | D |  |  |  |  |  |  |
| Route 7 WB Ramp | United Blvd |  | Lane |  |  |  | 2 |  | 1 |  | 1 | 2 | 1 | 2 |  |  |  |
|  |  |  | Volume |  |  |  | 147 |  | 228 |  | 469 | 1265 | 225 | 317 |  |  |  |
|  |  |  | v/c |  |  |  | 0.21 |  | 0.13 |  | 0.53 | 0.42 | 1.33 |  |  |  |  |
|  |  | Lane Gp | Delay |  |  |  | 24.1 |  | 0.2 |  | 14.9 | 0.5 | 664.3 |  |  |  |  |
|  |  |  | LOS |  |  |  | C |  | A |  | B | A | F |  |  |  |  |
|  |  | Approach | Delay |  |  |  |  | 10.2 |  |  | 4.7 |  |  |  |  |  |  |
|  |  |  | LOS |  |  |  |  | B |  |  | A |  |  |  |  |  |  |
| 108 Ave | 152 St |  | Lane | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 |  |  |
|  |  |  | Volume | 230 | 202 | 89 | 17 | 185 | 141 | 42 | 659 | 15 | 118 | 1150 | 395 |  |  |
|  |  |  | v/c | 0.71 | 0.31 | 0.08 | 0.07 | 0.36 | 0.14 | 0.17 | 0.77 | 0.01 | 0.48 | 1.34 | 0.24 |  |  |
|  |  | Lane Gp | Delay | 40.4 | 27 | 3.8 | 27.4 | 30.1 | 5.4 | 33.2 | 31.7 | 0.0+ | 21.7 | 641.4 | 0.4 |  |  |
|  |  |  | LOS | D | C | A | C | C | A | C | C | A | C | F | A |  |  |
|  |  | Approach | Delay |  | 29.4 |  |  | 20.4 |  |  | 31.2 |  |  | 456.3 |  |  |  |
|  |  |  | LOS |  | C |  |  | C |  |  | C |  |  | F |  | 277.8 | F |
| 104 Ave North | 160 St |  | Lane |  |  |  | 1 | 1 | < | $>$ | 1 | < | $>$ | 1 | < |  |  |
|  |  |  | Volume |  |  |  | 277 | 197 | 34 | 460 | 203 | 217 | 13 | 513 | 91 |  |  |
|  |  |  | v/c |  |  |  | 1.28 | 1.02 | 0 | 0 | 1.1 | 0 | 0 | 1.03 | 0 |  |  |
|  |  | Lane Gp | Delay |  |  |  | 565.1 | 162.8 | 0 | 0 | 206.9 | 0 | 0 | 128.5 | 0 |  |  |
|  |  |  | LOS |  |  |  | F | F | 0 | 0 | F | 0 | 0 | F | 0 |  |  |
|  |  | Approach | Delay |  |  |  |  | 383.7 |  |  | 206.9 |  |  | 128.5 |  |  |  |
|  |  |  | LOS |  |  |  |  | F |  |  | F |  |  | F |  | 228 | F |
| 104 Ave | 160 St |  | Lane | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |
|  |  |  | Volume | 350 | 610 | 299 | 139 | 704 | 6 | 54 | 483 | 56 | 49 | 291 | 302 |  |  |
|  |  |  | v/c | 0.76 | 0.48 | 0.18 | 0.33 | 0.72 | 0 | 0.22 | 0.87 | 0.06 | 0.55 | 0.52 | 0.3 |  |  |
|  |  | Lane Gp | Delay | 28.3 | 20.6 | 0.2 | 17.2 | 30.3 | 0.0+ | 22.4 | 44.7 | 7.1 | 45.3 | 26.1 | 9.1 |  |  |
|  |  |  | LOS | C | C | A | B | C | A | C | D | A | D | C | A |  |  |
|  |  | Approach | Delay |  | 18.3 |  |  | 28 |  |  | 39.5 |  |  | 20.1 |  |  |  |
|  |  |  | LOS |  | B |  |  | C |  |  | D |  |  | C |  | 26.4 | C |
| Route 7 | United Blvd |  | Lane | 2 | 2 |  |  | 2 | 1 |  |  |  | 1 |  | 2 |  |  |
|  |  |  | Volume | 90 | 1618 |  |  | 1190 | 323 |  |  |  | 32 |  | 1335 |  |  |
|  |  |  | v/c | 0.38 | 6.55 |  |  | 0.57 | 0.22 |  |  |  | 0.26 |  | 0.52 |  |  |
|  |  | Lane Gp | Delay | 54.9 |  |  |  | 8.8 | 0.3 |  |  |  | 55.0- |  | 0.7 |  |  |
|  |  |  | LOS | D |  |  |  | A | A |  |  |  | D |  | A |  |  |
|  |  | Approach | Delay |  |  |  |  | 7.2 |  |  |  |  |  | 2.1 |  |  |  |
|  |  |  | LOS |  |  |  |  | A |  |  |  |  |  | A |  |  |  |
| Route 7 | Gaglardi |  | Lane | 1 | 2 | 1 | 1 | 2 | 1 | 1> | 2 | 1 | $1>$ | 2 |  |  |  |
|  |  |  | Volume | 131 | 482 | 458 | 394 | 1132 | 200 | 525 | 746 | 194 | 57 | 764 | 355 |  |  |
|  |  |  | v/c | 0.67 | 0.69 | 0.28 | 1.15 | 1.15 | 0.12 | 1.24 | 1.13 | 0.12 | 0.21 | 1.37 | 0.22 |  |  |
|  |  | Lane Gp | Delay | 66.1 | 47.9 | 0.4 | 357.1 | 319.2 | 0.2 | 505.4 | 303.7 | 0.2 | 43.5 | 722.1 | 0.3 |  |  |
|  |  |  | LOS | E | D | A | F | F | A | F | F | A | D | F | A |  |  |
|  |  | Approach | Delay |  | 31.2 |  |  | 294.2 |  |  | 330 |  |  | 485.9 |  |  |  |
|  |  |  | LOS |  | C |  |  | F |  |  | F |  |  | F |  | 313.1 | F |

Exhibit 4.1.12 - MID-DAY Peak Hour Intersection Capacity Analysis

| MIDDAY-PEAK HOUR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E/W | N/S |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  | INTERSECTION |  |
| STREET | Street |  |  | L | T | R | L | T | R | L | T | R | L | T | R | DELAY | LOS |
| Fern | Route 1 EB Ramp |  | Lane | 1 | 2 |  |  |  | 1 |  |  |  | 2 |  | 1 |  |  |
|  |  |  | Volume | 364 | 740 |  |  | 564 | 378 |  |  |  | 445 |  | 67 |  |  |
|  |  |  | v/c | 0.61 | 0.25 |  |  | 0.66 | 0.32 |  |  |  | 0.74 |  | 0.05 |  |  |
|  |  | Lane Gp | Delay | 32.2 | 4.9 |  |  | 25.9 | 0.5 |  |  |  | 38.7 |  | 0.1 |  |  |
|  |  |  | LOS | C | A |  |  | C | A |  |  |  | D |  | A |  |  |
|  |  | Approach | Delay |  | 13.5 |  |  | 12.4 |  |  |  |  |  | 32.8 |  |  |  |
|  |  |  | LOS |  | B |  |  | B |  |  |  |  |  | C |  | 18.1 | B |
| Fern | Mountain Hwy |  | Lane |  |  |  | 1 |  | 1 |  | 1 | 1 | 1 | 1 |  |  |  |
|  |  |  | Volume |  |  |  | 262 |  | 209 |  | 158 | 251 | 668 | 206 |  |  |  |
|  |  |  | v/c |  |  |  | 0.72 |  | 0.19 |  | 0.43 | 0.32 | 0.77 |  |  |  |  |
|  |  | Lane Gp | Delay |  |  |  | 42.9 |  | 5.6 |  | 33.7 | 14.8 | 14.9 |  |  |  |  |
|  |  |  | LOS |  |  |  | D |  | A |  | C | B | B |  |  |  |  |
|  |  | Approach | Delay |  |  |  |  | 27.3 |  |  | 22.6 |  |  |  |  |  |  |
|  |  |  | LOS |  |  |  |  | C |  |  | C |  |  |  |  |  |  |
| Mt Seymour Parkway | Fern |  | Lane |  |  |  | 1> | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 |  |  |
|  |  |  | Volume |  |  |  | 596 | 610 | 80 | 98 | 424 | 1062 | 157 | 474 | 388 |  |  |
|  |  |  | $\mathrm{v} / \mathrm{c}$ |  |  |  | 0.9 | 0.75 | 0.05 | 0.34 | 0.35 | 0.38 | 0.37 | 0.28 | 0.25 |  |  |
|  |  | Lane Gp | Delay |  |  |  | 50.2 | 28.8 | 0.1 | 20.1 | 18.1 | 0.4 | 11.9 | 10.2 | 0.4 |  |  |
|  |  |  | LOS |  |  |  | D | C | A | C | B | A | B | B | A |  |  |
|  |  | Approach | Delay |  |  |  |  | 34.8 |  |  | 6.8 |  |  | 7 |  |  |  |
|  |  |  | LOS |  |  |  |  | C |  |  | A |  |  | A |  | 18.1 | B |
| Main St | Mountain Hwy |  | Lane | 1 | 2 | < | 1 | 2 | < | > | 2 | 1 | 1 | 1 | < |  |  |
|  |  |  | Volume | 115 | 970 | 38 | 151 | 893 | 104 | 110 | 81 | 157 | 257 | 122 | 145 |  |  |
|  |  |  | v/c | 0.53 | 0.87 |  | 0.7 | 0.86 |  |  | 0.46 | 0.09 | 0.77 | 0.78 |  |  |  |
|  |  | Lane Gp | Delay | 50.7 | 40.8 |  | 60.8 | 40.4 |  |  | 44.7 | 0.1 | 55.7 | 57 |  |  |  |
|  |  |  | LOS | D | D |  | E | D |  |  | D | A | E | E |  |  |  |
|  |  | Approach | Delay |  | 41.9 |  |  | 43.1 |  |  | 25.8 |  |  | 56.4 |  |  |  |
|  |  |  | LOS |  | D |  |  | D |  |  | C |  |  | E |  | 43 | D |
| Grandview Ave | Boundary Rd |  | Lane |  | 2 | 1 |  | 2 | 1 | 1 | 2 | 1 | 1 | 3 | < |  |  |
|  |  |  | Volume |  | 977 | 353 |  | 1105 | 80 | 451 | 1031 | 271 | 139 | 1179 | 119 |  |  |
|  |  |  | v/c |  | 0.72 | 0.2 |  | 0.82 | 0.12 | 0.87 | 1 | 0.16 | 0.38 | 1.21 |  |  |  |
|  |  | Lane Gp | Delay |  | 33.3 | 0.3 |  | 37.3 | 23 | 62 | 91.9 | 0.2 | 28.6 | 427.8 |  |  |  |
|  |  |  | LOS |  | C | A |  | D | C | E | F | A | C | F |  |  |  |
|  |  | Approach | Delay |  | 25.2 |  |  | 36.4 |  |  | 71.1 |  |  | 388.8 |  |  |  |
|  |  |  | LOS |  | C |  |  | D |  |  | E |  |  | F |  | 133.8 | F |
| Route 7A | Cassiar |  | Lane | 1 | 3 | 1 | 1 | 3 | 1 | 2 | 2 | 1 | 2 | 2 | 1 |  |  |
|  |  |  | Volume | 81 | 688 | 324 | 74 | 731 | 469 | 245 | 26 | 58 | 452 | 75 | 89 |  |  |
|  |  |  | v/c | 0.31 | 0.52 | 0.19 | 0.28 | 0.55 | 0.38 | 0.32 | 0.03 | 0.03 | 0.59 | 0.09 | 0.05 |  |  |
|  |  | Lane Gp | Delay | 53.3 | 43.2 | 0.3 | 52.7 | 43.9 | 8.8 | 44.1 | 40.3 | 0.0+ | 49.3 | 41 | 0.1 |  |  |
|  |  |  | LOS | D | D | A | D | D | A | D | D | A | D | D | A |  |  |
|  |  | Approach | Delay |  | 32.2 |  |  | 32.3 |  |  | 36.6 |  |  | 41.8 |  |  |  |
|  |  |  | LOS |  | C |  |  | C |  |  | D |  |  | D |  | 35.4 | D |
| Route 7 | Willingdon |  | Lane | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 3 | < | 1 | 3 | < |  |  |
|  |  |  | Volume | 288 | 900 | 114 | 349 | 1104 | 209 | 236 | 888 | 298 | 292 | 766 | 81 |  |  |
|  |  |  | v/c | 1.11 | 0.92 | 0.07 | 1.35 | 1.13 | 0.13 | 0.91 | 1.32 | 0 | 1.13 | 0.94 |  |  |  |
|  |  | Lane Gp | Delay | 303.8 | 56.1 | 0.1 | 704.3 | 292.4 | 0.2 | 96.7 | 632.8 | 0 | 325.6 | 67.6 |  |  |  |
|  |  |  | LOS | F | E | A | F | F | A | F | F | 0 | F | E |  |  |  |
|  |  | Approach | Delay |  | 106.9 |  |  | 346.5 |  |  | 542 |  |  | 134.2 |  |  |  |
|  |  |  | LOS |  | F |  |  | F |  |  | F |  |  | F |  | 295.7 | F |
| Canada Way | Willingdon |  | Lane | 1 | 2 | < | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 |  |  |
|  |  |  | Volume | 303 | 424 | 102 | 123 | 515 | 352 | 112 | 920 | 101 | 310 | 1055 | 319 |  |  |
|  |  |  | v/c | 1.2 | 0.47 |  | 0.98 | 0.58 | 0.2 | 0.44 | 1.04 | 0.06 | 0.83 | 0.94 | 0.18 |  |  |
|  |  | Lane Gp | Delay | 462.1 | 39.5 |  | 202.2 | 49.1 | 0.3 | 60.7 | 164.3 | 0.1 | 74.5 | 66.4 | 0.2 |  |  |
|  |  |  | LOS | F | D |  | F | D | A | E | F | A | E | E | A |  |  |
|  |  | Approach | Delay |  | 195.7 |  |  | 52.7 |  |  | 140.7 |  |  | 56.4 |  |  |  |
|  |  |  | LOS |  | F |  |  | D |  |  | F |  |  | E |  | 108.3 | F |
| Canada Way | Kensington |  | Lane | 1 | 2 |  |  | 2 | 1 |  |  |  | 2 |  | 1 |  |  |
|  |  |  | Volume | 334 | 543 |  |  | 459 | 796 |  |  |  | 768 |  | 255 |  |  |
|  |  |  | v/c | 0.64 | 0.58 |  |  | 0.49 | 0.47 |  |  |  | 0.56 |  | 0.15 |  |  |
|  |  | Lane Gp | Delay | 29 | 48.6 |  |  | 46.5 | 1 |  |  |  | 34.9 |  | 0.2 |  |  |
|  |  |  | LOS | C | D |  |  | D | A |  |  |  | C |  | A |  |  |
|  |  | Approach | Delay |  | 41.1 |  |  | 18.8 |  |  |  |  |  | 26.9 |  |  |  |
|  |  |  | LOS |  | D |  |  | B |  |  |  |  |  | C |  | 30.1 | C |
| Sprott | Kensington |  | Lane | $1>$ | 1 | < | > | 1 | < | 1 | 1 | < |  | 1 | 1 |  |  |
|  |  |  | Volume | 377 | 19 | 148 | 23 | 17 | 10 | 179 | 363 | 14 |  | 368 | 554 |  |  |
|  |  |  | v/c | 0.67 | 0.86 |  |  | 0.31 |  | 0.51 | 0.45 |  |  | 0.65 | 0.34 |  |  |
|  |  | Lane Gp | Delay | 42.3 | 60.7 |  |  | 42.5 |  | 20.5 | 17 |  |  | 32.2 | 0.6 |  |  |
|  |  |  | LOS | D | E |  |  | D |  | C | B |  |  | C | A |  |  |
|  |  | Approach | Delay |  | 52.4 |  |  | 42.5 |  |  | 18.1 |  |  | 14 |  |  |  |
|  |  |  | LOS |  | D |  |  | D |  |  | B |  |  | B |  | 34.5 | C |

Exhibit 4.1.12 Cont...
MIDDAY-PEAK HOUR

| E/W | N/S |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  | INTERSECTION |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| StREET | StREET |  |  | L | T | R | L | T | R | L | T | R | L | T | R | DELAY | LOS |
| Cariboo | Gaglardi |  | Lane |  |  |  | 1 |  | 1 |  | 2 | 1 | 1 | 2 |  |  |  |
|  |  |  | Volume |  |  |  | 259 |  | 211 |  | 747 | 311 | 273 | 675 |  |  |  |
|  |  |  | v/c |  |  |  | 0.65 |  | 0.13 |  | 0.98 | 0.19 | 0.39 |  |  |  |  |
|  |  | Lane Gp | Delay |  |  |  | 42.5 |  | 0.2 |  | 85.1 | 0.3 | 12.7 |  |  |  |  |
|  |  |  | LOS |  |  |  | D |  | A |  | F | A | B |  |  |  |  |
|  |  | Approach | Delay |  |  |  |  | 24.6 |  |  | 62 |  |  |  |  |  |  |
|  |  |  | LOS |  |  |  |  | C |  |  | E |  |  |  |  |  |  |
| Braid | Brunette |  | Lane | 2 | 1 | 1 | 1 | 1 | 1 | $>$ | 3 | < | 1 | 2 | 1 |  |  |
|  |  |  | Volume | 518 | 43 | 39 | 69 | 49 | 121 | 7 | 1119 | 23 | 94 | 1108 | 494 |  |  |
|  |  |  | v/c | 0.83 | 0.13 | 0.02 | 0.4 | 0.27 | 0.07 |  | 0.67 |  | 0.39 | 0.62 | 0.29 |  |  |
|  |  | Lane Gp | Delay | 44.1 | 27.8 | 0.0+ | 40.4 | 36.9 | 0.1 |  | 22.8 |  | 16.1 | 14.8 | 0.5 |  |  |
|  |  |  | LOS | D | C | A | D | D | A |  | C |  | B | B | A |  |  |
|  |  | Approach | Delay |  | 40.3 |  |  | 20.3 |  |  | 22.8 |  |  | 11 |  |  |  |
|  |  |  | LOS |  | D |  |  | C |  |  | C |  |  | B |  | 22.9 | C |
| Mary Hill Bypass | United Blvd |  | Lane | 1 | 2 |  | 1 |  | 2 |  | 2 | 1 | 2 | 2 |  |  |  |
|  |  |  | Volume | 79 | 515 |  | 1238 |  | 304 |  | 278 | 166 | 572 | 366 |  |  |  |
|  |  |  | v/c | 0.33 | 1.06 |  | 5.12 |  | 0.1 |  | 0.43 | 0.1 | 0.61 |  |  |  |  |
|  |  | Lane Gp | Delay | 42.7 | 201.8 |  |  |  | 0.1 |  | 38.4 | 0.1 | 34.1 |  |  |  |  |
|  |  |  | LOS | D | F |  |  |  | A |  | D | A | C |  |  |  |  |
|  |  | Approach | Delay |  | 180.7 |  |  |  |  |  | 25 |  |  |  |  |  |  |
|  |  |  | LOS |  | F |  |  |  |  |  | C |  |  |  |  |  |  |
| Route 7 WB Ramp | United Blvd |  | Lane |  |  |  | 2 |  | 1 |  | 1 | 2 | 1 | 2 |  |  |  |
|  |  |  | Volume |  |  |  | 63 |  | 157 |  | 519 | 977 | 229 | 272 |  |  |  |
|  |  |  | v/c |  |  |  | 0.1 |  | 0.09 |  | 0.49 | 0.32 | 1.71 |  |  |  |  |
|  |  | Lane Gp | Delay |  |  |  | 34.3 |  | 0.1 |  | 14 | 0.3 |  |  |  |  |  |
|  |  |  | LOS |  |  |  | C |  | A |  | B | A |  |  |  |  |  |
|  |  | Approach | Delay |  |  |  |  | 10.7 |  |  | 5.4 |  |  |  |  |  |  |
|  |  |  | LOS |  |  |  |  | B |  |  | A |  |  |  |  |  |  |
| 108 Ave | 152 St |  | Lane | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 |  |  |
|  |  |  | Volume | 214 | 155 | 129 | 10 | 119 | 69 | 108 | 888 | 13 | 57 | 892 | 297 |  |  |
|  |  |  | v/c | 0.49 | 0.18 | 0.07 | 0.04 | 0.24 | 0.04 | 0.46 | 0.89 | 0.01 | 0.24 | 0.9 | 0.17 |  |  |
|  |  | Lane Gp | Delay | 31.6 | 25.9 | 0.1 | 32.1 | 33.8 | 0.0+ | 25.1 | 43.5 | 0.0+ | 20.5 | 44.1 | 0.2 |  |  |
|  |  |  | LOS | C | C | A | C | C | A | C | D | A | C | D | A |  |  |
|  |  | Approach | Delay |  | 22.2 |  |  | 22.7 |  |  | 41.1 |  |  | 33.4 |  |  |  |
|  |  |  | LOS |  | C |  |  | C |  |  | D |  |  | C |  | 36.9 | D |
| 104 Ave North | 160 St |  | Lane |  |  |  | 1 | 1 | < | $>$ | 1 | < | $>$ | 1 | < |  |  |
|  |  |  | Volume |  |  |  | 188 | 80 | 36 | 174 | 221 | 179 | 13 | 241 | 23 |  |  |
|  |  |  | v/c |  |  |  | 0.39 | 0.23 |  |  | 0.74 |  |  | 0.5 |  |  |  |
|  |  | Lane Gp | Delay |  |  |  | 21.2 | 19.1 |  |  | 17.5 |  |  | 19.6 |  |  |  |
|  |  |  | LOS |  |  |  | C | B |  |  | B |  |  | B |  |  |  |
|  |  | Approach | Delay |  |  |  |  | 20.4 |  |  | 17.5 |  |  | 19.6 |  |  |  |
|  |  |  | LOS |  |  |  |  | C |  |  | B |  |  | B |  | 18.8 | B |
| 104 Ave | 160 St |  | Lane | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |
|  |  |  | Volume | 252 | 511 | 245 | 139 | 444 | 4 | 54 | 361 | 109 | 44 | 211 | 212 |  |  |
|  |  |  | v/c | 0.4 | 0.37 | 0.14 | 0.45 | 0.68 | 0 | 0.16 | 0.6 | 0.06 | 0.2 | 0.35 | 0.12 |  |  |
|  |  | Lane Gp | Delay | 12.5 | 17.9 | 0.2 | 27.5 | 36 | 0.0+ | 20.3 | 27.3 | 0.1 | 21.7 | 22.3 | 0.2 |  |  |
|  |  |  | LOS | B | B | A | C | D | A | C | C | A | C | C | A |  |  |
|  |  | Approach | Delay |  | 12.5 |  |  | 33.8 |  |  | 21.3 |  |  | 12.8 |  |  |  |
|  |  |  | LOS |  | B |  |  | C |  |  | C |  |  | B |  | 20.9 | C |
| Route 7 | United Blvd |  | Lane | 2 | 2 |  |  | 2 | 1 |  |  |  | 1 |  | 2 |  |  |
|  |  |  | Volume | 144 | 1590 |  |  | 1193 | 94 |  |  |  | 45 |  | 1951 |  |  |
|  |  |  | v/c | 0.46 | 4.97 |  |  | 0.5 | 0.06 |  |  |  | 0.28 |  | 0.64 |  |  |
|  |  | Lane Gp | Delay | 51.5 |  |  |  | 8.6 | 0.1 |  |  |  | 50.1 |  | 1.1 |  |  |
|  |  |  | LOS | D |  |  |  | A | A |  |  |  | D |  | A |  |  |
|  |  | Approach | Delay |  |  |  |  | 8 |  |  |  |  |  | 2.4 |  |  |  |
|  |  |  | LOS |  |  |  |  | A |  |  |  |  |  | A |  |  |  |
| Route 7 | Gaglardi |  | Lane | 1 | 2 | 1 | 1 | 2 | 1 | 1> | 2 | 1 | $1>$ | 2 | 1 |  |  |
|  |  |  | Volume | 129 | 915 | 299 | 312 | 821 | 78 | 258 | 275 | 363 | 80 | 398 | 112 |  |  |
|  |  |  | v/c | 0.49 | 1 | 0.17 | 0.87 | 0.75 | 0.05 | 0.66 | 0.58 | 0.21 | 0.27 | 0.68 | 0.07 |  |  |
|  |  | Lane Gp | Delay | 51.7 | 102.6 | 0.2 | 73 | 40.5 | 0.1 | 57.1 | 48.9 | 0.3 | 44.6 | 51.8 | 0.1 |  |  |
|  |  |  | LOS | D | F | A | E | D | A | E | D | A | D | D | A |  |  |
|  |  | Approach | Delay |  | 76.7 |  |  | 46.6 |  |  | 32.3 |  |  | 41.8 |  |  |  |
|  |  |  | LOS |  | E |  |  | D |  |  | C |  |  | D |  | 54.1 | D |

Exhibit 4.1.13-PM Peak Hour Intersection Capacity Analysis

| PM-PEAK HOUR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E/W | N/S |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  | INTERSECTION |  |
| STREET | STREET |  |  | L | T | R | L | T | R | L | T | R | L | T | R | DELAY | LOS |
| Fern | Route 1 EB Ramp |  | Lane | 1 | 2 |  |  | 1 | 1 |  |  |  | 2 |  | 1 |  |  |
|  |  |  | Volume | 270 | 593 |  |  | 435 | 546 |  |  |  | 452 |  | 91 |  |  |
|  |  |  | v/c | 0.89 | 0.39 |  |  | 0.78 | 0.4 |  |  |  | 1.05 |  | 0.07 |  |  |
|  |  | Lane Gp | Delay | 58.4 | 7 |  |  | 33.2 | 0.7 |  |  |  | 159.8 |  | 0.1 |  |  |
|  |  |  | LOS | E | A |  |  | C | A |  |  |  | F |  | A |  |  |
|  |  | Approach | Delay |  | 22.6 |  |  | 15.2 |  |  |  |  |  | 140.1 |  |  |  |
|  |  |  | LOS |  | C |  |  | B |  |  |  |  |  | F |  | 54.2 | D |
| Fern | Mountain Hwy |  | Lane |  |  |  | 1 |  | 1 |  | 1 | 1 | 1 | 1 |  |  |  |
|  |  |  | Volume |  |  |  | 277 |  | 213 |  | 200 | 332 | 939 | 282 |  |  |  |
|  |  |  | v/c |  |  |  | 0.76 |  | 0.19 |  | 0.55 | 0.42 | 1.12 |  |  |  |  |
|  |  | Lane Gp | Delay |  |  |  | 45.8 |  | 5.7 |  | 36.5 | 16.3 | 255.4 |  |  |  |  |
|  |  |  | LOS |  |  |  | D |  | A |  | D | B | F |  |  |  |  |
|  |  | Approach | Delay |  |  |  |  | 29.4 |  |  | 24.4 |  |  |  |  |  |  |
|  |  |  | LOS |  |  |  |  | C |  |  | C |  |  |  |  |  |  |
| Mt Seymour Parkway | Fern |  | Lane |  |  |  | $1>$ | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 |  |  |
|  |  |  | Volume |  |  |  | 577 | 637 | 91 | 159 | 437 | 1804 | 192 | 610 | 442 |  |  |
|  |  |  | v/c |  |  |  | 0.7 | 0.6 | 0.06 | 0.6 | 0.34 | 0.63 | 0.5 | 0.37 | 0.27 |  |  |
|  |  | Lane Gp | Delay |  |  |  | 32.4 | 26.9 | 0.1 | 33.8 | 22.7 | 1.1 | 19.3 | 16.3 | 0.4 |  |  |
|  |  |  | LOS |  |  |  | C | C | A | C | C | A | B | B | A |  |  |
|  |  | Approach | Delay |  |  |  |  | 27.1 |  |  | 7.7 |  |  | 11.5 |  |  |  |
|  |  |  | LOS |  |  |  |  | C |  |  | A |  |  | B |  | 15.3 | B |
| Main St | Mountain Hwy |  | Lane | 1 | 2 | < | 1 | 2 | < | > | 2 | 1 | 1 | 1 | < |  |  |
|  |  |  | Volume | 124 | 1476 | 21 | 159 | 1277 | 161 | 98 | 101 | 312 | 333 | 87 | 127 |  |  |
|  |  |  | v/c | 0.46 | 1.01 |  | 0.59 | 0.98 |  |  | 0.76 | 0.19 | 1.24 | 0.78 |  |  |  |
|  |  | Lane Gp | Delay | 53.6 | 95 |  | 58.3 | 64.3 |  |  | 76.1 | 0.3 | 511.7 | 72.8 |  |  |  |
|  |  |  | LOS | D | F |  | E | E |  |  | E | A | F | E |  |  |  |
|  |  | Approach | Delay |  | 91.8 |  |  | 63.7 |  |  | 31.6 |  |  | 346.3 |  |  |  |
|  |  |  | LOS |  | F |  |  | E |  |  | C |  |  | F |  | 106.7 | F |
| Grandview Ave | Boundary Rd |  | Lane |  | 2 | 1 |  | 2 | 1 | 1 | 2 | 1 | 1 | 3 | < |  |  |
|  |  |  | Volume |  | 1225 | 546 |  | 1361 | 73 | 549 | 1409 | 219 | 143 | 1131 | 106 |  |  |
|  |  |  | v/c |  | 0.92 | 0.82 |  | 1.02 | 0.11 | 1.06 | 1.38 | 0.13 | 0.4 | 1.16 |  |  |  |
|  |  | Lane Gp | Delay |  | 46.5 | 44.4 |  | 104 | 22.8 | 201.3 | 722.8 | 0.2 | 46.2 | 349.9 |  |  |  |
|  |  |  | LOS |  | D | D |  | F | C | F | F | A | D | F |  |  |  |
|  |  | Approach | Delay |  | 45.9 |  |  | 100.3 |  |  | 524 |  |  | 318.1 |  |  |  |
|  |  |  | LOS |  | D |  |  | F |  |  | F |  |  | F |  | 267.9 | F |
| Route 7A | Cassiar |  | Lane | 1 | 3 | 1 | 1 | 3 | 1 | 2 | 2 | 1 | 2 | 2 | 1 |  |  |
|  |  |  | Volume | 99 | 1513 | 599 | 92 | 877 | 517 | 204 | 258 | 61 | 655 | 61 | 93 |  |  |
|  |  |  | v/c | 0.39 | 1.19 | 0.36 | 0.37 | 0.69 | 0.44 | 0.28 | 0.34 | 0.04 | 0.89 | 0.08 | 0.06 |  |  |
|  |  | Lane Gp | Delay | 55.3 | 402.5 | 0.6 | 54.6 | 47.1 | 9.5 | 43.4 | 44.3 | 0.0+ | 67.1 | 40.8 | 0.1 |  |  |
|  |  |  | LOS | E | F | A | D | D | A | D | D | A | E | D | A |  |  |
|  |  | Approach | Delay |  | 285.8 |  |  | 35.4 |  |  | 39.3 |  |  | 58 |  |  |  |
|  |  |  | LOS |  | F |  |  | D |  |  | D |  |  | E |  | 152 | F |
| Route 7 | Willingdon |  | Lane | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 3 | < | 1 | 3 | < |  |  |
|  |  |  | Volume | 218 | 1440 | 80 | 367 | 1427 | 227 | 260 | 943 | 339 | 343 | 835 | 148 |  |  |
|  |  |  | v/c | 1.66 | 1.32 | 0.05 | 1.74 | 1.14 | 0.14 | 1.59 | 1.37 |  | 1.11 | 0.73 |  |  |  |
|  |  | Lane Gp | Delay |  | 625.7 | 0.1 |  | 302.3 | 0.2 |  | 740.1 |  | 297.6 | 51.1 |  |  |  |
|  |  |  | LOS |  | F | A |  | F | A |  | F |  | F | D |  |  |  |
|  |  | Approach | Delay |  |  |  |  |  |  |  |  |  |  | 115.6 |  |  |  |
|  |  |  | LOS |  |  |  |  |  |  |  |  |  |  | F |  |  |  |
| Canada Way | Willingdon |  | Lane | 1 | 2 | < | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 |  |  |
|  |  |  | Volume | 362 | 760 | 126 | 124 | 730 | 520 | 130 | 1045 | 88 | 394 | 1223 | 289 |  |  |
|  |  |  | v/c | 1.44 | 0.79 |  | 0.98 | 0.83 | 0.3 | 0.52 | 1.18 | 0.05 | 1.06 | 1.09 | 0.16 |  |  |
|  |  | Lane Gp | Delay | 867.1 | 49 |  | 209 | 59.2 | 0.5 | 63.2 | 397.1 | 0.1 | 211.9 | 220.7 | 0.2 |  |  |
|  |  |  | LOS | F | D |  | F | E | A | E | F | A | F | F | A |  |  |
|  |  | Approach | Delay |  | 288.6 |  |  | 52.5 |  |  | 337.3 |  |  | 188.3 |  |  |  |
|  |  |  | LOS |  | F |  |  | D |  |  | F |  |  | F |  | 221.4 | F |
| Canada Way | Kensington |  | Lane | 1 | 2 |  |  | 2 | 1 |  |  |  | 2 |  | 1 |  |  |
|  |  |  | Volume | 601 | 913 |  |  | 497 | 1130 |  |  |  | 1103 |  | 281 |  |  |
|  |  |  | v/c | 1.19 | 0.98 |  |  | 0.53 | 0.66 |  |  |  | 0.81 |  | 0.16 |  |  |
|  |  | Lane Gp | Delay | 395.5 | 91.6 |  |  | 47.4 | 2.2 |  |  |  | 43.5 |  | 0.2 |  |  |
|  |  |  | LOS | F | F |  |  | D | A |  |  |  | D |  | A |  |  |
|  |  | Approach | Delay |  | 212.3 |  |  | 17 |  |  |  |  |  | 35.5 |  |  |  |
|  |  |  | LOS |  | F |  |  | B |  |  |  |  |  | D |  | 95.7 | F |
| Sprott | Kensington |  | Lane | $1>$ | 1 | < | > | 1 | < | 1 | 1 | < |  | 1 | 1 |  |  |
|  |  |  | Volume | 1205 | 30 | 171 | 23 | 38 | 13 | 190 | 661 | 16 |  | 404 | 638 |  |  |
|  |  |  | v/c | 0.57 | 1.64 |  |  | 0.64 |  | 0.79 | 0.92 |  |  | 0.76 | 0.38 |  |  |
|  |  | Lane Gp | Delay | 36.2 |  |  |  | 84 |  | 53.7 | 58.9 |  |  | 51.3 | 0.7 |  |  |
|  |  |  | LOS | D |  |  |  | F |  | D | E |  |  | D | A |  |  |
|  |  | Approach | Delay |  |  |  |  | 84 |  |  | 57.8 |  |  | 21.6 |  |  |  |
|  |  |  | LOS |  |  |  |  | F |  |  | E |  |  | C |  |  |  |

Exhibit 4.1.13 Cont...

| PM-PEAK HOUR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { E/W } \\ \text { STREET } \end{gathered}$ | $\begin{gathered} \text { N/S } \\ \text { STREET } \end{gathered}$ |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  | INTERSECTION |  |
|  |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R | DELAY | LOS |
| Cariboo | Gaglardi |  | Lane |  |  |  | 1 |  | 1 |  | 2 | 1 | 1 | 2 |  |  |  |
|  |  |  | Volume |  |  |  | 393 |  | 548 |  | 910 | 625 | 542 | 842 |  |  |  |
|  |  |  | v/c |  |  |  | 0.89 |  | 0.32 |  | 2.06 | 0.37 | 0.63 |  |  |  |  |
|  |  | Lane Gp | Delay |  |  |  | 64.3 |  | 0.5 |  |  | 0.6 | 24.9 |  |  |  |  |
|  |  |  | LOS |  |  |  | E |  | A |  |  | A | C |  |  |  |  |
|  |  | Approach | Delay |  |  |  |  | 28.8 |  |  |  |  |  |  |  |  |  |
|  |  |  | LOS |  |  |  |  | C |  |  |  |  |  |  |  |  |  |
| Braid | Brunette |  | Lane | 2 | 1 | 1 | 1 | 1 | 1 | > | , | < | 1 | 2 | 1 |  |  |
|  |  |  | Volume | 1061 | 35 | 35 | 86 | 62 | 157 | 3 | 1636 | 17 | 48 | 1110 | 590 |  |  |
|  |  |  | v/c | 1.02 | 0.06 | 0.02 | 1.01 | 0.69 | 0.09 |  | 0.85 |  | 0.37 | 0.64 | 0.35 |  |  |
|  |  | Lane Gp | Delay | 114.1 | 28.8 | 0.0+ | 258 | 96.3 | 0.1 |  | 36 |  | 29.5 | 23.3 | 0.6 |  |  |
|  |  |  | LOS | F | C | A | F | F | A |  | D |  | C | C | A |  |  |
|  |  | Approach | Delay |  | 108.4 |  |  | 97.2 |  |  | 36 |  |  | 16.4 |  |  |  |
|  |  |  | LOS |  | F |  |  | F |  |  | D |  |  | B |  | 56.1 | E |
| Mary Hill Bypass | United Blvd |  | Lane | 1 | 2 |  | 1 |  | 2 |  | 2 | 1 | 2 | 2 |  |  |  |
|  |  |  | Volume | 27 | 912 |  | 1040 |  | 233 |  | 421 | 848 | 1057 | 360 |  |  |  |
|  |  |  | v/c | 0.09 | 1.55 |  | 4.71 |  | 0.08 |  | 0.72 | 0.49 | 0.93 |  |  |  |  |
|  |  | Lane Gp | Delay | 41.9 |  |  |  |  | 0.1 |  | 53.6 | 1.1 | 54.5 |  |  |  |  |
|  |  |  | LOS | D |  |  |  |  | A |  | D | A | D |  |  |  |  |
|  |  | Approach | Delay |  |  |  |  |  |  |  | 19.8 |  |  |  |  |  |  |
|  |  |  | LOS |  |  |  |  |  |  |  | B |  |  |  |  |  |  |
| Route 7 WB Ramp | United Blvd |  | Lane |  |  |  | 2 |  | 1 |  | 1 | 2 | 1 | 2 |  |  |  |
|  |  |  | Volume |  |  |  | 63 |  | 344 |  | 662 | 989 | 133 | 324 |  |  |  |
|  |  |  | v/c |  |  |  | 0.1 |  | 0.21 |  | 0.64 | 0.34 | 1.02 |  |  |  |  |
|  |  | Lane Gp | Delay |  |  |  | 34.3 |  | 0.3 |  | 17.1 | 0.3 | 221.6 |  |  |  |  |
|  |  |  | LOS |  |  |  | C |  | A |  | B | A | F |  |  |  |  |
|  |  | Approach | Delay |  |  |  |  | 6.1 |  |  | 7.5 |  |  |  |  |  |  |
|  |  |  | LOS |  |  |  |  | A |  |  | A |  |  |  |  |  |  |
| 108 Ave | 152 St |  | Lane | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 |  |  |
|  |  |  | Volume | 318 | 327 | 162 | 13 | 207 | 91 | 126 | 887 | 23 | 91 | 956 | 399 |  |  |
|  |  |  | v/c | 0.74 | 0.38 | 0.09 | 0.05 | 0.42 | 0.05 | 0.54 | 0.9 | 0.01 | 0.39 | 0.97 | 0.23 |  |  |
|  |  | Lane Gp | Delay | 41.1 | 28.1 | 0.1 | 32.2 | 36.1 | 0.1 | 28.4 | 44.7 | 0.0+ | 23.4 | 67.2 | 0.3 |  |  |
|  |  |  | LOS | D | C | A | C | D | A | C | D | A | C | E | A |  |  |
|  |  | Approach | Delay |  | 28.1 |  |  | 26.1 |  |  | 41.8 |  |  | 47.3 |  |  |  |
|  |  |  | LOS |  | C |  |  | C |  |  | D |  |  | D |  | 44 | D |
| 104 Ave North | 160 St |  | Lane |  |  |  | 1 | 1 | < | $>$ | 1 | < | $>$ | 1 | < |  |  |
|  |  |  | Volume |  |  |  | 306 | 98 | 52 | 353 | 442 | 350 | 11 | 321 | 21 |  |  |
|  |  |  | v/c |  |  |  | 1.57 | 0.74 |  |  | 1.28 |  |  | 1.38 |  |  |  |
|  |  | Lane Gp | Delay |  |  |  |  | 52.7 |  |  | 519.6 |  |  | 730.4 |  |  |  |
|  |  |  | LOS |  |  |  |  | D |  |  | F |  |  | F |  |  |  |
|  |  | Approach | Delay |  |  |  |  |  |  |  | 519.6 |  |  | 730.4 |  |  |  |
|  |  |  | LOS |  |  |  |  |  |  |  | F |  |  | F |  |  |  |
| 104 Ave | 160 St |  | Lane | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |
|  |  |  | Volume | 581 | 1211 | 414 | 219 | 701 | 2 | 63 | 571 | 211 | 55 | 274 | 196 |  |  |
|  |  |  | v/c | 0.96 | 0.9 | 0.25 | 0.92 | 1.11 | 0 | 0.23 | 0.99 | 0.13 | 0.62 | 0.47 | 0.12 |  |  |
|  |  | Lane Gp | Delay | 62.8 | 33.5 | 0.4 | 89.8 | 249.5 | 0.0+ | 21.7 | 88.3 | 0.2 | 52.7 | 24.3 | 0.1 |  |  |
|  |  |  | LOS | E | C | A | F | F | A | C | F | A | D | C | A |  |  |
|  |  | Approach | Delay |  | 35.7 |  |  | 211 |  |  | 62.9 |  |  | 19 |  |  |  |
|  |  |  | LOS |  | D |  |  | F |  |  | E |  |  | B |  | 78.6 | E |
| Route 7 | United Blvd |  | Lane | 2 | 2 |  |  | 2 | 1 |  |  |  | 1 |  | 2 |  |  |
|  |  |  | Volume | 398 | 2562 |  |  | 753 | 231 |  |  |  | 72 |  | 1380 |  |  |
|  |  |  | v/c | 0.9 | 5.64 |  |  | 0.33 | 0.14 |  |  |  | 0.48 |  | 0.46 |  |  |
|  |  | Lane Gp | Delay | 79.8 |  |  |  | 8.7 | 0.2 |  |  |  | 59.5 |  | 0.5 |  |  |
|  |  |  | LOS | E |  |  |  | A | A |  |  |  | E |  | A |  |  |
|  |  | Approach | Delay |  |  |  |  | 6.9 |  |  |  |  |  | 3.8 |  |  |  |
|  |  |  | LOS |  |  |  |  | A |  |  |  |  |  | A |  |  |  |
| Route 7 | Gaglardi |  | Lane | 1 | 2 | 1 | 1 | 2 | 1 | 1 > | 2 | 1 | $1>$ | 2 | 1 |  |  |
|  |  |  | Volume | 272 | 1253 | 403 | 323 | 757 | 92 | 227 | 675 | 648 | 175 | 710 | 137 |  |  |
|  |  |  | v/c | 1 | 1.09 | 0.24 | 1.19 | 0.66 | 0 | 0.83 | 1.24 | 0.38 | 0.64 | 1.3 | 0.08 |  |  |
|  |  | Lane Gp | Delay | 154.6 | 223.8 | 0.3 | 423.1 | 37.9 | 0 | 78.5 | 492.2 | 0.7 | 59.7 | 604.3 | 0.1 |  |  |
|  |  |  | LOS | F | F | A | F | D | A | E | F | A | E | F | A |  |  |
|  |  | Approach | Delay |  | 170.9 |  |  | 153.2 |  |  | 236.1 |  |  | 436 |  |  |  |
|  |  |  | LOS |  | F |  |  | F |  |  | F |  |  | F |  | 239.4 | F |

### 4.2 IMPACTS SINCE PHASE I

### 4.2.1 Traffic Volumes

The "before \& after" analysis of the parallel route traffic volumes utilizes the Phase I and II intersection turning movement counts at the intersections adjacent to the study section. Exhibit 4.2.1 summarizes the comparison of the approach volumes (eastbound and westbound) parallel to the mainline. Evaluation of the "before" and "after" peak direction traffic demand indicates the following:

- A general reduction in AM westbound traffic on the eastern section of the two parallel routes was identified. The largest reduction was found on Lougheed Highway in which a $28 \%$ reduction was found at United Blvd. Together the increase in highway volume and AVO at Cape Horn, indicates a possible shift of route to the HOV lanes on Highway 1.
- The eastbound PM peak hour traffic was found to increase since Phase I by approximately $10 \%$ to $33 \%$. A $33 \%$ increase was noted at the Boundary/Grandview intersection eastbound approach to Highway 1. This adversely affects the capacity of the intersection, while the attraction of HOVs to the mainline (AVO increased from 1.21 to 1.30 ) suggests the parallel route volume increase is mostly SOV.
- A reduction of peak direction traffic (AM westbound and PM eastbound) on Canada Way/Kensington was observed near the middle of the HOV corridor, again suggesting a possible shift to Highway 1.

It should be noted that although the traffic volumes suggest a shift from the parallel routes to Highway 1, the statistical analysis of AVOs did indicate that reductions were not significant.

### 4.2.2 Vehicle Classification \& Occupancy Surveys

Using data documented in the Phase I Monitoring and Evaluation study and the Phase II "after" data presented above, the parallel route vehicle occupancy and classification data were used to support the "Increase Person Throughput" objective of the Highway 1 HOV lanes. The importance of the parallel route AVOs is to determine whether mainline increases were due to diversion of existing HOVs on the parallel routes or not.

Exhibits 4.2.2 to 4.2.4 present the "before and after" comparisons of AVO on the parallel routes (for the weekday conditions) by the AM peak, mid-day peak, and PM peak periods respectively. All of the AVO measurement comparisons were analyzed for their statistical significance at a $95 \%$ confidence limit. On this basis, the minimum AVO required to establish a significant decrease is also presented in the exhibits. A statistically significant reduction in AVOs along the parallel routes would suggest that the increase in AVO along Highway 1 was attributed to a diversion of existing HOV from the parallel routes onto Highway 1.

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program
Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 4.2.1-Parallel Route Before \& After Peak Hour Movement

| AM-PEAK HR | Phase 1 Volume |  | Phase 2 Volume |  | Comparison |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INTERSECTION | EB | WB | EB | WB | EB |  | WB |  |
| Boundary @ Grandview | 1325 | 1770 | 1512 | 1938 | Increased | 14.1\% | Increased | 9.5\% |
| Route 7 @ Willingdon | 1345 | 2060 | 1350 | 1987 | Increased | 0.4\% | Reduced | 3.5\% |
| Canada Way@ Willingdon | 1110 | 1025 | 1277 | 1042 | Increased | 15.0\% | Increased | 1.7\% |
| Canada Way @ Kensington | 1465 | 2060 | 1433 | 2016 | Reduced | 2.2\% | Reduced | 2.1\% |
| United @ Mary Hill | 1390 |  | 1087 |  | Reduced | 21.8\% |  |  |
| Route 7 @ United Blvd | 1392 | 3514 | 1650 | 2525 | Increased | 18.5\% | Reduced | 28.1\% |
| Route 7 @ Gaglardi | 790 | 2310 | 733 | 2012 | Reduced | 7.2\% | Reduced | 12.9\% |


| NOON PEAK HR | Phase 1 Volume |  | Phase 2 Volume |  | Comparison |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INTERSECTION | EB | WB | EB | WB | EB | WB |  |  |
| Boundary @ Grandview | 1265 | 1650 | 1387 | 1675 | Increased | $9.6 \%$ | Increased | $1.5 \%$ |
| Route 7 @ Willingdon | 1390 | 1490 | 1490 | 1421 | Increased | $7.2 \%$ | Reduced | $4.6 \%$ |
| Canada Way @ Willingdon | 875 | 815 | 835 | 946 | Reduced | $4.6 \%$ | Increased | $16.1 \%$ |
| Canada Way @ Kensington | 1270 | 775 | 1311 | 714 | Increased | $3.2 \%$ | Reduced | $7.9 \%$ |
| United @ Mary Hill | 1180 |  | 1253 |  | Increased | $6.2 \%$ |  |  |
| Route 7 @ United Blvd | 1424 | 3165 | 1635 | 3144 | Increased | $14.8 \%$ | Reduced | $0.7 \%$ |
| Route 7 @ Gaglardi | 1225 | 1225 | 1358 | 1191 | Increased | $10.9 \%$ | Reduced | $2.8 \%$ |


| PM PEAK HR | Phase 1 Volume |  | Phase 2 Volume |  | Comparison |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INTERSECTION | EB | WB | EB | WB | EB | WB |  |  |
| Boundary @ Grandview | 1195 | 1885 | 1587 | 2016 | Increased | $32.8 \%$ | Increased | $6.9 \%$ |
| Route 7 @ Willingdon | 1925 | 1570 | 2122 | 1835 | Increased | $10.2 \%$ | Increased | $16.9 \%$ |
| Canada Way @ Willingdon | 1175 | 850 | 1242 | 1149 | Increased | $5.7 \%$ | Increased | $35.2 \%$ |
| Canada Way @ Kensington | 2300 | 780 | 2016 | 778 | Reduced | $12.3 \%$ | Reduced | $0.3 \%$ |
| United @ Mary Hill | 2360 |  | 2817 |  | Increased | $19.4 \%$ |  |  |
| Route 7 @ United BIvd | 2273 | 2590 | 2634 | 2133 | Increased | $15.9 \%$ | Reduced | $17.6 \%$ |
| Route 7 @ Gaglardi | 1805 | 1115 | 2076 | 1121 | Increased | $15.0 \%$ | Increased | $0.5 \%$ |

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL Report)

Exhibit 4.2.2 - Parallel Route Before \& After AVOs- AM Peak Period




## Note:

"Minimum" indicates the minimum change in AVO which is statistically significant.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 4.2.3 - Parallel Route Before \& After AVOs- MID-DAY Peak Period




## Note:

"Minimum" indicates the minimum change in AVO which is statistically significant.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 4.2.4-Parallel Route Before \& After AVOs- PM Peak Period




## Note:

"Minimum" indicates the minimum change in AVO which is statistically significant. [ast printed 7/7/201511:39:00 AM]

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II hOV Evaluation \& TMP Baseline (FINAL REPORT)

It is observed that the majority of the reductions in AVO along the parallel routes are not statistically significant at a 95\% confidence limit. Therefore, these non-significant changes in AVOs along the parallel routes help attribute mainline increases in AVO to the attraction/formation of new carpools (which was estimated to be $28 \%$ using the Motorist Survey results).

The only significant reduction in AVO is observed on the Pattullo Bridge, with a corresponding significant increase in AVO across the Port Mann Bridge, suggesting a significant diversion of HOVs from the Pattullo Bridge onto the Port Mann Bridge to take advantage of a portion of the HOV related travel time savings - depending on the point of entry onto Highway 1.

### 4.2.3 Travel Time

The objective of the Phase II parallel routes travel time survey is to provide a baseline "before" data for future evaluation of the TMP impacts. This MOE will provide a general indication of more efficient corridor balancing resulting from overall improved traffic management and traveler information strategies.

Exhibit 4.2.5 - Comparison of Highway 1 \& Parallel Route Travel Time \& Speed

| HIGHWAY 1 vs NORTHERN <br> PARALLEL ROUTE | Distance <br> (km) |
| :---: | :---: |
| Highway 1 | 16.2 |
| Northern Route | 15.8 |


| EASTBOUND |  |  |  |
| :---: | :---: | :---: | :---: |
| AM |  | PM |  |
| Travel Time <br> (min) | Speed <br> (km/hr) | Travel Time <br> (min) | Speed <br> (km/hr) |
| 11.7 | 83 | 22.0 | 44 |
| 18.8 | 51 | 24.6 | 39 |


| WESTBOUND |  |  |  |
| :---: | :---: | :---: | :---: |
| AM |  | PM |  |
| Travel Time <br> (min) | Speed <br> $(\mathbf{k m} / \mathrm{hr})$ | Travel Time <br> (min) | Speed <br> $(\mathbf{k m} / \mathbf{h r})$ |
| 16.1 | 60 | 13.1 | 73 |
| 31.9 | 30 | 28.4 | 33 |

Norhthern Route - Boundary Road to United Blvd

| HIGHWAY 1 vs SOUTHERN PARALLEL ROUTE | Distance (km) | EASTBOUND |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM |  | PM |  |
|  |  | Travel Time (min) | Speed (km/hr) | Travel Time (min) | Speed (km/hr) |
| Highway 1 | 22.6 | 16.6 | 81 | 27.9 | 48 |
| Southern Route | 22.3 | 31.4 | 43 | 44.0 | 30 |
| te: Highway 1 - Boundary Roa Southern Route - Boundary | $\begin{aligned} & 04 \text { Ave / } 1 \\ & \text { d to } 104 \text { A } \end{aligned}$ | $\begin{aligned} & \text { eet } \\ & 60 \text { Street } \end{aligned}$ |  |  |  |


| WESTBOUND |  |  |  |
| :---: | :---: | :---: | :---: |
| AM |  | PM |  |
| Travel Time <br> (min) | Speed <br> $(\mathbf{k m} / \mathbf{h r})$ | Travel Time <br> $(\mathbf{m i n})$ | Speed <br> $(\mathbf{k m} / \mathbf{h r})$ |
| 27.2 | 49 | 19.4 | 69 |
| 45.2 | 30 | 44.0 | 30 |

Southern Route - Boundary Road to 104 Ave / 160 Street

### 4.2.4 Intersection Capacities

Impacts of the HOV lanes on the adjacent intersections were determined by comparing the phase I "before" data and the phase II "after" data summarized as follow:

- Exhibit 4.2.6 presents the comparison of Phase I and II intersections volumes at all the signalized intersections considered in this study
- Exhibit 4.2.7 through 4.2.9 present the weekday peak hour LOS, for the AM, Midday, and PM peak hours, at adjacent signalized intersections parallel to the study corridor.

Evaluation of the "before and after" comparison indicates the following:

- An overall increase in intersection volumes at the adjacent intersections serving the HOV corridor in Highway 1 during AM and PM peak hour at Boundary/Grandview, Lougheed/Willingdon, Canada Way/Willingdon, Canada Way/Kensington and Gaglardi/Cariboo. This suggests an increase in traffic activities parallel to the HOV corridor, possibly due to increased access and egress to the HOV lanes.
- Since the traffic volumes at most of the intersections adjacent to the HOV corridor increased, the corresponding LOS of these intersection were degraded accordingly. The magnitude, in terms of LOS, however, was not large since most of these intersections were already operating at LOS-E or F .

| Ministry of Transportation \& Highways |  |
| :---: | :--- |
| BRITISH | HIGHWAY 1 (NoRTH VANCOUVER TO SURREY) - MONITORING \& EvALUATION PROGRAM |
| COLUMBIA | PHASE II HOV EvaLUATION \& TMP BASELINE (FINAL REPORT) |

Exhibit 4.2.6-Parallel Route Before \& After - Intersection Volume


Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program
Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)
Exhibit 4.2.7-Before \& After LOS - AM Peak Hour

|  |  |  | AM-PEAK HOUR |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  | INTERS | CTION |
| INTERSECTION | Phase | LOS | L | T | R | L | T | R | L | T | R | L | T | R | DELAY | LOS |
|  | Phase 1 | Lane Gp |  | C | B |  | C | B | C | F | C | C | F |  |  |  |
| Boundary @ Grandview |  | Approach |  | C |  |  | C |  |  | F |  |  | F |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 2 | Lane Gp |  | D | A |  | F | C | E | F | A | D | F |  |  |  |
|  |  | Approach |  | C |  |  | F |  |  | F |  |  | F |  | 326 | F |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 1 | Lane Gp | E | C | B | F | F | B | F | D | C | E | F |  |  |  |
| Route 7 @ Willingdon |  | Approach |  | C |  |  | F |  |  | E |  |  | F |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 2 | Lane Gp | E | D | A | F | F | A | F | E | 0 | F | F |  |  |  |
|  |  | Approach |  | D |  |  | F |  |  | E |  |  | F |  | 153 | F |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 1 | Lane Gp | E | D | B | C | D | C | B | F | B | F | F | C |  |  |
| Canada Way @ Willingdon |  | Approach |  | D |  |  | C |  |  | F |  |  | F |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 2 | Lane Gp | F | D | 0 | F | D | A | E | F | A | F | F | A |  |  |
|  |  | Approach |  | E |  |  | D |  |  | F |  |  | F |  | 148 | F |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 1 | Lane Gp | E | B |  |  | F | D |  |  |  | C |  | A |  |  |
| Canada Way @ Kensington |  | Approach |  | D |  |  | F |  |  |  |  |  | B |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 2 | Lane Gp | E | D |  |  | F | A |  |  |  | D |  | A |  |  |
|  |  | Approach |  | D |  |  | F |  |  |  |  |  | C |  | 151 | F |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 1 | Lane Gp | D | E |  | F |  | F |  | E | B | D | F |  |  |  |
| United @ Mary Hill |  | Approach |  | D |  |  | F |  |  | D |  |  | F |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 2 | Lane Gp | E | F |  |  |  | A |  | E | A | F |  |  |  |  |
|  |  | Approach |  | F |  |  |  |  |  | D |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 1 | Lane Gp | D | F |  |  | B | A |  |  |  | E |  | A |  |  |
| Route 7 @ United Blvd |  | Approach |  | F |  |  | B |  |  |  |  |  | A |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 2 | Lane Gp | D |  |  |  | A | A |  |  |  | D |  | A |  |  |
|  |  | Approach |  |  |  |  | A |  |  |  |  |  | A |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 1 | Lane Gp | F | D | B | F | D | B | F | F | C | D | E | F |  |  |
| Route 7 @ Gaglardi |  | Approach |  | F |  |  | F |  |  | F |  |  | F |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 2 | Lane Gp | E | D | A | F | F | A | F | F | A | D | F | A |  |  |
|  |  |  |  | C |  |  | F |  |  | F |  |  | F |  | 313 | F |

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program
Phase il hov Evaluation \& TMP Baseline (FINAL REPORT)

Exhibit 4.2.8-Before \& After LOS - MID-DAY Peak Hour

|  |  |  | MIDDAY-PEAK HOUR |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  | INTERS | CTION |
| INTERSECTION | Phase | LOS | L | T | R | L | T | R | L | T | R | L | T | R | DELAY | LOS |
|  | Phase 1 | Lane Gp |  | C | A |  | C | B | C | C | C | C | F |  |  |  |
| Boundary @ Grandview |  | Approach |  | C |  |  | C |  |  | C |  |  | F |  | 33.4 | D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 2 | Lane Gp |  | C | A |  | D | C | E | F | A | C | F |  |  |  |
|  |  | Approach |  | C |  |  | D |  |  | E |  |  | F |  | 134 | F |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 1 | Lane Gp | D | D | B | E | F | B | E | E | C | F | F |  |  |  |
| Route 7 @ Willingdon |  | Approach |  | D |  |  | E |  |  | E |  |  | F |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 2 | Lane Gp | F | E | A | F | F | A | F | F | 0 | F | E |  |  |  |
|  |  | Approach |  | F |  |  | F |  |  | F |  |  | F |  | 296 | F |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 1 | Lane Gp | C | D | B | C | D | B | B | F | B | D | F | C |  |  |
| Canada Way @ Willingdon |  | Approach |  | C |  |  | C |  |  | F |  |  | E |  | 47.4 | E |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 2 | Lane Gp | F | D |  | F | D | A | E | F | A | E | E | A |  |  |
|  |  | Approach |  | F |  |  | D |  |  | F |  |  | E |  | 108 | F |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 1 | Lane Gp | C | B |  |  | D | B |  |  |  | C |  | A |  |  |
| Canada Way @ Kensington |  | Approach |  | B |  |  | C |  |  |  |  |  | C |  | 16.5 | C |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 2 | Lane Gp | C | D |  |  | D | A |  |  |  | C |  | A |  |  |
|  |  | Approach |  | D |  |  | B |  |  |  |  |  | C |  | 30 | C |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 1 | Lane Gp | C | D |  | E |  | C |  | D | C | C | D |  |  |  |
| United @ Mary Hill |  | Approach |  | D |  |  | C |  |  | D |  |  | D |  | 25.7 | D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 2 | Lane Gp | D | F |  |  |  | A |  | D | A | C |  |  |  |  |
|  |  | Approach |  | F |  |  |  |  |  | C |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 1 | Lane Gp | E | F |  |  | B | A |  |  |  | E |  | A |  |  |
| Route 7 @ United Blvd |  | Approach |  | F |  |  | B |  |  |  |  |  | A |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 2 | Lane Gp | D |  |  |  | A | A |  |  |  | D |  | A |  |  |
|  |  | Approach |  |  |  |  | A |  |  |  |  |  | A |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 1 | Lane Gp | F | D | B | E | C | B | E | E | C | D | D | D |  |  |
| Route 7 @ Gaglardi |  | Approach |  | D |  |  | D |  |  | D |  |  | D |  | 33 | D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Phase 2 | Lane Gp | D | F | A | E | D | A | E | D | A | D | D | A |  |  |
|  |  | Approach |  | E |  |  | D |  |  | C |  |  | D |  | 54 | D |

Ministry of Transportation \& Highways
Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program
Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)
Exhibit 4.2.9 - Before \& After LOS - PM Peak Hour


Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

## 5 SUMMARY \& CONCLUSIONS

The goal of the HOV and TMP Monitoring and Evaluation Program developed for the TCH, has been to collect data incrementally and document the impacts and benefits associated with the implementation of the HOV lanes on October 28, 1998 and the FSP on January 4, 1999, and the forthcoming TMP pilot project service applications. This evaluation program has been structured around the following three key phases:

Phase I - Pre-HOV and TMP (September 1997 to March 1998)
Phase II - Post-HOV and FSP, Pre- TMP (this study, September 1999 to March 2000)
Phase III - Post HOV and TMP (dates to be specified)
Each of the phases including the following key efforts:

- Identify performance measures.
- Establish "before" and "after" assessment periods.
- Define data requirements.
- Develop methods for collecting the required data.
- Document critical changes in traffic conditions (demand and capacity) in or near the Study Section during the assessment periods.
- Document the statistical reliability of the data and analysis.

Phase I set the foundations of the monitoring and evaluation program by establishing a detailed study methodology for all phases of the project, while documenting a detailed baseline of traffic conditions along the Study Section prior to major improvements along the TCH .

This Phase II study was activated to coincide with traffic operations two years past the opening of the new HOV lanes and deployment of the FSP. This phase of the monitoring and evaluation program is critical in documenting the benefits of the HOV and FSP, while establishing a second baseline from which the incremental benefits of TMP can be evaluated.

This Phase II study has been based on the study methodology and MOEs approved in Phase I. Based on the lessons learned in the Phase I study, it was proposed that the following also be examined:

- An assessment of the impact of the FSP;
- Opinion surveys of the effectiveness of the HOV and FSP programs;
- Review of HOV enforcement effectiveness.

In addition, the Phase I report recommended a number of improvements and refinements to the data collection program, aimed at cost-effective methodologies that better supported the MOEs. These included deleting redundant portions of the data collection program, developing more efficient methods to collect information and expanding the amount of coverage, and elimination or reduction of efforts which yielded low value. These recommendations included:

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

- Reduce the numbers of screenlines for the vehicle classification and occupancy counts, since the measures across adjacent screenlines are very similar;
- Use the Freeway Service Patrol to enhance the incident monitoring program and expand the database of incidents;
- Use the video-based traffic monitoring system installed during the HOV construction program to complement the incident monitoring task;
- Eliminate the aerial photo surveying of approach queues as they were expensive and not very representative
- Eliminate the conflict analysis surveys as they are very subjective and are not reliable in establishing safety benefits.

The Phase II study commenced in August of 1999, with primary data collection carried out over the same time period as in Phase I, i.e. during September and October of 1999, with HOV/FSP information, observation and opinion surveys in December 1999.

### 5.1 HOV Evaluation \& Benefits Summary

Using the evaluation objectives identified for the HOV lanes, and the Phase I and II data collected, the following HOV benefits and impacts can be concluded:

All of the HOV project objectives have been achieved, with expected benefits attained:
$\checkmark$ Person movement throughput has increased significantly through the formation of new carpools, as opposed to merely diversion of existing HOV traffic from other parallel facilities
$\checkmark$ HOVs experience significant travel time savings in both peak periods and directions
$\checkmark$ Trip times are significantly more reliable for HOV traffic
$\checkmark$ Per lane efficiency during the peak directions has significantly increased due to the movement of more persons at optimum average speeds
$\checkmark$ GP lanes have not been adversely affected but operate better now due to the added capacity
$\checkmark$ Safety has not been compromised, with the total frequency and cost of claims decreasing
$\checkmark$ Compliance is above the desired $85 \%$ minimum for all directions and time periods
$\checkmark$ More than $70 \%$ of the SOVs and $85 \%$ of the HOVs view the HOV lanes as a benefit to their transportation system and are satisfied with its benefits.

Ministry of Transportation \& Highways Highway 1 (North Vancouver to Surrey) - Monitoring \& Evaluation Program Phase II HOV Evaluation \& TMP Baseline (FINAL REPORT)

### 5.2 TMP Baseline \& FSP Benefits

Using the MOE and data requirements identified for the TMP evaluation objectives, a second baseline of data was collected and analyzed for the TMP to reflect pre-and postHOV conditions. Relevant before and after comparisons were made to document background conditions related to TMP as well as the benefits of the FSP.
$\checkmark$ Statistically reliable travel time data has been collected to complement the same data collected in Phase I for the evaluation of reductions in recurrent congestion delays. Marginal differences were observed between Phase I and II, except in the PM peak eastbound direction where significant travel time savings were observed ( 13 minutes) primarily due to the benefits associated with the HOV and FSP sections.
$\checkmark$ The database of incident data has been expanded to include over 800 incidents. A reduction in average incident duration times of approximately 50\% on sections patrolled by the FSP compared to Phase I, Total user cost of delay due to incident lane blockages has been reduced from \$46M to \$28M per year due to the FSP and overall improved operations with the HOV lanes. Potential capacity to be gained with TMP is between $10 \%$ to $15 \%$, which at a $1.4 \%$ annual growth rate, could defer infrastructure expenditures by 10 years.
$\checkmark$ All collision data, available at the time of the study, was collected for establishing a second post-HOV and pre-TMP baseline for measuring improved safety. Claims data from ICBC was used to compare frequency of accidents before, during, and after construction of the HOV lanes, and after deployment of the FSP. The accident analysis indicated substantial crash claims reductions as a result of the HOV and FSP implementation programs.
$\checkmark$ Average speed, volume and occupancy data have been used to establish baseline throughput estimates across the west screenline of TCH, Canada Way, and Lougheed Highway at Gaglardi for throughput comparisons with the post TMP data.
$\checkmark$ Public acceptance and satisfaction with the FSP is high, with approximately $60 \%$ of the respondents aware of the FSP, and the benefits of short incident duration times due to improved traffic management.

### 5.2.1 Recommendations

The safety analysis of the corridor should be complemented using a complete sample of data from ICBC's TAS and MoTH's HAS database. Also, additional pre-TMP accident data should be collected continuously by maintaining the HAS database and by using the FSP as an additional source of incident data collection within the HOV portion of the corridor.

A follow-up Phase III study and report should be included as part of the TMP "pilot" project. The scope and timing of the TMP pilot project deployment should be coordinated closely with other improvements along the corridor, such that fundamental data surveys are made as part of each project.

Specific changes to the corridor since the completion of the Phase II data collection program have included the introduction of a ramp signal at the new Coleman on-ramp near Cape Horn interchange, and the corresponding closure of the old westbound onramp from the Lougheed Highway. Planned future improvements include the upcoming 5 laning of the Port Mann Bridge, as well as the addition of a westbound on-ramp directly from the Mary Hill Bypass. Therefore, monitoring and evaluation studies associated with these improvements should be carried out to properly document the changing pre-TMP background conditions.

In Phase III, specific surveys will be required for documenting public support and usage of TMP functions.

Driver responses to Changeable Message Signs (CMS) can be used for evaluation of TMP benefits in terms of a number of indicators:

- ease of reading messages;
- ease of understanding messages;
- location of sign versus time for driver to respond;
- the types of messages recalled;
- compliance to messages;
- general usefulness of messages;
- general support for the implementation (i.e. are more CMSs beneficial?).

These and other related indicators can also be used to support the "Optimize Use of Capacity" objective, i.e. determining under what conditions, and how often travelers change their route based on information on prevailing conditions.

Public opinion on other TMP traveler information mediums may be evaluated through similar indicators as those identified for CMSs. Depending on the medium technology, actual usage data may also be obtained. For example, if a World Wide Web page is used to provide real-time traveler information along the corridor, the number of "hits" to the Web page can also be an indicator of usage.

