SPECIFICATIONS:

Calculation of the Interior
Average Market Price

July 1, 2009

Revenue
Branch

Specifications: Calculation of the Interior Average Market Price

Table of Contents

1. Source Data 1
2. Selecting Marks to be Included in the Average Market Price Calculation 2
3. Calculating the Market Price of Each Mark 4
4. Calculating the Average Market Price 13
Appendix 1: District Average Number of Bidders 14
Appendix 2: Dead Saw Log Fraction by Point of Appraisal 15
Appendix 3: TOA Trend Factors 17
Appendix 4: Explanation of Variables used in the Auction Dataset but not in calculating the AMP 18

Specifications: Calculation of the Interior Average Market Price

1. SOURCE DATA

Naming conventions for source data used throughout this document are as follows.

PAR		3 month average market values and other parameters published quarterly.
IAM		Interior Appraisal Manual.
Mark	$=$	refers to values on the corporate data base for each mark.
Mark/IAM		refers to site data for the mark and cost estimates from current Interior Appraisal Manual.
APP X	$=$	fers to an appendix of this document.
S X.X.X		refers to steps described in this document.

Specifications: Calculation of the Interior Average Market Price

2. SELECTING MARKS TO BE INCLUDED IN THE AVERAGE MARKET PRICE CALCULATION

The selection of Interior marks is done from a snapshot of the DBP01 database. The species records for the mark are extracted to ensure only appraised species are used. Volumes billed for all coniferous species over the period (12 month period beginning 14 months prior to the stumpage adjustment date) are then totalled into 2 groups: logs which receive the stand rate and low grade logs that are billed at the statutory minimum rate.

Select marks which meet the following criteria.

1. Mark is a stumpage mark.
2. Mark is appraised by the Interior method.
3. Mark is not part of BC Timber Sales.
4. Mark is from one of the following tenures:

Forest licence.
Tree farm licence.
Timber sale licence with allowable annual cut exceeding 10,000 cubic metres. Timber licence.
5. Mark has complete appraisal data and is quarterly adjustable.
6. Mark has a total cruise volume of 100 cubic metres or more.
7. Mark has a confirmed worksheet with an appraisal effective data not before 48 months prior to the stumpage adjustment date, and has not expired as of the stumpage adjustment date.
8. Mark has information for at least one of the following species: balsam, cedar, fir, hemlock larch, lodgepole pine, spruce, white pine or yellow pine.

Calculate the low grade and high grade volume billed for all coniferous saw log species.

Specifications: Calculation of the Interior Average Market Price

9. Include volume billed for the above species and the following species: white bark pine and cypress. Do not include the volumes of special forest products. Only volumes from normal and cruise based billings are included.

Low grade volumes and values are based on the species and grades shown in the species low grade saw log factors table for the applicable date.

High grade volumes are based on all volumes except Grade Z and low grade volumes.

Calculate the total volume billed for each mark by adding the individual species low grade and high grade volumes.

Exclude any mark where the total volume billed is less than 1,000 cubic metres.

Specifications: Calculation of the Interior Average Market Price

3. CALCULATING THE MARKET PRICE OF EACH MARK

		Units	Decimal Places	Source/ Value	Rounding
2.1	selling price index	\$/m ${ }^{3}$	2		yes
$=$	stand value			S 2.1.2	
1	CONVOL			S 2.1.1	
2.1.1	CONVOL	m^{3}	0		
=	sum of coniferous species cruise volumes	m^{3}		Mark	
2.1.2	stand value	\$	2		
=	sum of species values	\$		S 2.1.3	
2.1.3	species value	\$	2		
=	species selling price	\$/m ${ }^{3}$		S 2.1.4	
*	species cruise volume	m^{3}	0	Mark	
2.1.4	species selling price	\$/m ${ }^{3}$	2		
=	species appraisal LRF	$\mathrm{fbm} / \mathrm{m}^{3}$		S 2.1.5	
*	species lumber AMV	\$/fbm		S 2.1.6	
2.1.5	species appraisal LRF	$\mathrm{fbm} / \mathrm{m}^{3}$	0		
=	species cruise LRF	$\mathrm{fbm} / \mathrm{m}^{3}$	0	Mark	
+	species LRF add-on	$\mathrm{fbm} / \mathrm{m}^{3}$	0	IAM	
2.1.6	species lumber AMV (fbm)	\$/fbm	3		
=	species lumber AMV (Mbm)	\$/Mbm	0	PAR	
1	1000				
2.2	exchange rate	US\$/C\$	4	PAR	yes
2.3	Douglas fir fraction	fraction	4		yes
=	Douglas fir cruise volume	m^{3}	0	Mark	
1	CONVOL			S 2.1.1	
2.4	hembal fraction	fraction	4		yes
=	hembal volume	m^{3}	0	S 2.4.1	
1	CONVOL			S 2.1.1	
2.4.1	hembal volume	m^{3}	0		
=	hemlock cruise volume	m^{3}	0	Mark	
$+$	balsam cruise volume	m^{3}	0	Mark	
2.5	cedar fraction	fraction	4		yes
$=$	cedar cruise volume	m^{3}	0	Mark	
/	CONVOL			S 2.1.1	

Specifications: Calculation of the Interior Average Market Price

Specifications: Calculation of the Interior Average Market Price

Specifications: Calculation of the Interior Average Market Price

		Units	$\begin{array}{r} \text { Decimal } \\ \text { Places } \end{array}$	Source/ Value	Rounding
$\begin{array}{r} 2.20 \\ = \end{array}$	Fort Nelson Peace 1 if Zone 9 0 otherwise		0	Mark	
${ }^{2.21}=$	2008 Auctions 1 for all marks		0	1	
$\begin{array}{r} 2.22 \\ = \end{array}$	DANB DANB looked up by district		1	APP 1	
2.23	$\begin{aligned} & \text { CPIF } \\ & \text { current CPI } \\ & 109.3 \end{aligned}$	ratio	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	$\begin{gathered} \text { PAR } \\ 109.3 \end{gathered}$	yes
2.24	highway transportation 1 if highway transportation 0 if off-highway transportation		0	Mark	
2.25	green MPB and other pest fraction green MPB and other pest volume CONVOL	fraction m^{3}	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	$\begin{array}{r} \text { S } 2.25 .1 \\ \text { S 2.1.1 } \end{array}$	yes
2.25.1	green MPB and other pest volume MPB green attack volume other pest volume	$\begin{aligned} & \mathrm{m}^{3} \\ & \mathrm{~m}^{3} \\ & \mathrm{~m}^{3} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Mark Mark	
2.26	red and grey MPB fraction red and grey MPB attack volume CONVOL	fraction m^{3}	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	$\begin{array}{r} \text { S 2.26.1 } \\ \text { S 2.1.1 } \end{array}$	yes
$2.26 .1$ $=$ $+$	red and grey MPB attack volume MPB red attack volume MPB grey attack volume	$\begin{aligned} & \mathrm{m}^{3} \\ & \mathrm{~m}^{3} \\ & \mathrm{~m}^{3} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Mark Mark	
2.27	LOGVPT natural logarithm (average volume per			S 2.8.1	

Specifications: Calculation of the Interior Average Market Price

		Units	Decimal Places	Source/ Value	Rounding
3.1	selling price contribution	\$/m ${ }^{3}$	2		yes
$=$	selling price index	\$/m ${ }^{3}$		S 2.1	
*	selling price coefficient			0.162	
1	CPIF	\$/m ${ }^{3}$		S 2.23	
3.2	exchange rate contribution	\$/m ${ }^{3}$	2		yes
=	exchange rate			S 2.2	
*	exchange rate coefficient			-15.93	
3.3	Douglas fir contribution	\$/m ${ }^{3}$	2		yes
$=$	Douglas fir fraction			S 2.3	
*	Douglas fir fraction coefficient			2.52	
3.4	hembal contribution	\$/m ${ }^{3}$	2		yes
=	hembal fraction			S 2.4	
*	hembal fraction coefficient			-19.10	
3.5	cedar contribution	\$/m ${ }^{3}$	2		yes
$=$	cedar fraction			S 2.5	
*	cedar fraction coefficient			41.76	
3.7	LOGVOL contribution	\$/m ${ }^{3}$	2		yes
$=$	LOGVOL			S 2.7	
*	LOGVOL coefficient			2.06	
3.8	INVVPT contribution	\$/m ${ }^{3}$	2		yes
$=$	INVVPT			S 2.8	
*	INVVPT coefficient			-0.530	
3.9	deciduous contribution	\$/m ${ }^{3}$	2		yes
=	deciduous fraction			S 2.9	
*	deciduous fraction coefficient			-8.44	
3.10	decay contribution	\$/m ${ }^{3}$	2		yes
=	decay fraction			S 2.10	
*	decay fraction coefficient			-21.91	
3.11	slope contribution	\$/m ${ }^{3}$	2		yes
$=$	slope			S 2.11	
*	slope coefficient			-0.0226	
3.12	partial cut contribution	\$/m ${ }^{3}$	2		yes
=	partial cut fraction			S 2.12	
*	partial cut coefficient			-2.20	

Specifications: Calculation of the Interior Average Market Price

		Units	Decimal Places	Source/ Value	Rounding
3.13	cable yarding contribution	\$/m ${ }^{3}$	2		yes
$=$	cable yarding fraction			S 2.13	
*	cable yarding fraction coefficient			-11.42	
3.14	heli contribution	\$/m ${ }^{3}$	2		yes
=	heli fraction			S 2.14	
*	heli fraction coefficient			-70.00	
3.15	horse contribution	\$/m ${ }^{3}$	2		yes
=	horse fraction			S 2.15	
*	horse fraction coefficient			-7.78	
3.16	fire damage contribution	\$/m ${ }^{3}$	2		yes
=	fire damage fraction			S 2.16	
*	fire damage fraction coefficient			-11.57	
3.17	cycle time contribution	\$/m ${ }^{3}$	2		yes
$=$	total cycle time			S 2.17	
*	cycle time coefficient			-1.37	
3.20	Fort Nelson Peace contribution	\$/m ${ }^{3}$	2		yes
=	Fort Nelson Peace			S 2.20	
*	Fort Nelson Peace coefficient			-4.98	
3.21	2008 auctions contribution	\$/m ${ }^{3}$	2		yes
=	2008 auctions			S 2.21	
*	2008 auctions coefficient			-6.07	
3.22	DANB contribution	\$/m ${ }^{3}$	2		yes
=	DANB			S 2.22	
*	DANB coefficient			0.922	
3.24	highway transportation	\$/m ${ }^{3}$	2		yes
	contribution				
$=$	highway transportation	\$/m ${ }^{3}$		S 2.24	
*	highway transportation coefficient			0.547	
3.25	green and other pest contribution	\$/m ${ }^{3}$	2		yes
=	green MPB and other pest fraction			S 2.25	
*	green MPB and other pest			-6.40	
	coefficient				

Specifications: Calculation of the Interior Average Market Price

		Units	$\begin{array}{r} \text { Decimal } \\ \text { Places } \end{array}$	Source Value	Rounding
3.26	red and grey MPB contribution	\$/m ${ }^{3}$	2		yes
$=$	red and grey MPB fraction			S 2.26	
*	red and grey MPB coefficient			-6.05	
3.27	LOGVPT contribution	\$/m ${ }^{3}$	2		
=	LOGVPT			S 2.27	
*	LOGVPT coefficient			8.22	
4.1	real estimated winning bid PLG	\$/m ${ }^{3}$	2		yes
	maximum of 0.25 or:				
	constant			41.74	
+	selling price contribution			S 3.1	
+	exchange rate contribution			S3.2	
+	Douglas fir contribution			S 3.3	
+	hembal contribution			S 3.4	
+	cedar contribution			S 3.5	
+	LOGVOL contribution			S 3.7	
+	VPT variable contribution			S 3.8	
+	deciduous contribution			S 3.9	
+	decay contribution			S 3.10	
+	slope contribution			S 3.11	
+	partial cut contribution			S 3.12	
+	cable yarding contribution			S 3.13	
+	heli contribution			S 3.14	
+	horse contribution			S 3.15	
+	fire damage contribution			S 3.16	
+	cycle time contribution			S 3.17	
+	Fort Nelson Peace contribution			S 3.20	
+	2008 auctions			S 3.21	
+	DANB contribution			S 3.22	
+	highway transportation contribution			S 3.24	
	green and other pest contribution			S 3.25	
+	red and grey MPB contribution			S 3.26	
+	LOGVPT contribution			S 3.27	
4.2	estimated winning bid	\$/m ${ }^{3}$	2		yes
=	maximum of 0.25 or:				
	real estimated winning bid	\$/m ${ }^{3}$		S 4.1	
	CPIF			S 2.23	

Specifications: Calculation of the Interior Average Market Price

		Units	Decimal Places	Source/ Value	Rounding
5.1	final TOA	\$/m ${ }^{3}$			
=	TOA subtotal 4			S 5.1.1	
+	return to forest management			S 5.1.7	
-	MLRC subtotal 2			S 5.1.8	
5.1.1	TOA subtotal 4	\$/m ${ }^{3}$	2		yes
=	TOA subtotal 3	\$/m ${ }^{3}$		S 5.1.3	
1	high grade fraction			S 5.1.6	
5.1.2	TOA subtotal 3	\$/m ${ }^{3}$	2		yes
=	TOA subtotal 2	\$/m ${ }^{3}$		S 5.1.2	
*	TOACPIF			S 5.3.1	
5.1.3	TOA subtotal 2	\$/m ${ }^{3}$	2		yes
=	TOA subtotal 1	\$/m ${ }^{3}$		S 5.1.4	
*	TOA trend factor			S 5.1.5	
5.1.4	TOA subtotal 1				yes
=	forest planning and administration	\$/m ${ }^{3}$	2	Mark	
+	road development	\$/m ${ }^{3}$	2	Mark	
+	road management	\$/m ${ }^{3}$	2	Mark	
+	basic silviculture	\$/m ${ }^{3}$	2	Mark	
5.1.5	TOA trend factor			APP 3	
5.1.6	high grade fraction	fraction	4		yes
$=$	mark high grade AMP volume	\$/m ${ }^{3}$	0	Mark	
/	mark AMP volume	\$/m ${ }^{3}$	0	Mark	
5.1.7	return to forest management	\$/m ${ }^{3}$	2		yes
=	TOA subtotal 4			S 5.1.1	
*	0.037			0.037	
5.1.8	MLRC subtotal 2	\$/m ${ }^{3}$	2		yes
=	MLRC subtotal 1			S 5.1.9	
1	high grade fraction			S 5.1.6	
5.1.9	MLRC subtotal 1	\$/m ${ }^{3}$	2		yes
=	MLRC	\$/m ${ }^{3}$	2	1.01	
*	TOACPIF			S 5.3.1	
5.2.1	final specified operations	\$/m ${ }^{3}$	2		yes
$=$	specified operations subtotal 1			S 5.2.2	
*	TOACPIF			S 5.3.1	

Specifications: Calculation of the Interior Average Market Price

		Units	$\begin{array}{r} \text { Decimal } \\ \text { Places } \end{array}$	Source/ Value	Rounding
5.2.2	specified operations subtotal 1	\$/m ${ }^{3}$	2		yes
$=$	rail haul	\$/m ${ }^{3}$	2	Mark/IAM	
+	barge and ferry	\$/m ${ }^{3}$	2	Mark/IAM	
+	dump boom dewater and reload	\$/m ${ }^{3}$	2	Mark/IAM	
+	camp costs	\$/m ${ }^{3}$	2	Mark/IAM	
+	skyline	\$/m ${ }^{3}$	2	Mark/IAM	
+	lake tow	\$/m3	2	Mark IAM	
+	suitable secondary stand survey	\$/m3	2	Mark IAM	
5.3.1	TOACPIF	Ratio	4		yes
=	current CPI		1	PAR	
/	average CPI from cost base			128.6	
6.1	preliminary MPS market price	\$/m ${ }^{3}$	2		yes
$=$	maximum of 0.25 or:				
	Estimated winning bid			S 4.2	
-	final TOA			S 5.1	
-	final specified operations			S 5.2.1	

Specifications: Calculation of the Interior Average Market Price

Specifications: Calculation of the Interior Average Market Price

APPENDIX 1: District Average Number of Bidders (DANB)
Forest District DANB
100 Mile House 4.3
Arrow Boundary $\quad 3.0$
Cascades 4.5
Central Cariboo 5.3
Chilcotin 1.0
Columbia 3.3
Fort Nelson 2.5
Fort St. James 2.6
Headwaters 3.3
Kalum 2.3
Kamloops 4.5
Kootenay Lake 3.1
Mackenzie 2.4
Nadina 4.4
Okanagan Shuswap 3.5
Peace 3.1
Prince George $\quad 3.7$
Quesnel 4.5
Rocky Mountain 3.0
Skeena Stikine 2.5
Vanderhoof 2.3

Specifications: Calculation of the Interior Average Market Price

APPENDIX 2: Dead Saw Log Fraction by Point of Appraisal

Mark specific data for historic dead saw log fraction is insufficient if: Volume billed prior to April 1, 2006 is less than 1000 cubic metres, or calculated dead saw log fraction is less than 0 or greater than 1.

Point of Appraisal	Dead Saw Log Fraction
100M	0.4410
ADLK	0.1105
ARMS	0.2321
BELK	0.2524
BOBA	0.1162
BSLK	0.3742
CAFL	0.0507
CANO	0.0818
CARN	0.0442
CAST	0.1168
CHET	0.0132
CHSM	0.3789
CLLK	0.5350
CRAI	0.0417
CRAN	0.0748
CRES	0.0758
ELKO	0.0731
ENGE	0.7078
FRLK	0.6781
FTJA	0.2590
FTJO	0.0112
FTNE	0.0326
GALL	0.0956
GRFO	0.0771
HAZE	0.0868
HOUS	0.1381
ISPI	0.5948
KAML	0.3374
KELO	0.1117
KITW	0.0153
LAVI	0.1053
LILL	0.0673
LSCK	0.2904
LUMB	0.0757

Specifications: Calculation of the Interior Average Market Price

Point of Appraisal \(\left.\begin{array}{c}Dead Saw Log

Fraction\end{array}\right\}\)| LYTT | 0.1583 |
| :---: | :---: |
| MBRI | 0.0778 |
| MERR | 0.0655 |
| MIDW | 0.0576 |
| MKEN | 0.1189 |
| OKFA | 0.0596 |
| PASI | 0.4034 |
| PRGE | 0.0869 |
| PRIN | 0.6213 |
| QUES | 0.0811 |
| RADI | 0.0403 |
| REVE | 0.0582 |
| SLOC | 0.1908 |
| SMIT | 0.4840 |
| STRA | 0.0154 |
| TAYL | 0.0087 |
| TERR | 0.1294 |
| THRU | 0.1593 |
| UPFR | 0.0711 |
| VALE | 0.5456 |
| VAND | 0.1237 |
| VAVE | 0.0615 |
| WEST | 0.3990 |
| WILK | 0.0329 |

Specifications: Calculation of the Interior Average Market Price

APPENDIX 3: TOA Trend Factors

TOA values are trended based on appraisal effective date. Trend factors are as follows:

Appraisal Effective Date	TOA trend factor
November 1, 2002 to October 31, 2004	0.780
November 1, 2004 to June 30, 2007	0.774
July 1, 2007 to June 30, 2008	0.958
July 1, 2008 and later	0.962

Specifications: Calculation of the Interior Average Market Price

APPENDIX 4: Explanation of Variables used in the Auction Dataset but not in calculating the AMP

Grade 3 Fraction --- fraction of coniferous volume harvest on the auction sale that was scaled as grade 3 --- This variable does not apply in the calculation of the AMP because there has been no grade 3 volume scaled since the April 1, 2006 change to Interior log grades. MPS is constructed so that policy in the final year of auctions sales (2008) is consistent with application. Since there was no grade 3 during 2008, the variable is always zero in application.

Competitive Deciduous --- 1 if auction sale sold under Section 7.5.1.5 of the IAM, zero otherwise --- This variable does not apply in calculating the AMP because no AMP eligible permits are sold under that section of the IAM. Therefore the Competitive Deciduous variable is always zero and the variable, and its impact on the deciduous fraction variable, can be ignored.

Insect Attack Code Indicator --- 1 if insect attack volumes are unavailable, zero otherwise --This variable does not apply in calculating the AMP because insect attack volumes are determined for all AMP eligible permits, therefore the value is always zero.

Salvage --- 1 if total insect attack is greater than $1 / 3$ of coniferous volume, zero otherwise --This variable does not apply in calculating the AMP because in the structure of the estimated winning bid regression the salvage is multiplied by the insect attack code indicator. Since the insect attack code indicator is always zero for AMP permits, this product is also always zero.

2005, 2006 and 2007 Annual Dummy Variables --- 1 if the sale was sold during these years, zero otherwise --- These variable do not apply in calculating the AMP because in MPS applies the dummy variable from the latest year (2008) to all permits in application.

Decked Volume --- coniferous volume that has been previously felled and decked --- This variable does not apply in calculating the AMP because the practice of combining decked timber with standing timber only occurs in BCTS, and therefore no AMP permits will contain decked volume.

Second Quarter Auctions --- 1 if auction sold during the second quarter, zero otherwise --- This variable does apply but the average value of the variable from the auction dataset is applied in all cases and this constant value is added into the constant from the regressions, and therefore no longer appears explicitly in the equation.

