Accounting for Climate Change Impacts in the Design of Resource Road Crossings (Webinar #7) Designing Resource Road Stream Crossings

Considering Climate Change: Two Case Studies from Coastal B.C.

Lee Deslauriers Matt Kurowski	January 14 th , 2021 Principal and Managing Engineer, StoneCroft Engineering Research Engineer, FPInnovations
Join at slido.com	 The session will start at 10:00 PST / 13:00 EST All lines will be muted during the presentation This webinar will be recorded and posted to FLRNORD website Interact! Vote on polls and ask/upvote questions Slido.com event code: fpi
#fpi 意识的 自然型	STONECROFT ENGINEERING FPInnovations FPInnovations Ministry of Forests, Lands, Natural Resource Operations and Rural Development

Small watershed crossings and climate change

• Brian Chow, P.Eng. (Chief Engineer, FLNRORD)

Ministry of Forests, Lands, Natural Resource Operations and Rural Development

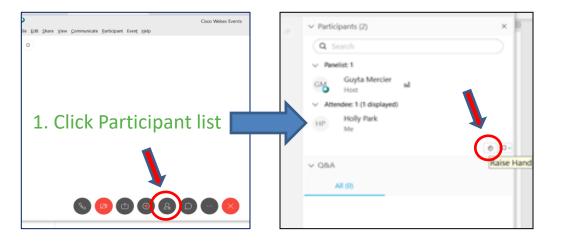
Panel

- Jeremy Fyke, Ph.D. (Canadian Centre for Climate Services)
- Paul Mysak, P.Eng. (Onsite Engineering Ltd.)
- Arelia Schoeneberg, M.Sc. (Pacific Climate Impacts Consortium)
- Kari Tyler, M.Ed. (Pacific Climate Impacts Consortium)

Influence and Contribute to the Presentation!

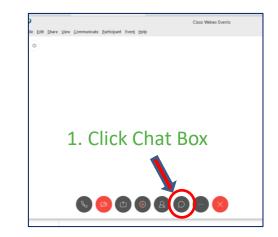
Step 1 - go to slido.com (on phone or computer)

fpi Step 2 - Joining as a participant?


Anonymous by default

- Vote on live polls
- Ask and upvote questions/comments

Speaking & Login ID Questions/Comments


1. Use WebEx to voice a comment/question

2. A Menu pops up – click "raise hand"

2. Use WebEx Chat to

- ask tech support questions
- comment/question using WebEx login ID (publicly or privately)

- Poll 1!
 - Go to slido.com
 - Event code is "fpi"

Webinar Outline

- (15 min) Intro + 3 methods that account for climate change impacts in small watershed design floods
 - Situating 5 publicly available tools (Matt)
- (50 min) Two case studies (34 km² & 0.3 km² basins)
 - Design review (Lee)
 - Outputs from 5 climate tools (Matt)
 - Rationalizing climate impacts for the design (Lee)
- (25 min) Discussion:
 - Comments/questions (panelists, attendees)

How are climate projections derived?

- ~40 global climate models (GCMs)
 - ~10 000 km² daily/monthly grids
 - Use physics simulations and historic data as basis for projecting future
 - Each GCM runs many permutations (staring conditions)
 - Significant computations required

- GCMs have baked-in representative concentration pathway (RCPs) for future conditions
 - Best -> worst scenarios for future carbon emissions:
 2.6, 4.5, 6.5, 8.5
- Statistical methods can combine GCMs with regional / local data to "downscale" GCMs to higher spatiotemporal resolutions:
 - Canada: daily resolution ~56 km² grid for temperature & precipitation 1950-2100

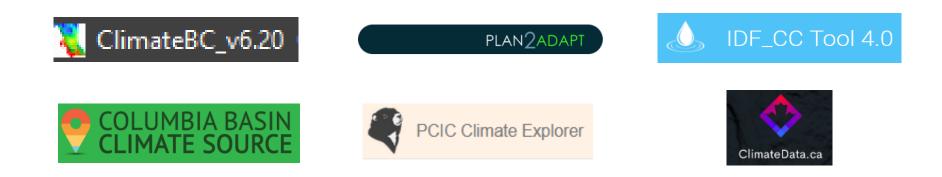
How are climate projections summarized?

- **Climate indices**: statistical summaries of climate e.g.
 - maximum consecutive days with no rain
 - daily maximum precipitation in the fall season
 - average number of days/year that reach 20 degrees
 - 5-day daily antecedent rain >15mm
- Standardized future periods:
 - Three common periods: near, mid, and far future
 - **2020s** (2010-2039), **2050s** (2040-2069), **2080s** (2070-2099)

- Publicly available climate tools
 - Interactive maps that show or use climate index grids with historical and future periods

- Publicly available climate tools
 - Interactive maps that show or use climate index grids with historical and future periods

All precipitation-based


projection

climate change

tools?

Why not publicly available **climate**¹**tools** ?

 Interactive maps that show – or use – climate index grids with historical and future periods

• Publicly available climate tools

 Interactive maps that show – or use – climate index grids with historical and future periods

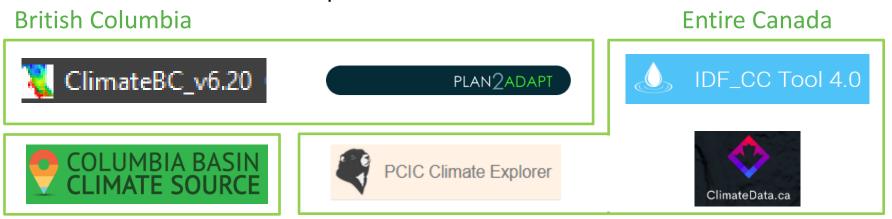
Can be used to calculate historic IDF curves

PLAN2ADAPT

useful for

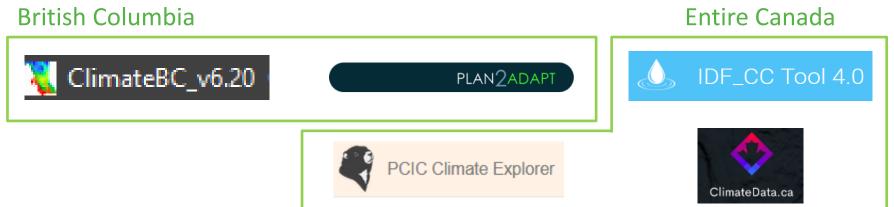
climate change impacts to snowmeltdominated peak flows??

Publicly available climate tools


Interactive maps that show – or use – climate index grids with historical and future periods

Not for historic data (only for projections that reference simulated historic data)

• Publicly available climate tools


 Interactive maps that show – or use – climate index grids with historical and future periods

SE British Columbia

• Publicly available climate tools

 Interactive maps that show – or use – climate index grids with historical and future periods

• Publicly available climate tools

 Interactive maps that show – or use – climate index grids with historical and future periods

Desktop software

Access via internet browser

• Publicly available climate tools

Also access via internet browser – but less features

 Interactive maps that show – or use – climate index grids with historical and future periods

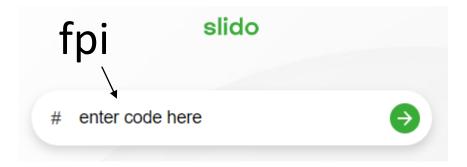
Access via internet browser

There is no agreed upon method

- Especially for small watersheds
- This webinar <u>will not provide</u> THE answer for how to take climate change into account in design flood calculations
- This webinar <u>will provide</u> a way forward by exploring different options and discussing options

3 approaches that account for climate change

- 1. Use IDF_CC while being aware of its methods, limitations, and assumptions
 - Uses climate indices within background calculations and outputs IDF curves at point locations with high temporal resolution (down to 5 minutes)
 - Professional guidance: be aware of projections of sub-daily values as this assumes stationarity of the relationships between daily and sub-daily events
 – especially when 30+ years in future (Engineers and Geoscientists BC, 2018)
- 2. Use climate index-based climate tools alongside your professional judgement
 - Professional judgement must i) select a climate index related to local extreme flooding, and ii) assume how the daily (or greater) resolution of the climate index relates to finer temporal resolution required for a local scale
 - Professional guidance does not outline this approach explicitly, but has advice that can justify it (Engineers and Geoscientists BC 2018; 2020)


3. Use no climate tools

 When a small watershed has little or no local historic data, a designer can account for climate change by increasing flow by an additional 20% (Engineers and Geoscientists BC, 2018)

- Poll 1 lets look at results
- and then start Poll 2

define future

define location

define tool-specific inputs, interpret

calculate& compare

Steps to using a climate tool

- 1. Define the required input parameters, or be aware of assumptions
 - GCMs related to downscaled models
 - RCPs baked-in to GCMs
 - Baseline and future periods that define measure of change
- 2. Define the location of interest
- 3. For IDF_CC:
 - Select duration/frequency/return period to define intensity. Interpret.

For climate index climate tool:

- Select relevant climate index that impacts design flood and assume how its temporal resolution (daily+) relates to local scale (minutes to hours). Interpret.
- 4. Calculate the change in flow, compare results between climate tool outputs

Applying climate tools adds uncertainties

- Choices in:
 - Global climate models (GCM) ensembles
 - Use average, or upper percentiles of distribution?
 - Representative concentration pathway (RCP) scenarios
 - Assume that climate treaties can be effective?
 - Historic baseline reference period
 - "Proxy" climate index
 - Assume known metric that relates to local scale flooding (if not using IDF_CC)
 - Assumptions that extrapolate from available data
 - changes to climate indices at a daily (or greater) resolution relate to sub-daily resolution (downscaling using professional judgement) – when using climate index tools
 - stationarity of relationships between daily (or greater) and sub-daily events when using any climate tool

• Review of the design flood hydrology at a site gives context

– What are the other uncertainties aside from climate tool inputs?

• Poll 2 results

Getting a percent change for design flood

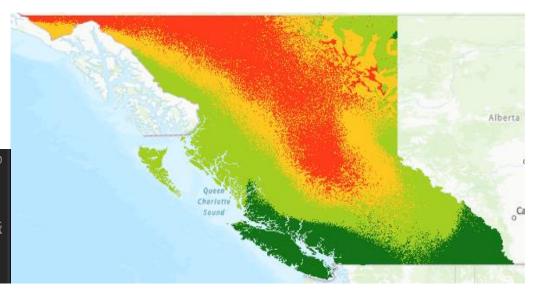
PLAN2ADAPT

Climate tools: case study 1

PLAN2ADAPT

Proxy: total precipitation (winter)

		RCP	10 th percentile	Average	90 th percentile
2010-2039		RCP 8.5	-5%	1%	9%
2010-20	2010 2033	RCP 4.5	N/A	N/A	N/A
	2040-2069	RCP 8.5	-5%	2%	6%
		RCP 4.5	N/A	N/A	N/A
	2070-2099	RCP 8.5	-0%	7%	16%
	2070 2000	RCP 4.5	N/A	N/A	N/A


(ensemble: 12 GCMs)

Climate tools: case study 1

ClimateBC_v6.20

Unique benefit of this climate tool: desktop version can output entire maps

21.202614 24.235294 26.737255 Many climate indices, max temporal resolution = monthly

Climate index: total precipitation in November % change: 2070-2099 period (15 GCMs)

Producing this type of % change map requires GIS post-processing

PCIC Climate Explorer

Proxy climate index: many to choose from...

Climate index

2040-2069 RCP 8.5

Total precipitation (winter) Total precipitation (January) **Daily precipitation** (yearly storm) Daily precipitation (20-year storm) Daily precipitation (50-year storm)

PCIC Climate Explorer

N Contraction of the second se	Climate index	Low perc.	Average	High perc.
2040-2069	Total precipitation (winter)	N/A	5 to 7%	N/A
RCP 8.5	Total precipitation (January)	N/A	3 to 7%	N/A
	Daily precipitation (yearly storm)	N/A	N/A	N/A
Ensemble option: 12 GCMs	Daily precipitation (20-year storm)	N/A	13 to 19%	N/A
	Daily precipitation (50-year storm)	N/A	17 to 25% ↑	N/A

Variance shown: 3 different historic baselines (of 30 years)

PCIC Climate Explorer

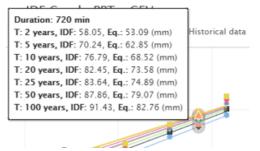
V	Climate index	Low perc.	Average	High perc.	Order	WNA
	Cliffiate muex	Low perc.	Average	nigii perc.		CNRM-CM5-r1
2040-2069	Total precipitation (winter)	N/A	5 to 7%	N/A	2	CanESM2-r1
RCP 8.5	Total precipitation	N/A	3 to 7%	N/A		ACCESS1-0-r1
	(January)				5	CSIRO-Mk3-6-0-r1
Manually averaging	Daily precipitation	16 to 19%	21 to 31%	40 to 54%		CC5M4-r2
global climate	(yearly storm)	(min of 4)		(max of 4)	7	MIROC5-r3
models (GCMs)	Daily precipitation	N/A	13 to 19%	N/A	8	MPI-ESM-LR-r3
	(20-year storm)	IN/A	13 (0 1970	N/A	9	HadGEM2-CC-r1
					10	MRI-CGCM3-r1
Which GCMs to pick	Daily precipitation	N/A	17 to 25%	N/A	11	GFDL-ESM2G-r1
if not all 12 for BC?	(50-year storm)				12	HadGEM2-ES-r1
						I

https://www.pacificclimate.org/data/statisticallydownscaled-climate-scenarios

Variance shown: 3 different historic baselines (of 30 years)

PCIC Climate Explorer

Daily precipitation (yearly storm) – another source


•	Climate index	10 th perc.	Average	90 th perc.
2040-2069	Total precipitation (winter)	N/A	5 to 7%	N/A
RCP 8.5	Total precipitation (January)	N/A	3 to 7%	N/A
Available (23 GCMs)	 Daily precipitation (yearly storm) 	-12%	14%	72%
	Daily precipitation (20-year storm)	N/A	13 to 19%	N/A
	Daily precipitation (50-year storm)	N/A	17 to 25%	N/A

IDF_CC Tool 4.0

2040-2069 RCP 8.5 2040-2069 RCP 4.5

Duration	25 th perc.	Average	75 th perc.
60 mins	9%	13%	30%
720 mins	12%	18%	33%
60 mins	-4%	9%	14%
720 mins	-2%	12%	19%

IDF point as baseline

IDF_CC Tool 4.0

2010-2039
RCP 8.5
2040-2069
RCP 8.5

Duration	25 th perc.	Average	75 th perc.
30 mins	0%	5%	25%
60 mins	-2%	6%	25%
30 mins	0%	10%	25%
60 mins	4%	13%	25%

Climate index	Average
Daily precipitation (50-year storm)	4 to 8%
Daily precipitation (50-year storm)	19 to 22%

Matt Kurowski

Researcher FPInnovations

matt.kurowski@fpinnovations.ca