Kamloops TSA

Documentation of Analysis for Vegetation Resources Inventory Statistical Adjustment

Jahraus & Associates Consulting Inc. Maple Ridge, BC & Churlish Consulting Ltd. Victoria, BC

JANUARY 2008

EXECUTIVE SUMMARY

The Kamloops TSA encompassed 4 VRI projects, with ground sampling having taken place between 1998 and 2005:

- 1. Kamloops TSA (0111)
- 2. Kamloops TSA targeted Cedar/Hemlock age class 7+ (0112)
- 3. Adams Lake IFPA (INT1)
- 4. Adams Lake IFPA (INT2)

The objective of this analysis was to incorporate the data from all of these projects into a single set of adjustment factors for the entire TSA, to adjust the inventory files and to provide a set¹ of adjusted yield curves for timber supply analysis.

Adjustments were provided for both a VDYP6 and VDYP7-based inventory, however it is expected that the operational inventory file will be based on the VDYP7 adjustment. Hence the VDYP7 adjustment was the focus of this analysis.

To maximize the consistency across the unit, the population of interest was defined as VT, operable, greater than 60 years of age. Areas and associated weights were computed based on this target population.

This analysis incorporated destructive sampling data collected in three of the four projects into a TSAwide set of NVAF values (Table 1). These NVAFs were applied in the ground sample volume compilation.

Table 1: NVAF values by stratum for the Kamloops TSA (based on destructive sampling in Projects 0111, 0112 & INT1.

Species Group	NVAF
Balsam	0.96077
Douglas-fir	1.00562
Lodgepole pine	1.04437
Spruce	0.99684
Cedar	0.79084
Hemlock	0.97407
Other	1.02565
Dead (all species)	0.16429

Although all four projects comprised 205 samples, further examination showed that 22 samples were now outside of the population of interest (recent logging, polygon updates, samples in parks, samples less than 60 years of age), leaving 183 samples in the population of interest for analysis. Since the sampling intensity differed among the projects, sample weights were computed and assigned to each sample. These weights were carried with each of the samples throughout the analysis.

¹ Based on a provided list of feature IDs corresponding to the timber harvesting landbase (THLB)

A VDYP7-based adjustment was the focus of this analysis. However, a VDYP6 adjustment was also completed for comparison. The overall estimated population volume impact (at 12.5cm+ dbh utilization net dwb) of the VDYP6 adjustment was $1.07 \pm 8.5\%$ (at a 95% confidence level). The overall estimated population volume impact of the VDYP7 adjustment was $1.01 \pm 9.5\%$ (at a 95% confidence level). This level of sampling error was within the range of the targets set in the project VPIPs.

When the VDYP7 adjustment factors were applied to the inventory population of interest and the preand post- adjustment total volumes were compared, the computed ratio was 1.03, which was reasonably close to the estimated impact of 1.01 estimated from the sample.

The VDYP7 adjustment factors and estimated volume impacts, by stratum, are shown in Table 2.

as vi, operable, 2 to years of age and in a contributing ownership .								
		Rat	io of weig	Volume Impact				
Stratum	Area (ha)	Age	Height	BA @7.5cm+dbh	TPH @7.5cm+dbh	Volume @12.5cm+ dbh net dw2	(@12.5cm+dbh net dwb) ± SE as % of ratio at 95%	
Deciduous	51,277	0.823	1.411	1.298	0.457	1.111	2.482 ± 10%	
IFPA area								
В	13,658	1.015	0.913	1.171	1.601	1.168	1.146 ± 27%	
СН	13,253	1.181	0.942	0.917	1.916	0.921	0.789 ± 26%	
F	52 <i>,</i> 980	0.954	0.872	0.999	1.292	0.989	0.820 ± 33%	
Р	14,265	0.888	0.986	1.499	1.349	1.151	1.646 ± 30%	
S	25,384	0.758	0.780	1.015	1.371	1.227	0.958 ± 19%	
Non-IFPA								
BS	260,584	0.805	0.924	0.941	1.056	1.227	1.052 ± 27%	
СН	56,789	0.853	0.901	0.876	1.074	1.076	0.922 ± 16%	
F	412,304	1.049	0.923	0.982	1.088	1.174	1.015 ± 23%	
Р	270,331	0.931	0.952	0.961	1.066	1.026	0.912 ± 21%	

Table 2: VDYP7 adjustment factors and estimated volume impact for the population of interest defined as VT, operable, \geq 60 years of age and in a "contributing ownership".

ACKNOWLEDGEMENTS

The following people are acknowledged for their significant contributions to the successful completion of this project: Matt Makar (Southern Interior Forest Region, Kamloops) and Sam Otukol, Gary Johansen and Will Smith (Forest Analysis and Inventory Branch, Victoria).

iii

Table of Contents

EX	ECU	UTIVE SUMMARYI
AC	KN	OWLEDGEMENTS III
1.	IN	TRODUCTION1
	1.1	BACKGROUND1
	1.2	Description of the Inventory Unit1
	1.3	VRI GROUND SAMPLING PROJECTS IN THE KAMLOOPS TSA
	1.4	Scope and Objectives
2.	Μ	ETHODS
2	2.1	OVERVIEW OF NVAF ANALYSIS
2	2.2	POPULATION FOR ADJUSTMENT
	2.3	DATA SOURCES
	2.4	DATA ISSUES RELATED TO THE STATISTICAL ADJUSTMENT (DATA SCREENING)
	2.5	STRATIFICATION AND WEIGHTS
2	2.6	OVERVIEW OF STATISTICAL ADJUSTMENT
3.	R	ESULTS9
-	3.1	VDYP6 ADJUSTMENT ANALYSIS
-	3.2	VDYP7 ADJUSTMENT ANALYSIS
4.	D	ISCUSSION AND RECOMMENDATIONS
5.	A	PPENDIX A: MAP OF SAMPLE LOCATIONS
6.	A	PPENDIX B: INVENTORY AND GROUND ATTRIBUTES USED IN THE ADJUSTMENT23
7.	A	PPENDIX C: DATA ISSUES1
8.	A	PPENDIX D: VDYP7 HEIGHT AND AGE SCATTERPLOTS
9.	A	PPENDIX E: VDYP7 BASAL AREA AND TPH8
10.		APPENDIX F: VDYP7 STAGE 1 ADJUSTMENT RESIDUALS
11.		APPENDIX G: VDYP7 VOLUME ADJUSTMENT SCATTER PLOTS AND RESIDUALS
12.		APPENDIX H: POPULATION DISTRIBUTIONS PRE- AND POST-ADJUSTMENT42
13.		APPENDIX I: ANALYSIS RESULTS FOR REMEASURED DATA
14. INT	C1 A	APPENDIX J: COPY OF GROUND SAMPLING PROJECT IMPLEMENTATION PLAN FOR ND INT2
15. PRO	ЭJE	APPENDIX J: COPY OF STATISTICAL ADJUSTMENT ANALYSIS ADJUSTMENT FOR ECT 0112

1. INTRODUCTION

1.1 Background

Vegetation Resources Inventory (VRI) Phase II ground sampling in the Kamloops TSA encompasses four projects, with ground sampling activities spanning the period between 1998 and 2005. A brief description of each of these projects (0111, 0112, INT1 & INT2) are provided in section 1.3. Preliminary analysis was carried out in several of these projects. For more detailed background information on these projects, please consult the documentation referenced below.

The ground sampling project implementation plans for the Kamloops TSA can found on the Ministry of Forests website via the following links. For project 0111, details are provided in the report: "Kamloops TSA Timber Emphasis VRI Ground Sampling Project Implementation Plan", Ministry of Forests, Kamloops Region, 15 January 2001.

http://www.for.gov.bc.ca/hts/vri/reports&pub/tsa_vpips/kamloopstsa_vrigs_timber_vpip.pdf

For project 0112, refer to the report: "Kamloops TSA Addendum to the Timber Emphasis VRI Ground Sampling Project Implementation Plan" prepared by Simpew Development on behalf of the Cedar/Hemlock Partition Licensees, June 27, 2003.

http://www.for.gov.bc.ca/hts/vri/reports&pub/tsa vpips/kamloopstsa vrigs timber vpip addendum.pdf

For projects INT1 and INT2, the ground sampling project implementation plan is detailed in the document "Interfor's Adams Lake IFPA: Inventory Audit (sic) Sampling Plan", a contract report prepared for Interfor by J.S. Thrower & Assoc., September 1998. A copy of this report is provided in Appendix J.

The preliminary analysis of ground sample data collected in Project 0111 can be found in a report at the following link:

http://www.for.gov.bc.ca/hts/vri/reports&pub/tsa_analysis/kamloopstsa_vri_interim_adjustment.pdf

The results for the analysis of project 0112 can be found in an unpublished report entitled "Kamloops TSA Mature Cedar/Hemlock: Documentation of Final Analysis and Vegetation Resources Inventory Statistical Adjustment", prepared for Integrated Woods Services by Jahraus & Associates Consulting Inc and Churlish Consulting Ltd., March 2005. A copy of this report is provided in Appendix K.

Sampling for the Net Volume Adjustment Factor (NVAF) was completed in 3 of the 4 projects. In the current analysis, the Ministry of Forests and Range² calculated selection weights for the NVAF sample trees that allowed pooling of the data and computation of NVAF's applicable to all VRI samples in the TSA as a whole.

1.2 Description of the Inventory Unit

The Kamloops TSA comprises about 2.7 million hectares in the south–western Interior. The TSA includes the communities of Kamloops, Clearwater, Cache Creek, Ashcroft, Chase and Vavenby. The Adams Lake IFPA is in aligned north-south around Adams Lake, north of Chase on the eastern boundary of the TSA and straddling the Kamloops/Headwaters forest district boundaries. A map of the Kamloops TSA is provided in Figure 1.

² Will Smith, Volume & Decay Sampling Officer, MoFR Victoria.

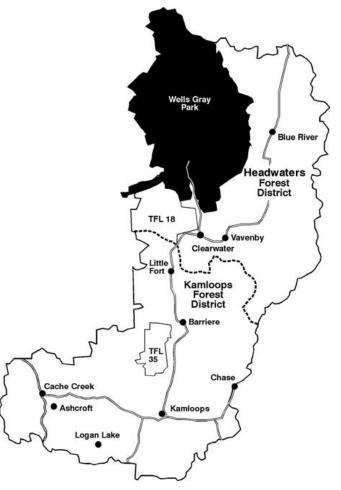


Figure 1: Map of Kamloops TSA.

1.3 VRI ground sampling projects in the Kamloops TSA

A map showing the distribution of samples, by project, within the Kamloops TSA is provided in Appendix A. Brief descriptions of the populations sampled in each project are discussed in the following sections³.

1.3.1 Project 0111

This was the original Kamloops TSA ground sampling project. A total of 84 samples were established. The target population is the operable Vegetated Treed (VT) portion of the TSA, excluding private lands, parks and other legally recognized protected areas, TFLs, and woodlots. There were 47 samples established in 2001; with the remaining 37 established in the 2004 & 2005 field seasons.

1.3.2 Project 0112

This project focused on the area of the Cedar/Hemlock partition. The target population was Cedar or Hemlock leading stands in age class 6 through 9. It appears that the original sample lists provided for project 0111 were also used to select samples for this project.

³ Much of this historic information was provided by Matt Makar, Inventory Forester, MoFR Kamloops.

1.3.3 Project INT1

This project sampled the entire Adams Lake IFPA landbase excluding non forest, NCBR and NSR land. Note that there were intended to be 15 immature samples established, but only 5 were completed. In the report it states that due to weather, samples at high elevations were given first priority. As a result, the immature samples in this project are likely to be biased. In Project INT1, "mature" appears to have been defined as greater than 60 years of age, whereas immature is less than or equal to 60 years.

1.3.4 Project INT2

This project was referred to as the "high elevation top-up". All 11 samples in this project were mature and from ESSF biogeoclimatic zones. It appears that this may have been a weather/access-related project. The INT2 samples were the first 11 ESSF samples on the same mature list used for Project INT1.

1.4 Scope and Objectives

The objective of this project was to provide a VRI statistical adjustment of the inventory files for the whole of the Kamloops TSA, in both a VDYP6 and a VDYP7 context. This adjustment was to be based on a common target population of interest defined to use as much data as possible from all four VRI projects in the Kamloops TSA (projects 0111, 0112, INT1 & INT2). In addition, the adjustment was to incorporate TSA-wide Net Volume Adjustment Factor (NVAF) values determined from destructively sampled tree data collected from three projects in the Kamloops TSA.

The VDYP6 adjustment was to be based on the Ministry of Forests & Range (MoFR) old methodological standards for adjustment using the VDYP6 yield model. In addition, a parallel analysis was to be carried out using the draft standards for VRI adjustment using the VDYP7 yield model. Although both sets of adjustment factors will be applied to a cut of the population files (based on a list of feature ID's provided through Forest Analysis and Inventory Branch FAIB) and used to generate a set of adjusted yield tables, it is anticipated that the VDYP7 adjustment will become the official adjustment as the VRIMS data system and VDYP7 become fully operational.

As a secondary objective, this analysis also included an examination of remeasured data collected for 44 samples. A summary of these results are provided in Appendix I.

2. METHODS

2.1 Overview of NVAF analysis

NVAF sampling was carried out in three projects within the Kamloops TSA (0111, 0112, INT1). Appropriate weighting factors were developed so that the NVAF sample tree data from these projects could be combined⁴. As a result of this work, a set of NVAF values (see Table 1) were developed and applied to all sample volumes in the Kamloops TSA.

⁴ The NVAF analysis was completed by Ministry of Forests & Range staff (Will Smith, Volume and Decay Sampling Officer).

Species Group	NVAF
Balsam	0.96077
Douglas-fir	1.00562
Lodgepole pine	1.04437
Spruce	0.99684
Cedar	0.79084
Hemlock	0.97407
Other	1.02565
Dead (all species)	0.16429

Table 1: NVAF values by stratum for the Kamloops TSA (based on destructive sampling in Projects 0111, 0112 & INT1.

2.2 Population for Adjustment

The four projects that comprised the VRI ground sampling in the Kamloops TSA represented slightly different populations of interest (see section 1.3). In determining the population of interest for this adjustment, the goal was to maximize the number of samples that could be used in the analysis while at the same time ensuring a consistent definition of the target population across the entire TSA. The final target population of interest for the VRI adjustment was defined as:

All operable, vegetated treed (VT) polygons greater than or equal to 60 years of age in the Kamloops TSA, excluding "non-contributing"⁵ ownerships such as private lands, parks and other legally recognized protected areas, TFLs, and woodlots.

Vegetated treed was defined as having crown closure greater than 10%. Age was based on the attributes for the rank 1 layer for each polygon in the year of ground sampling. The polygon list generated by these criteria was used to define the population for the statistical adjustment.

Note that in the original sample selection for the INT1 and INT2 projects, operability and ownership were not including in the population definition. However, it was assumed that virtually all of the IFPA area was operable and that the park area within the IFPA was not significant.

As a result of updates to the inventory, new parks classification and, in some cases, slight changes from the original populations of interest, 22 samples were excluded from the analysis. These are detailed in section 2.2.1 below.

2.2.1 Samples excluded from the analysis (outside of target population)

There were a total of 205 samples established among the 4 contributing projects in this analysis. However, after careful examination of these samples, 22 were excluded, leaving 183 samples remaining for the statistical adjustment analysis. Details on these 22 samples are provided in the Data Issues Log for the project (see Appendix C) and are also summarized below:

<u>Recently logged samples</u>: The following samples were excluded because field notes indicated the polygon had been recently logged and/or the sample was now classified as VN.

0111-13

⁵ "contributing ownerships" refer to land that contributes to the forest landbase. This includes polygons with a "C" ownership character code on the ownership overlay i.e. designated as land available for long-term integrated resource management.

0111-40 0111-50 0111-95

<u>Samples in parks</u>: The ownership coverage has been updated for newly created parks etc. since the time of sample selection. As a result, a number of samples in project 0111 and 0112 were excluded from this analysis based on ownership.

0111-2 0111-11 0111-49 0111-56 0111-501 0112-531 0112-534 0112-550

<u>Immature samples in project INT1:</u> since only 5 of the planned 15 immature samples were established and these samples were specifically chosen because of their location (high elevation), an unacceptable bias would accompany any adjustment factors developed from these samples. Hence they were not included in the analysis.

INT1-204 INT1-208 INT1-209 INT1-211 INT1-215

<u>Other samples less than 60 years of age</u>: Since the new target population of interest was based on polygons greater than or equal to 60 years, a number of samples were excluded on this basis.

0111-51 (age=56 years)

0111-69 (age=49 years)

0111-90 (age=21 years)

0112-503 (new Phase I polygon age= 33 yrs)

0112-513 (sample incorrectly selected originally; wrong age class)

There were also three samples in Project INT1 that were re-inventoried and were determined to be <60 years of age in the new Phase I inventory. Since the re-inventory was limited to 2 mapsheets (i.e. it did not cover 100% of the IFPA), MoFR (Sam Otukol) recommended that these samples NOT be excluded in the analysis and that the new Phase I attributes be used for these samples. Although these samples do not technically meet the new target population criteria, there would be no way to "weed out" all of the other miss-classifications of age in the IFPA hence it was argued that these samples should remain. The samples in question are listed below and are INCLUDED in the analysis:

INT1-5 (new polygon age = 46 years) INT1-42 (new polygon age = 53 years) INT1-69 (new polygon age = 48 years)

2.3 Data Sources

2.3.1 Phase I photo-interpreted inventory data

The Phase I inventory data was obtained as a non-standard inventory file provided by MOFR regional staff (Matt Makar). Since the time of the original sample selection there were 2 mapsheets within the Kamloops TSA that underwent re-inventory: mapsheets 082M023 and 082M012. A total of 19 samples were impacted by this reinventory (refer to the Data Issues Log in Appendix C). In addition, a significant update of the ownership overlay also took place and this impacted a number of samples (see Section 2.2.1). About 2/3 of the samples indicated a reference year of 1990 or later. However the remaining 1/3 of the samples had pre-1990 reference years, with the oldest being from 1955.

Polygons that fell inside the boundaries of the IFPA area were identified on the inventory VEG table using the attribute called IFPA_INSID.

While assembling the inventory data, it was noted that mapsheet 082M082 had duplicate data in the data.mdb file. All of the duplicates were removed prior to the analysis.

About 78% of the samples were from a FIP-type inventory, with the remaining 22% coming from a VRI-type inventory. One of the characteristics of the VRI-type inventory is that it provides photo-interpreted basal area/ha and trees/ha values. However, during the course of the analysis, it was discovered that there was an error in the original basal area/ha field in the Veg_comp_lyr_r1_poly table (e.g. highest basal area/ha was 9). The MoFR corrected this issue and the corrected file⁶ was used in the analysis.

In preparation for the adjustment analysis, the Phase I data was projected to the year of ground sampling. The measurement dates among these 4 projects ranged from 1998 through to 2005. Each sample was projected to the year in which it was measured on the ground. Note that VDYP6 and VDYP7 use different versions of SINDEX, the site index function used for height projection. As a result, some of the projected heights coming from the two models will differ.

2.3.2 Phase II ground sample data

All of the ground sample data was recompiled using the current version of the MoFR ground sample compiler. The new, TSA-wide NVAF values were also applied to the volumes. Project 0112 utilized a non-standard 9 plot configuration (IPC plus 8 auxiliary plots) for some samples and hence the compilation was modified to include these extra auxiliary plots where they were available.

For samples that had been re-inventoried, the location of the auxiliary plots relative to new polygon boundaries was examined. In a number of cases it was discovered that one or more auxiliary plot was outside of the boundaries of the polygon of interest, that is, the polygon in which the integrated plot centre (IPC) fell. In such cases, these auxiliary plots were identified and were excluded from the compilation.

It was discovered that the original IPC data from sample 0111-55 was missing in the ground sample database. Since this sample had been NVAF-enhanced, the auxiliary plot data could be derived from the N-type sample data. In 2007, MoFR regional staff (Matt Makar) visited the sample location and collected IPC data. However, the plot had been affected by MPB since the time of the original ground sampling. In consultation with MoFR staff, it was decided that the 2 dead pine trees in the IPC that had been killed by Mountain Pine Beetle since the time of original sample selection would be recoded as "LIVE" in the recompilation of the volume for the sample.

The important attributes of the Phase I and Phase II data that were used in this analysis are shown in Appendix B.

⁶ The corrected file was provided by Tim Salkeld, VRI Technical Applications Coordinator, MOFR Victoria.

2.3.3 Data matching

The data matching used to determine the appropriate heights and ages upon which to base the ratios, used the standard procedures outlined by the MoFR. The same set of procedures is applicable to both the VDYP6 and VDYP7 analyses. The results have been included in the Appendix B cut of the analysis spreadsheet.

For each VRI sample polygon, the ground sample data was matched with the corresponding inventory data for the same polygon. The ground heights and ages used in the adjustment were based on the average values for the T, S & L⁷ trees for the leading species (by basal area at 4cm + dbh utilization) on the ground. Since a VRI inventory was available for only about 20% of the samples, inventory data (i.e. height and age) for both the leading and second species was limited. The objective in the matching process was to choose an inventory height and age (i.e. for either the leading or second species) so that the ground and inventory species "matched". If a match could not be made at the sp0⁸ level, conifer-to-conifer matches were allowed. However, conifer-deciduous matches were not considered acceptable. Note that where second species inventory ages and heights were required, these attributes were also projected to the year of ground sampling.

Based on the VYDP7 species composition, the data matching results were as follows:

- There were 114 samples (~62%) for which the inventory leading species matched the ground leading species at the 4cm+ dbh utilization (Case 1).
- Because the majority of the samples were from a FIP-type inventory and did not have second species height and age data, there were only a further 6 samples where a match with the ground leading species could be made based on the inventory second species (Case 2 or 4).
- There were 51 samples (~28%) were matched based on conifer-to-conifer or deciduous-to-deciduous based in the inventory leading species (Case 3).
- The remaining 12 samples (nearly 5%) could not be matched and were excluded from the development of the age and height adjustment factors.

2.4 Data issues related to the statistical adjustment (data screening)

The majority of the data issues in this analysis were related to determining the set of samples that met the newly defined target population of interest. Data issues and assumptions made in the analysis were discussed with MoFR staff. The issues/questions and their associated resolutions are documented in Appendix C.

Data screening discovered an error with the inventory files related to basal area. This issue was described in section 2.3.1.

2.5 Stratification and weights

Samples from the INT1 and INT2 projects were all established within the boundaries of the Adams Lake IFPA (referred to as the IFPA area). Samples from the 0111 and 0112 projects were established throughout the Kamloops TSA, including the IFPA area. The weights shown in Table 2 were computed for the adjustment

⁷ T or "top height" tree is the largest DBH in 0.01 ha plot, regardless of species; L or "leading species" tree is the largest DBH in 0.01 ha plot, of leading species; S or "second species" is the largest DBH in 0.01 ha plot, of second species. T and S trees are selected and measured at the IPC only whereas L trees are selected at the IPC and all auxiliary plots. For details, refer to the MSRM document "Vegetation Resources Inventory Procedures and Standards for Data Analysis Attribute Adjustment and Implementation of Adjustment in a Corporate Database Version 2.0", March 2004.

⁸ sp0 refers to the 16 major species codes and is roughly equivalent to the genus level.

analysis. These weights were attached to the respective samples and were carried with them into the analysis strata.

Leading species (and age class)	Area (ha in the population	n (in population	Weight (area/n)					
	of interest)	of interest)						
Projects 0111 & 0112 (Kamloops TSA <i>including</i> IFPA area)								
CH age class 6+ 63460 32 1983								
CH age class 4,5	6582	1	6582					
Decid	51277	2	25639					
В	110158	8	13770					
Fd	465284	26	17896					
Ρ	284596	19	14979					
S	189468	13	14574					
Total	1170825	101						
Projects INT1 & INT2	(IFPA area)							
CH age class 6+	11097	8	1387					
CH age class 4,5	2156	2	1078					
Decid.	6821	7	974					
В	13658	12	1138					
FD	52980	26	2038					
Р	14265	8	1783					
S	25384	19	1336					
Total	126361	82						

Table 2: Areas and sample size for weight computation, by project and/or sample location.

The analysis strata and the contributing projects are shown in Table 3. The sampling weights for the INT1 and INT2 samples were considerably lower compared with the samples established in the 0111 and 0112 projects (by a factor of 10). As a result, it was decided to keep the IFPA separate from the non-IFPA portion of the TSA in the stratification. However, all IFPA strata included at least one sample from either of projects 0111 or 0112 (see Table 3) and as such, the higher weights of these samples relative to the weights for INT1 and INT2 samples will have an impact in the IFPA strata.

Stratum		n for stratum			
	0111	0112	INT1	INT2	
Deciduous (TSA-wide)	2	0	7	0	9
IFPA area					
В	2	1	7	5	15
СН	2	4	10	0	16
F	3	0	26	0	29
Р	1	0	6	2	9
S	1	0	15	4	20
Non-IFPA area					
BS	17	0	0	0	17
СН	4	23	0	0	27
F	23	0	0	0	23
Р	18	0	0	0	18
Total (all strata)					183

Table 3: Analysis strata and contributing project.

2.6 Overview of statistical adjustment

For the VDYP6 analysis, the statistical adjustment followed the MoFR interim process often referred to as the "Fraser Protocol". In this process, the age and height attributes are adjusted first and used as inputs to generate an interim or "attribute-adjusted" VDYP6 volume. This volume is then used to develop a final volume adjustment factor. Hence the adjustment process occurs sequentially in two stages.

The VDYP7 statistical adjustment process is similar in that it is also sequential and involves two stages. However, additional attributes are adjusted at the first stage (age, height, basal area at 7.5cm+ dbh utilization (BA7.5), and trees per hectare at 7.5cm+ dbh utilization (TPH7.5)). Although the process has the flexibility to adjust multiple attributes at the second stage, only volume net decay and waste at the 12.5cm+ dbh utilization will be adjusted at the current time. Within the VDYP7 context, various internal modules of VDYP7 are used to project the polygons, generate additional attributes, and adjust attributes. Hence the VDYP7 model itself takes a much larger role in the statistical adjustment process than did VDYP6.

3. RESULTS

3.1 VDYP6 Adjustment Analysis

3.1.1 Age and height adjustment

When the samples without a suitable inventory species match and/or there were no suitable ground ages or heights were considered, there were 161 samples for age and 162 samples for height that were available for the development of the age and height adjustment factors respectively.

Adjustment factors were computed as the ratio of the weighted mean ground i.e. Phase 2 value over the weighted mean inventory i.e. Phase 1 value, using the weights assigned to each sample as per Table 2.

Tables 4 and 5 show the weighted mean values and the ratio of means for the age and height adjustment factors for the VT, operable, greater than or equal to 60 years of age, and "contributing ownerships" population of interest in the Kamloops TSA.

Stratum	n	Weighted mean ground age (years)	Weighted mean inventory age (years)	Age adjustment ratio of weighted means	Sampling error as % of ratio (based on 95% confidence interval)
Deciduous	3	64	78	0.823	256%
IFPA area					
В	15	139	137	1.015	36%
СН	13	179	152	1.181	28%
F	27	111	117	0.954	12%
Р	8	75	85	0.888	31%
S	16	148	195	0.758	40%
Non-IFPA area					
BS	17	141	175	0.805	16%
СН	26	217	254	0.853	19%
F	20	129	123	1.049	22%
Р	16	108	116	0.931	18%

Table 4: Mean ages⁹ and ratio of means adjustment factors, by stratum, for the population of interest defined as VT, operable, ≥ 60 years of age and in a "contributing ownership", for the VDYP6 adjustment.

⁹ Mean inventory heights and ages are based on the set of values used to develop the adjustment ratios. These may have included second species heights and ages where the second species provided a better "match" with the ground species.

Stratum	n	Weighted mean ground height (m)	Weighted mean inventory height (m)	Height adjustment ratio of weighted means	Sampling error as % of ratio (based on 95% confidence interval)
Deciduous	3	28.4	20.0	1.416	73%
IFPA area					
В	14	19.0	20.7	0.916	12%
СН	13	25.2	26.6	0.948	14%
F	26	26.1	30.0	0.873	5%
Р	8	20.5	20.9	0.980	14%
S	17	23.6	30.3	0.780	19%
Non-IFPA area					
BS	17	24.6	26.7	0.922	12%
СН	26	28.3	31.2	0.906	9%
F	21	22.4	24.3	0.923	11%
Р	17	21.2	22.4	0.948	11%

Table 5: Mean heights and ratio of means adjustment factors, by stratum, for the population of interest defined as VT, operable, ≥ 60 years of age and in a "contributing ownership", for the VDYP6 adjustment.

The adjustment ratios in Table 4 indicate that the trends in age bias in the inventory are not consistent among strata and differ in the IFPA and non-IFPA portions of the TSA. For example, whereas age in fir leading stands in the IFPA is overestimated by about 5%, age in fir leading stands in the non-IFPA portion of the TSA are underestimated by about 5%.

Trends in height bias are more consistent. With the exception of deciduous leading stands, height is generally overestimated in the inventory with this overestimation ranging from 2% (for pine in the IFPA area) to as high as over 20% or over 6m on average (for spruce in the IFPA area).

Since the VDYP6 and VDYP7 adjustment for age and height are very similar, scatter plots showing the relationship between ground height (and age) and inventory height (and age) by stratum are only provided for the VDYP7 adjustment (please refer to section 3.2.1.).

3.1.2 Volume adjustment based on NVAF volumes and VDYP6

The height and age adjustment factors were applied to the rank 1 inventory ages and heights for the samples. These adjusted heights and ages, together with the unadjusted species composition, crown closure, and stocking class, were then input into VDYP v6.6d to produce "attribute-adjusted" inventory volumes¹⁰. The adjustment ratios for volume were then calculated based on the ratio of ground volume to "attribute-adjusted" VDYP6 inventory volume. The analysis was based on net factored (NF) ground volumes to which the NVAF values had been applied in the compilation.

The volume utilization used in the analysis was for live stems 12.5cm + dbh net of decay, waste and breakage (net dwb). This utilization applied to both inventory and ground volumes.

Table 6 below presents volume adjustment factors by strata for the population of interest defined as VT, operable, ≥ 60 years of age and in a "contributing ownership".

¹⁰ As part of MoFR's stocking class assignment procedure, new stocking classes for all samples were determined based on the adjusted ages and heights prior to producing the "attribute-adjusted" volumes.

Table 6: Mean volumes and volume adjustment ratios, by stratum, for the population of interest defined as VT, operable, ≥ 60 years of age and in a "contributing ownership", for the VDYP6 adjustment. Utilization: 12.5cm+dbh net dwb.

Stratum	n	Weighted mean ground vol/ha	Weighted mean attribute- adjusted inventory vol/ha	Volume adjustment ratio of weighted means	Sampling error as % of ratio (based on 95% confidence interval)
Deciduous	9	251.7	201.3	1.250	7%
IFPA area					
В	15	202.7	160.3	1.265	28%
СН	16	283.8	306.6	0.926	23%
F	29	276.1	220.7	1.251	23%
Р	9	374.9	201.1	1.864	26%
S	20	335.4	233.1	1.439	19%
Non-IFPA area					
BS	17	296.3	245.7	1.206	27%
СН	27	353.9	382.3	0.926	15%
F	23	198.5	163.5	1.214	19%
Р	18	233.1	201.2	1.159	21%

The values in Table 6 would suggest that even after the height and age attributes have been adjusted, there is still volume underestimation bias associated with either the other remaining unadjusted inventory attributes (e.g. species composition, stocking class, crown closure) and/or the VDYP6 estimates of volume. The only exception to this trend was for the Cedar/Hemlock stratum in both the IFPA and non-IFPA areas, where the volume adjustment factor was less than 1. The largest volume adjustment factor was for pine in the IFPA. However, the sample size in this stratum was small.

3.1.3 Estimated volume impact for the VDYP6 statistical adjustment

The volume factors in Table 6 represent adjustments to volumes based on inventory heights and ages that have already been adjusted. To provide an estimate of the overall impact of the adjustment process (i.e. the cumulative impact of the age, height and attribute-adjusted volume adjustment) the Phase II sample average ground volume was compared with the unadjusted average inventory volume (i.e. inventory volumes prior to any age, height or volume adjustment). The estimated volume impacts of the adjustment, by stratum and overall, are shown in Table 7.

Table 7: Estimated VDYP6 volume impact by stratum for the population of interest defined as VT, operable, ≥ 60 years of age and in a "contributing ownership", based on the Phase II samples. Utilization: 12.5cm+dbh net dwb.

Stratum	Area (ha)	n	Weighted mean ground vol/ha	Weighted mean un adjusted inventory vol/ha	Volume impact (ratio)	Sampling error as % of ratio (based on 95% confidence interval)
Deciduous	51,277	9	251.7	94.6	2.661	± 1.259 or 47%
IFPA area						
В	13,658	15	202.7	182.1	1.113	± 0.307 or 28%
CH	13,253	16	283.8	324.5	0.875	± 0.222 or 25%
F	52,980	29	276.1	272.5	1.013	± 0.215 or 21%
Р	14,265	9	374.9	215.5	1.740	± 0.482 or 28%
S	25,384	20	335.4	322.6	1.040	± 0.202 or 19%
Non-IFPA area						
BS	260,584	17	296.3	276.4	1.072	± 0.283 or 26%
СН	56,789	27	353.9	423.3	0.836	± 0.120 or 14%
F	412,304	23	198.5	188.0	1.055	± 0.192 or 18%
Р	270,331	18	233.1	227.9	1.023	± 0.207 or 20%

The volume impact estimates in Table 7 are based on the Phase II compiled volumes, which have incorporated the NVAF values. The VRI ground sample data indicates that the largest volume impacts of the adjustments can be expected in the deciduous stratum, where it is estimated that the adjustment will increase volume by about 2.5 times. The pine stratum in the IFPA also shows that a large volume increase is expected as a result of the adjustment. Cedar/hemlock (in both the IFPA and non-IFPA areas) is the only stratum where the adjustment is expected to result in a volume decrease.

3.1.4 Sampling error

The VPIPs for the various original sampling plans in the Kamloops TSA specified target sampling errors of between 10% and 15% (at a 95% probability level). To provide an indication of the sampling error achieved in the VDYP6 adjustment process, a comparison of the overall estimated ground sample volume and the overall estimated unadjusted inventory volume for the sample was made. The overall ratio of these values and its standard error were computed using the formula for a separate ratio estimate after a pre-stratified PPSWR sample. The results for the population of interest defined as VT, operable polygons, \geq 60 years of age and in "contributing ownerships", are summarized in Table 8 below.

Table 8: Estimated adjusted VDYP6 total volume and sampling error (for a 95% confidence interval) for the
Kamloops TSA based on separate ratio estimators (for the VT, operable, ≥ 60 years of age population in a
"contributing ownership"). Utilization: 12.5cm+dbh net dwb.

Volume	n	Total area (ha)	Overall estimated total adjusted inventory volume (m ³)	Overall estimated total unadj'd inventory volume (m ³)	Overall adjustment impact Ratio	Sampling error for total adjusted volume (as % of total adjusted volume)
Overall	183	1,170,825	323,736,512	302,299,201	1.071	8.52%

The overall impact of a VDYP6 adjustment was estimated to be 1.071 within an 8.5% sampling error (at the 95% confidence level). This sampling error met the target set in the VPIP.

3.1.5 Inventory file adjustment for the VDYP6 statistical adjustment

The Phase I inventory files for the population of interest (VT, operable, ≥ 60 years of age, "contributing ownerships") were adjusted using the factors in Tables 4 and 5 for height and age respectively and Table 6 for volume. The adjustment procedure followed the "Fraser Protocol" for a VDYP6 adjustment. Since the MoFR is currently transitioning to the VDYP7 platform, it is not expected that this VDYP6 adjusted file will be used operationally. However, yield curves based on the VDYP6 adjustment were prepared and provided to support TSR activities.

The pre- and post-adjustment comparisons are based on an inventory file projected to 2001, the median year of ground sampling. The unadjusted total VDYP6 population volume was compared with the final adjusted total VDYP7 population volume¹¹. The ratio of the adjusted to unadjusted VDYP6 volume in the population was 1.058, which was close to the 1.071 volume impact ratio that was estimated from the sample and shown in Table 8.

3.2 VDYP7 Adjustment Analysis

The Kamloops TSA VRI statistical adjustment was also performed using VDYP7 and the new process for making adjustments in the VDYP7 context. The Kamloops TSA population file used for this adjustment was not made available in the new PGDB format that is required for input into VRIMS. However, the VDYP7 adjustment factors developed in this analysis will be provided in a standard format so that it will be possible to apply them to the operational inventory files once PGDBs are available and VRIMS has been fully implemented. In addition, adjusted yield curves produced by VDYP7 were generated for all polygons in the THLB for use in the upcoming timber supply analysis¹².

3.2.1 First stage VDYP7 adjustment: Height, age, basal area & trees per hectare

The VDYP7 adjustment process occurs in two stages, similar in this respect to the VDYP6 adjustment. At the first stage, age and height are adjusted. However, two additional inventory attributes, basal area per hectare

¹¹ Sum of the polygon volumes/ha times the polygon areas. The population volumes in this comparison were based on net dwb volumes at the 12.5cm+ dbh utilization.

¹² Based on a provided list of feature IDs corresponding to the timber harvesting landbase (THLB)

(BA) and trees per hectare (TPH) at 7.5cm+ dbh utilization are also adjusted. The data matching process for the height and age adjustment is the same for both VDYP6 and VDYP7.

The resulting VDYP7 adjustment factors for age, height, basal area and trees per hectare are shown in Tables 9, 10, 11 & 12 respectively. Scatterplots of the Phase I and II relationships for these attributes are provided in Appendix D.

Stratum	n	Weighted mean ground age (yrs)	Weighted mean inventory age (yrs)	Age adjustment ratio of means	Sampling error as % of ratio (based on 95% confidence interval)			
Deciduous (TSA- wide)	3	64	78	0.823	256%			
IFPA area								
В	15	139	137	1.015	36%			
СН	13	179	152	1.181	28%			
F	27	111	117	0.954	12%			
Р	8	75	85	0.888	31%			
S	16	148	195	0.758	40%			
Non-IFPA area								
BS	17	141	175	0.805	16%			
CH	26	217	254	0.853	19%			
F	20	129	123	1.049	22%			
P	16	108	116	0.931	18%			

Table 9: Mean ages and ratio of means adjustment factors, by stratum, for the population of interest defined as VT, operable, ≥ 60 years of age and in a "contributing ownership", for the VDYP7 adjustment.

Table 10: Mean heights and ratio of means adjustment factors, by stratum, for the population of interest
defined as VT, operable, ≥ 60 years of age and in a "contributing ownership", for the VDYP7 adjustment.

Stratum	n	Weighted mean ground height (m)	Weighted mean inventory height (m)	Height adjustment ratio of means	Sampling error as % of ratio (based on 95% confidence interval)
Deciduous (TSA- wide)	3	28.4	20.1	1.411	70%
IFPA area					
В	14	19.0	20.8	0.913	12%
СН	13	25.2	26.8	0.942	15%
F	26	26.1	30.0	0.872	5%
Р	8	20.5	20.8	0.986	14%
S	17	23.6	30.3	0.780	21%
Non-IFPA area					
BS	17	24.6	26.6	0.924	12%
СН	26	28.3	31.4	0.901	9%
F	21	22.4	24.3	0.923	11%
Р	17	21.2	22.3	0.952	11%

Table 11: Mean basal area at 7.5cm+ dbh utilization and ratio of means adjustment factors, by stratum, for the population of interest defined as VT, operable, ≥ 60 years of age and in a "contributing ownership", for the VDYP7 adjustment.

Stratum	n	Weighted mean ground basal area/ha	Weighted mean inventory basal area/ha	Basal area/ha adjustment ratio of means	Sampling error as % of ratio (based on 95% confidence interval)
Deciduous (TSA- wide)	9	29.1	22.4	1.298	37%
IFPA area					
В	15	34.3	29.3	1.171	26%
CH	16	50.3	54.8	0.917	25%
F	29	42.6	42.6	0.999	24%
Р	9	51.6	34.4	1.499	24%
S	20	45.1	44.4	1.015	18%
Non-IFPA area					
BS	17	35.5	37.7	0.941	16%
CH	27	57.7	65.9	0.876	16%
F	23	28.4	29.0	0.982	26%
P	18	31.8	33.1	0.961	22%

Table 12: Mean trees per hectare (TPH) at 7.5cm+ dbh utilization and ratio of means adjustment factors, by stratum, for the VT, operable, ≥ 60 years of age population of interest, for the VDYP7 adjustment.

Stratum	n	Weighted mean TPH	Weighted mean inventory TPH	TPH adjustment ratio of means	Sampling error as % of ratio (based on 95% confidence interval)
Deciduous (TSA- wide)	9	375	821	0.457	103%
IFPA area					
В	15	1172	732	1.601	92%
CH	16	1509	787	1.916	42%
F	29	1200	929	1.292	25%
Р	9	1811	1342	1.349	18%
S	20	808	589	1.371	23%
Non-IFPA area					
BS	17	837	793	1.056	27%
СН	27	714	665	1.074	30%
F	23	610	561	1.088	37%
Р	18	1043	979	1.066	25%

The age and height adjustment factors for VDYP7 are virtually identical to those for VDYP6. The small discrepancies that are observed are a result of differences in projection year and SINDEX version (see section 2.3.1). From Table 11, it appears that the basal area in the non-IFPA portion of the inventory is generally overestimated. However, for the deciduous stratum, the sample indicates that basal area is underestimated by about 30%. Pine leading stands in the IFPA appear to have an even larger basal area bias in the inventory, with a 50% underestimation. However, it must be noted that these results are based on a relatively small

sample size. The relationships between the ground and the inventory values for basal area and trees per hectare are illustrated in Appendix E. Appendix F provides plots of residuals for all of the stage 1 adjustments (age, height, basal area and trees per hectare).

3.2.2 Second stage VDYP7 adjustment: Volume

The adjustment factors for height, age, BA and TPH were input into the VDYP7 model which then produced an expanded output set of inventory attributes. Only one adjustment factor, that for volume net decay & waste 2 at the 12.5cm+dbh utilization level, was directly developed from the available attributes produced by VDYP7 at this stage. The ratios developed for this particular volume were applied to volumes at other utilizations¹³.

Table 13 below shows the VDYP7 volume adjustment factors by strata for the population defined as VT, operable, ≥ 60 years of age, in "contributing" ownerships. The ground volumes used to compute the adjustment ratio of means were based on net factored volumes to which the NVAF values had been applied in the compilation. All volumes are net decay and waste2 only, at the 12.5cm+ dbh utilization level for all polygons. Scatterplots showing the volume relationship and the residuals from the adjustment are provided in Appendix G.

Table 13: Mean volumes and volume adjustment ratios, by stratum, for the population of interest defined as
VT, operable, ≥ 60 years of age and in a "contributing ownership", for the VDYP7 adjustment. Utilization:
12.5cm+dbh net dw2.

Stratum	n	Weighted mean ground vol/ha	Weighted mean attribute- adjusted inventory vol/ha	Volume adjustment ratio of weighted means	Sampling error as % of ratio (based on 95% confidence interval)		
Deciduous IFPA area	9	260.8	234.7	1.111	± 0.114 or 10%		
В	15	208.7	178.7	1.168	± 0.327 or 28%		
СН	16	298.9	324.6	0.921	± 0.257 or 28%		
F	29	286.1	289.2	0.989	± 0.347 or 35%		
Р	9	382.9	332.8	1.151	± 0.370 or 32%		
S	20	343.9	280.3	1.227	± 0.228 or 19%		
Non-IFPA area							
BS	17	302.7	246.6	1.227	± 0.319 or 26%		
СН	27	376.8	350.2	1.076	± 0.178 or 17%		
F	23	204.0	173.7	1.174	± 0.275 or 23%		
Р	18	238.5	232.4	1.026	± 0.226 or 22%		

Note that the volumes in Table 13 are not directly comparable to the volumes in Table 6 since the utilization levels differ. VDYP7 does not produce volumes net decay, waste and breakage until after the final (i.e. second stage) volume adjustment have been applied. In addition, whereas the VDYP6 adjustment approach was to

¹³ VDYP7 produces volumes at numerous utilization levels. Any adjustments input into VDYP7 must be harmonized, that is, care must be taken to ensure that the utilization relationships (e.g. volume at 12.5cm+ always less than or equal to volume at 7.5cm+) are not contorted by the adjustment ratios. As a simple approach to ensure harmonization, only one volume adjustment factor was computed and this factor was applied to all of the other volumes. This approach was approved by Sam Otukol, Forest Biometrician, MoFR.

make one volume adjustment that best approximated the utilization applied in a timber supply analysis, VDYP7 automatically produces adjusted volumes for an entire suite of utilizations.

3.2.3 Estimated volume impact for the VDYP7 statistical adjustment

The VDYP7 process does not output volume net decay, waste & breakage until after the stage two volume adjustment factors have been applied to the net decay & waste volumes. However, a special unadjusted run of VDYP7 was done to provide unadjusted volumes net decay, waste & breakage so that the estimated volume impact of the VDYP7 adjustment and its associated sampling error could be computed and more readily compared with the VDYP6 results. The estimated volume impacts of the adjustment, by stratum, are shown in Table 14.

Stratum	Area (ha)	n	Weighted mean ground vol/ha	Weighted mean un adjusted inventory vol/ha	Volume impact (ratio)	Sampling error as % of ratio (based on 95% confidence interval)				
Deciduous	51,277	9	251.7	101.4	2.482	± 0.238 or 10%				
IFPA area										
В	13,658	15	202.7	176.9	1.146	± 0.315 or 27%				
CH	13,253	16	283.8	359.6	0.789	± 0.207 or 26%				
F	52,980	29	276.1	336.8	0.820	± 0.274 or 33%				
Р	14,265	9	374.9	227.8	1.646	± 0.497 or 30%				
S	25,384	20	335.4	350.0	0.958	± 0.181 or 19%				
Non-IFPA area										
BS	260,584	17	296.3	281.6	1.052	± 0.287 or 27%				
СН	56,789	27	353.9	383.7	0.922	± 0.147 or 16%				
F	412,304	23	198.5	195.5	1.015	± 0.236 or 23%				
P	270,331	18	233.1	255.7	0.912	± 0.194 or 21%				

Table 14: Estimated VDYP7 volume impact by stratum for the population of interest defined as VT,
operable, ≥ 60 years of age and in a "contributing ownership", based on the Phase II samples. Utilization:
12.5cm+dbh net dwb.

The volume impact estimates in Table 14 are based on the Phase II compiled volumes (which have incorporated the NVAF) and unadjusted inventory volumes produced by VDYP7. The VRI ground sample data indicates that the largest volume increase as a result of the adjustment can be expected in the deciduous stratum, followed by pine in the IFPA area.

3.2.4 Sampling error

The VPIPs for the various VRI ground sampling projects in the Kamloops TSA specified target sampling errors of between 10% and 15% (at a 95% probability level). To provide an indication of the sampling error achieved in the VDYP7 adjustment process, a comparison of the overall estimated sample ground volume and the overall estimated VDYP7 unadjusted sample inventory volume was made. The overall ratio of these values and its standard error were computed using the formula for a separate ratio estimate after a prestratified PPSWR sample. The results for the population of VT, operable, ≥ 60 years of age polygons with "contributing" ownership are summarized in Table 15 below.

Table 15: Estimated adjusted VDYP7 total volume and sampling error (for a 95% confidence interval) for the Kamloops TSA based on separate ratio estimators (for the population of VT, operable, \geq 60 years of age polygons from "contributing" ownerships). Utilization: 12.5cm+dbh. Volumes are net decay, waste & breakage.

Volume	n	Total area (ha) volume (m ³)		Overall estimated total unadj'd VDYP7 inventory volume (m ³)	Overall adjustment impact Ratio	Sampling error for total adjusted volume (as % of total adjusted volume)
Overall	183	1,170,825	323,736,512	321,462,023	1.007	9.50%

The overall impact of a VDYP7 adjustment was estimated to be 1.007 with a 9.5% sampling error (at the 95% confidence level). This sampling error was within the range of targets set in the project VPIPs.

3.2.5 Inventory file adjustment for the VDYP7 statistical adjustment

The Phase I inventory files for the population of interest (VT, operable, ≥ 60 years of age, "contributing ownerships") were adjusted using the factors in Tables 9 through 13. The adjustment was performed using MoFR's VDYP7 Attribute Adjustment interface for the VDYP7 model.

Appendix H shows the volume and area distribution by age class, for the population of interest, before and after the VDYP7 adjustment. The pre- and post-adjustment comparisons are based on an inventory file projected to 2001, the median year of ground sampling.

The unadjusted total VDYP7 population volume was compared with the final adjusted total VDYP7 population volume¹⁴. The ratio of the adjusted to unadjusted VDYP7 volume in the population was 1.03, which was reasonably close to the 1.01 volume impact ratio that was estimated from the sample and shown in Table 15.

4. DISCUSSION AND RECOMMENDATIONS

This analysis combined the ground sample data from four projects (INT1, INT2, 0111 & 0112) to compute VDYP7 adjustment factors for ten separate strata within the Kamloops TSA population of interest, defined as all polygons that were Vegetated Treed, operable, ≥ 60 years of age and from "contributing" ownerships. The overall total volume impact of this adjustment was estimated to be $1.007 \pm 9.5\%$. When the adjustment was applied to the population, the adjustment resulted in a 3% increase in the overall total volume in the Kamloops TSA. The difference between the estimated volume impact (i.e. 1.007) and the actual volume impact (1.03) was relatively small and was likely due to slight differences in the sample versus population distribution.

There were two mapsheets in the Kamloops TSA that had undergone re-inventory and new polygon boundary delineation since the time of sample selection and ground sampling. Since the IPC and some portion of the auxiliary plots may have fallen in different polygons in the new inventory, plot locations were examined to determine which plots fell in the IPC polygon. Plots falling outside of the IPC polygon were excluded from

¹⁴ Sum of the polygon volumes/ha times the polygon areas. The population volumes in this comparison were based on net dwb volumes at the 12.5cm+ dbh utilization.

the analysis. As a result, the number of plots and hence the compiled volume for a particular sample may have changed compared with the compiled volume in the original project analysis.

It is recommended that the general implications of polygon boundary redelineation and the loss of auxiliary plots in ground sample compilations should be further examined.

Comparison of these results with previous interim analyses of the original individual projects (i.e. INT1 & 2, 0111 and 0112) may be difficult. For example, there are a number of factors that could contribute to compiled volume differences within a stratum including:

- Polygon boundary redelineation and resulting exclusion of auxiliary plot(s) for a given sample;
- Changes to the compiler since time of original analysis (FIZ-based to BEC-based loss factors; VBAR regression);
- Application of new TSA-wide NVAF values;
- New population of interest definitions (some original samples may have been excluded due to changes in ownership etc.);
- Addition of samples from other projects, with accompanying sample weights that may differ by several orders of magnitude compared with other stratum samples (e.g. this was the case for many of the IFPA strata).

As a result, caution must be exercised in any direct comparison of this analysis with results from previous interim analyses of the original individual projects.

In some leading species strata (e.g. fir leading and pine leading), there were substantial differences in the VDYP7 volume impact of the adjustment between the IFPA and the non-IFPA areas. In the fir leading stratum, this difference (i.e. the volume impact between the IFPA and non-IFPA areas), although quite large for VDYP7, was relatively minor for VDYP6. It is difficult to pinpoint the reasons for these differences but a number of factors could be at play including:

- The IFPA area represented 11% of the fir leading area in the TSA and only 5% of the pine leading area in the TSA. It is possible that average site conditions for this stratum in the non-IFPA portion of the TSA were not mirrored in conditions for the IFPA samples.
- Although there were more samples in the fir leading stratum in the IFPA compared with the non-IFPA, the sampling error for the estimated volume impact in the IFPA was larger, indicating a higher level of variability among the IFPA samples.
- The non-IFPA fir and pine strata had the highest proportion of samples from a V-type inventory (i.e. with a complete set of VRI attributes). On the other hand, over 80% of the IFPA samples in these leading species strata were from F-type inventories (i.e. old FIP inventories) which require VDYP7 to estimate more initial values (e.g. basal area, trees per hectare, percent forest land, etc.).
- The volume response of VDYP7 to inputs such as site height, basal area, stockability, etc. is more sensitive than for VDYP6.
- The volume impact ratios in Tables 7 and 14 not only reflect potential bias in the yield models but they also reflect bias in the underlying inventory attributes such as height and basal area that are required inputs for the yield models. Also note that VDYP7 relies, in part, on a different set of input attributes (e.g. basal area) compared with VDYP6 (e.g. crown closure). Hence it is important to be aware that the overall volume bias implied by the impact ratios in Tables 7 and 14 is influenced by bias in the inventory attributes as well as bias in the yield models.

It is recommended that further analysis be undertaken to facilitate an increased understanding of the sensitivity of VDYP7 to changes in input attributes.

Remeasurement data was also collected for 44 samples in project 0111 with the objective of looking at potential impacts of Mountain Pine Beetle (MPB). The analysis of this data was complicated by the fact that some trees were fallen for NVAF between the time of original sampling and the time of the remeasurement¹⁵. In addition, tree status (live/dead) was only collected for the integrated plot centre (IPC) and was not collected in the auxiliary plots. Hence the analysis of the remeasured data was restricted to matched tree data¹⁶ collected at the IPCs. Because of the restrictions on the analysis and some of the data inconsistencies that were observed¹⁷, the results were presented graphically at a high level. However, even with the limitations of this analysis, the impact of the MPB on these samples was dramatic.

It is recommended that more specific guidelines be developed for the collection and analysis of remeasurement data to ensure that this data will have sufficient integrity for meaningful interpretation.

¹⁵ Matt Makar, MFR, Southern Interior Region.

¹⁶ There were several cases where a tree appeared in the IPC in either the original measurement or the remeasurement but not both. These trees were excluded from the analysis and computation of statistics.

¹⁷ DBH and/or height decreasing from original to remeasurement; trees changing species from original to remeasurement; etc.

5. APPENDIX A: MAP OF SAMPLE LOCATIONS

The map (in pdf format) will be merged into the final pdf version of the report.

6. APPENDIX B: INVENTORY AND GROUND ATTRIBUTES USED IN THE ADJUSTMENT

	VDYP7 Inventory Attributes for "measurement year" (from "Kamloops inv proj 23AUG07.xls")	VDYP6 Inventory attributes for "measurement year" (from "Kamloops inv proj 23AUG07.xls" and volumes from "Kamloops inv proj 01au007.xls)
Project ID Project ID Sample List Map Sample List Map Analysis Map Analysis Map Analysis stratum Analysis stratum Analysis stratum	Ground Sample Ground Sample messurement year messurement year sp01 sp01 sp02 sp03 sp04 sp05 sp06 pct1 pct3 pct4 pct3 pct4 pct5 pct4 pct5 pct6 pct6 pct7 pct8 pct9 pct9 pct4 pct5 pct6 pct6 pct6 pct6 pct6 pct6 pct7 pct6 pct4 pct5 pce7	SPEC_CD_1 SPEC_PCT_1 SPEC_PCT_2 SPEC_PCT_2 ref_yr v6_age_prj1 v6_ht_prj2 v6_tt_prj2 v6_cr_closure stockingclass
0111 0001 0921088 463 0921088 463 NI-F 43.2 0111 0003 092P038 618 092P038 618 NI-F 14.5 0111 0005 082P033 174 082P032 309 I-S 36.7 0111 0006 082007 163 0921067 163 NI-F 13.9 0111 0007 0820044 57 0820044 57 NI-F 22.6 0111 0008 0920939 1192 092039 1192 NI-P 9.1 0111 0009 0921038 748 0921038 48 NI-P 20.0 0111 0010 0921038 718 0921038 48 NI-P 21.7 0111 0010 0921038 718 0921058 718 NI-F 21.7 0111 0014 092P040 586 092P040 686 NI-F 9.1 0111 0015	2001 V FD PL ST 70 20 10 125 26.52 125 14.433 373.09 41 380 273.37 2001 F PL SE FD BL 54 21 12 126 24.36 14.433 373.09 41 380 273.37 2001 V SE BL HW FD CW 43 30 20 5 2 94 31.2 50.48 305.66 50 300 402. 2001 V FP L S 89 1 12 7.4 12.9 22.85 20.575 12.84 109.0 15 11.9 2001 F PL AT EP FO 7.4 12 7 148 24.39 38.858 168.4 0 32.2 2001 F FD E AT 82 11 7 149 24.39 38.68 16	52 PL 60 SE 20 1995 126 24.4 125 19.2 55 1 301.8 55.5 F 43 BL 30 1997 94 31.1 94 31.5 62 0 342.9 66 FD 100 0 1996 129 22.9 75 16.3 40 1 156.5 66 PL 80 AT 10 1995 160 22.9 75 19.2 70 3 178.8 84 PL 80 AT 10 1995 106 27.6 125 19.2 70 3 331.2 84 PL 80 AT 10 1995 160 27.6 125 19.2 70 3 331.2 84 PL 90 PL 10 1996 189 30.5 145 24.3 60 1 315.7 84 FD<
0111 0016 0921093 565 0921093 565 NI-F 21.8. 0111 0017 083D004 629 083D004 629 NI-BS 28.8 0111 0018 083D014 374 083D014 374 NI-CH 19.0 0111 0019 0921094 236 0921094 236 NI-F 43.7. 0111 0020 082M034 94 082M034 94 1-P 33.5. 0111 0021 082M063 102 082M063 102 NI-F 43.7. 0111 0022 0921076 335 0921076 335 NI-F 64.21 0111 0022 0921076 335 0921076 355 NI-F 64.22 0111 0024 0921075 135 0921076 355 NI-P 21.53 0111 0024 0921077 15 092107 15 Decid 3.00 0111 0025 <td>ZO01 F S BL 70 30 211 35.37 40.482 47.85 0 398. 2001 F H CW 55 45 334 28 60.239 60.333 0 251. 2001 F H CW 55 45 334 28 60.239 60.333 0 251. 2001 F FD PL 85 15 126 2156 25.594 740.46 0 143. 2001 F PL FD 88 12 81 21.49 33.853 1304.2 0 23 2001 F PL FD PL 67 33 76 26.2 39.766 1176.2 0 308. 2001 V FD PL 67 33 76 26.2 39.766 1176.2 0 308. 2001 V FD FL S8 12.9</td> <td>L5 H 60 CW 40 1967 334 28 60 1 365.1 55 FD 80 PL 20 1995 126 21.6 125 19.2 50 1 165.6 34 PL 90 FD 10 1990 81 21.6 99 21.4 60 3 225.5 7 FD 60 PL 40 1985 76 26.2 - 70 0 271.4 77 FD 100 0 1996 85 13.3 138 20.3 25 0 32.8 27 FD 105 S 1996 131 20.3 110 2.8 70 3 127.3 27 AT 85 FL 1977 78 20.2 125 19.2 70 0 125.3 28.5 PL 45 FD 25 1967 74</td>	ZO01 F S BL 70 30 211 35.37 40.482 47.85 0 398. 2001 F H CW 55 45 334 28 60.239 60.333 0 251. 2001 F H CW 55 45 334 28 60.239 60.333 0 251. 2001 F FD PL 85 15 126 2156 25.594 740.46 0 143. 2001 F PL FD 88 12 81 21.49 33.853 1304.2 0 23 2001 F PL FD PL 67 33 76 26.2 39.766 1176.2 0 308. 2001 V FD PL 67 33 76 26.2 39.766 1176.2 0 308. 2001 V FD FL S8 12.9	L5 H 60 CW 40 1967 334 28 60 1 365.1 55 FD 80 PL 20 1995 126 21.6 125 19.2 50 1 165.6 34 PL 90 FD 10 1990 81 21.6 99 21.4 60 3 225.5 7 FD 60 PL 40 1985 76 26.2 - 70 0 271.4 77 FD 100 0 1996 85 13.3 138 20.3 25 0 32.8 27 FD 105 S 1996 131 20.3 110 2.8 70 3 127.3 27 AT 85 FL 1977 78 20.2 125 19.2 70 0 125.3 28.5 PL 45 FD 25 1967 74
0111 0026 082M042 327 082M042 327 NI-BS 302.6.6 0111 0027 082M045 418 082M045 418 NI-BS 29.2.2 0111 0028 0920087 840 0921087 840 NI-P 17.33 0111 0030 082M061 528 082M061 528 NI-BS 47.43 0111 0030 082M021 528 082M061 528 NI-BS 47.43 0111 0033 082M021 1603 082M023 559 I-CH 10.0 0111 0034 082L071 516 082L071 516 NI-F 30.8 0111 0034 082L071 516 082L071 516 NI-CH 58.4 0111 0036 082M013 533 082M013 2095 NI-CH 58.4 0111 0036 082M013 533 082M013 2095 NI-ES 16.00 0111	2001 F B S 63 37 234 25.79 36.79 828.15 381 248. 2001 F S FD AT PL 51 31 10 8 85 18.47 23.252 1127.9 0 112. 2001 V P FD C 60 40 86 17.06 86 17.07 18.06 13.1 20.01 80 30.57 12.464 90.61 12 100 100 100 17.04 69 14.6 16.65 1467 26.1 <td>29 5 50 FD 30 1986 85 18.4 99 21.4 40 0 147.7 33 PV 60 FD 40 1998 86 17 86 16.9 40 0 75.2 7.3 S 60 FD 30 1967 119 29.9 99 21.4 70 0 346.8 10 PV 95 FD 5 1996 129 24.1 103 15.5 35 1 662 L8 CW 80 HW 15 1997 140 25.4 94 21.7 65 1 270 8.8 FD 50 EP 40 1996 76 17 69 14.7 70 0 55.5 3.2 CW 80 FD 20 1992 303 99 21.4 30 1 391.6 1.1 S 8</td>	29 5 50 FD 30 1986 85 18.4 99 21.4 40 0 147.7 33 PV 60 FD 40 1998 86 17 86 16.9 40 0 75.2 7.3 S 60 FD 30 1967 119 29.9 99 21.4 70 0 346.8 10 PV 95 FD 5 1996 129 24.1 103 15.5 35 1 662 L8 CW 80 HW 15 1997 140 25.4 94 21.7 65 1 270 8.8 FD 50 EP 40 1996 76 17 69 14.7 70 0 55.5 3.2 CW 80 FD 20 1992 303 99 21.4 30 1 391.6 1.1 S 8
0111 0038 082L071 520 082L071 520 NI-F 30.81 0111 0041 082M054 162 082M054 162 NI-F 30.51 0111 0042 0921090 508 0921090 508 NI-F 33.21 0111 0042 0921090 508 0921072 1070 0921072 1070 NI-BS 33.21 0111 0044 0921072 1070 0921072 1070 NI-BS 13.61 0111 0044 0921072 1070 0921072 1070 NI-BS 13.61 0111 0044 0921073 789 092103 789 NI-F 20.92 0111 0048 082M023 34 082M023 170 I-F 20.92 0111 0052 082M044 586 082M044 586 I-B 30.41 0111 0055 0921088 252 NI-F 24.83 0111		27 FD 60 EP 20 1968 103 27.4 99 21.4 60 0 219.7 12 PL 100 0 1960 111 28.9 125 19.2 70 3 429.2 12 PL 100 0 1960 111 28.9 125 19.2 70 3 429.2 13 SE 70 BL 20 1998 209 26.6 138 20.3 50 1 187.3 13 SE 70 BL 20 1998 209 26.6 138 20.3 50 1 187.3 14 FD 48 CW 30 1995 116 23.7 12.5 19.2 20 10 127.7 15 FD 48 CW 30 1997 148 37.4 39 23.4 20 2 70.1 15 FD 1
0111 0058 083D044 56 083D044 56 NI-BS 59.07 0111 0060 092P039 307 092P039 307 NI-BS 12.1' 0111 0061 082M073 692 082M073 692 NI-BS 12.1' 0111 0062 083D054 396 083D054 396 NI-BS 33.1' 0111 0064 082M073 355 082M073 355 NI-BS 43.6' 0111 0064 082M073 355 082M073 355 NI-BS 43.7' 0111 0066 082M073 352 0921056 320 NI-P 78.7' 0111 0066 082M045 320 0921056 320 NI-P 78.7' 0111 0066 082M045 227 082M045 227 I-F 179.9' 0111 0066 082M054 319 082M054 319 NI-F 84.7' 0111 <	2004 F S PL B 73 16 11 97 30.53 48.899 1078.4 0 44.849 2004 F SE BL PL 71 16 13 119 25.29 40.703 1022.6 30.1 2004 F PL BL SE PW CW 46 32 16 3 97 23.15 42.569 132.0.9 0 290. 2004 F BL HW CW S 69 12 11 8 65 14.18 19.121 105.1 4600 56. 2004 F BL PL SE 39 199 25.09 34.023 82.02 0 224. 2001 V PL FD AT SE 50 40 5 5 109 17.77 100 16.7 5.932 528.44 5 500 17.7 2004 F F	L4 SE 70 PL 15 1995 119 25.3 125 19.2 55 0 300.2 6 PL 50 BL 30 1967 97 23.6 120 60 1 278.7 23 BL 70 VL 1094 65 14.1 200 120 33 SE 50 BL 50 1985 299 30.8 300 12 277.5 13 SE 60 BL 30 1985 199 25.6 50 1 259.8 75 PL 50 FD 40 1996 109 17.8 100 16.5 30 1 103.8 35 PL 50 PL 30 1986 118 29.5 99 21.4 70 0 342.3 35 PL 80 SE 15 1973 115 28.6 125 19.2
0111 0070 092P049 837 092P049 837 NI-F 19.6 0111 0071 0921067 371 0921067 371 NI-F 45.2 0111 0072 0921089 279 0921087 279 NI-B 16. 0111 0073 0921070 273 0921070 273 NI-P 52.1 0111 0074 082M072 357 082M072 357 08.5 149.5 0111 0076 082M073 208 082M072 357 NI-B 149.5 0111 0076 082M073 208 082M073 208 NI-F 48.4 0111 0076 082M073 208 082M073 208 NI-CH 3.7 0111 0077 083D015 335 083D015 335 NI-CH 23.7	2004 F FD CW SE 67 24 9 149 26.74 4.20.33 840.53 0 26.11 2004 V FD FL SE 85 10 5 141 23.66 112 19.5 30.895 39.32 30 400 191 2004 F FD SE BL 37 36 27 129 26.11 35.302 906.18 0 258. 2001 V PY FD SE 83 15 140 21.59 90 14.7 17.196 181.85 17 200 199. 2004 F HW CW BL 83 10 7 237 33.92 43.717 358.57 0 261. 2004 F HW B S 64 19 9 8 164 31.55 66.512 673.87 0 261.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

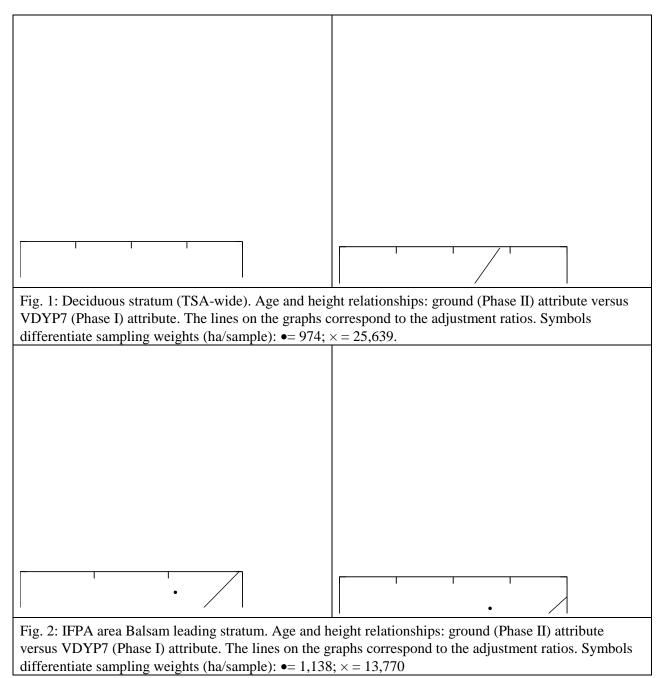
		Compiled ground sample data from "NVAF ground attribute 27JUL07.xls" (all available aux plots including "EXTRA"s)					Height and Age Case Matching																		
Project ID	Project Sample Number	NO_PLOT	SPB_CPCT @4cm+dbh	BA_HA @4cm+dbh	STEMS_HA @4cm+dbh	QMD @4cm+dbh SPB_CPCT @7.5cm+dbh BA_HA @7.5cm+dbh	STEMS_HA @7.5cm+dbh	QMD @7.5cm+dbh SPB_CPCT @12.5cm+dbh BA_HA @12.5cm+dbh	STEMS_HA @12.5cm+dbh	QMD @12.5cm+dbh	NVL_NW2 @12.5cm+dbh	NVL_NWB @12.5cm+dbh	Grd lead @ 4cm+dbh	AGE_TLS		N_AG_ILS	inve		V7 sp02	V7 case	V7 meas_age for match V7 meas_ht match	V6 lead	V6 SPEC_CD_2 V6 case	V6 meas_age for match	V6 meas_ht for match
0111 0111	0001 0003	4	Fd 100 Pl 70 Bl 26 Sx 04	20.25 37.8	368 1600	26.5 Fd 100 20.25 17.3 Pl 73 Bl 23 36.4	368 940	26.5 Fd 100 18 22.2 Pl 76 Bl 20 35	118 759	44.0 24.2	133.287 313.743	130.359 307.427	FD PLI	197.3 123.3	22.15 24.93	3 4	2 V 4 F		PL SE	1	125 26.52 126 24.36		PL 1 SE 1	125 126	26.5 24.4
0111	0005	2	Fd 58 S 25 BI 17	54	675	31.9 Fd 58 S 25 54	675	31.9 Fd 58 S 25 54	675	31.9	455.945	446.400	FD .			0	0 V		BL	3	94 31.2		BL 3	94	31.1
0111 0111	0006 0007	5 5	Fd 100 Hw 36 Cw 26 Pl 23 Fd 10 Sx 05	25.2 70.2	331 2323	31.1 Fd 100 25.2 19.6 Hw 36 Cw 70.2	331 2323	31.1 Fd 100 25.2 19.6 Hw 39 Cw 64.8	331 1637	31.1 22.4	160.925 431.633	157.300 415.016	FD HW	167.2 147.7	16.22 24.30	5 3	5 V 2 F	FD PL	s	1	129 22.85 86 17.94		1 S 3	129 86	22.9 18.1
0111	0008	4	At 67 Ep 33	7.5	150	25.2 At 67 Ep 3: 7.5	150	25.2 At 67 Ep 3 7.5	150	25.2	61.415	58.946		85.3	24.20	2	2 F		AT	5	00 17.54		AT 5		10.1
0111 0111	0009 0010	5 5	PI 91 BI 09 Fd 46 Sx 46 PI 04 At 04	39.6 43.2	1581 361	17.9 Pl 91 Bl 09 39.6 39.0 Fd 46 Sx 4(43.2	1581 361	17.9 PI 95 BI 05 36 39.0 Fd 46 Sx 44 43.2	961 361	21.8 39.0	348.267 399.014	341.265 390.309		101.5 144.9	21.55 30.97	4 3	4 F 3 V	PL FD	SE PL	1	149 24.39 189 30.49		SE 1 PL 1	149 189	24.5 30.5
0111	0010	4	BI 52 Cw 24 Sx 24	31.25	2494	12.6 BI 57 Cw 2 28.75	1113	18.1 BI 52 Cw 2 26.25	906	19.2	143.495		BL	139.0	17.58	4	3 V 4 V		SE	1	80 16.34		SE 1	80	16.1
0111	0014	5	Fd 88 PI 08 Ep 04	56	2686	16.3 Fd 90 Pl 08 54.6	2342	17.2 Fd 89 Pl 08 50.4	1610		268.709	262.743		118.9	21.76	5	5 F			1	106 23.8	FD	1	106	23.8
0111 0111	0015 0016	5 5	Sx 44 Pl 33 Fd 11 At 12 Py 58 Fd 42	32.4 12	552 125	27.3 Sx 44 PI 33 32.4 35.0 Py 58 Fd 4: 12	552 125	27.3 Sx 44 Pl 33 32.4 35.0 Py 58 Fd 4 12	552 125	27.3 35.0	294.355 69.838	287.873 68.338	SX PY	108.3 184.7	24.95 16.20	5 3	4 V 2 F	SE FD	PL PY	1 2.5	119 26.31 126 18.49		PL 1 PY 2.5	119 126	26.3 18.5
0111	0017	5		25	96	57.7 S 84 BI 16 25	96	57.7 S 84 BI 16 25		57.7	335.450	328.691	s	156.0	32.47	3	3 F	S	BL	1	211 35.37		BL 1	211	35.4
0111 0111	0018 0019	4	Hw 53 Cw 38 Fd 09 Fd 86 Pl 14	72	1109 329	28.7 Hw 53 Cw 72 21.2 Fd 86 Pl 14 11.6667	1109 329	28.7 Hw 57 Cw 67.5 21.2 Fd 100 10	525 67	40.5 43.6	450.200 100.635	425.098 98.486	HW FDI	171.5	30.40 14.00	2	2 F 1 F	H FD	CW	1	334 28 126 21.56		CW 1 PL 1	334 126	28 21.6
0111	0019	5	PI 76 Fd 16 Sx 08	11.6667 66.6	2621	18.0 Pl 78 Fd 17 64.8	2125	19.7 Pl 78 Fd 17 64.8	2125		522.645		PLI	69.1	20.60	5	1 F 5 F	PL	FD	1	81 21.49		FD 1	81	21.6
0111	0021	5	Fd 28 Ep 24 Cw 24 Hw 12 Sx 08 Pl 04	35	860	22.8 Fd 28 Ep 2 35	860	22.8 Fd 28 Ep 2 35	860	22.8	238.711		FDI	69.5	27.33	3	3 F	FD	PL	1	76 26.2	FD	PL 1	76	26.2
0111 0111	0022 0023	5	Fd 100 PL 63 Fd 37	12 16	626 435	15.6 Fd 100 11 21.6 Pl 63 Fd 37 16	381 435	19.2 Fd 100 10 21.6 Pl 63 Fd 37 16	233 435	23.4 21.6	52.924 127.845	51.772 125.119		115.4 126.6	16.75 17.30	2	2 V 3 V		SE	1	85 13.29 131 20.28	FD PL	1 SE 1	85 131	13.3 20.3
0111	0024	2	At 100	28	169	45.9 At 100 28	169	45.9 At 100 28	169	45.9	314.233	301.539	AT	61.8	28.90	1	1 F		PL	1	78 20.28		PL 1	78	20.2
0111 0111	0025 0026	4 5	Fd 62 Pl 38 Bl 69 Sx 31	22.75 46.8	612 499	21.8 Fd 62 Pl 38 22.75 34.5 Bl 69 Sx 31 46.8	612 499	21.8 Fd 62 Pl 38 22.75 34.5 Bl 69 Sx 31 46.8	612 499	21.8 34.5	155.558 474.140	152.361 464.519	FDI BL	80.5 173.9	20.83 23.63	3 5	3 V 4 F	PL B	FD S	2	70 13.6 234 25.79		FD 2 S 1	70 234	13.6 26.1
0111	0028	5	Fd 37 S 30 Pl 19 At 11 P 03	40.8	1332	16.1 Fd 37 S 30 27	1332	16.1 S 35 Fd 26 23			474.140 158.199	464.519	FD	69.2	23.03	1	4 F 1 F	S	5 FD	2.5	234 23.79 85 18.47		5 1 FD 2.5	234	18.4
0111	0028	5	Fd 80 Py 20	10	624	14.3 Fd 78 Py 2. 9	270	20.6 Fd 75 Py 2 8	186		48.140	47.117	FDI	75.3	12.95	4	4 V		FD	2	86 17.1		FD 2	86	16.9
0111 0111	0030 0032	5 5	S 41 BI 29 PI 18 Fd 12 Pv 100	47.6 17	2387 867	15.9 S 44 Bl 25 44.8 15.8 Pv 100 16	1209 628	21.7 S 48 Pl 21 40.6 18.0 Pv 100 14	729 265		346.819 77.820	339.588 76.263	S PY	135.9 100.6	23.74 17.50	5 4	5 F 4 V	S PY	B FD	1	119 29.96 129 24.09	-	B 1 FD 1	119 129	29.9 24.1
0111	0033	5	Hw 48 Cw 35 Ep 10 Pw 07	55.8	2055	18.6 Hw 47 Cw 54	1397	22.2 Hw 43 Cw 50.4		25.9	309.371	293.038	нw	140.3	26.24	5	5 V		нw	2	94 21.6		HW 2	94	21.7
0111	0034	5	Fd 68 Pl 18 Ep 09 Sx 05	30.8	872 3661	21.2 Fd 68 Pl 18 30.8 11.0 Cw 33 Hw 28	872 687	21.2 Fd 70 Pl 20 28	409 357		214.227		FD HW	80.1	22.68 10.50	4 2	4 V 1 F	FD CW	EP FD	1	76 17.04		EP 1 FD 3	76 309	17 30.3
0111 0111	0035	5	Hw 40 Cw 27 Fd 13 Ep 13 P 07 BI 48 Sx 48 Hw 04	35 50.4	1306	11.0 Cw 33 Hw 28 22.2 Bl 48 Sx 48 50.4	1306	22.8 Cw 27 Hw 25.667 22.2 Sx 56 Bl 44 43.2	493	30.2 33.4	167.287 441.515	160.271 432.324		67.1 309.0	35.43	2	1 F 3 F	S	B	3	236 34.5		FD 3 B 1	236	30.3
0111	0037	3	Fd 100	9.33333	293	20.1 Fd 100 9.33333	293	20.1 Fd 100 9.3333	293	20.1	45.571	44.590		104.7	15.20	3	3 V			1	129 22.85	FD	1	129	22.9
0111 0111	0038 0041	3 4	Fd 83 Cw 08 Ep 09 Cw 73 Fd 13 Ep 07 Hw 03 S 04	20 52.5	962 1055	16.3 Fd 82 Cw C 18.3333 25.2 Cw 73 Fd 1 52.5	372 1055	25.0 Fd 80 Cw 1 16.667 25.2 Cw 73 Fd 1 52.5	217 1055	31.2 25.2	121.699 305.331	118.883 288.294	FD CW	80.8 84.6	17.85 26.80	2	2 V 4 F	FD FD	EP FP	1	149 25.69 103 27.41		EP 1 EP 3	149 103	25.7 27.4
0111	0042	2	PI 100	45.5	1846	17.7 PI 100 45.5	1846	17.7 Pl 100 38.5	1147	20.7	425.116	416.567	PL	105.7	20.45	2	2 F	PL		1	111 28.4	PL	1	111	28.9
0111	0043	4	BI 69 Sx 31	28	754	21.7 BI 69 Sx 31 28	754	21.7 BI 67 Sx 33 26.25	453 446	27.2	192.202	188.333	BL	147.2	15.23	4	3 F 3 V	В	S BL	1	194 26.31		S 1 BL 1	194	26.8
0111 0111	0044 0047	5 5	Se 83 Bl 17 At 60 Ep 24 Fd 12 Ac 04	43.2 25	446 542	35.1 Se 83 Bl 17 43.2 24.2 At 60 Ep 2 25	446 542	35.1 Se 83 Bl 17 43.2 24.2 At 58 Ep 2 24	446	35.1 25.9	470.025 212.113	460.526 204.042	SE AT	167.5 89.6	30.20 21.07	3 4	3 V 3 F	SE FD	AT	5	209 26.54		BL 1 AT 5	209	26.6
0111	0048	5	Fd 46 Cw 43 Ep 04 Pl 04 S 03	50.4	2113	17.4 Fd 48 Cw 4 48.6	1382	21.2 Fd 50 Cw 3 46.8	1049	23.8	330.295	317.500		144.1	30.90	4	4 V		CW	1	148 37.43		CW 1	148	37.4
0111 0111	0052 0053	5 5	Bl 81 Se 19 Fd 100	31.372 1.012	2043 42	14.0 Bl 80 Se 2C 30.36 17.5 Fd 100 1.012	1780 42	14.7 BI 79 Se 21 24.288 17.5 Fd 100 1.012	806 42	19.6 17.5	150.048 2.504		BL FDI .	106.6	15.43	5	4 F 0 V	BL FD	S	1	148 17.65 129 16.66	BL FD	S 1	148 129	17.4 16.7
0111	0055	5	PI 81 BI 19	32.5	712	PI 81 BI 19 32.5	712	PI 81 BI 19 32.5	712		292.846	286.952		 129.9	26.37	3	3 F	PL	SE	1	129 22.69		SE 1	129	22.8
0111	0058	5	Fd 45 Sw 23 Cw 18 Pl 14	53.9	1411	22.1 Fd 45 Sw 2 53.9	1411	22.1 Fd 48 Sw 2 51.45	989	25.7	398.806		FD	91.4	27.35	3	2 F	5	PL	3	97 30.53	-	PL 3	97	30.4
0111 0111	0060 0061	3 5	Se 40 Bl 30 Pl 30 Pl 53 Bl 32 Sx 12 Hw 03	40.8333 42.5	2644 2643	14.0 Se 44 Pl 33 36.75 14.3 Pl 56 Bl 28 40	291 1954	40.1 Se 44 Pl 33 36.75 16.1 Pl 69 Bl 19 32.5	291 965	40.1 20.7	329.371 261.358	322.707 256.011	SE PL	123.5 84.8	31.40 24.80	1 1	1 F 1 F	SE PL	BL BL	1	119 25.29 97 23.15		PL 1 BL 1	119 97	25.3 23.6
0111	0062	4	BI 83 Cw 07 Se 07 Fd 03	29.4707	3002	11.2 Bl 84 Cw 0 26.1622	1701	14.0 BI 87 Cw 0 20.736			105.489	103.282	BL	87.5	16.43	2	4 F	BL	HW	1	65 14.18		CW 1	65	14.1
0111 0111	0063 0064	4	BI 64 Se 36 BI 62 Se 27 Cw 11	17.5 32.5	1300 1114	13.1 BI 58 Se 42 15 19.3 BI 60 Se 28 31.25	510 770	19.3 BI 55 Se 45 13.75 22.7 BI 63 Se 25 30	357 628	22.1 24.7	100.982 246.759	98.944 241.195	BL BL	222.2 117.4	20.00	1	1 F	BL SF	SE BL	1	299 30.45 199 25.09		BL 2.5 BL 2.5	299 199	30.8 25.6
0111	0064	5	Fd 40 Pl 30 Se 25 At 05	25	1209	16.2 Fd 40 Pl 3C 25	1209	16.2 Fd 50 Se 3 20			121.760	119.243	FDI	117.4	16.83	5 4	3 F 4 V		FD	2.5	100 16.7		FD 2	100	16.5
0111	0066	5	Hw 63 Cw 17 Fd 13 Se 07	58.8	4145	13.4 Hw 59 Cw 53.9	2139	17.9 Hw 53 Cw 46.55	728		301.219	287.266	HW	131.4	25.58	4	4 F	FD	PL	3	118 29.55		PL 3	118	29.5
0111 0111	0067 0068	5 5	Se 67 Pl 19 Bl 14 Cw 27 Fd 27 Hw 20 Ep 13 Pw 13	48.6 54	1233 3080	22.4 Se 67 Pl 19 48.6 14.9 Fd 29 Cw 2 50.4	1233 1351	22.4 Se 65 Pl 15 46.8 21.8 Fd 32 Cw 2 45	892 831	25.8 26.3	418.267 303.045	409.861 292.900	SE FDI	121.6 78.5	29.97 25.35	3 2	3 F 2 F	PL FD	SE PW	2.5 1	115 28.25 96 33.62		SE 2.5 PW 1	115 96	28.6 33.5
0111	0070	4	Fd 93 Ep 07	23.4375	2927	10.1 Fd 100 18.75	190	35.5 Fd 100 18.75	190	35.5	121.581	118.825	FDI	284.8	22.45	2	2 F	FD	CW	1	149 26.74		CW 1	149	26.7
0111	0071	5	Fd 100	36.75	793	24.3 Fd 100 36.75	793	24.3 Fd 100 34.3	475		232.260	227.093 219.575		222.2	21.18 22.00	5 2	5 V 2 F		PL SE	1	141 23.66 129 26.11		PL 1 FD 2.5	141 129	23.7
0111 0111	0072 0073	3 5	Fd 50 S 50 Py 100	30 16	450 354	29.1 Fd 50 S 50 30 24.0 Py 100 16	450 354	29.1 Fd 50 S 50 30 24.0 Py 100 16	450 354	29.1 24.0	224.160 91.288	219.575 89.462		63.9 66.8	22.00 17.98	4	2 F 4 V		SE FD	1	129 26.11 140 21.59		FD 2.5 FD 1	129 140	26.2 21.4
0111	0074	4	BI 88 Se 12	50	1492	20.7 Bl 88 Se 12 50	1492	20.7 Bl 86 Se 14 45.313	995	24.1	329.792	323.133	BL	118.6	18.55	4	4 F	В	S	1	177 18.38	В	S 1	177	17.6
0111 0111	0075 0076	5 4	Fd 85 At 15 Hw 53 Cw 41 Bl 06	0.77449 68	310 2185	5.6 Fd 86 At 1, 0.15886 19.9 Hw 53 Cw 68	30 2185	8.2 0 19.9 Cw 47 Hw 60	0 995	0.0 27.7	0.000 347.085	0.000	FD HW	13.4	3.42	5 0	5 V 0 F	fd? HW	cw	1	68 6.8 237 33.92	FD HW	1 CW 1	68 237	6.8 33.9
0111	0078	4	Cw 85 Se 10 Bl 05	80	2185	61.4 Cw 85 Se 1 80	2185	61.4 Cw 85 Se 1 80	270		574.074	536.998			26.50	1	1 F		н	1	164 31.55		H 1	164	31.1

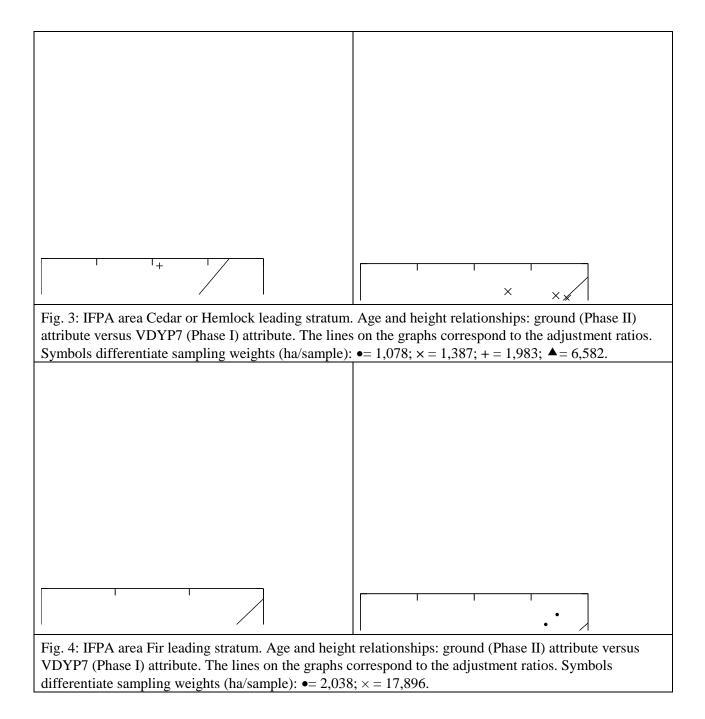
	VDYP7 Inventory Attributes for "measurement year" (from "Kamloops inv proj 23AUG07.xls")	VDYP6 Inventory attributes for "measurement year" (from "Kamloops inv proj 23AUG07.xls" and volumes from "Kamloops inv proj 01aug07.xls)
Project ID Project Sample Number Sample List Poly Analysis Map Analysis Poly Analysis stratum Polygon Area (ha)	Ground sample measurement year sp01 sp01 sp03 sp03 sp03 sp03 sp06 pc11 pc13 pc13 pc13 pc13 pc13 pc13 pc14 pc14 pc14 pc14 pc14 pc14 pc14 pc14	SPEC_CD_1 SPEC_PCT_1 SPEC_PCT_2 SPEC_PCT_2 ref_yr v6_age_prj1 v6_ht_prj2 v6_pt_dosure stockingdass v6_v0_dob @12.5cm+
C L 0111 0079 092P039 289 092P039 289 NI-BS 5.6 0111 0081 092P049 161 092P049 161 NI-F 6.1 0111 0082 092P010 770 092P010 770 NI-F 6.1 0111 0084 082L082 151 151 151 151 151 151 152 151 152 151 152 151 152 151	E E E F E F E F E F E F E F E F E F E F F S E P E F D S E P L G 3 2 2 3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
0112 0539 082M041 551 082M041 551 NI-CH 20.3 0112 0540 083D045 317 083D045 317 NI-CH 44.6 0112 0540 083D045 317 083D045 317 NI-CH 44.6 0112 0542 082M064 492 082M064 492 NI-CH 26.9 0112 0544 083D025 289 083D025 289 NI-CH 26.9 0112 0544 082M042 149 082M042 149 I-CH 43.8 INT1 0001 082M045 13 082M043 13 I-CH 43.8 INT1 0003 082M023 545 I-S 15.5 INT1 0006 082M041 109 I-CH 43.8 INT1 0005 082M023 242 082M023 1409 I-CH 5.5 INT1 0007 082M041 360 I-CH 5.2 INT1		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

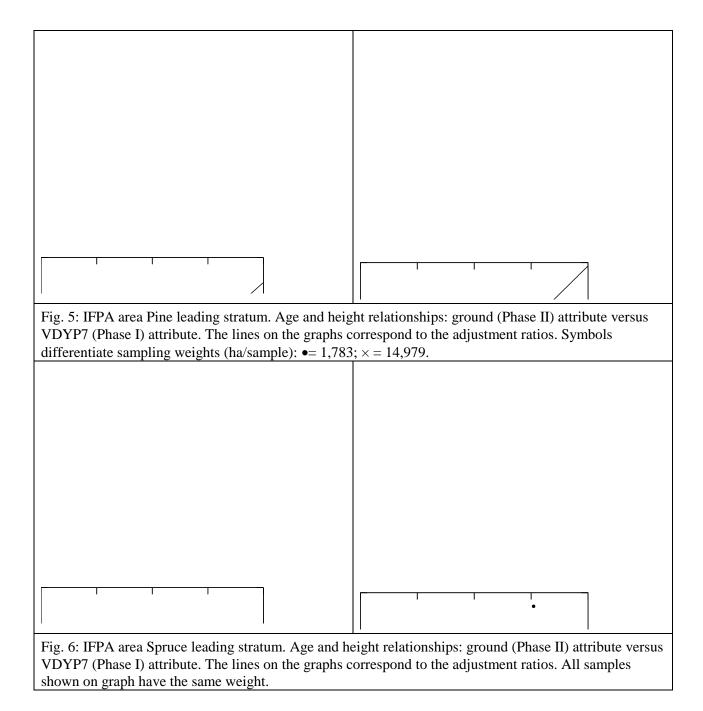
Normal Normal<				Compiled ground sample dat	a from "N	VAF gro	ound attribute 27JUL0	7.xls" (a	all available aux plot	s includ	ling "E	XTRA"'s)			Height and Age Case Matching	
bit bit <td></td> <td>Project</td> <td>ON</td> <td>SPB_CPCT</td> <td>BA_HA</td> <td>STEMS_HA</td> <td>QMD @4cm+dbl SPB_CPCT @7.5cm+ BA_HA @7.5cm+d</td> <td>STEMS_HA @7.5cm+</td> <td>SPB</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AGE_TLS HT_TLS N_AG_TLS N_HT_TLS inventory standarc V7 lead SP01 V7 sp02 V7 meas_age for mai V7 meas_lt match V7 meas_lt match V6 sPEC_CD_2 V6 meas_age for mai</td> <td>V6 meas_ht for match</td>		Project	ON	SPB_CPCT	BA_HA	STEMS_HA	QMD @4cm+dbl SPB_CPCT @7.5cm+ BA_HA @7.5cm+d	STEMS_HA @7.5cm+	SPB						AGE_TLS HT_TLS N_AG_TLS N_HT_TLS inventory standarc V7 lead SP01 V7 sp02 V7 meas_age for mai V7 meas_lt match V7 meas_lt match V6 sPEC_CD_2 V6 meas_age for mai	V6 meas_ht for match
111 000 5 7 5 7 7 7 7			-											-		36.3 30.1
bit bit <td>0111</td> <td>0082</td> <td>5</td> <td>Fd 56 Se 15 At 11 Bl 11 Ep 07</td> <td>48.6</td> <td>1076</td> <td>24.0 Fd 56 Se 1! 48.6</td> <td>1076</td> <td>24.0 Fd 58 Se 1 46.8</td> <td>883</td> <td>26.0</td> <td>433.366</td> <td>422.311 FI</td> <td>D</td> <td>131.5 35.33 4 4 F FD SE 1 123 35.31 FD PL 1 123</td> <td>35.3</td>	0111	0082	5	Fd 56 Se 15 At 11 Bl 11 Ep 07	48.6	1076	24.0 Fd 56 Se 1! 48.6	1076	24.0 Fd 58 Se 1 46.8	883	26.0	433.366	422.311 FI	D	131.5 35.33 4 4 F FD SE 1 123 35.31 FD PL 1 123	35.3
1011 0011 0 1 1 0 1 </td <td></td> <td>26.3</td>																26.3
111 000 5 7 755-1043 100 125 100 125 100 125 100 125 100 125 100 125 100 125 100 125 100 125 100 <td></td> <td></td> <td>-</td> <td></td> <td>22.5</td>			-													22.5
111 000 1 1 0 1 0 <td></td> <td></td> <td>-</td> <td></td> <td>26.5</td>			-													26.5
b11 con c con con con con con			-													22.8 27.1
1 1 2 1 2 1 2 1 2			-													23.6
1011 0020 2 P 065 2 1 0020 2 1 0 0 1 0 0 1 0 0 1 0 0 0 0	-		-	· · · · · · · · ·												23 24.5
D112 D027 1 N=100 ⁻¹ SEARCE 211 S15 N=100 ⁻¹ SEARCE N=10 ⁻¹ SEARCE SEARCE N=10 ⁻¹ SEARCE SEARCE N=10 ⁻¹	0111												299.118 P	Ľ		26.8
D112 O203 7 0 w disk 0 w disk </td <td></td> <td>21.3 31.4</td>																21.3 31.4
D112 D055 9 0 0 0 0 <td></td> <td></td> <td>-</td> <td></td> <td>23.7</td>			-													23.7
D112 O132 O 4 C 4 <thc 4<="" t<="" td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>27.0 Cw 46 Sx 2 37.333</td><td>388</td><td></td><td></td><td></td><td></td><td></td><td>21.8</td></thc>			-						27.0 Cw 46 Sx 2 37.333	388						21.8
011 0 0.00000000000000000000000000000000000																26.1 25.6
0112 013 8 0 013 0 285 51.7 (c 6 3 H w 3 5 (c 0 4 H w 3 5 (c 0 3 H w 3 5 (c 0 4 H w 3 5 (c 0 3 H w 3 5 (c 0 4 H w 3 5 (c 0 4 H w 3 5 (c 0 4 H w 3 1 H w 3 5 H w 3 H w 3 H w 3 H W 3 H H W 3 H H W 3 H H W 3 H H W 3 H H H H	0112	0511						946							269.1 36.53 4 3 F CW S 1 296 32.24 CW S 1 296	31.3
0112 015 9 Cox 2 rel 1 is 10 h/w GP h/m 7 39 225 14 at Cox 10 is 10 121																30.4
012 9 0			-													33.6 21.5
D112 O151 9 HW GR Fd 2 State M			-	Cw 63 Hw 37			15.8 Cw 59 Hw 52.8		30.0 Cw 59 Hw 52.8							25.6
D112 COSD 7 CM 81 R0 8H vol 8 10 0H Sign 2 2 M 4 Ho CV 44 Ho S 44 Ho CV 44 Ho S 44 Ho F HO L 1 223 31.00 Ho CV 4 2 31.00 Ho A 1 1 2 23 31.00 Ho A 1 22.00 Ho 31.00 Ho A 1 22.00 Ho 31.00 Ho A 1 22.00 Ho <			-													37 28.6
0122 0523 9 0.0000 Fem uk 50.00103 76.6667 67.0 38.6 0.0000 Fem uk 50.0100 8.6 6 6 6 70 1.2 23.1 1000 Fem uk 50.0100 1 21.3 1012 052.6 1.0 70 42.2 99.081 2000 1.0 8.6 8 1.0 1.0 1.0 1.2 1.1 20.2 1.0 1.0 1.0 1.2 1.1 1.0 <			-													32.7
0121 0524 7 C w 45 2 5 Bi 2 J W 2 G 16 C w 45 2 5 L M 2 B 16 C w 45 2 5 M 2 B 37 5 S 37 1.5 S 32.1 J S 23.0 2 J 1 F H W B 0. 3 1 2 2 66 H W B 1 1 23 0121 0527 4 W 80 C w 20 35 5 S 32.0 F M 2 B			-													34 30.6
0112 0537 4 i w 80 C w 20 30 51 26.3 i w 96 (w 30 51 26.3 i w 96 (w 30 52.3 i w 97 (w 40) 72 286 34.7 12.2 i 28.8 i 12.1 i 28.8 i 12.4 i 28.8 i 12.5 i 12.3 i 28.0 w 12.3 i 28.0 w 12.5 i 12.5 i 28.6 i 12.5 i 12.5 i			-													26.7
012 0530 5 h w 86 c 0 10 f 0.01 67.2 249 17.1 H w 010f (2 23.2 H W 81/f (2) 31.4 H W 10 # 32.2 H M 10 (2) 31.4 H W 10 # 32.2 H M 10 (2) 31.4 H W 10 # 32.2 H M 10 (2) 31.4 H W 10 # 32.2 H M 10 (2) 31.4 H W 10 # 32.2 H M 10 (2) 31.4 H W 10 # 32.2 H M 10 (2) 31.4 H W 10 # 32.2 H M 10 (2) 31.4 H W 10 # 32.2 H M 10 (2) 31.4 H W 10 # 32.2 H M 10 (2) 31.4 H W 10 # 32.2 H M 10 (2) 31.4 H W 10 # 32.2 H M 10 (2) 31.4 H W 10 # 32.2 H M 10 (2) 31.4 H W 10 # 32.2 H M 10 (2) 31.4 H W 10 # 32.2 H M 10 (2) 31.4 H W 10 W 10 (2) 3																31.7
012 0533 9 Hw 100 46.222 311 4.1.6 Hw 100 46.222 31 4.1.6 Hw 100 46.222 4.1 4.3 38.2 H 4.2 5.2 7.2																41.9 31.7
0112 033 6 Hw 76 Kw 22 66 241 49.1 M9 76 W 6 25. 28.3 25.7 28.3 27.0 3 F W H 2.5. 28.8 20.7 1.3 3 F W H 2.5. 28.8 27.0 1.3 3 F W D 1.5 35.2 <			-													33.9
0112 0338 9 CW S1S 2 3 2 F CW FD 1 1 3 27.2 CW FD 1 <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>32.5 36.7</td></t<>			-													32.5 36.7
0112 0540 3 C W 75 Hw 25 48 211 53.8 CW 75 Hw 48 211 23.8 Sto 23.8 Sto 22.4 Z 87.3 T 8 7 7 8 70.0 K6 Hw 42.7 S 168 57.0 CW 68 Hw 42.7 S 168 57.0 CW 68 Hw 42.7 S 168 37.0 CW 75 Hw 48 22.1 STO 21.8 Sto 3 3 5 1 130.8 Sto 20.8 CW 1 39.8 Sto 20.8 Sto 1 39.8 Sto 1 <			-													27.2
0112 0542 7 Cw 51 Hw 49 70.2857 300 54.6 Cw 51 Hw 70.2857 34.4 Hw 68 Cw 60.8 550 34.4 Hw 68 Cw 25.02 34.7 HV 70 1105 125.0 124.2 HW 10 1 304 30.7 V 71 Bl 1 31.5 50.7 V 71 Bl 1 31.7 V 7 Bl 1			-													32
0112 054 5 HW & 68 CW 32 60.8 653 34.4 HW 68 CW 60.8 657.0 283.85 262.79 CW 192.4 32.83 3 3 7 6<1 1 30.4 30.28 CW 4 1 30.4 INT1 0001 4 40.5 X AU 51 15.5 15.5 15.5 15.5 15.5 15.4 1 15.5 15.6 1 15.5 16.8 21.7 16.9 15.5 16.9 21.7 16.9 15.5 16.9 21.7 16.9 15.5 16.9 21.7 16.9 16.9 21.7 16.9 16.9 21.7 16.9 16.0 21.7 16.9 16.0 21.7 16.9 16.0 21.7 16.9 16			-													31.6 39.9
INT1 0001 35 B 6 0 S x 40 35 1095 20.2 B 1 5 7 S x 43 3 2.67 845 2.2 197.075 193.120 BL 91.9 22.8 S 2 2 F BL S 1 159 27.69 BL S 1 159 17.5 186 34.7 (W 71 B11 17.5 186 34.7 (W 71 B14 35.5 54.976 62.87.6 37.5 10.8 2.7 17.8 18.8 1.0 34.3 HW 1.0 34.8 HW 1.0 34.3 HW 1.0 34.8 HW 1.0 34.8 HW	0112															28.7
INT 0002 4 C w 71 B14 \$x 15 17.5 186 34.7 c w 71 B11 17.5 186 35.5 15.5 35.5 15.5 <td></td> <td></td> <td>-</td> <td></td> <td>29.9 27.9</td>			-													29.9 27.9
INT1 0004 3 Hw 58 Cw 42 104 227 24.1 Hw 56 Cw 100 904 37.5 Hw 56 Cw 100 90.4 S 17.1 Go 507.35 FO 11 1 V EV A 86 10.2 EP CW 4 86 10.2 EP 10.2 EP CW 4 86 10.2 EP <			-													27.2
INT1 0005 1 Fd 50 Pw 50 36 62 86.1 Fd 50 Pw 5 36 62 87.7 Tb 110 27.6 Tb 17.7 Tb 37.7 Tb 37.8 Tb 17.7 Tb 37.8 Tb 17.8 Tb 38.7 Tb 18.02 38.7 Tb 17.8 Tb </td <td></td> <td>34.3</td>																34.3
INT 0007 5 F d8 0 Hw 17 Cw 03 63 1607 22.3 Fd 80 Hw 1 63 1607 22.3 Fd 88 Hw (57.6 1140 25.4 407.794 397.87 FD 17.9 32.42 5 5 F H CW 3 105 27.6 3 H CW 3 105 27.6 3 H CW 3 105 17.0 3 3 F P PL 1 68 105 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 10.0 16.0 16.0 16.0																30.5 19.1
INT1 0009 3 Fd 58 Cw 25 Ep 13 Sx 04 72 2046 21.2 Fd 58 Cw 2 72 2046 21.2 Fd 59 Cw 2 66 1399 24.5 477.316 463.978 FD 117.9 31.23 3 3 F FD HW 1 88 28.7 FD HW 1 88	INT1	0007	5	Fd 80 Hw 17 Cw 03	63	1607	22.3 Fd 80 Hw 1 63	1607	22.3 Fd 88 Hw (57.6	1140	25.4	407.794	397.874 FI	D	173.9 32.42 5 5 F H CW 3 105 27.63 H CW 3 105	27.7
INT1 0010 5 BI 60 Sx 40 35 750 24.4 BI 60 Sx 40 35 750 24.4 BI 60 Sx 40 35 750 24.4 BI 58 Sx 42 33.6 634 26.0 24.338 239.430 BL 21.31 23.63 3 3 F S BL 2.5 312 36.15 312 36.15 36.15 36.15 36.15 36.15 36.15 36.15 36.15 36.15 36.15 36.15 36.15 36.15 36.15 36.15 36.15 36.16 36.16 36.16 36.16 36.16 36.16 36.16			-											-		19.9 28.7
INT1 0011 4 8 I7 5x 25 7 972 9.6 B I6 75 x 33 5.2 476 1.19 \$x 100 1.75 7 5.79 15.499 15.189 BL 101.8 13.70 3 3 F S BL 2.5 112 23.02 S BL 2.5 112 23.55 12.5 13.04 13.02 15.89 BL 10.18 13.20 2 2 F P PL 1 65 16.3 EP PL 1 15.75 15.85 10.04 12.55 10.85 10.04 10.85 12.55 10.05 10.18 13.20 13.85 10.18 13.00 13.85 16.25 112 13.85 10.18 13.00			-													28.7 36.3
INT1 0013 5 C w 46 Pl 25 Fd 08 Hw 08 Ep 08 Pw 05 24 923 18.2 Cw 43 Pl 2 23 531 23.5 Cw 43 Pl 2 23 510 40 CW 510 40 CW 516 19.25 2 2 F PL PD 3 91 22.27 PL FD 3 91 22.27 PL 70 31.7 PL 31.8 PL 20.6 PL 20.8 PL <td></td> <td>0011</td> <td></td> <td>BI 75 Sx 25</td> <td>7</td> <td>972</td> <td>9.6 BI 67 Sx 33 5.25</td> <td>476</td> <td>11.9 Sx 100 1.75</td> <td>7</td> <td>57.9</td> <td>15.499</td> <td></td> <td>-</td> <td>101.8 13.70 3 3 F S BL 2.5 112 23.02 S BL 2.5 112</td> <td>23</td>		0011		BI 75 Sx 25	7	972	9.6 BI 67 Sx 33 5.25	476	11.9 Sx 100 1.75	7	57.9	15.499		-	101.8 13.70 3 3 F S BL 2.5 112 23.02 S BL 2.5 112	23
INT1 0014 4 Fd 79 Py 21 42 669 28.3 Fd 79 Py 2 55 321.791 312.363 FDI 85.9 26.78 4 4 F FD 1 118 28.03 FD CW 3 109 28.33 FD CW 3 109 28.33 FD CW 3 109 28.33 FD CW 1 218 28.38 FD CW 3 109 28.33 FD CW 1 208 <th< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>16.4 22.6</td></th<>			-													16.4 22.6
INT1 0016 5 Hw 74 Fd 15 Cw 11 61.2 174 21.2 Hw 73.6 I 59.4 82.5 30.3 Hw 72 Fd : 57.6 448 40.4 466.08 Hw 173.0 33.90 2 2 F Hw CW 1 208 36.35 Hw CW 1 208 <td>INT1</td> <td>0014</td> <td>4</td> <td>Fd 79 Py 21</td> <td>42</td> <td>669</td> <td>28.3 Fd 79 Py 2: 42</td> <td>669</td> <td>28.3 Fd 79 Py 2 42</td> <td>669</td> <td>28.3</td> <td>319.049</td> <td>312.363 FI</td> <td>DI</td> <td>85.9 26.78 4 4 F FD 1 118 28.03 FD 1 118</td> <td>28</td>	INT1	0014	4	Fd 79 Py 21	42	669	28.3 Fd 79 Py 2: 42	669	28.3 Fd 79 Py 2 42	669	28.3	319.049	312.363 FI	DI	85.9 26.78 4 4 F FD 1 118 28.03 FD 1 118	28
INT1 0017 5 BI 50 \$x 50 57.6 1375 23.1 BI 50 \$x 50 <td></td> <td>-</td> <td></td> <td>28.3 36.4</td>														-		28.3 36.4
INT1 0019 3 Hw 44 Cw 22 Sx 22 Pl 12 36 6787 8.2 Hw 50 Sx 3 24 1122 16.5 Hw 40 Sx 4 20 737 18.6 116.972 114.467 HW 0 0 F CW S 3 214 37.01 CW S 3 214			-													36.4
			-		÷.								500.005	-		21.4
	INT1 INT1	0019 0020	3	Hw 44 Cw 22 Sx 22 Pl 12 Sx 43 Bl 36 Fd 14 At 07	36 31.5	6787 2549	8.2 Hw 50 Sx 3 24 12.5 Sx 46 Bl 31 29.25	1122 1195	16.5 Hw 40 Sx 4 20 17.7 Sx 55 Bl 18 24.75	737 598	18.6 22.9	116.972 160.314				36.8 25.8
INT1 0021 3 Core 60 354 15.1 Cur 26 Fd2 57 26.17 16.7 Fd2 5.0x1 48 138 2.0 200.54 1.00.7 2.0 5 1 102 102 102 102 101 2.0 1 102 102 102 101 2.0 101																24.8

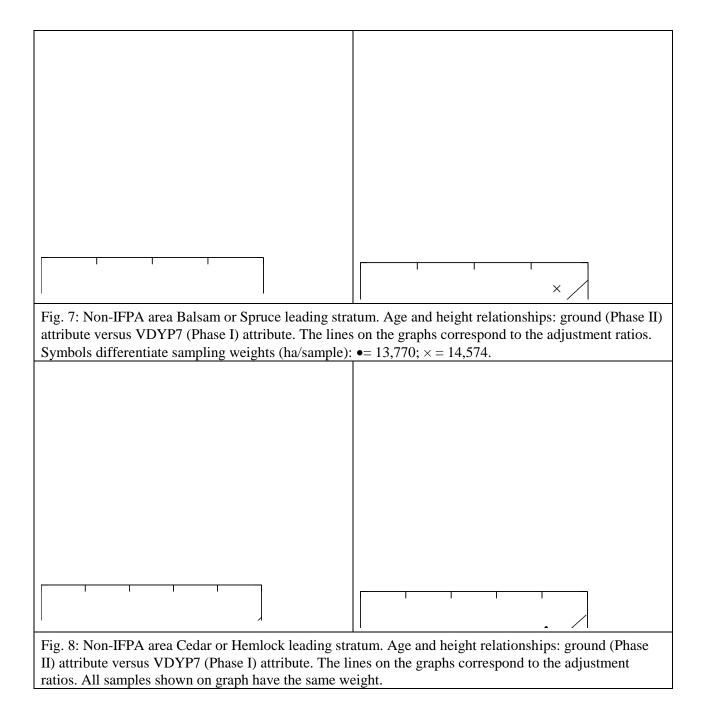
									VD	YP7 li	nvent	ory A	Attribu	ites f	or "m	neas	urem	ent	year" (1	irom "	Kam	loops	inv pro	oj 23A	UG07	.xls")						j 23Al		xls" a	nd vol	uremer lumes s)			
Project ID	Project Sample Number	Sample List Map	Sample List Poly	Analysis Map	Analysis Poly	Analysis stratum	Polygon Area (ha)	Ground sample measurement year	inventory standard		sp02 sn03	sp04	sp05	sp06 nrt1			pct4	pct5	Age_1 at	Height_1 at measurment year	Age_2 at measurement year	Height_2 at measurment year	BA @7.5cm+ at measurement year	TPH @7.5cm+ at measurement year		init_tph	VOL_DWB_125 unadjusted	SPEC_CD_1	SPEC_PCT_1		SPEC_PCT_2	ref_yr	v6_age_prj1	v6_ht_prj1	v6_age_prj2		>	128 (v6_vol_dwb @12.5cm+ dbh
INT1 INT1	0022	082M033 082M033	125 127	082M033 082M033	125 127	I-B I-S	43.02 44.85	1999 1998	F	BL S S F	L BL	FD			74 26 60 17		11			25.27 31.59			39.502 44.6			0	278. 440.		70 60		30 20	1990 1991	109 87	25.5 31.6	99 99	21.4 21.4		0	255.6 398.9
INT1	0024	082M003	246	082M003	246	I-S	45.48	1998	F	S E					55 45	5			206	27.54			35.716	653.1	8	0	264.	6 S	60	В	40	1992	206	27.5	69	15.2	40	1	271.4
INT1 INT1	0025 0026	082M034 082M013	233 519	082M034 082M013	233 519	I-S Decid	63.4 16.23	1999 1998	F	S E AT F	il D EP	PL			54 46 39 28	5 3 24	9			33.38 20.59			43.447 29.409			0	384. 150.		60 40		40 30	1990 1990	259 63	33.4 20.6	99 33	21.4 12		1 0	381 134.7
INT1	0027	082M011	491	082M011	491	I-F	13.39	1998	F	FD S					62 19	9 19				32.63			47.463			0	445.		60	S	20	1990	168	32.6	69	15.2		1	441.8
INT1 INT1	0028 0029	082L082 082M002	229 717	082L082 082M002	229 717	I-S I-B	95.38 50.48	1998 1998	F	S E BL S		/			64 22 91 9					31.54 25.25			35.279 34.918	482. 689.4	-	0	288. 227.	2 S 7 BL	70 90		20 10	1992 1992	156 170	31.5 25.3	69 69	15.2 15.2		1 1	316.9 243.6
INT1	0030	082M044	54	082M044	54	I-S	86.86	1998	F	S E	۱L				54 46				290	37.46			41.261	475.0	7	0	379.	4 S	60	BL	40	1968	290	37.5	99	21.4	60	1	436.2
INT1 INT1	0031 0032	082L082 082M001	351 565	082L082 082M001	351 565	Decid I-B	64.6 27.51	1998 1998	F	EP 0 B 5	W FD				44 38 72 28				118 138	25.7 24.81			28.989 29.436	1019. 641.2		0	200.	-	50 70		30 30	1990 1990	118 138	25.6 25	69 69	15.2 15.2		1 1	255.3 221.7
INT1	0033	082M002	508	082M002	508	I-S	6.8	1999	F	EP S					55 45	5				18.65			25.522	1299.		0	108.	1 S	50	EP	50	1990	69	18.6	69	15.2	70	0	126
INT1 INT1	0034 0035	082M023 082L092	11 26	082M023 082L092	249 26	I-S I-CH	8.09 101.38	1998 1998	V F	SE E CW E		AT S			65 20 45 25		5 9			29.09 22.79	131	22.1	. 39.973 42.533) 750 0	310. 236.		65 40		20 30	1997 1990	151 188	29.1 22.4	131 69	22.1 15.2		1 1	197.8 270.7
INT1	0036	082M011	131	082M011	131	I-F	19.97	1998	F	FD /	T S	PL			41 20	20	19		118	31.12			41.979			0	359.	1 FD	40	S	20	1990	118	31.1	69	15.2	60	0	377.4
INT1 INT1	0037 0038	082L092 082M022	409 445	082L092 082M022	409 445	I-F I-B	7.17 6.56	1998 1999	F	FD 0 B 5	W AT				70 12 72 17	2 10 7 6				27.88 21.95			41.501 35.113	862.2	-	0	288. 195.	3 FD 4 B	70 70		10 20	1990 1990	128 139	27.9 22	69 33	15.2 12		1 1	317.6 201.3
INT1	0039	082L082	140	082L082	140	I-F	47.1	1998	F	FD E					70 15		5			30.67			33.86			0	264.	5 FD			15	1968	100	30.7	69	15.2		0	253.7
INT1 INT1	0040 0041	082M053 082M043	547 456	082M053 082M043	547 456	I-F I-CH	77.29 34.25	1999 1998	F		W H	PW			67 27 50 31		2			34.63 25.92			65.076 47.941			550 0	550 294	4 FD 4 HW			22 30	1987 1968	104 115	34.6 26	99 99	21.4 21.4		0	477.8 306.4
INT1 INT1	0041	082M043	456 168	082M043	456 1700	I-CH	10.29	2000	V	CW E					47 43				53	25.92 5.4	48	8.5		. 998.5 . 7.6		10667	294.	0 CW				1968	53	5.3	48	8.7		0	37.4
INT1	0043 0044	082M044	279 373	082M044	279 373	I-P I-B	20.93	2000	F		D SE				55 34 66 19					19.81			32.867		-	0	188. 25.	7 PL			30 20	1990 1990	67	19.9	99 69	21.4	,,,	0	182.1
INT1 INT1	0044	082L091 082M001	373 183	082L091 082M001	183	I-B I-F	3.81 69.74	2000	F	B S FD F		/			66 19 75 20					31.43 32.11			3.0653 34.744		-	0	25. 324.		70 70	-		1990 1992	210 104	31.8 32.1	69 69	15.2 15.2		0	152.3 370.3
INT1 INT1	0046 0047	082M002 082M033	181 408	082M002 082M033	181 408	I-F	65.46 12.98	2000 1998	F	FD /	T PL	нw			92 4 37 35		11			21.99 30.39			30.989 65.112			0	164. 388.					1990 1990	80 208	22 30.4	69 99	15.2 21.4		0 1	167.2 415.7
INT1 INT1	0047	082M033	408 571	082M033	408 571	I-F	20.9	1998	F		U S (T PL	ΠVV			57 35 63 20		11			28.71			42.187			0	321.		40 60		20	1990	1208	28.7	99 99	21.4		0	294.4
INT1	0050	082M011	781	082M011	781	I-P	76.24	2000	F	PL F	-				76 24	-				16.92			29.648			0	132.					1992	71	17	69	15.2		0	138.3
INT1 INT1	0051 0052	082M054 082M043	415 77	082M054 082M043	415 77	I-CH I-F	94.32 172.55	2000 2000	F		W FD	-	PW		51 23 52 25		8 10	8		31.64 35.14			60.83 56.496		-	0 445	413. 585.	5 HW 7 FD				1968 1968	272 97	31.6 35	99 99	21.4 21.4		1 0	431.3 448.2
INT1	0053	082M033	94	082M033	94	I-F	32.68	2000	F		W HV	V EP	PL		37 23		10	8	90	25.92			37.344			0	214.	9 FD				1990	90	25.9	99	21.4		0	266.8
INT1 INT1	0054 0055	082M023 082M033	23 566	082M023 082M033	1777 566	I-F I-F	9.79 16.28	2000 2000	V F		W AT	/ EP				32 515	11		99 160	31.65 24.7	99	21.5	48.965 34.688			3 1333 0	399. 187.	6 FD 1 FD			-	1997 1990	99 160	31.7 24.7	99 99	21.4 21.4		0 1	255.6 220.1
INT1	0056	082M001	853	082M001	853	I-F	6.68	2000	F	FD F	-				86 14	-				16.98			24.058		-	0	84.	6 FD	80		20	1990	70	17	69	15.2		0	103.6
INT1 INT1	0057 0058	082M003 082M013	254 17	082M003 082M013	254 17	I-S I-F	54.9 15.54	2000 2000	F	S E FD (W EP				77 23 76 13	-			210 140	28.7 37.2			38.263 49.842		-	0	305. 494.	5 S 8 FD	80 80	-		1990 1990	210 140	28.7 37.2	69 33	15.2 12	50	1	315.7 389
INT1	0059	082L093	338	082L093	338	I-CH	75.57	2000	F	CW E	P AC	FD	AT		47 27	79		8	98	20.52			32.514	1327.	9	0	182.	9 CW	40	EP	30	1992	98	20	69	15.2	60	0	168
INT1 INT1	0060 0061	082M012 082M011	312 51	082M012 082M011	1928 51	I-F I-P	3.61 180.21	2000 2000	V F	FD F PL	L EP	AT			80 15 00	5 4	1			27.81 24.31	73	26.4	33.263 40.412			2 655	265. 33		80 100	PL	15 0	1997 1992	73 73	27.8 24.4	73 69	26.5 15.2	, ,	0	317 299.5
INT1	0062	082M011	146	082M011	146	I-S	6.08	2000	F	S /	T EP	FD			38 29	23	10		140	28.18			39.598	880.0	4	0	286.	1 S	40		30	1990	140	28.2	69	15.2	70	1	267.8
INT1 INT1	0063 0064	082M053 082M011	587 770	082M053 082M011	587 770	I-B Decid	23.28 8.67	2000 2000	F	BL S	P FD				63 37 68 21	7 1 11				26.53 19.39			38.461 20.119			0	290. 79.	7 BL 8 AT	60 70	-	40 20	1990 1990	210 80	26.7 19.3	99 69	21.4 15.2		1	275.7 97.9
INT1	0065	082M011	715	082M011	1254	I-F	10.11	2000	v	FD					00 21				128	25.6			45.363				284.	7 FD	100		0	1997	128	25.6	156	17.1		1	224.5
INT1 INT1	0066 0067	082M045 082L082	250 308	082M045 082L082	250 308	Decid I-F	136.97 68.61	2000 2000	F		L S W EP	CW	FD		36 21 78 12		13	10	94 142	25.8 27.75			35.328 30.949			0	220. 209.	3 AT 4 FD	40 80		20 10	1986 1968	94 142	25.7 27.7	99 69	21.4 15.2		1 1	223.5 225.6
INT1 INT1	0067	082L082 082M012	308 115	082L082 082M012	308 249	1-F	11.63	2000	V		W EP	PW	BL				10	5		34.28	153	24.3	30.949 45.678				380.	4 FD 5 FD				1968 1997	142 153	34.3	153	24.2		1	225.6
INT1 INT1	0069 0070	082M023 082M002	337 560	082M023 082M002	925	Decid I-S	8.24	2000 2000	V F	EP F S E	D CV	/ AT				5 10 2 17	5			16.53	48	15.4) 800 0	170. 399.	4 EP 4 S	70 50		15 30	1997 1960	48 110	16.6 29.3	48 69	15.6 15.2		0 0	63.2 322.5
INT1 INT1	0070	082M002	84	082M002 082M002	560 84	I-S I-F	78.64 74.49	2000	F		T PL				51 32 83 9					29.35 26.62			45.565 38.399			0		4 S 8 FD			30 10	1960 1990	75	29.3 26.6	69 69	15.2		0	238.9
INT1	0072	082M002	235	082M002	235	I-F	28.02	2000	F	FD	-			-	00					25.16			27.672	545.	-	0	176.	7 FD	100		0	1990	120	25.2	69	15.2		0	185.6
INT1 INT2	0073 0001	082M011 082M002	758 404	082M011 082M002	758 404	I-F I-B	36.1 30.65	2000 2003	F	FD A B S					71 29 83 17					22.42 26.91			17.499 40.037	448.3 831.0		0	92 269	4 FD 6 B	70 80		30 20	1990 1968	100 185	22.4 27.6	69 69	15.2 15.2	20 50	0 1	109.5 309.5
INT2	0002	082M002	152	082M002	152	I-P	65.01	2003	F	PL S	В					1 21				17.45			34.445			0	159.	4 PL	50		30	1990	88	17.6	69	15.2		3	155.1
INT2 INT2	0003 0004	082M022 082M023	431 294	082M022 082M023	431 821	I-B I-S	13.56 9.7	2003 2003	F V	B S SE E	iL.				54 46 78 22				138 203	23.37 31.9	146	25.5	35.734 47.551			0 3 567	250. 395.	2 B 1 SE	50 78		50 22	1990 1997	138 203	23.5 32	33 146	12 25.7	50 50	1 1	231.2 268
INT2	0005	082M022	512	082M022	512	I-B	86.5	2003	F	в				;	82 18	3			200	22.25	2.0		30.305	733.5	5	0	169.	8 B	80	s	20	1992	200	22.2	33	12	30	1	210.5
INT2 INT2	0006 0007	082M003 082M042	306 126	082M003 082M042	306 812	I-S I-S	11.19 62.64	2003 2003	F	S E S E					56 44 77 23					26.01 28.67			36.38 38.125			0	24 303.	-	60 80	B B	40 20	1990 1992	213 241	26 28.7	69 99	15.2 21.4	50 50	1 1	262.3 314.7
INT2	0008	082M034	132	082M034	132	I-B	6.76	2003	F	BL S					74 26	5			212	21.77			37.288	1058.	3	0	205.	1 BL	70	S	30	1991	212	21.7	99	21.4	60	1	215.7
INT2 INT2	0009 0010	082M022 082M012	390 425	082M022 082M012	390 734	I-B I-P	104.67 40.79	2003 2003	F V	BL S PL E	E L SE	FD			73 27 40 35		5			17.38 21.63	154	171	17.652			7099) 1033	82. 221.	8 BL 6 PL	70 40		30 35	1992 1997	80 156	17.1 21.7	33 156	12 17.1		0 1	127.9 160.3
INT2 INT2	1111	08210012 082L081	425 86	082L081	734 86	1-P 1-S	40.79 98.33	2003	F	S E					40 35 71 29		ر ر			30.84	130	. 17.1		535.5		0 1055	221.		40 74			1997	203	30.8	69	17.1		1	312.5

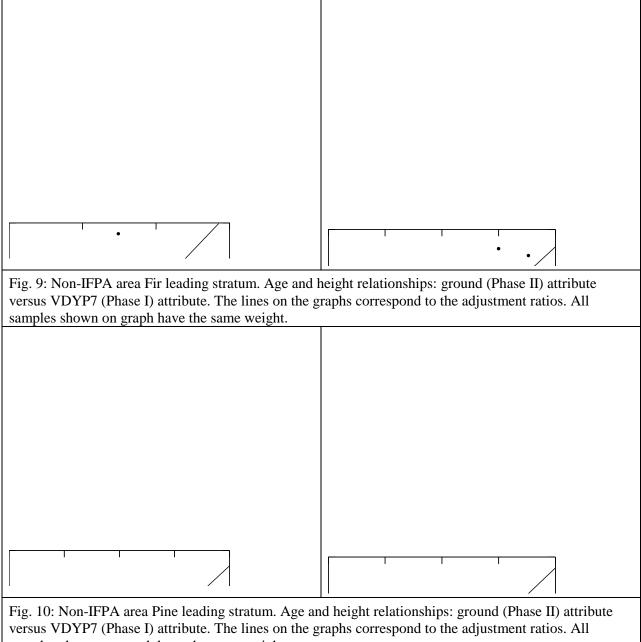
		Compiled ground sample data from "NVAF ground attribute 27JUL07.xls" (all available aux plots including "EXTRA"s)											Height and Age Case Matching												
Project ID	Project Sample Number	NO_PLOT	SPB_CPCT @4cm+dbh	BA_HA @4cm+dbh	STEMS_HA @4cm+dbh	QMD @4cm+dbh SPB_CPCT @7.5cm+dbh BA_HA @7.5cm+dbh	STEMS_HA @7.5cm+dbh	QMD @7.5cm+dbh SPB_CPCT @12.5cm+dbh BA_HA @12.5cm+dbh	STEMS_HA @12.5cm+dbh	QMD @12.5cm+dbh	NVL_NW2 @12.5cm+dbh	NVL_NWB @12.5cm+dbh	Grd lead @ 4cm+dbh	-	ht_tls N AG TLS		inventory standard	V7 lead SP01	4	v7 uase V7 meas_age for match	77	V6	V6 case	V6 meas_age for match	V6 meas_ht for match
INT1 INT1	0022 0023		BI 81 Sx 19 Sx 78 BI 22	36 31.5	1163 440	19.9 Bl 81 Sx 19 36 30.2 Sx 78 Bl 22 31.5	1163 440	19.9 Bl 81 Sx 19 36 30.2 Sx 78 Bl 22 31.5	1163 440	19.9 30.2	211.340 258.043	207.085 B 252.797 S	x	82.1	27.25	2	2 F		S PL	1	09 25.27 BL 87 31.59 S	S PL	1 1	109 87	25.5 31.6
INT1 INT1	0024 0025	5 3	BI 61 Sx 39 Sx 57 BI 43	50.4 16.3333	2486 455	16.1 BI 59 Sx 41 48.6 21.4 Sx 57 BI 43 16.3333	1909 455	18.0 BI 52 Sx 48 41.4 21.4 Sx 57 BI 43 16.333	582 455	30.1 21.4	316.251 84.316	309.903 B 82.626 S							B BL	2.5 2 1 2	06 27.54 S 59 33.38 S	B BL	2.5 1	206 259	27.5 33.4
INT1	0026	5	Pl 36 Fd 29 Sx 21 Cw 14	14	1587	10.6 Pl 42 Fd 33 12	346	21.0 Pl 42 Fd 33 12	346	21.0	81.594	79.697 P	۲L	64.1	18.40				FD	4.5 .	. AT	FD	5.		
INT1 INT1	0027 0028	5 5	Fd 61 Pl 18 Bl 14 Sx 07 Bl 60 Sx 24 Ac 12 Cw 04	50.4 25	1782 292	19.0 Fd 59 Pl 19 48.6 33.0 Bl 60 Sx 24 25	966 292	25.3 Fd 60 Pl 20 45 33.0 Bl 60 Sx 24 25	566 292	31.8 33.0	405.180 183.465	396.769 F 179.354 B				2 2		FD S	S B		58 32.63 FD 56 31.54 S	S B	1 2.5	168 156	32.6 31.5
INT1	0029	5	BI 100	34.2	1243	18.7 BI 100 30.6	346	33.5 BI 100 30.6	346	33.5	235.504	230.768 B							S	1 1		S	1	170	25.3
INT1 INT1	0030 0031	5 5	Hw 58 Cw 29 Sx 08 Bl 05 Cw 53 Fd 25 Ep 09 Pl 06 Sx 07	68.4 44.8	1326 1644	25.6 Hw 58 Cw 68.4 18.6 Cw 55 Fd 2 43.4	1326 1132	25.6 Hw 56 Cw 64.8 22.1 Cw 55 Fd 2 40.6	990 839	28.9 24.8	427.920 244.575	408.820 H 235.323 C	IW W					S EP	BL	3 2 5	90 37.46 S EP	BL CW	3 5.	290	37.5
INT1	0032	3	BI 75 Sx 17 Cw 08	28	205	41.7 BI 75 Sx 17 28	205	41.7 BI 75 Sx 17 28	205	41.7	227.588	222.827 B					2 F		s		38 24.81 B	s	1	138	25
INT1 INT1	0033 0034	3 3	PI 100 Sx 57 BI 14 Cw 14 Ac 07 Hw 08	25 42	789 3514	20.1 Pl 100 25 12.3 Sx 50 Bl 17 36	789 496	20.1 Pl 100 25 30.4 Sx 50 Bl 17 36	789 496	20.1 30.4	176.531 257.352	172.981 P 250.433 S				3 3			S BL	4.5. 1 1	. S 51 29.09 SE	EP BL	3 1	69 151	18.6 29.1
INT1 INT1	0034	5	Hw 45 Cw 36 Fd 09 Sx 10	42 15.4	3514 1641	12.3 SX 50 BI 17 36 10.9 Hw 56 Cw 12.6	496	18.4 Hw 63 Cw 11.2	496 301	30.4 21.7	45.252	43.136 H					2 V 4 F	CW	BL		51 29.09 SE 88 22.79 CW	B	3	181	29.1
INT1	0036	3	Fd 65 Sx 24 At 11	51	545	34.5 Fd 65 Sx 2 ⁴ 51	545	34.5 Fd 65 Sx 2- 51	545	34.5	459.347	448.682 F				1 :		FD	AT		18 31.12 FD	S	1	118	31.1
INT1 INT1	0037 0038	3 5	Fd 100 Bl 90 Sx 07 Fd 03	8.33333 58.8	637 3830	12.9 Fd 100 6.66667 14.0 Bl 90 Sx 08 54.6	204 2513	20.4 Fd 100 6.6667 16.6 Bl 88 Sx 09 46.2	204 1401	20.4 20.5	43.572 279.428	42.651 F 273.805 B	DI BL			1 :		FD B	cw s		28 27.88 FD 39 21.95 B	CW S	1 1	128 139	27.9 22
INT1	0039	5	Cw 79 Fd 11 Ep 10	26.6	985	18.5 Cw 78 Fd 1 25.2	641	22.4 Cw 78 Fd 1 25.2	641	22.4	127.896	121.699 C	w	129.6	24.20	3	3 F	FD	EP	3 1	00 30.67 FD	AT	3	100	30.7
INT1 INT1	0040 0041	5 5	Fd 74 Hw 17 Cw 09 Fd 33 Cw 22 Ep 11 Ac 11 Hw 11 Pw 12	55.2 12.6	1038 989	26.0 Fd 74 Hw 1 55.2 12.7 Fd 43 Cw 2 9.8	1038 266	26.0 Fd 77 Hw : 52.8 21.7 Fd 50 Cw 3 8.4	785 110	29.3 31.2	433.063 72.141		DI DI			5 !		FD HW	CW CW		04 34.63 FD 15 25.92 HW	CW CW	1 3	104 115	34.6 26
INT1	0041		Cw 83 Bl 17	144	20085	9.6 Cw 80 Bl 2 120	4995	17.5 Cw 100 96	957	35.7	519.022	476.122 C		270.9 .					BL		53 5.4 CW	BL	1	53	5.3
INT1	0043 0044	4 4	PI 87 S 07 Hw 06	26.25	1775 392	13.7 PI 93 S 07 24.5	982 392	17.8 PI 93 S 07 24.5	982	17.8	182.715	179.043 P	PLI				4 F 0 F		FD S		57 19.81 PL	FD	1	67	19.9 31.8
INT1 INT1	0044	4 5	S 56 BI 44 PI 76 At 19 Fd 05	33.75 29.4	392 551	33.1 S 56 BI 44 33.75 26.1 PI 76 At 19 29.4	392 551	33.1 S 56 BI 44 33.75 26.1 PI 76 At 19 29.4	392 551	33.1 26.1	292.433 255.976	286.560 S 249.829 P	, PLI	150.4 . 108.9		1 (• •		-	2.5 2 2.5 1	10 31.43 B 04 32.11 FD	S PL	2.5 2.5	210 104	31.8
INT1	0046	4	Fd 84 S 12 Pl 04	56.25	3637	14.0 Fd 83 S 13 54	2915	15.4 Fd 79 S 16 42.75	1449	19.4	267.619	262.000 F				4 4			AT	-	80 21.99 FD	AT	1	80	22
INT1 INT1	0047 0049	5	Hw 57 Cw 43 Cw 50 Fd 17 Pw 17 Ep 16	14 16.8	332 757	23.2 Hw 57 Cw 14 16.8 Cw 55 Pw 15.4	332 347	23.2 Cw 50 Hw 12 23.8 Cw 60 Pw 14	119 137	35.8 36.1	81.239 94.918	77.239 H 91.181 C	W W			2 2			FD AT		08 30.39 FD	CW PL	3	208 120	30.4 28.7
INT1	0050	4	BI 46 S 23 Cw 19 PI 12	58.5	4310	13.1 BI 43 S 26 51.75	1599	20.3 BI 43 S 26 51.75	1599	20.3	340.548	331.787 B		124.1		3 2			FD	-	71 16.92 PL	FD	3	71	17
INT1 INT1	0051 0052	4	Hw 94 Cw 06 Fd 38 Cw 31 At 12 Hw 12 Pw 04 S 03	69.75 36.4	2287 574	19.7 Hw 93 Cw 67.5 28.4 Fd 38 Cw 3 36.4	1629 574	23.0 Hw 93 Cw 60.75 28.4 Fd 38 Cw 3 36.4	824 574	30.6 28.4	449.397 286.206	428.558 H 277.177 F	IW DI			4 :	1 F 4 F		CW PW		72 31.64 HW	CW PW	1	272 97	31.6 35
INT1	0053	-	Fd 53 Cw 41 Ep 06	59.5	4964	12.4 Fd 60 Cw 3 52.5	1460	21.4 Fd 63 Cw 3 47.25	883	26.1	357.678	345.735 F		193.0 .		2 (cw		90 25.92 FD	HW	1	90	25.9
INT1 INT1	0054 0055	2	Fd 83 Cw 17 Cw 44 Fd 24 Pl 20 Ep 12	36 35	707 2042	25.5 Fd 83 Cw 1 36 14.8 Cw 46 Fd 2 33.6	707 1121	25.5 Fd 83 Cw 1 36 19.5 Cw 48 Pl 2 32.2	707 835	25.5 22.2	312.031 193.047	305.192 F 185.448 C	DI		20.50	2 2			CW CW	1	99 31.65 FD	CW CW	1	99 160	31.7 24.7
INT1 INT1	0055	3	CW 44 Fd 24 Pl 20 Ep 12 Fd 100	35 46.6667	2042	14.8 CW 46 Fd 2 33.6 15.1 Fd 100 43.3333	1788	19.5 CW 48 P12 32.2 17.6 Fd 100 40	1073	22.2	239.783		DI			3 3			CVV PL		70 16.98 FD	PL	2.5	70	24.7
INT1	0057	5	BI 100	23.4	590	22.5 BI 100 23.4	590	22.5 BI 100 23.4	590	22.5	156.311	153.140 B				3		-	-	2.5 2		В	2.5	210	28.7
INT1 INT1	0058 0059	4	Fd 57 Cw 40 Hw 03 Fn 48 Fd 19 Cw 16 Pl 10 At 07	52.5 31	1388 2164	21.9 Fd 59 Cw 3 50.75 13.5 Ep 50 Fd 1 26	725 403	29.8 Fd 59 Cw 3 50.75 28.7 Fp 50 Fd 1 26	725 403	29.8 28.7	351.025 207.484	340.399 F 200.223 F				3 4			CW FP	1 1	40 37.2 FD	CW EP	1	140	37.2
INT1	0060	4	Ep 46 Fd 43 Pl 07 Cw 04	49	1654	19.4 Ep 46 Fd 4. 49	1654	19.4 Ep 46 Fd 4 49	1654	19.4	309.934	300.773 E				0 0		FD	PL	5.	. FD	PL	5.		
INT1 INT1	0061 0062	5 2	Fd 53 S 37 Pl 05 Cw 05 Ac 36 S 36 Bl 18 At 10	45.6 49.5	1824 1733	17.8 Fd 53 S 37 45.6 19.1 Ac 36 S 36 49.5	1824 1733	17.8 Fd 56 S 38 38.4 19.1 Ac 44 Bl 22 40.5	834 644	24.2 28.3	294.894 400.859		DI					PL S	AT	3 5.	73 24.31 PL . S	AT	3 5.	73	24.4
INT1	0063	5	BI 65 S 35	41.4	488	32.9 BI 65 S 35 41.4	488	32.9 BI 65 S 35 41.4	488	32.9	369.292	361.866 B				2 2			s		10 26.53 BL	s	1	210 .	26.7
INT1 INT1	0064 0065	3 3	Fd 60 At 20 Ep 20 Fd 100	23.3333 21	531 184	23.7 Fd 60 At 2(23.3333 38.2 Fd 100 21	531 184	23.7 Fd 60 At 21 23.333 38.2 Fd 100 21	531 184	23.7 38.2	164.975 153.289	160.349 F 149.490 F	DI			1 2		AT FD	EP	5. 1 1	. AT 28 25.6 FD	EP	5. 1		25.6
INT1 INT1	0065	3 5	Fd 100 Cw 62 Fd 15 S 08 Pl 04 At 04 Pw 04 Hw 03	21 36.4	184 2019	38.2 Fd 100 21 15.1 Cw 60 Fd 1 35	184 1360	38.2 Fd 100 21 18.1 Cw 58 Fd 1 33.6	184 1220	38.2 18.7	153.289 160.154	149.490 F 154.086 C				4 4			BL	1 1 4.5.	28 25.6 FD . AT	s	1 5.	128	20.0
INT1	0067	4	Cw 43 Fd 24 Ep 14 At 10 Pl 09	36.75	880	23.1 Cw 43 Fd 2 36.75	880	23.1 Cw 40 Fd 2 35	572	27.9	259.725	250.661 C	w	79.8		1			cw		42 27.75 FD	CW	2.5	142	27.7
INT1 INT1	0068 0069	5 5	S 25 Cw 20 Fd 20 Hw 20 Bl 10 Pw 05 Ep 50 Fd 39 Cw 11	36 18	472 725	31.2 S 25 Cw 21 36 17.8 Ep 50 Fd 3 18	472 725	31.2 S 25 Cw 2 36 17.8 Ep 50 Fd 3 16	472 442	31.2 21.5	261.706 103.663	254.168 S 100.214 E	P .	92.9		3 3			CW FD		53 34.28 FD 48 16.53 EP	CW FD	3 1	153 48	34.3 16.6
INT1	0070	5	BI 50 S 50	39.2	711	26.5 BI 50 S 50 39.2	711	26.5 BI 50 S 50 39.2	711	26.5	250.350	245.326 S			18.70	1 :	1 F	S	В	1 1	10 29.35 S	в	1	110	29.3
INT1 INT1	0071 0072	5 5	Fd 77 S 10 Ep 05 Pl 05 Cw 03 Fd 100	54.6 46.2	1419 1046	22.1 Fd 77 S 10 54.6 23.7 Fd 100 46.2	1419 1046	22.1 Fd 81 Ep 0 51.8 23.7 Fd 100 44.8	1061 920	24.9 24.9	383.277 323.588		DI				5 F 4 F	FD . FD	AT		75 26.62 FD 20 25.16 FD	AT	1 1	75 120	26.6 25.2
INT1	0073	2	At 100	2.43641	50	24.9 At 100 2.43641	50	24.9 At 100 2.4364	50	24.9	16.392	15.736 A	Т	58.1	12.10	2 2			AT	5.	. FD	AT	5.		
INT2 INT2	0001 0002	2 4	BI 80 Se 20 BI 43 PI 29 Se 28	45 42	3714 2692	12.4 BI 78 Se 22 40.5 14.1 BI 38 PI 31 39	1422 1866	19.0 BI 75 Se 25 36 16.3 PI 40 BI 30 30	549 617	28.9 24.9	234.248 217.033	229.558 B 212.671 B				2 2		B PL	-		85 26.91 B 88 17.45 PL	s s	1 3	185 88	27.6 17.6
INT2 INT2	0002	4 5	Se 67 Bl 33	42	1102	20.4 Se 67 Bl 33 36	1866	20.4 Se 64 Bl 36 33.6	803	24.9	237.833	233.068 S				5 1			s		38 17.45 PL 38 23.37 B	s	3 2.5	88 138	23.5
INT2	0004	4	Se 67 Bl 33	47.25	724	28.8 Se 67 Bl 33 47.25	724	28.8 Se 67 Bl 33 47.25	724	28.8	377.685	370.106 S				3			BL	1 2		BL	1	203	32
INT2 INT2	0005 0006	5 4	BI 50 Se 50 BI 73 Se 27	19.6 45.5	1659 2932	12.3 Se 54 Bl 46 18.2 14.1 Bl 71 Se 29 42	738 1041	17.7 Se 64 Bl 36 15.4 22.7 Bl 68 Se 32 38.5	350 460	23.7 32.6	100.007 314.199	97.998 B 307.894 B		114.3 162.2	9.70 26.50	1 :	1 F	B S	S B	1 2 2.5 2		S B	1 2.5	200 213	22.2 26
INT2	0007	5	BI 50 Se 50	50.4	1174	23.4 Se 52 Bl 48 48.6	631	31.3 Se 52 Bl 48 48.6	631	31.3	413.028	404.716 S	iΕ	280.0	23.50	2 :	1 F		В	1 2	41 28.67 S	в	1	241	28.7
INT2 INT2	0008 0009	3 5	BI 65 Se 35 BI 59 Se 41	60 40.8	1625 2913	21.7 BI 65 Se 35 60 13.4 BI 56 Se 44 38.4	1625 2118	21.7 Bl 65 Se 35 60 15.2 Se 58 Bl 42 28.8	1625 742	21.7 22.2	434.587 183.097	425.865 B 179.390 B	BL BL			1 :			S SE	1 2	12 21.77 BL 80 17.38 BL	S SE	1 1	212 80	21.7 17.1
INT2	0010	4	BI 50 PI 29 Se 21	24.5	1613	13.9 BI 50 PI 29 24.5	1613	13.9 BI 36 PI 36 19.25	643	19.5	114.543	112.245 B	BL	123.6	13.70	3 3	3 V	PL	BL	2 1	56 17.1 PL	BL	2	156	17.1
INT2	1111	5	BI 88 Se 08 Fd 04	33.6	1759	15.6 Bl 86 Se 05 30.8	965	20.2 Bl 86 Se 1(29.4	794	21.7	168.614	165.082 B	BL	124.8	18.48	5 !	5 F	S	В	2.5 2	03 30.84 S	В	2.5	203	30.8

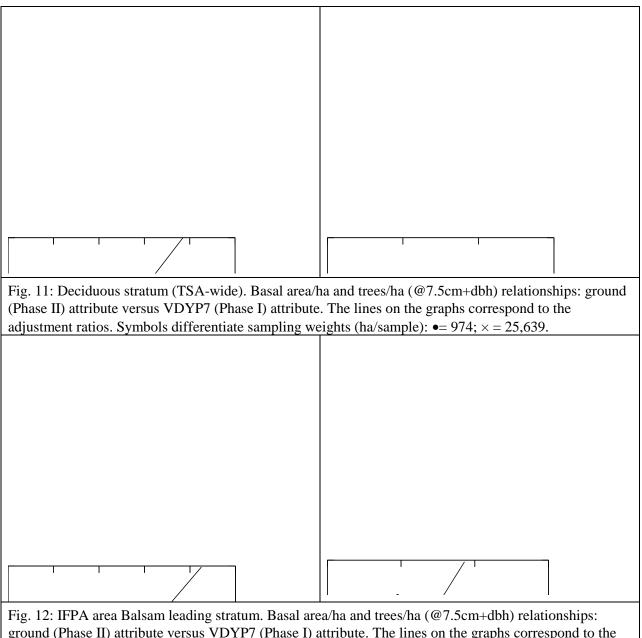

7. APPENDIX C: DATA ISSUES

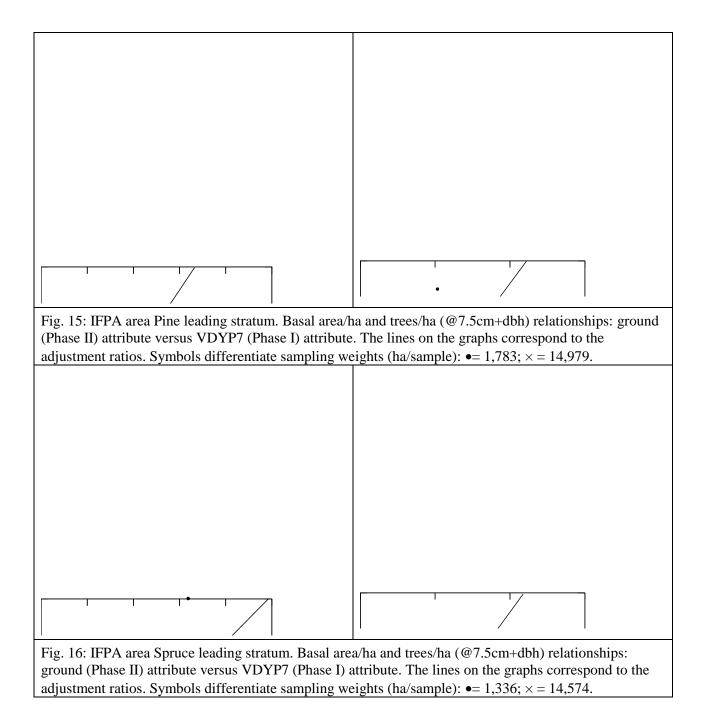

This table documents questions and responses regarding the Kamloops TSA VRI data that were made during the course of the analysis. A detailed analysis/status of sample and plot locations was provided by Matt Makar.

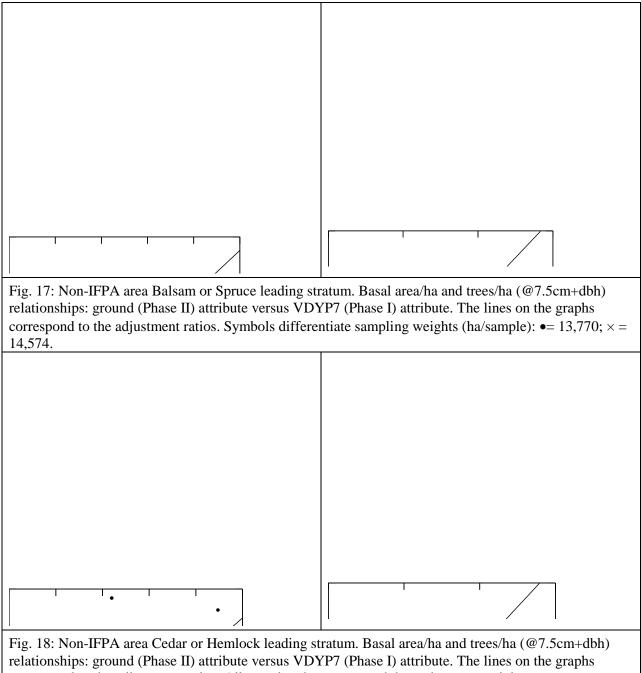

Sample #	Issue	Action/Resolution
0111-1	Listed as 54N (federal) ownership	Only 54N poly in unit; leave in.
0111-2	69N Bonaparte Park	Exclude from analysis
0111-5	New re-inventory; original poly 174; new poly 309	Compiled with IPC + east AUX plot; others excluded since outside poly boundary
0111-11	69N Bonaparte Park	Exclude from analysis
0111-12	Map 0082M023 re-inventoried; original poly	Same poly shape; just new number.
	530; new poly 611	
0111-13	VN recent logging	Exclude
0111-30	Part of poly logged but sample location OK	Include
0111-33	Map 0082M023 re-inventoried; original poly 1603; new poly 559	All plots OK. Include.
0111-36	This sample falls outside the TSA but is in the correct polygon as selected from the sample list. Partial logging of original poly 533.	number 2095); use attribute on inventory for poly 533 as per Matt.
0111-40	VN polygon recently logged	Exclude
0111-43	Updated opening boundaries in this area.	Crew drew on cluster layout card that east aux was in a new cutblock, but still called it in the target poly. This aux should be called OUT of the polygon.
0111-48	Map 0082M023 re-inventoried; original poly 34; new poly 170	All plots OK. Include.
0111-49	Ownership 40N	Exclude from analysis
0111-50	VN polygon recently logged	Exclude
0111-51	Age=56yrs; outside of new population of interest	Exclude
0111-55	This was an NVAF-enhanced plot however the original IPC data was lost. Matt revisited the sample in 2007 and collected IPC data but the IPC had been affected by MPB and 2 previously live pl in the IPC were now dead.	Decided to "revive" the 2 dead pine in the IPC that were likely alive at the time of original sample establishment. Hence the volume at 12.5cm+dbh utilization net dw2 with NVAF applied was 293 m3/ha.
0111-56	69N Tunkwa Park	Exclude
0111-69	Age=49 yrs; outside of new population of interest	Exclude
0111-75	Original poly 594; polygon boundaries have changed, probably due to update. Sample is in correct location and now falls in poly 548 (same opening).	Aux plots OK. Include.
0111-90	Age=21 yrs; outside of new population of interest	Exclude
0111-95	Polygon recently logged	Exclude as VN
0111-96	New re-inventory; original poly 84; new poly 255.	Aux plots OK. Include.
0111-99	Part of polygon logged.	Sample location OK.
0111-501	Oregana Creek PA. Park.	Exclude
0112-503	New re-inventory; new polygon age = 33 yrs. (not in population of interest)	Exclude


0440 500	New as increasing a second budgling of the	IDO navy in naty 404, availated a C & E -
0112-508	New re-inventory; new poly delineation.	IPC now in poly 124; exclude S & E aux
0112-513	Originally age class 2; chosen in error since outside of original population of interest.	Exclude
0112-514	New re-inventory; original poly 263; new poly 503.	Aux plots OK. Include.
0112-515	New re-inventory; original poly 309; new poly 516.	Aux plots OK. Include.
0112-531	70N ownership	Exclude
0112-534	Park; Upper Adams River	Exclude
0112-550	70N ownership	Exclude
INT1-5	New re-inventory; original poly 242; new poly 190	Exclude S, W & N aux plots in compilation of sample.
INT1-15	Part of sample outside target poly.	Exclude W aux plot in compilation
INT1-34	New re-inventory; original poly 11; new poly 249.	Exclude S & E aux from compilation.
INT1-42	New re-inventory; original poly 168; new poly 1700.	W is only aux to be included in compilation.
INT1-54	New re-inventory; original poly 23; new poly 1777.	Compile only IPC and E aux.
INT1-60	New re-inventory; original poly 312; new poly 1928.	Exclude N aux (in cutblock)
INT1-65	New re-inventory; original poly 715; new poly 1254.	Exclude S & E aux
INT1-68	New re-inventory; original poly 115; new poly 249.	Aux plots OK. Include.
INT1-69	New re-inventory; original poly 337; new poly 925.	Aux plots checked; OK. Include.
INT1-73	Sample lies less than 5 m from target polygon; N & S plots should be dropped, but otherwise, use sample data.	Exclude N & S aux.
INT1-204, 208, 209, 211, 215	Immature samples; original sample plan called for 15 samples to be established in the immature but only 5 were established.	Exclude
INT2-4	New re-inventory; original poly 294; new poly 821.	Include
INT2-7	New re-inventory; original poly 126; new poly 812.	Include
INT2-10	New re-inventory; original poly 425; new poly 734.	Include

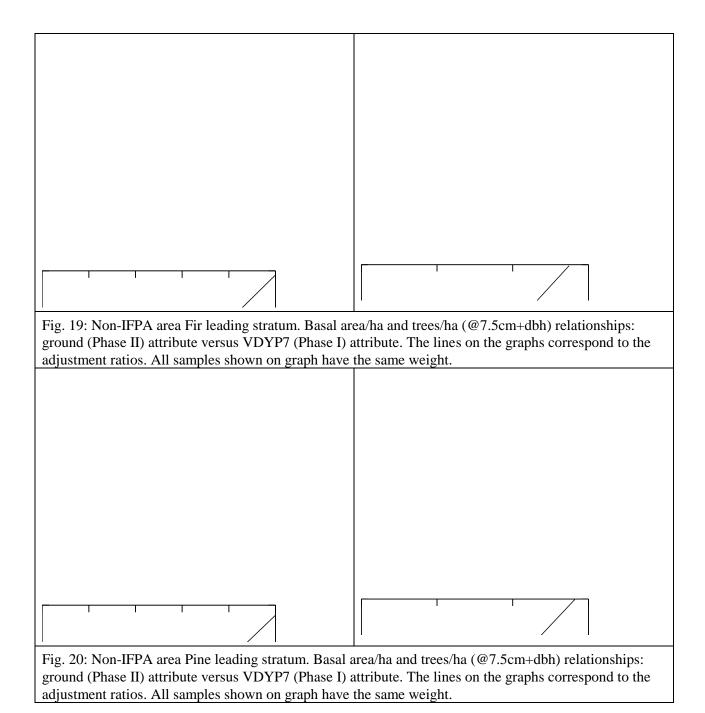


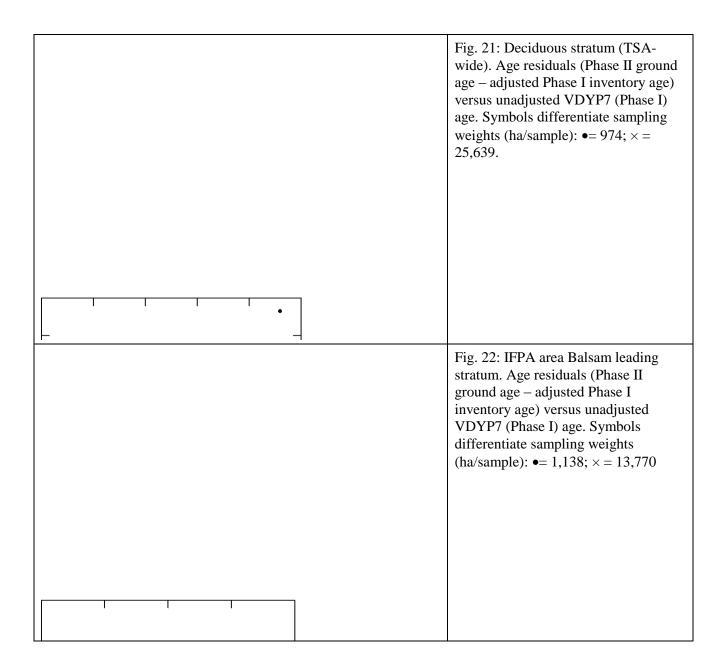



samples shown on graph have the same weight.



9. APPENDIX E: VDYP7 BASAL AREA AND TPH


ground (Phase II) attribute versus VDYP7 (Phase I) attribute. The lines on the graphs correspond to the adjustment ratios. Symbols differentiate sampling weights (ha/sample): \bullet = 1,138; × = 13,770



correspond to the adjustment ratios. All samples shown on graph have the same weight.

10. APPENDIX F: VDYP7 STAGE 1 ADJUSTMENT RESIDUALS

Age Residuals by stratum

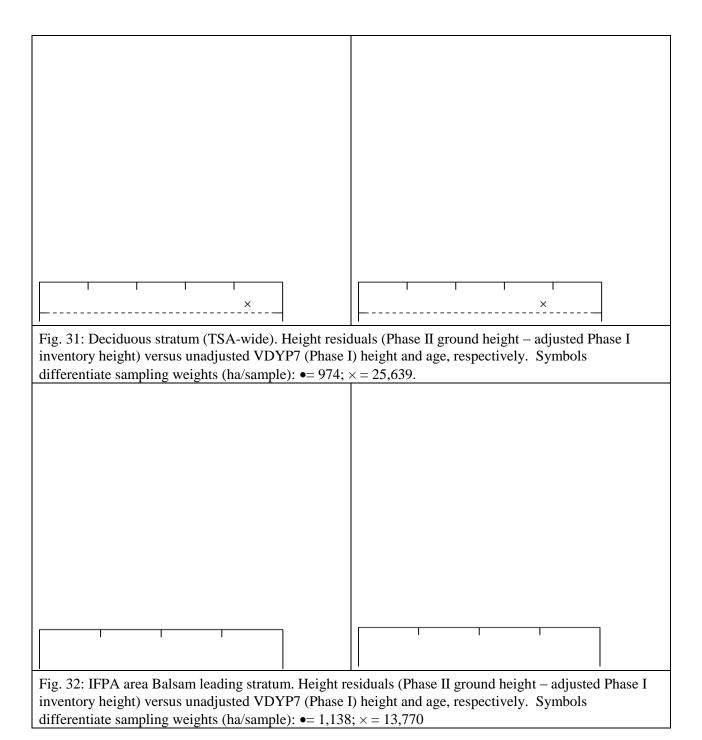
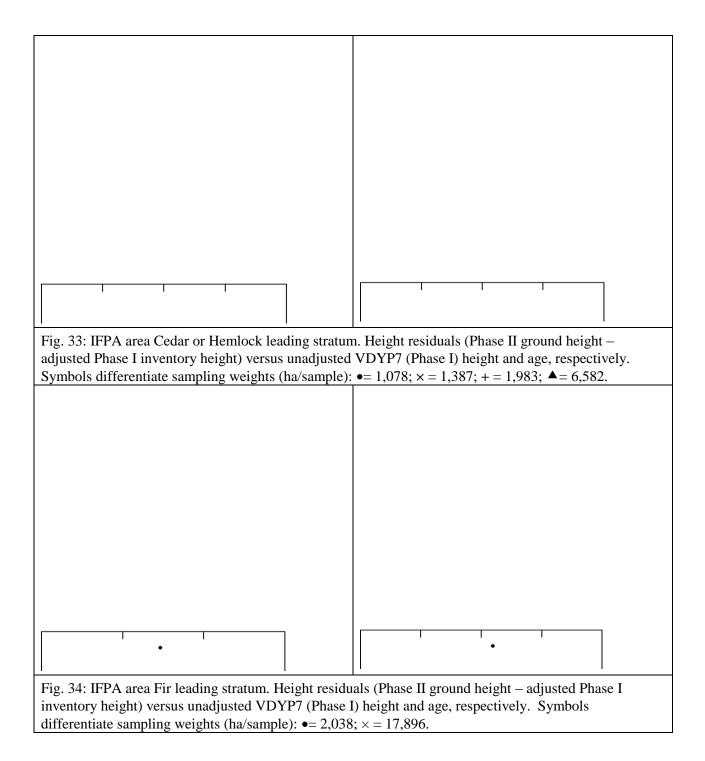
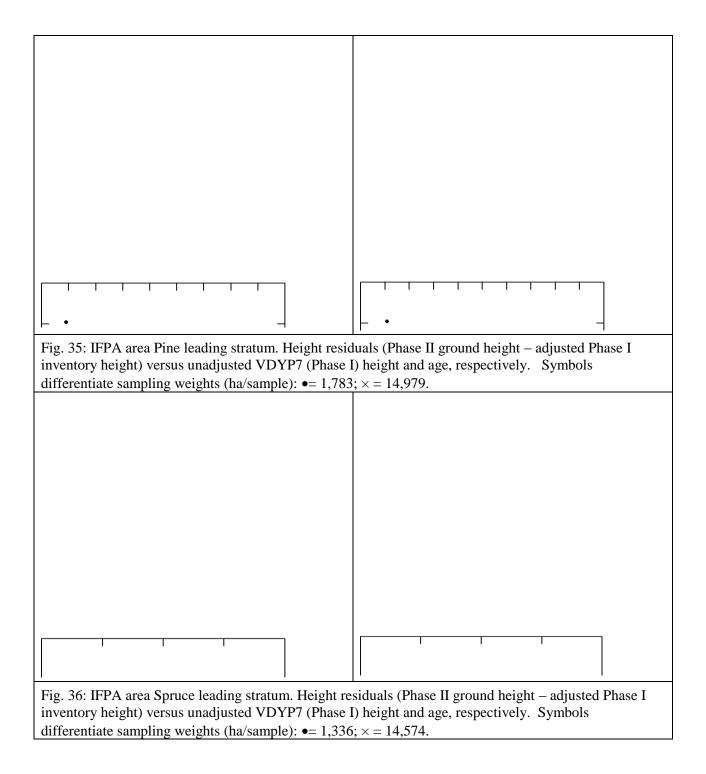
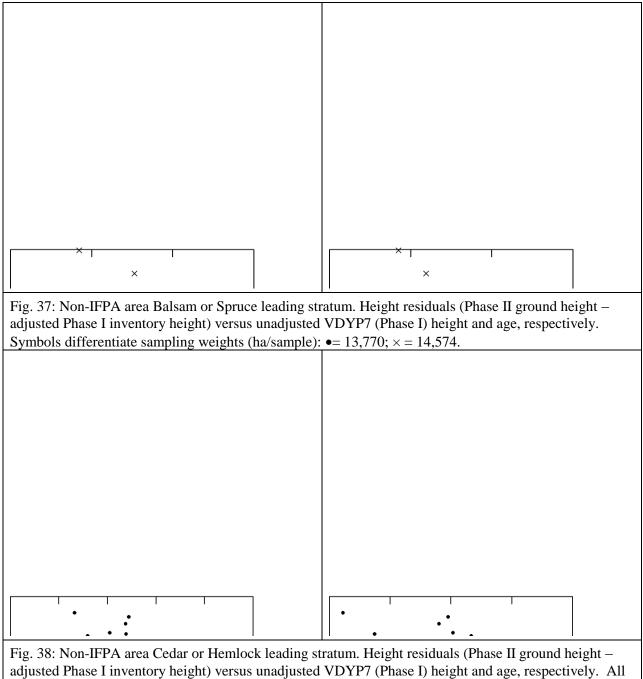
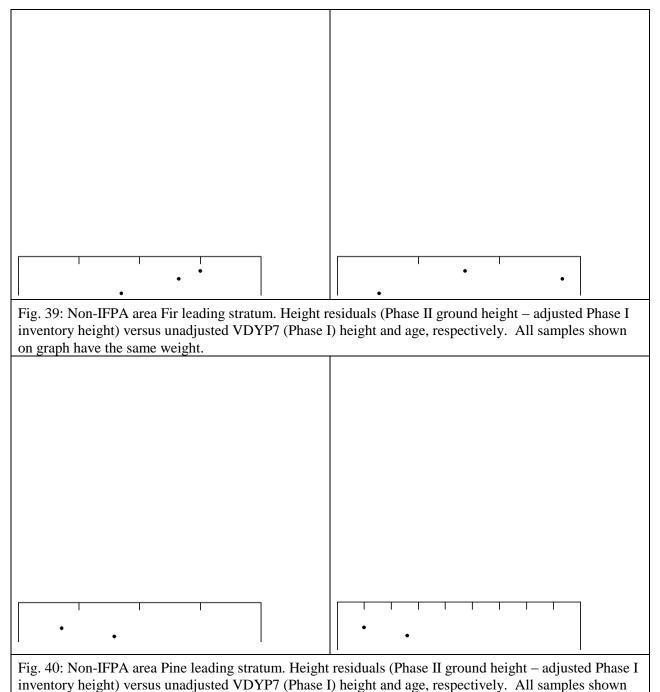


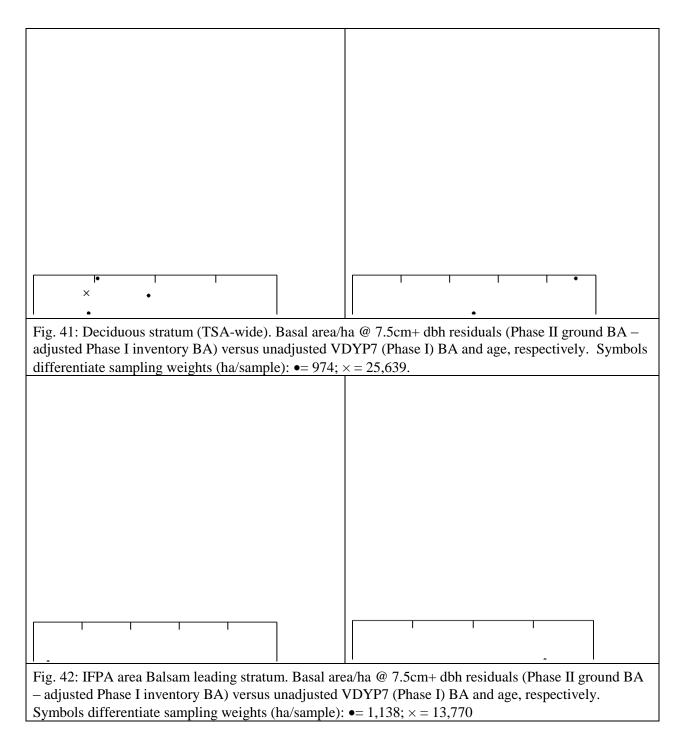
Fig. 23: IFPA area Cedar or Hemlock leading stratum. Age residuals (Phase II ground age – adjusted Phase I inventory age) versus unadjusted VDYP7 (Phase I) age. Symbols differentiate sampling weights (ha/sample): •= 1,078; × = 1,387; + = 1,983; \blacktriangle = 6,582.
Fig. 24: IFPA area Fir leading stratum. Age residuals (Phase II ground age – adjusted Phase I inventory age) versus unadjusted VDYP7 (Phase I) age. Symbols differentiate sampling weights (ha/sample): •= 2,038; × = 17,896.

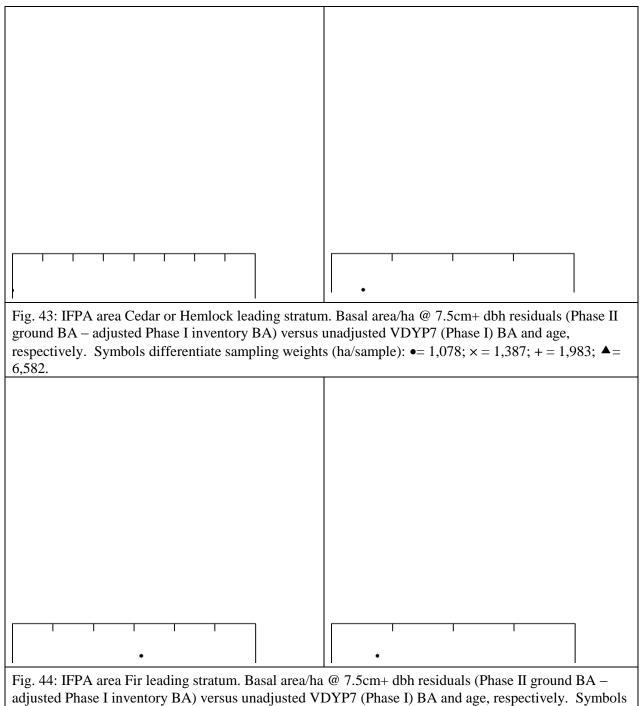

Fig. 25: IFPA area Pine leading stratum. Age residuals (Phase II ground age – adjusted Phase I inventory age) versus unadjusted VDYP7 (Phase I) age. Symbols differentiate sampling weights (ha/sample): •= 1,783; × = 14,979.
Fig. 26: IFPA area Spruce leading stratum. Age residuals (Phase II ground age – adjusted Phase I inventory age) versus unadjusted VDYP7 (Phase I) age. All samples shown on graph have the same weight.

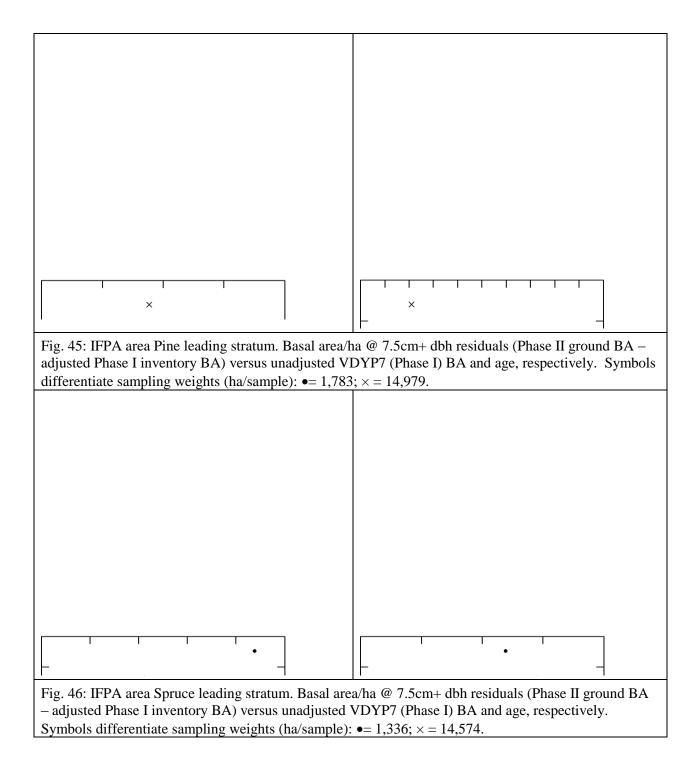

Fig. 27: Non-IFPA area Balsam or Spruce leading stratum. Age residuals (Phase II ground age – adjusted Phase I inventory age) versus unadjusted VDYP7 (Phase I) age. Symbols differentiate sampling weights (ha/sample): \bullet = 13,770; × = 14,574.
Fig. 28: Non-IFPA area Cedar or Hemlock leading stratum. Age residuals (Phase II ground age – adjusted Phase I inventory age) versus unadjusted VDYP7 (Phase I) age. All samples shown on graph have the same weight.

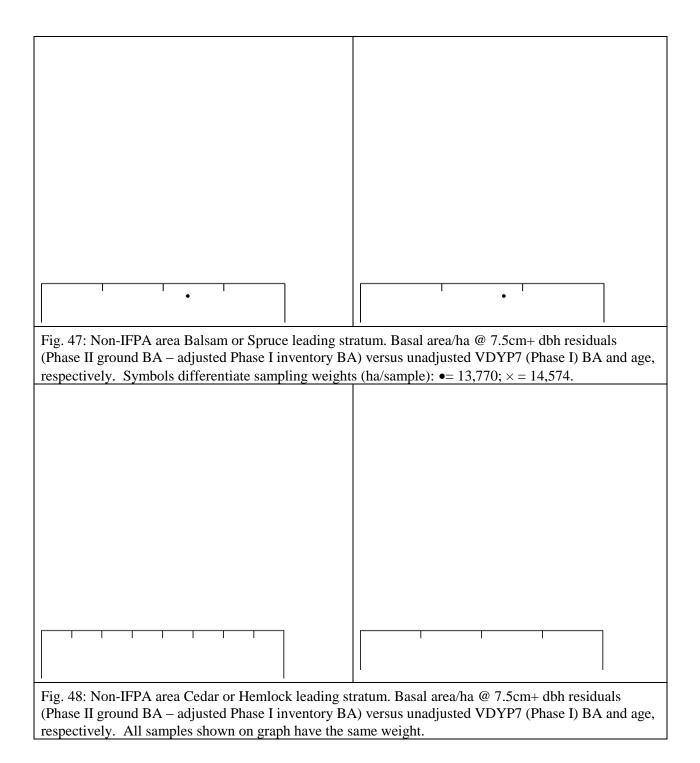

Fig. 29: Non-IFPA area Fir leading stratum. Age residuals (Phase II ground age – adjusted Phase I inventory age) versus unadjusted VDYP7 (Phase I) age. All samples shown on graph have the same weight.
Fig. 30: Non-IFPA area Pine leading stratum. Age residuals (Phase II ground age – adjusted Phase I inventory age) versus unadjusted VDYP7 (Phase I) age. All samples shown on graph have the same weight.

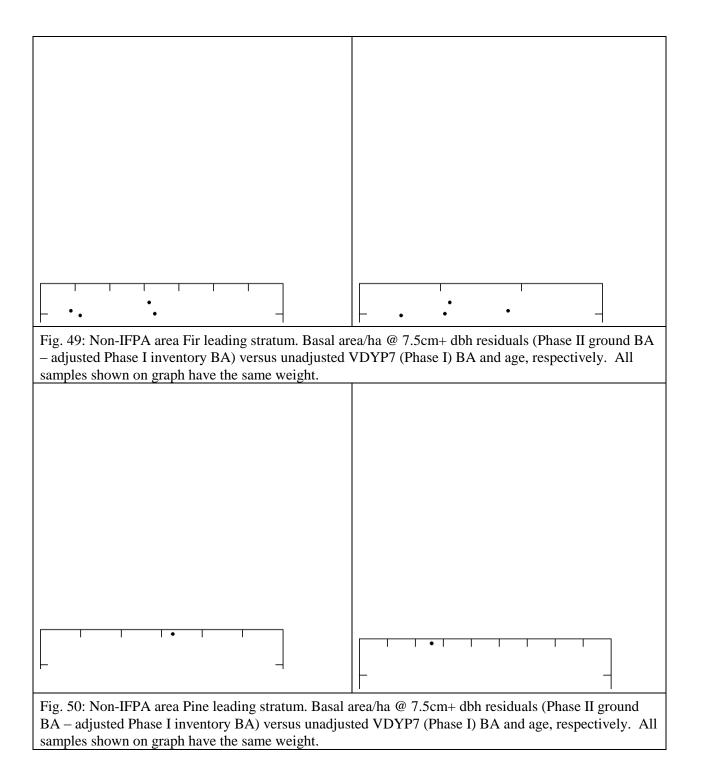

Height Residuals by stratum

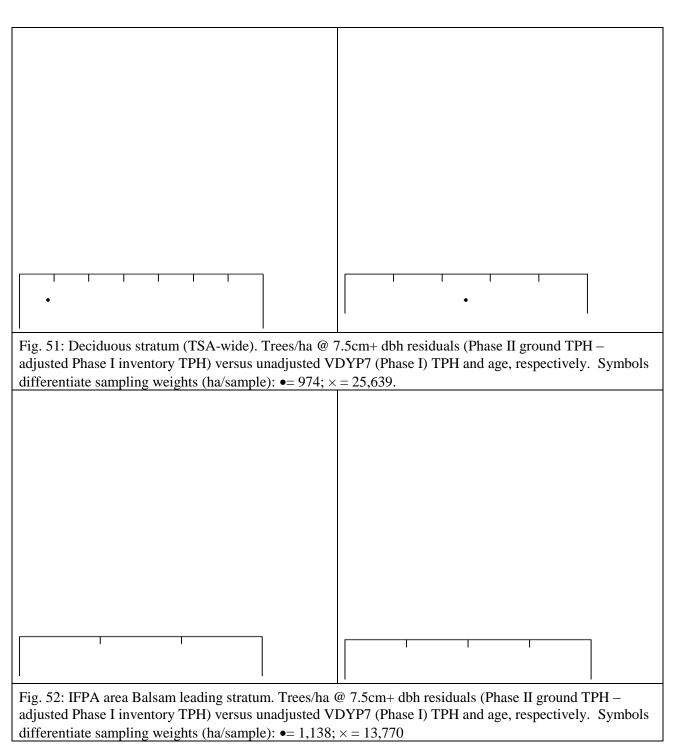



samples shown on graph have the same weight.

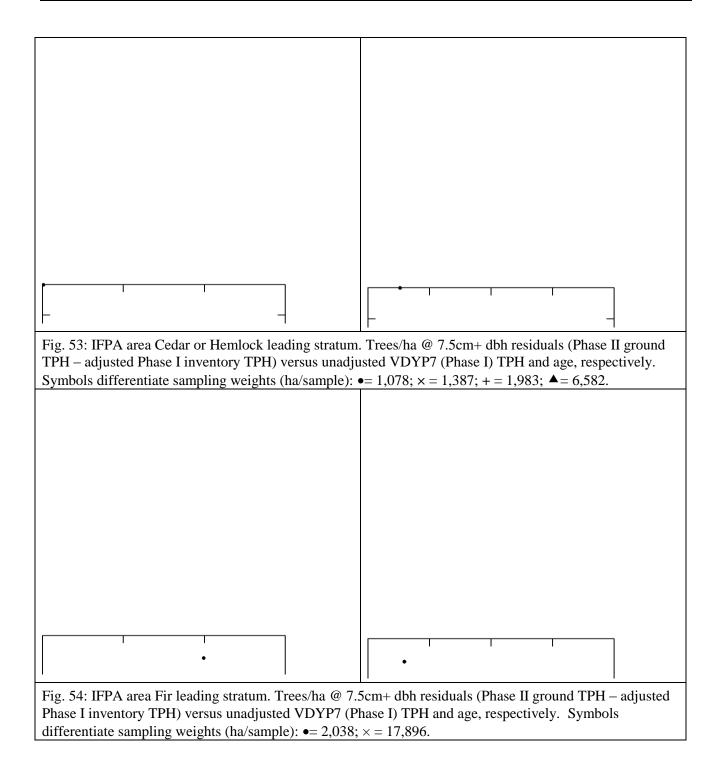

on graph have the same weight.

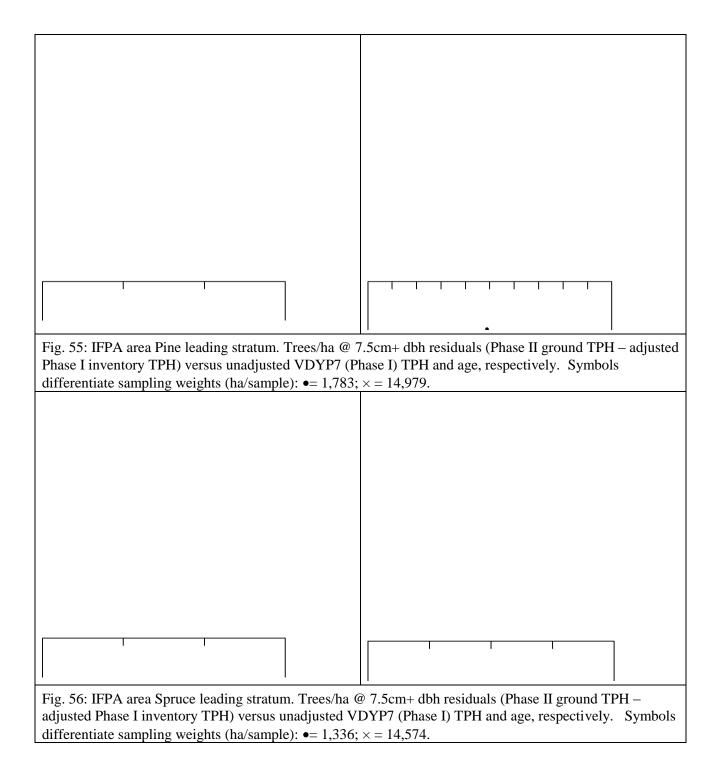


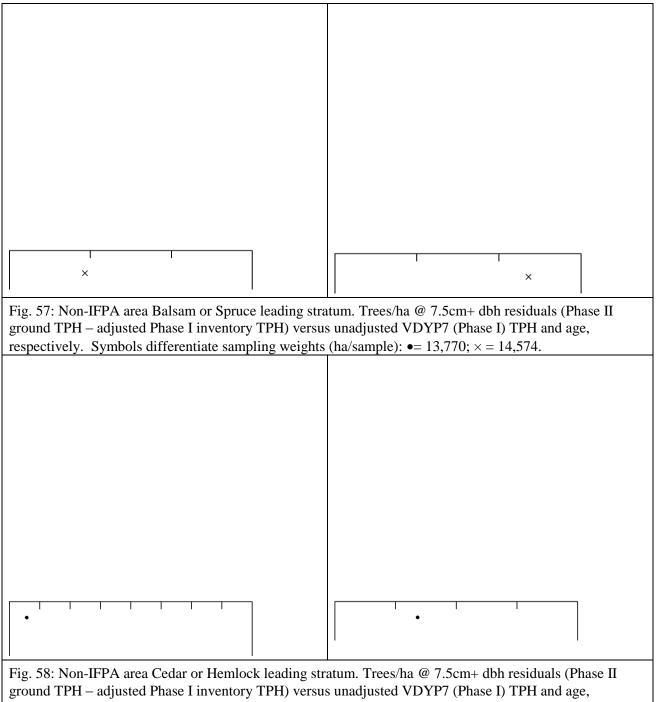

Basal area/ha (BA) Residuals by stratum

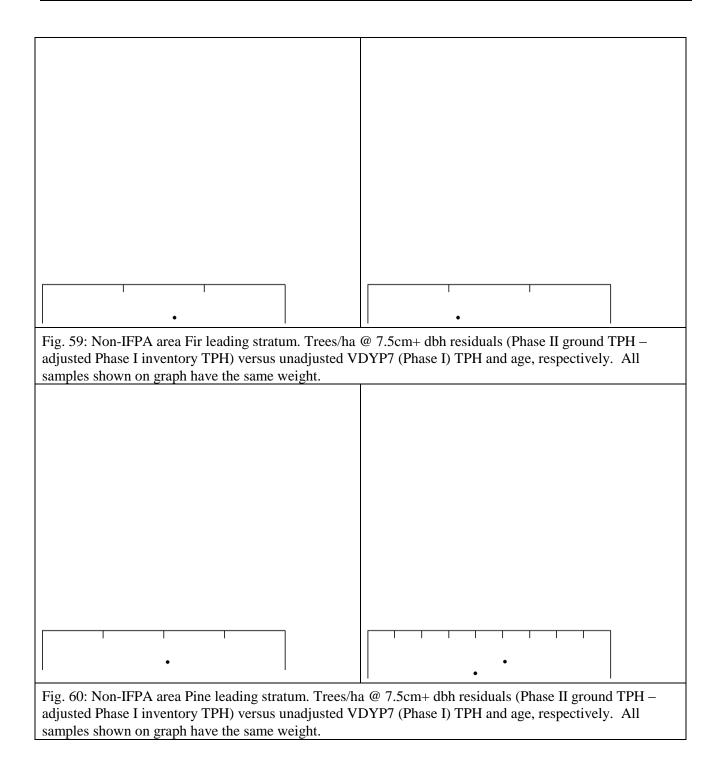


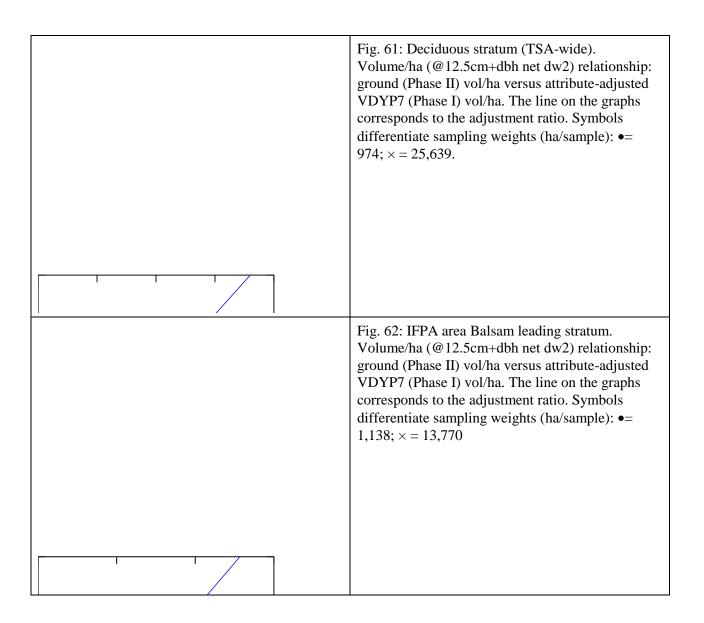
differentiate sampling weights (ha/sample): \bullet = 2,038; × = 17,896.





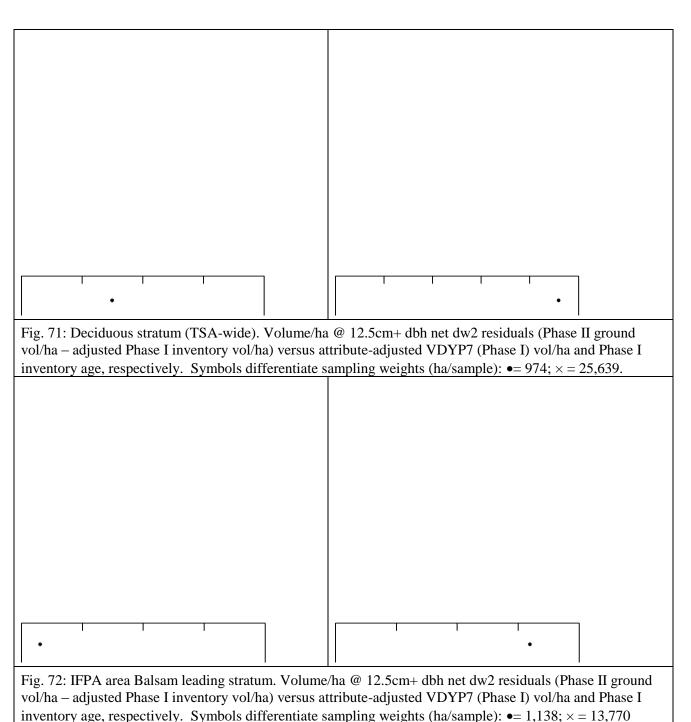



Trees/ha (TPH) Residuals by stratum



respectively. All samples shown on graph have the same weight.

11. APPENDIX G: VDYP7 VOLUME ADJUSTMENT SCATTER PLOTS AND RESIDUALS


Volume/ha Scatter Plots by stratum

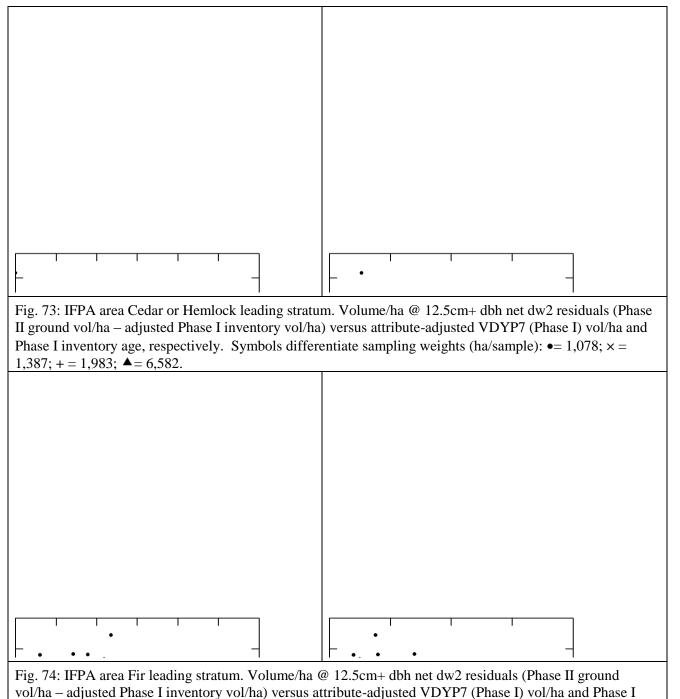
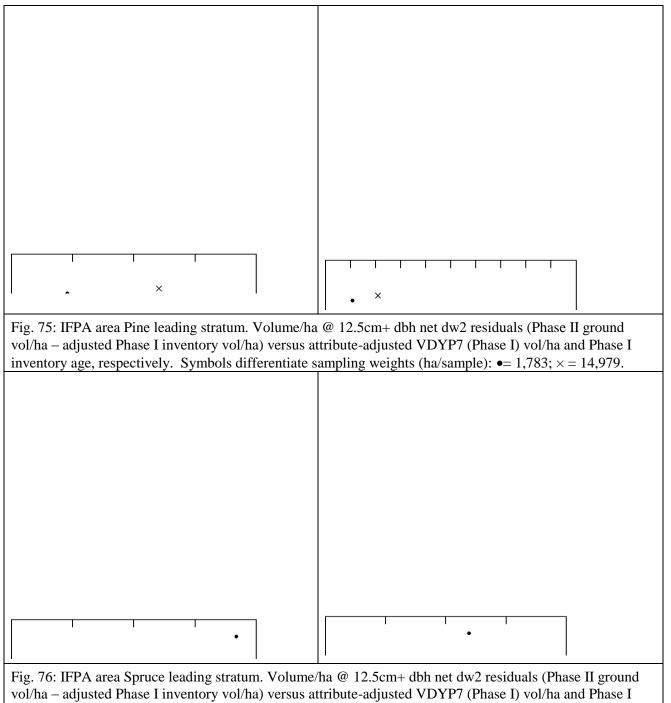
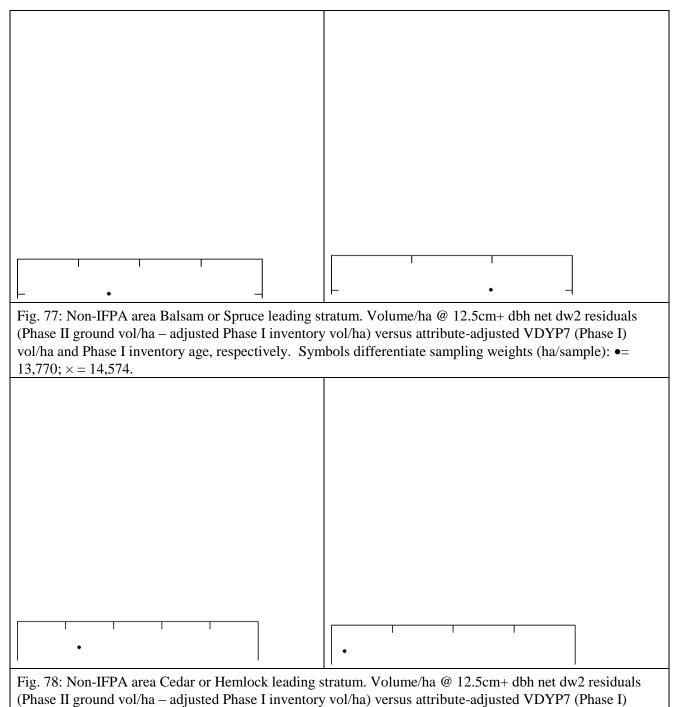
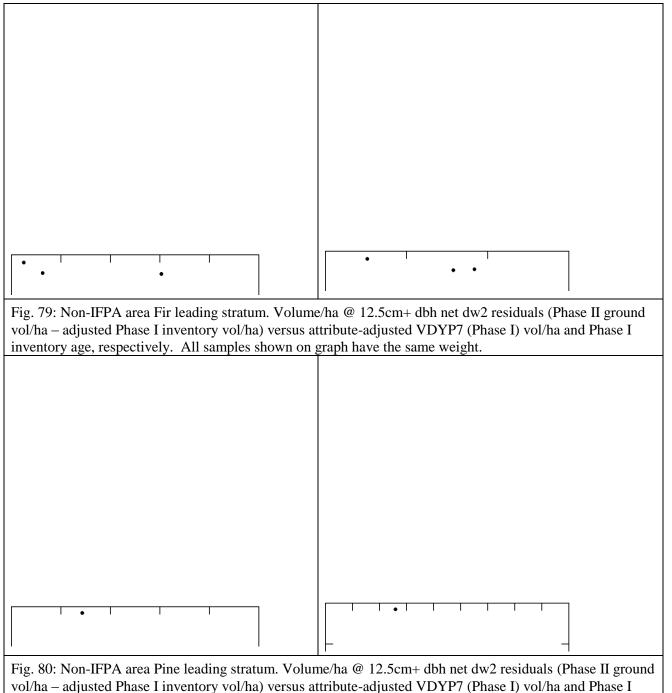

Fig. 63: IFPA area Cedar or Hemlock leading stratum. Volume/ha (@12.5cm+dbh net dw2) relationship: ground (Phase II) vol/ha versus attribute-adjusted VDYP7 (Phase I) vol/ha. The line on the graphs corresponds to the adjustment ratio. Symbols differentiate sampling weights (ha/sample): •= 1,078; × = 1,387; + = 1,983; \blacktriangle = 6,582.
Fig. 64: IFPA area Fir leading stratum. Volume/ha (@12.5cm+dbh net dw2) relationship: ground (Phase II) vol/ha versus attribute-adjusted VDYP7 (Phase I) vol/ha. The line on the graphs corresponds to the adjustment ratio. Symbols differentiate sampling weights (ha/sample): \bullet = 2,038; × = 17,896.
Fig. 65: IFPA area Pine leading stratum. Volume/ha (@12.5cm+dbh net dw2) relationship: ground (Phase II) vol/ha versus attribute-adjusted VDYP7 (Phase I) vol/ha. The line on the graphs corresponds to the adjustment ratio. Symbols differentiate sampling weights (ha/sample): \bullet = 1,783; × = 14,979.

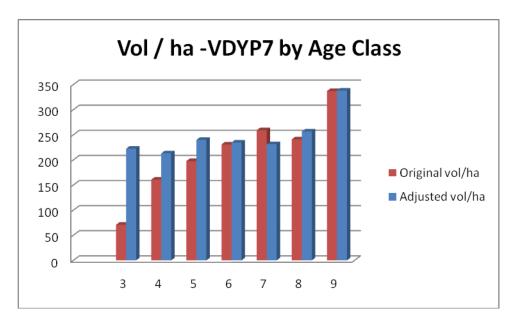
	Fig. 66: IFPA area Spruce leading stratum. Volume/ha (@12.5cm+dbh net dw2) relationship: ground (Phase II) vol/ha versus attribute-adjusted VDYP7 (Phase I) vol/ha. The line on the graphs corresponds to the adjustment ratio. All samples shown on graph have the same weight.
•	
	Fig. 67: Non-IFPA area Balsam or Spruce leading stratum. Volume/ha (@12.5cm+dbh net dw2) relationship: ground (Phase II) vol/ha versus attribute-adjusted VDYP7 (Phase I) vol/ha. The line on the graphs corresponds to the adjustment ratio. Symbols differentiate sampling weights (ha/sample): •= 13,770; × = 14,574.
	Fig. 68: Non-IFPA area Cedar or Hemlock leading stratum. Volume/ha (@12.5cm+dbh net dw2) relationship: ground (Phase II) vol/ha versus attribute-adjusted VDYP7 (Phase I) vol/ha. The line on the graphs corresponds to the adjustment ratio. All samples shown on graph have the same weight.
•	

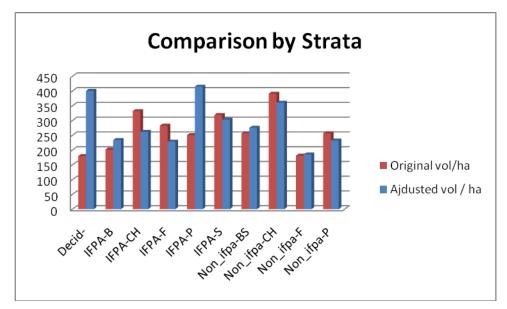

Fig. 69: Non-IFPA area Fir leading stratum. Volume/ha (@12.5cm+dbh net dw2) relationship: ground (Phase II) vol/ha versus attribute-adjusted VDYP7 (Phase I) vol/ha. The line on the graphs corresponds to the adjustment ratio. All samples shown on graph have the same weight.
Fig. 70: Non-IFPA area Pine leading stratum. Volume/ha (@12.5cm+dbh net dw2) relationship: ground (Phase II) vol/ha versus attribute-adjusted VDYP7 (Phase I) vol/ha. The line on the graphs corresponds to the adjustment ratio. All samples shown on graph have the same weight.


Volume/ha Residuals by stratum


inventory age, respectively. Symbols differentiate sampling weights (ha/sample): \bullet = 2,038; × = 17,896.

inventory age, respectively. Symbols differentiate sampling weights (ha/sample): \bullet = 1,336; × = 14,574.


vol/ha and Phase I inventory age, respectively. All samples shown on graph have the same weight.



inventory age, respectively. All samples shown on graph have the same weight.

12. APPENDIX H: POPULATION DISTRIBUTIONS PRE- AND POST-ADJUSTMENT

- The population was projected to 2001 (~midpoint ground sampling year).
- The pre & post-adjustment comparison excluded polygons where VDYP7 did not generate either a pre- or a post-adjustment volume (i.e. both volumes had to have been generated to be included in the comparison). This is typically for stands that do not meet VDYP7's minimum QMD threshold.
- As a result, the comparison is based on an area that is 0.4% smaller than the population total area (i.e. 1,165,395 vs. 1,170,825).

13. APPENDIX I: ANALYSIS RESULTS FOR REMEASURED DATA

Remeasurement data was collected for 44 samples in project 0111 with the objective of looking at potential impacts of Mountain Pine Beetle (MPB). Twenty of these samples were remeasured after 2 years and 24 of these samples were remeasured after 5 years. These two groups of samples were analyzed separately. To simplify the analysis, stratification and sample weights were ignored. In this project the remeasured samples maintained the same project number and sample number but were identified using an "R" sample type code¹⁸.

Unfortunately, some of these samples had been selected for NVAF and hence included some trees that were fallen for NVAF between the time of original sampling and the time of the remeasurement¹⁹. In addition, tree status (live/dead) was only collected for the integrated plot centre (IPC) and was not collected in the auxiliary plots. Hence the analysis of the remeasured data was restricted to matched tree data²⁰ collected at the IPCs.

Restricting the analysis to the IPC data in itself resulted in some data anomalies. For example, the IPC for sample #68 included an inordinately high number of trees. If considered in combination with the 4 auxiliary plots, the basal area/ha estimate for this sample was 45 m²/ha. However, based on the IPC alone, the estimate of basal area/ha was 210 m²/ha.

This analysis focused on the change in the status of the trees between the two measurements. Each tree was assigned to one 13 mutually exclusive and collectively exhaustive categories. These categories were defined to track the status of trees in this analysis and are explained in Table 1. Note that the damage/severity codes in Table 1 pertain to values at remeasurement since DAMAGE was blank for all trees in the original measurement with the exception of 2 dead trees (which were assigned to category 5 below). Only trees in the IPC were considered. For each sample, trees/ha, basal area/ha and whole stem volume/ha (all at the 12.5cm+ dbh utilization) was computed for each of these 13 categories. In this manner, summation across all categories would provide the total per hectare value for the sample.

To show the impact of MPB in these stands over time, specified categories were summed or aggregated to enable more meaningful interpretation. These aggregations are outlined in Table 2 and correspond to the "slices" identified in the pie charts²¹ provided in Figures 1 to 6.

Because of the restrictions on the analysis and some of the data inconsistencies that were observed²², the results are presented graphically at a high level and caution must be exercised in any interpretation and extrapolation of these trends. However, even with these limitations, the impact of the MPB on these samples is dramatic.

¹⁸ In this way, "equivalency" was maintained and the samples were easy to track. In other projects, however, remeasured samples have been assigned new sample numbers and sometimes new project numbers. Often, "equivalency" lists to link the original and the remeasured samples have been incomplete or ambiguous. Obviously, this seriously compromises the usefulness of the data.

¹⁹ Matt Makar, MFR, Southern Interior Region.

²⁰ There were several cases where a tree appeared in the IPC in either the original measurement or the remeasurement but not both. These trees were excluded from the analysis and computation of statistics.

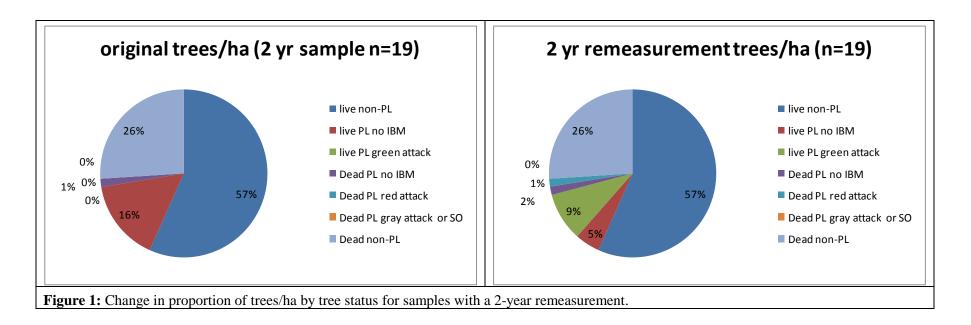
²¹ The value of a "slice" in a pie chart is based on the average over all samples in either the 2 year remeasurement group (n=19) or the 5 year remeasurement group (n=24).

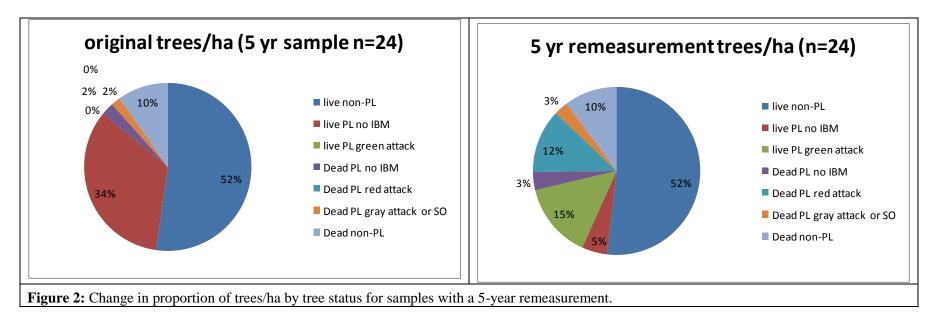
 $^{^{22}}$ DBH and/or height decreasing from original to remeasurement; trees changing species from original to remeasurement; etc. When samples where basal area and/or volume (total live + dead) decreased over time were excluded, the sample size was reduced to an extent that many trends were lost or minimized. Hence only the one sample where tree species changed (sample #61) was excluded.

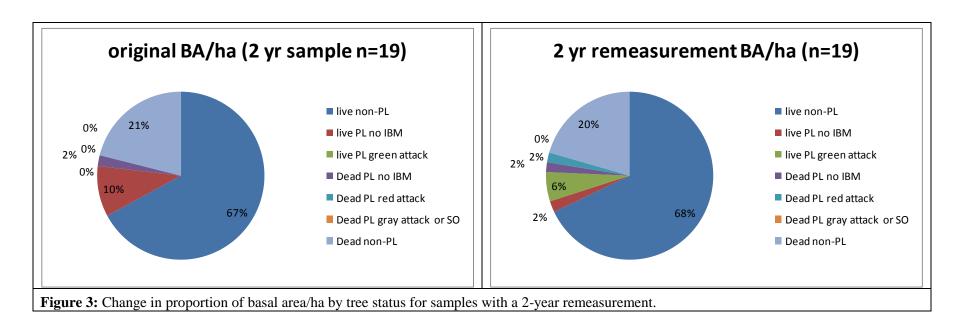
Category	Live/Dead (L/D) at remeasurement	L/D in original measurement	Species	Damage code at remeasurement (IBM ²³ or blank)	Severity
1	L	L	PLI or PL	IBM	GR ²⁴
2	L	L	PLI or PL	blank	
3	L	L	Other conif.	blank	
4	L	L	Decid	blank	
5	D	D	PLI or PL	IBM	any ²⁵
6	D	D	PLI or PL	blank	
7	D	L	PLI or PL	IBM	GY
8	D	L	PLI or PL	IBM	RA ²⁶
9	D	L	PLI or PL	blank	
10	D	L	Other conif.	blank	
11	D	D	Other conif.	blank	
12	D	L	Decid	blank	
13	D	D	Decid	blank	

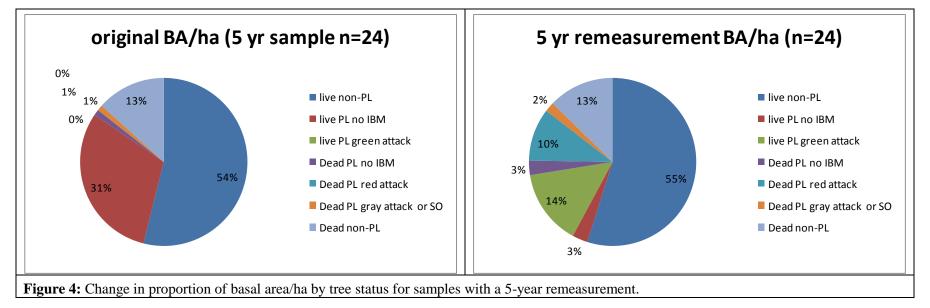
Table 1: Categories to define tree status.

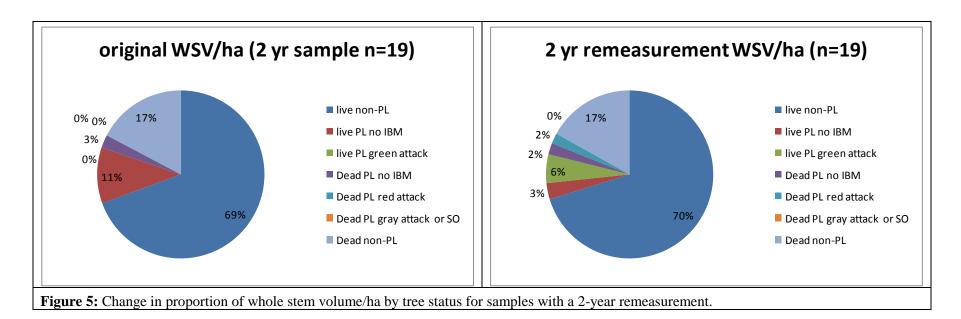
Table 2: Aggregations of tree status categories used for analysis.

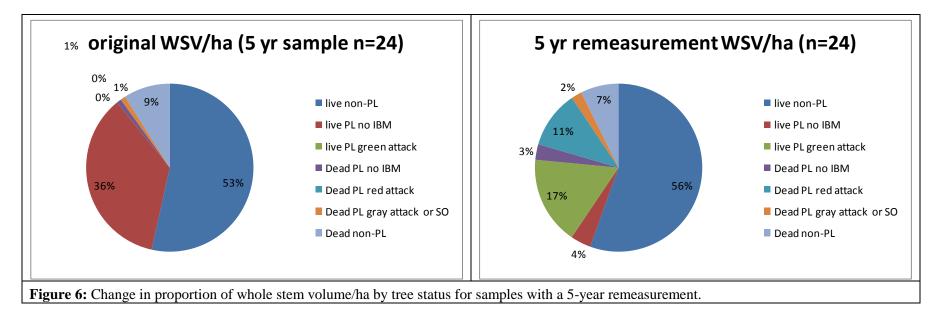

Aggregation corresponding to	Categories from Table 1 included in summation to generate per hectare values		
labels on Pie Charts	Original measurement	Remeasurement	
Live, non-PL	3, 4, 10, 12	3, 4	
Live PL, no IBM	1, 2, 8, 9	2	
Live PL, green attack	No trees	1	
Dead PL, no IBM	6	6, 9	
Dead PL, red attack	No trees	8	
Dead PL, gray attack or SO (standing old dead)	5	5, 7	
Dead, non-PL	11, 13	10, 11, 12, 13	


 26 RA= red attack


²³ A damage code of IBM refers to the Mountain Pine Beetle. Damage codes in this data set were either blank or IBM.


²⁴ All trees in this category with an IBM damage code indicated GR (green attack) for severity hence to other category was necessary.


²⁵ Trees in this category were either gray attack (GY) or standing old dead (SO).



14. APPENDIX J: COPY OF GROUND SAMPLING PROJECT IMPLEMENTATION PLAN FOR INT1 AND INT2

This VPIP will be merged into the final pdf version of the report.

15. APPENDIX J: COPY OF STATISTICAL ADJUSTMENT ANALYSIS ADJUSTMENT FOR PROJECT 0112

This VPIP will be merged into the final pdf version of the report.