# GOLDEN TSA VRI GROUND SAMPLING

# **PROJECT IMPLEMENTATION PLAN**

Prepared for:

LP Engineered Wood Products Ltd. Wood River Forest BC Timber Sales

Prepared by:



57B Clipper Street Coquitlam, B.C. V3K 6X2

August 30, 2003

# Acknowledgements

Atticus Resource Consulting Ltd. would like to thank the following individuals for their assistance during the preparation of this implementation plan:

Carole Dascher for her contract management, ongoing project support and trust in Atticus to complete the sample design and project preparation work to the highest possible standards; Chris Mulvihill for his assistance with project planning and review of this document; and Keith Tudor, Will Smith, Gary Johansen, and Sam Otukol from the MSRM, TIB for their timely review and supportive assistance in the development of the best ground sampling and NVAF approach for the Golden TSA.

# **R.P.F. Signature**

This project has been done to the required standards and completed accurately for the stakeholders of the Golden Timber Supply Area.

Terry Conville, R.P.F.

# **Table of Contents**

| 1.0                                                                 | INTRODUCTION                                                                                                                                                                                                     | . 5                                                 |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1.1<br>1.2<br>1.3<br>1.4<br>1.5                                     | Overview of VRI Process<br>VRI Responsibility<br>Document Objectives<br>Landbase<br>Background and Inventory Issues                                                                                              | .6<br>.6<br>.6                                      |
| 2.0                                                                 | GROUND SAMPLING PLAN                                                                                                                                                                                             | 10                                                  |
| 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6<br>2.7<br>2.8<br>2.9<br>2.10 | GROUND SAMPLING OBJECTIVES<br>TARGET POPULATION<br>SAMPLE SIZE<br>SAMPLE SELECTION<br>QUALITY ASSURANCE PROCESS<br>SAMPLE POINT SELECTION<br>SAMPLING APPROACH<br>SAMPLE TYPE<br>MEASUREMENTS<br>NVAF ACTIVITIES | 10<br>11<br>12<br>14<br>16<br>17<br>17<br>17        |
| 3.0                                                                 | IMPLEMENTATION PLAN                                                                                                                                                                                              | 20                                                  |
| 0.1                                                                 |                                                                                                                                                                                                                  |                                                     |
| 3.1<br>3.2                                                          | SCHEDULING<br>SAMPLE PACKAGES<br>BOLES AND RESPONSIBILITIES                                                                                                                                                      | 21                                                  |
| 3.2<br>3.3                                                          | SAMPLE PACKAGES<br>Roles and Responsibilities                                                                                                                                                                    | 21<br>21                                            |
| 3.2<br>3.3<br><i>3</i>                                              | SAMPLE PACKAGES.         ROLES AND RESPONSIBILITIES         3.1       Project Coordination                                                                                                                       | 21<br>21<br>21                                      |
| 3.2<br>3.3<br><i>3</i><br><i>3</i>                                  | SAMPLE PACKAGES<br>ROLES AND RESPONSIBILITIES                                                                                                                                                                    | 21<br>21<br>21<br>22                                |
| 3.2<br>3.3<br>3<br>3<br>3<br>3<br>3                                 | SAMPLE PACKAGES                                                                                                                                                                                                  | 21<br>21<br>21<br>22<br>22<br>22                    |
| 3.2<br>3.3<br>3<br>3<br>3<br>3<br>3                                 | SAMPLE PACKAGES                                                                                                                                                                                                  | 21<br>21<br>21<br>22<br>22<br>22                    |
| 3.2<br>3.3<br>3<br>3<br>3<br>3<br>3                                 | SAMPLE PACKAGES                                                                                                                                                                                                  | 21<br>21<br>21<br>22<br>22<br>22<br>22<br>23        |
| 3.2<br>3.3<br>3<br>3<br>3<br>3<br>4.0<br>4.1                        | SAMPLE PACKAGES                                                                                                                                                                                                  | 21<br>21<br>22<br>22<br>22<br>23<br><b>24</b><br>24 |
| 3.2<br>3.3<br>3<br>3<br>3<br>3<br>3<br>4.0                          | SAMPLE PACKAGES.ROLES AND RESPONSIBILITIES3.1Project Coordination3.2Project Support3.3Fieldwork3.4Quality Assurance3.5Data Compilation, Analysis and AdjustmentSAMPLE LIST                                       | 21<br>21<br>22<br>22<br>22<br>23<br><b>24</b><br>24 |

# 1.0 INTRODUCTION

As per the Ministry of Sustainable Resource Management, Terrestrial Information Branch's website, the Vegetation Resources Inventory is designed to answer two questions:

- 1. Where is the resource located? And,
- 2. How much of a given vegetation resource (for example, timber resource) is within an inventory unit?

#### 1.1 Overview of VRI Process

The Vegetation Resource Inventory (VRI) is a photo-based inventory that has some of its attributes adjusted by formal ground sampling. The basic steps of the VRI process are as follows:

- 1) <u>Aerial Photograph Acquisition:</u> Digital softcopy of hardcopy aerial photograph creation and production,
- <u>Phase I Photo Interpretation</u>: Aerial photograph interpretation by certified interpreters – the main tasks include delineation and attribution (of a wide range of attributes including land cover type, tree species, height, age, structure, volume, basal area, density, slope position, ecological site unit, etc.),
- <u>Phase II Ground Sampling:</u> Implement ground sampling program based on achieving resultant sampling (standard) error of less than 15% for forest stand volume. Complete random ground samples evenly distributed across the target population (obtain detailed ground inventory and tree productivity measurements, forest health measurements, net volume calculations, grading, and potentially collect ecological data),
- 4) <u>NVAF (Destructive Sampling)</u>: Complete destructive sampling of subclass of the ground sampling plots in order to localize and adjust the ground crew estimates of age, height, and gross and net volume,

5) <u>Compilation & Statistical Adjustment:</u> Compilation and adjustment of estimated ground sample cruiser-calls using the actual NVAF information. Then complete the inventory by statistically adjusting the photo based polygon information (continuous variables only – such as age, height, and volume), in order to achieve a statistically defensible and correct answer for the entire administrative unit.

### 1.2 VRI Responsibility

It is the licensee's responsibility to implement a VRI and the Ministry of Sustainable Resource Managements responsibility to create the standards and ensure potential projects follow proper sampling principles. As well, the MSRM provides some audit functions.

### 1.3 Document Objectives

The objective of this report is to outline and describe the Vegetation Resources Inventory (VRI) ground sampling activities to be completed within the within the Golden Timber Supply Area (Golden TSA). It provides some basic landbase information, some background information from the previous Annual Allowable Cut (AAC) Rationale document (Jan. 2000), outlines the ground sampling design and methods used. In addition, this report outlines the implementation plan for the field sampling.

### 1.4 Landbase

The Golden TSA is located in southeastern British Columbia within the Nelson Forest Region. The TSA is bounded by the Selkirk and Purcell Mountains to the west and the Rocky Mountains to the east. It straddles the Rocky Mountain Trench and the upper Columbia River Valley northward to the Big Bend area near Mica Dam. The TSA is bordered by five National Parks (Kootenay, Yoho, Banff, Jasper and Glacier), as well Hamber Provincial Park and Cummins Lakes Provincial Park is located within the TSA boundary (AAC Rationale document, 2000).

Most of the TSA lies within the interior wet belt of the province. The mountainous environment has a varied climate and growing conditions, resulting in diverse forests. In wetter parts of the TSA, lower elevations are occupied predominately with western red cedar, western hemlock and spruce species, with stands of spruce and subalpine fir occupying most of the higher elevations. Some southern parts of the TSA experience a drier climate, with Douglas-fir forests in valley bottoms and lodgepole pine at higher elevations. Throughout the TSA, mountain peaks are covered by large areas of alpine tundra, rock, snow, and ice. Because of the rugged, mountainous landscape, a relatively small portion of the TSA consists of productive forest land (AAC Rationale document, 2000).

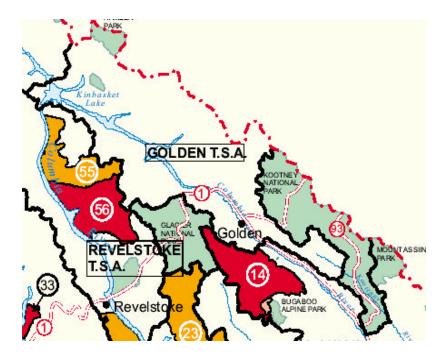



Figure 1: Overview of Golden TSA

The four biogeoclimatic zones located within the TSA include the Interior Cedar Hemlock (ICH) zone, the Engelmann Spruce Subalpine Fir (ESSF) zone, the Sub-Boreal Spruce (SBS) zone, and the Alpine Tundra (AT) zone.

Based on current (May 2003) estimates from the BC Ministry of Forests (MoF), the Golden analysis unit is just over one million (1,185,101) hectares in total area and the TSA area (excluding parks) is just over 900,000 (902,445) hectares.<sup>2</sup> Of this only 186,498 hectares (20 percent) is considered as operable productive forest land, and approximately 153,870 hectares is considered suitable as the Timber Harvesting Land Base (THLB). Table 1 below shows an abbreviated landbase summary as per the May 2003 landbase information. Note that these figures differ to some degree with the VRI database figures in Section 2.4 of this report – as the information below was determined based on historical inventory and operability information.

Table 1: Golden TSA Abbreviated Landbase Summary Estimates (Provided by theMinistry of Forests, Columbia Forest District)

| Description                               | Area (ha) |
|-------------------------------------------|-----------|
| Total Landbase                            | 1,185,101 |
| TSA                                       | 902,444   |
| Treed & managed by MoF                    | 351,450   |
| Reductions                                | 205,281   |
| Additions                                 | 7,700     |
| Current Timber harvesting Landbase (THLB) | 153,869   |
| Operable Productive Forest Land           | 186,498   |

The general species breakdown (of the main species within the TSA) of the previous inventory versus the new VRI inventory yields the following comparison (as shown in Table 2).

| Previous In | nventory | VRI Inventory |       |  |  |
|-------------|----------|---------------|-------|--|--|
| Species     | %        | Species       | %     |  |  |
| SB          | 40       | SB            | 40    |  |  |
| F           | 22       | F             | 26    |  |  |
| PL          | 22       | PL            | 14    |  |  |
| Cw          | 9        | Cw            | 6.5   |  |  |
| Hw          | 7        | Hw            | 7     |  |  |
| Other       | N/a      | Other         | 6.5   |  |  |
| Total       | 100 %    | Total         | 100 % |  |  |

 Table 2: Species Comparison (previous versus VRI inventory)

This breakdown between the inventories shows generally little difference in the leading species except a switch in the amount of Douglas fir versus lodgepole pine and the addition of other (deciduous) species in the VRI inventory.

#### 1.5 Background and Inventory Issues

The original inventory was completed in 1968 and was last updated in 1994. This existing inventory information was used in the January 2000 AAC determination, however, at that time the Nelson Forest Region was also undertaking the new VRI phase I inventory work.

The VRI aerial photo (Phase I) inventory was completed in December 2001 using 1996 and 1997 1:15,000 hard copy aerial photographs. The document photos are currently kept with the Ministry of Sustainable Resource Management (MSRM) Nelson Regional Office.

The AAC rationale stated a number of issues and uncertainties with respect to the inventory and related forest information. The issues related to the classification of the forest land and deal with uncertainty in the existing forest management related to the inventory.

The specific issues outlined in the rationale document which revolve around the inventory, which should be able to be addressed by this current VRI, include:

- 1) Deciduous stands were previously excluded from the timber supply analysis. These stands should be included as they may also contain valuable conifer species or contribute to future volume in the TSA;
- 2) For the previous Timber Supply Review (TSR) the 1989 operability line was used to support the AAC determination. A revised operability line was requested before the next TSR;
- 3) Although the inventory volumes themselves were deemed acceptable in the inventory audit a new inventory was requested in order to reduce uncertainty, particularly for stands older than 140 years of age;
- 4) There were potentially significant errors in the species composition especially the species classification for problem forest types;
- 5) It was recommended that destructive sampling and testing continued in order to assess allowances for decay waste and breakage for cedar and hemlock stands;
- 6) Correct site productivity estimates is required for both the low volume cedar/hemlock stands and mature low site index spruce leading stands.

# 2.0 GROUND SAMPLING PLAN

This portion of the report provides information on the sampling plan prepared for the Golden TSA.

### 2.1 Ground Sampling Objectives

The main objective of the ground sampling timber emphasis inventory is to install an adequate number of VRI sample clusters in order to statistically adjust the photo interpreted timber inventory attributes (such as height, age, and volume), within the TSA vegetated-treed areas to achieve a sampling (standard) error between 10 and 15 percent with a 95% confidence level.

## 2.2 Target Population

The target population for the proposed ground sampling inventory is the vegetated treed portion of the TSA located on crown forest land, that is also considered "operable" – as defined by the 2002 operability linework.

LP Engineered Wood Products Ltd. has substantially revised the operability over the last two years – and has stated that the operable area is quite stable. As with other areas in the Province, the operable area within the Golden TSA was considered for ground sampling as it provides for cost effective VRI ground sampling and focuses sampling activities in the portion of the landbase that is particularly important to the stakeholders.

In addition, stands younger than 30 years of age were to be excluded from the ground sampling inventory. The volume estimates for these stands are problematic; as well age and height information is often available from silviculture survey information.

The selection of the target population consisted of first identifying "Vegetated and Treed" polygons (greater than 10 percent crown closure) that are at least touching the operability line. This selection method at least allows for a buffer of potentially operable or borderline high elevation polygons along the designated operability 'line'.

#### 2.3 Sample Size

The sample size for the Golden TSA is determined based on a combination of the sampling error (SE) objective (10-15%) and the expected net volume coefficient of variation (CV) of the population, as determined from the latest inventory audit information. The previous operable inventory volume coefficient of variation (as determined by the 1999 Golden TSA inventory audit) is estimated to be 52 percent. Based on this information, and historical inventories in the region, the Nelson Regional Vegetation Resources Inventory Forester, Chris Mulvihill, R.P.F., estimated that 85 samples might be suitable to meet the sampling error target.

In addition, by using the sample size estimate calculations 85 samples are predicted to yield a sampling error of approximately eleven (11) percent. However, the coefficient of variation of the new inventory will be revised and re-calculated once the initial year of ground sampling is completed – then the proposed sampling error estimates can be better refined.

The preliminary figures for determining the number of samples conducted within the Golden TSA are shown by the calculations below:

#### Sample Size Estimate

#### <u>NOTE: CV is from VRI Ratio-of-Means</u> (ground volume/unadjusted inventory volume)

where  $n = t^2 * CV^2 / PE^2$  (t at alpha/2, n-1) if t=2 is assumed (for alpha=0.05),  $n = 4 * CV^2 / PE^2$ 

Sample size for a given CV and PE:

| CV=    | 52.0%   |             |
|--------|---------|-------------|
| alpha= | 0.05    | t=2         |
|        | Error % | Sample size |
|        | PE      | Ν           |
|        | 10%     | 108         |
|        | 15%     | 48          |

Sample size for a given CV and n:

| CV=    | 52.0%       |         |
|--------|-------------|---------|
| alpha= | 0.05        |         |
|        | Sample size | Error % |
|        | n           | PE      |
|        | 50          | 14.8%   |
|        | 80          | 11.6%   |
|        | 86          | 11.1%   |

| 100 | 10.3% |
|-----|-------|
| 120 | 9.4%  |
| 130 | 9.0%  |
| 150 | 8.4%  |

#### 2.4 Sample Selection

The method used for selecting polygons was that of probability of selection proportional to size with replacement (PPSWR). The selection process for Golden TSA followed the procedures outlined in the document, "Sample Selection Procedures for Ground Sampling", which was produced by the Ministry of Sustainable Resource Management, Terrestrial Information Branch, in December 2002.

The data files used for the selection process included the most recent:

- 1) Golden TSA VRI Phase I inventory database and graphic files (approved by the MSRM in 2002),
- 2) Administrative boundary coverage (obtained from the Columbia Forest District, MoF, 2002), and
- 3) Operability overlay linework (2001/2002) obtained from LP Engineered Wood Products Ltd.

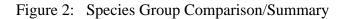
The VRI data files were used for preparing the sampling plan for the VRI ground field verification sampling. Most of the information in this database was projected to 2001/2002. A few mapsheets were also obtained from the MSRM that had new inventory information in 2003. Once collated the database files were verified to be clean and free of errors and a 1:1 link with the spatial files was confirmed, then a seamless VRI database (for the entire TSA) was produced. From this database specific attributes were used for the selection process. The attributes used (from the VRI database) for this procedure included:

- 1) MAP\_ID
- 2) POLY\_ID
- 3) SPECIES\_ID
- 4) SPECIES\_CD
- 5) CROWN\_CLOSURE
- 6) FOR\_COVER\_RANK\_CD
- 7) SPECIES\_PERCENT
- 8) BASAL\_AREA
- 9) VOLUME, and
- 10) PROJ\_AGE

The qualifying vegetated-treed polygons cover 232,104.7 hectares of the Golden TSA (approx. 25 percent). These polygons were divided into four dominant strata based on the area coverage and similar growth characteristics of the leading tree species. As well, the strata were developed in an attempt to address some of the previous inventory issues.

Once the strata were defined, the standards required that each of the strata be further separated in sub-strata, based on volume. The target was less than 15 substrata overall with a maximum of three substrata (low to high volume), per main species strata. Table 3 shows a summary of the area, percent coverage, and number of polygons within each strata class. As well the proposed number of ground sampling plots are shown for each strata and the number of substrata classes are presented.

|         |           |         | #        | # Plots per | # of      |
|---------|-----------|---------|----------|-------------|-----------|
| SPECIES | AREA      | PERCENT | POLYGONS | strata      | Substrata |
| FPL     | 93,868.5  | 40.4%   | 5,817    | 31          | 3         |
| SB      | 93,356.0  | 40.2%   | 6,786    | 31          | 3         |
| СН      | 31,662.2  | 13.6%   | 2,110    | 15          | 2         |
| Dec     | 13,218.0  | 5.7%    | 804      | 8           | 1         |
| Total   | 232,104.7 | 100.0%  | 15,517   | 85          | 9         |


 Table 3: Golden TSA Sampling Strata

The justification for the separate and smaller deciduous sample is to isolate the impacts of these deciduous leading polygons on the other strata – and to attempt to keep the other strata somewhat homogenous. The deciduous polygons tend to have less accurate information, and when compared to the ground information, they produce more extreme adjustment factors. As well, at this time the deciduous strata has limited inventory significance, therefore a disproportionate allocation of samples is proposed (per. Comm. S. Otukol, MSRM, 2003).

Once the substrata were determined, the individual substrata polygon areas were accumulated and then individual polygons were randomly selected from this list according to the proportional area of each substratum.

#### 2.5 Quality Assurance Process

Once the potential ground sampling polygons were selected the proposed target sample was compared against the entire Golden TSA population. This comparison is critical to ensure that the selected samples represent the range of inventory attributes that exist in the population. For this comparison a number of attributes were used, including strata (species) group, volume class, age class, height class, and site index (see Figures 2 through 6 respectively).



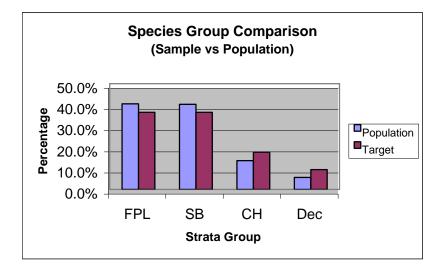



Figure 3: Volume Comparison

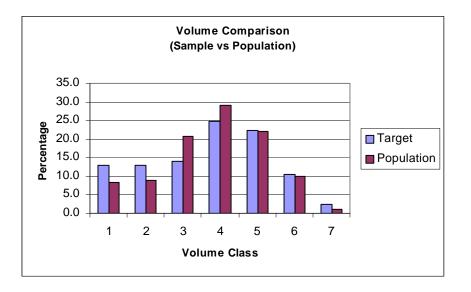



Table 4: Volume Class Codes

| Volume<br>Class | Values (m <sup>3</sup> ) |
|-----------------|--------------------------|
| 1               | 0 to 50                  |
| 2               | 51 to 150                |
| 3               | 151 to 250               |
| 4               | 251 to 350               |
| 5               | 351 to 450               |
| 6               | 451 to 550               |
| 7               | 551+                     |

Figure 4: Height Class Comparison

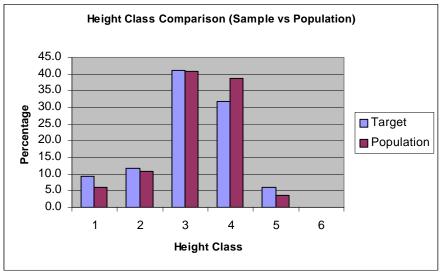
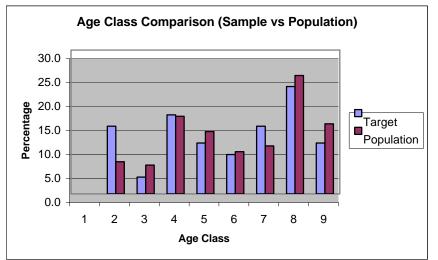
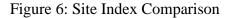
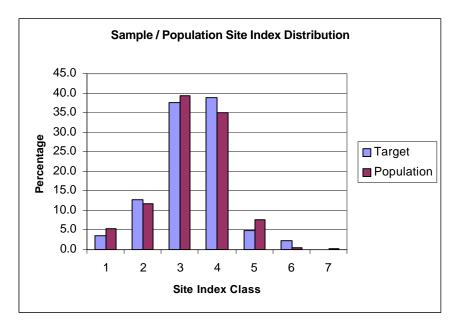






Figure 5: Age Class Comparison







#### Table 5: Site Index Codes

| SI Class | Values       |  |  |  |
|----------|--------------|--|--|--|
| 1        | 0 to 10.0    |  |  |  |
| 2        | 10.1 to 12.5 |  |  |  |
| 3        | 12.6 to 17.5 |  |  |  |
| 4        | 17.6 to 22.5 |  |  |  |
| 5        | 22.6 to 27.5 |  |  |  |
| 6        | 27.6 to 30.0 |  |  |  |
| 7        | 30.1+        |  |  |  |

#### 2.6 Sample Point Selection

Once the polygons were chosen then the sample point within each target polygon was selected. The official provincial 100-meter grid was digitally overlaid over each selected polygon, and then every grid point within each selected polygon was retained. After which, a random point generator was used to select the sample point location for each of the selected polygons.

### 2.7 Sampling Approach

Due to Forest Investment Account (FIA) budget limitations the ground sampling activities will be completed over two years beginning in the fall of 2003, with completion scheduled for the summer of 2004. Both the regular timber emphasis sampling and the net volume adjustment factor (NVAF) enhanced cruising will be conducted. It is anticipated that the NVAF ground samples be given priority so they can be used to develop the NVAF destructive sampling contract in early 2004. In this way the NVAF destructive sampling can then also be completed in the summer/fall of 2004 – thereby allowing the stakeholders to potentially complete the final inventory adjustment work in the fall/winter of 2004/2005 for the Golden TSA.

## 2.8 Sample Type

The ground sampling for this inventory will use Timber Emphasis Plots (TEPs) with selected enhanced cruising of selected auxiliary plots for the purpose of future NVAF destructive sampling.

The inventory sample design is a five-point cluster consisting of an Integrated Plot located at the centre of the cluster, and up to four auxiliary plots located in cardinal directions around the main integrated plot center. The integrated plot center is the location around which the detailed sample information will be collected. All attributes are attached to the plot centre point. Data is collected on the following major items:

- tree attributes including mensuration, damage, loss, gross and net volume, and grades (variable and/or fixed area)
- site tree information (fixed area 5.64 m radius)
- wildlife tree attributes (variable or fixed area)
- small trees and stumps (fixed area 2.50 m radius)

Plot type for each of the proposed ground samples have already been determined and (as per the standards) are either variable or fixed radius plots.

#### 2.9 Measurements

The data collection for each attribute will follow the current VRI ground sampling standards: "Vegetation Resources Inventory, Ground Sampling Procedures", version 4.3 prepared by Ministry of Sustainable Resources Management, Terrestrial Information Branch, March 2002.

For the TEP's, the measurements will be recorded using either the VRI field cards 1-3 and 8-11 or handhelds; in either case, the digital data will be submitted in an acceptable and clean format (TIMVEG or VIDE formats) to the MSRM.

For the NVAF cruising 23 samples (and 60 auxiliaries) will be sampled. VRI field card number 11 (or alternatively cards 8 and 9) will be used for data collection.

VRI certified timber emphasis samplers will conduct all measurements – and all sampling will meet or exceed current VRI standards.

### 2.10 NVAF Activities

As per the MSRM standards, the net volume adjustment factor (NVAF) sampling is mandatory for the inventory. NVAF sampling involves detailed stem analysis of sample trees, calculation of actual net volume, and calculation of the ratio between actual net volume and estimated net volume; it will be used to statistically adjust the estimate of net merchantable volume of VRI ground samples.

The objective of the NVAF portion of the inventory is to complete destructive tree sampling and obtain local information for hidden decay, waste, and stem taper in order to statistically adjust the cruiser calls for net volume.

In the ground sampling phase of the NVAF process, ground sampling crews will provide detailed enhanced cruising (net factoring and call grading) of all the trees (live, dead, standing or fallen) within the selected auxiliaries at the same time as they are conducting regular timber emphasis sampling within the TSA. Once the enhanced data is collected then the NVAF enhanced tree data will be compiled in a tree matrix and a sample design for selected trees will be developed.

All NVAF planning and implementation will follow the Net Volume Adjustment Factor Sampling Standards and Procedures, MSRM, Version 3.0, March 2002

The ground sampling NVAF selection process for the Golden TSA is described below in the following steps:

Step 1) <u>Gather the information of selected (85) ground samples</u>: Sample tree stratification is based on polygon attributes (polygon age, leading species)

Step 2) Stratify the ground samples by age group:

Immature: equal or less than 120 years old. Mature: greater than 120 years old. For this inventory there are 45 immature samples & 40 mature samples. MATURE - 40 samples

Step 3) Determine the number of NVAF sample trees – both overall and by strata:

The NVAF requires that a minimum of 10 immature and 5 dead trees be destructively sampled, in addition to a minimum of 30 live mature trees per stratum. Therefore, after careful consideration, it was recommended that 75 trees would likely may be an appropriate balance between the number of sample trees required while minimizing overall and individual stratum sampling error.

In summary the NVAF destructive sampling stratum will include -

- Immature = 10 trees
- FPL mature = 30 trees
- Other mature = 30 trees
- Dead trees = 5 trees
- TOTAL = 75 trees

Step 4) Select the NVAF samples from the 85 ground samples for each NVAF stratum:

For each stratum sort by leading species, then by sample number Dead trees will be randomly selected in the field from the selected enhanced auxiliaries.

Step 5) Random auxiliary selection:

In an effort to balance time and NVAF sample size only up to three auxiliaries would be selected per NVAF selected sample. See Table 6 for a listing of the ground samples and randomly selected

Table 6: Selected NVAF Samples and Auxiliaries

| Sample # | Auxiliaries |  |  |  |  |
|----------|-------------|--|--|--|--|
| 15       | N, E, S     |  |  |  |  |
| 53       | N           |  |  |  |  |
| 64       | S           |  |  |  |  |
| 61       | N, E, S     |  |  |  |  |
| 13       | E, S, W     |  |  |  |  |
| 17       | N, E, S     |  |  |  |  |
| 21       | E, S, W     |  |  |  |  |
| 27       | N, E, S     |  |  |  |  |
| 45       | N, E, W     |  |  |  |  |
| 11       | N, E, S     |  |  |  |  |
| 14       | N, S, W     |  |  |  |  |
| 20       | N, W        |  |  |  |  |
| 47       | N, E, S     |  |  |  |  |
| 51       | N, S, W     |  |  |  |  |
| 65       | S, W        |  |  |  |  |
| 69       | E, S, W     |  |  |  |  |
| 71       | S, W        |  |  |  |  |
| 73       | N, S, W     |  |  |  |  |
| 75       | N, W        |  |  |  |  |
| 77       | N, E, W     |  |  |  |  |
| 79       | N, S        |  |  |  |  |
| 81       | N, E, S     |  |  |  |  |
| 84       | E, S, W     |  |  |  |  |

# 3.0 IMPLEMENTATION PLAN

This section of the document outlines the activities needed to implement the proposed ground sampling project.

# 3.1 Scheduling

The Golden TSA ground sampling activities are scheduled over two years. In the first year (fall 2003) it is expected that approximately 50 ground samples will be established. However, all of the planned NVAF enhanced plots (23) will be completed in this first year to allow for NVAF destructive sampling to occur in the summer of 2004.

After the first year of sampling the coefficient of variation (CV) will be re-calculated based on the standard error of regression for net volume. This will help direct the amount of sampling to complete in 2004. Table 7, shown below, provides a list of activities and the proposed completion date.

| ACTIVITY                               | <b>Completion Date</b> |
|----------------------------------------|------------------------|
| Project development                    | Jun-03                 |
| Sample plan preparation                | Jul-03                 |
| Package preparation                    | Jul-03                 |
| VPIP                                   | Aug-03                 |
| Ground sampling (GS) RFP               | Aug-03                 |
| GS Contract initiation                 | Sep-03                 |
| Ground sampling (~50 samples) - yr 1   | Oct-03                 |
| GS QA (10%)                            | Oct-03                 |
| GS data compilation                    | Dec-03                 |
| NVAF sample matrix                     | Jan-04                 |
| Preliminary analysis (re-calculate CV) | Jan-04                 |
| NVAF destructive sampling RFP          | Jun-04                 |
| NVAF contract initiation               | Jun-04                 |
| Ground sampling (~35 samples) - yr 2   | Jul-04                 |
| GS QA (10%)                            | Jul-04                 |
| NVAF destructive sampling              | Aug-04                 |
| NVAF QA                                | Aug-04                 |
| GS data compilation                    | Sep-04                 |
| NVAF data compilation                  | Nov-04                 |
| Final inventory adjustment             | Jan-05                 |

 Table 7: Schedule of Activities for the Golden TSA

### 3.2 Sample Packages

Atticus prepared the sample packages for all 85 samples, with each package containing:

- copies of Phase I document photos
- 1:10,000 scale orthophoto sample location maps
- 1:20,000 scale forest cover maps with the most recent Forest Development Plan information included.

Pioneer Forest Consulting will provide the successful contractor with the packages plus overview maps (at 1:60,000 scale) for the entire Golden TSA area.

### 3.3 Roles and Responsibilities

#### 3.3.1 Project Coordination

Pioneer Forest Consulting provides the overall project coordination of the Golden TSA ground sampling inventory. Atticus Resource Consulting Ltd. was responsible for developing all the phases of the sampling plan, from data assembly and design to sample packages preparation. Sample size was developed based on information provided by Chris Mulvihill, R.P.F., the Nelson Regional Vegetation Resources Inventory Forester (MSRM). The MSRM, TIB staff is responsible to review the Vegetation Project Implementation Plan (VPIP), and eventually approve the plan before ground sampling commences. As well, they have provided valuable insight and assistance with various sections of the sampling plan preparation.

Ground sampling crews have not yet been selected for this work. The request for proposals will be sent to eligible VRI contractors. The chosen contractor will be responsible for all phases of the ground sampling work and will ensure that every aspect of the ground sampling phase will be completed to the latest VRI standards. The contractor will be responsible for the overall sampling logistics and delivery of the project to Carole Dascher, R.P.F., of Pioneer Forest Consulting Ltd.

#### 3.3.2 Project Support

Atticus will provide the sample list to Pioneer Forest Consulting, which will include: sample number, mapsheet, polygon number, UTM coordinated (Northing and Easting) as well as Lat/Long coordinates and basic access information. A backup sample list will also be provided.

Pioneer Forest Consulting Ltd will provide sample packages, including copies of document photos and field maps to the contractor. It is expected that the successful contractor will provide the plot supplies (field cards, aluminum stakes, paint, ribbon, and drinking straws for tree cores) in enough quantities to complete 85 ground samples.

#### 3.3.3 Fieldwork

The fieldwork will be completed with VRI certified crews following the VRI measurement protocols as detailed by Vegetation Resources Inventory Ground Sampling Procedures Version 4.3 – March 2002. The fieldwork will include locating and completing a VRI timber emphasis cluster sample. At each plot the crew will record the field data either on a TIMVEG handheld computer program or on standard VRI data cards provided by the MSRSM. In addition, each crew will collect GPS information (where possible), take 35mm photographs of the plots, and collect tree ages for microscopic office age counting.

The sample plots will be completed in batches suitable for quality assurance checking by a third party.

#### 3.3.4 Quality Assurance

Following the latest MSRM standards, a separate (third party) contractor will complete the Quality Assurance (QA) of at least 10 percent of the ground samples. It is expected that the minimum number of QA samples will be 9, however, it is likely that at least 10 samples would be completed (based on an initial batch of only 5 samples for each crew – if three crews were being used on the project). It is unknown at this time if the MSRM, Nelson Regional Vegetation Resources Inventory Forester (Chris Mulvihill), will be available to complete the QA portion of this work.

The Vegetation Resources Inventory Ground Sampling Quality Assurance Standards Version 1.1 will be followed.

#### 3.3.5 Data Compilation, Analysis and Adjustment

The selected contractor will complete data entry, GPS corrections, and microscopic office age counts immediately after the field season. All final data and materials will then be provided to Pioneer Forest Consulting.

At the end of the first year of field sampling new coefficient of variations (CV's) will be calculated and will be used to adjust and direct sampling efforts in 2004.

The final compilation of the inventory data including statistical analysis and data adjustment will be conducted in the fall/winter of 2004/2005 after the NVAF destructive sampling is completed in the summer of 2004, subject to budget approval. The analysis will follow the minimum standards as stated in the "VRI Inventory Attribute Adjustment procedures, version 4.4", MSRM, 2002.

Final ground sample and adjusted digital data will be submitted to MSRM, TIB in an acceptable and approved format.

# 4.0 SAMPLE LIST

#### 4.1 List of Selected Samples

The following table provides a list of the proposed 85 VRI ground samples to be completed for the Golden TSA.

| Sample | Sample<br>Type | Mapsheet | Polygon | BGC     | ∪тм_х    | UTM_Y     | Sp1 | Sp2 | AGE | нт   | Vol/ ha | Access Type |
|--------|----------------|----------|---------|---------|----------|-----------|-----|-----|-----|------|---------|-------------|
| 1      | Timber         | 082N063  | 903     | ICHmw1  | 470505.9 | 5721985.2 | AT  | PLI | 31  | 6.5  | 0.1     | TRUCK       |
| 2      | Timber         | 082N045  | 216     | IDFdm2  | 495178.3 | 5696630.6 | AT  | SE  | 47  | 19.8 | 76.8    | TRUCK       |
| 3      | Timber         | 082N064  | 1020    | ICHmw1  | 472463.6 | 5717599.3 | AT  | ACT | 36  | 13.6 | 9.6     | TRUCK       |
| 4      | Timber         | 082N064  | 868     | ICHmw1  | 476844.1 | 5717944.1 | AT  | FDI | 31  | 12.8 | 4.3     | TRUCK       |
| 5      | Timber         | 082N035  | 874     | ICHmk1  | 492310.3 | 5692361.6 | AT  | SE  | 72  | 25.1 | 129.7   | TRUCK       |
| 6      | Timber         | 082N026  | 544     | MSdk    | 502316.1 | 5677666.0 | AT  | PLI | 79  | 22.8 | 147.8   | TRUCK       |
| 7      | Timber         | 082N045  | 284     | MSdk    | 497602.8 | 5698234.4 | AT  | PLI | 97  | 37.7 | 234.4   | TRUCK       |
| 8      | Timber         | 082N008  | 345     | ICHmw1  | 533515.2 | 5660844.5 | W   | SE  | 37  | 19.8 | 134.5   | TRUCK/HELI  |
| 9      | Timber         | 082N081  | 299     | ICHwk1  | 437483.4 | 5746796.8 | HW  | SE  | 96  | 20.8 | 276.3   | TRUCK/ATV   |
| 10     | Timber         | 082N083  | 797     | ICHmw1  | 468268.5 | 5739114.6 | CW  | HW  | 30  | 8.8  | 22.1    | TRUCK       |
| 11     | NVAF           | 083D040  | 229     | ICHwk1  | 427052.7 | 5799987.5 | HW  | CW  | 206 | 27.2 | 352.2   | HELI        |
| 12     | Timber         | 082N043  | 219     | ICHwk1  | 467541.3 | 5703610.3 | HW  | FDI | 247 | 33.2 | 408.7   | TRUCK       |
| 13     | NVAF           | 083D009  | 3       | ICHwk1  | 405122.7 | 5772933.4 | CW  | HW  | 206 | 31.2 | 407.2   | HELI        |
| 14     | NVAF           | 082N043  | 227     | ICHwk1  | 471822.0 | 5703968.1 | HW  | CW  | 267 | 31.2 | 416.0   | TRUCK/ATV   |
| 15     | NVAF           | 082N062  | 231     | ESSFwc2 | 452330.3 | 5725730.2 | CW  | HW  | 34  | 5.9  | 0.1     | TRUCK       |
| 16     | Timber         | 083D040  | 572     | ICHwk1  | 424901.8 | 5795016.6 | CW  | HW  | 126 | 24.3 | 289.2   | HELI        |
| 17     | NVAF           | 082N081  | 598     | ICHwk1  | 442622.8 | 5739682.7 | CW  | HW  | 326 | 39.2 | 547.6   | TRUCK       |
| 18     | Timber         | 083D009  | 130     | ICHwk1  | 411185.2 | 5770643.8 | CW  | SE  | 266 | 33.2 | 477.6   | HELI        |
| 19     | Timber         | 082N053  | 500     | ICHmw1  | 464226.3 | 5713917.6 | HW  | SE  | 266 | 38.1 | 593.4   | TRUCK       |
| 20     | NVAF           | 082M100  | 147     | ICHvk1  | 421887.3 | 5759689.5 | HW  | CW  | 246 | 34.2 | 450.8   | HELI        |
| 21     | NVAF           | 083D018  | 235     | ICHmw1  | 402874.2 | 5780586.1 | CW  | HW  | 246 | 31.2 | 461.4   | HELI        |
| 22     | Timber         | 082N043  | 205     | ICHmw1  | 465046.0 | 5703023.2 | HW  | SE  | 107 | 31.8 | 469.0   | TRUCK       |
| 23     | Timber         | 082N065  | 424     | ICHmw1  | 488895.7 | 5723050.7 | CW  | SE  | 246 | 31.2 | 448.8   | TRUCK       |
| 24     | Timber         | 082N073  | 629     | ESSFwc2 | 466551.9 | 5730459.9 | PLI | SE  | 76  | 16.7 | 138.3   | TRUCK       |
| 25     | Timber         | 082N046  | 395     | ICHmk1  | 502823.1 | 5701192.5 | PLI | FDI | 77  | 20.8 | 193.7   | TRUCK       |
| 26     | Timber         | 082N035  | 690     | ICHmw1  | 491757.7 | 5690416.3 | FDI | HW  | 72  | 18.2 | 153.3   | ATV         |
| 27     | NVAF           | 082N009  | 709     | MSdk    | 548621.0 | 5658391.2 | FDI | PLI | 167 | 21.2 | 158.4   | TRUCK (ATV) |
| 28     | Timber         | 082N064  | 853     | ICHmw1  | 472936.9 | 5718143.5 | FDI | AT  | 37  | 9.5  | 0.1     | TRUCK       |
| 29     | Timber         | 082N016  | 429     | IDFdm2  | 511166.1 | 5669671.9 | FDI |     | 77  | 21.2 | 136.6   | TRUCK       |
| 30     | Timber         | 082N026  | 510     | MSdk    | 507520.8 | 5676592.9 | FDI | AT  | 77  | 22.2 | 119.4   | TRUCK       |
| 31     | Timber         | 082N026  | 863     | MSdk    | 501269.3 | 5679716.1 | FDI | PLI | 38  | 11.1 | 24.9    | TRUCK       |
| 32     | Timber         | 082N035  | 593     | ICHmw1  | 491978.7 | 5689782.9 | FDI | SE  | 72  | 14.8 | 106.1   | TRUCK (ATV) |
| 33     | Timber         | 082N045  | 534     | ICHmk1  | 489785.5 | 5700953.9 | FDI | PLI | 77  | 23.5 | 211.3   | TRUCK       |
| 34     | Timber         | 082N046  | 582     | ICHmk1  | 511230.5 | 5703841.1 | FDI | AT  | 67  | 19.3 | 125.4   | HELI        |
| 35     | Timber         | 082N035  | 400     | ICHmk1  | 497850.0 | 5687616.3 | FDI | PLI | 77  | 25.7 | 249.1   | TRUCK       |
| 36     | Timber         | 082N073  | 507     | ICHmw1  | 463885.8 | 5730903.1 | FDI | PLI | 146 | 28.5 | 272.7   | TRUCK       |

Table 8: List of Selected VRI Ground Samples

| 07 | <b></b> : 1 | 00001040 | 100  | 5005    | 505040 4 |           |     | 05  | 0.07 | 010  | 000.0 | TDUOK       |
|----|-------------|----------|------|---------|----------|-----------|-----|-----|------|------|-------|-------------|
| 37 | Timber      | 082N016  | 189  |         |          | 5667236.3 | PA  | SE  | 207  | 24.2 | 288.8 | TRUCK       |
| 38 | Timber      | 082K100  | 179  | MSdk    |          | 5646100.0 | PLI | SE  | 87   | 24.8 | 288.9 | TRUCK       |
| 39 | Timber      | 082N045  | 234  | ICHmk1  |          | 5697687.8 |     | PLI | 77   | 26.5 | 263.0 | TRUCK       |
| 40 | Timber      | 082N027  | 657  | MSdk    |          | 5680027.8 | PLI | FDI | 79   | 22.2 | 229.0 | TRUCK       |
| 41 | Timber      | 082N043  | 115  | ICHmw1  |          | 5702099.7 | PLI | FDI | 77   | 25.1 | 277.8 | TRUCK       |
| 42 | Timber      | 082N009  | 308  | ICHmk1  |          | 5653245.4 | PLI | SE  | 87   | 24.7 | 291.8 | TRUCK       |
| 43 | Timber      | 082N026  | 975  | MSdk    |          | 5680805.1 | FDI | PLI | 110  | 30.8 | 282.2 | TRUCK       |
| 44 | Timber      | 082N027  | 294  | ICHmk1  |          | 5676030.1 | FDI | PLI | 107  | 28.8 | 288.3 | TRUCK       |
| 45 | NVAF        | 082N045  | 688  | ICHmw1  |          | 5702808.6 |     | SE  | 127  | 33.7 | 422.3 | TRUCK       |
| 46 | Timber      | 082N036  | 780  | ICHmk1  |          | 5692106.0 | FDI | PLI | 107  | 30.1 | 328.2 | TRUCK       |
| 47 | NVAF        | 082N009  | 266  | ESSFdk  |          | 5652806.2 | PLI | SE  | 137  | 28.2 | 389.6 | TRUCK       |
| 48 | Timber      | 082N063  | 537  | ICHmw1  |          | 5720642.7 | PLI | FDI |      | 26.2 | 347.3 | TRUCK       |
| 49 | Timber      | 082N075  | 123  | ICHmw1  |          | 5736584.5 | FDI | SE  | 95   | 35.1 | 462.0 | TRUCK       |
| 50 | Timber      | 082N054  | 34   | ICHmw1  |          | 5705517.0 | FDI | PW  | 107  | 25.7 | 300.8 | TRUCK       |
| 51 | NVAF        | 082N008  | 183  | MSdk    |          | 5658420.4 | PLI | SE  | 137  | 28.2 | 367.5 | TRUCK       |
| 52 | Timber      | 082N037  | 66   | ICHmk1  |          | 5685328.2 | PLI |     | 107  | 23.6 | 305.8 | ATV         |
| 53 | NVAF        | 082N027  | 613  | ICHmk1  |          | 5679362.2 |     | SE  | 107  | 27.8 | 370.2 | TRUCK       |
| 54 | Timber      | 082N026  | 1037 |         |          | 5681154.6 | FDI | SE  | 137  | 33.7 | 410.2 | TRUCK       |
| 55 | Timber      | 082N062  | 286  |         |          | 5720016.9 | BL  | SE  | 86   | 22.1 | 213.9 | TRUCK       |
| 56 | Timber      | 082N046  | 425  |         | 512213.5 | 5701294.5 | SE  | FDI | 47   | 14.6 | 99.8  | HELI        |
| 57 | Timber      | 083D019  | 819  | ESSFvv  | 409186.9 | 5774733.3 | SE  | BL  | 166  | 22.5 | 218.1 | HELI        |
| 58 | Timber      | 082N054  | 340  | ICHmw1  | 477776.8 | 5715000.7 | SE  |     | 35   | 5.5  | 0.1   | TRUCK       |
| 59 | Timber      | 082N061  | 224  | ESSFvc  | 435718.3 | 5718078.4 | SE  | BL  | 96   | 22.1 | 184.4 | ATV         |
| 60 | Timber      | 082N009  | 969  |         |          | 5651560.0 | BL  | SE  | 52   | 12.6 | 89.4  | TRUCK (ATV) |
| 61 | NVAF        | 082N093  | 298  | ESSFwc2 | 465822.2 | 5756979.0 | BL  | SE  | 206  | 18.2 | 164.0 | TRUCK/HELI  |
| 62 | Timber      | 082N054  | 486  | ICHmw1  | 480913.0 | 5714295.2 | SE  | FDI | 37   | 6.1  | 0.1   | TRUCK       |
| 63 | Timber      | 082N067  | 669  | ICHmw1  | 518256.7 | 5718465.4 | BL  | SE  | 34   | 6.6  | 4.5   | TRUCK (ATV) |
| 64 | NVAF        | 082N034  | 53   | ESSFwm  | 484853.3 | 5691606.4 | SE  | BL  | 37   | 7.1  | 6.8   | ATV         |
| 65 | NVAF        | 082N075  | 518  | ESSFwc2 | 488215.5 | 5734231.7 | SE  | BL  | 126  | 20.7 | 199.8 | TRUCK       |
| 66 | Timber      | 083D030  | 304  | ESSFwc2 | 422761.3 | 5789338.2 | SE  | BL  | 206  | 29.2 | 322.4 | HELI        |
| 67 | Timber      | 082K099  | 480  | MSdk    | 551500.0 | 5648500.0 | SE  | PLI | 87   | 27.3 | 293.9 | HELI        |
| 68 | Timber      | 082N009  | 100  | ESSFwm  | 544622.8 | 5650843.7 | BL  | SE  | 147  | 26.7 | 274.4 | TRUCK/ATV   |
| 69 | NVAF        | 082N084  | 203  | ICHmw1  | 481661.2 | 5747580.8 | SE  | HW  | 126  | 24.7 | 328.4 | ATV         |
| 70 | Timber      | 082M090  | 77   | ICHwk1  | 430066.4 | 5747949.3 | SE  | CW  | 266  | 26.2 | 359.0 | HELI        |
| 71 | NVAF        | 082N053  | 610  | ESSFwc2 | 462555.2 | 5715039.7 | SE  | PA  |      | 28.3 | 351.2 | TRUCK       |
| 72 | Timber      | 082N063  | 213  | ICHmw1  |          | 5721554.4 | SE  | HW  | 326  |      | 280.1 | TRUCK       |
| 73 | NVAF        | 082K100  | 400  |         |          | 5647100.0 | SE  |     |      | 29.8 | 353.8 | TRUCK       |
| 74 | 1           | 082M100  |      |         | ſ        | 5760022.9 |     |     |      |      |       |             |
| 75 | NVAF        | 082N074  | 1048 |         |          | 5728922.3 |     | BL  |      | 30.2 | 330.5 | TRUCK/ATV   |
| 76 | Timber      | 082N054  | 88   | ICHmk1  | 1        | 5707408.3 |     | PLI | 127  | 31.7 | 405.3 | TRUCK       |
| 77 | NVAF        | 082N092  | 437  | ICHwk1  |          | 5756656.2 | SE  | CW  | 286  | 40.1 | 582.4 | TRUCK       |
| 78 | Timber      | 082N065  | 223  |         |          | 5726463.4 | SE  | FDI |      | 32.2 | 381.4 | TRUCK       |
| 79 | NVAF        | 082N094  | 799  |         |          | 5750818.2 |     | BL  |      | 34.2 | 401.0 | TRUCK       |
| 80 | Timber      | 082N091  | 609  | ICHwk1  | Î        | 5755486.2 | SE  | CW  |      | 36.2 | 511.3 | TRUCK       |
| 81 | NVAF        | 082N046  | 405  |         |          | 5700898.9 |     | CW  | 127  | 28.7 | 372.7 | TRUCK       |
| 82 | Timber      | 082N062  | 166  | ICHmw1  |          | 5726295.1 | SE  | HW  | 206  | 34.2 | 457.9 | TRUCK       |
| 83 | Timber      | 082N026  | 64   | ICHmk1  | 505372.6 | 5672433.9 | SE  | FDI | 97   | 31.2 | 379.6 | TRUCK       |
| 84 | NVAF        | 082N056  | 486  |         | 510293.9 | 5712230.2 | SE  | CW  | 246  | 33.2 | 466.7 | TRUCK       |
| 85 | Timber      | 083D010  | 643  | ICHmw1  | 419494.9 | 5764636.3 | SE  | BL  | 306  | 39.1 | 449.9 | HELI        |

# 4.2 List of Back-up Samples

The following table provides a list of the proposed additional back-up VRI ground samples for the Golden TSA.

Table 9: List of Back-up VRI Ground Samples

| SAMPLENO | P_LABEL     | UTM_X        | UTM_Y         | BECLABEL | ZONE | SUBZONE | VARIANT |
|----------|-------------|--------------|---------------|----------|------|---------|---------|
| 86       | 082N055.948 | 487443.17880 | 5708615.70510 | ICH mw 1 | ICH  | mw      | 1       |
| 87       | 082N073.935 | 458637.47477 | 5730870.89607 | ICH mw 1 | ICH  | mw      | 1       |
| 88       | 082N026.819 | 503741.67124 | 5680910.11007 | IDF dm 2 | IDF  | dm      | 2       |
| 89       | 082N035.230 | 499974.97239 | 5685326.56633 | MS dk    | MS   | dk      |         |
| 90       | 082N036.104 | 500490.54244 | 5683848.81545 | MS dk    | MS   | dk      |         |
| 91       | 082N073.263 | 461408.78676 | 5735961.19774 | ICH mw 1 | ICH  | mw      | 1       |
| 92       | 082N045.649 | 498919.44030 | 5702198.98663 | ICH mk 1 | ICH  | mk      | 1       |
| 93       | 082N054.467 | 479851.70088 | 5712314.01349 | ICH mw 1 | ICH  | mw      | 1       |
| 94       | 082N072.556 | 456370.38264 | 5728136.36968 | ICH mw 1 | ICH  | mw      | 1       |
| 95       | 082N053.420 | 467507.26517 | 5711983.80761 | ICH mw 1 | ICH  | mw      | 1       |
| 96       | 082N063.722 | 460776.06135 | 5724747.19813 | ICH mw 1 | ICH  | mw      | 1       |
| 97       | 082N064.408 | 479780.31115 | 5720390.37580 | ICH mw 1 | ICH  | mw      | 1       |
| 98       | 082N063.142 | 463657.85848 | 5722057.82724 | ICH mw 1 | ICH  | mw      | 1       |
| 99       | 083D018.418 | 396435.52857 | 5777576.54991 | ICH wk 1 | ICH  | wk      | 1       |
| 100      | 083D009.264 | 417502.11284 | 5766404.75441 | ICH mw 1 | ICH  | mw      | 1       |
| 101      | 082N043.152 | 464387.16884 | 5702603.68303 | ICH mw 1 | ICH  | mw      | 1       |
| 102      | 082N067.493 | 516966.39080 | 5721757.87418 | ICH mw 1 | ICH  | mw      | 1       |
| 103      | 082N081.375 | 440358.54047 | 5745621.23532 | ICH wk 1 | ICH  | wk      | 1       |
| 104      | 083D010.728 | 420981.10534 | 5763638.85385 | ICH mw 1 | ICH  | mw      | 1       |
| 105      | 082N072.21  | 448426.15211 | 5738534.94750 | ICH wk 1 | ICH  | wk      | 1       |
| 106      | 082N062.294 | 450681.52430 | 5722311.27543 | ICH wk 1 | ICH  | wk      | 1       |
| 107      | 083D009.216 | 415382.17285 | 5767180.71592 | ICH mw 1 | ICH  | mw      | 1       |
| 108      | 082N053.587 | 465332.91631 | 5714683.07132 | ICH mw 1 | ICH  | mw      | 1       |
| 109      | 082N063.313 | 462344.71046 | 5718898.59807 | ICH mw 1 | ICH  | mw      | 1       |
| 110      | 082N026.327 | 504799.18984 | 5675027.83299 | MS dk    | MS   | dk      |         |
| 111      | 082N056.99  | 507758.00549 | 5707413.98709 | ICH mk 1 | ICH  | mk      | 1       |
| 112      | 082N056.548 | 512581.40157 | 5713549.13360 | ICH mk 1 | ICH  | mk      | 1       |
| 113      | 082N084.817 | 473420.64330 | 5739965.68734 | ICH mw 1 | ICH  | mw      | 1       |
| 114      | 082N063.313 | 461624.79521 | 5718789.32770 | ESSFwc 2 | ESSF | WC      | 2       |
| 115      | 082N018.377 | 528553.94843 | 5666927.58683 | ESSFwm   | ESSF | wm      |         |
| 116      | 082N046.439 | 503859.15907 | 5702974.99101 | ICH mk 1 | ICH  | mk      | 1       |
| 117      | 082N026.872 | 505040.70094 | 5680037.23538 | IDF dm 2 | IDF  | dm      | 2       |
| 118      | 082N036.272 | 504204.08567 | 5685286.43373 | MS dk    | MS   | dk      |         |
| 119      | 082N054.336 | 476368.03944 | 5716593.48311 | ICH mw 1 | ICH  | mw      | 1       |
| 120      | 082N091.514 | 433269.70164 | 5756415.02084 | ICH mw 1 | ICH  | mw      | 1       |
| 121      | 082N084.753 | 479942.03261 | 5742052.63251 | ICH mw 1 | ICH  | mw      | 1       |

| 122 | 082N035.562  | 497321.57736 5688994.90543 | ICH mk 1 | ICH  | mk | 1 |
|-----|--------------|----------------------------|----------|------|----|---|
| 123 | 082N084.1026 | 484141.91205 5740201.64551 | ICH mw 1 | ICH  | mw | 1 |
| 124 | 082N026.610  | 501497.21142 5677569.74989 | ICH mk 1 | ICH  | mk | 1 |
| 125 | 082N072.439  | 452470.66771 5730754.60955 | ICH mw 1 | ICH  | mw | 1 |
| 126 | 082N026.973  | 504995.52936 5681252.79889 | MS dk    | MS   | dk |   |
| 127 | 082N073.213  | 463596.99098 5737293.94476 | ICH mw 1 | ICH  | mw | 1 |
| 128 | 082N056.420  | 507225.74641 5711112.62106 | ICH mk 1 | ICH  | mk | 1 |
| 129 | 082N056.219  | 508394.42373 5708441.25287 | ICH mk 1 | ICH  | mk | 1 |
| 130 | 082N082.544  | 447841.22427 5741837.43227 | ICH mw 1 | ICH  | mw | 1 |
| 131 | 082N062.161  | 449575.13757 5725478.55808 | ICH wk 1 | ICH  | wk | 1 |
| 132 | 082N054.166  | 482422.46872 5709563.58280 | ICH mw 1 | ICH  | mw | 1 |
| 133 | 082N009.879  | 544376.94893 5660652.72869 | MS dk    | MS   | dk |   |
| 134 | 082N084.846  | 479059.00974 5741460.09882 | ICH mw 1 | ICH  | mw | 1 |
| 135 | 082N009.738  | 547632.82489 5659325.21668 | MS dk    | MS   | dk |   |
| 136 | 082N062.67   | 447542.53833 5726142.66259 | ICH mw 1 | ICH  | mw | 1 |
| 137 | 082N055.167  | 498229.73982 5707026.81728 | ESSFwm   | ESSF | wm |   |
| 138 | 082N053.88   | 461808.69400 5706867.02529 | ICH wk 1 | ICH  | wk | 1 |
| 139 | 082N009.491  | 549145.38021 5656206.72913 | MS dk    | MS   | dk |   |
| 140 | 082K099.269  | 554000.00000 5645100.00000 | ESSFdk   | ESSF | dk |   |
| 141 | 082N067.348  | 524540.44781 5723404.20869 | ESSFwm   | ESSF | wm |   |
| 142 | 082N055.406  | 492714.76897 5711971.28942 | ESSFwm   | ESSF | wm |   |
| 143 | 082N051.14   | 440630.72139 5706054.35241 | ESSFvc   | ESSF | VC |   |
| 144 | 082N046.531  | 510619.66654 5703012.23414 | ESSFwm   | ESSF | wm |   |
| 145 |              | 472227.93325 5721259.83772 |          | ICH  | mw | 1 |
| 146 | 082N093.732  | 466408.53991 5750549.06821 | ESSFwc 2 | ESSF | WC | 2 |
| 147 | 083D019.819  | 409311.54713 5774919.14997 | ESSFwc 2 | ESSF | WC | 2 |
| 148 | 082N027.50   | 526666.10295 5672614.49792 | ICH mk 1 | ICH  | mk | 1 |
| 149 |              | 530665.18931 5664538.51022 | -        | ICH  | mw | 1 |
| 150 | 083C012.174  | 449000.00000 5773700.00000 |          | ESSF | WC | 2 |
| 151 | 082K099.361  | 554300.00000 5646900.00000 | MS dk    | MS   | dk |   |
| 152 | 082N075.505  | 487162.41770 5734669.66060 | ESSFwc 2 | ESSF | WC | 2 |
| 153 |              | 514949.30047 5686524.27425 |          | ICH  | mk | 1 |
| 154 |              | 555900.00000 5643900.00000 | MS dk    | MS   | dk |   |
| 155 |              | 419083.17616 5800000.27462 |          | ESSF | WC | 2 |
| 156 |              | 488549.90992 5702322.68655 |          | ICH  | mw | 1 |
| 157 |              | 424616.79113 5787284.26976 |          |      | WC | 2 |
| 158 |              | 544971.84684 5660575.94116 |          | MS   | dk |   |
| 159 |              | 557300.00000 5647700.00000 |          | MS   | dk |   |
| 160 |              | 553100.00000 5646500.00000 |          | MS   | dk |   |
| 161 |              | 421527.26671 5779709.98407 |          |      | WC | 2 |
| 162 |              | 472233.53391 5733865.15182 |          |      | WC | 2 |
| 163 |              | 440689.27121 5744267.62409 |          | ICH  | wk | 1 |
| 164 |              | 439910.88189 5705944.95665 |          | ESSF | VC |   |
| 165 |              | 474886.86167 5733322.58475 |          | ICH  | mw | 1 |
| 166 |              | 450222.28777 5737598.53093 | ICH wk 1 | ICH  | wk | 1 |
| 167 | 082N009.867  | 546088.09020 5660633.45468 | MS dk    | MS   | dk |   |

| 168 | 082N009.1089 550261.89205 5659388.96317 | MS dk    | MS   | dk |   |
|-----|-----------------------------------------|----------|------|----|---|
| 169 | 082N044.236 474112.52867 5699035.83751  | ESSFwm   | ESSF | wm |   |
| 170 | 083C002.446 453100.00000 5763400.00000  | ICH wk 1 | ICH  | wk | 1 |

# 5.0 SIGN-OFF SHEET

I have read and agree that the procedures outlined in this proposal meet current MSRM minimum standards.

Manager, Vegetation Resources Inventory Terrestrial Information Branch Ministry of Sustainable Resource Management

I have read and agree that the activities and products outlined in this proposal will meet Ministry of Forests business needs.

Manager, Development and Policy Timber Supply Branch, Ministry of Forests