

### IoT Activities at the Ministry of Transportation and Infrastructure (MoTI)

Presented by: Caner Budakoglu Peter Giese

June 8, 2017



### Agenda

- Current Experiences and Challenges
- IoT Project Background
- Discovery Activities Involving Camera and Sensor Data at the Ministry.
- IoT Project Next Steps



### **Current IoT at MoTI**

- The Ministry employs a diverse range of sensor types:
  - Traffic Vehicle Counters,
  - Weather Stations,
  - Road Condition (e.g., Frost Detection, Water/Snow Depth)
  - Cameras (e.g., DriveBC, Construction Monitoring, Wild Life Detection)
  - Seismic and Structural Health Monitoring (e.g., Earthquake Detection)
- The Ministry has over 18K devices and growing.







### **Sensors Everywhere**





### **Current IoT Challenges at MoTI**

- The continuous growth of sensors is pushing existing systems and associated systems to their limits.
- Wide range of sensor technologies (e.g., from analog to IP enabled devices) makes integration difficult.
- Inability to effectively share between camera and sensor system used within the ministry – critical information is locked in siloed systems.
- Increasing maintenance / operational costs lots of independent application and procedures to support.
- There are also security and privacy challenges.



### **Current IoT Security and Privacy Challenges**

#### Security Challenges:

- Patching
- Secure Communication
- Event Logging
- Access Control
- **Privacy Challenges** 
  - Cameras
  - Inadvertent Personal Information Collection



### IoT Project

MoTI is investing in a flexible, multi-user IoT platform designed for continuous improvement and that enables the ministry to:

- Establish a single source of truth for camera and sensor data.
- Develop an open platform to improve interoperability.
- Provide capability for real-time analytics and on demand analysis
- Enable applications to be built quickly, intelligently and in a costeffective manner.
- Provide open data.



### IoT Scope

Build an IoT platform that provides connectivity layer for sensor data and communication interfaces for applications.

- Secure, scalable, enterprise solution.
- Modular, allow IoT features to be sourced from different suppliers.
- Based on open standards and defined APIs.





### **Activities Underway**

#### IoT Proof-of-Concept (POC) Challenges



#### **Planning & Initiation Phases for the ACSIS Project**





### IOT Proof of Concept: What We Built



Key Considerations:

- Open source software
- Relies on open and well adopted standards
- Works with the BC Developer's Exchange framework
  - OpenShift infrastructure
  - Using GitHub
- Modular integration & components
- Facilitated fast development



### **IOT Proof of Concept: Demonstration**





### **IOT Proof of Concept: Learnings**

FORRESTER' RESEARCH



- IoT ecosystem is large & rapidly evolving
  - Changing business models
  - Expanding technologies
- The way forward:
  - > Open standards
  - > Loosely coupled modular components
  - > Secure and scalable infrastructure



TechRadar™: Internet Of Things Security, Q1 '17

Ecosystem phase





### **40 Challenge Submissions**



 A wide range of start ups and established organizations participated in the IOT Challenge program





### IoT Project: Next Steps

- Complete the IoT Challenges with BC innovators.
- ACSIS team will continue to learn how to build an IoT solution and develop system requirements and operational principles.
- ACSIS team will select an IoT platform suitable for a production environment.



## Thank You.

# **Questions?**