

July 1, 2014

Timber Pricing Branch

Table of Contents

1	Source Data	. 2
2	Calculating The Mps Stumpage Rate	. 3
Ар	pendix 1: Explanation Of Variables Used In The Auction Dataset But Not In Implementation	11
Ар	pendix 2: Deciduous Volume And The Prorating Of Forest Management Administration And Road Management TOAs	12
Ар	pendix 3: Applicable Volume And The Calculation Of Development Cost Estimates	13

Disclaimer:

This document is for information only and has no legal authority. It is intended to complement the IAM by providing additional technical details such as rounding rules. If there are any inconsistencies between this document and the IAM then the IAM shall prevail. If there are any rounding or other calculation differences between this document and GAS then GAS shall prevail.

1 SOURCE DATA

Naming conventions for source data used throughout this document are as follows.

=	3 month average market values and other parameters published quarterly.
=	Interior Appraisal Manual.
=	refers to values on the corporate data base for each mark.
	refers to site data for the mark and cost estimates from current <i>Interior Appraisal Manual.</i>
=	refers to an appendix of this document.
=	refers to steps described in this document.
	= = =

2 CALCULATING THE MPS STUMPAGE RATE

		Units	Decimal Places	Source/ Value	Rounding
2.1 = /	selling price stand value CONVOL	\$/m ³	2	S 2.1.2 S 2.1.1	yes
2.1.1 =	CONVOL sum of coniferous species cruise volumes	m ³ m ³	0	Mark	
2.1.2 =	stand value sum of species values	\$ \$	2	S 2.1.3	
2.1.3 = *	species value species selling price species cruise volume	\$ \$/m ³ m ³	2 0	S 2.1.4 Mark	
2.1.4 = *	species selling price species appraisal LRF species lumber AMV	\$/m ³ fbm/m ³ \$/fbm	2	S 2.1.5 S 2.1.6	
2.1.5 = +	species appraisal LRF species cruise LRF ¹ species LRF add-on	fbm/m³ fbm/m³ fbm/m³	0 0 0	Mark IAM	
2.1.6 = /	species lumber AMV (fbm) species lumber AMV (Mbm) 1000	\$/fbm \$/Mbm	3 0	PAR	
2.2 = /	layp fraction layp volume CONVOL	fraction m ³	4 0	S 2.2.1 S 2.1.1	yes
2.2.1 = +	layp volume larch cruise volume yellow pine cruise volume	m³ m³ m³	0 0 0	Mark Mark	
2.3 =	LOGCVPH natural logarithm of CVPH		4	S 2.3.1	yes
2.3.1 = /	CVPH CONVOL net merchantable area	m ³ /ha ha	1	S 2.1.1 Mark	no
2.4 = /	hembal fraction hembal volume CONVOL	fraction m ³	4 0	S 2.4.1 S 2.1.1	yes

¹ If cruise LRF for lodgepole pine has been reduced for Mountain Pine Beetle volume, the reduction must be added back in as follows (rounded to zero decimal places): final Cruise LRF = Cruise LRF + (green attack volume*3+red attack volume*33+grey attack volume*83)/lodgepole pine net volume

		Units	Decimal Places	Source/ Value	Rounding
2.4.1 = +	hembal volume hemlock cruise volume balsam cruise volume	m³ m³ m³	0 0 0	Mark Mark	
2.5 = *	final cedar fraction intermediate cedar fraction (1 - Zone6)	fraction fraction	4	S 2.5.2 S 2.5.1	yes
2.5.1 =	Zone6 1 if Zone 6, 0 otherwise		0	Mark	
2.5.2 = *	intermediate cedar fraction preliminary cedar fraction (1 – cedar decay/100)	fraction fraction fraction	4 2	S 2.5.3 Mark	yes yes
2.5.3 = /	preliminary cedar fraction cedar cruise volume CONVOL	fraction m ³	4 0	Mark S 2.1.1	yes
2.6 = *	dry firyp fraction firyp fraction dry fraction	fraction	4	S 2.6.1 S 2.6.2	Yes
2.6.1 = /	firyp fraction firyp volume CONVOL	fraction m ³	4 0	S 2.6.3 S 2.1.1	yes
2.6.2 =	dry fraction fraction of top 2 BEC zone/subzone/variant that is dry	fraction	2 2	Mark/IAM3.3	yes
2.6.3 = +	firyp volume Douglas fir cruise volume yellow pine volume	m³ m³ m³	0 0 0	Mark Mark	
2.7 =	LOGVOL natural logarithm (EFFVOL/1000)		4	S 2.7.1	yes
2.7.1 =	EFFVOL Effective coniferous volume		0	IAM3.3	yes
2.8 =	LOGVPT natural logarithm (VPT)		4 2	Mark	yes
2.10 = /	decay fraction sum of species decay percent prorates 100	fraction %	4	S 2.10.1	yes
2.10.1 = * /	species decay percent prorate species decay percent species cruise volume CONVOL	% %	0 0 0	Mark Mark S 2.1.1	

		Units	Decimal Places	Source/ Value	Rounding
2.12	partial cut fraction	fraction	4		
-	1 (CAPCUT% (no 80% limit)/100)		4 4	Mark/IAM	yes
2.13 = /	cable yarding fraction cable yarding volume HARVOL	fraction m³	4 0	Mark/IAM3.3 S 2.13.1	yes
2.13.1 =	HARVOL sum of all harvest method volumes	m3	0 0	Mark	yes
2.16 =	fire damage fraction sum of fire damage fraction prorates	fraction %	4	S 2.16.1	yes
2.16.1 = * / /	species fire damage fraction prorate species fire damage percent species cruise volume CONVOL 100	% % M ³	0 0 0	Mark Mark S 2.1.1	
2.17 = +	effective cycle time cycle time incremental cycle time	hours hours hours	1 1 1	S 2.17.1 S 2.17.2	yes yes
2.17.1 = +	cycle time primary cycle time secondary cycle time	hours hours hours	1 1 1	Mark Mark	yes
2.17.2 =	incremental cycle time 0.5*(cycle time - 6)	hours	1	S 2.17.1	
note: If cyc	le time < 6, then incremental cycle time = 0				
2.18 = /	deciduous fraction deciduous volume HARVOL	fraction m³ m³	4 0 0	Mark S 2.13.1	yes yes yes
2.20 =	Fort Nelson Peace 1 if Zone 9, 0 otherwise		0	Mark	
2.21 =	2013 Auctions 1 for all marks		0	1	
2.22 =	DANB DANB (by proxy district as per IAM)		1	IAM P 3-7	
2.23 = /	CPIF current CPI base CPI	ratio	4 1	PAR 109.3	yes

		Units	Decimal Places	Source/ Value	Rounding
2.24 =	highway transportation 1 if highway transportation 0 if off-highway transportation		0 0	Mark	
2.25 = /	grey attack fraction lodgepole pine grey attack volume CONVOL	fraction m ³	4 0	Mark S 2.1.1	yes
2.25.1 =	lag 0 if mark is in zone 5, zone 6 or Cariboo-Chilcotin District, 2 otherwise.				
2.26 =	cruise based indicator 1 if cruise based, 0 otherwise		0 0	Mark	
2.27 =	RG35 1 if RG35 fraction is greater than or equal to 0.35, 0 otherwise		0 0	S 2.27.1	
2.27.1 = /	RG35 fraction RG volume CONVOL	m³	0	S 2.27.2 S 2.1.1	no
2.27.2 = +	RG volume MPB red attack volume MPB grey attack volume	m ³ m ³ m ³	0 0 0	Mark Mark	

		Units	Decimal Places	Source/ Value	Rounding
3.1 = *	real selling price contribution real selling price selling price coefficient	\$/m³ \$/m³	2	S 3.1.1 0.2155	yes
3.1.1 = /	real selling price selling price CPIF	\$/m³ \$/m³	4	S 2.1 S 2.23	Yes
3.2 = *	layp contribution layp fraction layp fraction coefficient	\$/m³	2	S 2.2 -10.60	yes
3.3 = *	LOGCVPH contribution LOGCVPH LOGCVPH coefficient	\$/m³	2	S 2.3 0.8748	yes
3.4 = *	hembal contribution hembal fraction hembal fraction coefficient	\$/m³	2	S 2.4 -10.62	yes
3.5 = *	cedar contribution final cedar fraction cedar fraction coefficient	\$/m³	2	S 2.5 23.74	yes
3.6 = *	dry firyp contribution dry firyp fraction dry firyp fraction coefficient	\$/m³	2	S 2.6 -3.698	yes
3.7 = *	LOGVOL contribution LOGVOL LOGVOL coefficient	\$/m³	2	S 2.7 1.318	yes
3.8 = *	LOGVPT contribution LOGVPT LOGVPT coefficient	\$/m³	2	S 2.8 5.478	yes
3.10 = *	decay contribution decay fraction decay fraction coefficient	\$/m³	2	S 2.10 -19.70	yes
3.11 = *	slope contribution slope slope coefficient	\$/m³ %	2 0	Mark -0.03651	yes
3.12 = *	partial cut contribution partial cut fraction partial cut coefficient	\$/m³	2	S 2.12 -4.773	yes

		Units	Decimal Places	Source/ Value	Rounding
3.13 = *	cable yarding contribution cable yarding fraction cable yarding fraction coefficient	\$/m³	2	S 2.13 -16.11	yes
3.16 = *	fire damage contribution fire damage fraction fire damage fraction coefficient	\$/m³	2	S 2.16 -12.09	yes
3.17 = *	cycle time contribution effective cycle time cycle time coefficient	\$/m³	2	S 2.17 -1.266	yes
3.18 = *	deciduous fraction contribution deciduous fraction deciduous fraction coefficient	\$/m³	2	S 2.18 -8.598	yes
3.20 = *	Fort Nelson Peace contribution Fort Nelson Peace Fort Nelson Peace coefficient	\$/m³	2	S 2.20 -5.253	yes
3.21 = *	2013 auctions contribution 2013 auctions 2013 auctions coefficient	\$/m³	2	S 2.21 5.193	yes
3.22 = *	DANB contribution DANB DANB coefficient	\$/m³	2	S 2.22 0.8612	yes
3.24 = *	highway transportation contribution highway transportation highway transportation coefficient	\$/m³ \$/m³	2	S 2.24 0.4021	yes
3.25 = * * *	grey attack contribution grey attack fraction (2013 - 2008 - lag) cruise based indicator rg35 grey attack coefficient	\$/m³	2	S 2.25 S 2.25.1 S 2.26 S 2.27 -1.259	yes
3.26 = *	cruise based contribution cruise based indicator cruise based coefficient	\$/m³	2	S 2.26 S 3.26.1	yes
3.26.1 =	cruise based coefficient -4.566*(1-rg35) – 4.669*rg35	\$/m³	2	S 2.27	yes

		Units	Decimal Places	Source/ Value	Rounding
4.1	real estimated winning bid	\$/m³	2		ves
=	constant contribution	4 ,	_	6.143	,
+	selling price contribution			S 3.1	
+	lave fraction contribution			S3.2	
+	I OGCVPH contribution			S 3 3	
+	hembal contribution			S 3 4	
+	cedar contribution			S 3 5	
+	dry firve contribution			S 3 6	
	LOGVOL contribution			S 3 7	
т 	LOGVPT contribution			S 3 8	
т 	decay contribution			S 3 10	
- T	clone contribution			S 3.10 S 2.11	
	sope contribution			S 3.11 S 2 12	
	cable varding contribution			S 3.12 S 2.12	
+	fire demoge contribution			5 3.13	
+				5 3.10	
+	cycle line contribution			5 3.17	
+	Cert Nelson Desse contribution			53.18	
+	Fort Nelson Peace contribution			5 3.20	
+	2013 auctions contribution			5 3.21	
+	DANB contribution			5 3.22	
+	nignway transportation contribution			S 3.24	
+	grey attack contribution			\$ 3.25	
+	cruise based contribution			S 3.26	
4.2	estimated winning bid	\$/m³	2		yes
=	maximum of: 0.25 or				
	real estimated winning bid	\$/m³		S 4.1	
*	CPIF			S 2.23	
4.3 fir	al specified operations		2		yes
=	specified operations			S 4.3.1	-
*	ĊBCPIF			S 5.2	
		• • •			
4.3.1	specified operations	\$/m ³	2		yes
=	water transportation	\$/m³	2	Mark/IAM	
+	special transportation systems	\$/m³	2	Mark/IAM	
+	camp costs	\$/m³	2	Mark/IAM	
+	skyline	\$/m³	2	Mark/IAM	
+	heli logging	\$/m³	2	Mark/IAM	
+	horse logging	\$/m³	2	Mark/IAM	
+	high development cost (BCTS only)	\$/m³	2	Mark/IAM	
4.4 fir	al estimated winning bid				
=	maximum of: 0.25 or				
	(estimated winning bid			S 4.2	
-	final specified operations)			S 4.3	

		Units	Decimal Places	Source/ Value	Rounding
5.1 = + -	final TOA TOA subtotal 2 return to forest management MLRC subtotal 1	\$/m³	2 2 2 2	S 5.1.1 S 5.1.5 S 5.1.8	yes
5.1.1 = /	TOA subtotal 2 total TOA high grade fraction	\$/m³ \$/m³	2 2 4	S 5.1.2 S 5.1.4	yes
5.1.2 = *	total TOA TOA subtotal 1 CBCPIF	\$/m ³ \$/m ³	2 2	S 5.1.3 S 5.2	yes
5.1.3 = + + +	TOA subtotal 1 final forest management administration total development final road management and road use total silviculture	\$/m³ \$/m³ \$/m³ \$/m³	2 2 2 2 2	APP2.1 APP3.1 APP2.2 Mark/IAM	yes
5.1.4 = -	high grade fraction (1 LG)	fraction \$/m ³	4 4	Mark/IAM	yes yes
5.1.5 = *	return to forest management TOA subtotal 2 0.022	\$/m³	2 2 3	S 5.1.1 IAM	yes
5.1.6 = /	MLRC subtotal 1 MLRC high grade fraction	\$/m³ \$/m³	2 2	1.17 S 5.1.4	yes
5.1.7 = +	MLC MLRC subtotal 1 MLSO	\$/m³ \$/m³ \$/m³	2 2 2	S 5.1.6 0.06	yes
5.1.8 = *	MLC subtotal 1 MLC CBCPIF	\$/m³ \$/m³	2 2	S 5.1.7 S 5.2	yes
5.2 /	CBCPIF current CPI cost base average CPI		4 1 1	PAR 138.1	yes
6.1 = -	Reserve Stumpage Rate maximum of: 0.25 or final estimated winning bid final TOA	\$/m³	2	S 4.4 S 5.1	yes

APPENDIX 1: EXPLANATION OF VARIABLES USED IN THE AUCTION DATASET BUT NOT IN IMPLEMENTATION

CABLE*(D2009+D2010) --- the regression included 2 cable yarding variables, one for 2009 and 20010 and one for the later years. Only the one including 2013 is applied.

2010, 2011 and 2012 Annual Dummy Variables --- 1 if the sale was sold during these years, zero otherwise --- These variables do not apply in implementation because MPS applies the dummy variable from the latest year (2013) to all permits.

APPENDIX 2: DECIDUOUS VOLUME AND THE PRORATING OF FOREST MANAGEMENT ADMINISTRATION AND ROAD MANAGEMENT TOAS

		Units	Decimal Places	Source/ Value	Rounding
APP2.1	final forest management admin. (FFMA)	\$/m ³	2		yes
=	forest management admin. (FMA)	\$/m ³		Mark/IAM4.2.1	
*	HARVOL			S 2.13.1	
/	CONVOL	m ³		S 2.1.1	
APP2.2	final road management and road use (FRM)	\$	2		yes
=	final road management	\$/m ³		APP2.2.1	
+	final road use	\$/m ³		APP 2.2.2	
APP2.2.	I final road management	\$	2		yes
=	road management (RM)			Mark/IAM4.4.2	
*	HARVOL	m ³		S 2.13.1	
/	CONVOL	m³		S 2.1.1	
APP2.2.2	2 final road use	\$	2		yes
=	road use (RU)			Mark/IAM4.4.2	
*	HARVOL	m³		S 2.13.1	
/	CONVOL	m ³		S 2.1.1	

APPENDIX 3: APPLICABLE VOLUME AND THE CALCULATION OF DEVELOPMENT COST ESTIMATES

The calculation of development cost estimates involves a proration with applicable volume as follows:

		Units	Decimal Places	Source/ Value	Rounding
APP3.1 = /	total development cost total applicable cost CONVOL	\$/m ³ \$ m ³	2	APP3.2 S 2.1.1	yes
APP3.2 =	total applicable cost sum of applicable type 1 costs and type 2 costs	\$ \$	2 2	APP3.3	yes
APP3.3 = * /	applicable type1 cost type1 cost CONVOL project applicable volume	\$ \$ m ³ m ³	2 2 0 0	Mark/IAM S 2.1.1 Mark	yes yes
APP3.4	type2 cost	\$/m ³	2	Mark/IAM	

Note: Type 1 costs are tabular roads and tabular culverts. Type 2 costs are ECE's, cattle guards, pipeline crossings and fencing.