

Associated Engineering (B.C.) Ltd. #500 - 2889 East 12th Avenue Vancouver, B.C., Canada, V5M 4T5

May 12, 2020 File: 2019-2660-02 TEL: 604.293.1411 FAX: 604.291.6163 www.ae.ca

Brian Chow, M.Eng., P.Eng. Chief Engineer Engineering Branch Ministry of Forests, Lands, Natural Resource Operations and Rural Development 1520 Blanshard Street Victoria, BC V8W 3K2

Re: ALTERNATIVE METHODOLOGY FOR DETERMINING THE SHEAR CAPACITY OF END PANELS ON EXISTING GIRDERS

Dear Mr. Chow:

The **Ministry of Forests**, **Lands**, **Natural Resource Operations and Rural Development** (Ministry) retained **Associated Engineering** (AE) to develop a methodology for checking the shear capacity of existing girder end-panels that have insufficient shear capacity (LLCF < 1.0) when evaluated using CAN/CSA S6-14 (S6) Section 3 and 14. The purpose of this letter is to a provide a more detailed description of the proposed methodology which is based on Eurocode 3: - Design of Steel Structures – Part 1-5 (EC3) and outlined in AE's April 2020 report, "Steel Plate Girder Shear Design - Anchorage of Tension Field Action".

The following describes the proposed approach for evaluating bridges outside of the warranty period, including a detailed description of the relevant EC3 clauses used to determine the shear capacity of the end panel. For Ministry owned bridges that are within their warranty period use the procedure described below except that the dead and live load demands should be calculated using S6 Section 3 load factors.

- 1. Determine the factored shear demands using S6 Section 14 assuming:
 - System behaviour S1 (assumes failure of the girder will result in failure of the of the bridge, i.e. twin girder system)
 - Element behaviour E3
 - Inspection level To be confirmed based on the available inspection information
 - Traffic type PA.
- Confirm that the bearing and transverse stiffeners conform to S6 requirements (Section 3 Cl. 10.10.6).
- 3. Confirm the girder end support conditions in accordance with EC3.
- 4. Determine the shear resistance of the end panel using EC3.
- 5. Calculated the LLCF as follows:

A Carbon Neutral Company

$$LLCF = \frac{V_{r-EC3} - \sum \alpha_D D}{\alpha_L L (1+I)}$$

Where:

Vr-EC3	 Shear resistance calculated in accordance with EC3 (refer to Section 1 of this letter)
α_D and α_L	= load factors calculated in accordance with S6 Section 14
D and L	= Dead and Live Load demands calculated in accordance with S6 Section 14
I	 Dynamic Load Allowance calculated in accordance with S6 Section 3, i.e. no speed restrictions.

If the LLCF \geq 1.0, there is no need to retrofit the bridge, and the bridge can be posted without any load restrictions.

6. During future visual inspections, confirm that the end panel is not subject to deformation resulting from high shear stresses in the end panel. The expected shear deformation will present itself as buckling of the end panel (for additional information see AE April 2020 report mentioned herein).

1 EC3 END PANEL SHEAR CAPACITY CALCULATION

Clauses 5 and 9 of EC3 present the following methodology for calculating the shear resistance of the girder end panel. For simplicity, we have ignored the EC3 contribution of flanges to the shear strength of the girder. Assuming this, EC3 Equation 5.1 and 5.2 define the shear strength as follows:

$$V_{b,Rd} = \frac{\chi_w f_{yw} h_w t}{\sqrt{3}\gamma_{M1}} \le \frac{\eta f_{yw} h_w t}{\sqrt{3}\gamma_{M1}}$$

Where:

fyw	= web yield strength
h _w , t	= are dimensions shown in Figure 1-1
η	= 1.2 (for f _{yw} < 426 MPa)
γ_{M1}	= 1.1 (partial safety factor for resistance to instability)
χw	= reduction factor for the shear resistance of the web depending on web slenderness taken from Table 1-1

Platinum member

Further, to determine χ_w EC3 requires the designer identify whether the bearing location can be considered a rigid or non-rigid end post. A rigid end post should comprise two double sided transverses stiffeners that form the flanges of a short beam of length h_w (Figure 1-1 (b)). The strip of web between the stiffeners forms the web of the short beam. Each double-sided stiffener should have a cross sectional are of at least $4h_wt^2/e$, where *e* is the centre to centre distance between the stiffeners and *e* > 0.1 h_w . The girder end plate may act as a double-sided stiffener if it is symmetrical about the centreline of the web, extends the full height of the web and is welded to the web (both sides) and flanges.

A non-rigid end post would consist of a single bearing stiffener as shown in Figure 1-1 (c).

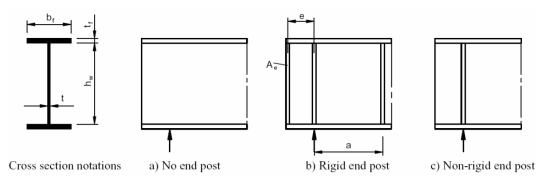


Figure 1-1 Cross Section Notations and End Stiffeners

Contribu		istance							
	Rigid End Post Non-Rigid End Post								
λ _w < 0.83/η	η	η							
$0.83/\eta \le \lambda_w < 1.08$	0.83 / λ _w	0.83 / λ _w							
λ _w > 1.08	1.37 / (0.7 + λ _w)	0.83 / λ _w							
For stiffened webs (intermediate	transverse stiffeners)								
Where: $k_{ au}$	$\lambda_{w} = \frac{h_{w}}{37.4 \times t \times \varepsilon \times \sqrt{k_{\tau}}}$ $\varepsilon = \sqrt{\frac{235}{f_{y}}}$ $= 5.34 + 4 \times \left(\frac{h_{w}}{a}\right)^{2} \text{ when } \frac{a}{h_{w}} \ge 1.0$ $= 4 + 5.34 \times \left(\frac{h_{w}}{a}\right)^{2} \text{ when } \frac{a}{h_{w}} < 1.0$)							

Table 1-1 Contribution of Web χ_w to Shear Buckling Resistance

Appendix A provides guidance on the determination of whether rigid end post conditions are present for various configurations of web heights and bearing / end plate configurations. Appendix B provides two worked examples illustrating the described methodology.

Closure

This memorandum was prepared for the Ministry of Forests, Lands, Natural Resource Operations and Rural Development to provide a methodology for an alternative check for existing girders designed incorporating tension field action in end panel shear design.

The services provided by Associated Engineering (B.C.) Ltd. in the preparation of this memorandum were conducted in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions. No other warranty expressed or implied is made.

Henley

Julien Henley, M.A.Sc., P.Eng.

Project Manager

Respectfully Submitted Associated Engineering (B.C.) Ltd.

Yours truly,

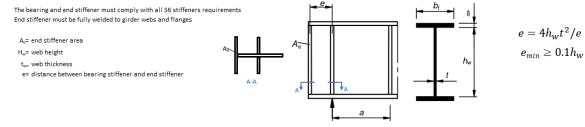
Uri Wexler, M.Sc., P.Eng. Bridge Engineer

UW/JH/mc

Attachments:

- Appendix A Methodology for Verifying EC3 Rigid End Post Compliance
- Appendix B Example Shear Capacity Calculation to Eurocode 3: 2006

Q:\2019-2660-02_Doc_Prod_Engineering\03_Reports\2_Ltr_Rpt_Allnorth_Review_20200422\Rpt_Mof_Ltr_Shear_End_Panel_Method_20200512_Uw.Docx


This page intentionally blank. Formatted for double-sided printing.

Æ

APPENDIX A - METHODOLOGY FOR VERIFYING EC3 RIGID END POST COMPLIANCE

										N		REA NEEDI	ED FOR END	STIFFENE	ТО СОМР	LY WITH E	3 RIGID EN	ID POST RE	QUIREMEN	ITS										
H _w [mm]	70	00	80	00	90	00	10	00	11	00	12	00	13	00	14	00	15	00	16	00	17	00	18	00	19	00	20	2000		.00
t _w [mm]	9.5	12.7	9.5	12.7	9.5	12.7	9.5	12.7	9.5	12.7	9.5	12.7	9.5	12.7	9.5	12.7	9.5	12.7	9.5	12.7	9.5	12.7	9.5	12.7	9.5	12.7	9.5	12.7	9.5	12.7
100	2530	4520	2890	5165	3250	5810	3610	6455	3975	7100																				
150	1685	3015	1930	3445	2170	3875	2410	4305	2650	4735	2890	5165	3130	5595	3370	6025	3610	6455												
200	1265	2260	1445	2585	1625	2905	1805	3230	1990	3550	2170	3875	2350	4195	2530	4520	2710	4840	2890	5165	3070	5485	3250	5810	3430	6130	3610	6455		
- 250	1015	1810	1160	2065	1300	2325	1445	2585	1590	2840	1735	3100	1880	3355	2025	3615	2170	3875	2315	4130	2455	4390	2600	4650	2745	4905	2890	5165	3035	5420
Ē 300	845	1510	965	1725	1085	1940	1205	2155	1325	2370	1445	2585	1565	2800	1685	3015	1805	3230	1930	3445	2050	3660	2170	3875	2290	4090	2410	4305	2530	4520
ت 350	725	1295	830	1475	930	1660	1035	1845	1135	2030	1240	2215	1345	2400	1445	2585	1550	2765	1655	2950	1755	3135	1860	3320	1960	3505	2065	3690	2170	3875
400	635	1130	725	1295	815	1455	905	1615	995	1775	1085	1940	1175	2100	1265	2260	1355	2420	1445	2585	1535	2745	1625	2905	1715	3065	1805	3230	1900	3390
500	510	905	580	1035	650	1165	725	1295	795	1420	870	1550	940	1680	1015	1810	1085	1940	1160	2065	1230	2195	1300	2325	1375	2455	1445	2585	1520	2710
600	425	755	485	865	545	970	605	1080	665	1185	725	1295	785	1400	845	1510	905	1615	965	1725	1025	1830	1085	1940	1145	2045	1205	2155	1265	2260
e _{min} [mm]	7	0	8	0	9	0	10	0	11	10	12	20	13	30	14	10	19	50	16	60	17	70	18	80	19	90	20	00	21	10

Cross section notations

END PLATE

Minimum weld requirements

This page intentionally blank. Formatted for double-sided printing.

Æ

APPENDIX B - SHEA	AR CAPACITY EXAMPLE CALCULATION TO EUROCODE 3: 2006									
$h_w \coloneqq 1500 \ mm$	web height									
t:=9.5 mm	web thickness									
$b_f = 375 \ mm$										
$t_f \coloneqq 19 \ mm$	top flange thickness									
$a \coloneqq 2208 \ mm$	End Panel Stiffener Spacing									
$e \coloneqq 468 \ mm$	distance from support to edge stiffner (girder edge)									
$t_e \coloneqq 12.7 \ mm$	beam end stiffener thickness									
$b_e \coloneqq 375 \ mm$	beam end stiffener width									
$E \coloneqq 200000 \ MPa$										
$f_y \coloneqq 350 \ MPa$	Yield Stress									
$\nu := 0.3$	Poisson Ratio									
	nce of members to instability assessed by member checks. EC3-2 Bridges recomended value									
	ance of cross sections to excessive yielding including local buckling									
	comended for steel grade up to S460, 1.0 for higher grade									
·										
$\varepsilon \coloneqq \sqrt{\frac{235 \ \textbf{MPa}}{f_y}} = 0$	0.819									
Section 9.3.1 minimur	n requirements for Rigid End Post									
min e required:	m requirements for Rigid End Post min. rigid end post cross section area required:									
min e required:	min. rigid end post cross section area required:									
min e required:	min. rigid end post cross section area required:									
min e required:	min. rigid end post cross section area required:									
min e required:	min. rigid end post cross section area required:									
min e required:	min. rigid end post cross section area required:									
min e required:	min. rigid end post cross section area required: $\begin{array}{c} m\\ e_{c2} \coloneqq \frac{4 \cdot h_w \cdot t^2}{e} = (1.157 \cdot 10^3) \ mm^2 \\ \hline \text{Rigid End Post} \\ \text{if } e_{c2} < t_e \cdot b_{e1} = \text{``OK''} \\ \parallel \text{``OK''} \\ \parallel \text{``OK''} \\ \parallel \text{``OK''} \end{array} \qquad $									
min e required: $e_{c1} := 0.1 \cdot h_w = 150 \text{ mm}$ if both checks=OK->R if $e_{c1} < e \mid = \text{``OK''}$ $\mid\mid \text{``OK''}$	min. rigid end post cross section area required: $\begin{array}{c} m\\ e_{c2} \coloneqq \frac{4 \cdot h_w \cdot t^2}{e} = (1.157 \cdot 10^3) \ mm^2 \\ \hline \text{Rigid End Post} \\ \text{if } e_{c2} < t_e \cdot b_{e1} = \text{``OK''} \\ \parallel \text{``OK''} \\ \parallel \text{``OK''} \\ \parallel \text{``OK''} \end{array} \qquad $									
min e required: $e_{c1} := 0.1 \cdot h_w = 150 \text{ mm}$ if both checks=OK->R if $e_{c1} < e = \text{``OK''}$ $\ \text{``OK''}$ else	min. rigid end post cross section area required: $\begin{array}{c} m\\ e_{c2} \coloneqq \frac{4 \cdot h_w \cdot t^2}{e} = (1.157 \cdot 10^3) \ mm^2 \\ \hline Rigid End Post\\ \text{if } e_{c2} < t_e \cdot b_{e1} = \text{``OK''}\\ \parallel \text{``OK''}\\ \parallel \text{``OK''}\\ else \end{array} \qquad \begin{array}{c} \text{if } \frac{b_e}{2 \cdot t_e} < 14 \cdot \epsilon \\ \parallel b_e \\ else \\ \parallel b_e \\ else \\ \blacksquare \end{array} \qquad \begin{array}{c} Use only area confirming to confirming to confirming to confirming to confirming to confirm on the set of the set o$									
min e required: $e_{c1} \coloneqq 0.1 \cdot h_w \equiv 150 \text{ mm}$ if both checks=OK->R if $e_{c1} < e \mid = \text{``OK''}$ $\parallel \text{``OK''}$ else $\parallel \text{``NG''}$	min. rigid end post cross section area required: $\begin{array}{c} m\\ e_{c2} \coloneqq \frac{4 \cdot h_w \cdot t^2}{e} = (1.157 \cdot 10^3) \ mm^2 \\ \hline \\ \text{Rigid End Post} \\ \text{if } e_{c2} < t_e \cdot b_{e1} = \text{``OK''} \\ \parallel \text{``OK''} \\ e^{\text{lse}} \\ \parallel \text{``NG''} \\ \parallel \text{``NG''} \\ \end{array} \begin{array}{c} \text{if } \frac{b_e}{2 \cdot t_e} < 14 \cdot \varepsilon \\ \parallel b_e \\ e^{\text{lse}} \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \end{array} \begin{array}{c} \text{Use only area confirming to Class3 Section} \\ \hline \\ \text{Class3 Section} \\ \hline \\ \hline \\ \text{Class3 Section} \\ \hline \\ \hline \\ \text{Class4 Section} \\ \hline \\ \hline \\ \text{Class4 Section} \\ \hline \\ $									
min e required: $e_{c1} := 0.1 \cdot h_w = 150 \text{ mm}$ if both checks=OK->R if $e_{c1} < e = "OK"$ $\parallel "OK"$ else $\parallel "NG"$ Section 5 End Panel S	$\begin{array}{c c} \text{min. rigid end post cross section area required:} \\ \textbf{m} \\ e_{c2} \coloneqq \frac{4 \cdot h_w \cdot t^2}{e} = (1.157 \cdot 10^3) \ \textbf{mm}^2 \\ \text{Rigid End Post} \\ \text{if } e_{c2} < t_e \cdot b_{e1} = \text{``OK''} \\ \parallel \text{``OK''} \\ \text{else} \\ \parallel \text{``NG''} \\ \end{array} \begin{array}{c c} \text{if } \frac{b_e}{2 \cdot t_e} < 14 \cdot \varepsilon \\ \parallel b_e \\ \text{else} \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \end{array} \begin{array}{c c} \text{Use only area confirming to Class3 Section} \\ \text{Class3 Section} \\ \text{Class4 Section}$									
min e required: $e_{c1} := 0.1 \cdot h_w = 150 \text{ mm}$ if both checks=OK->R if $e_{c1} < e = \text{``OK''}$ $\parallel \text{``OK''}$ else $\parallel \text{``NG''}$ Section 5 End Panel S	$\begin{array}{c c} \text{min. rigid end post cross section area required:} \\ \textbf{m} \\ e_{c2} \coloneqq \frac{4 \cdot h_w \cdot t^2}{e} = (1.157 \cdot 10^3) \ \textbf{mm}^2 \\ \text{Rigid End Post} \\ \text{if } e_{c2} < t_e \cdot b_{e1} = \text{``OK''} \\ \parallel \text{``OK''} \\ \text{else} \\ \parallel \text{``NG''} \\ \end{array} \begin{array}{c c} \text{if } \frac{b_e}{2 \cdot t_e} < 14 \cdot \varepsilon \\ \parallel b_e \\ \text{else} \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \end{array} \begin{array}{c c} \text{Use only area confirming to Class3 Section} \\ \text{Class3 Section} \\ \text{Class4 Section}$									
min e required: $e_{c1} := 0.1 \cdot h_w = 150 \text{ mm}$ if both checks=OK->R if $e_{c1} < e = \text{``OK''}$ $\parallel \text{``OK''}$ else $\parallel \text{``NG''}$ Section 5 End Panel S	$\begin{array}{c c} \text{min. rigid end post cross section area required:} \\ \textbf{m} \\ e_{c2} \coloneqq \frac{4 \cdot h_w \cdot t^2}{e} = (1.157 \cdot 10^3) \ \textbf{mm}^2 \\ \text{Rigid End Post} \\ \text{if } e_{c2} < t_e \cdot b_{e1} = \text{``OK''} \\ \parallel \text{``OK''} \\ \text{else} \\ \parallel \text{``NG''} \\ \end{array} \begin{array}{c c} \text{if } \frac{b_e}{2 \cdot t_e} < 14 \cdot \varepsilon \\ \parallel b_e \\ \text{else} \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \end{array} \begin{array}{c c} \text{Use only area confirming to Class3 Section} \\ \text{Class3 Section} \\ \text{Class4 Section}$									
min e required: $e_{c1} := 0.1 \cdot h_w = 150 \text{ mm}$ if both checks=OK->R if $e_{c1} < e = \text{``OK''}$ $\parallel \text{``OK''}$ else $\parallel \text{``NG''}$ Section 5 End Panel S	$\begin{array}{c c} \text{min. rigid end post cross section area required:} \\ \textbf{m} \\ e_{c2} \coloneqq \frac{4 \cdot h_w \cdot t^2}{e} = (1.157 \cdot 10^3) \ \textbf{mm}^2 \\ \text{Rigid End Post} \\ \text{if } e_{c2} < t_e \cdot b_{e1} = \text{``OK''} \\ \parallel \text{``OK''} \\ \parallel \text{``OK''} \\ \text{else} \\ \parallel \text{``NG''} \\ \parallel \text{``NG''} \\ \end{array} = \begin{array}{c} \textbf{M} \\ \textbf{he}_{e1} \coloneqq \left[\begin{array}{c} \frac{b_e}{2 \cdot t_e} < 14 \cdot \varepsilon \\ \parallel b_e \\ else \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \end{array} \right] \\ Use only area confirming to characterized on the confirming to confirm on the confirming to confirm on the $									
min e required: $e_{c1} := 0.1 \cdot h_w = 150 \text{ mm}$ if both checks=OK->R if $e_{c1} < e = \text{``OK''}$ $\parallel \text{``OK''}$ else $\parallel \text{``NG''}$ Section 5 End Panel S	$\begin{array}{c c} \text{min. rigid end post cross section area required:} \\ \textbf{m} \\ e_{c2} \coloneqq \frac{4 \cdot h_w \cdot t^2}{e} = (1.157 \cdot 10^3) \ \textbf{mm}^2 \\ \text{Rigid End Post} \\ \text{if } e_{c2} < t_e \cdot b_{e1} = \text{``OK''} \\ \parallel \text{``OK''} \\ \text{else} \\ \parallel \text{``NG''} \\ \end{array} \begin{array}{c c} \text{if } \frac{b_e}{2 \cdot t_e} < 14 \cdot \varepsilon \\ \parallel b_e \\ \text{else} \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \end{array} \begin{array}{c c} \text{Use only area confirming to Class3 Section} \\ \text{Class3 Section} \\ \text{Class4 Section}$									
min e required: $e_{c1} := 0.1 \cdot h_w = 150 \text{ mm}$ if both checks=OK->R if $e_{c1} < e = \text{``OK''}$ $\parallel \text{``OK''}$ else $\parallel \text{``NG''}$ Section 5 End Panel S	$\begin{array}{c c} \text{min. rigid end post cross section area required:} \\ \textbf{m} \\ e_{c2} \coloneqq \frac{4 \cdot h_w \cdot t^2}{e} = (1.157 \cdot 10^3) \ \textbf{mm}^2 \\ \text{Rigid End Post} \\ \text{if } e_{c2} < t_e \cdot b_{e1} = \text{``OK''} \\ \parallel \text{``OK''} \\ \text{else} \\ \parallel \text{``NG''} \\ \end{array} \begin{array}{c c} \text{if } \frac{b_e}{2 \cdot t_e} < 14 \cdot \varepsilon \\ \parallel b_e \\ \text{else} \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \end{array} \begin{array}{c c} \text{Use only area confirming to Class3 Section} \\ \text{Class3 Section} \\ \text{Class4 Section}$									
min e required: $e_{c1} := 0.1 \cdot h_w = 150 \text{ mm}$ if both checks=OK->R if $e_{c1} < e = \text{``OK''}$ $\parallel \text{``OK''}$ else $\parallel \text{``NG''}$ Section 5 End Panel S	$\begin{array}{c c} \text{min. rigid end post cross section area required:} \\ \textbf{m} \\ e_{c2} \coloneqq \frac{4 \cdot h_w \cdot t^2}{e} = (1.157 \cdot 10^3) \ \textbf{mm}^2 \\ \text{Rigid End Post} \\ \text{if } e_{c2} < t_e \cdot b_{e1} = \text{``OK''} \\ \parallel \text{``OK''} \\ \text{else} \\ \parallel \text{``NG''} \\ \end{array} \begin{array}{c c} \text{if } \frac{b_e}{2 \cdot t_e} < 14 \cdot \varepsilon \\ \parallel b_e \\ \text{else} \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \end{array} \begin{array}{c c} \text{Use only area confirming to Class3 Section} \\ \text{Class3 Section} \\ \text{Class4 Section}$									
min e required: $e_{c1} := 0.1 \cdot h_w = 150 \text{ mm}$ if both checks=OK->R if $e_{c1} < e = \text{``OK''}$ $\parallel \text{``OK''}$ else $\parallel \text{``NG''}$ Section 5 End Panel S	$\begin{array}{c c} \text{min. rigid end post cross section area required:} \\ \textbf{m} \\ e_{c2} \coloneqq \frac{4 \cdot h_w \cdot t^2}{e} = (1.157 \cdot 10^3) \ \textbf{mm}^2 \\ \text{Rigid End Post} \\ \text{if } e_{c2} < t_e \cdot b_{e1} = \text{``OK''} \\ \parallel \text{``OK''} \\ \text{else} \\ \parallel \text{``NG''} \\ \end{array} \begin{array}{c c} \text{if } \frac{b_e}{2 \cdot t_e} < 14 \cdot \varepsilon \\ \parallel b_e \\ \text{else} \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \end{array} \begin{array}{c c} \text{Use only area confirming to Class3 Section} \\ \text{Class3 Section} \\ \text{Class4 Section}$									
min e required: $e_{c1} := 0.1 \cdot h_w = 150 \text{ mm}$ if both checks=OK->R if $e_{c1} < e = \text{``OK''}$ $\parallel \text{``OK''}$ else $\parallel \text{``NG''}$ Section 5 End Panel S	$\begin{array}{c c} \text{min. rigid end post cross section area required:} \\ \textbf{m} \\ e_{c2} \coloneqq \frac{4 \cdot h_w \cdot t^2}{e} = (1.157 \cdot 10^3) \ \textbf{mm}^2 \\ \text{Rigid End Post} \\ \text{if } e_{c2} < t_e \cdot b_{e1} = \text{``OK''} \\ \parallel \text{``OK''} \\ \text{else} \\ \parallel \text{``NG''} \\ \end{array} \begin{array}{c c} \text{if } \frac{b_e}{2 \cdot t_e} < 14 \cdot \varepsilon \\ \parallel b_e \\ \text{else} \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \parallel 14 \cdot \varepsilon \cdot 2 \cdot t_e \\ \end{array} \begin{array}{c c} \text{Use only area confirming to Class3 Section} \\ \text{Class3 Section} \\ \text{Class4 Section}$									
min e required: $e_{c1} := 0.1 \cdot h_w = 150 \text{ mm}$ if both checks=OK->R if $e_{c1} < e = \text{``OK''}$ $\parallel \text{``OK''}$ else $\parallel \text{``NG''}$ Section 5 End Panel S	min. rigid end post cross section area required: $\begin{array}{c} m\\ e_{c2} \coloneqq \frac{4 \cdot h_w \cdot t^2}{e} = (1.157 \cdot 10^3) \ mm^2 \\ \text{Rigid End Post} \\ \text{if } e_{c2} < t_e \cdot b_{e1} = \text{``OK''} \\ \parallel \text{``OK''} \\ \text{else} \\ \parallel \text{``OK''} \\ \text{else} \\ \parallel \text{``NG''} \\ \end{array} \qquad \begin{array}{c} \text{Jse only area confirming to Class3 Section} \\ \text{Class3 Section} \\ \text{Class4 Section} \\ Class4 $									

$\sigma_E \coloneqq \frac{\boldsymbol{\pi}^2 \cdot E \cdot t^2}{12 \cdot (1 - \nu^2) \cdot h_w^2} = 7.251 \ \boldsymbol{MPa}$ $\tau_{cr} \coloneqq k_\tau \cdot \sigma_E = 52.103 \ \boldsymbol{MPa}$	(A.1)							
	(5.4)							
$\lambda_w \coloneqq 0.76 \cdot \sqrt{\frac{f_y}{\tau_{cr}}} = 1.97$	(5.3)							
TABLE 5.1 RIGID END POST	TABLE 5.1 NON-RIGID END POST							
$\chi_{w} \coloneqq \left \begin{array}{c} \text{if } \lambda_{w} < \frac{0.83}{\eta} \\ \left\ \eta \\ \right\ \\ \text{if } \frac{0.83}{\eta} \le \lambda_{w} < 1.08 \\ \left\ \frac{0.83}{\lambda_{w}} \\ \right\ \\ \text{if } \lambda_{w} \ge 1.08 \\ \left\ \frac{1.37}{0.7 + \lambda_{w}} \right\ \\ \end{array} \right $	$\begin{split} \chi_{w1} \coloneqq \left\ \begin{array}{c} \text{if } \lambda_w < \frac{0.83}{\eta} \\ \ \eta \\ \\ \text{if } \frac{0.83}{\eta} \le \lambda_w < 1.08 \\ \ \frac{0.83}{\lambda_w} \\ \\ \text{if } \lambda_w \ge 1.08 \\ \ \frac{0.83}{\lambda_w} \\ \\ \end{array} \right\ \end{split}$							

 λ_w - slenderness parameter

WEB CONTRIBUTION TO SHEAR:

 $V_{bwRD} \coloneqq \frac{\chi_w \cdot f_y \cdot h_w \cdot t}{\sqrt{3} \cdot \gamma_{M1}} = 1343.3 \text{ kN}$ (5.2) shear capacity when rigid post $V_{bwRD1} \coloneqq \frac{\chi_{w1} \cdot f_y \cdot h_w \cdot t}{\sqrt{3} \cdot \gamma_{M1}} = 1103 \text{ kN}$ capacity when non-rigid post (when there isn't an end plate)

FLANGE CONTRIBUTION TO SHEAR (NOT USED): Med - 1557 kN m max demand moment within checked par

 $Med \coloneqq 1557 \ kN \cdot m$ max demand moment within checked panel

$$\begin{aligned} c &:= a \cdot \left(0.25 + \frac{1.6 \cdot b_f \cdot t_f^2}{t \cdot h_w^2} \right) = 0.574 \ m \\ M_{fRD} &:= t_f \cdot b_f \cdot (h_w + t_f) \cdot \frac{f_y}{\gamma_{M0}} = 3788 \ kN \cdot m \\ V_{bfRD} &:= \frac{b_f \cdot t_f^2 \cdot f_y}{c \cdot \gamma_{M1}} \cdot \left(1 - \left(\frac{Med}{M_{fRD}} \right)^2 \right) = 62.3 \ kN \end{aligned}$$
(5.8) EC3 allows for flange contribution to shear. it's usually small.
$$V_{bRD} &:= min \left(V_{bwRD} + V_{bfRD}, \frac{\eta \cdot f_y \cdot h_w \cdot t}{\sqrt{3} \cdot \gamma_{M1}} \right) = 1405.6 \ kN \end{aligned}$$
(5.1) EC3 shear capacity