

BIOMETRICS NFORMATION

(You're 95% likely to need this information)

PAMPHLET NO.	# 40					DATE:	August 6, 1992

SUBJECT: Finding the Expected Mean Squares and the Proper Error Terms with SAS

When you analyze data using ANOVA, one challenging task is to determine the expected mean square of a source and its error term. This task becomes more difficult for mixed effect models or unbalanced designs where simple F-tests may not be valid. This pamphlet discusses the use of the RANDOM statement in PROC GLM of SAS to help solve this problem, and the controversy over expected mean squares for mixed effect models.

A mixed effect model is one that involves both random and fixed factors. We will use the data taken from Milliken and Johnson (1984, p. 285) as our example.

A company wanted to evaluate the productivity of three machines when operated by the company's own personnel. Six employees were randomly selected to operate each machine at three different trials, each trial is assumed to be independent of the others. A score was assigned to reflect the quality of production. The data are reproduced in Table 1 of appendix 1.

This is a two-way mixed factor experiment where MACHINE is a fixed factor and PERSON is a random factor. The data can be analyzed with the following PROC GLM step:

PROC GLM	DATA = EXAMPLE;
CLASS	MACHINE PERSON;
MODEL	SCORE = MACHINE PERSON / SS3;
RANDOM	PERSON MACHINE*PERSON / TEST;
RUN;	

EXAMPLE is a SAS data set created previously in the program. The CLASS statement specifies the classification variables; the MODEL statement states the model to be fitted; and the RANDOM statement lists the random sources.

An interaction effect is random if at least one of the factors involved is random (Milliken and Johnson 1984, p. 275). Therefore, PERSON and MACHINE*PERSON are random and are listed in the RANDOM statement. The RANDOM statement requests that the expected mean square, E(MS), for all the effects listed in the MODEL statement be output. It has an option (new in version 6.03):

TEST to test the effects in the model with the proper error term.

The SAS output on the score data using the above PROC GLM step is shown in appendix 2. The SAS output pages are concatenated with the page number shown as a single digit on the upper right hand corner of the output.

Page 1 of the SAS output gives a summary of the design structure. Page 2 gives the ANOVA table with the TYPE III SS and mean squares. The F-value for the sources are all computed with the default error term as the denominator, which is correct only for the MACHINE*PERSON effect.

Page 3 is generated by the RANDOM statement. It gives the E(MS)'s of all the effects in the model. By comparing these equations, we can find the proper error term for each effect. The rule for determining the error term of an effect is:

The E(MS) of the error term must be identical to the E(MS) of the effect of interest, except for the variance component due to that effect.

Applying this rule, we can see that the E(MS) of MACHINE contains the same terms as E(MS) of MACHINE* PERSON and an extra term Q(MACHINE), the variance component due to MACHINE. Therefore MACHINE*PERSON is the error term for the effect MACHINE. Similarly MACHINE*PERSON is the error term for PERSON; the default error is the error term for MACHINE*PERSON. Note that in SAS, the variance component of a fixed effect is denoted by Q, and the variance component of a random effect is denoted by var. The F-test results for all the effects using the proper error term are given in page 4 of the SAS output, and is summarized in the following ANOVA table:

Source	df	SS	MS	Error Term	F	p-value
MACHINE, M PERSON, P M x P Error	2 5 10 36	1755.26 1241.90 426.53 33.29	877.63 248.38 42.65 0.92	M x P M x P Error	20.576 5.823 46.130	0.0003 0.0089 0.0001
Total	53	3456.98				

In this simple design, the proper error term can be found easily by comparing the E(MS)'s of the various effects. When the design becomes complicated or is unbalanced, finding the right error term would no longer be an easy task. The RANDOM statement, however, can still be used to find the error terms in such cases.

Table 2 in appendix 1 shows an incomplete data set obtained by randomly deleting several data points from the full data set in Table 1. We can analyze the unbalanced data with the same PROC GLM step as before. The SAS output is given in appendix 3. The test results are summarized in the ANOVA tables shown on the next page. Notice that the E(MS)'s are different for the balanced and unbalanced cases. In the unbalanced case, none of the sources can be used directly to test the effects M and P. Hence pseudo F-tests must be used (Bergerud 1989). The proper denominators for the pseudo F-tests can be found using the TEST option.

Pamphlet	#40
----------	-----

Source	df	E(MS)	Error Term (from SAS)			
MACHINE, M	2	$\sigma_{\rm E}^2 + 2.137\sigma_{\rm MP}^2 + \phi_{\rm M}$	0.9226 MS(MxP) + 0.0774 MS(E)			
PERSON, P	5	$\sigma_{\rm E}^2$ + 2.241 $\sigma_{\rm MP}^2$ + 6.7224 $\sigma_{\rm P}^2$	0.9674 MS(MxP) + 0.0326 MS(E)			
M x P	10	$\sigma_{\rm E}^2$ + 2.316 $\sigma_{\rm MP}^2$	MS(E)			
Error	36	$\sigma_{ m F}^2$				

Source	df	SS	MS	denominator df	F	p-value
MACHINE, M	2	1238.20	619.10	10.04	16.57	0.0007
PERSON, P	5	1011.05	202.21	10.01	5.17	0.0133
M x P	10	404.32	40.43	26	46.34	0.0001
Error	36	22.69	0.87			
Total	53	3084.43				

We can check the appropriateness of an error term by writing in full its E(MS) equation. For example, the error term for MACHINE is:

0.9226 MS(MxP) + 0.0774 MS(E) which has expected value:
0.9226[
$$\sigma_{\rm E}^2$$
 + 2.316 $\sigma_{\rm MP}^2$] + 0.0774 $\sigma_{\rm E}^2$
= $\sigma_{\rm E}^2$ + 2.137 $\sigma_{\rm MP}^2$

which is identical to the E(MS) of MACHINE except for the term ϕ_{M} . Since the error term is a linear combination of two mean squares, the denominator df must be adjusted accordingly, as described in Bergerud (1989).

You may notice that in the SAS output for the balanced data, the E(MS) for the random effect PERSON includes the variance component due to the interaction effect MACHINE*PERSON. However, if you follow the E(MS) rules suggested by Kirk (1982), Scheffé (1959), or Schultz (1955), you will obtain an E(MS) without the interaction component. This discrepancy is evident in many places. For example, Hartley and Searle (1969), Milliken and Johnson(1984), and Searle (1971) include the interaction component; Graybill (1961), Wilk and Kempthorne (1955), and Snedecor and Cochran (1967) do not include it; Mood and Graybill (1963) do not discuss the topic.

Cornfield and Tukey (1956) pointed out that the two approaches have the same assumptions that "observed values are linear combinations of certain fixed and random variables, but differ in the nature of the restrictions that are imposed upon these variables". Some argue that if an interaction effect contains a random factor, then the interaction effect should be treated as a random variable with no constraints imposed on them. In such a case, the variance component due

3

to the interaction should be included in the main effect mean squares (result 1). On the other hand, if we impose the restriction that interaction effects sum to zero over the levels of the fixed factor, then the interaction component of variance will drop out of the random effect mean squares (result 2). For unbalanced data, however, both approaches would include the interaction component in the E(MS), as shown in the example.

Result 2 includes the interaction component for unbalanced data but excludes it for balanced data. Hartley and Searle (1969) refer this as a discontinuity between the analysis of balanced and unbalanced data. The Biometrics section has been using result 2 in the past. I prefer result 1 and include the interaction component because this approach is consistent in both balanced and unbalanced cases.

In any case, if you keep this E(MS) controversy in mind and proceed with care, the RANDOM statement in SAS is a useful tool for determining the expected mean squares and error terms.

References

Bergerud, W. (1989). ANOVA: Approximate or Pseudo f-tests. Biom. Infor. Pamp., 19.

- Cornfield, J. and Tukey, J. W. (1956). Average values of mean squares in factorials. Ann. Math. Statist., 27, 907-949.
- Graybill, F. A. (1961). An Introduction to Linear Statistical Models. Vol. I. McGraw-Hill, New York.
- Hartley, H. O. and S. R. Searle (1969). A discontinuity in mixed model analyses, *Biometrics*, 25, 573-576.
- Kirk, R. E. (1982). *Experimental Design: Procedures for the Behavioral Science*. Brooks/Cole, Belmont, California.
- Milliken, G. and D. Johnson (1984). Analysis of Messy Data. Vol. 1. Wadsworth Inc., Belmont, Cal.
- Mood, A. M. and F. A, Graybill (1963). Introduction to the Theory of Statistics. 2nd Ed. McGraw-Hill, New York.
- Scheffé, H. (1959). The Analysis of Variance. Wiley, New York.
- Schultz, E. F., Jr. (1955). Rules of thumb for determining expectations of mean squares in analysis of variance. *Biometrics*, 11, 123-135.
- Searle, S. R. (1971). Linear Models. Wiley, New York.
- Snedecor, G. W. and W. G. Cochran. (1967). *Statistical Methods*. 6th Ed. Iowa State University Press, Ames, Iowa.
- Wilk, M. B. and O. Kempthorne. (1955). Fixed, mixed and random models. J. Am. Stat. Assoc., 50, 1144-1167.

CONTACT: Vera Sit 356-0435

APPENDIX 1:	Productivity Scores for Machine-Person Example
	Taken from Milliken and Johnson (1984, p. 285)

Machine	Person	Trial 1	Trial 2	Trial 3
1	1	52.0	52.8	53.1
1	2	51.8	52.8	53.1
1	3	60.0	60.2	58.4
1	4	51.1	52.3	50.3
1	5	50.9	51.8	51.4
1	6	46.4	44.8	49.2
2	1	62.1	62.6	64.0
2	2	59.7	60.0	59.0
2	3	68.6	65.8	69.7
2	4	63.2	62.8	62.2
2	5	64.8	65.0	65.4
2	6	43.7	44.2	43.0
3	1	67.5	67.2	66.9
3	2	61.5	61.7	62.3
3	3	70.8	70.6	71.0
3	4	64.1	66.2	64.0
3	5	72.1	72.0	71.1
3	6	62.0	61.4	60.5

Table	1:	Balanced	Case
I GOIC		Duruneeu	Cube

Table 2: Unbalanced Case

Machine	Person	Trial 1	Trial 2	Trial 3
1	1	52.0		
1	2	51.8	52.8	
1	3	60.0		
1	4	51.1	52.3	
1	5	50.9	51.8	51.4
1	6	46.4	44.8	49.2
2	1		•	64.0
2	2	59.7	60.0	59.0
2	3	68.6	65.8	
2	4	63.2	62.8	62.2
2	5	64.8	65.0	
2	6	43.7	44.2	43.0
3	1	67.5	67.2	66.9
3	2	61.5	61.7	62.3
3	3	70.8	70.6	71.0
3	4	64.1	66.2	64.0
3	5	72.1	72.0	71.1
3	6	62.0	61.4	60.5

APPENDIX 2: SAS output for the balanced case

		The SAS Syst	em		1
	Clas	s Levels	Values		
	MACH	INE 3	1 2 3		
	PERS	ON 6	123456		
	Number o	f observation	s in data set =	= 54	
		The SAS Syst	em		2
	Ge	neral Linear	Models Procedur	e	
Dependent Va	riable: SC	ORE			
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	17	3423.68833	201.39343	217.81	0.0001
Error	36	33.28667	0.92463		
Corrected To	tal 53	3456.97500			
R-Square	C.V	. Root M	ISE SCOR	RE Mean	
0.990371	1.61203	1 0.961	.58 5	9.6500	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
MACHINE	2	1755.26333	877.63167	949.17	0.0001
PERSON	5	1241.89500	248.37900	268.63	0.0001
MACHINE*PERS	ON 10	426.53000	42.65300	46.13	0.0001
					2
	General	ne SAS System Linear Models	Procedure		3
Source	Type	III Expected	Mean Square		
MACHINE	Var(E	rror) + 3 Var	MACHINE*PERSON	I) + О(МАСН	TNF)
DEBSON	Var (E Var (E	rror) + 3 Var	(MACHINE*DERSON	I) + 9 Var(DEB CON)
MACHINE*PERS	ON Var(E	rror) + 3 Var	(MACHINE*PERSON	I) J Val (
	m				4
	.T.	ne SAS System			4
	General .	Linear Models	Procedure		
Tests o Dependent Va	I Hypotnes riable: SC	ORF	Model Analysis	of Varianc	e
Dependente va	riabie. De				
Source: MACH	INE				
Error: MS(MA	CHINE*PERS	ON)	Deventuret		
	TTT MC	Denominator	Denominator		
DF Type	III MS	DF	MS	F Value	Pr > F
2 877.6	3166667	10	42.653	20.576	0.0003
Source: PERS	ON				
Error: MS(MA	CHINE*PERS	ON)			
		Denominator	Denominator		
DF Type	III MS	DF	MS	F Value	Pr > F
5	248.379	10	42.653	5.823	0.0089
Source: MACH	INE*PERSON				
Error: MS(Er	ror)				
	:	Denominator	Denominator		
DF Type	III MS	DF	MS	F Value	Pr > F
1.0	42 653	36	0 9246296296	46 130	0 0001

APPENDIX 3: SAS output for the unbalanced case

The SAS System 1 General Linear Models Procedure Class Level Information Class Levels Values MACHINE 3 1 2 3 PERSON 6 1 2 3 4 5 6 Number of observations in data set = 54 NOTE: Due to missing values, only 44 observations can be used in this analysis.								
			The	SAS Sys	tem			2
		Gene	ral Linea:	r Models	Procedure			
Dependent V	/ariab	le: SCORE						
			5	Sum of	Me	ean		
Source		DF		Squares	Squ	lare	F Value	Pr > F
Model		17	3061	.743333	180.102	2549	206.41	0.0001
Error		26	22	.686667	0.872	2564		
Corrected I	otal	43	3084	.430000				
		R-Square		C.V.	Root	MSE		SCORE Mean
		0.992645	1	.560754	0.934	1111	_	59.85000
Source		DF	Туре	III SS	Mean Squ	lare	F Value	Pr >
FMACHINE		2	1238	.197626	619.098	3813	709.52	0.0001
PERSON		5	1011	.053834	202.210)767	231.74	0.0001
MACHINE*PER	RSON	10	404	.315028	40.431	1503	46.34	0.0001
Source MACHINE PERSON MACHINE*PER	SON	Gen Type III Var(Error Var(Error Var(Error	eral Linea Expected I) + 2.137) + 2.2408) + 2.3163	ar Model Mean Squ Var(MAC 8 Var(MA 2 Var(MA	s Procedure are HINE*PERSON CHINE*PERSON CHINE*PERSO	e 1) + Q(DN) + 6 DN)	MACHINE) .7224 Va	ar(PERSON)
			The	SAS SVS	tem			4
T Dependent V	ests Variab	Gen of Hypothe le: SCORE	eral Linea ses for M	ar Model ixed Mod	s Procedure lel Analysis	e s of Va	riance	-
Source: MAC	CHINE							
Error: 0.92	26*MS	(MACHINE*P	ERSON) + (0.0774*№	IS(Error)			
			Denominat	or D	enominator			
DF	Туре	III MS	1	DF	MS	F	Value	Pr > F
2 6	519.09	881279	10.0	04 37	.370383818		16.567	0.0007
Source: PER Error: 0.96	RSON 574*MS	(MACHINE*P	ERSON) + (Denominato	0.0326*M or D	IS(Error) Denominator			
DF	Type	III MS]	DF	MS	F	Value	Pr > F
5	202.2	107668	10.	01 39	.143708026		5.166	0.0133
Source: MAC Error: MS(E	CHINE* Error)	PERSON						
			Denominat	or D	enominator			
DF	Туре	III MS	1	DF	MS	F	Value	Pr > F
10 4	0.431	502803	:	26 0.	8725641026		46.336	0.0001