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Power Analysis and Sample Sizes for Completely Randomized Designs with Subsampling

Most research studies in forestry subsample experimental units to obtain response measures. A

common example occurs when rows or plots of trees are randomly assigned one of several

treatments. While the row is the experimental unit, the response variables of height, diameter, etc.

must be measured on individual trees. These subsamples (trees) provide an estimate of the

response of that experimental unit to the treatment (most commonly by averaging the individual

responses). Increasing the number of subsamples per experimental unit is often cheaper than

including more experimental units, and is desirable if this increases the power of the experiment.

On the other hand, collecting many subsamples may not increase the power enough to be worth the

effort because power is typically increased more by increasing the number of experimental units.

To balance these considerations it is helpful to calculate the power for a range of numbers of

experimental units and subsamples. This pamphlet will graphically demonstrate the above

statements for the Completely Randomized Design and will discuss some of the considerations in

using these graphs to choose suitable sample sizes. The next pamphlet (BI #50) will extend the

results to the Randomized Block Design, while the following pamphlet (BI #51) will briefly

describe how to create these graphs in general and provide an example SAS program that produces

the plots shown in this pamphlet.

For discussion purposes, let us assume a study with four treatments (factor T with t = 4 levels)

that will each be randomly assigned to p plots (factor P with p levels). Each plot is the

experimental unit and will be subsampled e times to obtain an estimate of the plot response

(subsamples will be factor E and if there were 10 subsamples per plot then e = 10). The ANOVA

table for this one-way completely randomized design with subsamples1 is:

Source of Degrees of
Variation freedom Expected Mean Squares Mean Square Error
sssssssssssssssssssss ssssssssssssssssssssss ssssssssssssssssssssssssssssssssssssssssssssssssssss ssssssssssssssssssssssssssss ssssssssssss

Treatment T t-1 σ2 + eσ2 + peφ MST MSPe p T

Plots P(T) t(p-1) σ2 + eσ2 MSP MSEe p

Subsamples E(PT) pt(e-1) σ2 MSE -e

1
This is a nested ANOVA and has the same components of variation as a multi-staged sampling plan where samples

are taken from large populations so the finite population correction factor (fpc) is not needed. See Snedecor and
Cochran, Sections 13.3 and 21.10, Cochran, Chap. 10 and Wetherill, Chap. 14 for more discussion.
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In this case, the estimation of power requires information on two components of variation, namely,

σ2 , the variation between subsamples within each plot, and σ2 , the variation between plots ore p

experimental units. As usual, the null hypothesis of the ANOVA is that the treatment means µi all

have the same value as the grand mean, µ. The third term, φ [which is ∑(µi-µ)2/(t-1)], is aT

measure of the treatment effect and is zero if the null hypothesis is correct. To determine sample

sizes or power we must look at:

1. The alternate hypothesis, H . For discussion purposes, we shall assume that for the alternateA

hypothesis the four treatments have mean values of µi = 10, 15, 20, 25 . This H can beA

characterized by the Sums of Squares of the Means: SSM = ∑ (µi - µ)2 = 125. The hypothesis

sums of squares (SSH) = sample size * SSM (for balanced ANOVA's only)2
;

2. Our choices for: α = prob(rejecting Ho if it is true): the usual value is α = 0.05; and

1 - β = prob(rejecting Ho when H is true);A

3. Number of subsamples, e and their component of variation, σ2
;e

4. Number of plots, p and their component of variation, σ2 .p

Obtaining estimates for σ2 and σ2 can be the most difficult part of a sample size/powere p

analysis. If a similar study has already been conducted, possibly as a pre-trial, or a post-hoc

analysis is desired, then the variance components can be estimated from the obtained data3. From

the above ANOVA table, we note that the expected MSP = σ2 + eσ2 and expected MSE = σ2 .e p e

By rearranging, we can estimate these components by:

u u MSP - MSE 4
σ2 = MSE , and σ2 = ssssssssssssssssssssssssssss.e p e

To examine the influence of the sample numbers e and p and their components of variation, σ2
e

and σ2, we will graph the power for a range of values for e and p and allow σ2 to have the valuesp e

100 and 1000 and σ2 to have the values of 100 and 500. These graphs are shown on the next twop

pages and have been produced using α = 0.05 and the alternate hypothesis noted above.

2
Note that the definition of sample size is clear for designs without subsamples since, in that case, it is simply the

number of experimental units for each treatment. In this situation I will use the term to refer to the number of
numbers used to calculate a treatment mean. For the balanced design considered here that will be number of
experimental units times the number of subsamples, i.e. p * e.
3

Also see BI # 25 for some suggestions.
4

It is possible to get negative estimates with this equation. This is non-sensical and it may be appropriate to set
negative values to zero. There are other methods of estimating variance components so as to avoid negative
estimates but these are refinements we can ignore since only rough estimates are needed for power calculations.
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a) b)

Figure 1. Power curves for α = 0.05, SSM = 125, σ2 = 100 and a) σ2 = 100 and b) σ2 = 500. Thee p p

diamonds show where the total number of subsamples is 320.

a) b)

Figure 2. Power curves for α = 0.05, SSM = 125, σ2 = 1000 and a) σ2 = 100 and b) σ2 = 500. Thee p p

diamonds show where the total number of subsamples is 320.
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The diamonds connected by a dashed line represent the power for studies with a total of

t*p*e = 320 subsamples. If the total cost of the experiment was entirely due to the number of

subsamples so that plots did not cost more to establish, then the curve described by these diamonds

could be used to help decide the most effective way to arrange the experiment so as to get the most

power for a constant cost (total number of subsamples).

Cox's Rule of Thumb: When determining subsample numbers it is useful to note that for the

completely randomized design ttthhheeerrreee iiisss nnnooottt mmmuuuccchhh iiinnncccrrreeeaaassseee iiinnn pppooowwweeerrr wwwhhheeennn ttthhheee nnnuuummmbbbeeerrr ooofff

sssuuubbbsssaaammmpppllleeesss,,, eee,,, iiisss gggrrreeeaaattteeerrr ttthhhaaannn 444(((σσσ222///σσσ222))) (from Cox, 1958, page 181). The values of σ2 and σ2 usedeee ppp e p

in the graphs and the corresponding value of the ratio are:

Cox's Ratio:

σ2 σ2 4(σ2/σ2)e p e p
sssssssssss sssssssssss sssssssssssssssss

100 100 4
100 500 4/5 ≈ 1
1000 100 40
1000 500 8

Note that the power curves have flattened out by the time the subsample number, e, reaches Cox's

Ratio and that the most efficient number of subsamples per plot is less than or equal to this Ratio.

These graphs show that increasing the number of subsamples, e, per plot has a limited ability

to increase the power and that the size of this ability depends upon how large σ2 is relative to σ2.e p

The study designs in Figure 1a have a Cox's ratio of 4 and each of the curves is largely flat for

numbers of subsamples greater than 4 so that increasing the number of subsamples beyond four

increases the power by very little. This is even more true for the study designs represented by

Figure 1b where Cox's ratio is less than one. One the other hand, for the study designs represented

by Figure 2a, Cox's ratio is 40 and increasing the number of subsamples from 5 to 20 for designs

with six or more plots substantially increases the power. Notice that Cox's ratio provides an upper

limit for a useful number of subsamples. For example, increasing the number of subsamples from

20 to 40 for the design with 20 plots in Figure 2a will improve the power very little, while this

might be worthwhile for a study with 10 plots.

In general, increasing the number of plots increases the power more than increasing the

number of subsamples per plot. This can be understood by noticing that increasing the number of

plots increases the degrees of freedom for the error term of the F-test (thus decreasing the critical

F-value5), while increasing the number of subsamples does not. Further, increasing the number of

experimental units directly reduces the standard error of the treatment means (since the standard

error is a function of 1/p), thus reducing the size of treatment differences that can be detected.

5
There are limits on this too. The critical F-value and corresponding power changes little for error degrees of

freedom greater than 30.
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Increasing the number of subsamples improves the precision of the estimate of the experimental

unit mean and, while this may help reduce the variability between experimental unit means, it does

so indirectly. As we have seen, increasing numbers of subsamples is more effective when the

subsample variability (σ2) is large relative to the between experimental unit variability (σ2). Ine p

general, increasing the number of plots is preferable to increasing the number of subsamples per

plot and this has the further advantage of testing the treatments over a wider variety of conditions.

A large number of plots would be needed to get reasonable power for the study designs

represented in Figures 1b and 2b. This is because the Sums of Squares of the alternate hypothesis

(SSH) is small relative to a σ2 of 500. A larger SSM (implying larger differences between thep

means) might need to be considered as attainable. How could we calculate this value? As an

example, suppose that our best estimates for σ2 and σ2 are 1000 and 500. It is clear frome p

Figure 2b that even with twenty plots per treatment level, the power of our study for an SSM of

125 is no greater than 0.40. Further, suppose that ten plots per treatment (p = 10) with twenty

subsamples each (e = 20) is the most that can be managed. To determine the SSM value required

to obtain the traditional minimum power of 0.80, we could 1) create a graph with SSM on the

x-axis instead of plot or subsample numbers, or 2) do some quick calculations using the graphs we

already have.

The quick calculations require that we first determine what observed F-value would have about

80% power. Since F-tests with the same degrees of freedom and observed F-value will have the

same power, we can look at the curves in the figures where p = 10 and e = 20 to see if any have

sufficient power. In Figure 1a, with σ2 = 100 and σ2 = 100, the power is just below 0.80. Thee p

expected F-value for that point is calculated by:

e * p * SSM/ ( t-1) 20 * 10 * SSM/3F = ssssssssssssssssssssssssssssssssssssssssssssss = ssssssssssssssssssssssssssssssssssssssssssssss.
σ2 + e * σ2 100 + 20 * 1 0 0

e p

With SSM = 125 the F-value is 3.97 or about 4.0. Now we can calculate the value of SSM that

will give us an F-value of 4.0 (for a power of about 80 %) when σ2 = 1000 and σ2 = 500. This ise p

done by rearranging the above equation to get:

(t-1) * F * (σ2 + e * σ2) 3 * 4 * (1000 + 20 * 500)SSM = ssssssssssssssssssssssssssssssssssssss

e
sssssssssssssssssssssss

p
ss = sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss = 660.e * p 20 * 10

This is quite a large increase in SSM and corresponds roughly to means of 10, 21.5, 33, and 44.5

(SSM = 661.25), instead of 10, 15, 20, and 25.6

6
Help in interpreting this SSM can be found in Handbook #2, the Power Analysis Workshop Notes and the appendix

of BI #52.
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While the calculations and graphs in this pamphlet were produced using SAS and SAS/Graph,

any software that can calculate 1) the critical F-value given a probability, degrees of freedom, and

non-centrality parameter (finv in SAS) and 2) the cumulative probability function for the

F-distribution given an F-value, degrees of freedom, and non-centrality parameter (probf in SAS)

can generate the data needed for the graphs. See pamphlet #51 for more information on how to

create graphs for specific situations.

Contact: Wendy Bergerud
387-5676
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