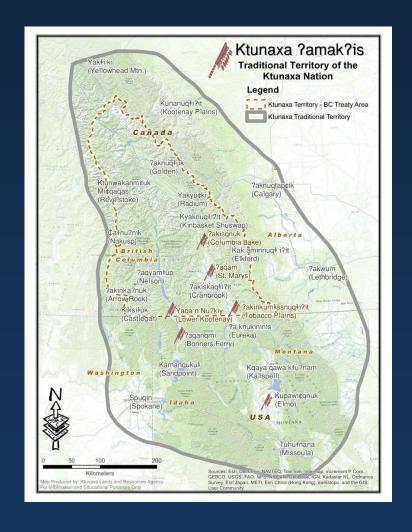
Successes in Alternative Use of Residuals



Brian Watson, RPF
Forest Carbon Advisor
Climate Change and Integrated
Planning Branch

March 2, 2021

Overview

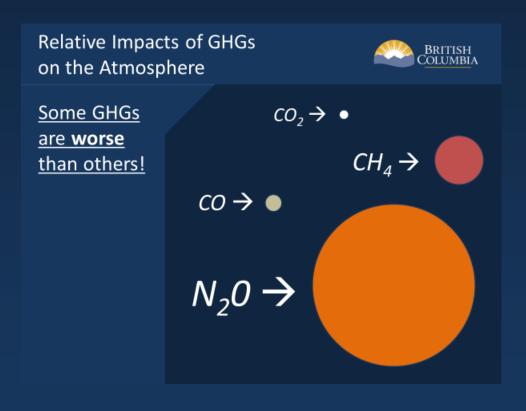
Estimated GHG impact of Forest management

GHG Analysis of existing projects

How the GHG benefit is calculated

How we quantify the opportunity – UTOL

Questions


GHG units of CO₂e

Green House Gas emissions are measured in CO₂e

e = Carbon equivalents

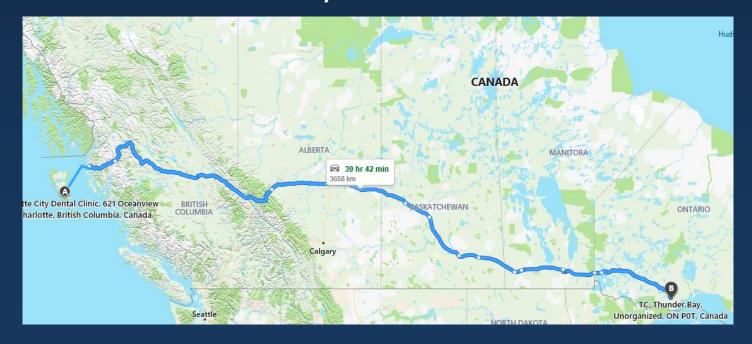
1 Megatonne (Mt) = 1,000,000 tonnes

Perspective

A typical pulp mill produces

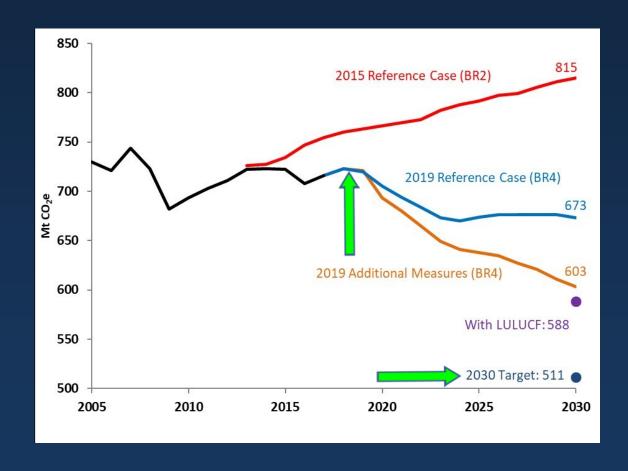
- $-93\% CO_{2}$
- 2.5% Methane
- 4.5% Nitrous oxide

BC Pulp and paper sector reported 2.089 Mt CO₂e in 2018

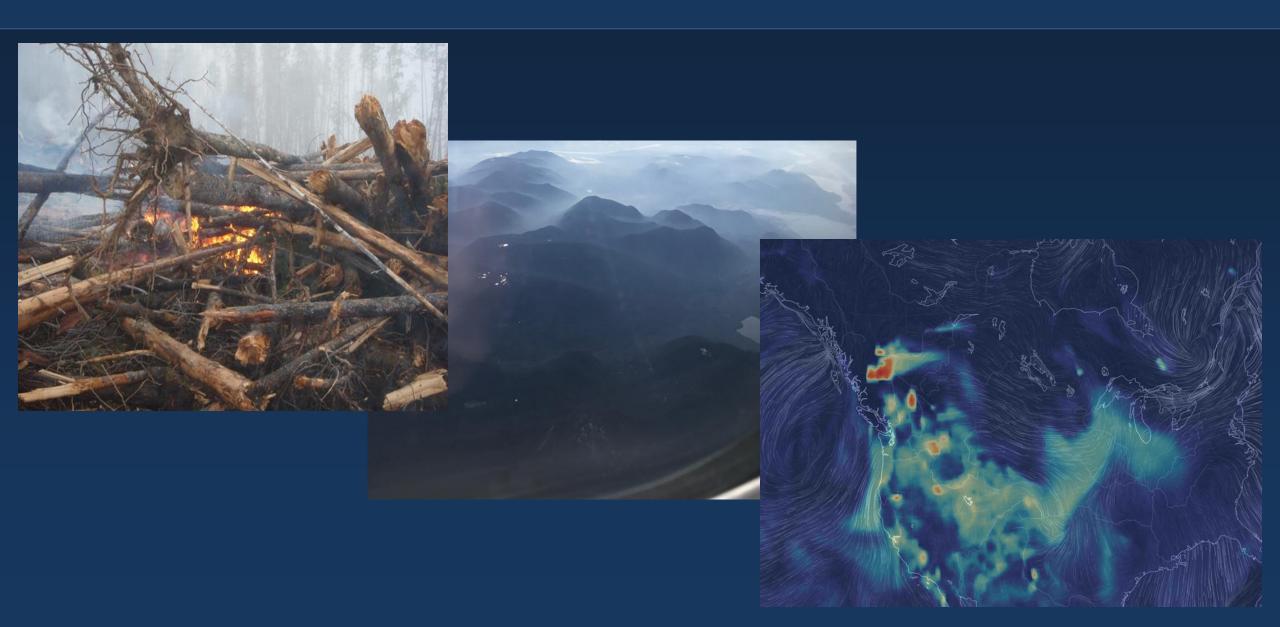

Perspective

1 m3 burned in a slash pile emits = .9 tCO₂e

Equal to car emissions produced travelling from Haida Gwaii to Thunder Bay

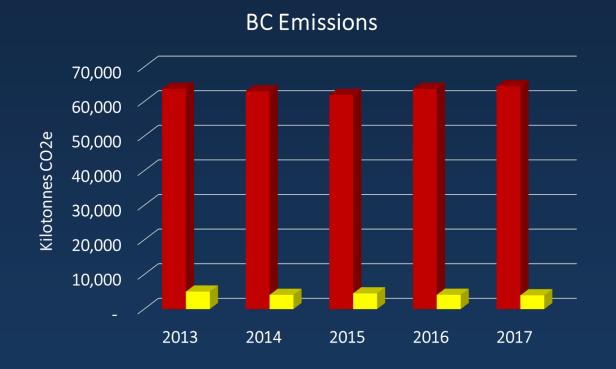

Canada's GHG targets

Paris Agreement commitment


 Reduce GHG emissions to 511 Mt by 2030

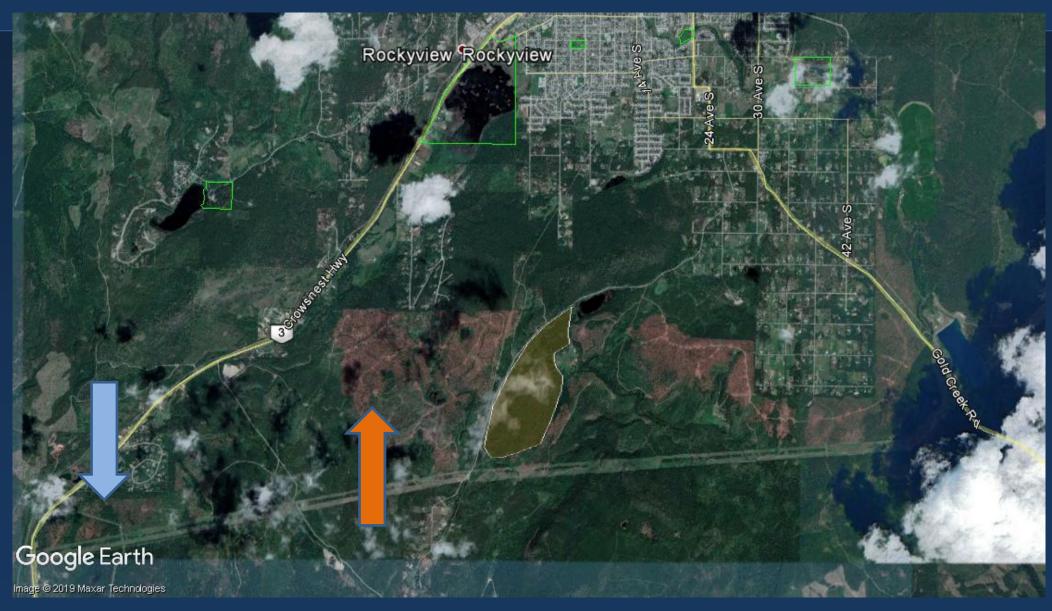
2018 reported 729 Mt

BC Forestry - GHG footprint



Slash Pile burning BC

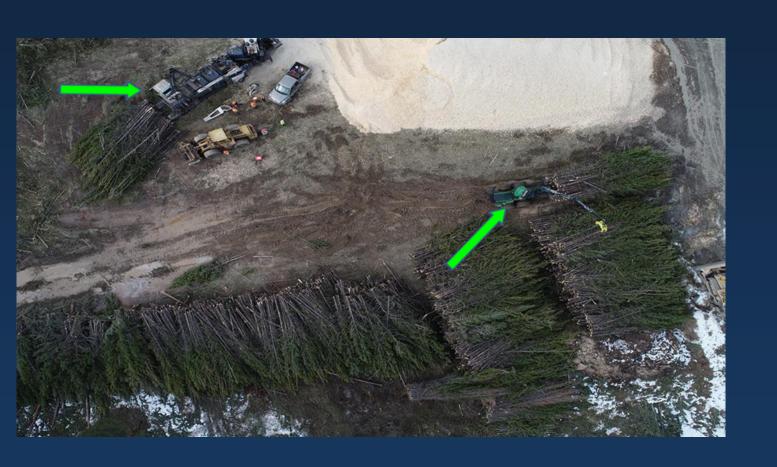
- 1997 to 2018 average 5.491
 Mt/yr
- Approximately the same as light duty gasoline trucks 5.542 Mt*


^{*} From the BC greenhouse gas Inventory 2018

A few examples

Scenario 1 – Innovation - WRR projects

The problem


The Base case

Scenario 1 – Innovation - WRR projects

Conventional harvest the site

Employ the techniques Len Marsh spoke of

FLTC/Operational Service Contract

Scaled 10,500 m3 of fibre

Created 2.7 man years of work

Avoided 3366 tCO2e

Scenario 2 – Innovation – FFT Stand Rehabilitation

- FFT restore healthy forests and mitigates the impacts from wildfire and insect outbreaks
- Site Preparation
- Overstory is removed to enable planting
 - Remove Forest Health agents, operational constraints
- Replanted at higher densities
- History of burning piles or windrows

Contract approach

District developed Px's and built knockdown contracts
District applied for FCI Ministry intake funds

3 phases in the contract Schedule B

- Phase 1 Mechanically felling and piling (FFT)
- Phase 2 option (a) Hauling Material (FCI) OR
- Phase 2 option (b) Burning of piles (FFT if no utilization)

FCI approach

- FCI contribution capped at \$16,800
- Determined cycle time of blocks
- Used UTöL to establish an upper threshold \$12.65 / ODT

Bid Results

- Phase 1 Mechanically felling and piling (FFT) \$1000/ha
- Phase 2 (a) Hauling Material (FCI) \$3.35/ODT[\$16,800]
- Phase 2 (B) Burning of piles (FFT if no utilization) \$3609 total

Bid price was \$3.35 / ODT (carbon eligible < \$12.65)

Burning versus Utilization \$3609 versus \$16,800

Outcome

Common Themes

- 1. Emissions avoidance has to be made an objective
- 2. Contracts have to be built differently
- 3. Follow existing
 - Procurement rules
 - Tenures guidelines
 - Pricing rules
- 4. Most effective where demand exists in close proximity

FESBC

- 2018/19 Actual 233,610 m3
- 2019/20 Actual 864,660 m3
- 2020/21 Forecast 1,436,000 m3
- 21-23 Forecast 1,000,000 + m3
- \$47 M total spend
- Average cost of \$14/m3

2019/2020 0.16 MtCO2e GHG's avoided

How we calculate GHG benefits

UTöL

- The program <u>is being</u> designed by Garrett McLaughlin
- It is currently available in Beta form for trial purposes
- If you are interested, reach out to CCIPB

UTÖL

Informs utilization projects

- Converts used fibre to GHG's avoided
- Determines cost/tonne CO₂e
- Suggests economic zones

2 Modes

Mode 1 - Project Level – operational

Mode 2 - TSA level – strategic

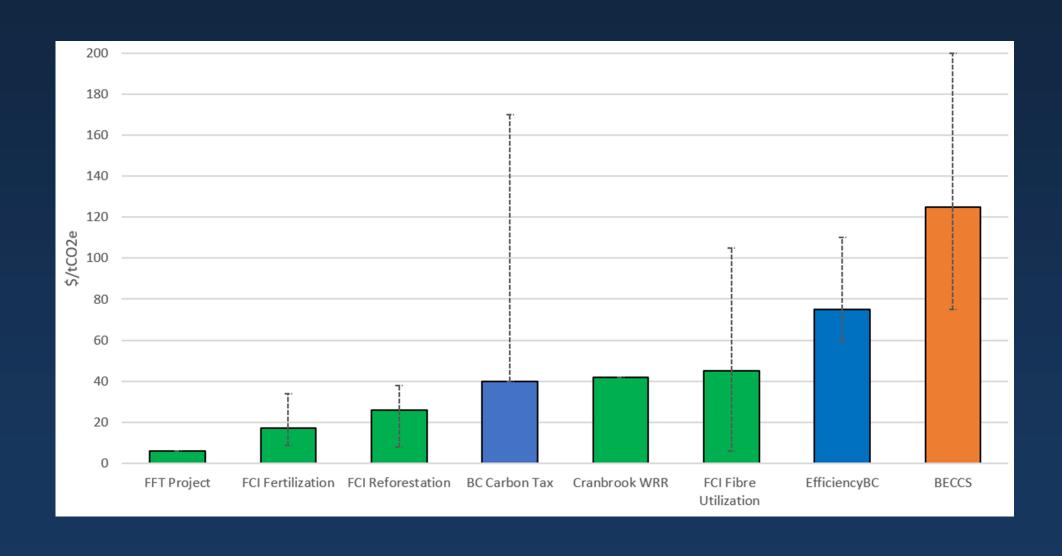
Project Level - WRR

		*						
1. Total Biomass S	Supplied	10,500						
2. Units		m3						
m3	Green Tonne	onnes Dry Tonn						
3. Primary Species	s							
lodgepole pine	е	100%						
V	Vood Density	0.409						
hybrid spruce		0%						
V	Vood Density		0.383					
4. Moisture Conte	ent (for GT)		30%					
5. Product Types								
Kraft pulp			55%					
Bioenergy			45%					
OSB		0%						
6. Total CCIPB Inv	\$ 100,000.00							
7. Select Baseline	Slashburning							
8. Select Start Yea	r		2020					

Outputs	
Table 1: Converted Inputs	
m3	10,500
GT	6,135
ODT	4,295
Table 2: Total Annual GHG be	nefit (tCO2e/yr)
2020	3,366
Kraft pulp	2,572
Bioenergy	794
	-
2030	2,827
Kraft pulp	2,033
Bioenergy	794
	-
2050	2,382
Kraft pulp	1,588
Bioenergy	794
1	-
Table 3: Average Cost per Ton	ne (\$/tCO2e)
In 2020	\$ 29.71
In 2030	\$ 35.37
In 2050	\$ 41.98

Table 4: Average Cost per Tonne by Product (\$/tCO2e)											
In 2020	\$	29.71									
Kraft pulp	\$	21.38									
Bioenergy	\$	56.68									
OSB	\$	-									
In 2030	\$	35.37									
Kraft pulp	\$	27.05									
Bioenergy	\$	56.68									
OSB	\$	_									
In 2050	\$	41.98									
Kraft pulp	\$	34.63									
Bioenergy	\$	56.68									
OSB	\$	_									
Avoided PM-2.5		23,252									
Avoided PM-10		22,086									
Trucking emissions (tCO2e)		109									

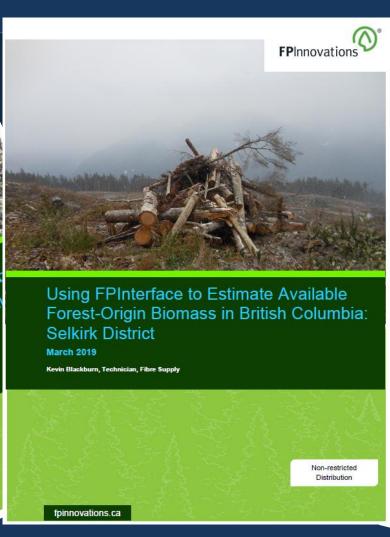
Project Level – FFT

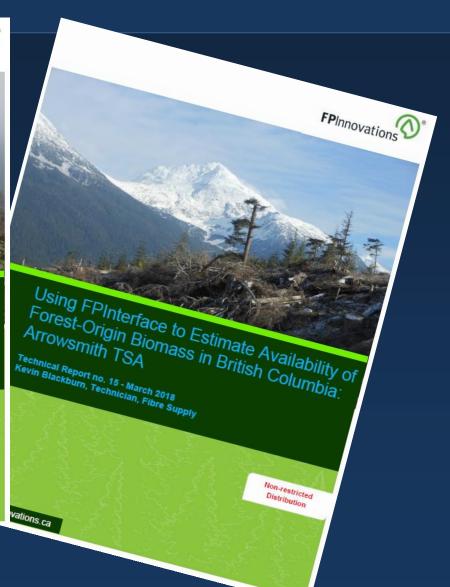

Inputs										
1. Total Biomass 9	11,835									
2. Units			m3							
m3	Green Tonne	es Dry Tonnes								
3. Primary Specie	s	lodgepole pine								
Wood Density	1	0.409								
4. Moisture Conte	ent	20%								
5. Product Types										
OSB			10%							
Kraft pulp			0%							
Bioenergy			90%							
6. Total CCIPB Inv	\$ 16,800.25									
7. Select Baseline	Slashburning									
8. Select Start Yea	ar		2019							

Outputs	
Table 1: Total Annual GHO	6 benefit (tCO2e)
	tCO2e/yr
2019	2,699.48
OSB	909.77
	-
Bioenergy	1,789.71
2030	2,677.11
OSB	887.41
	-
Bioenergy	1,789.71
2050	2,631.06
OSB	841.35
	-
Bioenergy	1,789.71
Table 2: Average Cost per	Tonne (\$/tCO2e)
In 2019	\$ 6.22
In 2030	\$ 6.28
In 2050	\$ 6.39

Table 4: Average Cost per Tonne by Product (\$/tCO2e)											
In 2019	\$	6.22									
OSB	\$	1.85									
Bioenergy	\$	8.45									
OSB	\$	-									
In 2030	\$	6.28									
OSB	\$	1.89									
Bioenergy	\$	8.45									
OSB	\$	-									
In 2050	\$	6.39									
OSB	\$	2.00									
Bioenergy	\$	8.45									
OSB	\$	_									
Avoided PM-2.5		22,932									
Avoided PM-10		21,782									
Trucking emissions (tCO2e)		123									

How do these projects hold up?





TSA level

Note

The following is conceptual analysis of what UTöL can do

The information is based on coarse level analysis of fibre studies, cost information, life cycle analysis

For the purpose of discussion only

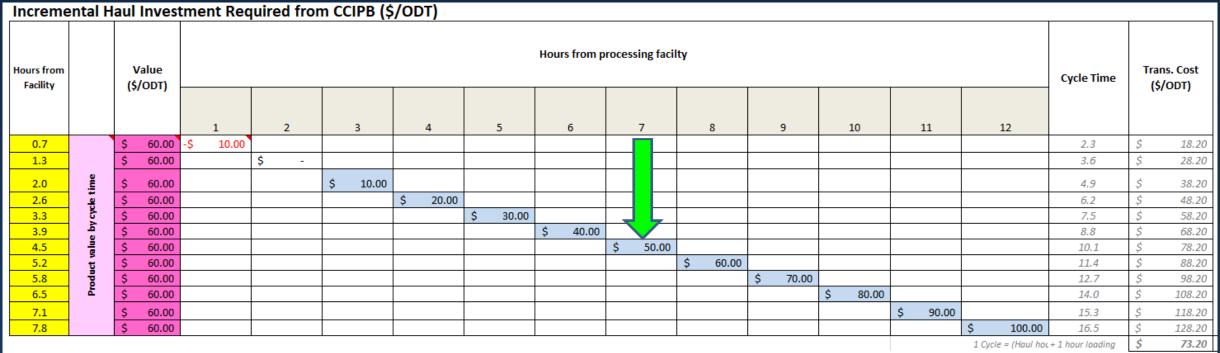
Cost inputs

INPUTS									
Info Provided by the FPInnovation Report									
Info from the appraisal manu	ıal								
Info from CCIPB modelers									
1. Units (Select here)	ODT								
2. Primary Species	lodgepole pine								
Wood Density	0.409								
2a. Secondary Species	hybrid spruce								
Wood Density	0.383								
Average Wood Density	0.396								
3. Product Type (select here)	Bionergy								
GHG (CO2e) benefit (per m3)	0.36								

Costing Assumptions (\$/unit)												
4. Costing Assumptions												
V	Hauling (\$/hour)	\$	7.75									
	Barging (fixed cost for now)	\$	-									
	Processing	\$	-									
	Scaling	\$	-									
	Logging	\$	-									
✓	Comminution Cost	\$	31.80									
	Grinding	\$	-									
	Road Maintenance	\$	-									
	Admin	\$	-									
	Total Fixed Costs	\$	31.80									
	Total Variable Costs	\$	7.75									

Define the product type (life cycle)

Variable costs


Fixed costs

Defining the economic zone – PG TSA

The cycle time drives the economic zone

Cost per Tonne

/ tCO2e

Hours from		Vá	alue		Hours from processing facilty											Co	ct nor	tonne						
Facility		(\$/	ODT)	1	2		3		4		5	6		7	8	9	:	10	11		12		st per	tomie
0.7		\$	60.00	In economic	zone																	\$		-
1.3		\$	60.00		In economic	zone																\$		-
2.0	ae	\$	60.00			\$	28.01															\$		28.01
2.6	Ē	\$	60.00					\$	56.03													\$		56.03
3.3	CAC CAC	\$	60.00							\$	84.04											\$		84.04
3.9	Ą	\$	60.00									\$ 112.05	5									\$	1	112.05
4.5	le e	\$	60.00				4	4					\$	140.06								\$	1	140.06
5.2	, ,	\$	60.00												\$ 168.08							\$	1	168.08
5.8	ğ	\$	60.00					Г								\$ 196.09						\$	1	196.09
6.5	2	\$	60.00					Г									\$	224.10				\$	2	224.10
7.1		\$	60.00																\$ 252.11			\$	2	252.11
7.8		\$	60.00																	\$	280.1	.3 \$	2	280.13
																					A			154.07

Carbon Tax

TSA – total chance investment

Annual	CCIPB	investment b	v cv	/cle	time	(Ś	١
			_				

Hours from		ODT		Hours from processing facilty											Total CCIPB	
Facility		Available	1	2	3	4	5	6	7	8	9	10	11	12	Investment	Cumulative
0.7		13,929	In economic	zone											\$ -	\$ -
1.3	ed	136,418		In economic	zone										\$ -	\$ -
2.0	9	145,680			\$ 1,456,795										\$ 1,456,795	\$ 1,456,795
2.6	q	130,351				\$ 2,607,018									\$ 2,607,018	\$ 4,063,813
3.3	8	55,343					\$ 1,660,275								\$ 1,660,275	\$ 5,724,088
3.9	tha	56,552						\$ 2,262,080							\$ 2,262,080	\$ 7,986,168
4.5	ıme	17,080							\$ 854,005						\$ 854,005	\$ 8,840,173
5.2	Ν	27,683								\$ 1,661,004					\$ 1,661,004	\$ 10,501,177
5.8	per	104,743									\$ 7,332,003				\$ 7,332,003	\$ 17,833,180
6.5	.8	84,643										\$ 6,771,424			\$ 6,771,424	\$ 24,604,604
7.1	ī	58,141											\$ 5,232,663		\$ 5,232,663	\$ 29,837,267
7.8		35,014												\$ 3,501,370	\$ 3,501,370	

865,576 ODT TOTAL \$ 33,338,637

From FPI studies

TSA roll up

TSA Summary - Oven Dry Tonnes

TSA	Total Biomass Available (ODT/Yr)	Total Biomass Outside Economic Zone (>\$60/ODT; ODT/yr)	% Outside Economic Zone	Comminution Cost (\$/ODT)	Total CCIPB Investment (\$)	Total GHG Benefit (bioenergy) (tCO2e)	Weighted Average \$/Tonne (of all biomass)
100 Mile	110,192	29,436		\$ 26.82	\$ 357,053	10,508	\$ 33.98
Arrowsmith	19,965	16,695		\$ 27.55	\$ 576,032	5,960	\$ 96.65
Bulkley	69,502	64,881		\$ 27.55	\$ 1,858,436	23,161	\$ 80.24
Fraser	75,287	64,209		\$ 27.55	\$ 1,769,303	22,921	\$ 77.19
Kamloops	245,105	127,495		\$ 25.89	\$ 2,591,222	45,513	\$ 56.93
Lakes	277,387	201,261		\$ 31.80	\$ 10,258,617	71,846	\$ 142.79
Mackenzie	266,821	186,962		\$ 27.27	\$ 7,072,197	66,742	\$ 105.96
Prince George	865,576	715,229		\$ 31.80	\$ 33,338,637	255,322	\$ 130.57
Quesnel	337,230	251,376		\$ 31.80	\$ 9,442,954	89,736	\$ 105.23
Selkirk District	153,455	137,741		\$ 26.82	\$ 4,407,972	49,171	\$ 89.65
Strathcona	69,059	54,319		\$ 27.55	\$ 2,475,305	19,391	\$ 127.65
Williams Lake	1,534,830	1,286,451		\$ 31.80	\$ 52,011,147	459,238	\$ 113.26
TOTAL	4,024,409	3,136,055		\$ 28.68	\$ 126,158,874	1,119,510	\$ 96.68

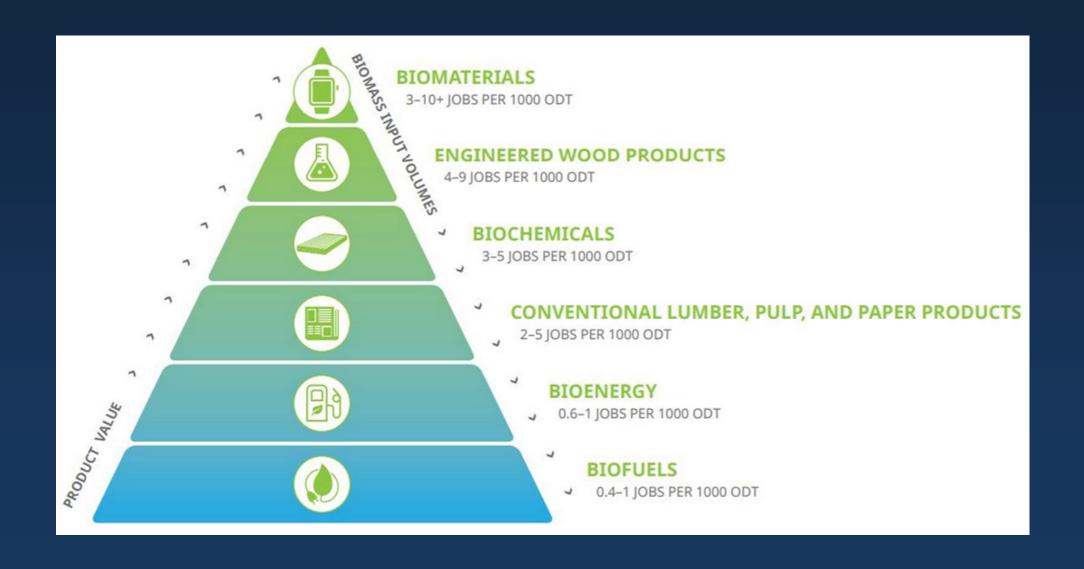
^{*}Only includes Timber Supply Areas; not TFLs, woodlots, CFs, etc.

Solver – capping the investment

Solver Solver to find the least expensive fibre across 12 TSAs studied by FPInnovations

	Biomass Taken (ODT/yr)	% of Total Biomass Available (%)	Person Years Created (See Jobs Tab)	GHG Benefit (tCO2e)	BioFuel (litres)	Total \$ Invested (\$)	Min \$/tonne Paid	Max \$/tonne Paid	WtAvg \$/Tonne per TSA (of biomass taken)
100 Mile	27,872	95%	6.8	9,950	8,361,724	\$ 313,060	\$ 28.01	\$ 56.03	\$ 31.46
Arrowsmith	5,861	35%	1.4	2,092	1,758,307	\$ 91,219	\$ 28.01	\$ 56.03	\$ 43.60
Bulkley	30,719	47%	7.5	10,966	9,215,574	\$ 478,260	\$ 28.01	\$ 56.03	\$ 43.61
Fraser	36,324	57%	8.8	12,967	10,897,095	\$ 523,590	\$ 28.01	\$ 56.03	\$ 40.38
Kamloops	81,465	64%	19.8	29,082	24,439,646	\$ 1,114,972	\$ 28.01	\$ 56.03	\$ 38.34
Lakes	57,361	29%	14.0	20,477	17,208,226	\$ 636,095	\$ 28.01	\$ 56.03	\$ 31.06
Mackenzie	61,619	33%	15.0	21,997	18,485,672	\$ 682,547	\$ 28.01	\$ 56.03	\$ 31.03
Prince George	152,315	21%	37.1	54,374	45,694,592	\$ 1,589,511	\$ 28.01	\$ 56.03	\$ 29.23
Quesnel	58,368	23%	14.2	20,836	17,510,342	\$ 650,036	\$ 28.01	\$ 56.03	\$ 31.20
Selkirk District	29,146	21%	7.1	10,404	8,743,682	\$ 357,814	\$ 28.01	\$ 56.03	\$ 34.39
Strathcona	15,529	29%	3.8	5,543	4,658,563	\$ 203,336	\$ 28.01	\$ 56.03	\$ 36.68
Williams Lake	283,805	22%	69.1	101,313	85,141,352	\$ 2,904,403	\$ 28.01	\$ 56.03	\$ 28.67
TOTAL	840,383		204.5	300,000	252,114,775	\$ 9,544,844			\$ 31.82

Solve: in what TSA's would you invest to avoid 300,000 tCO2e with the best ROI


Economic Value of Wood Products

Employment Benefits of Wood Products

The Challenge

If you think this work is tricky

You are right!

Be curious and reach out to people

Questions

Garrett McLaughlin, FIT

Forest Carbon Modeller

778-974-5619

Garrett.McLaughlin@gov.bc.ca

Brian Watson, RPF

Forest Carbon Advisor

250-420-6298

Brian.Watson@gov.bc.ca