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Summary 
Model averaging is method to determine the relative support for various hypotheses 
(models) about the effect of hardness on the dose-response curve to changing levels of 
sulphate. For example, one hypothesis may be that the dose-response curve against 
sulphate concentration is invariant over different hardness levels; or that the dose-
response against sulphate is different over the hardness levels.  The Akaike Information 
Criteria (AIC) measures the tradeoff between model fit (how well do the dose-response 
curves match the observed data) and model complexity (how many parameters are 
needed to describe the curve). The AIC provides a way to determine the relative weight 
to be attached to various models given by the observed data. Furthermore, the model 
weights can be used to provide estimates of benchmark doses (BMD, such as LCxx) that 
weight the estimates provided by the different models according to their support from the 
observed data.  
 
The model averaging paradigm was applied to mortality and growth responses over a 
number of species collected in dose-response experiments at various levels of hardness. 
For the majority of responses, the majority of model weight was given to models where 
the  dose-response curve is different at the hardness levels tested in the experiments. This 
implies that each hardness level will require a separate experiment to estimate the dose-
response curve as there is no “sharing of information” across the hardness levels. 
 
In the case of Fathead Minnows, the support was split between a model where the dose-
response curves were different across hardness levels and a model where the dose-
response curves have the same general shape, is parallel at the different hardness levels, 
and the dose-response curve shifted monotonically as hardness increased. The 
monotonic-shift model implies that once the dose-response curve is established for any 
hardness level, the same general curve can be used for higher hardness levels with a 
simply shift to the right as hardness increases. 
 
In two cases (Lemna frond growth and final weight) there was substantial support for 
models where the dose-response curve was invariant across hardness levels. In this case, 



the data are insufficient to distinguish between dose-response curves at different hardness 
levels.  Natural variation in the data and a limited response to sulphate made it difficult to 
determine the effect of hardness on the dose-response curve.  
 
Finally, in one case (Rainbow Trout mortality) support was almost event split between a 
model where the dose-response curve was invariant to hardness and where the dose-
response curve was parallel and monotonically shifted to the right as hardness increased.  
In this case, extra-binomial variation was detected which made it difficult to distinguish 
the effect of hardness on the dose-response curve. 
 
The general conclusion is that there is strong evidence that the dose-response curve varies 
by hardness for the majority of cases tested in this report. Only in those experiments 
where there was only a very limited response to sulphate (Lemna frond growth and final 
weight) or where there was evidence of excess natural variation (Rainbow Trout 
mortality) was there any substantial support for models where hardness appeared to have 
no effect on the dose-response curve.  
 
For all experiments, model averaged estimates of the LC/IC10, LC/IC25, and LC/IC50 
were obtained. These estimates are formed as a weighted average of the estimates from 
the individual models and the model averaged standard error accounts for both the 
uncertainty in the estimates for each individual model and the variation in estimates 
among the models examined. 
 
 
 

1. Introduction 
Dose-response studies are often used to estimate the risks associated with exposure to 
environmental hazards. For example, the B.C. Ministry of Environment recently 
commissioned a large study to investigate the response (mortality, growth, biomass) to 
sulphates under different water hardness from a number of species (e.g. Rainbow Trout, 
Daphnia). 
 
In each study (combination of species, response, and hardness level), the dose-response 
curve is estimated using a statistical model that relates the dose of sulphate to the 
response. For example, a probit regression model may be used when the response is 
mortality; a log-logistic model may be used if the response is biomass. The fitted curve is 
then used to estimate a benchmark dose (BMD) such as the LCxx (the dose at which xx% 
additional mortality occurs over baseline mortality) or the ICxx (the dose at which the 
response (e.g. weight) is reduced from baseline). The estimates of BMD are model based 
because a direct estimation of the BMD may require using several hundred or thousands 
of organisms at a wide range of doses. 
 
Many software packages (e.g. CETIS) provide a large number of dose-response curves 
(models) that may be fit to the same set of data, and each curve leads to a different 
estimate of the BMD. The risk manager is then faced with the problem of deciding which 



model should be used, or equivalently, how to incorporate uncertainty in the BMD from 
different models that may fit the data equally well. 
 
The analyst could choose the model that leads to the lowest BMD under the belief that 
this provides a conservative estimate of the BMD. Or, the analyst could choose the single 
best fitting model and use the associated BMD. Both of these strategies have the flaw that 
slight changes in the data or a new set of models could lead to a different “best” model 
being selected. As well, the selection of the “best fitting” model depends on the criteria 
used to define the fit of the model to the data. For example, the criteria used to select the 
best fitting model could be the model with the largest likelihood value; the model with 
the smallest total discrepancy between the data points and the fitted model (i.e. minimum 
sum-of-squares); the model with the smallest largest-discrepancy (i.e. the mini-max 
criteria), etc. D and different criteria could lead to different choices of the best model. 
 
This report discusses a third option, model averaging, where the BMDs are “averaged” 
based on the support each model provided by the data. Burnham and Anderson (2002) 
and Anderson (2008) provide a comprehensive reference on this approach. Bailer et al 
(2005), Bailer, Noble and Wheeler (2005) provide examples applied to risk assessment 
using dose-response models.  
 
 

2. Studies used. 
There are two groups of studies used in this report, generally called the Enviroment 
Canada (EC) studies and the Nautilus Environmental (NA) studies (named after the 
organization that performed the studies). 
 
In the Environment Canada studies, typically three water hardness values were tested on 
various freshwater species of aquatic organisms. The tests were done at a low water 
hardness (50 mg/L), a medium water hardness (100 mg/L), and a high water hardness 
(250 mg/L). Details of the experimental prot0col are found in Buday and Schroeder 
(2011). We use the data from Buday and Schroeder (2011) to assess if there is evidence 
of an effect of water hardness on the dose-response relationship between sulphate and the 
various endpoints measured.  
 
Raw data were provided as an Excel workbook, the raw output sheets (in pdf format) 
from the analyses done by Buday and Schroeder (2011) using the CETIS software, and 
additional pdf files from the Saskatchewan Research Council who performed some of the 
work under sub-contract from Environment Canada. 
 
In the Nautilus Environmental (NA) study, there were between one and four hardness 
levels (ranging from 15 to 320 mg/L) and a variety of freshwater species of aquatic 
organisms. We use the data from Elphick et al. (2010) to also assess if there is evidence 
of an effect of water hardness on the dose-response relationship between sulphate and the 
various endpoints measured. Only those organisms where at least two levels of water 
hardness were studies are used in this paper. 



 
The raw data was extracted from copies of the raw output sheets (in pdf format) from the 
analyzes done by Elphick et al. (2010) using the CETIS software. Only the organisms 
where at least two water hardness levels were tested were used. 
 
It is assumed that all the data presented are valid and no examination of the raw data for 
outliers or other anomalous points has been done. 
 
The sampling protocol for each aquatic organism is presented in detail in Buday and 
Schoreder (2011) and Elphick (2010). A brief summary is presented in Table 1. All tests 
were performed at various levels of hardness of water and usually five or six nominal 
concentrations of sulphate. In the Environment Canada studies, the actual sulphate 
concentration was measured at the start and the end of the experiment and the average of 
the two values was used as the actual sulphate concentration. In the Nautilus studies, the 
nominal sulphate levels as recorded on the CETIS sheets were used directly. In Elphick et 
al. (2010, Table 2), a comparison of the measured vs. nominal sulphate levels showed a 
relatively good agreement. Most experiments also had a control (nominal zero 
concentration) of sulphate. 
 
 

3. Theory of Model averaging 
"All models are wrong, but some are useful" (Box and Draper, 1987) is an apt description 
for statistical modeling of many biological systems. While a Probit (see below) model 
may be an adequate approximation to the underlying dose-response relationship, the 
Probit model is not the "truth" and is necessarily "wrong" as no biological system follows 
such a simple dose-response curve. Consequently, estimates of BMDs are model 
dependent and reported precision (e.g. se) are conditional on the choice of this (wrong) 
model! 
 
There are often several models that give essentially the same fit to the data, but could 
give rise to different estimates of the BMD. Model averaging (e.g. Burnham and 
Anderson, 2002; Anderson, 2008) is a way to recognize that all models are only 
approximations to reality and that there may be different models giving different answers. 
The basis behind model averaging is the use of AIC (Akaike Information Criteria)1

                                                 
1 There are other model averaging criteria such as BIC (Bayesian Information Criteria). 
The same general principles apply to these other criteria. 

 which 
measures a combination of model fit and complexity. For example, if two models give 
the same fit to the data, but one model requires 2 parameters and the other model requires 
50 parameters, then "Ockham's Razor" says that the model with fewer parameters is 
preferred. Similarly, as you increase the number of parameters, the fit of a model must 
improve (more parameters give a more flexible model), but is the improvement 

 



"worthwhile" in light of the increase in complexity of the model. AIC2

 

 values are a 
function of likelihood (model fit) and number of parameters (complexity)  

2 log( ) 2 (# )AIC likelihood parameters= − × + ×  
Models with (arithmetically) smaller AIC values are preferred3

 

. The actual numerical 
value of AIC is not important (nor interpretable), but the differences in AIC among 
competing models are important and lead to a measure of relative support for these 
models. Once a set of models is fit to the data, the AIC is computed for each model, and 
the models are sorted by the AIC values from the model with the best support from the 
data (lowest AIC) to the model with the worst support from the data (highest AIC).  The 
difference in AIC (termed delta AIC) is found as: 

model model best modelAIC AIC AIC∆ = −  
[By definition, the 0AIC∆ = for the model with the best support.] If two models have 
similar AIC values (usually within 2 or 3 units of each other), then these models are 
similar in their support by the data. Models that differ by more than 5 AIC units from the 
model best supported by the data are usually not thought of as being competitive. AIC not 
only rewards goodness of fit, but also includes a penalty that is an increasing function of 
the number of estimated parameters. This penalty discourages overfitting (increasing the 
number of free parameters in the model improves the goodness of the fit, regardless of 
the number of free parameters in the data-generating process). 
 
Model weights are computed for each model based on a normalized function of the 

AIC∆  
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These model weights range from 0 to 1 and sum to 1 over the models considered. 
 
These model weights provide a way to combine BMDs over competing models. Each 
model provides an estimate of the BMD and a weighted average (based on the model 
weight) is the "best" estimate for this BMD: 
 model model

models
BMD w BMD= ∑  

The SE from each model can also be combined and if the estimates of the BMD vary 
considerably among models, an extra component of variation to account for this variation 
in estimates of BMD is also included: 

 ( )2 2
model model model

models
( ) ( )se BMD w se BMD BMD= + −∑  

                                                 
2 AIC values are usually corrected for small sample sizes. This is not detailed in this 
report but has been done in the examples that follow. The small sample corrected version 
of AIC is referred to as AICc. 
 
3 For example a model with an AIC of -10 is preferred over a model with an AIC of -5. 
 

http://en.wikipedia.org/wiki/Overfitting�


Confidence intervals are formed in the usual way based on the estimate and its standard 
error. For example, an approximate 95% confidence interval is found as 

1.96 ( )BMD se BMD±  
 
The AIC paradigm is quite different from hypothesis testing and p-value approaches. The 
hypothesis testing and p-value approaches assume that one of the two models under 
consideration is correct. This is not biologically supported. For example, suppose you are 
interested in the effect of water hardness on the dose-response curve. The null hypothesis 
says that there is NO effect of water hardness. This hypothesis is clearly biologically 
wrong -- there must be an effect of water hardness - it may be small and not detectable 
from the data, but the hypothesis of no effect is "wrong" on biological grounds as there 
are always effects (do you really think that the mortality rates at different hardness levels 
are identical to 20 decimal places?). The p-value approach uses this (unrealistic) 
hypothesis of no-effect merely as a “straw-man” against which the data are examined to 
see if the data provide evidence against this “straw-man.”  The AIC paradigm recognizes 
that all models are wrong, and provides a way to "quantify" if the fit is adequate 
compared to a more complex model. 
 
Models do not have to be "nested" or of the same type to use the AIC paradigm. For 
example, the model set for a mortality dose-response curve could include a Probit model, 
a logistic model, a Gompertz model etc. However, all models must be likelihood based, 
so non-parametric models (such as non-parametric Karber-Spearman method for finding 
the LC50) are not directly usable. Likelihood methods are a scientifically defensible way 
to fit statistical models that uses all of the information in the data. Many existing methods 
are likelihood models in disguise (e.g. least squares for linear regression with normally 
distributed data is a likelihood fit). 
 
One key assumption of the AIC paradigm is that the models chosen in the model set are 
sensible approximations to reality. For example, if the data showed an increasing effect of 
dose on mortality and only models that allowed for a decreasing effect of dose on 
mortality are fit, AIC will still rank these silly models and give the relative ranking of 
these silly models. Consequently, the fit of the model should also be ascertained by the 
analyst (this usually is done via residual plots and other methods). 
 
The models in the model set should be specified in advance and the temptation to “data 
dredge” should be avoided. “Data dredging” would involve looking at the data and 
adding models that fit this particular dataset well, but have no a priori biological 
rationale. The danger is that the added models based on inspection of the data may be a 
good fit for this particular set of data, but minor changes in the data set would lead you to 
choose a different model to add. In reality, some model specification is driven by a 
preliminary look at the data, e.g. is hormesis present, and as along as the general class of 
models added is very general, this should be acceptable. 
 
Because BMDs are typically computed as a function of the model parameters, there is 
some ambiguity in how the BMDs should be averaged. For example, should the BMD be 
averaged on the log-scale and then the averages are anti-logged, or should the averaging 



take place directly on the anti-log scale. There is no biological definitive answer (for 
example, concentration of sulphates are measured on mg/L scale, but pH are measured on 
a logarithmic scale). The two approaches can lead to slightly different answers because 
the log() function is a non-linear transform, but the two methods should lead to similar 
results. As many models used in this project fit models where sulphates are measured on 
the log() scale, the model averaging will take place on the log-scale with a final anti-log() 
taken at the end of the process. This will lead to asymmetric confidence intervals on the 
anti-log scale. For example, from Table 4, the estimated BMD on the log-scale is 4.84 
(SE 0.51). This gives 95% confidence intervals on the log-scale of (3.85, 5.84) which 
lead to 95% confidence intervals on the antilog scale of ( )3.85 5.8447, 342e e= = . 

 
Wheeler and Bailer (2007) discuss an alternate way to use model averaging where the 
dose-response curves are model averaged and the model-averaged curve is used to find 
the BMD, rather than model averaging the BMDs directly. This approach has not been 
applied in this report.  
 
In some cases, a model may fit the observed data reasonably well, but is unable to 
provide an estimate of the BMD. This usually happens for one of two reasons. First, the 
model should (in theory) provide an estimate of the BMD, but sparsity in the data leads to 
a model fit where the BMD not longer exists. For example, the mortality in the observed 
dose range in the study is relatively constant but because of natural variability, the 
observed mortality declines with dose (e.g. 2/10 die at dose 100, 1/10 die at dose 200, and 
0/2 die at dose 300). A fitted Probit model would lead to a model where the mortality 
declines as function of dose and would never reach 50% mortality (the LC50) and so no 
estimate of the BMD is available. 
 
Second, the model may fit the observed data well, but cannot be extrapolated outside the 
observed range of the data. This is most common with isotonic models where the 
isotonicity constraint can be applied within the observed range of the data, but it is 
unclear how to extrapolate outside the observed range of doses. For example, suppose 
that in the observed range of doses, the mortality rate ranged from 0% to 40% (at the 
highest observed dose). It is not clear how to estimate the LC50 as this endpoint is 
outside the range of the observed doses. Al that is known is that estimate of the LC50 is 
higher than the observed dose, but no estimate is available.   
 
It is valid to include models where no BMD can be determined in the model set and to 
obtain a model weight for this model. This is a valid comparison of competing models in 
a general sense – which models are supported by the data. For specific BMDs, the model 
may or may not be able to provide an estimate (e.g. it may be able to provide an estimate 
of the LC10, but not of the LC50). In cases where the model cannot provide an estimate 
of a BMD, it is assigned a model weight of 0 (even though its weighting in the model 
selection may be higher). This is not contradictory as the two analyses are answering two 
different questions (1) which model is the best tradeoff in fit and complexity for the given 
data and (2) how much credence should be given to each models estimate of the BMD. 
Of course, cases where all of the high ranking models fail to provide estimates of the 
BMD while the low ranking models are able to provide estimates of the BMD indicate 



more serious problems with the study – most likely the BMD is well outside the range of 
the observed data and extrapolations may be pure fiction! 
 
 
 

4. Models used. 
There are two classes of responses in this study – quantal responses where the mortality 
of organisms is measured as a function of dose, and continuous responses (e.g. biomass) 
measured as function of dose.  
 

4.1 Mortality Responses. 
For the mortality responses, both Probit (Bliss, 1934) and Logit (Berkson, 1944) models 
were used.  
 
The basic Probit model assumes that the number of deaths follows a binomial distribution 
where the probability of mortality is “linked” to a linear function through the normal 
distribution. For example, consider the Probit model for a fixed hardness level – the 
statistical model is: 

( )( )0

( , )

log

ij ij i

i i ij

Dead Binomial BatchSize p

p Dβ β= Φ +


 

where ijDead is the number of dead organisms observed in the thj batch out of the initial 

ijBatchSize units on tests at dose level (sulphate) iD ; 0 1,β β  are the intercept and slope in 
the Probit model; and Φ is the cumulative normal distribution. [The original papers on 
Probit analysis added 5 to the linear functions to avoid negative numbers in hand 
computations, but this is no longer required when using computers.] The parameters are 
estimated using maximum likelihood (e.g. via Proc Probit in SAS). Estimates of the 
LCxx values (i.e. at what concentration will a fraction xx or organism die) can be found 
once estimates of the slope and intercept are found by solving the equation 

 ( )( )0
ˆ ˆ/100 logiLCxx Dβ β= Φ +  

Maximum likelihood estimates are asymptotically the best possible estimates and extract 
the maximum amount of information from the data. Estimates of precision (i.e. standard 
errors) can be found automatically for the parameters of the likelihood equations and by 
the delta method (Taylor series expansion) for the LCxx values.  
 
The formulation above assumes that the probability of death will decline to zero as the 
sulphate dose declines to 0. Probit models have been developed to deal with non-zero 
natural responses. In the original papers, the observed mortality at control doses was 
treated as a fixed known natural response and the Probit analysis applied only to 
mortalities above this level. This approach ignored the uncertainty in the estimate and the 
resulting estimates and standard errors from the remainder of the fit did not account for 
this. A more modern approach is to let the natural response rate be another parameter to 



be estimated in the model along with the slope and intercept of the Probit function. Again 
consider the Probit model for a fixed hardness level – the statistical model is: 

( )( )0

( , )

(1 ) log

ij ij i

i i ij

Dead Binomial BatchSize p

p NR NR Dβ β= + − Φ +


 

where NR is the natural response (mortality) at no (the control batches) sulphate, i.e. the 
fraction of units expected to die in the absence of an effect of sulphate. The parameters 
are again estimated using maximum likelihood (e.g. Proc Probit in SAS). 
 
Note that in models with a very small dose-response effect, there is some ambiguity in 
the parameterization. This is because it is very hard then to distinguish between a natural 
response, or a model with a slope close to 0 as both will give similar fits to the data. In 
cases like this, it may be better drop the natural response terms. 
 
Because of the natural response, estimation of the LCxx values must be done with care. 
For example, the LC25 values refer to the dose that results in a 25% mortality of the 
organism that survive the natural response. Suppose that the estimated natural response is 
13%. Consequently, only 87% of the organisms would survive in the absence of 
sulphates. The LC25 refers to the additional 25% of 87%=22% mortality above the 
natural response for a total mortality of 12% + 22% = 35%. The estimated LC25 value is 
found by now solving: 
 ( )0 1

ˆ ˆ.35 .13 .87 log( )Dβ β= + Φ +  

which again leads to 
 ( )0 1

ˆ ˆ.25 log( )Dβ β= Φ +  

i.e. the LC25 does not correspond to the by dose which leads to an overall .25 mortality. 
 
In some cases, the LCxx values cannot be estimated. For example, if the probit model has 
an estimated slope < 0, then the predicted mortality rate declines with dose. [A non-
positive estimate of the slope typically occurs with sparse data where, just by chance, 
fewer mortalities occurred at higher doses than at lower doses.] Even if the Probit model 
does fit, the dose-response curve may be so shallow that the estimated LCxx value is well 
beyond the range of the observed doses in the study. For example, suppose that mortality 
rates range from 0 to 10% in the range of doses in the study. The estimated LC50 value 
will be far to the right of the observed doses. Extrapolation well beyond the observed 
range of doses may be inadvisable – consequently, any LCxx value that is more than 2x 
the maximum observed dose in the study is “deleted”. 
 
A goodness-of-fit statistic of the Probit model (both with and without a natural response) 
to the data is found by comparing the observed and expected counts: 

( ) ( )( )
( )

22

2
ˆ1ˆ

ˆ ˆ1
ij ij ijij ij ij

ij ij ij ij

Alive BatchSize pDead BatchSize p
BatchSize p BatchSize p

− −−
Χ = +

−
∑ ∑  

where ˆ ijp is the predicted probability of death for each batch. If the assumptions of the 
model are satisfied, this statistics should follow a 2

dfχ distribution where the df is found 



appropriately. If the 2X statistic is extreme, it indicates a lack-of-fit. There are two 
common reasons for lack-of-fit. First, the model itself can be wrong (e.g. the response is 
not linear on the Probit scale), or the structural model is valid (i.e. the response is linear 
on the Probit scale), but the data are more variable than expected from a binomial 
response. The latter is termed overdispersion. For example, consider the sample 
proportion of organisms that die in batches of 30 organisms where the underlying 
mortality rate is 30%. Statistical theory indicates that under the binomial model, the 
average number that would die would be 9 = 30(.3), but the actual number that could die 
would range from 4 to 14. If the observed number that dies ranged from 1 to 17, this 
would indicate overdispersion, even though the average number that dies is still be 9. 
Typically causes of overdispersion are non-independence in the fate of the organism. For 
example, if all the organisms are placed in the same test tube, a local contaminant could 
reduce/increased the survival rate of this batch from the projected 30%. 
 
The consequence of overdispersion is that estimates remain unbiased, but the reported 
standard errors (and p-values derived from them) are understated, i.e. the results appear to 
be more precise than they really are. 
 
Corrections for overdispersion were incorporated directly in the model through the 
random effect Probit models (Gibbons et al, 1994; Gibbons and Hedeker, 1994). In the 
random effect model, latent (unobserved) random noise is added to the Probit function: 
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for non-control doses of sulphate, and 
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for control doses of sulphate, where ijε  is a latent random effect that comes from a 
normal distribution with mean 0 and variance 2σ , i.e. adding extra variation in the 
mortality rate at a specified dose. So even if the expected mortality rate at a particular 
dose is 30%, the random effect (applied at the batch level) could vary this higher or 
lower. This model can also be fit using maximum likelihood (e.g. Proc Nlmixed in SAS). 
Estimates from the fitted model automatically incorporate the effects of the excess 
random variation in their standard errors. 
 
The Logit models proceed in an analogous fashion, but now the link function is the log-
odds function: 

( )0
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i
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 
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Here the slope and intercept describe the curve on the log-odds scale. While the direct 
interpretation of the slope and intercept differ between the Probit and Logit models, the 
two curves are very similar in shape and will have similar  model fits and will give rise to 
similar estimates of LCxx. The key differences are in the tails of the models where the 
probit model approaches 0 or 1 more quickly than the logit model. 
 
Unlike the Probit model, the LCxx values can be solved for directly as there is a closed-
form analytical solution, i.e. 
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Similar logit models can be defined with Natural Responses (i.e. non-zero responses in 
the controls) and random effect models. Goodness-of-fit and corrections for 
overdispersion are implemented in similar ways. 
 
The primary goal of this paper is to investigate the effect of hardness levels on the dose-
response curve. We accomplish this by fitting two (or more) models to the combined data 
from the three hardness levels. In first model (the Separate response model), a separate 
probit/logit curve is fit to each hardness level. So, if the basic probit/logit model is used 
with 3 hardness levels, this model will require 6 parameters (an intercept and a slope for 
each hardness level). This can be done in a single model fit rather than (the equivalent) 
running three separate models (one for each dose). In the second model (the Common 
response) model, the data are pooled over all hardness levels and single probit/logit 
model is fit. This model has 2 parameters.  
 
The Separate response model is very general. Each hardness level has its own dose-
response curve and these curves do not have to have the same shape. Consequently, it is 
possible that the dose-response curve for lower hardness levels give rise to higher 
estimated mortalities than the dose-response curve for a higher hardness value. An 
intermediate model between that of the separate curves for each hardness level and a 
common curve for all hardness levels, is the Monotonic-Separate response curve where 
the probit/logit curves are “parallel” at different hardness levels and increasing hardness 
is always “protective”, i.e. higher hardness values does not lead to an increase in 
mortality at any sulphate dose.  More formally, 

( )( )0

( , )

(1 ) log
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i i ij hardness

Dead Binomial BatchSize p

p NR NR Dβ β θ= + − Φ + +



 
where hardnessθ is the “shift” in the curve due to different hardness’s and constraints are 
placed on these parameters to ensure that the dose-response curve never decreases as 
hardness increases. [A similar model can be defined for the logit model by changing the 
link-function.] A schematic of the results from such a model is: 



 
Notice that as hardness increases (the three lines from left to right), the mortality 
decreases at any sulphate level, i.e. hardness is “protective”. The shape of the three 
curves is identical – all that happens is that the S-shape is shifted to the right as hardness 
increases. 
 
The suite of potential probit/logit models fit is described by a 3 part “code”. First, is the 
modeling of the effects of hardness as either a separate model for each hardness 
(Separate), or a common model for each hardness (Common), or a model with a shifted-
to-the-right (“protective”) dose-response curves as hardness increases (SeparateMono). 
Next, does the model assume no natural response (NoNR), a common natural response 
over all hardness levels (CNR), or a separate natural response for each hardness level 
(SNR).  Finally, does the model include a random effect (RE) or exclude random effects 
(NoRE) to account for overdispersion.  For example, a probit/logit model identified as 
Common, NoNR, NoRE corresponds to fitting the model with a common curve across 
all hardness levels, no natural responses, and no random effects. 
 
Other possible choices for quantal responses are Gompertz, log-logistic, etc, but these 
lead to very similar dose-response curves especially for estimating BMDs in the .10 to 
.90 range (Ritz, 2010) and so were not fit.  
 
Many of the analyses from EC and NA of the individual studies used isotonic regression 
(see next section) applied to the observed mortalities. This method would be applicable if 
there is evidence of a structural lack of fit in the Probit/logit model (i.e. the response is 
not linear on the probit/logit scale) but no large lack of fit was detected in any of the 
studies. The isotonic model treats a natural response as simply another set of data values. 
In these cases, the LCxx values from isotonic regression are not directly comparable to 
those from the maximum likelihood Probit/logit approach with a natural response. In the 
isotonic method, no natural response is assumed and so the LCxx value includes the 
natural response in total mortality.  
 



The choice of model to be fit to a particular study depended on a preliminary inspection 
of the data (see Schwarz, 2011). For mortality studies that are very sparse (few animals 
on test) only simple models are tenable (i.e. without natural responses or random effects) 
can be fit as more complex models will fail to fit because of a lack of clear effect.  
 
For example, consider the plots of fitted models for the EC-RT mortality data found in 
Figures 1a-1f and summarized in Table 2-EC-RT. The most general model, the Probit, 
Separate, SNR, RE model (Figure 1a) has a separate dose-response curve for each 
hardness levels along with a separate natural response curve for each hardness level. This 
model has a 10 parameter (a slope, intercept, natural response for each of 3 hardness 
levels plus 1 parameter for the variance of the random effects). The dose-response curve 
for hardness level 50 is to the left of the dose-response curve for hardness 100 which in 
turn is to the left of the dose-response curve for hardness 250 in the range of doses 
studied in this experiment. This ordering is NOT enforced by this model and occurred 
“naturally” as the data is fairly strong. However, the natural responses do not follow this 
same ordering with the natural response at hardness 250 is between that of hardness 50 
and 100.  This model is the most flexible and so has the best fit to the data (largest 
likelihood value of -165.6 and an AICc value of 356.3. 
 
Figure 1b plots the dose-response curves for the Probit, Separate, CNR, RE model where 
there are three separate dose-response curves for the three hardness levels, but now all 
three dose-response curves have the same natural response. This model has 8 parameters 
(slope and intercept for the 3 dose-response curves plus one parameter for the common 
natural response plus one parameter for the variance of the random effects). This model is 
less complex than the previous model (fewer parameters), but will fit the data less well 
(has a lower likelihood value of -165.8). However, the reduction in fit compared to the 
previous model is .03 which is a small reduction in fit for a reduction by 2 in the number 
of parameters because the three separate natural responses from the model in Figure 1a 
seems to be too flexible as the three natural responses are not very different. 
Consequently, the AICc of 350.7 is smaller than the AICc of the previous model 
indicating a model with more support from the data. 
 
Figure 1c plots the dose-response curves for the Probit, SeparateMono, CNR, RE model 
where the three dose-response curves are “parallel” on the probit scale (which leads to S-
shaped curves on the mortality scale that are shifted left or right). While the dose-
response curves for this model look very similar to those in Figure 1b (each hardness has 
a separate dose-response curve), the fit is not as good (the likelihood for this model (-
165.9) is slightly less than the likelihood for the previous model (-165.8)). However, this 
model has fewer parameters (6 in total being the slope and intercept for the first curve 
plus the variance of the random effects plus the common natural response plus the two 
shift for hardness levels 100 and 250). Consequently, the AICc is much improved (345.5 
for this model vs. 350.7 for the previous model) as the loss in fit (difference in likelihood) 
is inconsequential relative to the reduction in complexity. This model has better support 
from the data than the previous two models.  
 



Figures 1d, 1e, and 1f fit the same models as in Figures 1a, 1b and 1c except on the logit 
scale. The fit is very similar between the probit and logit models with only minor 
difference in the AIC (Table 2) 
 
Finally, Figure 1g and 1h fits the Probit/Logit, Common, CNR, RE models where a single 
dose-response curve is fit for all hardness levels. This model has only 4 parameters but 
has the worst fit to the data (smallest likelihood of -168.1) but the reduction in fit is again 
offset by the large reduction in the number of parameters required for the fit. The AICc 
indicates that the Probit model of this form has the most support of all of the models 
considered in Table 2-EC-RT, but there is no clear distinction to be made between the 
Probit and Logit models. 
 
Figure 2a-2c illustrates what happens when the SeparateMono model is fit to data that is 
not monotonic as the hardness level increases.  The fit in shown in Figure 2a shows the 
apparent mortality at hardness 15 is lower than the mortality at hardness 80. The Probit, 
Separate, NoRN, NoRe model (and all other models where separate curves are fit) does 
not enforce “protective” effect of hardness. In Figure 2b, the SeparateMono model is fit 
which enforces a “protective” effect of hardness. Consequently, a single curve is drawn. 
In fact, this model reduces to the Probit, Common, NoNR, NoRE model [This will only 
happen in cases with two hardness levels.] Table 2-NA-TA-mortality shows that the 
likelihood values for the Common and SeparateMono models is the same (implying an 
indentical fit), but the SeparateMono model has an extra parameter (the effect of hardness 
80 relative to hardness 15 which happens to be estimated at 0) and so has less support 
from the data. Because the Separate model does not enforce the “protective” effect of 
hardness, it has more support from the data than either of the two other models. In fact, 
the model with a common LC50 point seems to have the highest support from the data, 
but there is still substantial support for other models. The sparsity of the data makes it 
difficult to distinguish among the various models fit to the data. Again, there is little to 
distinguish between the Probit and Logit models. 
 
 

4.2 Continuous responses: 
There is no common model suitable for modeling weight, reproduction, frond number, or 
other non-binomials endpoints. The CETIS software has a wide suite of potential models 
(e.g. the Gompertz) but in the majority of the cases here, the CETIS software uses a linear 
interpolation method (ICPIN). This is also known as isotonic regression (Barlow et al, 
1972). The basic premise is that the response variable should decline with increasing 
sulphate levels. However, because of sampling fluctuation, the observed curve may not 
show the monotonic decline with increasing sulphate levels.  
 
Basically, isotonic regression works from left to right through the data. If the mean 
response at the next X value is higher than the current fitted Y value, then the previous 
data and the new Y are pooled, a new mean is computed, and algorithm moves to the next 
X value. This is a “non-parametric” method, but can be shown to be the maximum 
likelihood approach under monotonicity of the sulphate effect. The R function isoreg() 



can be used to fit these models. The likelihood, assuming that the distribution of data 
values is normally distributed at a particular dose level, can be found from a 
transformation of the sum-of-squares of the residuals from the fit. 
 
Estimates of the ICxx values are found by linear interpolation on the log(dose) scale. 
ICxx responses are measured from the mean response at the lowest observable dose 
rather than at dose 0. For example, if a study used doses 100, 200, 400, 800, 1600 for 
sulphate, the baseline response is estimated from the dose 100 mean. Because different 
starting doses were used for different hardness levels, the baseline response may differ 
among these studies solely because of different initial doses and not because of hardness 
effects. [A similar problem occurs with functional curves fit as discussed later in this 
section.] Standard errors (and confidence limits) for the ICxx values are found using a 
bootstrap method. Several hundred bootstrap samples were generated with replacement 
from the observed data. For each bootstrap sample, the isotonic regression model was fit 
and the estimate of the ICxx value determined. The 2.5th and 97.5th percentile of the 
bootstrap estimates were used as the 95% confidence intervals for the parameter. Note 
that it is impossible to estimate any ICxx value that exceeds the largest dose observed in 
the experiment because there is no information from the data on the shape of the curve 
after the largest observed dose.  In these cases, no estimate is reported. Similarly, in some 
cases, the isotonic regression line is completely flat and no estimate of the ICxx values 
can be computed.  
 
Isotonic regression models were fit where a single curve was common for all hardness 
levels (denoted as IR.Common) or a separate curve was fit for each hardness level 
(IR.Separate). It is not possible to fit an isotonic regression model with a separate curve 
for each hardness level but a common ICxx value. I am also unaware of any method that 
could be used to enforce (declining) monotonicity in the effects of increasing sulphate 
levels, and increasing monotonicity (i.e. protective effects) in the effects of increasing 
hardness. Consequently, neither of these two classes of models were fit using isotonic 
regression. 
 
A second model used for continuous responses in this report is the 3-parameter log-
logistic model4
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where A is the mean response at X(Dose)=0, D is the dose corresponding to the IC50, 
and C is a scaling factor. This model was fit using maximum likelihood assuming 
normally distributed residuals about the fit. The log-likelihood is proportional to the 
residual sum-of-squares as in the isotonic regression case. Goodness-of-fit was assessed 

                                                 
4 This model has an additional parameter, σ , representing the standard deviation of the 
residuals around the fit. This parameter has been included in the AIC computations. 
 



using residual and other diagnostic plots. The ICxx values were found by solving the 
equation 
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where the Endpoint is .1, .25 or .50. [The above equation can be solved explicitly for X.] 
For example, the IC10 is the dose where the mean response is 90% of the baseline 
response. It is again possible with sparse data that no estimates of ICxx are available or 
lie far outside the range of the observed doses in the study. Again, in these cases, the 
value of ICxx is ignored. 
 
This model can be extended to allow for monotonic (protective) effects of hardness, by 
adding parameters ( hardnessθ ) which shift the LC50 (the D) parameter to the right: 
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For example, the following schematic plot shows three dose-response curves at different 
hardness levels: 

 
where the hardness effect simply shifts the LC50 to the right which pulls the entire curve 
to the right compared to the curve at a lower hardness level. This model also assumes a 
common baseline (response at Dose=0) where as a separate baseline is allowed when a 
separate curve is fit for each hardness level. 
 
Note that the CETIS software uses the fitted response at the lowest observed dose as the 
baseline value. For example, if a study used doses 100, 200, 400, 800, 1600 for sulphate, 



the baseline response would be measured at dose 100 rather than at dose 0. [Refer to the 
next model for a worked example.] 
 
Standard errors (and confidence limits) are found using a bootstrap method. Several 
hundred bootstrap samples were generated with replacement from the observed data. For 
each bootstrap sample, the log-logistic regression model was fit and the estimate of the 
ICxx value determined. The 2.5th and 97.5th percentile of the bootstrap estimates were 
used as the 95% confidence intervals for the parameter. 
 
Three log-logistic models were fit. The LL3p.Common model assumed a common curve 
over all hardness levels; the LL3p,Separate model assumed a separate curve for each 
hardness level, and the LL3p.Mono model assumes a shift in the curves to the right with 
increasing hardness levels.  
 
A third model was used for some responses where there was evidence of an increase in 
response at lower doses, is the 4-parameter logistic model with hormesis5

 

. This models 
allows the response to increase from baseline before declining as function of dose: 
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where A is a parameter related to baseline value, D is the inflection point on the curve 
(but no longer corresponds to the IC50 point), C is a scaling parameter, and E is a 
parameter relating to the hormesis (the increase in response at low doses). The model is 
fit using maximum likelihood assuming normally distributed errors around the fitted 
curve. The log-likelihood is then proportional to the residual sum of squares, as in the 
isotonic regression case. Goodness-of-fit was assessed using residual and other diagnostic 
plots. The ICxx values were found by solving the equation 
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where the Endpoint is .1, .25 or .50. [The above equation cannot be solved explicitly for 
X numerical methods must be used to solve the equation.] It is again possible with sparse 
data that no estimates of ICxx are available or lie far outside the range of the observed 
doses in the study. Again, in these cases, the value of ICxx is ignored. 
 
It is not clear how a “protective” effect of hardness should be modeled for this class of 
models because of the interaction between the parameters in specifying the location of the 
hump and the decline after the hump. It could be possible to be curves that crossed as 
sulphate levels increased which would lead to cases where the effect of hardness was 
protective and not protective depending on the level of sulphate. Consequently, no 
models that incorporated a monotonic (protective) effect of hardness were fit. Two 
logistic hormesis models were fit. The LH4p.Common model assumed a common curve 
over all hardness levels; the LH4p,Separate model assumed a separate curve for each 
hardness level.   
 
                                                 
5 This model has an additional parameter, σ , representing the standard deviation of the 
residuals around the fit. This parameter has been included in the AIC computations. 



As for the log-logistic model, the CETIS software uses the fitted response at the lowest 
observed dose as the baseline value rather than the estimated response at dose=0. For 
example, if a study used doses 100, 200, 400, 800, 1600 for sulphate, the baseline 
response would be measured at dose 100 rather than at dose 0. 
 
For example, consider a graph of the model fit to the Tadpole mean dry biomass in 
medium hard water (80 mg/L). 
 
 

 
 
The function fit is 
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and the estimated values from the fit were A=104.42, C=-.004325, D=1279, and 
E=.0006324. 
 
CETIS estimates the IC50 as 1509.9 mg/L. The value of Y at this point is: 
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This is NOT 50% of the 104.42 (the value of mean biomass when dose = 0). Rather it is 
50% of the mean biomass at dose = 93. At does=93, the response is 

(1 ) 104.42(1 .0006324 93)
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For both the 3-parameter log-logistic and the 4-parameter logistic hormesis model, the 
baseline values for this report were taken as the expected response at dose=0. 
Consequently, estimates of BMDs may differ in the report from those reported by CETIS. 
 
 
 

5. Results. 
The model selection table for each species/response listed in Table 1 is presented in Table 
2. Plots of the fit of the models to the raw data are available in Schwarz (2011) and a 
separate document.  
 
For the majority of responses, the majority of model weight was given to models where 
the  dose-response curve is different at the hardness levels tested in the experiments. The 
results parallels that of Schwarz (2011). This result implies that each hardness level will 
require a separate experiment to estimate the dose-response curve as there is no “sharing 
of information” across the hardness levels. 
 
As expected, there was often little to differential between the logit and probit models of 
the same type. 
 
In the case of Fathead Minnows, the support was split between a model where the dose-
response curves were different across hardness levels and a model where the dose-
response curves have the same general shape, is parallel at the different hardness levels, 
and the dose-response curve shifted monotonically as hardness increased. The 
monotonic-shift model implies that once the dose-response curve is established for any 
hardness level, the same general curve can be used for higher hardness levels with a 
simply shift to the right as hardness increases. 
 
In two cases (Lemna frond growth and final weight) there was substantial support for 
models where the dose-response curve was invariant across hardness levels. In this case, 
the data are insufficient to distinguish between dose-response curves at different hardness 
levels.  Natural variation in the data and a limited response to sulphate made it difficult to 
determine the effect of hardness on the dose-response curve.  
 
Finally, in one case (Rainbow Trout mortality) support was almost event split between a 
model where the dose-response curve was invariant to hardness and where the dose-
response curve was parallel and monotonically shifted to the right as hardness increased.  



In this case, extra-binomial variation was detected which made it difficult to distinguish 
the effect of hardness on the dose-response curve. 
 
The general conclusion is that there is strong evidence that the dose-response curve varies 
by hardness in a non-monotonic fashion for the majority of cases tested in this report. 
Only in those experiments where there was only a very limited response to sulphate 
(Lemna frond growth and final weight) or where there was evidence of excess natural 
variation (Rainbow Trout mortality) was there any substantial support for models where 
hardness appeared to have no effect on the dose-response curve.  
 
A summary of the model averaged estimates of the LCxx/ICxx are presented in Table 3 
with complete details of the individual estimates from each model for each study 
available as a separate document. For example, Table 4 presents an extract of the model 
averaging for the LC10 value for EC-Rainbow Trout at hardness 50. Both the common 
curve over all hardness levels and the separate curve with a monotonic (protective) effect 
of hardness have substantial support, with minor support for the other models. Estimates 
of the LC10 (on the log-scale) range from 4.56 (95 on the anti-log scale) to 5.03 (153 on 
the antilog scale). The weighted average LC10 is 4.81 (on the log scale) corresponding to 
123 on the anti-log scale as reported in Table 3. The model average SE incorporates the 
variability in the estimates among the models fit to the data. 
 
Because the two sets of the top probit/logit pairs models are “contradictory” (one has no 
effect of hardness while the other has a protective effect of hardness), the model averaged 
estimates of the LC10 at the three hardness levels (127, 163, and 213 at hardness 50, 100, 
250 respectively) are not the same, but are closer together than the estimates from the 
Separate.Mono model alone (99, 181, and 257 for hardness 50, 100 and 250 respectively 
as extracted from the Appendix).  The model averaged standard errors are larger than the 
standard errors for any model to account for this model uncertainty. 
 
In some cases, no estimates of the BMD are provided (e.g. estimates of LCxx values at 
hardness levels 50 and 100 for the mortality studies of EC-Chinook eggs). Examination 
of the actual data shows that observed mortality was so low, that no model was able to 
provide sensible estimates of the LCxx values at lower hardness levels. 
 
In some cases, model averaged estimates have very large standard errors. For example, 
the model averaged LC10 for EC-Fathead Minnows mortality at hardness 250 is 3200 
mg/L with a SE=16000! In this case, the observed mortality in the best fitting model at 
the highest dose was very small, based on only a few organisms, and the extrapolation is 
not very reliable. 
 
Conversely, the observed standard errors may appear to be very small (e.g. estimate of 
LC10 for EC-Fathead Minnows mortality at hardness 100 is 1400 (SE 7). In this case, the 
best fitting model is the 4-parameter logistic hormesis model (see fit below) 



 
 
The observed data has such a steep decline from increasing in doses up to 1000, then to 0 
in higher doses that the curve fit must be very sharp.  
 
Interpretation of the results then follows a two-step process. First, examine the model 
selection tables (Table 2) to examine the support for models with a common dose-
response curve across all hardness levels vs. models with a separate dose-response curve 
by hardness level. The majority of these tables indicate that there is strong evidence that 
the dose-response curve varies by hardness. Next consider the model averaged estimated 
LCxx/ICxx values for each hardness level to see if they differ enough to be biologically 
important. If the difference in the LCxx values are small across the hardness ranges, then 
a common LCxx value might be entertained even if the separate model is selected.  
 
 



6. Discussion 
 
As outlined by Wheeler and Bailer (2005), model averaging provides a way to 
incorporate model uncertainty into the risk assessment process. Simply selecting the 
single “best” model may give a false sense of precision (i.e. single model reported 
standard errors typically underreport the true uncertainty in the BMD).  
 
Model averaging is not a panacea. Estimates of BMDs within the observed range of the 
doses in a study will typically be very similar across a wide range of models as all of the 
models must come “close” to the observed data. However, extrapolations that are far 
outside the observed dose ranges of the data will typically be very sensitive to the choice 
of models. 
 
It would be possible to extend the above modeling approach by incorporating both the 
effects of hardness and sulphate upon the observed responses and deriving a single dose-
response curve that incorporates both hardness and sulphate levels. The advantage of this 
more complex approach is that a (model averaged) prediction equation for the BMD can 
be established as a function of any hardness rather than relying on the observed 
hardnesses in the study. Unfortunately, in most cases, only a few levels of hardness were 
studies and so the models for the effect of hardness must be very simple (e.g. linear) and 
extrapolations outside the observed ranges of hardness will be unwise. 
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Figure 1a. The Probit, Separate, SNR, RE model as fit to the EC-RT mortality data. 



 
Figure 1b. The Probit, Separate, CNR, RE model as fit to the EC-RT mortality data. 
 



 
Figure 1c. The Probit, SeparateMono, CNR, RE model as fit to the EC-RT mortality data. 



 

 
Figure 1d. The Logit, Separate, SNR, RE model as fit to the EC-RT mortality data. 



 
Figure 1e. The Logit, Separate, CNR, RE model as fit to the EC-RT mortality data. 



 

 
Figure 1f. The Logit, SeparateMono, CNR, RE model as fit to the EC-RT mortality data. 



 

 
Figure 1g. The Probit, Common, CNR, RE model fit to the EC-RT mortality data. 
 



 
Figure 1h. The Logit, Common, CNR, RE model fit to the EC-RT mortality data. 
 



 
Figure 2a. An illustration of a model fit (Probit, Separate, NoNR, NoRE) where the effect 
of hardness is not monotonic. This is the fit for the NA-TA-mortality data. The dose 
response curve at hardness 15 leads to a lower apparent mortality than the same sulphate 
dose at hardness 80. The Probit, Separate, NoNR, NoRE model does not enforce 
“protective” effects of hardness. 
 



 
Figure 2b. The Probit, SeparateMono, NoNR, NoRE model fit to the NA-TA-mortality 
data. 
 



 
Figure 2c. The Probit, Common LC50, NoNR, NoRe model fit to the NA-TA-mortality 
data. 
 



 
 
Table 1. Summary of sampling protocols for the experiments conducted. 

Environment Canada Studies 
Aquatic species Response Sampling protocol at each combination of water 

hardness and sulphate levels 
Rainbow Trout Survival of eggs to 

21 days 
Triplicate batches of 30 eggs were incubated and 
the number of mortalities from each batch was 
recorded. 

Chinook Survival of eggs to 
28 days. 

Triplicate batches of 30 eggs were incubated and 
the number of mortalities from each batch was 
recorded. 

Hyalella Survival and 
growth of 
organisms to 28 
days. 

Quintuplicate batches (except for 10 batches in 
the case of  control doses of sulphate in soft 
water) of 15 Hyalella were incubated and the 
number of mortalities from each batch was 
recorded. The mean weight of each batch of the 
organisms at the end of the experiment was 
measured. 

Mussels Survival and 
growth of 
organisms to 28 
days. 

Triplicate batches of 3, 3, or 4 mussels were 
incubated and the number of mortalities in each 
batch was recorded. Wet weight and the 
beginning and end of the experiment was 
measured. 

Bullfrog 
tadpoles 

Survival and 
growth to 28 days. 

Triplicate batches of 5 tadpoles were incubated 
and the number of mortalities in each batch was 
recorded. The change in weight over the 28 days 
was also recorded. 

Fat head 
minnows 

Survival and 
growth to 7 days. 

Quadruplicate batches of 10 minnows were 
incubated and the number of mortalities in each 
batch was recorded. The final mean weight in 
each batch was also recorded. 

Lemna Frond growth and 
increase in weight 

Quadruplicate replicates of Lemna were 
incubated and the number of new fronds and 
final weight were recorded for each surviving 
organism. 

Nautilus Studies 
Daphnia Survival for 6 days 

and reproduction 
10 individual organisms were incubated and the 
status (dead/alive) and reproductive output was 
recorded.  

Rotifer Reproduction after 
49 hours. 

8 individual organisms were incubated and the 
population growth was recorded. 

Fat head 
minnows 

Survival and 
growth to 7 days. 

Triplicate batches of 10 minnows were incubated 
and the number of mortalities was recorded. The 
final mean weight in each batch was also 
recorded. 



Bullfrog 
tadpoles 

Survival and 
growth to 28 days. 

Triplicate batches of 5 tadpoles were incubated 
and the number of mortalities in each batch was 
recorded. The final biomass was also recorded. 

Algae Cell yield Four to 10 batches of 10,000 cells were 
incubated and the percentage increase in the 
number of cells was recorded. 
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Table 2-EC-CH-mortality. Summary of AIC model selection for Chinook, mortality conducted by EC 
 

Group Response Species Model Name 
# 

Parameters Number data values Log likelihood AICc AIC∆  AICc weight 

EC mortality CH Logit, Separate, NoNR, NoRE 6 54 -73.2 160.1 0.0 0.66 

EC mortality CH Probit, Separate, NoNR, NoRE 6 54 -73.8 161.5 1.4 0.34 

EC mortality CH Logit, Common, NoNR, NoRE 2 54 -91.4 187.1 27.0 0.00 

EC mortality CH Probit, Common, NoNR, NoRE 2 54 -91.8 187.9 27.8 0.00 

EC mortality CH Logit, SeparateMono, NoNR, 
NoRE 

4 54 -91.4 191.7 31.6 0.00 

EC mortality CH Probit, SeparateMono, NoNR, 
NoRE 

4 54 -91.8 192.4 32.3 0.00 
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Table 2-EC-FH-mortality. Summary of AIC model selection for Fathead Minnow, mortality conducted by EC 
 

Group Response Species Model Name 
# 

 Parameters 
Number data 

values 
Log 

likelihood AICc AIC∆  
AICc 

weight 

EC mortality FH Logit, Separate, NoNR, NoRE 6 72 -72.9 159.1 0.0 0.94 

EC mortality FH Logit, SeparateMono, NoNR, 
NoRE 

4 72 -78.0 164.7 5.6 0.06 

EC mortality FH Probit, Separate, NoNR, NoRE 6 72 -83.2 179.6 20.5 0.00 

EC mortality FH Probit, SeparateMono, NoNR, 
NoRE 

4 72 -88.4 185.4 26.3 0.00 

EC mortality FH Logit, Common, NoNR, NoRE 2 72 -189.5 383.2 224.1 0.00 

EC mortality FH Probit, Common, NoNR, NoRE 2 72 -195.4 395.0 236.0 0.00 
NoNR=no natural response; NoRE=no random effects 
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Table 2-EC-FH-weight. Summary of AIC model selection for Fathead Minnow growth conducted by EC. 

Group Response Species Model Name # Parameters Number data values Log likelihood AICc AIC∆  AICc weight 

EC weight FH LH4p.Separate 15 66 48.2 -56.8 0.0 1.00 

EC weight FH IR.Separate 11 66 20.7 -14.6 42.2 0.00 

EC weight FH LL3p.Separate 12 66 20.2 -10.5 46.3 0.00 

EC weight FH LL3p.Mono 6 66 2.8 7.7 64.5 0.00 

EC weight FH IR.Common 4 66 -37.8 84.2 141.0 0.00 

EC weight FH LL3p.Common 4 66 -39.9 88.5 145.3 0.00 

EC weight FH LH4p.Common 5 66 -39.3 89.6 146.4 0.00 
LH4p=4-parameter logistic hormesis models; LL3p = 3-parameter log-logistic model; IR=isotonic regression model. 
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Table EC-HY-mortality. Summary of AIC model selection for Hyalella, mortality conducted by EC 
 

Group Response Species Model Name 
# 

Parameters 
Number data 

values 
Log 

likelihood AICc AIC∆  
AICc 

weight 

EC mortality HY Probit, Separate*, SNR, NoRE 7 100 -142.4 300.0 0.0 0.55 

EC mortality HY Logit, Separate*, SNR, NoRE 7 100 -142.6 300.4 0.4 0.45 

EC mortality HY Probit, Common, CNR, NoRE 3 100 -153.9 314.0 14.0 0.00 

EC mortality HY Logit, Common, CNR, NoRE 3 100 -156.6 319.5 19.5 0.00 

EC mortality HY Probit, SeparateMono, CNR, 
NoRE 

5 100 -160.2 331.1 31.1 0.00 

EC mortality HY Logit, SeparateMono, CNR, 
NoRE 

5 100 -160.2 331.1 31.1 0.00 

CNR=common natural response; SNR=separate natural response; NoRE=no random effects. No dose-response curve as a function of 
sulphates could be fit for the medium hardness, and so only a natural response was modeled at this hardness. 
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Table 2-EC-HY-weight. Summary of AIC model selection for Hyalella weight conducted byEC. 

 
Group Response Species Model Name # Parameters Number data values Log likelihood AICc AIC∆  AICc weight 

EC weight HY IR.Separate 13 100 33.9 -37.6 0.0 0.69 

EC weight HY LL3p.Common 4 100 21.6 -34.7 2.9 0.16 

EC weight HY LH4p.Common 5 100 21.6 -32.5 5.1 0.05 

EC weight HY IR.Common 7 100 23.6 -32.0 5.6 0.04 

EC weight HY LH4p.Separate 15 100 33.6 -31.4 6.2 0.03 

EC weight HY LL3p.Mono 6 100 21.6 -30.2 7.4 0.02 

EC weight HY LL3p.Separate 12 100 27.6 -27.6 10.0 0.00 
LH4p=4-parameter logistic hormesis models; LL3p = 3-parameter log-logistic model; IR=isotonic regression model. 
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Table 2-EC-LM-frond. Summary of AIC model selection for Lemna, frond growth conducted by EC. 
 

Group Response Species Model Name # Parameters Number data values Log likelihood AICc AIC∆  AICc weight 

EC frond LM IR.Common 4 71 -335.0 678.5 0.0 0.62 

EC frond LM LH4p.Common 5 71 -334.6 680.1 1.6 0.28 

EC frond LM LH4p.Separate 15 71 -322.2 683.1 4.6 0.06 

EC frond LM LL3p.Common 4 71 -338.4 685.4 6.9 0.02 

EC frond LM LL3p.Mono 6 71 -336.5 686.3 7.8 0.01 

EC frond LM IR.Separate 11 71 -333.2 692.9 14.4 0.00 

EC frond LM LL3p.Separate 12 71 -335.5 700.4 21.9 0.00 
LH4p=4-parameter logistic hormesis models; LL3p = 3-parameter log-logistic model; IR=isotonic regression model. 
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Table 2-EC-LM-weight. Summary of AIC model selection for Lemna final weight conducted by EC 

 
Group Response Species Model Name # Parameters Number data values Log likelihood AICc AIC∆  AICc weight 

EC weight LM IR.Common 3 71 -190.7 387.8 0.0 0.66 

EC weight LM LL3p.Common 4 71 -190.8 390.1 2.3 0.21 

EC weight LM IR.Separate 6 71 -189.1 391.4 3.6 0.11 

EC weight LM LL3p.Mono 6 71 -190.8 394.8 7.0 0.02 

EC weight LM LL3p.Separate 12 71 -189.1 407.5 19.7 0.00 
LH4p=4-parameter logistic hormesis models; LL3p = 3-parameter log-logistic model; IR=isotonic regression model. 
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Table 2 EC-MY-mortality. Summary of AIC model selection for Mussels mortality conducted by EC 

 

Group Response Species Model Name 
# 

Parameters 
Number data 

values 
Log 

likelihood AICc AIC∆  
AICc 

weight 

EC mortality MY Logit, SeparateMono, NoNR, 
NoRE 

4 54 -44.8 98.5 0.0 0.32 

EC mortality MY Probit, SeparateMono, NoNR, 
NoRE 

4 54 -45.3 99.5 1.0 0.20 

EC mortality MY Logit, Separate, NoNR, NoRE 6 54 -43.3 100.4 1.9 0.12 

EC mortality MY Logit, Common, CNR, NoRE 3 54 -47.0 100.6 2.1 0.12 

EC mortality MY Probit, Separate, NoNR, NoRE 6 54 -43.7 101.2 2.7 0.08 

EC mortality MY Logit, Common, NoNR, NoRE 2 54 -48.9 101.9 3.4 0.06 

EC mortality MY Probit, Common, NoNR, NoRE 2 54 -49.0 102.3 3.8 0.05 

EC mortality MY Logit, Separate, SNR, NoRE 9 54 -40.3 102.8 4.3 0.04 

EC mortality MY Probit, Separate, SNR, NoRE 9 54 -41.5 105.0 6.5 0.01 

EC mortality MY Probit, Common, CNR, NoRE 3 54 -51.8 110.2 11.7 0.00 
NoNR=no natural response; NoRE=no random effects 
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Table 2-EC-RT-mortality. Summary of AIC model selection for Rainbow Trout mortality conducted by EC. 

 

Group Response Species Model NameS 
# 

Parameters 
Number data 

values 
Log 

likelihood AICc AIC∆  
AICc 

weight 

EC mortality RT Probit, Common, CNR, RE 4 54 -168.1 345.1 0.0 0.27 

EC mortality RT Logit, Common, CNR, RE 4 54 -168.2 345.2 0.1 0.26 

EC mortality RT Probit, SeparateMono, CNR, RE 6 54 -165.9 345.5 0.4 0.22 

EC mortality RT Logit, SeparateMono, CNR, RE 6 54 -165.9 345.6 0.5 0.22 

EC mortality RT Probit, Separate, CNR, RE 8 54 -165.8 350.7 5.6 0.02 

EC mortality RT Logit, Separate, CNR, RE 8 54 -165.8 350.8 5.7 0.02 

EC mortality RT Logit, Separate, SNR, RE 10 54 -165.5 356.2 11.1 0.00 

EC mortality RT Probit, Separate, SNR, RE 10 54 -165.6 356.3 11.2 0.00 
SNR=separate natural response; CNR=common natural response; RE=random effects 
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Table 2-NA-AL-cell. Summary of AIC model selection for Algae cell increases conducted by NA. 
 

Group Response Species Model Name # Parameters Number data values Log likelihood AICc AIC∆  AICc weight 

NA cell.incre AL LL3p.Separate 12 80 -329.8 688.2 0.0 0.96 

NA cell.incre AL LL3p.Mono 6 80 -340.8 694.8 6.6 0.04 

NA cell.incre AL LL3p.Common 4 80 -353.7 715.9 27.7 0.00 

NA cell.incre AL IR.Common 15 80 -346.6 730.6 42.4 0.00 

NA cell.incre AL IR.Separate 25 80 -329.4 732.9 44.7 0.00 
LH4p=4-parameter logistic hormesis models; LL3p = 3-parameter log-logistic model; IR=isotonic regression model. 
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Table 2-NA-DA-mortality. Summary of AIC model selection for Daphnia mortality conducted by NA. 
 

Group Response Species Model Name 
# 

Parameters 
Number data 

values 
Log 

likelihood AICc AIC∆  
AICc 

weight 

NA mortality DA Logit, SeparateMono, NoNR, 
NoRE 

5 320 -71.0 152.3 0.0 0.62 

NA mortality DA Logit, Separate, NoNR, NoRE 8 320 -68.5 153.5 1.2 0.33 

NA mortality DA Probit, Separate, NoNR, NoRE 8 320 -71.1 158.6 6.4 0.03 

NA mortality DA Probit, SeparateMono, NoNR, 
NoRE 

5 320 -74.9 160.0 7.7 0.01 

NA mortality DA Logit, Common, NoNR, NoRE 2 320 -79.2 162.4 10.1 0.00 

NA mortality DA Probit, Common, NoNR, NoRE 2 320 -84.1 172.3 20.0 0.00 
NoNR=no natural response; NoRE=no random effects 
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Table 2-NA-DA-repro. Summary of model selection for Daphnia reproduction conducted by NA. 

 
Group Response Species Model Name # Parameters Number data values Log likelihood AICc AIC∆  AICc weight 

NA repro DA LL3p.Separate 16 318 -1349.3 2732.3 0.0 1.00 

NA repro DA LL3p.Mono 7 318 -1406.5 2827.4 95.1 0.00 

NA repro DA LL3p.Common 4 318 -1458.6 2925.3 193.0 0.00 

NA repro DA IR.Separate 113 318 -1337.4 3027.2 294.9 0.00 

NA repro DA IR.Common 88 318 -1445.4 3135.2 402.9 0.00 
LH4p=4-parameter logistic hormesis models; LL3p = 3-parameter log-logistic model; IR=isotonic regression model. 
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Table 2-NA-FH-mortality. Summary of model selection for Fathead Minnow mortality conducted by NA. 
 

Group Response Species Model Name 
# 

Parameters 
Number data 

values 
Log 

likelihood AICc AIC∆  
AICc 

weight 

NA mortality FH Logit, SeparateMono, NoNR, 
NoRE 

5 96 -130.5 271.7 0.0 0.64 

NA mortality FH Logit, Separate, NoNR, NoRE 8 96 -127.6 272.9 1.2 0.36 

NA mortality FH Probit, Separate, NoNR, NoRE 8 96 -135.9 289.5 17.8 0.00 

NA mortality FH Probit, SeparateMono, NoNR, 
NoRE 

5 96 -140.1 290.8 19.1 0.00 

NA mortality FH Logit, Common, NoNR, NoRE 2 96 -179.7 363.5 91.8 0.00 

NA mortality FH Probit, Common, NoNR, NoRE 2 96 -187.6 379.3 107.6 0.00 
NoNR=no natural response; NoRE=no random effects 
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Table 2-NA-FH-weight. Summary of AIC model selection for Fathead Minnow weight conducted by NA. 

 
Group Response Species Model Name # Parameters Number data values Log likelihood AICc AIC∆  AICc weight 

NA weight FH LL3p.Mono 7 91 33.3 -51.2 0.0 0.55 

NA weight FH LL3p.Separate 16 91 45.1 -50.8 0.4 0.45 

NA weight FH IR.Separate 27 91 52.1 -26.2 25.0 0.00 

NA weight FH LL3p.Common 4 91 -1.1 10.6 61.8 0.00 

NA weight FH IR.Common 10 91 4.3 14.2 65.4 0.00 
LH4p=4-parameter logistic hormesis models; LL3p = 3-parameter log-logistic model; IR=isotonic regression model. 

 



 

 
 

51 Table 2-NA-RO-reproduction. Summary of AIC model selection for Rotifers reproduction conducted by NA. 
 

Group Response Species Model Name # Parameters Number data values Log likelihood AICc AIC∆  AICc weight 

NA growth RO IR.Separate 19 140 -130.1 304.4 0.0 0.79 

NA growth RO LL3p.Separate 16 140 -135.8 308.0 3.6 0.13 

NA growth RO IR.Common 8 140 -146.5 310.2 5.8 0.04 

NA growth RO LL3p.Mono 7 140 -148.1 311.1 6.7 0.03 

NA growth RO LL3p.Common 4 140 -152.6 313.4 9.0 0.01 
LH4p=4-parameter logistic hormesis models; LL3p = 3-parameter log-logistic model; IR=isotonic regression model. 
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Table 2-NA-TA-mortality. Summary of model selection for Tadpole mortality conducted by NA. 

Group Response Species Model Name 
# 

Parameters 
Number data 

values 
Log 

likelihood AICc AIC∆  
AICc 

weight 

NA mortality TA Logit, Separate, NoNR, NoRE 4 30 -29.3 68.3 0.0 0.43 

NA mortality TA Probit, Separate, NoNR, NoRE 4 30 -29.9 69.3 1.1 0.25 

NA mortality TA Logit, Common, NoNR, NoRE 2 30 -32.8 70.0 1.7 0.18 

NA mortality TA Probit, Common, NoNR, NoRE 2 30 -33.9 72.2 3.9 0.06 

NA mortality TA Logit, SeparateMono, NoNR, 
NoRE 

3 30 -32.8 72.5 4.2 0.05 

NA mortality TA Probit, SeparateMono, NoNR, 
NoRE 

3 30 -33.9 74.6 6.4 0.02 

LH4p=4-parameter logistic hormesis models; LL3p = 3-parameter log-logistic model; IR=isotonic regression model. 
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Table 2-NA-TA-weight. Summary of model selection for Tadpole weight gain conducted by NA. 

 
Group Response Species Model Name # Parameters Number data values Log likelihood AICc AIC∆  AICc weight 

NA weight TA IR.Separate 7 30 -140.8 300.7 0.0 0.71 

NA weight TA LL3p.Common 4 30 -147.4 304.4 3.7 0.11 

NA weight TA LL3p.Separate 8 30 -140.8 304.5 3.8 0.11 

NA weight TA LH4p.Common 5 30 -147.4 307.3 6.6 0.03 

NA weight TA LL3p.Mono 5 30 -147.4 307.3 6.6 0.03 

NA weight TA IR.Common 6 30 -146.5 308.7 8.0 0.01 

NA weight TA LH4p.Separate 10 30 -139.3 310.2 9.5 0.01 
LH4p=4-parameter logistic hormesis models; LL3p = 3-parameter log-logistic model; IR=isotonic regression model. 
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Table 3. Summary of model averaged LCxx/ICxx values. Estimates that are far outside the range of the observed doses are not reported. 

 

BMD 

LC/IC 10 LC/IC 25 LC/IC 50 

MA est MA se MA LCL MA UCL MA est MA se MA LCL MA UCL MA est MA se MA LCL MA UCL 

Group Species Response Hardness 

. . . . . . . . . . . . EC CH mortality 50 

100 . . . . . . . . . . . . 
250 1287 147 1028 1610 2521 428 1807 3517 . . . . 

FH mortality 50 379 56 283 506 598 62 489 732 946 80 801 1116 
100 1120 110 924 1357 1436 101 1252 1649 1843 118 1626 2089 
250 3092 234 2666 3586 3085 86 2921 3259 3178 90 3007 3358 

weight 50 931 159 666 1301 1004 136 771 1308 1111 104 924 1336 
100 1397 7 1383 1411 1408 7 1394 1422 1428 7 1414 1442 
250 2969 12 2946 2992 2999 12 2975 3023 3053 12 3030 3077 

HY mortality 50 1430 247 1020 2005 2178 284 1687 2812 3404 824 2118 5471 
100 . . . . . . . . . . . . 
250 . . . . . . . . . . . . 

weight 50 1170 434 566 2420 1739 423 1080 2801 . . . . 
100 682 323 269 1727 1030 271 616 1724 . . . . 
250 437 245 145 1314 1198 369 656 2191 1929 385 1305 2852 

LM frond 50 2143 3228 112 41052 . . . . . . . . 
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Table 3. Summary of model averaged LCxx/ICxx values. Estimates that are far outside the range of the observed doses are not reported. 

 

BMD 

LC/IC 10 LC/IC 25 LC/IC 50 

MA est MA se MA LCL MA UCL MA est MA se MA LCL MA UCL MA est MA se MA LCL MA UCL 

100 2243 3290 127 39740 . . . . . . . . 
250 2314 3258 147 36545 . . . . . . . . 

weight 50 . . . . . . . . . . . . 
100 . . . . . . . . . . . . 
250 . . . . . . . . . . . . 

MY mortality 50 139 175 12 1640 730 569 158 3360 . . . . 
100 . . . . . . . . . . . . 
250 676 798 67 6842 . . . . . . . . 

RT mortality 50 123 62 45 333 322 126 149 694 889 353 408 1936 
100 162 74 66 395 427 131 233 780 1189 370 645 2189 
250 191 97 71 517 502 190 239 1055 1392 521 668 2898 
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Table 3. Summary of model averaged LCxx/ICxx values. Estimates that are far outside the range of the observed doses are not reported. 

 

BMD 

LC/IC 10 LC/IC 25 LC/IC 50 

MA est MA se MA LCL MA UCL MA est MA se MA LCL MA UCL MA est MA se MA LCL MA UCL 

NA AL cell.incre 10 441 182 196 988 696 184 415 1168 1101 165 821 1477 

80 2487 100 2300 2690 2615 60 2500 2736 2749 25 2701 2798 

320 2548 43 2464 2634 2660 21 2618 2702 2777 17 2744 2810 

DA mortality 40 402 75 279 581 570 89 419 775 809 115 612 1071 

80 593 133 382 920 871 145 628 1208 1282 188 962 1708 

160 857 160 594 1237 1145 159 872 1504 1531 198 1189 1972 

320 816 122 609 1095 1135 144 884 1456 1580 198 1236 2019 

repro 40 158 217 11 2331 272 208 61 1215 468 183 217 1009 

80 708 249 356 1409 890 196 578 1369 1119 117 911 1374 

160 1184 9 1166 1203 1223 5 1213 1233 1263 5 1253 1273 

320 253 202 53 1210 425 235 144 1257 717 270 343 1498 

FH mortality 40 352 68 241 515 743 108 558 988 1565 212 1199 2041 

80 464 91 316 681 1043 151 786 1384 2344 349 1751 3137 

160 1244 240 853 1815 2549 383 1898 3423 5222 955 3649 7472 

320 2516 623 1548 4089 6376 2552 2910 13972 . . . . 

weight 40 600 168 346 1038 869 155 612 1233 1260 162 979 1621 
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Table 3. Summary of model averaged LCxx/ICxx values. Estimates that are far outside the range of the observed doses are not reported. 

 

BMD 

LC/IC 10 LC/IC 25 LC/IC 50 

MA est MA se MA LCL MA UCL MA est MA se MA LCL MA UCL MA est MA se MA LCL MA UCL 

80 1330 243 930 1904 1845 246 1421 2396 2559 310 2018 3244 

160 2102 561 1246 3548 2809 536 1932 4083 3752 756 2528 5568 

320 . . . . 716 4705 0 2.795E8 4304 2196 1584 11698 

RO growth 40 733 1074 41 12955 995 260 597 1660 1211 289 759 1933 

80 352 309 63 1969 1799 603 933 3469 2191 1072 840 5717 

160 724 278 341 1536 1311 1226 209 8201 . . . . 

320 848 677 177 4059 1071 697 299 3837 . . . . 

TA mortality 15 587 249 256 1346 1068 275 645 1769 1986 500 1212 3255 

80 242 121 90 646 607 191 328 1124 1583 507 845 2964 

weight 15 1246 1397 138 11213 1441 1487 191 10881 1828 44 1744 1917 

80 1276 419 671 2429 1385 337 860 2231 1577 231 1184 2100 
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Table 4. Example of model averaging for estimates of LC10 for Rainbow Trout at hardness 50 conducted by EC. 

Report Response 
Specie
s Model Estimate 

Standard 
Error AICc 

Delta 
AICc 

AIC 
weight 

Model 
Average 
Estimate 

Model 
Average 

SE 

95% 
ci 

lower 
bound 

95% 
ci 

upper 
bound 

EC mortality RT Probit, Common, CNR, RE 5.03 0.42 345.1 0.0 0.27 . . . . 

EC mortality RT Logit, Common, CNR, RE 4.98 0.43 345.2 0.1 0.26 . . . . 

EC mortality RT Probit, SeparateMono, CNR, 
RE 

4.60 0.49 345.5 0.4 0.22 . . . . 

EC mortality RT Logit, SeparateMono, CNR, 
RE 

4.56 0.51 345.6 0.5 0.22 . . . . 

EC mortality RT Probit, Separate, CNR, RE 4.73 0.55 350.7 5.6 0.02 . . . . 

EC mortality RT Logit, Separate, CNR, RE 4.70 0.57 350.8 5.7 0.02 . . . . 

EC mortality RT Logit, Separate, SNR, RE 4.85 0.60 356.2 11.1 0.00 . . . . 

EC mortality RT Probit, Separate, SNR, RE 4.84 0.58 356.3 11.2 0.00 . . . . 

EC mortality RT 99-Model Averaged . . . . . 4.81 0.51 3.81 5.81 

EC mortality RT 99-Model Averaged on 
antilog 

. . . . . 122.73 62.49 45.24 332.9
4 

 
 


	Summary
	1. Introduction
	2. Studies used.
	3. Theory of Model averaging
	4. Models used.
	4.1 Mortality Responses.
	4.2 Continuous responses:

	5. Results.
	6. Discussion

