TFL 39, MP #8

Timber Supply Analysis

Information Package

October 1999

Authorship: P.J. Kofoed, RPF

Silvicultural Assumptions and Yield Projections: N.J. Smith, RPF

Table of Contents

1.0		. 1
2.0	OPTIONS	. 1
2.1	NEW FOREST MANAGEMENT STRATEGY (THE FOREST PROJECT)	
2.2	Non-Timber Resource	
2.3	TIMBER HARVESTING LANDBASE	
2.4	MORATORIUM AND DEFERRED AREAS	
2.5 2.6	SILVICULTURE	
2.7	SITE PRODUCTIVITY (SITE INDEX)	
2.8	MINIMUM HARVEST AGES	
2.9	HARVEST FLOW RULES	
3.0	MODEL	
4.0	INVENTORY ORGANIZATION	. 5
		-
4.1	WORKING CIRCLES	
4.2 4.3	FOREST COVER DATA AND REGENERATION MODELS	
5.0	DESCRIPTION OF LANDBASE	
5.1	CURRENT TIMBER INVENTORY	
5.1.1	The Mature Inventory	
5.1.2	Inventory of the New Forest	
5.1.3	Not Satisfactory Restocked (NSR) Inventory	
5.2	INVENTORY CHANGES SINCE THE MP #7 TIMBER SUPPLY ANALYSIS (JULY 1994) DETERMINATION OF THE TIMBER HARVESTING LANDBASE—THE BASE OPTION	. 8
5.3	(OPTION 1)	0
5.3.1	Mature Volume Adjustments	
5.3.2	Block 1, 30-Year Reserve	
5.3.3	Non-Forest and Non-productive Forest Areas	
5.3.4	Low Site	
5.3.5	Physically Inoperable Areas	
5.3.6	Sensitive Sites and Non-Timber Resources (NTRs)	12
5.3.7	Deciduous	
5.3.8	Economic Operability	
5.3.9	Non-Spatial Allowances	
5.4	SUMMARY OF BASE OPTION ADJUSTMENTS	
5.5	LANDBASE OPTIONS	
5.5.1 5.5.2	Variations to Forest Project Assumptions Mature Timber Classified as Currently Uneconomic	
5.5.2 5.5.3	Landbase Sensitivity	
5.5.4	Moratorium and Deferred Areas	
5.6	ADJUSTMENTS TO DETERMINE THE LONG-TERM LANDBASE	
6.0	SILVICULTURAL ASSUMPTIONS AND YIELD PROJECTION	
6.1	SILVICULTURAL SYSTEM SCENARIOS	
6.2	FOREST REGENERATION MODELS	
6.2.1	Yield Table Sets	
6.2.2	Regeneration Allocation Framework	
6.2.3	Species Succession	
6.3	YIELD ADJUSTMENTS.	
6.3.1	Utilization Levels	37

6.3.2	Regeneration Delays	38
6.3.3	Growth Impacts of Brush Competition	
6.3.4	Tree Improvement	
6.3.5	Non-recoverable Losses	
6.3.6	Operational Adjustment Factors	39
6.4	APPLICATION OF YIELD PROJECTION TO THE INVENTORY	
6.4.1	Mature	
6.4.2	Cruised Second Growth	
6.4.3	Uncruised Second Growth and All Future Stands	
6.5	SITE INDEX AND EARLY HEIGHT GROWTH	
6.5.1	Site Index Assignment	
6.5.2	Early Height Growth of Western Hemlock	
6.6	MOF ADJUSTMENTS TO YIELD	
6.6.1	Uncruised Stand/Regeneration Model Adjustment	
6.6.2	Further Yield Adjustments at Older Ages	
6.7	EFFECTS OF FOREST PROJECT ON YIELDS	
6.8	EXAMPLE YIELD ADJUSTMENTS—NO GENETICS	
6.9	INTENSIVE FOREST MANAGEMENT SCENARIOS	43
7.0	HARVESTING ASSUMPTIONS	43
7.1	ANALYSIS PERIOD	43
7.2	HARVEST FLOW CONSTRAINTS	
7.3	MINIMUM MERCHANTABILITY STANDARDS	
7.3.1	Second-growth Harvest Strategy	
7.3.2	Minimum Harvest Age Assumptions	
7.4	INITIAL HARVEST LEVELS	45
7.4 8.0	INITIAL HARVEST LEVELS INTEGRATED RESOURCE MANAGEMENT	
8.0	INTEGRATED RESOURCE MANAGEMENT	45
8.0 8.1	INTEGRATED RESOURCE MANAGEMENT	45 45
8.0 8.1 <i>8.1.1</i>	INTEGRATED RESOURCE MANAGEMENT STATUS OF NON-TIMBER RESOURCE INVENTORIES Sensitive Soils	45 45 46
8.0 8.1 8.1.1 8.1.2	INTEGRATED RESOURCE MANAGEMENT STATUS OF NON-TIMBER RESOURCE INVENTORIES Sensitive Soils Riparian Areas	45 45 46 47
8.0 8.1 8.1.1 8.1.2 8.1.3	INTEGRATED RESOURCE MANAGEMENT	45 45 46 47 49
8.0 8.1 8.1.1 8.1.2 8.1.3 8.1.4	INTEGRATED RESOURCE MANAGEMENT	45 46 47 49 51
8.0 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5	INTEGRATED RESOURCE MANAGEMENT STATUS OF NON-TIMBER RESOURCE INVENTORIES Sensitive Soils Riparian Areas Recreation. Wildlife Cultural Heritage Resources.	45 46 47 49 51 51
8.0 8.1 8.1.1 8.1.2 8.1.3 8.1.4	INTEGRATED RESOURCE MANAGEMENT	45 46 47 49 51 51
8.0 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5	INTEGRATED RESOURCE MANAGEMENT STATUS OF NON-TIMBER RESOURCE INVENTORIES Sensitive Soils Riparian Areas Recreation Wildlife Cultural Heritage Resources REDUCTIONS TO THE TIMBER HARVESTING LANDBASE FOR SENSITIVE SITES AND NO	45 46 47 49 51 51 N- 52
8.0 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.2	INTEGRATED RESOURCE MANAGEMENT STATUS OF NON-TIMBER RESOURCE INVENTORIES Sensitive Soils Riparian Areas Recreation Wildlife Cultural Heritage Resources REDUCTIONS TO THE TIMBER HARVESTING LANDBASE FOR SENSITIVE SITES AND NO TIMBER RESOURCE VALUES FOREST COVER REQUIREMENTS	45 46 47 49 51 51 N- 52 55
8.0 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.2 8.3	INTEGRATED RESOURCE MANAGEMENT STATUS OF NON-TIMBER RESOURCE INVENTORIES Sensitive Soils Riparian Areas Recreation Wildlife Cultural Heritage Resources REDUCTIONS TO THE TIMBER HARVESTING LANDBASE FOR SENSITIVE SITES AND NO TIMBER RESOURCE VALUES FOREST COVER REQUIREMENTS Adjacent Cutblocks and Greenup	45 46 47 49 51 51 55 55
8.0 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.2 8.3 8.3.1	INTEGRATED RESOURCE MANAGEMENT STATUS OF NON-TIMBER RESOURCE INVENTORIES Sensitive Soils Riparian Areas Recreation Wildlife Cultural Heritage Resources REDUCTIONS TO THE TIMBER HARVESTING LANDBASE FOR SENSITIVE SITES AND NO TIMBER RESOURCE VALUES FOREST COVER REQUIREMENTS Adjacent Cutblocks and Greenup Visual Landscape	45 45 46 47 49 51 51 N- 52 55 55 55
8.0 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.2 8.3 8.3.1 8.3.2	INTEGRATED RESOURCE MANAGEMENT STATUS OF NON-TIMBER RESOURCE INVENTORIES Sensitive Soils. Riparian Areas Recreation. Wildlife. Cultural Heritage Resources. REDUCTIONS TO THE TIMBER HARVESTING LANDBASE FOR SENSITIVE SITES AND NO TIMBER RESOURCE VALUES. FOREST COVER REQUIREMENTS Adjacent Cutblocks and Greenup. Visual Landscape. Avalanche Areas. Community Watersheds.	45 45 46 47 49 51 51 55 55 55 55 57
8.0 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.2 8.3 8.3.1 8.3.2 8.3.3	INTEGRATED RESOURCE MANAGEMENT STATUS OF NON-TIMBER RESOURCE INVENTORIES Sensitive Soils. Riparian Areas Recreation. Wildlife. Cultural Heritage Resources. REDUCTIONS TO THE TIMBER HARVESTING LANDBASE FOR SENSITIVE SITES AND NO TIMBER RESOURCE VALUES. FOREST COVER REQUIREMENTS Adjacent Cutblocks and Greenup. Visual Landscape. Avalanche Areas	45 45 46 47 49 51 51 55 55 55 55 57
8.0 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.2 8.3 8.3.1 8.3.2 8.3.3 8.3.4	INTEGRATED RESOURCE MANAGEMENT STATUS OF NON-TIMBER RESOURCE INVENTORIES Sensitive Soils. Riparian Areas Recreation. Wildlife. Cultural Heritage Resources. REDUCTIONS TO THE TIMBER HARVESTING LANDBASE FOR SENSITIVE SITES AND NO TIMBER RESOURCE VALUES. FOREST COVER REQUIREMENTS Adjacent Cutblocks and Greenup. Visual Landscape. Avalanche Areas. Community Watersheds.	45 46 47 49 51 55 55 55 55 57 57
8.0 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.2 8.3 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5	INTEGRATED RESOURCE MANAGEMENT STATUS OF NON-TIMBER RESOURCE INVENTORIES Sensitive Soils Riparian Areas Recreation Wildlife Cultural Heritage Resources REDUCTIONS TO THE TIMBER HARVESTING LANDBASE FOR SENSITIVE SITES AND NO TIMBER RESOURCE VALUES FOREST COVER REQUIREMENTS Adjacent Cutblocks and Greenup Visual Landscape Avalanche Areas Community Watersheds Coastal Watershed Assessment Procedures (CWAPs)	45 45 46 47 51 51 55 55 55 55 57 57 58
8.0 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.2 8.3 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.4	INTEGRATED RESOURCE MANAGEMENT STATUS OF NON-TIMBER RESOURCE INVENTORIES Sensitive Soils Riparian Areas Recreation Wildlife Cultural Heritage Resources REDUCTIONS TO THE TIMBER HARVESTING LANDBASE FOR SENSITIVE SITES AND NO TIMBER RESOURCE VALUES FOREST COVER REQUIREMENTS Adjacent Cutblocks and Greenup Visual Landscape Avalanche Areas Community Watersheds Coastal Watershed Assessment Procedures (CWAPs) BIODIVERSITY	45 45 46 47 51 51 55 55 55 55 57 58 58 59

List of Tables

TABLE 2-1.	Summary of How Options Differ from the Base Option (Option 1)4
TABLE 5-1.	Estimates of Area and Mature Volume Removals as Protected Areas9
TABLE 5-2.	Comparison of Audit and Inventory Mature Volumes9

TABLE 5-3. Mature Volumes Adjusted According to the Audit Results (000 m ³) 10
TABLE 5-4. Economic Operability Standards ⁽¹⁾ 14
TABLE 5-5. Adjustments to Obtain the Net Landbase by Working Circle (ha)
TABLE 5-6. Adjustments to Obtain the Net Mature Volume by Working Circle (000 m ³) 17
TABLE 5-7. Base Option THLB ⁽¹⁾ by Working Circle, Logging Method and Economic Class (ha)
TABLE 5-8. Base Option Mature Volumes by Working Circle, Logging Method and Economic Class (000 m ³)
TABLE 5-9. Summary of Base Option Landbase Adjustments: Totals Across the Seven Blocks
TABLE 5-10. Summary of Base Option Mature Volume Adjustments: Totals Across the Seven Blocks
TABLE 5-11. Timber Harvesting Landbase by Landbase Option and Block (ha)
TABLE 5-12. Available Mature Volume by Land-Base Option and Block (000 m ³) 20
TABLE 5-13. Long-Term Timber Harvesting Landbase for Option 1 21
TABLE 6-1. Overview of Base Case Silvicultural Systems 22
TABLE 6-2. Regeneration Models used in the Timber Supply Analysis
TABLE 6-3. Description of Regeneration Model Allocation 26
TABLE 6-4a. Hemlock [*] I: Dispersed/Aggregated Retention—Timber/Habitat Zone
TABLE 6-4b. Hemlock II: Shelterwood/Group Selection—Timber/Habitat Zone
TABLE 6-4c. Hemlock [*] III: Shelterwood//Group Selection—Old Growth Zone
TABLE 6-4d. Hemlock I, Block 1: Dispersed/Aggregated Retention Timber/Habitat Zone 30
TABLE 6-4e. Hemlock II, Block 1: Shelterwood/Group Selection—Timber/Habitat Zone 31
TABLE 6-4f. Hemlock [*] III, Block 1: Shelterwood/Group Selection—Old Growth Zone 32
TABLE 6-4g. Fir [*] I: Dispersed/Aggregated Retention—Timber/Habitat Zone
TABLE 6-4h. Fir [*] II: Shelterwood/Group Selection–Timber/Habitat Zone
TABLE 6-4i. Fir [*] III—Shelterwood/Group Selection—Old-Growth Zone
TABLE 6-5a. Changes in regeneration model with silvicultural system type andStewardship Zone in the CWHvm1 biogeoclimatic variant for the hemlock type

TABLE 6-5b. Changes in regeneration model with silvicultural system and StewardshipZone in the CWHxm2 biogeoclimatic variant for the fir type
TABLE 6-6. Species Allocation: Non-stocked and Successional Changes 37
TABLE 6-7. Comparison of Biophysical and Recent Cruise Stand Site Index Estimates 40
TABLE 6-8. Biophysical Site Index compared to Inventory Site Index—Productive Landbase
TABLE 6-9. Years to Reach 3 m, 5 m and 7 m using Wiley's and MB Hemlock Height Model 41
TABLE 6–10. Comparison of XENO Douglas-fir MAI estimates: MP #7 and MP #841
TABLE 6-11. Framework for Applying Variable Retention Yield Adjustment Factors
TABLE 6-12. Example of Applying Yield Adjustments 43
TABLE 7-1. MP #7 AAC Allocation by Working Circle (000 m ³ /year)
TABLE 8-1. Summary of Netdowns for Terrain Stability Units
TABLE 8-2. Percentage of Physically Operable Productive Area Unavailable Because of Terrain Stability
TABLE 8–3. Assignment of Stream Class 47
TABLE 8–4. Netdowns for Stream Riparian Areas
TABLE 8–5. Netdowns for Lakes and Wetlands Riparian Areas 48
TABLE 8–6. Riparian (Streams, lakes and wetlands) Netdowns to the Productive Operable ⁽¹⁾ Area (ha) 48
TABLE 8–7. Sensitivity of Management Zone Netdown to the Percentage Netdown (ha) 49
TABLE 8–8. Summary of Recreation and Visual Landscape Inventories
TABLE 8–9. Reductions to the Productive Operable Area for Sensitive Sites and Non- Timber Resources (ha) 53
TABLE 8–10. Reductions to Operable Mature Volumes for Sensitive Sites and Timber Resources (000 ³) ⁽¹⁾
TABLE 8–11. Visually Effective Greenup (VEG) Heights and Ages
TABLE 8–12. Summary of Visual Landscape Constraints 56
TABLE 8-13. Avalanche Cover Class Areas 57
TABLE 8-14. Designated Community Watersheds in TFL 39 57
TABLE 8–15. CWAP Rate of Harvest Restrictions Applied in the Analysis

TABLE 8–16. Minimum Old Seral Requirements from the Biodiversity Guidebook (%)	59
TABLE 8–17. Minimum Old Seral Requirements for the Base Option (%)	60
TABLE 8–18. Early and mature plus Old Seral Requirements from the Biodiversity Guidebook (%)	60
TABLE 8–19. Summary of Stewardship Zones by Block (percentages)	63

List of Attachments

Attachment 1.	Yield Tables	65
Attachment 2.	Letters of Approval	87

1.0 INTRODUCTION

This information package documents the assumptions and describes the modelling procedures that will be used in the Timber Supply Analysis (TSA) for Management Plan No. 8 of TFL 39.

Items missing from this draft document will be submitted as soon as they are available and will be included in the final report. These include derived information such as age class distributions and the estimated long-term harvesting landbase (net of future roads).

Not available at this time are the yield adjustments for older second-growth (established before 1962) areas that will be assigned yield tables according to regeneration models rather than from cruise data.

The Archaeological Overview Assessment (AOA) for Block 6 is expected to be available during the next month. Allowances for cultural heritage resources in Block 6 will then be determined.

Also a follow-up review of recreation, wildlife (Blocks 1 and 5) and soils (Block 7) netdowns is occurring. An agreement on adjustments to the Block 7 soils netdowns is expected in early November. These will be applied in the analysis. The recreation and wildlife issues will likely be addressed in the sensitivity analysis.

2.0 OPTIONS

The TSA is designed to provide information on the impacts of various forest management issues. These issues include:

- New Forest Management Strategy (The Forest Project)
- Management for Non-Timber Resources
- Operable Landbase Assumptions
- Deferred Areas
- □ Silviculture
- Yield Assumptions
- □ Site Productivity (Site Index)
- Image: Minimum Harvest Ages
- Harvest Flow

The Base Option (Option 1) includes current management practices and procedures. Sections 5 to 8 focus on describing the assumptions used in the Base Option.

Additional options are run to examine impacts of the different issues. The following describes these options, summarizing for each option the assumptions that vary from the Base Option.

PAGE 2

2.1 New Forest Management Strategy (The Forest Project)

- Option 2: Without Forest Project Assumptions. Assumptions on Stewardship Zones and variable retention are excluded. Refer to Section 8.5.
- **Option 3: Potential Gains from the Forest Project.** Examines the potential timber supply gains (due to variable retention) from some harvest in areas that are currently reserved. Refer to Section 8.5.

2.2 Non-Timber Resource

- Option 4: Landscape Biodiversity—Early and Mature + Old Seral Constraints. Applies early and mature + old as well as old seral constraints. Refer to Section 8.4.2.
- Option 5: Landscape Biodiversity—Draft Biodiversity Emphasis. Old seral requirements are applied according to the draft landscape units and biodiversity emphases. Refer to Section 8.4.2.

The draft Vancouver Island Landbase Plan (applies to Blocks 2 and 4) will be discussed in the context of this option. Option 5 includes old seral constraints according to the draft biodiversity emphases and landscape units. Additional old-growth retention in the Special Management Zones results from the assignment of old growth (in part of the Tsitika Watershed) and habitat (the White Watershed and part of the Tsitika Watershed) stewardship zones to these areas.

With aspatial analysis, it is difficult to accurately portray the benefits from the proposed reductions in spatial constraints (one meter green-up for adjacency and larger cut-block sizes) in the Enhanced Management Zones. A spatial blocking and scheduling tool is proposed for the twenty-year plan. It is expected that this approach will provide opportunities for exploring the sensitivity of harvest schedules to adjacency and other spatial constraints.

Options 6: Variation of Visual Landscape Constraints. The base option uses the top end of the range for the maximum allowable area below VEG. Option 6 uses the mid-point of the range. Refer to Section 8.3.2.

2.3 Timber Harvesting Landbase

Option 7: Mature Timber Classified as Currently Uneconomic. The base option excludes "uneconomic" timber. Option 7 allows harvest of the "uneconomic" timber over 100 years. The extended harvest period of 100 years corresponds to a strategy of taking advantage of periodic good market conditions to gradually harvest this timber. Refer to Section 5.3.8.

Options 8/9: Vary the Timber Harvesting Landbase by Plus and Minus 5%. A sensitivity analysis for uncertainties regarding the impacts of some issues on the timber harvesting landbase. Refer to Section 5.5.3.

2.4 Moratorium and Deferred Areas

The base option includes moratorium and deferred areas that have not being legally approved (i.e., by Order in Council). The timber supply impacts of these potential reserve areas are examined by comparing the results of options that exclude the areas of interest with results of the base option. Refer to Section 5.5.4.

- **Option 10:** Block 1—Confederation Lake Park and Duck Lake.
- **Option 11:** Block 5—Phillips Lake area.
- **Option 12:** Block 6—Declared Protected Areas (Haida Gwaii/QCI). These are defined in the Islands Community Stability Initiative (ICSI) Consensus document of January 1996.
- **Option 13:** Block 7—the Koeye Watershed and Fougnar Bay.

2.5 Silviculture

MB is proposing to complete an FRBC-funded forest level analysis of silvicultural strategies for TFL 39. This so-called "Type 2 Analysis" will be done with input from MoF and MoELP staff. The proposed schedule includes definition of management issues by November 1999, and submission of a final report by March 31, 2000. The analysis would utilize the data set prepared for the MP #8 analysis, will complement the MP #8 Timber Supply Analysis and will contribute towards the silviculture strategy for MP #8. Hence additional silviculture options are not included here.

2.6 Timber Yields

The purpose is to show the sensitivity of timber supply to changes in estimates of both mature and second-growth volumes per hectare (ha). Refer to Sections 5.3.1 and 6.

- **Option 14:** Increase Mature Volumes by 10%.
- **Option 15:** Decrease Mature Volumes by 10%.
- **Option 16:** Increase Second-Growth Yields by 10%.
- **Option 17:** Decrease Second-Growth Yields by 10%.

2.7 Site Productivity (Site Index)

Option 18: Inventory File Site Indexes. All other options use Site Indexes revised according to MB's biophysical selection tree approach. (Refer to Section 6.5.1) This comparison shows the timber supply implications of these revised Site Indexes relative to existing inventory file estimates of Site Index.

2.8 Minimum Harvest Ages

This comparison shows the sensitivity of timber supply to variation in minimum harvest ages. Refer to Section 7.3.2.

Option 19: Increase Minimum Harvest Ages by 10 years.

2.9 Harvest Flow Rules

A comparison of Options 20, 21 and the base option indicates the impacts of different harvest flow rules on harvest levels during the first 40 years.

- **Option 20:** For each working circle, harvest levels are allowed to decline by a maximum of 15% per decade.
- **Option 21:** For each working circle, initial harvest levels are defined according to those for the MP #7, base option, second and third periods. Harvest schedules will then be managed to achieve an "orderly" transition including avoiding medium-term harvest levels that are significantly below the long-term harvest level.

TABLE 2-1. Summar	y of How Options Di	iffer from the Base	Option (Option 1)
-------------------	---------------------	---------------------	-------------------

Option No.	Description
1	Base Option: Current practices and procedures.
2	Excludes Stewardship Zones and Variable Retention.
3	Variable retention—potential gains from some harvest in areas that are currently reserved.
4	Landscape biodiversity—include early and mature + old seral stage constraints.
5	Landscape biodiversity—draft biodiversity emphases.
6	Visual landscape constraints—apply the mid-point of the range for the maximum allowable area below VEG.
7	Harvest mature timber classified as "currently uneconomic" over 100 years.
8	Increase the timber harvesting landbase by + 5%
9	Decrease the timber harvesting landbase by + 5%
10	Exclude Confederation Lake Park and the Duck Lake Protected Area in Block 1.
11	Exclude the Phillips Lake Area in Block 5.
12	Exclude the Haida Declared Protected Areas in Block 6.
13	Exclude the Koeye Watershed and Fougnar Bay in Block 7.
14	Increase mature volumes by 10%.
15	Decrease mature volumes by 10%.
16	Increase Second-Growth Yields by 10%.
17	Decrease Second-Growth Yields by 10%.
18	Apply inventory site indexes.
19	Increase minimum harvest ages by 10%.
20	Block harvest flow rule of a maximum 15% decline per decade.

21

Initial harvest levels from MP #7.

3.0 MODEL

Woodstock, a high level programming language used for building forest estate models will be used to construct models for this analysis. These models (or scenarios) will apply a constrained linear programming approach to the problem.

Woodstock is used for strategic and operational planning by a number of organizations in Canada and in other countries.

4.0 INVENTORY ORGANIZATION

The TFL 39 forest inventory is organized to meet the objectives of the analysis and to utilize the large amount of data in a practical way.

4.1 Working Circles

The TFL is divided into six working circles which are defined by Blocks within the TFL. Each is analyzed separately. The working circles are as follows:

Block # and Name	Operation (1999)
Block 1 (Powell River)	Stillwater Division
Block 2 (Adam River)	North Island Woodlands
Blocks 3 (Coast Islands) and 4 (Port Hardy)	Port McNeill Division
Block 5 (Phillips River)	Stillwater Division
Block 6 (Queen Charlotte Islands)	Queen Charlotte Division
Block 7 (Namu)	Port McNeill Division

For each Block, management themes, forest cover data and the assignment of regeneration models (yield tables) collectively contribute towards the definitions of analysis units.

4.2 Management Themes

Coverages for the following management themes have been entered into the GIS database and hence incorporated into the analysis data sets.

- Visual landscape.
- Biodiversity landscape units.
- Biogeoclimatic Variant.
- Community watersheds and watersheds with CWAP restrictions.
- □ Avalanche run-out zones.
- MB Stewardship Zone.
- Physical operability
- □ Economic operability.

Since the data set is derived by intersecting the various coverages, the management themes may overlap spatially. Cover class constraints are used to model visual landscape, avalanche area, watershed (community water supply and CWAP) and landscape biodiversity objectives. The MB stewardship zones affect the allocation of silvicultural systems and allowances for additional old-growth areas and variable retention. The operability coverages allow analysis of a subset and reporting on results for the different operability classes.

4.3 Forest Cover Data and Regeneration Models

Three main attributes from the forest inventory (forest cover data) are used to characterize areas in the analysis. They are:

- □ Three-metre Site Index Classes 12 to 42.
 - Site Index is based on the leading species in each stand.
- □ Two Species Associations.
 - Douglas-fir species association, consisting of stands where the primary species is Douglas-fir, cypress or lodgepole pine.
 - Western hemlock species association, consisting of stands where the primary species is western hemlock, mountain hemlock, Sitka spruce, true firs or redcedar.

The yield model Y-XENO has growth equations for the two species, Douglas-fir and western hemlock. Other species are grouped with these two for yield prediction.

 Five-year age classes for the younger forest. Mature forest (areas greater than 100 years-of-age at time of inventory, completed in 1964) is not differentiated by age.

Regeneration models (yield tables) are allocated across the inventory to represent a range of management situations.

5.0 DESCRIPTION OF LANDBASE

5.1 Current Timber Inventory

The first forest inventory was completed in 1964. Since then, it has been maintained and improved by new cruises of both mature and the immature forest. The figures used in this analysis are updated to December 31, 1995, and cover changes in landbase and ownership, logging, fire and reforestation.

The basic building block of the inventory is the "stand." Each stand is identified by the following variables:

- □ A measure of site productivity: expressed by 3 m Site Index Classes.
- □ Age of immature by year established.
- □ Up to three species: in descending order of basal area.
- □ A measure of stocking:

- Volume class in mature and in older second growth cruised during the last 20 years.
- Basal area in cruised second-growth stands.
- Number of stems per hectare and distribution in younger stands.

These measures of inventory permit highly specific aggregation of similar stands for yield projection and analysis.

5.1.1 The Mature Inventory

Since the original cruise in 1964, the inventory has been continuously upgraded and updated as follows:

- □ In 1966, mature volumes were recompiled, as required by MoF, to close utilization standards (15 cm top diameter for trees 22.5 cm and larger).
- □ In 1972, mature volumes were recompiled using new MB decay factors.
- In 1988 and 1999, operational cruising was combined with the inventory to improve the less intensive original inventory on these areas. A third of the total mature inventory is now derived from operational cruise information.

On both occasions, in the remaining area (not included in the operational cruise), average lines were recalculated to reflect the samples remaining.

The volume recompilation in 1999 used MB's 1973 loss factors and Kozak's Taper Equation Version 4.1. The dead useless category was removed from the TFL 39 inventory.

In addition, the inventory has been updated every year to reflect areas and volumes logged.

The 1995, mature volume less estimates of decay, before any other deductions, is 195 208 000 m³. These volumes have been reduced for recent removals as Protected Areas. (Refer to Section 5.2.) A breakdown by Schedule A (Crown Grant and Timber Licenses) and Schedule B (Crown) is shown below:

	Volume (000 m ³)
Schedule A	32 132
Schedule B	163 070
TOTAL	195 208

Thirty-three percent of the mature timber volume was estimated from operational cruising, a more intensive cruise than the 1964 inventory.

Most of the remaining 1964 mature inventory (99%) has been subject to inventory audits during the last ten years. The results of this process are discussed in Section 5.3.1.

5.1.2 Inventory of the New Forest

During the 1964/1965 forest inventories, all the immature forest was cruised and mapped. Each stand was described according to age, species, site index class and stocking.

The new forest inventory is updated by a two-stage process. First, the stand information for new, planted and natural stands is added into the inventory yearly. Any changes found by assessment of survival and free-growing status are also made annually.

Second, as the new stands reach "pole size", generally between 20 and 35 years, they are re-inventoried; site index is measured based on the growth of the new crop; and volume and basal area are obtained as measures of stocking. Since 1977, cruise data has been entered into the inventory database for 79 000 ha of second growth that have been re-inventoried.

5.1.3 Not Satisfactory Restocked (NSR) Inventory

Areas logged or otherwise rendered unstocked, e.g., fire kill, are recorded in the inventory annually. For planning and control purposes, all NSR areas are categorized and summarized to show areas prescribed for site preparation, planting or natural regeneration, and the target date for achievement.

NSR areas are re-classified as second growth when they meet or exceed inventory requirements.

5.2 Inventory Changes since the MP #7 Timber Supply Analysis (July 1994)

All TFL 39 inventories including forest cover have been shifted from NAD 27 (map datum) to NAD 83. This will provide greater consistency with the mapbases of government agencies and other organizations in Coastal BC. Ongoing quality control checks on the NAD 83 map products are resulting in small changes.

At the same time as the NAD shift, tenure boundaries were adjusted according to the Surveyor General's Cadastre. Some of these map changes do not appear to agree with on the ground or legal descriptions of boundaries. In total, such differences are expected to be small and they will be addressed over time.

The total area of Block 1 has increased by approximately 3 000 ha, because of Timber Sales that have expired from the 30-year reserve.

The total area of TFL 39 at the end of 1995 is 804 050 ha compared to 803 727 ha for MP #7 (at the end of 1991). The gains in Block 1 have been offset by small reductions (0.5% or less) in the other Blocks, largely resulting from the shift to NAD 83.

More operational cruising has been combined with the inventory and mature inventory volumes have been recompiled. Refer to Section 5.1.1 above.

Protected areas have been legally defined in some areas of Blocks 2 and 4. In Block 2, this includes the Robson Bight (Tsitika) and Claude Elliot Protected Areas that were defined in the 1995 Park Amendment Act (Bill 53) and the Goal 2 area, the White River Pocket Wilderness Area. A small area of Block 4 is included in the lower Nimpkish Protected Area. Although these areas are legally protected areas, they have not yet been formally removed from the TFL. They are recognized operationally and are excluded from this analysis. Areas and mature volumes affected are summarized in Table 5-1.

Block	Total Area (ha)	Mature Volume (000 m ³)
Block 2	3 892	2 637
Block 4	32	0
TOTAL	3 924	2 637

TABLE 5-1. Estimates of Area and Mature Volume Removals as Protected Areas

5.3 Determination of the Timber Harvesting Landbase—The Base Option (Option 1)

Sections 5.3 to 5.6 document area and volume changes made for the various options in the analysis. They have been made in the order described in the following subsections. The timber harvesting landbase is the productive forest area and mature volume available for timber management after allowances are made for areas classified as physically inoperable, sensitive sites or non-timber resource values. Results are summarized in Tables 5-5 and 5-6 and in Section 5.4. Other landbase option netdowns are described in Section 5.5. Long-term adjustments for roads are listed in Section 5.6.

5.3.1 Mature Volume Adjustments

Audits of Mature Inventory Volumes

The TFL 39 mature inventory includes areas cruised in 1964 and areas that have more recently (since the late 1970s) been cruised. Audits for most of the 1964 portion (original cruise) have been completed during the last 10 years. The last plots for the Block 5 comparison were completed in 1999. Block 3 is the only block that has not been audited. It has only a small volume of mature volume.

The audits have occurred in accessible timber (MCI) and inaccessible timber (MCIII) as typed in the 1964 inventory. Inventory volumes in the MCI type are compiled from samples, while in the MCIII type, volumes have been estimated from photo coding. More recent (1993) operability mapping has replaced the accessibility classification.

Because the MCIII volume estimates are not based on direct plot measurement, it was agreed that these volumes would be adjusted according to the results of the audit comparison. Refer to the correspondence with Resource Inventory Branch in Attachment 2. Table 5-2 shows that the audit volume estimate are all higher than the inventory photo coded estimate, varying from +8% for Block 6 to +56% for Block 2.

Since the MCI volume estimates are based on plots, these volumes are adjusted only if the audit result is significantly different from the inventory. A significant difference occurs only in Block 6 (QCI). The differences (non-significant) for the other blocks (refer to Table 5-2) will be discussed in a sensitivity analysis on mature volume estimates.

Table 5-2 summarizes the results for the comparison of audit results and inventory volumes.

TABLE 5-2. Comparison of Audit and Inventory Mature Volumes

Average Volume⁽¹⁾ (m³ per ha)

Block	Accessibility	1964 Inventory Cruise	Test Cruise	Ratio of test to inventory
1	MCI	766	759	0.99
1	MCIII	564	738	1.31 ^{*a}
2	MCI	765	835	1.09
2	MCIII	494	770	1.56 ^{°a}
4	MCI	896	848	0.95
4	MCIII	551	696	1.26 ^{*a}
5	MCI	760	857	1.13
5	MCIII	556	848	1.53 ^{*a}
6	MCI	688	616	0.89 ^{*a}
6	MCIII	435	468	1.08 ^a
7	MCI	661	630	0.95
7	MCIII	427	543	1.27 ^{*a}

* Significant difference (95% level) according to paired t-test. "a" This result is applied to the inventory mature volumes for the MP #8 analysis. ⁽¹⁾Volumes are close utilization less decay.

The results of applying the resulting adjustments to the mature inventory are as follows.

Block	Inventory	Inventory Volume	Factor	Adjusted Volume
1	MCI	3 272	1.0	3 272
	MCIII	3 059	1.31	4 007
	OPC	6 912	1.0	6 912
	TOTAL	13 243		14 191
2	MCI	35 211	1.0	35 211
	MCIII	5 527	1.56	8 623
	OPC	26 852	1.0	26 852
	TOTAL	67 590		70 686
3	MC1	786	1.0	786
	OPC	987	1.0	987
	TOTAL	1 773		1 773
4	MCI	3 524	1.0	3 524
	MCIII	1 124	1.26	1 416
	OPC	5 820	1.0	5 820
	TOTAL	10 468		10 760
5	MCI	2 054	1.0	2 054
	MCIII	2 612	1.53	3 996
	OPC	2 026	1.0	2 026
	TOTAL	6 692		8 076
6	MCI	56 365	0.89	50 165
	MCIII	4 272	1.08	4 614
	OPC	17 910	1.0	17 910
	TOTAL	78 547		72 689
7	MCI	8 442	1.0	8 442
	MCIII	4 649	1.27	5 904
	OPC	3 804	1.0	3 804
	TOTAL	16 895		18 150
TOTAL	MCI	109 654		103 454
	MCIII	21 243		28 560
	OPC	64 311		64 311
	TOTAL	195 208		196 325

TABLE 5-3. Mature Volumes Adjusted According to the Audit Results (000 m³)

(1) OPC-refers to Operational Cruising. MCI and MCIII refer to areas in the 1964 inventory (refer to the description above).

Cull (Z) Grades

The mature timber inventory includes cull (Z) grade timber that is not part of the AAC as it is neither scaled nor charged as residue.

Block	Cull (%)
Block 1	1.9
Block 2	2.3
Blocks 3 and 4	4.3
Block 4	3.0
Block 5	3.4
Block 6	2.8

The following volume deductions (by block) for cull grades are based on the average proportions for the operational cruise portion of the inventory.

Waste and Breakage

From the start of annual residue surveys in 1967 until 1989, MB has measured all residue components including breakage and W2, resulting in a unique data set. Actual measured breakage and W2 are applied to the inventory as a netdown for analysis purposes. The average for the period from 1985 to 1989 of 7.82% is applied in the TSA (also was used in the MP #7 analysis).

In aggregate, the volume deductions for cull grades, waste and breakage applied to the mature inventory amount to 20 586 000 m³.

5.3.2 Block 1, 30-Year Reserve

Some timber sales were still active in 1995. They have since expired and reverted to Schedule B land as part of TFL 39. The total area involved is 1 268 ha with 218 000 m³ of mature volume (before allowances for cull, waste and breakage).

5.3.3 Non-Forest and Non-productive Forest Areas

Mapped non-forest areas of alpine, rock, water, swamp and roads occupy 86 803 ha.

Roads are included in the annual inventory update. An area allowance is made for all mapped roads (regardless of whether or not they are maintained). Major roads, e.g., highways, are handled as discrete polygons. An average width of 13 m is allowed for other roads, i.e., they are buffered at a width of 13 m in the GIS.

Non-productive forest areas, mainly defined as having inventory volume of less than 211 m³ per ha and totalling 166 349 ha are excluded from the analysis.

5.3.4 Low Site

With the decision tree procedure for assigning site index (approved for this analysis—refer to Section 6.5) there is no productive forest area of Site Index 10 and less.

Areas with site index in the three-metre Classes 12 and 15 are well represented in recent harvest statistics. The difference in mature forest inventory statistics between 1995 and 1997 for Blocks 2 to 7 provides an estimate of the recent timber harvest by site index class. Block 1 is not included because of other inventory changes that occurred in this block during 1996 and 1997. A comparison of these inventories indicates that of the area logged during 1996 and 1997, 2% was from Site Index Class 12 and 11% was from Site Index Class 15 (based on inventory file site index estimates). These proportions compare with the 2% and 19% of the mature productive forest that is SI 12 and SI 15, respectively, (again based on inventory site index estimates).

5.3.5 Physically Inoperable Areas

The mature productive forest has been assessed for physical operability and for broad classes of logging methods. The assessment was first done in 1992/1993 for all blocks other than Block 6 (QCI). In 1998/1999 this operability mapping was reviewed and updated. In addition the same methodology was applied to Block 6. Refer to Attachment 2 for relevant correspondence. Three classes have been mapped:

Physically Inoperable Timber

Timber on productive land that is so steep and/or rocky, that it cannot be safely felled or yarded or a significant proportion of the volume could not be recovered. An area of 16 097 ha with 8 312 000 m³ of timber is excluded from the working landbase as physically inoperable.

Conventional Harvest Systems

Includes timber on productive, physically operable land that is loggable by conventional methods, i.e., grapple, high-lead, hoe-chuck, skidder, etc.

Non-conventional Harvest Systems

Includes timber on productive, physically operable land that is loggable only by non-conventional methods. These include helicopter, balloon or long-line cable systems.

The new physical operability mapping in Block 6 has resulted in significantly less area classified as inoperable compared to the earlier accessibility mapping (to different standards) used in MP #7. The review also resulted in an increase in physically inoperable in Block 1 and a decrease in Block 7.

The area classified as non-conventional increased in Blocks 1, 5, 6 and 7. These changes reflect recognition of the difficulty and cost of building roads in some areas, particularly steep terrain with unstable soils.

5.3.6 Sensitive Sites and Non-Timber Resources (NTRs)

Mapping of environmentally sensitive areas (ESAs) and other management constraint areas has occurred for the following concerns:

- □ Avalanche areas (Ea).
- □ Unstable soils (Es and 5-class mapping).
- □ Riparian management areas adjacent to streams, lakes and estuaries (Ef).
- Wildlife areas for deer, elk, grizzly bear and goats (Ew).
- Difficult regeneration areas (Ep).
- Community watersheds (Eh).
- □ Recreation (Er).
- Usual landscape (VQOs).

Refer to Section 8.0 for procedures and results. Significant areas have been identified and mapped as important for the above resources. They include areas of productive forest as well as non-productive forest and non-forest areas.

Many of these inventories identify netdowns to the timber harvesting landbase. For others, e.g., visual landscape, management is modified to meet cover class constraints. These are discussed in Section 8.3.

The net impact of exclusions for sensitive sites and non-timber resources on the productive operable landbase is 102 854 ha (19%) and 42 972 000 m^3 (26%) of mature volume.

This area impact is significantly (75%) higher than in MP #7. Major contributions to this difference include increased allowances for recreation, riparian reserves, sensitive soils (particularly Blocks 6 and 7) and wildlife in Blocks 1 and 5.

As noted in Sections 8.1.3 (recreation), 8.1.4 (wildlife) and 8.1.1 (soils) a follow-up review of netdowns for Er2 (recreation), Goat and Grizzly in Blocks 1 and 5 and sensitive soils in Block 7 is occurring. An agreement has been reached with the Region (MoF) soils specialist to apply reduced netdowns for soils in Block 7. This change will be applied in the analysis and described in the final report. It is expected that findings on the recreation and wildlife issues will be described and related to sensitivity analyses in the timber supply analysis report.

5.3.7 Deciduous

The net forest area after making allowances for sensitive sites and non-timber resources includes 5 380 ha of deciduous forest. This includes stands with a deciduous species (usually red alder) as the leading species.

Approximately 250 ha of deciduous stands have been harvested, and generally converted to coniferous stands, over the six-year period from 1993 to 1998. Most of this activity has occurred in Block 1 where a large portion of the deciduous area is located. MP #7 has an AAC allocation of 40 000 m^3 to these deciduous areas.

For this analysis it is assumed that recent management practices continue. This is modelled by converting to conifer, 50% of the remaining deciduous area over a 50-year timeframe. Volumes in the existing deciduous stands will not be included in the harvest schedules, but will be referred to in a recommendation for an MP #8 AAC allocation for deciduous areas.

Other management possibilities for deciduous areas will be considered in the parallel analysis on silviculture strategy for TFL 39 (refer to Section 2.5).

5.3.8 Economic Operability

Interpretation of economic operability differs from that of the MoF. MB's view is that over the next 100+ years, all of the mature timber, physically safe to fell and extract without unacceptable environmental damage, will be economically available for harvest.

It differs from the MoF position that the economically operable landbase for the TSA should be based on the last price cycle. The MoF's view is examined by classifying the landbase for "currently economic", "marginal" and "currently uneconomic".

Economic operability changes with changing markets, technologies and regulations. A classification based on detailed fieldwork is likely out of date by the time the information is plotted on maps. The approach taken here (and in MP #7) is to classify for economic operability based on inventory (m³/ha, percentage pulp and species) characteristics as summarized in Table 5-4. Some minor revisions were made following review by MB and MoF field personnel.

	Conver	ntional	Non-conventional			
Stand type	Uneconomic Marginal		Uneconomic	Marginal		
Fir, Fir-Hem						
Fir-Cedar	<271	271–380	<434	434–542		
Hemlock						
Hem–Bal	<325	325–434	<488	488–597		
Hem-Bal-Cyp						
<40% X, Y, Z Grades	<325	325–434	<434	434–542		
>40% C, Y, Z Grades	<434	434–542	>542	542–651		
Cedar						
<40% X, Y, Z Grades	<271	271–380	<380	380–488		
>40% X, Y, Z Grades	<380	380–488	<542	542–651		

TABLE 5-4. Economic Operability Standards⁽¹⁾ Volume (m³/ha)⁽²⁾

(1) These are based on characteristics identifiable in the inventory.

(2) Volume is Close U less decay. The volumes include adjustments resulting from the audits (Section 5.3.1).

Tables 5-7 and 5-8 show the resulting composition of the Option 1 Timber Harvesting Landbase. Classification is according to the two logging methods (conventional and non-conventional) and the two economic classes (economic and marginal).

An area of 15 811 ha with 4 987 000 m³ of mature timber is excluded from the Base Option landbase as "currently uneconomic."

For Blocks 1, 2, 5 and 7, the allowance for uneconomic areas and the area classified as marginal is lower than for MP #7. This is mainly because of higher volume estimates in MC III areas (Section 5.3.1) and secondarily because of higher netdowns for sensitive sites and non-timber values (Section 5.3.6). Conversely for Block 6 (QCI) the uneconomic and marginal categories are larger in area (than MP #7) because reduced estimates for MC I volumes (Section 5.3.1) are included in the determination of economic operability, whereas they were not included in MP #7.

5.3.9 Non-Spatial Allowances

- An additional 1% allowance is made for management zones alongside small streams that are not mapped at the scale 1:20 000. Refer to Section 8.1.2. The resulting netdown is 4 109 ha and 1 197 000 m³ of mature timber.
- Allowances for wildlife tree patches have been estimated and applied at the Block level. Refer to Section 8.4.1. The netdowns by Block are

	Block							
1	2	3	4	5	6	7		

% netdown for	3.0	2.4	3.6	3.1	2.0	2.0	1.0
WTPs							

For the TFL the impact is 9 763 ha and 2 637 000 m³ of mature timber.

- The Forest Project will result in increased reserves in old-growth stewardship zones and additional retention across the forest landscape.
 Incremental netdowns have been applied according to stewardship zone:
 - Timber Zone 5%
 - Habitat Zone 7.5%
 - Old-Growth Zone 70%

The approach used to model the impacts of old-growth zones results in a high estimate of netdowns. Refer to Section 8.5. The total Forest Project allowance amounts to 35 783 ha and 14 158 000 m^3 of mature timber.

	Block 1	Block 2	Block 3	Block 4	Block 5	Block 6	Block 7	TOTAL
Total TFL Landbase	185 711	203 065	15 747	51 541	47 411	240 311	56 339	800 125
Plus 30-Year Reserve	1 268							1 268
	186 979	203 065	15 747	51 541	47 411	240 311	56 339	801 393
Less Non Forests	36 931	9 680	580	4 618	13 042	15 616	6 336	86 803
Net	150 048	193 385	15 167	46 923	34 369	224 695	50 003	714 590
Less Non Productive	55 506	27 521	399	7 948	19 576	35 119	20 280	166 349
Net Productive	94 542	165 864	14 768	38 975	14 793	189 576	29 723	548 241
Less Physically Inoperable	4 349	6 985	127	374	1 739	1 135	1 388	16 097
Net	90 193	158 879	14 641	38 601	13 054	188 441	28 335	532 144
Less Sensitive Sites & Non Timber Values	14 622	26 607	1 289	5 151	3 437	43 117	8 631	102 854
Net	75 571	132 272	13 352	33 450	9 617	145 324	19 704	429 290
Less Deciduous	1 119	648	67	66	17	771	2	2 690
Net	74 452	131 624	13 285	33 384	9 600	144 553	19 702	426 600
Less Uneconomic	1 402	2 138	612	413	329	8 080	2 837	15 811
Net	73 050	129 486	12 673	32 971	9 271	136 473	16 865	410 789
Less Allowance for Unmapped Streams	730	1 295	127	330	93	1 365	169	4 109
Net	72 320	128 191	12 546	32 641	9 178	135 108	16 696	406 680
Less WTPs	2 170	3 077	452	1 012	183	2 702	167	9 763
Net	70 150	125 114	12 094	31 629	8 995	132 406	16 529	396 917
Less Allowance for Variable Retention	3 960	9 286	605	1 674	1 135	14 560	4 563	35 783
Option 1 Net Landbase	66 190	115 828	11 489	29 955	7 860	117 846	11 966	361 134

	Adjustments to Obtain the Net Landbase by	Working Circle (ba)
IADLE 3-3.	Adjustments to Obtain the Net Landbase by	y working circle (na)

Inventory dated December 31, 1995

	Block 1	Block 2	Block 3	Block 4	Block 5	Block 6	Block 7	TOTAL
Total Productive Forest	14 191	70 686	1 773	10 760	8 076	72 689	18 150	196 325
Plus 30-Year Reserve	218							218
Net	14 409	70 686	1 773	10 760	8 076	72 689	18 150	196 543
Less Breakage, Waste 2 and Cull	1 379	7 026	209	1 268	855	7 962	1 887	20 586
Net	13 030	63 660	1 564	9 492	7 221	64 727	16 263	175 957
Less Physically Inoperable	1 039	4 408	47	268	1 210	535	805	8 312
Net	11 991	59 252	1 517	9 224	6 011	64 192	15 458	167 645
Less Sensitive Sites & Non Timber Values	3 157	13 398	180	1 670	1 885	17 679	5 003	42 972
Net	8 834	45 854	1 337	7 554	4 126	46 513	10 455	124 673
Less Uneconomic	391	696	152	160	124	2 462	1 002	4 987
Net	8 443	45 158	1 185	7 394	4 002	44 051	9 453	119 686
Less Allowance for Unmapped Streams	84	452	12	74	40	440	95	1 197
Net	8 359	44 706	1 173	7 320	3 962	43 611	9 358	118 489
Less WTPs	251	1 073	42	227	79	872	93	2 637
Net	8 108	43 633	1 131	7 093	3 883	42 739	9 265	115 852
Less Allowance for Variable Retention	478	4 144	57	376	436	5 892	2 775	14 158
Option 1 Mature Volume	7 630	39 489	1 074	6 717	3 447	36 847	6 490	101 694

TABLE 5.6 Adjustments to Obtain the Net Mature Volume by Working Cirols (0)	$10 m^{3}$
TABLE 5-6. Adjustments to Obtain the Net Mature Volume by Working Circle (00	<i>i</i> u m [*])

Inventory dated December 31, 1995

PAGE	E 18
------	-------------

	Block 1	Block 2	Block 3	Block 4	Block 5	Block 6	Block 7	TOTAL
Convention Economic	55 488	102 819	11 219	25 973	4 480	102 632	6 488	309 099
Non-conventional Economic	9 297	9 258	16	3 347	2 999	4 012	3 292	32 221
Conventional Marginal	598	2 755	254	318	58	9 174	878	14 035
Non-conventional Marginal	807	996	0	317	323	2 028	1 308	5 779
TOTAL	66 190	115 828	11 489	29 955	7 860	117 846	11 966	361 134

TABLE 5-7. Base Option THLB⁽¹⁾ by Working Circle, Logging Method and Economic Class (ha)

TABLE 5-8. Base Option Mature Volumes by Working Circle, Logging Method and Economic Class (000 m³)

	Block 1	Block 2	Block 3	Block 4	Block 5	Block 6	Block 7	TOTAL
Convention Economic	3 449	31 103	969	3 795	929	30 147	3 424	73 816
Non-conventional Economic	3 665	6 864	10	10 2 634 2 349 2 631 2 161 20 314				
Conventional Marginal	173	1 068	95	133	21	3 098	321	4 909
Non-conventional Marginal	343	454	0	155	148	971	584	2 655
TOTAL	7 630	39 489	1 074	6 717	3 447	36 847	6 490	101 694

(1) Includes both mature and immature areas.

5.4 Summary of Base Option Adjustments

		Perce	ntages
			Productive
Classification	Area (ha)	Total Area	Forest
Total Area	801 393	100.0	
Non-Forest	86 803	10.8	
Non-productive Forest	166 349	20.8	
Productive Forest	548 241	68.4	100.0
Physically Inoperable	16 097	2.0	2.9
Sensitive Sites and Non-Timber Values	102 854	12.8	18.8
Deciduous	2 690	0.3	0.5
Currently Uneconomic	15 811	2.0	2.9
Unmapped Streams	4 109	0.5	0.8
WTPs	9 763	1.2	1.7
Variable Retention	35 783	4.5	6.5
Base Option THLB	361 134	45.1	65.9

 TABLE 5-9. Summary of Base Option Landbase Adjustments: Totals

 Across the Seven Blocks

TABLE 5-10. Summary of Base Option Mature Volume Adjustments:Totals Across the Seven Blocks

Classification	Mature Volume ⁽³⁾ (000 m ³ AAC Utilization)	Percentage of Total Mature Volume
Productive Forest	175 957	100.0
Physically Inoperable	8 312	4.7
Sensitive Sites and Non-Timber Values	42 972	24.4
Currently Uneconomic	4 987	2.8
Unmapped Streams	1 197	0.7
WTPs	2 637	1.5
Variable Retention	14 158	8.1
Base Option THLB	101 694	57.8

(3) Volumes are net of breakage, waste 2 and cull.

Age class distributions for the productive forest and the timber harvesting landbase will be included in the final report.

5.5 Landbase Options

A number of options examine the timber supply impacts of changes to the timber harvesting landbase. The resulting net timber harvesting landbases and corresponding mature volumes are summarized in Tables 5-11 and 5-12.

5.5.1 Variations to Forest Project Assumptions

Option 2 does not make the extra allowances for variable retention and for reserve areas in old-growth zones. Some of this additional timber in some

landscape unit/variant combinations will be offset by extra reserves to meet the old seral cover class constraint (Section 8.4.2).

Option 3 examines potential gains in using the variable retention approach to access some timber in otherwise reserved areas. For simplicity in this option it is assumed that 5% of the mature timber in sensitive sites, non-timber resource areas and currently uneconomic timber may be accessed over the following 20 years.

Option	Block 1	Block 2	Block 3	Block 4	Block 5	Block 6	Block 7	Total
1	66 190	115 828	11 489	29 955	7 860	117 846	11 966	361 134
2	70 150	125 114	12 094	31 629	8 995	132 406	16 529	396 917
3	67 084	117 362	11 595	30 263	8 054	120 513	12 548	367 409
7 ⁽¹⁾								
8	69 499	121 619	12 064	31 453	8 253	123 728	12 565	379 192
9	62 880	110 037	10 915	28 458	7 467	111 954	11 368	343 079
10	64 937							
11					7 765			
12						(1)		
13							10 311	

TABLE 5-11. Timber Harvesting Landbase by Landbase Option and Block (ha)

(1)Areas and volumes will be summarized in the final report.

TABLE 5-12. Available Mature Volume by Land-Base Option and Block (000 m³)

Option	Block 1	Block 2	Block 3	Block 4	Block 5	Block 6	Block 7	Total
1	7 630	39 489	1 074	6 717	3 447	36 847	6 490	101 694
2	8 108	43 633	1 131	7 093	3 883	42 739	9 265	115 852
3	7 811	40 217	1 091	6 812	3 549	37 876	6 795	104 152
7 ⁽¹⁾								
8	8 011	41 464	1 128	7 053	3 619	38 689	6 814	106 779
9	7 248	37 515	1 020	6 381	3 274	35 004	6 165	96 609
10	7 544							
11					3 445			
12						(1)		
13							5 457	

(1)Areas and volumes will be summarized in the final report.

5.5.2 Mature Timber Classified as Currently Uneconomic

Option 7 includes the currently uneconomic timber in the timber harvesting landbase. It is assumed that this timber will be accessed gradually over time, according to market cycles and technical developments. This is simulated in the analysis by constraining the harvest of currently uneconomic timber to occur over 100 years.

5.5.3 Landbase Sensitivity

Options 8 and 9 examine the sensitivity of timber supply to a 5% increase or decrease in the timber harvesting landbase.

5.5.4 Moratorium and Deferred Areas

In Option 10 the Haslam Confederation and Duck Lake areas are excluded from the timber harvesting landbase for Block 1.

In Option 11 the Phillips Estuary/Lake area is excluded from Block 5. Most of this area has already been netted down because of wildlife and recreation values. Since, the additional impact of 95 ha is relatively small—it will not be subject to a separate analysis. This result will be discussed.

Block 6 includes parts of the following Haida Declared Protected Areas.

- □ Jiinanga (Northwest Morseby Island)
- □ Kamdis (part of Kumdis Island)
- La Kun Xalaas (Cumshewa Head area)
- Qaysun (Boomchain Bay area)
- □ TIIall (TIell Watershed)
- □ Tsuuguus Gandll (Security Inlet)
- Yaagun Siwaay (Yakoun Lake and River)

Option 12 excludes these deferred areas. The deferred areas affect a larger area than shown on a map, mainly through limiting access to adjacent areas. Such operational impacts will be discussed and may be presented as an additional option.

In Option 13 the Koeye Watershed and Fougnar Bay moratorium areas are excluded from Block 7. The impact of this option is significantly reduced as the Koeye watershed is currently zoned as an old-growth stewardship zone (Option 1).

5.6 Adjustments to Determine the Long-Term Landbase

Area reductions for future roads:

Mature Areas

For conventional harvesting areas, a 6% reduction in productive area is made after initial harvest. This is based on areas occupied by roads in recent survey results.

No reductions will be made for future roads in non-conventional harvest areas. By definition, these areas will be harvested by aerial systems and they will be accessed by roads developed for adjacent conventional harvest areas.

• Second-Growth Areas

For areas established prior to 1940, the productive area is reduced by 5% after the initial harvest. These areas were logged before truck logging. They are often of relatively easy terrain, with partial access provided by existing road systems.

Estimates for future roads for Option 1 were not available when the October 1999 draft was written. They will be included in the final report.

 TABLE 5-13. Long-Term Timber Harvesting Landbase for Option 1 (after allowances for future roads) (ha)

Block	Timber Harvesting Landbase	Less Future Roads	Long-Term Timber Harvesting Landbase
1	66 190		
2	115 828		
3	11 489		
4	29 955		
5	7 860		
6	117 846		
7	11 966		
Total	361 134		

6.0 SILVICULTURAL ASSUMPTIONS AND YIELD PROJECTION

6.1 Silvicultural System Scenarios

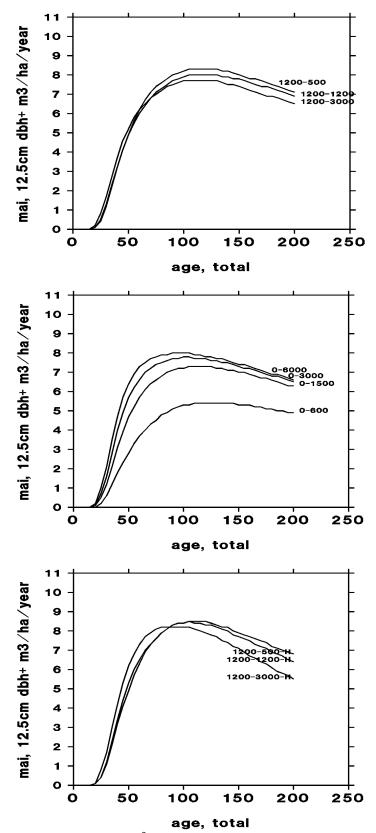
TABLE 6-1. Overview of Base Case Silvicultural Systems

Zone	System	% Zone	Description	Age Type	Notes
Timber	Retention		aggregated, 10% left	even-aged	
	Systems	90	dispersed, 5% left	even-aged	
	Shelterwood	10	dispersed, 10% left	even-aged	group, uniform or natural on harsh sites
Habitat	Retention	50	aggregated, 15% left	even-aged	
	systems	50	dispersed,15% left	even-aged	
	Shelterwood	25	generally aggregated, 15% left	even-aged	emphasis on group shelterwood
	Irregular Shelterwood	13	generally aggregated , 15% left	uneven-aged	leave groups, create more than two age classes
	Group selection	12	<1ha patches	uneven-aged but composed of small even-aged openings	at least three age classes; 20-40 year cutting cycle
Old- Growth	Irregular Shelterwood	30	dispersed + aggregated, 66% left	uneven-aged	create more than two age classes
	Group selection	70	0.25ha-0.5ha (less than 1ha) patches	uneven-aged but composed of small even-aged openings	at least three age classes; 30-50 year cutting cycle
	second-growth areas		thinning/ species conversion	portions of second-growth in Old-Growth Zone	restore old-growth attributes in previously cut stands

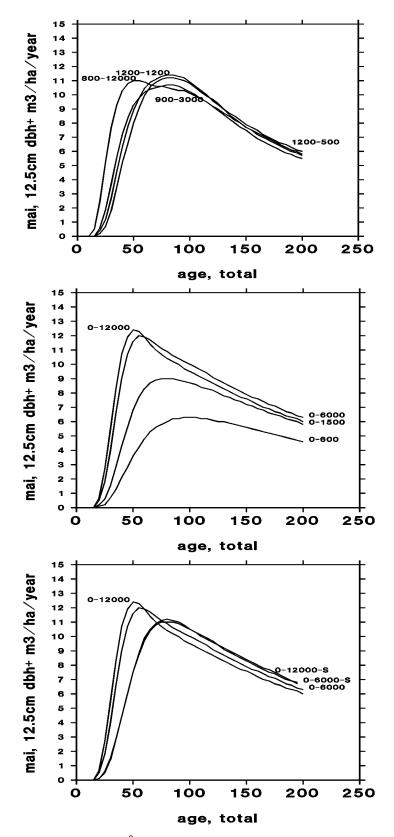
Table 6-1 lists the silvicultural systems by stewardship zone developed as part of MB's Forest Project that will be used in the base case yield analysis. The amount of stand left refers to area (aggregated) or volume/basal area (dispersed) remaining within the specified cutblock. The allocation of Stewardship Zones is described in Section 8.5.

6.2 Forest Regeneration Models

6.2.1 Yield Table Sets


Table 6-2 shows the yield model sets generated by XENO. The models incorporate a generalized range of planting, natural regeneration and management scenarios. Yield tables are summarized in Attachment 1. Figures 6-1 and 6-2 show the fir and hemlock basic yield curves for Site Index 27.

	Yield No. of Percent Regen Lag Years Spaced Natural													
Table	Planted	Natural	Survival	Distribution	(natural)	of	0 = no	regen Site						
ID ^{*, **}	Stems	Stems	Planted	Natural	negative = early	Natural	1 = yes	Index						
					0.01/	Regen								
	4	=		HEML				[
h1	1 200	500	85	50	-2	4	0							
h2	1 200	1 200	90	75	-2	5	0							
h3	900	3 000												
h4	800	12 000	85	100	-3	8	0							
h5		600		70		5	0							
h6		1 500		90		5	0							
h7a		6 000		100		5	0							
h7b		6 000		100		5	1							
h8a		12 000		100		5	0							
h8b		12 000		100		5	1							
		*a :	= unspace	d, b = spaced	d @ 15 years to 12	200 sph								
				DOUGL	AS-FIR									
f1a	1 200	500	85	60	0	4	0							
f1b	1 200	500	85	60	0	4	0	Planted-3 m						
f2a	1 200	1 200	90	75	0	4	0							
f2b	1 200	1 200	90	75	0	4	0	Planted- 3 m						
f3a	1 200	3 000	90	90	-1	5	0							
f3b	1 200	3 000	90	90	-1	5	0	Planted- 3 m						
f4		600		70	0	5	0							
f5		1 500		90	0	5	0							
f6		3 000		90	0	5	0							
f7		6 000		90	0	5	0							
	**a = fir n	aturals, b	= hemlock	naturals if sta	and planted (Site I	ndex 3 m	lower that	n fir)						


TABLE 6-2.	Regeneration Models used in the T	Timber Supply Analysis
------------	-----------------------------------	------------------------

6.2.2 Regeneration Allocation Framework

The regeneration model framework is based on Stewardship Zone, biogeoclimatic variant (tempered by geographic locations), and two species associations (hemlock and fir). Previous approaches have been simplified to more easily and transparently apply the regeneration models. The framework is directed at resultant management (which implicitly incorporates current levels of management) that is necessary to achieve a specific yield rather than building from a natural succession model base as in TFL 39 MP #7. An important component is a broad scale representation of the future forest as envisaged by the Forest Project.

FIGURE 6-1. Mean annual increment (m³/ha/year) for Douglas-fir for Site Index 27. Key: 1200–500-H means 1200 stems per ha planted, 500 naturals and the naturals were western hemlock (no suffix means naturals were fir).

FIGURE 6-2. Mean annual increment (m³/ha/year) for western hemlock for Site Index 27. Key: 0–12000-S means 0 stems per ha planted, 12000 naturals and spaced (S) to 1200 stems per ha at 15 years of age.

Туре	Allocation Table Set	Silvicultural System Type	Zone	Description
Hemlock I	Table 6-4a	Dispersed/aggregated retention	Timber/Habitat	~80% planting or fill planting
Hemlock II	Table 6-4b	Shelterwood/Group selection	Timber/Habitat	50% planting or fill planting
Hemlock III	Table 6-4c	Shelterwood/Group selection	Old Growth	20% planting or fill planting
Hemlock I-1	Table 6-4d	Dispersed/aggregated retention	Timber/Habitat	BLOCK 1: less regeneration
Hemlock II-1	Table 6-4e	Shelterwood/Group selection	Timber/Habitat	BLOCK 1: less regeneration
Hemlock III-1	Table 6-4f	Shelterwood/Group selection	Old Growth	BLOCK 1: less regeneration
Fir I	Table 6-4g	Dispersed/aggregated retention	Timber/Habitat	~80% planting or fill planting
Fir II	Table 6-4h	Shelterwood/Group retention	Timber/Habitat	60% planting or fill planting
Fir III	Table 6-4I	Shelterwood/Group selection	Old Growth	30% planting or fill planting

TABLE 6-3.	Description	of Regeneration	Model Allocation
------------	-------------	-----------------	------------------

Table 6-3 gives an overview of nine regeneration model allocation scenarios. The scenarios are first classed by similar silvicultural system types: dispersed/aggregated retention form one type while shelterwood/group selection forms the other. The silvicultural system types are next allocated to the Stewardship Zones. The dispersed/aggregated type and shelterwood/group selection type are both assumed to be valid across both the Timber and Habitat Zones. (The Timber Zone will be managed mostly using dispersed/aggregated retention while the Habitat Zone will have a substantial shelterwood/group selection component.) Block 1 (Powell River) is distinguished in having lower natural regeneration amounts for hemlock only and is treated separately. The Old-Growth Zone has its own allocation set and is exclusively managed under shelterwood/group selection. In addition, portions of second growth in the Old-Growth Zone will be thinned to reduce stand density in some instances.

Planting is emphasized (~80% of landbase) under aggregated/dispersed retention; is approximately at 50% (hemlock) or 60%–80% (fir) under shelterwood/group selection in the Timber/Habitat Zone; and is approximately 20% (hemlock)–30% (fir) in the Old-Growth Zone.

Tables 6-4a to 6-4i contain the nine allocation sets listed in Table 6-3. Each of these tables lists the approximate area in each biogeoclimatic variant that is associated with a particular yield table. The tables are generalized attempts to mimic the range of current and future regeneration and management patterns. Tables 6-4a to 6-4i contain mean values for maximum mean annual increment derived from the yield tables for Site Index 27 to *illustrate the relative impacts* of any changes in area allocation across silvicultural system type and Stewardship Zone. These numbers are for demonstration purposes only and do not reflect the expected mean annual increment for each variant.

			H	w	Н		H		H		H	w	H	w	H	w	H	w	H		H	w
			CWH	xm1	CWH	xm2	CWH	ldm	CWH	vm1	CWH	vm2	CWH	mm1	CWH	mm2	M	H	CWH	vh1,2	CWH	lvh2
		natural	mai	area	mai	area																
	1200	500	11.2	100	11.2		11.2		11.2		11.2		11.2		11.2		11.2		11.2		11.2	
dist	85	50																				
lag	0	-2																				
age		4																		_		
	1200	1200	11.4		11.4	80	11.4	80	11.4		11.4		11.4		11.4		11.4		11.4	50	11.4	
dist	90	75																				
lag	0	-2																				
age		5																				
	900	3000	10.7		10.7		10.7		10.7	35	10.7	35	10.7	30	10.7	30	10.7	30	10.7	10	10.7	40
dist	90	80																				
lag		-2 5																				
age	800	12000	11.0		11.0		11.0		11.0	45	11.0	45	11.0	40	11.0	40	11.0	40	11.0		11.0	40
dist	85	12000	11.0		11.0		11.0		11.0	45	11.0	45	11.0	40	11.0	40	11.0	40	11.0		11.0	40
lag	00	-3																				
age		-5																				
ugo		600	6.3		6.3		6.3		6.3		6.3		6.3		6.3		6.3		6.3		6.3	
dist		70	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
age		5																				
0		1500	9.0		9.0		9.0		9.0		9.0		9.0		9.0		9.0		9.0		9.0	
dist		90																				
age		5																				
		6000	12.0		12.0	20	12.0	20	12.0	5	12.0	5	12.0	10	12.0	10	12.0	10	12.0		12.0	10
dist		100																				
age		5																				
spacing	g		11.2		11.2		11.2		11.2		11.2		11.2		11.2		11.2		11.2		11.2	
		12000	12.4		12.4		12.4		12.4	15	12.4	15	12.4	20	12.4	20	12.4	20	12.4	40	12.4	10
dist		100																				
age		5																				
spacing	9		11.1		11.1		11.1		11.1		11.1		11.1		11.1		11.1		11.1		11.1	
Total			11.2	100	11.5	100	11.5	100	11.2	100	11.2	100	11.3	100	11.3	100	11.3	100	11.7	100	11.1	100

TABLE 6-4a. Hemlock^{*} I: Dispersed/Aggregated Retention—Timber/Habitat Zone

dist = survival planted/ distribution natural; lag = regen lag; age = age range natural. a negative lag implies natural regeneration established before planting. Spacing to 1200 sph at 15 years age.

mai = mean annual increment site index 27(30cm stump, 10cm top no OAF reductions) for demo purposes only

area = % area in biogeoclimatic variant

*Hemlock-type: western/ mountain hemlock, sitka spruce, amabilis-fir, redcedar.

			Hw		Hw		Hw		Hw		Hw		Hw		Hw		Hw		Hw		Hw	
		CWHxm1		CWHxm2		CWHdm		CWHvm1		CWHvm2		CWHmm1		CWHmm2		МН		CWHwh1,2		CWHvh2		
	plant	natural	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area
	1200	500	11.2		11.2		11.2		11.2		11.2		11.2		11.2		11.2		11.2		11.2	
dist	85	50																				
lag	0	-2																				
age		4																				
	1200	1200	11.4	90	11.4	30	11.4		11.4		11.4		11.4		11.4		11.4		11.4	40	11.4	
dist	90	75																				
lag	0	-2																				
age		5																				
	900	3000	10.7		10.7	40	10.7	70	10.7	20	10.7	20	10.7	20	10.7	20	10.7	20	10.7	10	10.7	20
dist	90	80																				
lag		-2 5																				
age	800	ס 12000	11.0		11.0		11.0		11.0	25	11.0	20	11.0	20	11.0	30	11.0	30	11.0		11.0	40
diat	800 85	12000	11.0		11.0		11.0		11.0	35	11.0	30	11.0	30	11.0	30	11.0	30	11.0		11.0	40
dist lag	00	-3																				
age		-3																				
uge		600	6.3		6.3		6.3		6.3		6.3		6.3		6.3		6.3		6.3		6.3	
dist		70	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
age		5																				
		1500	9.0	10	9.0	10	9.0	5	9.0	5	9.0	10	9.0	10	9.0	10	9.0		9.0		9.0	10
dist		90						÷		÷												
age		5																				
		6000	12.0		12.0	20	12.0	20	12.0	5	12.0	5	12.0	10	12.0	10	12.0	20	12.0	10	12.0	10
dist		100																				
age		5																				
spacing			11.2		11.2		11.2		11.2	5	11.2	5	11.2		11.2		11.2		11.2	5	11.2	
		12000	12.4		12.4		12.4	5	12.4	20	12.4	20	12.4	20	12.4	20	12.4	30	12.4	25	12.4	20
dist		100																				
age		5																				
spacing			11.1		11.1		11.1		11.1	10	11.1	10	11.1	10	11.1	10	11.1		11.1	10	11.1	
Total			11.2	100	11	100	11.0	100	11.2	100	11.1	100	11.1	100	11.1	100	11.6	100	11.6	100	11.1	100
		lanted/ di																				
		mplies na																				
mai = m	ean an	nual incr	ement :		•	0cm st	ump, 10	Ocm to	p no OA	AF redu	ctions)	for de	mo pur	ooses o	only							

area = % area in biogeoclimatic variant *Hemlock-type: western/ mountain hemlock, sitka spruce, amabilis-fir, redcedar.

TABLE 6-4c. Hemlock^{*} III: Shelterwood//Group Selection—Old Growth Zone

			H CWH		H CWH		H\ CWF		H CWH		H CWH		H CWH		H CWH		H		H CWH		H CWH	
	plant	natural	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area
	1200	500	11.2	area	11.2	area	11.2	area	11.2	area	11.2	area	11.2	alea	11.2	area	11.2	alea	11.2	area	11.2	area
dist	85	500	11.2		11.2		11.2		11.2		11.2		11.2		11.2		11.2		11.2		11.2	1
lag	0	-2																				1
age	Ũ	4																				1
~90	1200	1200	11.4		11.4		11.4		11.4		11.4		11.4		11.4		11.4		11.4		11.4	
dist	90	75																				
lag	0	-2																				
age		5																				1
	900	3000	10.7	20	10.7	20	10.7	20	10.7	20	10.7	20	10.7	20	10.7	20	10.7	20	10.7	20	10.7	20
dist	90	80																				1
lag		-2																				1
age		5																				Ļ
	800	12000	11.0		11.0		11.0		11.0		11.0		11.0		11.0		11.0		11.0		11.0	1
dist	85	100																				1
lag		-3																				1
age		8	0.0	_	0.0	_	0.0	_	0.0				0.0	_					0.0	-	0.0	
al: a t		600	6.3	5	6.3	5	6.3	5	6.3	5	6.3	5	6.3	5	6.3	5	6.3	5	6.3	5	6.3	5
dist		70																				
age		1500	9	15	9	15	9	15	9	10	9	10	9	10	9	10	9	10	9	10	9	10
dist		90	9	15	9	15	9	15	9	10	9	10	9	10	9	10	9	10	9	10	9	10
age		5																				1
ugo		6000	12	20	12	20	12	20	12	20	12	20	12	25	12	25	12	25	12	20	12	25
dist		100		20		20		20		20	•	20		20		20		20		20		
age		5																				1
spacing			11.2		11.2		11.2		11.2	5	11.2	5	11.2	5	11.2	5	11.2		11.2	5	11.2	
		12000	12.4	40	12.4	40	12.4	40	12.4	30	12.4	30	12.4	30	12.4	30	12.4	40	12.4	30	12.4	40
dist		100																				1
age		5																				I
spacing			11.1		11.1		11.1		11.1	10	11.1	10		5	11.1	5	11.1		11.1	10		
Total			11.2	100		100	11.2	100	11.1	100	11.1	100	11.2	100	11.2	100	11.3	100	11.1	100	11.3	100
dist = su	ırvival p	lanted/ di	stributio	n natur	al; lag =	regen	lag; age	= age	range na	atural.												
		mplies na																				
		nual incr n biogeo			-	0cm st	ump, 10	Ocm to	p no OA	F redu	ctions)	for dei	no purp	ooses o	only							

area = % area in biogeoclimatic variant *Hemlock-type: western/ mountain hemlock, sitka spruce, amabilis-fir, redcedar.

TABLE 6-4d. Hemlock^{*} I, Block 1: Dispersed/Aggregated Retention Timber/Habitat Zone

			H		H		H		H		H		H			W	Н		Н			w
			CWH		CWH		CW		CWH		CWH		CWH			lmm2		H	CWH			Hvh2
	plant	natural	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area
	1200	500	11.2	100	11.2		11.2		11.2		11.2						11.2					
dist	85	50																				
lag	0	-2																				
age		4																				
	1200	1200	11.4		11.4	80	11.4	80	11.4		11.4						11.4					
dist	90	75																				
lag	0	-2																				
age		5																				
	900	3000	10.7		10.7		10.7		10.7	80	10.7	80					10.7	80				
dist	90	80																				
lag		-2																				
age		5																				
	800	12000	11.0		11.0		11.0		11.0		11.0						11.0					
dist	85	100																				
lag		-3																				
age		8																				
		600	6.3		6.3		6.3		6.3		6.3						6.3					
dist		70																				
age		5																				
		1500	9.0		9.0		9.0		9.0		9.0						9.0					
dist		90																				
age		5																				
		6000	12.0		12.0	20	12.0	20	12.0	20	12.0	20					12.0	20				
dist		100																				
age		5																				
spacin	g		11.2		11.2		11.2		11.2		11.2						11.2					
		12000	12.4		12.4		12.4		12.4		12.4						12.4					
dist		100																				
age		5																				
spacin	g		11.1		11.1		11.1		11.1		11.1				[11.1					
Total	-		11.2	100	11.5	100	11.5	100	11.0	100	11.0	100					11.0	100				
a nega mai =	ative lag mean a r	blanted/ d implies na nual inc in biogeo	atural re rement	generat site ind	tion esta dex 27(3	ablished	before	plantin	g. Spac	ing to 1					only							

TABLE 6-4e. Hemlock^{*} II, Block 1: Shelterwood/Group Selection—Timber/Habitat Zone

			H CWH		H CWH		H CWł		H ^ı CWH		H CWH		H CWH		H CWH			H≤	H CWH			lw Hvh2
	plant	natural	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	
	1200	500	11.2	uiou	11.2	ureu	11.2	ureu	11.2	urou	11.2	area	mai	ureu	mai	urou	11.2	uiou	mai	ureu	mai	are
dist	85	500	11.2		11.2		11.2		11.2		11.2						11.2					
lag	0	-2																				
age		4																				
	1200	1200	11.4	90	11.4	10	11.4	10	11.4		11.4						11.4					
dist	90	75																				
lag	0	-2																				
age		5	40.7		10 7		10 7		10 7		10 7						10 7					
	900	3000	10.7		10.7	50	10.7	50	10.7	20	10.7	20					10.7	20				
dist	90	80																				
lag		-2 8																				
age	800	12000	11.0		11.0		11.0		11.0	35	11.0	30					11.0	30				
dist	85	12000	11.0		11.0		11.0		11.0	30	11.0	30					11.0	30				
lag	00	-3																				
age		8																				
Ŭ		600	6.3		6.3		6.3		6.3		6.3						6.3					
dist		70																				
age		5																				
		1500	9.0	10	9.0	10	9.0	10	9.0	10	9.0	15					9.0	10				
dist		90																				
age		5																				
		6000	12.0		12.0	30	12.0	30	12.0	20	12.0	20					12.0	40				
dist		100																				
age		5			44.0		44.0		44.0		44.0						44.0					
spaced		10000	11.2		11.2		11.2		11.2	15	11.2	15					11.2					
diat		12000	12.4		12.4		12.4		12.4		12.4						12.4					
dist		100 5																				
age spaced		3	11.1		11.1		11.1		11.1		11.1						11.1					
fotal			11.1	100		100		100	11.0	100	10.9	100	0	0	0	0	11.1	100	0	0		
		nted/ distrib								100	10.9	100	0	0	0	0	11.1	100	0	0		L

area = % area in biogeoclimatic variant *Hemlock-type: western/ mountain hemlock, sitka spruce, amabilis-fir, redcedar.

TABLE 6-4f. Hemlock^{*} III, Block 1: Shelterwood/Group Selection—Old Growth Zone

			H		H		H		H		H			w	H		H		H			w
			CWH		CWH		CWF		CWH		CWH		CWH	1	CWH		М		CWH		CM	lvh2
	plant	natural	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area
	1200	500	11.2		11.2		11.2		11.2		11.2						11.2					
dist	85	50																				
lag	0	-2																				
age		4																				
	1200	1200	11.4		11.4		11.4		11.4		11.4						11.4					
dist	90	75																				
lag	0	-2																				
age		5																				
	900	3000	10.7	20	10.7	20	10.7	20	10.7	20	10.7	20					10.7	20				
dist	90	80																				
lag		-2																				
age		5																				
	800	12000	11.0		11.0		11.0		11.0		11.0						11.0					
dist	85	100																				
lag		-3																				
age		8																				
		600	6.3	5	6.3	5	6.3	5	6.3	5	6.3	5					6.3	5				
dist		70																				
age		5																				
		1500	9	15	9	15	9	15	9	15	9	15					9	15				
dist		90																				
age		5																				
		6000	12	60	12	60	12	60	12	50	12	50					12	60				
dist		100																				
age		5																				
spacing			11.2		11.2		11.2		11.2	10		10					11.2					
		12000	12.4		12.4		12.4		12.4		12.4						12.4					
dist		100																				
age		5																				
spacing			11.1		11.1		11.1		11.1		11.1						11.1					
Total			11.0	100	11.0	100	11.0	100	10.9	100	10.9	100					11.0	100				
dist = surv a negative	lag impli	es natura	l regene	eration e	establish	ned bef	ore plan	ting. Sp	acing to	o 1200												
mai = me					2/(3000	stum	p, rocm	top no	OAF I	eauctic	ns) tor	uemo	purpos	es only	,							
area = %						-	mahilia	fir rod	adar													
	-type: wes	stern/ mou	untain h	erniock,	, sitka s	Jiuce, a	amadills	-nr, read	jedar.													

TABLE 6-4g. Fir^{*} I: Dispersed/Aggregated Retention—Timber/Habitat Zone

			F	d	F		F	d	F	d	F		F	d	F	d	F		F	d	F	d
			CWH	lxm1	CWH	xm2	CWH	ldm	CWH	vm1	CWH	vm2	CWH	mm1	CWH	mm2	М	Н	CWH	wh1,2	CMF	lvh2
	plant	natural	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	are
	1200	500	8.3	100	8.3	100	8.3	90	8.5	90	8.5		8.5		8.5		8.5		8.5		8.5	8
dist	85	60																				
lag		0																				
age		4							0.5		0.5		0.5		0.5		0.5		0.5		0.5	
al: a t	1200	1200	8		8		8		8.5		8.5	80	8.5	80	8.5	80	8.5	80	8.5	50	8.5	
dist	90	75																				
lag		0																				
age		4																				
	1200	3000	7.7		7.7		7.7		8.2		8.2		8.2		8.2		8.2		8.2	10	8.2	
dist	90	90																				
lag		-1																				
age		5																				
	800	12000																				
dist	80	90																				
lag		-2 5		not us	ed																	
age		600	5.4		5.4		5.4		5.4		5.4		5.4		5.4		5.4		5.4		5.4	
dist		70	5.4		5.4		5.4		5.4		5.4		0.4		5.4		5.4		5.4		5.4	
lag		10																				
age		5																				
		1500	7.3		7.3		7.3	10	7.3	10	7.3		7.3		7.3		7.3		7.3		7.3	
dist		90	_						_				_				_		_			
lag		00																				
age		5																				
0		3000	7.8		7.8		7.8		7.8		7.8	20	7.8	20	7.8	20	7.8	20	7.8	40	7.8	2
dist		90										-		-		-		-		_		
lag																						
age		5																				
		6000	8.0		8.0		8.0		8.0		8.0		8.0		8.0		8.0		8.0		8.0	
dist		90	used f	or inver	ntory pr	ojectio	on only	at pres	ent													
lag							-															
age		5																				
Total			8.3	100	8.3	100	8.2	100	8.4	100	8.4	100	8.4	100	8.4	100	8.4	100	8.2	100	8.4	10 plante

area = % area in biogeoclimatic variant *Fir-type: Douglas-fir, yellow cypress, lodgepole pine

			F		F		F	d	F	d	F		F		F	d	F	d	F		F	d
			CWH	lxm1	CWH	xm2	CWF	ldm	CWH	vm1	CWH	lvm2	CWH	mm1	CWH	mm2	Μ	H	CWH	wh1,2	CWF	lvh2
	plant	natural	mai	area	mai	area	mai	area	mai	area	mai	area	mai		mai	area	mai	area	mai	area	mai	area
	1200	500			8.3		8.3		8.5		8.5		8.5		8.5		8.5		8.5		8.5	
dist	85	60																				
lag		0																				
age		4																				
	1200	1200		80	8	80	8	80	8.5	60	8.5		8.5		8.5		8.5		8.5	10	8.5	60
dist	90	75																				
lag		0																				
age		4																				
	1200	3000	7.7		7.7		7.7		8.2		8.2	60	8.2	60	8.2	60	8.2	60	8.2	50	8.2	
dist	90	90																				
lag		-1																				
age		5																				
	800	12000																				
dist	80	90																				
lag		-2		not us	ed																	
age		5																				
		600	5.4		5.4		5.4		5.4		5.4		5.4		5.4		5.4		5.4		5.4	
dist		70																				
age		5																				
		1500	7.3	10	7.3	10	7.3	10	7.3	20	7.3	20	7.3	20	7.3	20	7.3	20	7.3		7.3	20
dist		90																				
age		5																				
		3000	7.8	10	7.8	10	7.8	10	7.8	20	7.8	20	7.8	20	7.8	20	7.8	20	7.8	40	7.8	20
dist		90																				
age		5																				
		6000	8.0		8.0		8.0		8.0		8.0		8.0		8.0		8.0		8.0		8.0	
dist		90	used f	or inve	ntory pr	ojectio	n only	at prese	ent													
age		5																				
Total			7.9	100	7.9	100	7.9	100	8.1	100	7.9	100	7.9		7.9	100	7.9	100	8.1	100	8.1	100
3m low	er than p	lanted/ di lanted fir nplies na)		-	-		-	-			-	-				(m1/xm)	2/dm; h	emlock	in rest (Hw site	index
		nplies na nual inci																				
						oucin St	ump, 1		0 10 04	AF redu	caons)	for del	no pur	poses (лпу							
rea =	% area I	n biogeo	ciimati	c varia	π																	

TABLE 6-4h. Fir^{*} II: Shelterwood/Group Selection–Timber/Habitat Zone

area = % area in biogeoclimatic variant *Fir-type: Douglas-fir, yellow cypress, lodgepole pine

TABLE 6-4i. Fir^{*} III—Shelterwood/Group Selection—Old-Growth Zone

			F	d	F	d	F	d	F	d	F	d	F	d	F	d	F	d	F	d	F	d
			CWH	lxm1	CWH	xm2	CWH	ldm	CWH	vm1	CWH	vm2	CWH	mm1	CWH	mm2	М	н	CWH	wh1,2	CWH	lvh2
	plant	natural	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area	mai	area
	1200	500	8.3		8.3		8.3		8.5		8.5		8.5		8.5		8.5		8.5		8.5	
dist	85	60																				
lag		0																				
age		4																				
	1200	1200	8	30	8	30	8	30	8.5	30	8.5	30	8.5	30	8.5	30	8.5	30	8.5	30	8.5	30
dist	90	75																				
lag		0																				
age		4																				
	1200	3000	7.7		7.7		7.7		8.2		8.2		8.2		8.2		8.2		8.2		8.2	
dist	90	90																				
lag		-1																				
age		5																				
al: a 4	800	12000																				
dist	80	90 -2																				
lag		-2		not use	a																	
age		600	5.4	5	5.4	5	5.4	5	5.4	5	5.4	5	5.4	5	5.4	5	5.4	5	5.4		5.4	
dist		70	5.4	5	5.4	5	5.4	5	5.4	5	5.4	5	5.4	5	5.4	5	5.4	5	5.4		5.4	5
age		10																				
ugo		1500	7.3	30	7.3	30	7.3	30	7.3	30	7.3	30	7.3	30	7.3	30	7.3	30	7.3	25	7.3	30
dist		90	1.0	00	1.0	00	1.0	00	1.0	00		00	1.0	00	1.0	00	1.0	00		20	1.0	00
age		5																				
- 3 -		3000	7.8	35	7.8	35	7.8	35	7.8	35	7.8	35	7.8	35	7.8	35	7.8	35	7.8	45	7.8	35
dist		90	_		_		_		_				_		_				_		_	
age		5																				
		6000	8.0		8.0		8.0		8.0		8.0		8.0		8.0		8.0		8.0		8.0	
dist		90	used fo	r invent	ory proje	ection o	nly at pr	esent														
age		5																				
Total			8	100		100			7.7	100	7.7	100	7.7	100	7.7	100	7.7	100		100		100
dist = :	survival pla	nted/dist	ribution	natura	l; lag = r	egen la	g; age =	= age ra	nge nat	ural. N	atural r	egen in	planted	stands	= 100%	5 fir in x	m1/xm2	/dm; he	mlock ir	n rest (H	lw site i	ndex 3
m lowe	er than plar	nted fir)																				
	ative lag im														00% fir.							
	mean annu				27 (30	cm stun	np, 10 c	m top n	o OAF i	reductio	ons) for	demo p	urposes	only								
	% area in																					

*Fir-type: Douglas-fir, yellow cypress, lodgepole pine

Tables 6-5a and 6-5b give an illustration of the change in regeneration models with changes in silvicultural system and Stewardship Zone for hemlock and fir types. The current regeneration allocation pattern described in Table 6-5a shows little impact on biological yields for hemlock across the three silvicultural class/Stewardship Zones. There is a small decrease in yields for fir types as natural regeneration is emphasized in the Habitat and Old-Growth Zones for this site index. However, this is mostly explained by a modelling simplification: there being no higher yielding hemlock assumed in the pure natural fir regeneration (yield tables f4, f5 and f6, Table 6-2). Table 6-5b shows that this difference lessens if some of the natural regeneration (under pure natural regeneration conditions) are hemlock.

TABLE 6-5a. Changes in regeneration model with silvicultural system type and Stewardship Zone in the CWHvm1 biogeoclimatic variant for the hemlock type.

Regeneration Model	Timber/Habitat	Timber/Habitat	Old-Growth
see Table 6-2	Dispersed/	Group Selection	Group Selection
	aggregated	/Shelterwood	/Shelterwood
(h3) 900 plant-3000 natural	35%	20%	20%
(h4) 800 plant-12000 natural	45%	35%	
(h5) 600 natural			5%
(h6) 1500 natural		5%	10%
(h7) 6000 natural	5%	10%*	25%*
(h8) 12000 natural	15%	30%*	40%*
mai for Site Index 27	11.2	11.2 (11.4) [#]	11.1 (11.3) [#]
% planted	80%	55%	20%
% area >12000 sph	60%	65%	40%
mean number naturals	8550	9075	7080
% area <1500 naturals	0%	5%	15%

*portions of these regeneration models are assumed pre-commercially thinned (pct); # = not pct'd See Tables 6-4a, 6-4b and 6-4c for more detail.

TABLE 6-5b. Changes in regeneration model with silvicultural system and Stewardship Zone in the CWHxm2 biogeoclimatic variant for the fir type.

Regeneration Model	Mai(1)	Mai(2)	Timber/Habitat	Timber/Habitat	Old-growth
see Table 6-2			Dispersed/ Aggregated	Group Selection /Shelterwood	Group Selection /Shelterwood
(f1) 1200 plant–500 natural	8.3	8.3	100%		0%
(f2) 1200 plant-1200 natural	8.0	8.0		80%	30%
(f4) 600 natural	5.4	6.4			5%
(f5) 1500 natural	7.3	7.6		10%	30%
(f6) 3000 natural	7.8	8.2		10%	35%
mai for Site Index 27			8.3 (8.3)*	7.9 (8.0)*	7.6 (7.9)*
mean number naturals			500	1410	1890
% planted			100%	80%	30%

See Tables 6-4g, 6-4h and 6-4l for more detail. mai (1) in Table 6-4g, 6-4h, and 6-4i. Mai (2) are mais assuming one-third of natural regen for f4, f5, and f6 is hemlock, but growing at a 3 m lower site index. *Brackets are assuming mai (2) numbers. All mais Site Index 27 fir.

Higher stocking levels for hemlock types are represented by the initial stocking density of 12,000 sph.

Recent analyses of MB's permanent plot data shows that precommercial thinning of Douglas-fir and western hemlock as practised operationally, generally decreases stand volumes without improvement in stand values. Some simulations work (e.g., the work of the Stand Density Management Working Group) shows small volume gains in some situations, generally at ages beyond culmination of mean annual increment. The issue of stocking levels and the costs and benefits of precommercial thinning will be addressed in the parallel analysis of silvicultural strategies for TFL 39 (refer to Section 2.5).

For this analysis, precommercial thinning is simulated to occur exclusively in the Habitat and Old-Growth Zones, representing the expected emphasis on wildlife habitat and old-growth attributes that might be achieved through lower stocking. Precommercial thinning reduces yields (see Figure 6-2 for an example). In addition, in the Old-Growth Zone a portion of the landbase is simulated to regenerate at low stocking—600 stems per hectare (on sites where this is encouraged through management intervention or on areas where there is no brush control and little site preparation). These low densities occur on only a very small portion of the landbase (5% within the Old-Growth Zone itself and less than 0.1% of the net timber harvesting landbase) and are expressly for non-timber reasons.

6.2.3 Species Succession

For areas where there is no species information (areas awaiting restocking) and where deciduous species are to be converted to conifer Table 6-6 lists the assumed proportional species allocation.

	Species Pe	ercent				
Biogeoclimatic	Fd	Hw	Cw	Ba	Су	Ss
Variant						
CWHxm1	100					
CWHxm2	77	23				
CWHdm	68	31	1			
CWHvm1		75	18	7		
CWHvm2		50	21	29		
CWHmm1	17	68	15			
CWHmm2		59		41		
MH		36		57	7	
CWHwh1		68	4			28
CWHwh2		100				
CWHvh2		39	40		1	20

TABLE 6-6. Species Allocation: Non-stocked and Successional Changes

6.3 Yield Adjustments

6.3.1 Utilization Levels

Mature: all trees 50% sound and greater, MB Loss Factors

- Image: Minimum dbh: 22.5 cm
- □ Stump height: 30 cm

□ Top dib: 15 cm

Second Growth: all live trees

- □ Minimum dbh: 12.5 cm
- □ Stump height: 30 cm
- □ Top dib: 10 cm

6.3.2 Regeneration Delays

A one-year regeneration delay is assumed in all Stewardship Zones.

6.3.3 Growth Impacts of Brush Competition

Growth impacts of brush are handled implicitly in the regeneration models in terms of likely survival rates (of planted trees) and percent distribution of naturals. The increased emphasis on planting, fertilization at time of planting and brush control has led to a general reduction on the impacts of brush. The yield model allocation is an average yield response assuming some brush competition on some sites and none on others. For instance, the fir yield curves (Table 6-2) never exceed survey 90% natural regeneration distribution (90% of 2.4 m radius plots are stocked) and are only 60%-70% distributed at lower densities. Similarly the hemlock curves only assume a 100% distribution when stocking exceeds 6000 stems per hectare and are assumed to be 50%-75% distributed at lower densities. Yield tables h2 and h3 (Table 6.2) natural regeneration is only 75% and 80% distributed, respectively. These numbers reflect brush/patchy regeneration patterns.

6.3.4 Tree Improvement

The table below shows the volume gain assumed attributable to genetically improved-planted stock. The factors are applied to planted yield tables only (f1a, flb, f2a, f2b, f3a, f3b and h1, h2, h3 and h4, Table 6-2). The unadjusted numbers are reduced by 10% to account for planting in areas where dense natural regeneration will form a portion of the final crop and species other than fir and hemlock are planted.

In collaboration with Timberwest and Canfor, MB has a secure supply of second generation seed.

Volume	gain attributable to	genetic improven	nent of plante	d stock
Planting Year	Fir unadjusted	Hemlock unadjusted	Fir- adjusted	Hemlock- adjusted
1995–2005	3%	1%	2.7%	0.9%
2006+	16%	8%	14.4%	7.2%

Note: adjusted numbers will be applied to all planted yield models in the timber supply analysis.

6.3.5 Non-recoverable Losses

Loss of timber to fire has been small. Records for the last 25 years indicate that losses of standing mature timber (unsalvaged) and of growth in second growth have averaged about 8 000 m³/year.

Timber losses (unsalvaged) to epidemic outbreaks of disease and insects have been minor. Salvage operations in recent years have included Douglas-fir bark beetle mortality in Block 1 and some high risk areas in a conifer sawfly infestation in Block 5. Monitoring of these situations and recent conifer sawfly infestations in Block 2 and black-headed budworm populations in Block 6 continues.

MB is committed to salvaging wind damage in the timber harvesting landbase. Discussions with operational engineers indicate that average unsalvaged losses from patch windthrow have varied across operations in TFL 39 between less than 0.5% and 1% of the AAC.

In this analysis an allowance of 1% of the harvest volume is made for non-recoverable losses.

6.3.6 Operational Adjustment Factors

Adjustments are based on the previous approved TFL 39 MP # 7 numbers:

- Non-productive areas
 - Blocks 1 and 5: 6%
 - Rest: 4%
- □ Insects and disease
 - 2%
- Decay, waste and breakage
 - Fir types: 5%
 - Hemlock types: 6.5%

6.4 Application of Yield Projection to the Inventory

6.4.1 Mature

The mature inventory is assumed static as in previous timber supply analyses and is supported by twenty-year analysis of MB's old-growth plots (Twenty-year re-measurement of old-growth permanent plots, N.J. Smith, 5-28-97 MB Report available on request).

6.4.2 Cruised Second Growth

MB re-inventories second growth when it reaches pole size—generally when it exceeds 31 years. The resulting stocking information (basal area or volume estimates) is used to assign yield tables to these stands. Yield tables h5, h6, h7a and h8a for hemlock and f4, f5, f6 and f7 for fir are used (Table 6.2). The closest curve is followed. Consistent with previous analyses the calculated site index and volume, where available, or basal area (for younger cruised stands) will be used to attach the closest curve for a given age.

6.4.3 Uncruised Second Growth and All Future Stands

The regeneration models are applied as in Section 6.2.

6.5 Site Index and Early Height Growth

6.5.1 Site Index Assignment

MB's biophysical decision tree approach will be used for the analysis—this is the same model used for TFL 39 MP #7 (1994) in an option and as the base case in TFL 44 MP #4 (1997).

The biophysical model uses species, biogeoclimatic variant and geographic location (latitude, longitude as well as operating area) to assign site index based on the leading species for each stand. This model form is the most appropriate one—consistent with available biophysical attributes for the landbase. Note that the biophysical model uses Barker and Goudie's (1987) model for Sitka spruce rather than Nigh's (1996)—the differences are minor at younger ages (less than 80 years, bh) where the site index estimates are made.

TABLE 6-7. Comparison of Biophysical and Recent Cruise Stand Site Index Estimates

Block	Cruise	Biophysical	Area
1	30.1	30.0	20 030
2	30.0	28.9	4 727
3	29.0	30.1	889
4	30.0	30.8	1 386
6	27.9	31.4	2 709
ALL	29.8	30.0	29 741

A comparison was performed on recent second-growth cruise (1992+) and biophysical estimates (Table 6-7) that confirms previous findings of a reasonable agreement between the biophysical model and second-growth cruised data. Most of this cruising was done in Block 1.

Table 6-8 shows a comparison of the biophysical site index estimates by Block compared to inventory site index.

TABLE 6-8. Biophysical Site Index compared to Inventory Site Index—Productive Landbase

Block	1	2	3	4	5	6	7	Total
Biophysical	29	27	28	28	28	26	22	27
Inventory	26	23	24	24	22	21	19	22

6.5.2 Early Height Growth of Western Hemlock

The early height growth of western hemlock is underestimated—an adjustment was previously approved for use in TFL 44, MP #3. Table 6-9 shows the magnitude of the impact.

Height:	3 m		5	i m	7 m	
Site Index	Wiley	MB	Wiley	MB	Wiley	MB
21	12	10	16	14	21	19
27	10	9	14	13	17	16
39	7	6	9	8	11	10

TABLE 6-9. Years to Reach 3 m, 5 m and 7 m using Wiley's and MB HemlockHeight Model

The "MB" adjustment for early height growth in western hemlock and tree improvement gains (Section 6.3.4) are the basis for reducing the time to achieve visually effective greenup in visual landscapes by one year (Section 8.3.2).

6.6 MoF Adjustments to Yield

6.6.1 Uncruised Stand/Regeneration Model Adjustment

The procedure used in TFL 44, MP #3 (1997) will be used to determine additional yield adjustments for uncruised second-growth stands established before 1962 (before MB's Intensive Forestry Program was initiated). This will involve comparing the average yield projected for the cruised stands (established prior to 1962) with that for the regeneration models assigned to the older cruised stands. This approach will be applied separately to stands in the Douglas-fir and western hemlock species associations.

6.6.2 Further Yield Adjustments at Older Ages

For pure fir sites (for this analysis regeneration models for fir in the CWHxm1, CWHxm2 and CWHdm only), the yields have previously been reduced 10% to be more consistent with WinTipsy yield estimates. Yields were further reduced at older ages in TFL 44 MP #3. Current Xeno yield curves are lower than those presented in TFL 39 MP #7. Table 6–10 shows the magnitude ranging from a 2%-17% yield decrease for a planted example to 9%-14% for a natural example.

Estimate Version	Model Type	Site Index 21	Site Index 27	Site Index 36
TFL 39 MP #7	planted	4.7	9.2	23.8
Current	planted	3.9	8.6	23.2
% decrease		17%	7%	2%
TFL 39 MP #7	natural	4.9	9.5	18.6
Current	natural	4.2	8.6	17.0
% decrease		14%	9%	9%

TABLE 6–10. Comparison of XENO Douglas-fir MAI estimates: MP #7 and MP #8

planted: 1,200 fir planted, 85% survival, 300 natural, 50% distribution, -2 year lag, 4 year regeneration (f33a5 in TFL 39 MP #7)

natural: 3,000 stems per ha, 100% distribution, 4 year regeneration (f33n3 in TFL MP #8) note: all volumes 17.5 cm dbh+, 30 cm stump, 10 cm top.

The Xeno yield curves, based on visual inspection, are on average very similar to the WinTipsy yield curves (before OAF reductions) even at older ages, thus no further adjustment is warranted.

6.7 Effects of Forest Project on Yields

The total yield consequence of the Forest Project are two-fold: 1) area/volume reduction for the leave trees, and 2) effects of leave trees on growth of the trees growing in the remaining area. *This section deals only with the second component*—the area/volume reductions are discussed in Section 8.5.

The yield tables in Attachment 1 are clearcut yields. The increased edge and leave tree amount is thought to negatively impact growth—though direct experimental evidence has yet to confirm the amount. The yield adjustments in Table 6-11 are applied directly to the yield tables as a proportional yield adjustment for each zone, i.e., dispersed retention in the Habitat Zone has a consequent proportional yield reduction of 11%, i.e., a 600 m³/ha stand would become 534 m³/ha. A Shelterwood treatment in the Habitat Zone would also be reduced by 11%.

TABLE 6-11.	Framework for Applying Variable Retention Yield Adjustment
	Factors

STEWARD SHIP	SILVICULTURAL			% zone	system % yield	type % yield
Zone	System	Type ²	Description	area	factor	factor
TIMBER	Retention	Dian/A garag	aggregated – 10% left	80	0	1
	Retention	Disp/Aggreg	dispersed – 5% left	10	5	I
	Shelterwood	Shelter/Group	dispersed – 10% left	10	10	10
			ZONE TOTAL	100		2
HABITAT			aggregated – 15% left	40	5	
	Retention	Disp/Aggreg	dispersed – 15% left	10	15	7
	Shelterwood		15% left	25	15	
	Irregular SW ¹	Shelter/Group	15% left	13	15	14
	Group Selection		less than 1 ha patch	12	10	
			ZONE TOTAL	100		11
OLD	Irregular SW ¹	Shelter/Group	2/3 rd left	30	66	30
GROWTH ³	Group Selection	Sheller/Gloup	0.25 – 0.5 ha patches	70	15	30
1			ZONE TOTAL	100		30

¹SW shelterwood

²Dispersed/Aggregated or Shelterwood/Group selection (see Table 6-3)

³Portions of second growth in the Old Growth Zone will be thinned to reduce stand density prior to harvesting. (50% of the volume assumed removed and the final yields will be reduced 25%–applied to yield table as factor)

Further discussion concerning these factors is available in *Effects of Alternative Silviculture on Yield: Coastal BC Forests.* N.J. Smith 1999 (MB report).

No allowance is made for leaving lower volume portions of stands for wildlife or old-growth attributes in some cutblocks (the consequence of which is a marginal increase in yield and a decrease in yield suppression effects).

6.8 Example Yield Adjustments—no Genetics

A hemlock stand, Site Index 27 growing in the CWHvm1, Habitat Zone, under aggregated retention at Age 70 years. Forty-five percent of this type will be grown using yield curve h4 (800 planted, 12000 naturals). At Age 70, yields are

743 m³/ha (Attachment 1). Table 6-12 is an example of the effects of the various operational and growth adjustments. Changes in yield table allocation scenarios (Tables 6-4a to 6-4i) also attempt to account for yield consequences. For example, in the Habitat and Old-Growth Zones portions of the landbase regenerate at lower densities; the lower yields being an implicit consequence of lower management intensity in some areas thus serving as a further yield reduction 'factor'.

Category	Factor	Multiply by	Example m ³ /ha	Cumulative reduction	Reference
Decay, waste, breakage	6.5%	0.935	695	6.5%	Section 6.3.6
Disease/insects	2%	0.94	653	12.1%	Section
Non-productive	4%	0.54	000	12.170	6.3.6
Yield reduction affect of leave trees on next	11%	0.89	581	21.8%	Table 6-10
crop					

 TABLE 6-12.
 Example of Applying Yield Adjustments (Initial Yield Table Value of 743 m³/ha)

6.9 Intensive Forest Management Scenarios

The yield tables capture the consequences of current and proposed future management practices on yield. Additional consequences of differing levels of pre-commercial thinning, commercial thinning and fertilization will be examined under a separate Type II Analysis.

7.0 HARVESTING ASSUMPTIONS

7.1 Analysis Period

The analyses project timber supply in five-year periods from 2001–2005 until 2196–2200. The 1996 to 2000 harvest (actual for 1996 to 1998 and estimated for 1999 and 2000) is modelled to update the inventory from the end of 1995, to the beginning of the first period (2000–2005).

7.2 Harvest Flow Constraints

Where consistent with integrated resource management requirements, harvest levels for Blocks 1, 2, 3+4 and 6 will be constrained to ensure that harvest reductions of more than 10% per decade are avoided unless such reductions are necessitated by timberland reallocation to higher land use. In Blocks 5 and 7 (which do not directly support communities), the transition to LRSY may require harvest reductions in excess of 10% per decade.

7.3 Minimum Merchantability Standards

In the TSA, second growth (new forest) is not considered for harvest until it has attained minimum merchantability standards (maturity).

7.3.1 Second-growth Harvest Strategy

The Protected Area Strategy and the Forest Practices Code have significantly reduced planning flexibility and harvest opportunities in mature timber. The timber harvesting landbase has been reduced substantially and spatial harvesting constraints, quite different from historical harvesting patterns, have been imposed.

Spatial constraints (including maximum block size, adjacency and rate-of-cut restrictions) mean that areas of similar aged second growth will not be harvested over a short period as they were in the previous harvest. Instead they will be harvested over a number of passes, often four or more over a period of 30 or more years.

The strategy then, in the timber zone, is to plan for first pass harvest opportunities in second growth at earlier ages than previously considered. It is proposed that initially, "minimum harvest ages" based on calculations of financial rotations in recent stand level analyses be used. These first pass "minimum harvest ages" will vary between 35 and 70 years depending on site productivity and species. Later harvest passes in similar aged timber will by definition occur at older ages.

This approach takes advantage of the considerable variability in stand conditions in many places and assists in the transition to the desired forest spatial pattern while helping to reduce impacts (of this transition) on timber supply in the medium-term.

The "minimum harvest ages" will assist in providing an initial focus for harvest planning. Collection of more detailed information from inventories and site visits will then indicate priority areas for harvest (e.g., forest health) and areas that must be deferred because of non-timber resource issues or because of harvest economics.

The variation in species, site productivity, terrain, stewardship zones, silvicultural systems and management concerns such as visual landscapes will result in a wide range of stand types and rotation ages across the forest.

7.3.2 Minimum Harvest Age Assumptions

Minimum harvest ages will be defined in the analysis as follows:

- \Box A minimum volume of 350 m³/ha.
- □ A minimum age of 35 years.
- An age of 200 (if the volume is below 350 m^3 /ha at age 200).

Second-growth harvest operations, primarily on Southern Vancouver Island and a recent analysis of second-growth harvest opportunities on private land both show that harvesting of stands with volumes of 350 m³/ha plus to be generally economic.

Note that in the TSA, areas are often harvested well beyond their merchantability ages, depending on the availability of "merchantable" timber and cover class constraints. Further, a maximum volume objective will be applied to the linear programming approach used in the MP #8 analysis. Subject to harvest flow constraints, this will tend to increase harvest ages on medium and high sites,

towards culmination of mai. Average harvest ages and volumes per hectare will be reported for Option 1.

7.4 Initial Harvest Levels

The strategy as outlined in earlier management plans is to gradually adjust harvest levels towards our best estimate of LRSY for the forest.

There have been substantial changes in landbase and management assumptions since MP #7. The timber harvesting landbase has been reduced because of additional allowances, particularly for riparian areas, recreation and WTPs. Further the Forest Project provides for additional old-growth areas and stand level retention.

Initial harvest levels will be determined by trial and will depend on the interaction of the changes in assumptions (since MP #7) and harvest flow constraints (Section 7.2). It is expected that initial harvest levels will be lower than the AAC allocations for Blocks 2 to 7 (refer to Table 7-1). The earlier harvest history and large merchantable second-growth resource may allow an increase in the Block 1 harvest.

 TABLE 7-1. MP #7 AAC Allocation by Working Circle (000 m³/year)

Working Circle	MP #7 AAC Allocation
Block 1	445
Block 2	1 335
Blocks 3+4	415
Block 5	100
Block 6	1 210
Block 7	195
Deciduous	40
Total	3 740

8.0 INTEGRATED RESOURCE MANAGEMENT

This TSA explicitly recognizes a wide range of sensitive sites and non-timber resource concerns.

This section describes the status of non-timber resource inventories, and the approaches taken to consider these values in the TSA, reductions to the timber harvesting landbase and the application of cover class (rate-of-harvest) constraints.

8.1 Status of Non-Timber Resource Inventories

Non-timber resource mapping and netdown procedures have been developed in conjunction with personnel from the MoF and MoE.

Tables in this section shows that significant portions of TFL 39 have been mapped as important for riparian, wildlife, recreation, and visual landscape values and as unstable sites.

Management implications of these sensitive sites and non-timber resource concerns are modelled in the TSA as either a reduction in the timber management working landbase or as a cover class constraint. Sections 8.11 to 8.15 provide details on netdown procedures for sensitive soils, riparian areas, recreation, wildlife and cultural heritage resources. Area reductions are summarized in Section 8.2 and cover class constraints for visual landscapes, avalanche zones and community watersheds are described in Section 8.3. Biodiversity (stand level and landscape level) assumptions are described in Section 8.4 and Section 8.5 summarizes area assumptions for the Forest Project.

8.1.1 Sensitive Soils

Mapping for sensitive soils has varied across the blocks in TFL 39. Refer to the correspondence copied in Attachment 2 for inventory details and for the general agreement on application of the inventories in the analysis.

There are two variations from the letters in Attachment 2. It was not possible to include the more recent five-class mapping in the Tsitika Watershed of Block 2. The earlier six-class mapping is used instead. The netdown for class IV soils in Block 7 has been applied as 20% instead of the <=20% described in the letter.

The resulting netdowns for Block 7 are high compared to the other blocks. Refer to Table 8.2. The Block 7 mapping and netdown factors have been reviewed by MB and MoF soils specialists. It is expected that a verbal agreement to reduce the Class V netdown to 80% and the Class IV netdown to 5% will be confirmed by writing in early November. The revised netdowns will be applied in the analysis.

Table 8-1 summarizes the netdowns.

	% Netdowns							
Block	Class IV	Class IV Class V Class VI Es2 Es1						
1.	NA ⁽¹⁾	NA	NA	20	90			
2.	20	90	100	15	85			
3.	NA	NA	NA	15	85			
4.	NA	NA	NA	15	85			
5.	NA	NA	NA	20	90			
6.	20	90	100	NA	NA			
7.	20	90	NA	NA	NA			

TABLE 8-1. Summary of Netdowns for Terrain Stability Units

⁽¹⁾ NA – Not Applicable

TABLE 8-2. Percentage of Physically Operable ProductiveArea Unavailable Because of Terrain Stability

Block	Percent
1	4.4%
2	5.5%
3	1.1%
4	4.6%
5	7.0%
6	11.6%

7	21.7%
TFL 39	8.2%

8.1.2 Riparian Areas

Information within MacMillan Bloedel's GIS database has been used to approximate the netdowns for riparian areas described in the Riparian Management Area Guidebook (December 1995).

The database includes streams, lakes and wetlands mapped to a 1:20 000 scale. It also includes information on hydrologic stream order, fish streams and community watersheds.

Applications is as follows:

Spatial Information

Streams

The Guidebook variables for determining the riparian buffer width and reserve percentage include stream width and the occurrence of fish or community watersheds.

Since stream width information is currently not available, hydrologic stream order has been used to approximate stream width. Refer to Table 8-3.

Inventory information on the presence or absence of fish has been used where available. Elsewhere, stream gradients (as measured on the TRIM 1:20 000 mapbase) of less than 20% have been used as the basis for classifying streams as fish bearing. Adjustments were made to correct for alternating small sections of fish and non-fish because of gradient changes. All resulting non-fish sections less than 150 meters in length that had fish bearing water upstream and downstream were changed to fish bearing. Subsequent to these changes, upstream portions (including tributaries) of "non-fish" streams were also coded as non-fish.

The derived coverage of stream class was reviewed by operations and changes were made accordingly.

The definition of community watersheds has been obtained from the MoELP web site.

Stream Order	Implied Width (m)	Fish or Community Watershed	Default Stream (S) – Class
1	<=3.0	No	S6
2 plus	>3.0	No	S5
1	<1.5	Yes	S4
2	1.5 – 5.0	Yes	S3
3 or 4	5.0 - 20.0	Yes	S2
5 plus	>20.0	Yes	S1

TABLE 8–3. Assignment of Stream Class

Buffers have been created adjacent to mapped streams and netdowns applied as described in Table 8-4.

Stream ⁽¹⁾ Class	Stream Order	Implied Width (m)	Reserve Zone (m)	Width (m)	% Netdown
S1	S05 plus	>20	50	20	30
S2	S03, S04	5 - 20	30	20	30
S3	S02	1.5 - 5	20	20	30
S4	S01	<1.5	0	30	15
S5	S02 plus	>3.0	0	30	15
S6	S01	=3.0	0	20	3

TABLE 8-4.	Netdowns	for Stream	Riparian Areas
------------	----------	------------	-----------------------

(1) Stream classes 1 to 4 apply to fish streams and community watersheds.

(2) Management Zone % netdowns are 60% of the maximum values defined in the Guidebook.

Lakes and Wetlands

Buffers have been created adjacent to mapped (at the1:20,000 scale) lakes and wetlands and netdowns applied as described in Table 8–5.

TABLE 8–5.	Netdowns for	Lakes and	Wetlands	Riparian Areas
------------	--------------	-----------	----------	----------------

		Size	Reserve Zone	Mana	igement Zone	
			(m) (100% Netdown)	Width (m) All except Block 7	Width (m) Block 7 ⁽²⁾	Netdown (%) ⁽¹⁾
Lakes	L1 large	> 1000 ha	0	10	40	15
	L1	5 – 1000 ha	10	0	40	
	L2	1 – 5 ha dry zone ⁽³⁾	10	20	20	15
	L3	1 – 5 ha wet zone	0	30	30	15
	L4	0.5 – 1 ha dry zone	0	30	30	15
Wet- lands	W1	> 5 ha	10	40	40	15
	W2	1 – 5 ha dry zone	10	20	20	15
	W3	1 – 5 ha wet zone	0	30	30	15
	W4	0.5 – 1 ha dry zone	0	30	30	15

(1) Management Zone % net-downs are 60% of the maximum values defined in the Riparian Management Area Guidebook

(2) The Mid Coast District requirement for a 40 m management zone adjacent to all L1 lakes, has been applied.

(3) The "dry" zone includes the CDF, CWHds, CWHdm and CWHxm biogeoclimatic zones. Other zones in TFL 39 are in the "wet" zone.

Results

TABLE 8–6. Riparian (Streams, lakes and wetlands) Netdowns to the Productive Operable⁽¹⁾ Area (ha)

Block	Reserve Zones	Management Zones	Total	% of Productive Operable Area
1	2 062	1 281	3 343	3.7%
2	5 225	2 272	7 497	4.7%
3	206	148	354	2.4%
4	1 427	730	2 157	5.6%
5	671	249	920	7.0%
6	7 596	3 547	11 143	5.9%
7	1 026	612	1 638	5.8%
TOTAL	18 213	8 839	27 052	5.1%

⁽¹⁾The productive forest has been reduced only by those areas that are not physically operable.

Management Zone netdowns are 60% of the maximum values defined in the Riparian Management Area Guidebook. The sensitivity of the netdown to varying the netdown percentage is shown in the next table.

Block	Analysis (60% of Max values)	Guidebook Max Values	Difference
1	1 281	2 135	854
2	2 272	3 787	1 515
3	148	247	99
4	730	1 217	487
5	249	415	166
6	3 547	5 912	2 365
7	612	1020	408
TOTAL	8 839	14 733	5 894

TABLE 8–7. Sensitivity of Management Zone Netdown to the Percentage Netdown

An Allowance for Streams not Mapped at the 1:20 000 Scale

The streams that are not mapped at 1:20 000 are small and generally not expected to contain fish. Most will be stream Class 6 with a relatively small management reserve zone. A netdown of 1% of the net landbase (after considering mapped netdowns) is made as an additional allowance for these areas.

8.1.3 Recreation

Inventories have been completed as described in the following table.

Inventory	Standard	Completed	Reviewed
REC – Block 1	MoF 1991	March/95	commissioned by MoF (SCFD)
REC – Block 2	MoF Version 2.0	Nov 9/98	C. Cornfield, Nov 5/98 (CRFD)
REC – Block 3	MoF Version 2.0	Nov 9/98	C. Brady, Nov 4/98 (PMFD)
REC – Block 4	MoF Version 2.0	Nov 9/98	C. Brady, Nov 4/98 (PMFD)
REC – Block 5	MoF Version 2.0	Dec 5/98	C. Cornfield, Jan 28/99 (CRFD)
REC – Block 6	MoF Version 2.0	Oct/97	B. Eccles, Dec 1/97 (QCFD)
REC – Block 7	MoF Version 2.0	Jan 22/99	D. Herchmer, Feb 11/99 (Region)
ROS – Block 1	MoF 1991	March/95	commissioned by MoF (SCFD)
ROS – Block 2	MoF Version 2.0	Nov 9/98	C. Cornfield, Nov 5/98 (CRFD)
ROS – Block 3	MoF Version 2.0	Nov 9/98	C. Brady, Nov 4/98 (PMFD)
ROS – Block 4	MoF Version 2.0	Nov 9/98	C. Brady. Nov 4/98 (PMFD)
ROS – Block 5	MoF Version 2.0	Dec 5/98	C. Cornfield, Jan 28/99 (CRFD)
ROS – Block 6	MoF Version 2.0	Oct/97	B. Eccles, Dec 1/97 (QCFD)
ROS – Block 7	MoF Version 2.0	Jan 22/99	D. Herchmer, Feb 11/99 (Region)
VIS – Block 1	MoF, 1990	March/93	B. Rebantad, early, 1993 (SCFD)
VIS – Block 2	MoF, May/97	Sept 1/98	C. Cornfield, Aug 18/98 (CRFD)
VIS – Block 3	MoF, May/97	Sept 1/98	C. Brady, Nov 4/98 (PMFD)
VIS – Block 4	MoF, May/97	Sept 1/98	C. Brady, Nov 4/98 (PMFD)
VIS – Block 5	MoF, May/97	Dec 5/98	C. Cornfield, Jan 28/99 (CRFD)
VIS – Block 6	MoF, Version 2.0	Oct/97	B. Eccles, Dec 1/97 (QCFD)
VIS – Block 7	MoF, May/97	Jan 22/99	K. Lee, Jan 25/99 (Region)
RAMS – Block 1	Vancouver Forest	July/99	Pending
RAMS – Block 2	Region Guidelines,	June/99	Pending
RAMS – Block 3	received, Jan/99	June/99	Pending

TABLE 8–8 .	. Summary of Recreation and Visual Landsca	be Inventories
--------------------	--	----------------

RAMS – Block 4	June/99	Pending	
RAMS – Block 5	June/99	Pending	
RAMS – Block 6	April/99	B. Eccles, April/99 (QCFD)	
RAMS – Block 7	July/99	Pending	

Table abbreviations:

- REC recreation inventory
- ROS recreation opportunity spectrum inventory
- UIS visual landscape inventory
- RAMS..... recreation analysis report
- MoF..... Ministry of Forests
- SCFD Sunshine Coast Forest District
- CRFD Campbell River Forest District
- PMFD Port McNeill Forest District
- QCFD...... Queen Charlotte Forest District

Draft recreation analysis reports for Blocks 1 to 5 and 7 have been distributed for review. It is expected that the final reports will be sent out by October 1999.

Netdowns for recreation values are based on the recreation feature class in the recreation inventory.

Recreation Feature Class	Netdown Factor	Comments
0	Er1—100%	
1	Er2—50%	
1	Karst—7%	Includes the recreation feature karst plateau (K03). Applied in Blocks 2 and 4.

Extensive areas of karst occur in Blocks 2 and 4. Entrances for discovered caves are generally classified with a recreation feature Class "0". The 7% allowance provides for additional discoveries and is based on data collected by the Campbell River District (MoF).

An adjustment has also been made in the analysis for Block 1 Er2 areas. The recreation inventory for Block 1 includes substantial areas classified as Er2, largely because of visual landscape values. These map polygons overlap areas classified with the partial retention Recommended Visual Quality Class (RVQC) in the visual landscape inventory. To avoid double counting of constraints for management of these visual landscapes, the Er2 constraint is ignored where the overlap occurs and only the partial retention constraint is applied. The area of overlap is approximately 12 000 ha of physically operable productive forest.

The netdowns are based on the report, "Procedures for Factoring Recreation Resources into Timber Supply Analysis", Ministry of Forests, 1993. There is concern that the application of the Er2 factor of 50% may be more constraining than necessary. A large area (42 610 ha of physically operable productive forest) is classified with a recreation feature class 1 and hence is expressed as Er2 and netted-down at 50%.

Planning detail is generally not available to be more discerning on netdown factors. There are situations where a netdown need not be as high as 50%. For instance, stream corridor polygons may be rated "C1", mainly for fishing. If a mapper tends to use physiographic breaks to define polygons, the boundaries will follow the edges of floodplains and polygon width may be quite high. Such

areas being netted-down at 50% may be much more than that required to protect the resource (fish) and the fishing experience or opportunity.

As a simple sensitivity, if the average net down for Er2 was halved to 25% then the physically operable productive forest affected would be reduced by 10 652 ha (refer to Table 8-9).

A project has been initiated to review the TFL 39 recreation netdowns for strategic analysis. Recreation inventory polygons that might warrant a lower netdown have been identified. These will be reviewed with MB Divisions and MoF District staff. The results of these discussions will be included in discussion of the landbase sensitivity analysis (Options 8 and 9).

8.1.4 Wildlife

Deer and elk winter ranges in Blocks 2 and 4 are similar to those applied in MP #7. Minor changes have occurred after consultation with MoELP specialists. Two new deer winter ranges have been located in Block 1. Netdowns of 100% are applied to Ew1 areas and 50% for Ew2 areas.

Critical habitat areas for grizzly bear and goats in Blocks 1 and 5 have been reviewed and revised in conjunction with the MoELP District Forest Ecosystem Specialist. The resulting areas are described in Table 8-9. Netdowns of 90% are applied to Ew1 areas and 50% for Ew2 areas. These areas, particularly those for goats have increased significantly since MP #7. The netdowns will be reviewed and if significant the results will be discussed in the analysis report.

In Block 7, consultation with MoELP specialists has resulted in using the revised Terrestrial Ecosystem Mapping (TEM) for identifying attributes of critical grizzly bear habitat. The modelling approach developed by the MoELP (Victoria) is used to identify TEM polygons that include very high (Ew1) or high (Ew2) value habitat characteristics.

It was agreed to apply a netdown of 55% to the Block 7 grizzly bear Ew1 polygons, corresponding to the average proportion of these areas that has very high habitat values. For the Ew2 polygons a netdown of 25% is to be applied. This is half of the average proportion of these areas that has high habitat values.

8.1.5 Cultural Heritage Resources

A revised Archaeological Overview Assessment (AOA), funded by the MoF, has been completed in the Block 6 portion of the Queen Charlotte Islands. During August to October 1999, MB funded the conversion of the data into an Arc Info format for the use in the MP #8 analysis. At the time of writing this report, the conversion was not complete and hence the results could not be included. The analysis will include an additional netdown allowance for CMTs in areas zoned in the AOA for high likelihood of CMTs.

The reports of CMT surveys during the last three years in Block 7 were examined. They show relatively little occurrence of CMTs in harvest planning areas during that period. Variable retention will provide the flexibility to place retention areas to protect such CMT sites. Similarly for the more southern blocks of TFL 39, it is expected (and assumed in the analysis) that variable retention will provide adequate protection for CMTs.

8.2 Reductions to the Timber Harvesting Landbase for Sensitive Sites and Non-Timber Resource Values

These area reductions are made after deductions for non-forest, non-productive, low sites and physically inoperable areas. Table 8-9 shows the reduction in area and Table 8-10 the reduction in mature volume. Note that area reductions include mature, second growth and NSR, i.e., they do not directly relate to mature volumes.

The reduction factors have been applied to the total mapped area (after allowance for physically inoperable areas) to obtain the areas and volumes in the tables. For example the 7 766 ha of Er2 Areas in block 1 is multiplied by 0.5 to obtain the 3 883 ha in Table 8-9.

The totals in Tables 8-9 and 8-10 are simple additions across the categories in the tables. The item "Net" at the end of each table excludes any area overlap that may occur between resource values. These "Net" areas and volumes are included in Section 5.3.6 on "Determination of the Timber Harvesting Landbase."

		Reducti on Factor	Block 1	Block 2	Block 3	Block 4	Block 5	Block 6	Block 7	TOTAL
	Avalanche (Ea1)	0.2	179	105		46	39		89	458
	Soils (Es1 + Class V)	0.85–1.0	2 237	6 597	80	1 185	601	19 262	4 292	34 254
Soils	(Es2 + Class IV)	0.15-0.2	1 750	2 196	77	574	318	2 563	1 867	9 345
Š	TOTAL SOILS		3 987	8 793	157	1 759	919	21 825	6 159	43 599
	Stream Reserves	1.0	1 798	4 984	190	1 346	662	7 183	906	17 069
	Stream Management Zones	0.03-0.3	1 180	2 106	136	666	241	3 307	519	8 155
6	Lakes and Wetlands Reserves	1.0	263	241	16	81	9	411	120	1 141
Riparian	Lakes & Wetlands Mgmt Zones	0.15	110	166	12	64	8	237	93	690
Ř	TOTAL RIPARIAN		3 351	7 497	354	2 157	920	11 138	1 638	27 055
	Deer and Elk (Ew1)	1.0	150	6 302		386				6 838
	(Ew2)	0.5	4	280		19				303
Wildlife	Grizzly Bear (Ew1)	0.55–0.9	24				869		112	1 005
lld	(Ew2)	0.25–0.5	83				173		359	615
≥	Goats (Ew1)	1.0	3 832				994			4 828
	(Ew2)	0.5	80				41			121
	TOTAL WILDLIFE		4 173	6 582		405	2 079		471	13 710
u	Regeneration (Ep1)	0.9	4			2				6
Regen	(Tsitika)	0.9		1 882						1 882
Ľ.										
.0	Recreation (Er1)	1.0	702	1 187	43	20	313	4 376	479	7 120
eat	(Er2)	0.5	3 883	4 018	796	843	362	10 380	1 023	21 305
Recreatio n	(Kast)	0.07		636		460				1 096
	TOTAL RECREATION		4 585	5 841	839	1 323	675	14 756	1 502	29 521
	TOTAL		16 279	30 700	1 350	5 692	4 632	47 719	9 859	116 231
	NET		14 622	26 607	1 289	5 151	3 437	43 117	8 631	102 854

TABLE 8–9. Reductions to the Productive Operable Area for Sensitive Sites and Non-Timber Resources (ha)

PAGE 54

		Reducti	Block 1	Block 2	Block 3	Block 4	Block 5	Block 6	Block 7	TOTAL
		on								
		Factor								
	Avalanche (Ea1)	0.2	87	82		27	28		51	276
6	Soils (Es1 + Class V)	0.85–1.0	776	4 042	34	559	390	9 153	2 482	17 436
Soils	(Es2 + Class IV)	0.15–0.2	445	1 236	20	264	189	1 117	1 019	4 290
S	TOTAL SOILS		1 221	5 278	56	823	579	10 270	3 501	21 726
	Stream Reserves	1.0	196	1 510	5	199	242	2 419	576	5 147
	Stream Management Zones	0.03–0.3	127	639	7	118	82	1 071	306	2 350
6	Lakes and Wetlands Reserves	1.0	18	65	1	21	4	139	71	319
riar	Lakes & Wetlands Mgmt	0.15	6	52	1	10	2	82	53	206
Riparian	Zones									
Ř	TOTAL RIPARIAN		347	2 266	14	348	330	3 711	1 006	8 022
	Deer and Elk (Ew1)	1.0	52	4 358		248				4 658
	(Ew2)	0.5	1	189		15				205
fe	Grizzly Bear (Ew1)	0.55-0.9	17				383		67	467
Wildlife	(Ew2)	0.25-0.5	57				131		240	428
Ň	Goats (Ew1)	1.0	736				688			1 424
	(Ew2)	0.5	28				27			55
	TOTAL WILDLIFE		891	4 547		263	1 229		307	7 237
_	Regeneration (Ep1)	0.9	2			3				5
Regen	(Tsitika)	0.9		1 291						1 291
Re										
	Recreation (Er1)	1.0	371	525	2	7	98	1 974	318	3 295
atic	(Er2)	0.5	625	1 202	124	315	153	3 588	581	6 588
Recreatio n	(Kast)	0.07		188		49				237
ЪЧ	TOTAL RECREATION		996	1 915	126	371	251	5 562	899	10 120
	TOTAL		3 544	15 380	194	1 835	2 417	19 543	5 764	48 677
	NET		3 157	13 398	180	1 670	1 885	17 679	5 003	42 972

TABLE 8–10. Reductions to Operable Mature	Volumes for Sensitive Sites and	Timber Resources $(000^3)^{(1)}$
	volumes for bensitive bites and	

(1) Volumes are AAC Utilization (i.e., Close U less decay, cull, breakage and W₂)

8.3 Forest Cover Requirements

8.3.1 Adjacent Cutblocks and Greenup

- After an area is harvested, adjacent areas cannot be harvested until a greenup status is achieved. An allowance is made for harvest scheduling impacts of this constraint by recognizing the average period to achieve greenup and the number of harvest passes required to harvest all areas once.
- □ The average period to achieve greenup is 10 years.
- It is estimated that four harvest passes would be required to harvest all areas once.
- Adjacency is modelled by allowing a maximum of 25% (four harvest passes) of the timber harvesting landbase, not included in more stringent cover class constraints (e.g., visual landscape), to be less than 10 years of age at any time.

8.3.2 Visual Landscape

Visual Landscape Inventories have been completed during MP #7. Refer to Section 8.1.3 for a description of the inventories. In general the new inventories are more site specific than those used in MP #7. The result is a decrease in area in the Recommended Visual Quality Class (RVQC) partial retention. This changes is most noticeable in Block 6 (QCI) and least in Block 1 (Powell River).

In the TSA, forest cover constraints are applied separately to each RVQC within a working circle. The constraints limit the rate-of-harvest by defining the maximum area that may be below a certain height at any given time.

The two main variables used to define the constraints are the Visually Effective Greenup age (VEG) and the maximum allowable area below VEG.

VEG was defined for the base options of this TSA as the average age to reach a site height of 5 m (Blocks 1 to 5) or 6 m (Blocks 6 and 7). These average ages have been calculated by Block and RVQC zone, hence units with higher site indices, on average, have fewer years to achieve VEG.

Table 8-11 lists the average site heights and ages for VEG by Working Circle and RVQC. The average regeneration delay of one year, applied in most options, is assumed to be offset by gains from tree improvement. In addition, a recent review shows that hemlock site index curves understate early height development in that species (refer to Section 6.5).

Block	VEG (site	Avera	ge Years to Meet VEG	s to Meet VEG by RVQC		
	height in m)	Retention	Partial retention	Modification		
1	5	15	15	15		
2	5	18	14	15		
3+4	5	13	14	15		
5	5	N/A	15	17		
6	6	17	16	16		
7	6	21	21	23		

TABLE 8–11. Visually Effective Greenup (VEG) Heights and Ages

The upper end of the range (of maximum allowable area below VEG) is modeled in the base option. This assumes effective implementation of visual landscape mitigation strategies. The maximums are 5% for retention areas, 15% for partial retention and 25% for modification. The percentages refer to the total forest area within the RVQC. Option 6 assumes the midpoint of the range for maximum allowable area below VEG; that is 3% for retention, 10% for partial retention and 20.5% for modification.

Table 8-12 summarizes the visual landscape constraints by working circle and RVQC, including forest area, timber harvesting landbase, years to VEG and the maximum allowable area under VEG.

Working	RVQC	Forest	Timber Harvesting	Years	Maximum
Circle		Area (ha)	Landbase area (ha)	to	Allowable Area
				VEG	Below VEG (%)
Block 1	Retention	481	184	15	5.0
	Partial Retention	47 571	25 818	15	15.0
	Modification	20 298	8 354	15	25.0
Block 2	Retention	1 529	782	18	5.0
	Partial Retention	10 843	5 870	14	15.0
	Modification	15 315	9 804	15	25.0
Blocks 3+4	Retention	93	18	13	5.0
	Partial Retention	6 251	4 187	14	15.0
	Modification	707	579	15	25.0
Block 5	Partial Retention	1 768	675	15	15.0
	Modification	132	57	17	25.0
Block 6	Retention	2 706	425	17	5.0
	Partial Retention	38 324	13 336	16	15.0
	Modification	29 631	19 162	16	25.0
Blocks 7	Retention	320	60	21	5.0
	Partial Retention	3 669	1 305	21	15.0
	Modification	860	243	23	25.0
Total TFL 39	Retention	5 129	1 469		5.0
	Partial Retention	108 426	51 191		15.0
	Modification	66 943	38 199		25.0

 TABLE 8–12.
 Summary of Visual Landscape Constraints

8.3.3 Avalanche Areas

Avalanche run-out zones have been mapped as Ea1 areas. In addition to the 20% reduction in area (Section 8.2), a cover class constraint is applied by Working Circle to the Ea1 areas remaining in the working forest.

The constraint allows no more than 20% of the forested area to be less than 30 years of age at any time.

Working Circle	Forest Area (ha)	Timber Harvesting Landbase (ha)
Block 1	5 138	527
Block 2	638	273
Blocks 3 + 4	1 130	144
Block 5	561	83
Block 6	N/A	N/A
Block 7	506	178
Total TFL 39	7 973	1 205

TABLE 8-13. Avalanche Cover Class Areas

There is no Ea1 in Block 6.

The timber harvesting landbase for Ea1 Areas is relatively small because of substantial reductions for non-productive and inoperable areas and for sensitive soils and other ESAs (including the 20% applied specifically to Ea1 Areas).

8.3.4 Community Watersheds

The MoELP's map of designated community watersheds has been included in the data set.

Table 8-14 lists the five community watersheds in TFL 39. The watersheds listed for Block 1 and Block 6 are each partially within the TFL. Newcastle Creek in Block 2 is almost wholly within the TFL.

A cover class constraint is applied to each community watershed. The constraint allows no more than 5% of the forested area to be less than 5 years of age at any one time.

Block	Watershed Name	MoELP #	Forested Area within TFL 39 above POD (ha) ⁽¹⁾
1	Jefferd	900.031	49
	Lang	900.034	1 734
	Whittal	900.069	715
2	Newcastle_2	920.044	902
6	Honna	GRA.001	2243

TABLE 8-14. Designated Community Watersheds in TFL 39

⁽¹⁾Only part of the Jefferd, Lang and Whittal and Honna community watersheds are within TFL 39. POD refers to Point of Diversion.

8.3.5 Coastal Watershed Assessment Procedures (CWAPs)

In most cases the results of CWAPs are applied to forest management practices over a short (5-10 year) timeframe. In some cases, results are applied over longer timeframes (e.g., 10 years) and are often related to the concept of the Equivalent Clearcut Area (ECA). ECA is a coarse indicator of possible stream flow changes in a watershed, based on a simple and largely unverified linear model relating tree height and "hydrologic recovery".

In Blocks 1 to 4, CWAPs that have resulted in defined rate of harvest restrictions (ECA) are listed in Table 8–15. The professionals involved in this CWAP work

have converted the ECA recommendation into maximum annual harvest rates for use in this analysis. The harvest rate restrictions will be applied for the first 10 years of the analyses.

ECA restrictions have also been described for a number of watershed basins in Block 6. Generally, these basins are showing quick hydrologic recovery as stands resulting from earlier logging are reaching 10 m to 15 m and greater in height. Minimal impacts on harvest schedules are expected.

Block	Watershed	Basin	Productive Forest (ha)	THLB (ha)	Maximum Cut (ha/year)
1	Whittal	Total basin	676	575	10
1	My	Total basin	874	675	28
2	Adam	Rooney Creek	1 707	1 437	25
2	Adam	Kim Creek	2 328	1 848	34
2	Elk	North A	1 178	872	5
2	Elk	South B	11/0	012	5
2	Tsitika	Akan Creek (8)			190
2	Tsitika	Russell Creek (9)	5 173	4 033	46
2	Tsitika	Muskeg (10)	5175	4 033	20
2	Tsitika	Basin 11			4
4	Benson	Craft (5)	3 160	2 224	18
4	Benson	Basin 7	5 100	2 224	49
4	Waukwass	Basin 1	3 470	2 768	93
4	Waukwaas	Basin 2	3470	2700	6

TABLE 8–15. CWAP Rate of Harvest Restrictions Applied in the Analysis

8.4 Biodiversity

8.4.1 Wildlife Tree Patches (WTPs)

Table 20(a) of the Biodiversity Guidebook (September 1995) has been used to assign targets for WTPs by landscape unit and biogeoclimatic variant. Table 20(b) is currently been used to assign WTP targets operationally. It is, however, appropriate to use Table 20(a) for a long-term analysis as it is expected that landscape units will soon be formally designated and that landscape biodiversity objectives will be established during the next few years.

Netdowns for WTPs have been calculated by reducing the WTP targets by 75%. This follows assumptions used in recent Coastal timber supply analyses. The rationale is that 75% of the WTP requirements will be met by forest areas retained as sensitive sites (riparian and unstable soil areas), on inoperable slopes and for non-timber values (e.g., recreation and wildlife).

A Block area weighted average has been derived for use in the analysis. These are as follows:

Average WTP netdown (%) by Block

Block							
1	2	3	4	5	6	7	
3.0	2.4	3.6	3.1	2.0	2.0	1.0	

An area reduction is used to model WTP reserves as generally they are 2 ha and larger and hence may contribute towards meeting old seral stage requirements at the landscape unit level.

8.4.2 Landscape Biodiversity

The procedure to be applied in Option 1 (the base option) follows the methodology described in the note on "Incorporating Biodiversity and Landscape Units in the Timber Supply Review" in the "Tree farm Licence Management Plan Guidelines", MoF, August 1998.

Old seral constraints are applied as a cover class constraint to the forested areas for combinations of draft landscape units and biogeoclimatic variants within TFL 39. Some landscape units that have a very minor presence in the TFL (less than 200 ha of productive forest area) are not included as they will have minimal impact on the results.

The approach is to include all reserved old growth (as classified in MB's forest inventory) as contributing to the old seral targets. This includes non-productive forest, spatial net-downs in productive forest (for soils, riparian, wildlife and recreation, etc.) and factor net-downs for small stream riparian areas, wildlife tree patches, and additional old-growth reserves and variable retention (Forest Project). In the base option, areas that are currently second growth may contribute to old seral targets when they reach 250 years of age.

Note that the intention of the Forest Project (variable retention and old-growth zones) is to provide an alternative way to achieve landscape biodiversity objectives. Discussions between MB, MoF and MoELP staffs are continuing on this issue. As it has not yet been resolved, this analysis includes both an estimate of the impact of the Forest Project and the requirement for old seral targets.

For the base option, old seral targets are based on the weighted average of 10%, 45% and 45% for high, intermediate and low biodiversity emphases respectively. Since the low biodiversity emphasis allows for a transition to old seral targets over three rotations the target levels (Table 8–17) are also increased over a period of three rotations:

Natural Disturbance	Biogeoclimatic Zone	Biodiversity Emphasis			
1,900		Low	Intermediate	High	
NDT1	CWH	13	13	19	
NDT1	МН	19	19	28	
NDT2	CWH + CDF	9	9	13	

TABLE 8–16. Minimum Old Seral Requirements from the Biodiversity Guidebook (%)

Natural	Biogeoclimatic	Year				
Disturbance Type	Zone	0 - 105	106 – 210	211 plus		
NDT1	CWH	9.7	11.7	13.6		
NDT1	MH	14.2	17.1	19.9		
NDT2	CWH + CDF	6.7	8.1	9.4		

TABLE 8–17. Minimum Old Seral Requirements for the Base Option (%)

Preliminary summaries indicate that reserve areas will be insufficient to meet the first period constraint in a number of landscape unit/variant combinations, mainly in Blocks 1 to 4 and particularly in lower elevation variants. A sensitivity analysis comparing harvest schedules with and without the old seral constraint will be run for selected blocks. Most of the constrained units have substantial areas reserved in second growth. In some cases there is insufficient remaining old-growth to provide the first target—hence recruitment will be from older second-growth reserve areas.

Option 4 will include early and mature plus old seral stage (as well as old seral) constraints to determine their impact on short and long term harvest levels. The draft biodiversity emphasis will be used to assign the constraints to each landscape unit and biogeoclimatic variant combination. The constraints are summarized as follows:

Natural Disturbance Type	Biogeoclimatic Zone	Age Range for	Biodiversity Emphasis							
		Constraint (years)	Low	Intermediate	High					
Early Seral Constra	Early Seral Constraints (maximum %)									
NDT1	CWH	<40	NA	30	23					
NDT1	MH	<40	NA	22	17					
NDT2	CWH + CDF	<40	NA	36	27					
Mature + Old Seral	Constraints (mini	mum %)								
NDT1	CWH	>80	18	36	54					
NDT1	MH	>120	19	36	54					
NDT2	CWH + CDF	>80	17	34	51					

TABLE 8–18. Early and mature plus Old Seral Requirements from the Biodiversity Guidebook (%)

Option 5 will model the old seral constraints according to the draft biodiversity emphasis for each landscape unit instead of the weighted averages applied in Option 1. For example, Option 5 differs from Option 4 in that the early and mature plus old seral constraints are not included.

8.5 Forest Project: Stewardship Zones and Variable Retention

In June of 1998, MB announced a new forest management strategy (The Forest Project). Key components include phasing out clearcutting over a five-year period to be replaced by variable retention and an increase in conservation of old-growth forests and wildlife habitat on BC lands managed by the company.

Research carried out by MB indicates that this New Forest Management direction can be consistent with retaining social license to harvest in original forests, work safety, improved competitiveness and economic results. This strategy applies current ecological thinking to address mainstream public concerns on clearcutting coastal old-growth forests.

The initiative includes the classification of forestlands into three distinct stewardship zones (old-growth, habitat and timber) with decreasing levels of minimum retention (from old growth to timber) and a range of silvicultural systems from group selection to aggregated retention. The general management strategy for each silvicultural zone is as follows:

• Old-Growth Zone:

The old-growth zone includes areas of high biodiversity and/or environmental sensitivity. High cultural and recreation values are also priority criteria. The primary management objective is the conservation of old-growth values. About two-thirds of the existing forest will be retained. Where it occurs, harvesting will include application of group selection and irregular shelterwood silviculture systems and uneven-aged management. Retention minimums are 20%.

Habitat Zone:

The habitat zone includes areas that have high biodiversity values and a moderate amount of old-growth. The primary objective is wildlife conservation. Silviculture systems utilized in this zone include various types of shelterwood, group selection and group retention and a mix of even and uneven-aged management. Retention minimums are 15%.

Timber Zone:

The timber zone includes both private and public land designated low in biodiversity. The primary management objective is timber management. Silvicultural systems used include group retention and various types of shelterwood with even-aged management. Retention minimums are 10% for group retention and 5% for dispersed retention.

A draft classification of stewardship zones will be applied in this analysis. It is recognized that changes may occur as a result of higher level plans, other regional planning initiatives and further discussion with MoF and MoELP staff.

The draft classification includes old-growth zones in:

- Block 2: Lower Tsitika Watershed
- Block 5: Phillips Lake/Estuary
- Block 6: Yakoun Lake Basin, Cumshewa Head area, West Coast of Moresby Island (Security Inlet and Boomchain Bay)
- Block 7: Koeye Watershed

Draft Habitat Zones are as follows:

- Block 1: Areas within the Powell Daniels, Brittain and Bunster Landscape Units.
- Block 2: Upper Tsitika Watershed, White Landscape Unit.
- Block 4: Upper portion of the Benson Watershed.
- Block 5: Total Block except for the old-growth zone area around Phillips Lake.

- Block 6: Lower Yakoun and Tlell Watersheds
- Block 7: Namu Lakes area.

All other areas are classified as in the timber zone.

Changes in the draft classification of stewardship zones have recently occurred (after this data set was derived) in Block 6 (QCI). The changes include a reduction in the size of the Cumshewa Head old-growth zone, the addition of the Yakoun River corridor old-growth zone and the re-typing of the lower Yakoun as timber rather than habitat.

The Forest Project (stewardship zones and variable retention) has area, yield and silvicultural effects that impact timber supply. The yield and silvicultural components impact long-term harvest levels. They are described in Section 6.

Area effects can have both short-term and longer-term impacts on timber supply. They result from increased reserves in old-growth zones and from the additional retention throughout the forest landscape.

Approximately two-thirds of the forest in old-growth zone will be retained. It is assumed that the incremental area impact of variable retention is half of the minimum retention level by stewardship zone. This assumes that existing reserves including WTPs contribute the rest of the required retention. The resulting incremental netdown has been applied according to stewardship zone:

- Timber Zone 5%
- □ Habitat Zone 7.5%
- Old-growth Zone 70% (66% retained plus 10% of the remaining 33% for variable retention).

This view of harvest patterns in old-growth zones results in a high estimate of netdowns to the timber harvesting landbase. It assumes that the one-third in which timber harvesting occurs, is geographically distinct from the reserved two-thirds and that it reflects netdowns that are average for the zone. This likely overstates the netdowns, particularly in the Tsitika old-growth zone which included the Protected Area in the Lower Tsitika.

If the other extreme view is taken; that harvest is distributed throughout the oldgrowth zone and that other netdowns contribute towards the two-thirds reserved then the total netdown for the forest project (old-growth zones and variable retention) is reduced by 6 700 ha and 3 800 000 m³ of mature timber. This difference will be referred to and discussed in the sensitivity analysis.

Table 8–19 summarizes area and mature volume percentages by stewardship zone and block.

Areas	Block 1	Block 2	Block 3	Block 4	Block 5	Block 6	Block 7	Total TFL 39		
Total Forest										
Timber	66.5	65.6	100.0	86.7	0.0	66.8	37.6	63.2		
Habitat	33.5	28.5	0.0	13.3	92.0	16.1	27.3	27.1		
Old-growth	0.0	5.9	0.0	0.0	7.1	17.1	35.1	9.7		
			Produ	uctive Fore	st					
Timber	73.2	67.9	100.0	87.3	0.0	70.3	41.0	68.6		
Habitat	26.8	26.9	0.0	12.7	90.2	17.2	25.4	23.4		
Old-growth	0.0	5.2	0.0	0.0	9.8	12.5	33.6	8.0		
		-	Timber Har	vesting La	ndbase					
Timber	74.7	72.7	100.0	88.4	0.0	76.6	53.0	74.3		
Habitat	25.3	26.4	0.0	11.6	97.2	20.5	33.0	24.0		
Old-growth	0.0	0.9	0.0	0.0	2.8	2.9	14.0	1.7		
			Matu	ire Volume	S					
Total										
Timber	61.9	54.9	100.0	85.7	0.0	66.8	37.3	58.0		
Habitat	38.1	35.7	0.0	14.3	91.7	16.1	24.9	28.6		
Old-growth	0.0	9.4	0.0	0.0	8.3	17.1	37.8	13.4		
			Timber Har	vesting La	ndbase					
Timber	65.1	60.6	100.0	88.1	0.0	75.4	49.6	65.8		
Habitat	34.9	37.6	0.0	11.9	98.0	20.2	34.4	30.8		
Old-growth	0.0	1.8	0.0	0.0	2.0	4.4	16.0	3.4		

TABLE 8–19. Summary of Stewardship Zones by Block (percentages)

The recently approved protected areas in Blocks 2 and 4 (Section 5.2) are included in the total forest and productive forest percentages in Table 8–19.

Option 2 will exclude the stewardship zones and will not make the additional allowances for variable retention.

There are potential gains from using the variable retention approach to access timber in otherwise reserved areas. There are substantial opportunities for harvesting individual trees or small patches of timber economically while having minimal impacts on the site and hence not detracting from non-timber objectives. Helicopter logging techniques, including lifting individual trees from the stump, have added substantially to these opportunities. A project has been initiated by North Island Woodlands to develop and apply acceptable practices for accessing some of this timber. Option 3 examines the possible impact by assuming that 5% of the mature timber that is classified as on sensitive sites, in non-timber resource areas or is currently uneconomic as accessible over the next 20 years.

ATTACHMENT 1

YIELD TABLES

The yield tables listed in the following pages were generated with the yield model Y–XENO.

The index to the tables indicates the conditions each table represents.

The yields in the tables do not include adjustments for regeneration delays, tree improvement, breakage, decay, or non-productive areas.

			Tab	le 1. Index f	or Yield Table	es			
Yield Table ID ^{*,**}	No. of Planted Stems	No. of Natural Stems	Percent Survival Planted	% Distributio n Natural	Regen Lag (natural) negative =	Years of Natural Regen	Spaced 0 = no 1 = yes	Natural regen Site Index	Page
				HEML	early				#
h1	1 200	500	85	50	-2	4	0		67
h2	1 200	1 200	90	75	-2	5	0		68
h3	900	3 000	90	80	-2	5	0		69
h4	800	12 000	85	100	-3	8	0		70
h5		600		70		5	0		71
h6		1 500		90		5	0		72
h7a		6 000		100		5	0		73
h7b		6 000		100		5	1		74
h8a		12 000		100		5	0		75
h8b		12 000		100		5	1		76
	*a = unspac	ed, b = spa	ced @ 15 y	ears to 1200					
				DOUGL				r	1
f1a	1 200	500	85	60	0	4	0		77
f1b	1 200	500	85	60	0	4	0	Planted-3 m	78
f2a	1 200	1 200	90	75	0	4	0		79
f2b	1 200	1 200	90	75	0	4	0	Planted-3 m	80
f3a	1 200	3 000	90	90	-1	5	0		81
f3b	1 200	3 000	90	90	-1	5	0	Planted-3 m	82
f4		600		70	0	5	0		83
f5		1 500		90	0	5	0		84
f6		3 000		90	0	5	0		85
f7		6 000		90	0	5	0		86

**a = fir naturals, b = hemlock naturals

Yield	HEN	ILOCK-1	ГҮРЕ				TABLE 6	6-			Yield
Table	plant	natural	notes	4a*	4b	4c	4d	4e	4f		Table
				Perc	ent of Ne	et Timbe	r Harvest	ing Landl	oase	Total	
h1	1 200	500		0.0	0.0	0.0	0.0	0.2	0.0	0.2	h1
h2	1 200	1 200		13.7	2.3	0.0	1.9	0.1	0.0	18.0	h2
h3	900	3 000		11.7	2.2	0.3	3.7	0.6	0.0	18.5	h3
h4	800	12 000		11.8	2.4	0.0	0.0	0.5	0.0	14.7	h4
h5		600		0.0	0.0	0.1	0.0	0.0	0.0	0.1	h5
h6		1 500		0.0	0.5	0.1	0.0	0.3	0.0	0.9	h6
h7a		6 000		2.2	1.2	0.3	1.4	0.5	0.0	5.6	h7a
h7b		6 000	spaced	0.0	0.5	0.0	0.0	0.2	0.0	0.7	h7b
h8		12 000		13.9	2.9	0.5	0.0	0.0	0.0	17.3	-
h8b		12 000	spaced	0.0	1.2	0.1	0.0	0.0	0.0	1.3	h8b
				53.3	13.2	1.4	7.0	2.4	0.0	77.3	
Yield Table		FIR-TYP	E	Table 6-							Yield
Tuble	plant	natural	naturals	4g	4h	4i					Table
				Perce	nt of Net	THLB				Total	
f1a	1 200			6.6	0.0	0.0				6.6	f1a
f1b	1 200	500	hemlock	2.6	0.0	0.0				2.6	f1b
f2a	1 200	1 200	fir	0.0	1.0	0.0				1.0	f2a
f2b	1 200	1 200	hemlock	6.3	0.7	0.1				7.1	f2b
f3a	1 200	3 000	fir	0.0	0.0	0.0				0.0	f3a
f3b	1 200	3 000	hemlock	0.1	1.1	0.0				1.2	f3b
f4		600	fir	0.0	0.0	0.0				0.0	f4
f5		1 500		0.7	0.7	0.1				1.5	f5
f6		3 000	fir	1.9	0.7	0.1				2.7	f6
				18.2	4.2	0.3				22.7	

Yield Table: see Section 6.2.1. Table 6-4a,...,6-4i: see Section 6.2.2

Net Timber Harvesting Landbase includes allowances for Forest Project leave volumes.

*4a — Hemlock I Dispersed/Aggregated Retention Timber/Habitat Zone

4b — Hemlock II: Shelterwood/Group Selection — Timber Habitat Zone

4c — Hemlock III: Shelterwood/Group Selection — Old-Growth Zone

4d — Hemlock I — Block 1: Dispersed/Aggregated Retention — Timber/Habitat Zone

4e — Hemlock II — Block 1: Shelterwood/Group Selection — Timber/Habitat Zone 4f — Hemlock III — Block 1: Shelterwood/Group Selection — Old Growth Zone

4g — Fir I: Dispersed/Aggregated Retention — Timber/Habitat Zone

4h — Fir II: Shelterwood/Group Selection — Timber/Habitat Zone 4i — Fir III: Shelterwood/Group Selection — Old-Growth Zone

						le h1						
Tatal	Yi	eld Table	e Volume	s Used in		Managem		Vorking F	Plan No. 8	}		
Total	40	45	40	24	24	Site Index		22	20	20	40	
Age 10	12 0	15 0	18 0	21 0	24 0	27 0	30 0	33 0	36	39	42 3	
15	0	0	0	0	0	0	1	2	7	16	32	
20	0	0	0 0	0	1	4	11	22	42	72	117	
25	0	Ō	0	2	6	17	38	71	121	186	276	
30	0	0	1	6	23	55	105	167	251	354	487	
35	0	0	4	23	65	123	200	291	408	551	721	
40	0	2	18	61	125	206	310	430	579	753	932	
45	0	9	48	109	195	299	428	578	752	933	*1097	
50	1	29	85	163	270	398	552	725	906	*1072	1212	
55 60	7 20	55 83	125 168	221 282	349 430	500 599	672 779	853 953	*1021 1104	1165 1218	1269 1292	
65	38	03 113	212	202 344	430 509	688	868	*1034	1166	1210	1292	
70	57	143	258	404	582	766	*946	1100	1209	1280	1309	
75	76	175	303	461	648	836	1012	1150	1237	1288	1306	
80	96	207	346	511	708	*898	1067	1188	1253	1289	1302	
85	116	238	384	560	763	952	1111	1214	1262	1285	1298	
90	136	267	420	606	815	1000	1145	1231	1265	1280	1295	
95	156	293	456	648	*862	1042	1170	1240	1266	1275	1294	
100	174	319	490	688	903	1076	1188	1245	1264	1272	1293	
105	191	343	522	725	941	1103	1202	1249	1264	1270	1294	
110	206	366	552	*761	973	1126	1211	1251	1263	1270	1296	
115	221	387	580	793	1001	1143	1218	1249	1263	1271	1298	
120 125	236	407 427	607 *622	823 850	1027 1048	1159	1223 1225	1246	1265	1273	1301	
125	250 263	427	*632 655	875	1048	1169 1175	1225	1244 1245	1265 1264	1274 1277	1303 1306	
130	203	*465	677	898	1005	1180	1227	1245	1264	1280	1309	
140	288	482	696	919	1091	1185	1228	1240	1263	1282	1312	
145	299	497	715	937	1101	1189	1226	1246	1264	1284	1315	
150	*310	512	733	953	1109	1192	1225	1247	1264	1286	1317	
155	321	526	749	969	1117	1194	1224	1247	1265	1288	1319	
160	330	539	763	982	1122	1194	1225	1245	1266	1290	1321	
165	340	551	777	995	1127	1194	1224	1245	1266	1291	1323	
170	348	562	789	1006	1131	1194	1223	1245	1267	1292	1324	
175	356	573	802	1014	1135	1194	1222	1245	1267	1294	1326	
180	364	582	813	1021	1138	1195	1221	1245	1267	1295	1326	
185 190	371 377	591 599	821 830	1027 1034	1141 1142	1195 1195	1221 1221	1245 1244	1267 1267	1296 1297	1327 1327	
190	383	599 607	838	1034	1142	1195	1221	1244	1267	1297	1327	
200	389	614	846	1039	1144	1195	1220	1244	1266	1295	1327	
Maximum												
MAI	2.1	3.4	5.1	6.9	9.1	11.2	13.5	15.9	18.6	21.4	24.4	
Age for	150	135	125	110	95	80	70	65	55	50	45	
Maximum												
MAI												
				bles with	no reducti	ons or net	downs.					
	The initial conditions for this table are: Number of planted stems 1200/ha Hemlock											
Number of								Hemlock				
Percent s			tems				85%	TETHOCK				
Percent d							50%					
Regenera				negative	= earlv)		-2					
Years of r					, ,		4					
No spacir		-										
Site index		e for plant	ed and na	tural sten	ns							
					Tab	le h2						
	Yi	eld Table	e Volume	s Used in	TFL 39 M	N anagem	ent and V	Vorking F	Plan No. 8	3		
Total						Site Index		-				
٨٥٥												

Table h1

Г	12	15	18	21	24	27	30	33	36	39	42
10	0	0	0	0	0	0	0	0	1	3	8
15	0 0	0	Ő	Ő	0 0	Ő	2	5	14	29	54
20	Ő	0	Ő	Ő	2	7	19	38	68	112	173
25	0	0	0	4	12	30	62	108	170	252	356
30	0	0	3	11	37	82	144	221	316	434	574
35	0	1	8	35	88	161	250	355	480	625	790
40	0	3	28	79	157	253	366	495	642	810	981
45	0	14	63	134	232	349	484	632	800	978	*1134
50	2	37	105	193	310	446	598	763	944	*1107	1229
55	10	67	150	254	389	541	706	883	*1056	1186	1259
60	26	98	196	315	465	628	802	*979	1131	1223	1263
65	46	131	243	376	537	706	890	1058	1183	1244	1263
70	67	165	290	433	601	779	*968	1120	1214	1250	1258
75	88	199	335	484	658	849	1033	1163	1229	1245	1249
80	110	232	376	531	713	912	1087	1189	1231	1239	1242
85	133	264	412	574	767	*969	1126	1203	1227	1232	1237
90	155	292	446	614	817	1019	1156	1206	1220	1226	1233
95	176	318	478	652	*864	1060	1172	1204	1214	1220	1231
100	195	343	508	692	906	1092	1180	1200	1208	1217	1232
105	212	366	536	729	944	1116	1184	1196	1204	1215	1235
110	228	388	*563	*765	979	1133	1184	1192	1202	1214	1238
115	244	408	588	799	1009	1144	1183	1188	1199	1215	1243
120	258	427	611	829	1033	1154	1180	1183	1198	1217	1247
125	272	*446	633	857	1052	1161	1176	1182	1198	1221	1251
130	285	463	656	882	1071	1164	1173	1180	1198	1223	1255
135	297	479	678	907	1083	1165	1169	1178	1199	1225	1258
140	309	494	698	929	1095	1163	1165	1177	1201	1227	1261
145	*320	509	717	948	1105	1162	1162	1177	1203	1229	1264
150	331	522	736	966	1112	1162	1161	1177	1204	1231	1267
155	341	535	753	981	1117	1160	1160	1178	1206	1233	1269
160	350	546	770	995	1121	1159	1159	1177	1207	1236	1271
165	359	556	784	1007	1124	1157	1158	1177	1208	1238	1272
170	367	566	797	1018	1125	1154	1158	1176	1209	1240	1274
175	375	574	809	1026	1126	1153	1157	1175	1210	1242	1275
180	382	583	821	1033	1126	1151	1157	1175	1210	1242	1275
185	389	591	831	1040	1127	1149	1156	1175	1211	1243	1276
190	395	599	841	1046	1128	1149	1155	1175	1212	1243	1276
195	401	606	849	1051	1128	1149	1154	1174	1212	1244	1276

 MAI
 Age for
 145
 125
 110
 110
 95
 85
 70

 Maximum MAI
 MAI
 Maximum
 Maximum

1054

7.0

858

5.1

These volumes are from Xeno yield tables with no reductions or net downs.

The initial conditions for this table are:

613

3.6

Number of planted stems

200

Maximum

Number of natural stems

Percent survival of planted stems

406

2.2

Percent distribution of natural stems

Regeneration delay for natural stems (negative = early)

Years of natural regeneration No spacing

Site index the same for planted and natural stems

					Tab	ole h3					
	Yi	eld Table	Volume	s Used in	TFL 39 I	Managem	ent and \	Norking	Plan No.	8	
Total					ç	Site Index	ζ.				
Age	12	15	18	21	24	27	30	33	36	39	42
10	0	0	0	0	0	0	0	0	2	6	17
15	0	0	0	0	0	1	3	10	25	50	88

1129

9.1

1148

11.4

1153

13.8

90%

75%

-2

5

1173

16.3

60

1200/ha Hemlock

1200/ha Hemlock

1212

19.2

55

1244

22.1

50

1276

25.2

45

20	0	0	0	0	3	13	31	61	104	161	237
25	0	0	1	6	20	48	92	151	223	312	417
30	0	1	5	19	54	111	184	269	365	476	600
35	0	2	14	48	112	195	290	395	507	634	769
40	0	6	36	94	183	287	397	515	639	778	930
45 50	1	18	71 113	151	258 334	378 463	498 592	626	763 882	917 *1038	*1073 1169
55	3 11	41 71	113	211 272	406	403 541	677	731 826	*982	1115	1218
60	27	103	207	331	400	611	756	*913	1057	1171	1218
65	46	103	254	386	530	675	829	988	1117	1215	1240
70	67	172	298	435	581	736	*901	1050	1164	1213	1200
75	89	207	340	478	628	797	962	1101	1195	1254	1278
80	112	241	376	516	675	*856	1011	1139	1216	1258	1275
85	135	272	408	552	720	906	1052	1168	1229	1259	1271
90	159	299	437	587	*765	950	1088	1189	1239	1258	1269
95	181	323	465	*620	805	989	1117	1203	1242	1258	1267
100	201	346	*490	652	847	1020	1138	1213	1243	1257	1267
105	218	367	514	684	883	1048	1156	1220	1243	1258	1267
110	234	386	537	713	914	1071	1170	1224	1243	1256	1269
115	250	*405	558	742	940	1091	1182	1227	1242	1255	1270
120	264	422	578	769	964	1109	1190	1228	1239	1255	1272
125	278	438	597	795	983	1122	1194	1228	1238	1255	1274
130	291	452	617	820	1000	1133	1198	1228	1236	1253	1276
135	*303	466	634	842	1015	1142	1200	1228	1237	1254	1278
140	314	479	651	862	1029	1150	1201	1227	1236	1255	1280
145	324	492	666	879	1042	1154	1202	1226	1235	1257	1281
150 155	334	503	682	893 904	1054	1159 1162	1204 1204	1223 1221	1235 1235	1259 1259	1283 1284
160	343 352	514 524	697 711	904 915	1065 1072	1162	1204	1221	1235	1259	1284
165	360	533	724	913	1072	1166	1204	1216	1234	1260	1285
170	368	542	736	937	1085	1166	1202	1210	1233	1262	1285
175	374	550	746	947	1090	1166	1201	1213	1233	1262	1286
180	381	558	757	955	1094	1167	1199	1213	1233	1263	1286
185	387	565	766	962	1099	1167	1198	1214	1233	1263	1286
190	392	571	775	967	1102	1165	1197	1213	1232	1263	1286
195	397	578	783	973	1104	1165	1196	1212	1231	1263	1285
200	402	583	790	978	1105	1165	1196	1211	1230	1262	1285
Maximum MAI	2.2	3.5	4.9	6.5	8.5	10.7	12.9	15.2	17.9	20.8	23.8
Age for	135	115	100	95	90	80	70	60	55	50	45
Maximum MAI											
These vol The initial				oles with r	no reducti	ons or ne	t downs.				
Number o			avie ale.				000/ba	Hemlock			
Number o								a Hemlock			
Percent su			ems				90%				
Percent di							80%				
Regenera				negative	= earlv)		-2				
Years of n				- 30			5				
No spacin							-				
Site index		for plante	ed and na	tural sten	าร						
						le h4					

					Tab	ole h4					
	Yi	eld Table	e Volume	s Used in	TFL 39 I	Managem	ent and \	Norking	Plan No.	8	
Total					5	Site Index					
Age	12	15	18	21	24	27	30	33	36	39	42
10	0	0	0	0	0	0	3	10	29	65	125
15	0	0	0	0	1	8	26	64	127	217	330
20	0	0	0	2	16	49	108	188	286	395	513
25	0	0	3	22	65	133	225	326	431	539	*652
30	0	2	20	60	135	231	339	444	548	654	771
35	0	10	44	111	213	325	439	543	646	761	894

45 5 39 118 227 366 466 *596 *706 *834 *985 1149 55 18 90 210 347 491 604 720 859 1013 1159 1232 60 31 120 260 404 *539 653 781 935 1095 1202 1232 60 31 120 260 404 *539 653 781 935 1095 1212 1232 70 65 190 354 *489 618 743 901 1077 1187 1208 1212 80 106 262 424 552 600 840 1013 1170 1194 1198 1203 85 175 345 501 622 775 874 1186 1186 1186 1196 1161 1172 1184 1176 1197 1176 1177 1184 1176 1197 1167 1151 1171 1200 206 438	40	2	21	78	168	291	411	524	627	739	872	1028
55 18 90 210 347 491 604 720 855 1013 1159 1239 60 31 120 260 404 539 653 781 935 1095 1202 1239 70 65 190 354 '489 618 743 901 1077 1187 1216 1232 75 85 228 391 552 654 739 957 1113 1197 1208 1212 80 106 262 424 552 690 840 1013 1170 1194 1198 1202 1212 80 106 152 321 479 605 762 931 1104 1185 1181 1191 1199 90 152 321 479 605 701 833 1067 1159 1172 1154 1176 1191 100 195 345 570 703 933 1067 1156 1162 1148 1171												
60 31 120 220 404 *539 653 781 935 1095 1202 1232 76 65 190 354 *489 618 743 901 1007 1187 1216 1222 76 85 228 391 552 654 793 957 1133 1197 1208 1212 80 106 262 424 552 690 840 1013 1170 1194 1198 1203 85 129 293 *454 579 726 884 1003 1149 1178 1191 1199 90 152 321 479 605 762 931 1104 1185 1180 1165 1180 1171 1191 1178 1196 1165 1181 1173 1198 1150 1167 1151 1173 1198 1141 1151 1171 1201 120 266 436 588 744 944 1141 1145 1144 1171 <												
66 47 154 310 451 580 697 840 1009 1155 1218 1232 75 85 228 391 522 654 793 957 1133 1197 1208 1212 80 106 262 424 552 690 840 1013 1170 1194 1198 1202 1212 80 129 233 *454 579 726 884 106c 1186 1185 1191 1199 90 152 321 479 605 762 931 1104 1185 1165 1186 1185 1181 1196 100 195 367 520 655 828 1009 1149 1178 1195 1173 1141 1176 1176 1171 1171 1198 1162 1166 1162 1187 1181 1141 1171 1201 120 266 438 588 744 948 1104 1148 1171 1203 1133												
70 65 190 354 *489 618 743 901 1077 1187 1216 1222 80 106 262 424 552 650 840 1013 1170 1194 1198 1208 1212 80 106 262 424 552 690 840 1013 1170 1194 1186 1185 1181 1191 1199 90 152 321 479 605 762 931 1104 1185 1165 1180 1196 100 195 367 520 655 828 1009 1149 1178 1159 1177 1154 1176 1197 110 233 407 557 701 893 1067 1159 1172 1154 1176 1197 110 233 407 557 701 893 1067 1159 1172 1154 1170 1201 120 266 438 588 744 948 1104 1148 <												
75 85 228 391 522 654 793 957 1133 1197 1208 1212 80 106 262 424 552 690 840 1013 1170 1194 1198 1203 85 129 233 '454 579 726 884 1062 1186 1185 1197 1184 1197 1184 1196 1197 1185 1165 1180 1196 1177 1184 1196 1197 1105 214 *388 538 678 860 1043 1159 1172 1151 1173 1198 105 244 *388 538 678 860 1043 1159 1167 1151 1173 1198 1105 250 423 574 723 923 1091 1156 1162 1148 1171 1200 120 266 438 588 774 923 1091 1156 1162 1148 1171 1201 1120 133 130 </td <td></td>												
80 106 262 424 552 690 840 1013 1170 1194 1198 1203 85 129 293 *454 579 726 884 1062 1186 1185 1191 1199 90 152 321 479 605 762 931 1104 1185 1165 1180 1196 100 195 367 520 655 828 1009 1149 1172 1154 1176 1197 110 233 407 557 701 893 1067 1159 1167 1151 1171 1170 1201 125 423 574 723 923 1091 1156 1167 1171 1200 120 266 438 588 744 948 1104 1148 1174 1170 1201 125 281 451 603 764 974 1115 1141 1165 1144 1170 1201 125 333												
85 129 293 *454 579 726 884 1062 1186 1185 1191 1199 90 152 321 479 605 762 931 1104 1189 1177 1184 1196 100 195 367 520 655 828 1009 1143 1178 1159 1177 1184 1196 105 214 *388 538 678 860 1043 1159 1172 1154 1176 1191 110 233 407 557 701 893 1067 1159 1162 1148 1171 1201 120 266 443 588 744 948 1104 1148 1144 1170 1201 125 281 451 603 764 974 1115 1141 1153 1144 1170 1203 140 '322 485 641 820 1035 1121 1136 1144 1169 1208 140												
95 175 345 501 629 795 974 1132 1185 1185 1180 1196 100 195 367 520 655 828 1009 1149 1178 1159 1178 1196 105 214 *388 557 701 893 1067 1159 1167 1151 1177 1198 115 250 423 574 723 923 1091 1156 1162 1148 1170 1201 120 266 438 588 744 948 1104 1148 1145 1171 1203 130 296 464 615 783 995 1124 1137 1148 1144 1169 1206 140 *322 485 641 820 1035 1121 1134 1144 1170 1206 144 333 494 652 837 1053 1122 1130 1140 1144 1170 1210 150 343												
95 175 345 501 629 795 974 1132 1185 1185 1180 1196 100 195 367 520 655 828 1009 1149 1178 1159 1178 1196 105 214 *388 557 701 893 1067 1159 1167 1151 1177 1198 115 250 423 574 723 923 1091 1156 1162 1148 1170 1201 120 266 438 588 744 948 1104 1148 1145 1171 1203 130 296 464 615 783 995 1124 1137 1148 1144 1169 1206 140 *322 485 641 820 1035 1121 1134 1144 1170 1206 144 333 494 652 837 1053 1122 1130 1140 1144 1170 1210 150 343						762						
100 195 367 520 655 828 1009 1149 1178 1159 1178 1197 105 214 *388 538 678 860 1043 1159 1167 1151 1176 1197 110 233 407 557 701 893 1067 1159 1167 1151 1171 1198 115 250 423 574 723 923 1091 1156 1162 1148 1171 1200 125 281 451 603 764 974 1115 1141 1153 1145 1170 1201 130 296 464 615 783 995 1124 1137 1148 1144 1169 1204 133 309 474 629 801 1017 1124 1133 1144 1140 1170 1206 140 322 485 681 823 1069 1121 1127 1138 1144 1170 1210 <t< td=""><td></td><td></td><td>345</td><td>501</td><td></td><td></td><td></td><td>1132</td><td></td><td></td><td></td><td></td></t<>			345	501				1132				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		195	367	520			1009					
115 250 423 574 723 923 1091 1156 1162 1148 1171 1200 120 266 438 588 744 948 1104 1148 1158 1146 1171 1201 125 281 464 615 783 995 1124 1137 1148 1144 1169 1204 135 309 474 629 801 1017 1124 1136 1144 1169 1204 140 *322 485 641 820 1035 1121 1134 1144 1169 1209 150 343 503 662 852 1069 1121 1127 1138 1142 1170 1210 160 363 520 685 880 1092 1108 1122 1138 1141 1169 1211 170 381 533 706 903 1104 1102 1123 1136 1141 1169 1211 175 387 </td <td>105</td> <td>214</td> <td>*388</td> <td>538</td> <td>678</td> <td>860</td> <td>1043</td> <td>1159</td> <td>1172</td> <td>1154</td> <td>1176</td> <td>1197</td>	105	214	*388	538	678	860	1043	1159	1172	1154	1176	1197
120 266 438 588 744 948 1104 1148 1158 1146 1170 1201 125 281 451 603 764 974 1115 1141 1153 1146 1171 1203 130 296 464 615 783 995 1124 1137 1148 1144 1169 1204 140 "322 485 641 820 1035 1121 1134 1144 1169 1208 144 "333 494 652 837 1053 1122 1130 1144 1170 1208 155 353 512 674 865 1081 1113 1127 1138 1142 1170 1210 160 363 520 685 880 1092 1108 1125 1137 1141 1169 1211 170 381 533 706 903 1104 1101 1122 1134 1139 1169 1210 180 394<	110	233	407	557	701	893	1067	1159	1167	1151	1173	1198
125 281 451 603 764 974 1115 1141 1153 1145 1171 1203 130 296 464 615 783 995 1124 1137 1148 1144 1169 1204 135 309 474 629 801 1017 1124 1136 1145 1144 1170 1206 140 "322 485 641 820 1035 1122 1130 1140 1144 1170 1209 150 343 503 662 852 1069 1121 1127 1138 1142 1170 1210 155 353 512 674 865 1081 1113 1127 1138 1141 1169 1211 165 373 526 695 893 1097 1102 1123 1136 1141 1169 1211 175 387 539 714 913 1109 1102 1134 1139 1168 1209 185	115	250	423	574	723	923	1091	1156	1162	1148	1171	1200
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
135 309 474 629 801 1017 1124 1136 1145 1144 1170 1206 140 "322 485 641 820 1035 1121 1134 1143 1144 1169 1208 145 333 494 652 837 1053 1122 1130 1140 1144 1170 1209 150 343 503 662 852 1069 1121 1127 1138 1142 1170 1210 160 363 520 685 880 1092 1108 1125 1137 1141 1169 1211 170 381 533 706 903 1104 1101 1124 1135 1144 1169 1211 175 387 539 714 913 1009 1102 1132 1139 1168 1209 180 394 545 722 923 1111 1096 1113 1131 1138 1167 1209 1			451			974		1141		1145	1171	
140*32248564182010351121113411431144116912081453334946528371053112211301140114411701209150343503662852106911211127113811421170121015535351267486510811113112711381142117012101603635206858801092110811251137114111691211175387539714913110911001122113411391169121117538753971491311091100112211321139116812091803945457229231111109911221132113911681209185399550728929111310961119113111381167120919040455573693811161097111211291136116612082004135627489531117109711121128113511651208Maximum2.33.75.37.09.011.013.215.718.521.926.1MAIMAI10585706050454545<												
1453334946528371053112211301140114411701209150343503662852106911211127113811431170121015535351267486510811113112711381142117012101603635206858801092110811251137114111691211165373526695893109711021123113611411169121117038153370690311041101112411351140116912111753875397149131109110011221134113911681209180394545722923111110991122113211391168120919040455573693811161098111311301137116612091954095597429471116109711121128113511651208Maimum2.33.75.37.09.011.013.215.718.521.926.1MAI105857060504545454525Maximum1401058570605045454525 <t< td=""><td>135</td><td></td><td>474</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1144</td><td></td><td></td></t<>	135		474							1144		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			485							1144		
155353512674865108111131127113811421170121016036352068588010921108112511371141116912111653735266958931097110211231136114111691211170381533706903110411011124113511401169121117538753971491310991100112211341139116812091803945457229231111109911221132113911681209185399550728929111310961119113111381167120919040455573693811161097111211291136116612082004135627489531117109711121128113511651208Maximum MAI2.33.75.37.09.011.013.215.718.521.926.1Maximum MAI1401058570605045454525Maximum MAI12013.215.718.521.926.1Maximum MAI1401058570605045454525Number of natural				652	837						1170	
16036352068588010921108112511371141116912111653735266958931097110211231136114111691211170381533706903110411011124113511401169121117538753971491311091100112211341139116812091803945457229231111109911221132113911681209185399550728929111310961119113111381167120919040455573693811161098111311301137116612082004135627489531117109711121128113511651208Maximum2.33.75.37.09.011.013.215.718.521.926.1MA1112.000/ha145454525Maximum11.013.215.718.521.926.1MA111.013.215.718.521.926.1Maximum <td></td>												
16537352669589310971102112311361141116912111703815337069031104110111241135114011691211175387539714913110911001122113411391169121018039454572292311111099112211321139116812091853995507289291113109611191131113811671209190404555736938111610981113113011371166120919540955974294711161097111211281135116612082004135627489531117109711121128113511651208Maximum2.33.75.37.09.011.013.215.718.521.926.1MAI105857060504545454525Maximum2.33.75.37.09.011.013.215.718.521.926.1MAI105857060504545452525Maximum2.33.75.37.09.014.013.215.718.521.926.1 <trr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></trr<>												
1703815337069031104110111241135114011691211175387539714913110911001122113411391169121018039454572292311111099112211321139116812091853995507289291113109611191131113811671209190404555736938111610981113113011371166120819040955974294711161097111211291136116612082004135627489531117109711121128113511651208Maximum2.33.75.37.09.011.013.215.718.521.926.1MAI105857060504545454525Maximum1401058570605045454525Maximum1401058570605045454525Maximum1401058570605045454525Maximum1401058570605045454525Maximum140105857060 </td <td>160</td> <td></td> <td></td> <td></td> <td>880</td> <td></td> <td></td> <td></td> <td>1137</td> <td>1141</td> <td></td> <td></td>	160				880				1137	1141		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	165	373		695	893	1097						
18039454572292311111099112211321139116812091853995507289291113109611191131113811671209190404555736938111610981113113011371166120919540955974294711161097111211291136116612082004135627489531117109711121128113511651208Maximum2.33.75.37.09.011.013.215.718.521.926.1MaiMai1058570605045454525MaximumMAI1058570605045454525Maximum1401058570605045454525Maximum1401058570605045454525Maximum1200/ha1801200/ha1801200/ha180180180Maximum1401058570605045454525Maximum1401058570605045454525Number of planted stems12000/ha1601200/ha1801200/ha180 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
195 409 559 742 947 1116 1097 1112 1129 1136 1166 1208 200 413 562 748 953 1117 1097 1112 1128 1135 1165 1208 Maximum 2.3 3.7 5.3 7.0 9.0 11.0 13.2 15.7 18.5 21.9 26.1 Mal 105 85 70 60 50 45 45 45 25 Maximum MAI 105 85 70 60 50 45 45 45 25 Maximum MAI 105 85 70 60 50 45 45 45 25 Maximum MAI 105 85 70 60 50 45 45 45 25 Maximum MAI 105 85 70 60 50 45 45 45 25 Maximum MAI 105 800/ha Hemlock 12000/ha 1200/ha												
200 413 562 748 953 1117 1097 1112 1128 1135 1165 1208 Maximum MAI 2.3 3.7 5.3 7.0 9.0 11.0 13.2 15.7 18.5 21.9 26.1 Age for MAI 140 105 85 70 60 50 45 45 45 25 Maximum MAI 110 105 85 70 60 50 45 45 45 25 Maximum MAI 105 85 70 60 50 45 45 45 25 Maximum MAI 105 85 70 60 50 45 45 45 25 Maximum MAI 105 85 70 60 50 45 45 45 25 These volumes are from Xeno yield tables with no reductions or net downs. 12 12 100/ha Hemlock 12 100/ha Hemlock 90% 90% 90%												
Maximum MAI2.33.75.37.09.011.013.215.718.521.926.1Age for Maximum MAI140105857060504545454525Maximum MAI105857060504545454525These volumes are from Xeno yield tables with no reductions or net downs. The initial conditions for this table are: Number of planted stems800/ha HemlockNumber of planted stems12 000/ha HemlockPercent survival of planted stems90%Percent distribution of natural stems85%Regeneration delay for natural stems (negative = early)-3Years of natural regeneration8												
MAIAge for Age for140105857060504545454525Maximum MAI105857060504545454525These volumes are from Xeno yield tables with no reductions or net downs. The initial conditions for this table are: Number of planted stems800/ha Hemlock4545454525Number of planted stems800/ha Hemlock12 000/ha Hemlock45454545454545Percent survival of planted stems90%90%90%45 </td <td></td>												
Maximum MAI Maximum MAI Maximum MAI Maximum MAI Maximum Maximum MAI Maximum Maximum MAI Maximum Maxim												
MAIMaiThese volumes are from Xeno yield tables with no reductions or net downs.The initial conditions for this table are:Number of planted stems800/ha HemlockNumber of natural stems12 000/ha HemlockPercent survival of planted stems90%Percent distribution of natural stems85%Regeneration delay for natural stems (negative = early)-3Years of natural regeneration8No spacing8	•	140	105	85	70	60	50	45	45	45	45	25
These volumes are from Xeno yield tables with no reductions or net downs. The initial conditions for this table are: Number of planted stems 800/ha Hemlock Number of natural stems 12 000/ha Hemlock Percent survival of planted stems 90% Percent distribution of natural stems 85% Regeneration delay for natural stems (negative = early) -3 Years of natural regeneration 8												
The initial conditions for this table are:800/ha HemlockNumber of planted stems12 000/ha HemlockNumber of natural stems90%Percent survival of planted stems90%Percent distribution of natural stems85%Regeneration delay for natural stems (negative = early)-3Years of natural regeneration8No spacing8												
Number of planted stems800/ha HemlockNumber of natural stems12 000/ha HemlockPercent survival of planted stems90%Percent distribution of natural stems85%Regeneration delay for natural stems (negative = early)-3Years of natural regeneration8No spacing8												
Number of natural stems12 000/ha HemlockPercent survival of planted stems90%Percent distribution of natural stems85%Regeneration delay for natural stems (negative = early)-3Years of natural regeneration8No spacing-3								800/ha	Hemlock	(
Percent survival of planted stems90%Percent distribution of natural stems85%Regeneration delay for natural stems (negative = early)-3Years of natural regeneration8No spacing-3												
Percent distribution of natural stems85%Regeneration delay for natural stems (negative = early)-3Years of natural regeneration8No spacing-3				tems								
Regeneration delay for natural stems (negative = early)-3Years of natural regeneration8No spacing1												
Years of natural regeneration 8 No spacing					negative	= early)						
No spacing						,						
		-										
			e for plant	ed and na	atural ster	ns						

Total					5	Site Index					
Age	12	15	18	21	24	27	30	33	36	39	42
10	0	0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	1	2	6	1:
20	0	0	0	0	0	1	4	8	15	26	44
25	0	0	0	1	2	6	13	26	45	72	11 ⁻
30	0	0	0	2	8	20	38	64	100	148	212
35	0	0	2	8	24	47	78	119	175	245	33
40	0	1	7	23	48	84	129	188	264	352	45

Table h5

г

Г

45	0	3	18	43	79	128	189	266	359	460	575
50	0	11	33	67	115	178	256	348	453	562	684
55	2	21	51	93	155	233	325	427	540	652	775
60	8	33	70	123	199	289	391	498	614	726	*847
65	15 22	46	91	156 189	243 286	343 393	450	561	678	793 *857	916 982
70 75	30	59 74	114 137	221	200 326	393 438	505 556	619 673	740 *797	916	982 1041
80	39	89	160	251	364	436	604	*722	848	969	1041
80	48	104	180	280	400	402 523	647	722	895	1016	1095
90	40 57	104	203	308	400	523	*687	809	895 939	1018	1144
95	66	133	203	335	466	500 595	723	847	978	1038	1228
100	74	146	243	360	496	*627	757	883	1013	1134	1264
105	82	159	263	384	524	657	790	916	1016	1166	1296
110	90	172	281	407	*551	683	819	947	1075	1196	1326
115	97	184	298	428	575	709	847	975	1102	1224	1352
120	104	196	315	449	597	732	871	1001	1127	1249	1377
125	111	208	331	*468	617	755	893	1024	1150	1271	1399
130	118	219	346	485	635	775	914	1045	1170	1293	1419
135	125	229	360	502	653	793	933	1064	1188	1312	1437
140	131	239	*373	517	669	810	952	1082	1206	1330	1453
145	137	249	386	531	683	826	967	1097	1223	1344	1467
150	143	*258	397	544	696	840	982	1113	1236	1359	1480
155	148	266	409	557	709	853	995	1126	1249	1371	1491
160	154	274	419	568	720	865	1006	1138	1260	1382	1502
165	*159	282	428	578	731	877	1018	1148	1270	1391	1510
170	163	289	437	588	740	886	1028	1158	1279	1400	1517
175	168	295	445	596	749	895	1036	1166	1287	1407	1523
180	172	301	453	604	757	903	1045	1173	1294	1413	1529
185	176	307	460	611	764	910	1052	1179	1299	1418	1533
190	180	312	466	618	771	916	1059	1184	1304	1422	1536
195	183	317	472	624	776	923	1064	1189	1309	1426	1539
200	187	322	477	630	781	927	1069	1193	1311	1429	1541
Maximum MAI	1.0	1.7	2.7	3.7	5.0	6.3	7.6	9.0	10.6	12.2	14.1
Age for Maximum MAI	165	150	140	125	110	100	90	80	75	70	60
These volu	umes are f	rom Xend	o yield tab	les with r	o reducti	ons or ne	t downs.		I		
The initial											
	umber of r				600/	/ha Hemlo	ock				
P	ercent dist	tribution c	of natural s	stems	70%	, D					
Y	ears of nat	tural rege	eneration		5						
N	o spacing										

Table h6

	,	Yield Tabl	e Volume	es Used ir	n TFL 39 M	Managem	ent and W	orking Pl	an No. 8		
Total					:	Site Index					
Age	12	15	18	21	24	27	30	33	36	39	42
10	0	0	0	0	0	0	0	0	0	1	3
15	0	0	0	0	0	0	0	2	6	14	28
20	0	0	0	0	1	3	9	19	36	62	102
25	0	0	0	2	5	15	32	60	101	160	239
30	0	0	1	5	19	45	85	140	212	303	417
35	0	0	4	18	53	102	166	246	346	462	592
40	0	1	15	48	103	173	260	364	484	609	740
45	0	7	39	89	163	254	361	481	610	734	863
50	1	23	70	136	228	338	460	588	718	*840	*966
55	5	44	105	186	296	421	551	681	*807	922	1046
60	16	68	142	238	364	498	630	755	876	990	1111

65	31	94	180	292	429	565	695	*819	940	1054	1177
70	46	120	220	344	486	622	*754	878	999	1115	1239
75	62	148	260	390	536	674	806	932	1053	1169	1296
80	79	175	297	432	580	*721	853	980	1102	1219	1348
85	97	203	330	470	621	764	894	1023	1148	1266	1394
90	114	228	361	505	*660	802	932	1064	1189	1308	1436
95	131	251	390	538	695	839	968	1102	1227	1347	1475
100	147	273	417	*568	727	872	1001	1136	1261	1382	1510
105	162	293	442	596	756	902	1031	1168	1293	1415	1541
110	175	313	466	623	784	929	1058	1197	1322	1443	1569
115	188	332	*489	647	808	954	1083	1224	1348	1469	1595
120	200	349	509	669	831	978	1107	1248	1372	1493	1618
125	212	366	528	690	852	1000	1129	1269	1395	1515	1639
130	224	*381	546	709	870	1020	1150	1290	1415	1536	1658
135	235	395	563	728	888	1038	1169	1308	1433	1553	1675
140	245	409	578	745	904	1055	1185	1327	1449	1569	1689
145	255	422	592	760	919	1070	1201	1342	1464	1582	1702
150	*264	433	605	774	933	1084	1215	1355	1477	1595	1714
155	273	444	618	787	945	1097	1229	1368	1488	1606	1724
160	281	454	630	799	956	1109	1241	1380	1499	1616	1733
165	289	464	640	810	967	1120	1252	1390	1509	1624	1741
170	296	473	650	819	977	1130	1261	1399	1517	1631	1748
175	303	481	659	828	986	1139	1270	1406	1525	1637	1754
180	309	489	667	836	994	1146	1277	1413	1531	1643	1759
185	315	496	675	842	1002	1154	1284	1419	1536	1649	1763
190	320	502	682	849	1008	1159	1290	1424	1541	1653	1766
195	325	508	688	855	1014	1165	1295	1429	1546	1656	1768
200	330	513	694	860	1018	1169	1301	1432	1548	1659	1770
Maximum MAI	1.8	2.9	4.2	5.7	7.3	9.0	10.8	12.6	14.7	16.8	19.3
Age for Maximum MAI	150	130	115	100	90	80	70	65	55	50	50
These volu The initial Number of Percent di Years of n No spacin	conditions f natural s stribution atural reg	s for this t tems of natura	able are:	bles with r		0/ha Herr					

Table h7a

Yield Table Volumes Used in TFL 39 Management and Working Plan No. 8 Total Site Index											
Age	12	15	18	21	24	27	30	33	36	39	42
10	0	0	0	0	0	0	0	0	1	5	1
15	0	0	0	0	0	0	1	6	18	40	7
20	0	0	0	0	2	10	29	60	107	169	24
25	0	0	0	5	17	46	95	167	259	361	47
30	0	0	3	16	53	121	214	326	450	568	67
35	0	1	10	47	126	235	362	494	623	727	*80
40	0	4	35	108	225	362	503	636	*747	*834	90
45	0	16	81	187	330	480	619	*737	834	916	99
50	2	45	142	272	429	579	*706	811	905	991	107
55	10	87	206	354	517	*658	770	867	964	1050	113
60	30	132	272	430	589	716	819	916	1018	1106	119
65	57	180	334	495	*644	759	862	966	1070	1166	125
70	87	229	393	549	686	796	905	1014	1122	1222	130
75	118	276	446	*592	720	834	948	1060	1170	1273	136

80	150	322	488	626	752	870	990	1100	1212	1317	1406
85	183	363	*523	655	780	905	1025	1139	1253	1358	1448
90	215	397	551	681	808	939	1061	1176	1291	1397	1487
95	245	426	576	705	837	972	1095	1207	1324	1431	1521
100	272	453	598	728	863	1002	1125	1239	1354	1462	1552
105	295	*476	618	750	888	1029	1154	1266	1382	1491	1581
110	316	497	637	769	912	1053	1179	1292	1407	1517	1607
115	336	516	654	788	936	1076	1201	1317	1431	1540	1629
120	354	533	670	807	956	1095	1222	1338	1455	1561	1650
125	371	548	685	825	974	1114	1240	1358	1476	1580	1669
130	*386	561	699	842	992	1131	1257	1377	1495	1595	1687
135	401	574	712	857	1006	1147	1272	1395	1510	1611	1702
140	414	585	723	871	1021	1161	1286	1410	1526	1627	1715
145	426	595	734	885	1034	1175	1300	1423	1538	1640	1728
150	437	604	745	897	1047	1187	1312	1435	1551	1653	1738
155	447	613	755	909	1058	1199	1322	1446	1561	1663	1747
160	456	621	764	920	1069	1209	1332	1457	1570	1672	1755
165	465	628	773	930	1079	1218	1342	1465	1578	1680	1762
170	473	635	781	938	1088	1227	1350	1472	1585	1687	1767
175	480	641	790	946	1097	1235	1358	1479	1591	1693	1772
180	487	647	798	953	1103	1241	1366	1485	1596	1697	1776
185	492	652	804	960	1109	1246	1371	1492	1600	1701	1779
190	498	657	811	966	1115	1251	1375	1497	1604	1704	1782
195	503	662	816	972	1119	1256	1378	1501	1608	1706	1784
200	508	666	821	976	1124	1260	1383	1504	1611	1708	1785
Maximum MAI	3.0	4.5	6.1	7.9	9.9	12.0	14.1	16.4	18.7	20.9	23.1
Age for Maximum MAI	130	105	85	75	65	55	50	45	40	40	35
These volu				oles with r	no reducti	ons or ne	t downs.				
The initial											
		natural st				0/ha Hem	llock				
			of natural	stems	100	%					
		atural rege	eneration		5						
N	o spacing	9									

	Yi	eld Table	Volume	s Used in	TFL 39 N	Managem	ent and V	Vorking F	Plan No. 8	8	
Total	Site Index										
Age	12	15	18	21	24	27	30	33	36	39	42
10	0	0	0	0	0	0	0	0	1	5	16
15	0	0	0	0	0	0	1	7	19	40	74
15	0	0	0	0	0	0	1	2	7	15	29
20	0	0	0	0	1	3	9	20	36	59	91
25	0	0	0	2	6	14	33	62	103	156	222
30	0	0	1	6	21	43	88	146	221	311	414
35	0	0	3	19	55	100	176	267	377	501	630
40	0	1	14	50	109	177	287	410	551	693	830
45	0	7	38	93	174	270	414	563	718	865	983
50	1	22	70	143	250	375	547	709	863	*999	*1103
55	5	44	106	201	333	484	672	833	*974	1091	1179
60	15	69	147	264	420	593	782	*927	1054	1152	1238
65	30	96	190	333	503	683	867	1000	1117	1211	1290
70	46	124	237	400	584	762	*941	1062	1174	1268	1342
75	63	155	285	463	652	833	1005	1112	1220	1319	1392
80	80	186	332	521	715	*895	1056	1159	1266	1365	1437
85	99	218	374	573	775	946	1104	1201	1306	1403	1477
90	117	248	414	624	*826	987	1146	1236	1339	1442	1508

Table h7b

	400	070	450	660 J	070	1004	4470	4074	4070	4 4 0 0	4544
95	136	276	452	668	870	1024	1178	1271	1370	1480	1541
100	154	303	488	711	909	1055	1203	1302	1401	1506	1576
105	170	329	523	752	946	1080	1230	1329	1429	1531	1606
110	186	354	555	792	981	1111	1258	1352	1453	1554	1632
115	201	378	585	*829	1009	1142	1278	1371	1476	1575	1653
120	216	401	613	855	1036	1160	1297	1392	1501	1594	1672
125	230	423	*639	880	1056	1175	1316	1411	1519	1614	1686
130	244	443	664	905	1078	1194	1338	1429	1536	1634	1697
135	257	462	686	932	1097	1216	1358	1445	1553	1652	1711
140	270	*480	707	953	1114	1228	1371	1461	1567	1667	1721
145	282	497	727	971	1129	1243	1379	1474	1579	1675	1732
150	294	513	745	992	1143	1258	1396	1486	1591	1685	1742
155	305	528	760	1003	1151	1273	1403	1496	1600	1695	1749
160	315	543	776	1010	1157	1283	1414	1504	1609	1704	1755
165	*325	555	789	1010	1161	1294	1419	1511	1616	1704	1759
170	334	568	801	1014	1168	1305	1422	1517	1622	1706	1766
175	343	579	812	1026	1172	1313	1427	1526	1628	1712	1773
180	351	589	822	1037	1184	1313	1434	1533	1634	1716	1777
185	359	599	831	1043	1190	1315	1439	1538	1637	1720	1780
190	366	608	839	1053	1194	1318	1447	1542	1639	1720	1784
195	373	616	847	1064	1201	1323	1454	1545	1643	1720	1785
200	373	616	847	1064	1201	1323	1454	1545	1644	1721	1786
Maximum	2.0	3.4	5.1	7.2	9.2	11.2	13.4	15.4	17.7	20.0	22.1
MAI											
Age for	165	140	125	115	90	80	70	60	55	50	50
Maximum											
MAI											
These vol				bles with r	no reducti	ons or ne	t downs.				
The initial			table are:								
Number of						0/ha Hen	nlock				
Percent di					100	%					
Years of n					5						
Spaced @	15 years	s to 1200/	ha								

	Yie	eld Table	Volumes	s Used in	TFL 39 N	lanagem	ent and V	/orking F	Plan No. 8	3	
Total					S	Site Index					
Age	12	15	18	21	24	27	30	33	36	39	42
10	0	0	0	0	0	0	0	0	2	10	34
15	0	0	0	0	0	0	1	4	17	46	108
20	0	0	0	0	2	13	40	81	138	217	324
25	0	0	1	7	26	68	137	221	316	420	528
30	0	0	5	23	76	166	279	390	495	588	*666
35	0	2	14	62	164	295	432	545	*631	*698	753
40	0	5	42	132	274	426	562	*655	717	771	831
45	0	18	94	219	384	538	*654	723	778	842	914
50	2	49	159	308	482	*620	713	774	838	911	991
55	10	93	229	392	559	676	757	817	890	968	1050
60	30	142	298	467	*616	715	792	858	941	1024	1108
65	58	193	364	526	655	743	828	904	994	1081	1169
70	89	245	422	*572	683	772	864	952	1046	1136	1224
75	122	296	473	604	706	803	904	996	1091	1185	1274
80	156	343	*512	629	729	834	941	1038	1133	1230	1320
85	191	385	541	648	753	866	977	1075	1173	1270	1362
90	226	419	563	667	777	897	1010	1112	1208	1307	1399
95	258	447	582	686	801	925	1040	1145	1241	1341	1433
100	287	*472	600	704	825	951	1068	1175	1271	1372	1464
105	311	494	615	720	848	977	1095	1202	1298	1401	1493
110	333	512	628	737	869	1000	1119	1228	1324	1427	1517

Table h8a

115	354	529	641	754	890	1022	1141	1251	1347	1450	1541
120	373	543	653	771	910	1042	1161	1272	1370	1470	1562
125	*390	555	664	786	929	1060	1179	1292	1390	1490	1580
130	406	566	674	801	946	1076	1196	1309	1407	1506	1596
135	420	575	685	815	961	1092	1212	1324	1424	1524	1612
140	433	584	696	828	974	1106	1226	1340	1439	1539	1625
145	445	591	707	841	987	1120	1239	1351	1452	1552	1637
150	455	598	716	853	999	1133	1250	1363	1463	1563	1647
155	465	605	725	863	1009	1144	1261	1374	1474	1573	1656
160	473	610	733	873	1019	1153	1271	1385	1482	1582	1663
165	481	616	740	882	1028	1162	1279	1394	1491	1590	1670
170	489	621	746	890	1037	1171	1287	1402	1498	1596	1676
175	495	625	753	897	1045	1178	1294	1410	1505	1601	1681
180	501	630	758	905	1052	1185	1301	1416	1510	1605	1685
185	507	634	763	911	1058	1191	1307	1421	1515	1608	1688
190	511	637	767	917	1063	1196	1312	1425	1519	1611	1690
195	516	640	772	921	1068	1201	1316	1429	1522	1613	1692
200	519	644	776	926	1072	1205	1319	1431	1524	1614	1694
Maximum MAI	3.1	4.7	6.4	8.2	10.3	12.4	14.5	16.4	18.0	19.9	22.2
Age for Maximum MAI	125	100	80	70	60	50	45	40	35	35	30
These volu	umes are	from Xen	o yield tak	oles with r	no reducti	ons or net	downs.				
The initial	conditions	s for this t	able are:								
N	umber of	natural st	ems		12 0)00/ha He	mlock				
		stribution of		stems	100	%					
Ye	ears of na	atural rege	eneration		5						
N	o spacino										

No spacing

Table h8b

Total					S	ite Index					
Age	12	15	18	21	24	27	30	33	36	39	42
10	0	0	0	0	0	0	0	0	2	11	3
15	0	0	0	0	0	0	0	4	16	47	10
15	0	0	0	0	0	0	0	1	4	10	2
20	0	0	0	0	0	2	8	15	26	44	7
25	0	0	0	2	6	14	32	54	84	124	18
30	0	0	1	6	19	44	85	131	189	261	35
35	0	0	3	19	53	100	172	246	334	434	54
40	0	1	14	49	106	178	282	384	499	617	73
45	0	7	37	92	172	270	408	534	664	783	89
50	1	22	69	143	250	373	543	681	810	*912	*100
55	4	43	106	201	334	480	670	805	*918	1000	107
60	14	68	147	265	423	584	780	*901	998	1067	114
65	29	95	192	332	510	675	868	976	1059	1128	120
70	45	124	240	401	592	754	*941	1039	1116	1185	125
75	62	155	289	466	662	825	996	1092	1165	1234	130
80	80	187	336	524	724	*884	1035	1137	1212	1278	134
85	99	220	380	577	783	936	1077	1174	1255	1318	138
90	118	250	422	627	835	981	1108	1211	1293	1354	142
95	137	279	461	673	*882	1020	1138	1243	1325	1389	145
100	155	306	499	715	921	1049	1166	1275	1357	1419	148
105	172	333	535	*753	956	1077	1197	1302	1384	1444	15′
110	188	359	568	786	985	1105	1211	1326	1408	1472	154
115	203	383	599	818	1010	1131	1235	1350	1431	1497	156
120	218	407	627	845	1036	1152	1252	1373	1455	1518	158
125	233	430	*654	870	1057	1172	1273	1394	1475	1536	159

130	247	451	678	894	1072	1187	1293	1412	1494	1553	1613
135	261	471	701	914	1084	1204	1318	1428	1513	1568	1626
140	274	490	721	928	1094	1220	1338	1442	1528	1583	1639
145	286	*508	739	942	1104	1234	1352	1457	1541	1595	1648
150	298	525	757	953	1114	1247	1365	1468	1552	1607	1658
155	309	541	773	963	1126	1259	1371	1479	1564	1618	1666
160	320	555	786	974	1136	1268	1382	1488	1576	1626	1674
165	*330	569	798	987	1148	1275	1394	1498	1587	1635	1679
170	340	581	810	995	1157	1283	1400	1507	1596	1641	1684
175	349	592	821	1002	1160	1291	1405	1515	1602	1648	1689
180	358	603	831	1013	1170	1294	1411	1522	1607	1651	1693
185	366	613	840	1018	1176	1300	1416	1527	1610	1654	1696
190	373	622	849	1028	1185	1306	1423	1532	1613	1657	1698
195	380	631	857	1035	1192	1310	1430	1536	1616	1660	1700
200	380	631	857	1035	1192	1310	1430	1536	1617	1661	1701
Maximum MAI	2.0	3.5	5.2	7.2	9.3	11.1	13.4	15.0	16.7	18.2	20.1
Age for Maximum MAI	165	145	125	105	95	80	70	60	55	50	50
These volu The initial (N	conditions		able are:	les with n		ons or neto 00/ha Her		·	·	·	

Percent distribution of natural stems Years of natural regeneration Spaced @ 15 years to 1200/ha

Table f1a	Та	b	е	f1	а
-----------	----	---	---	----	---

100% 5

						le f1a					
	Yi	eld Table	Volumes	SUsed in	TFL 39 M	lanagem	ent and \	Norking I	Plan No. 8	8	
Total					5	Site Index	[
Age	12	15	18	21	24	27	30	33	36	39	42
10	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	1	3	7
20	0	0	0	0	0	1	5	10	18	28	44
25	0	0	0	1	4	11	22	38	58	86	118
30	0	0	1	4	15	36	63	91	130	179	242
35	0	0	3	16	44	78	121	166	226	308	412
40	0	1	12	40	81	129	188	256	348	458	595
45	0	5	31	68	122	184	262	361	474	616	788
50	0	16	52	99	164	243	348	466	607	779	984
55	1	30	73	129	208	308	429	574	741	942	1172
60	6	43	94	160	252	372	512	681	874	1100	1342
65	13	56	115	190	298	433	594	787	1006	1245	1490
70	22	69	135	220	343	494	674	891	1128	1375	*1614
75	29	82	154	249	385	553	751	993	1240	*1488	1714
80	36	94	173	278	426	612	826	1087	1343	1583	1794
85	43	105	190	307	465	667	899	1174	*1434	1664	1854
90	49	116	208	333	503	720	970	1255	1512	1729	1899
95	55	127	224	358	540	771	1035	*1329	1580	1782	1934
100	61	137	240	382	575	821	1097	1396	1638	1825	1963
105	66	146	255	405	609	869	*1154	1457	1686	1863	1988
110	72	155	270	427	642	914	1208	1510	1727	1891	2009
115	76	164	285	448	673	*959	1258	1558	1760	1915	2027
120	81	172	300	469	*703	1000	1304	1598	1788	1936	2045
125	86	179	*313	*489	732	1038	1347	1634	1811	1953	2061
130	90	*187	325	508	760	1075	1388	1665	1832	1969	2077
135	94	194	336	527	786	1111	1426	1692	1848	1984	2092
140	98	201	347	544	811	1143	1458	1717	1864	1999	2106
145	102	207	358	561	836	1175	1487	1739	1877	2011	2119
150	*106	213	368	577	859	1203	1516	1758	1890	2024	2134
155	109	219	377	592	882	1230	1542	1775	1900	2036	2146

160	112	225	387	606	904	1256	1565	1790	1912	2048	2158
165	116	230	395	621	924	1279	1587	1804	1922	2057	2170
170	119	236	404	635	944	1302	1606	1814	1932	2068	2182
175	121	241	413	648	963	1322	1624	1826	1940	2077	2193
180	124	245	421	661	980	1342	1640	1836	1948	2086	2204
185	127	250	428	673	998	1361	1655	1844	1957	2094	2214
190	129	255	436	685	1014	1381	1669	1852	1964	2103	2224
195	132	259	443	697	1030	1399	1681	1861	1971	2111	2234
200	134	263	449	708	1045	1414	1692	1870	1978	2118	2245
Maximum MAI	0.7	1.4	2.5	3.9	5.9	8.3	11.0	14.0	16.9	19.8	23.1
Age for Maximum MAI	150	130	125	125	120	115	105	95	85	75	70
These vol	umes are f	rom Xenc	yield tabl	les with n	no reduction	ons or net	downs.				
The initial	conditions	for this ta	able are:								
Number o	f planted st	tems					1200/ha	a Douglas	-fir		
Number of	f natural st	ems					500/ha	Douglas-f	ïr		
Percent su	urvival of p	lanted ste	ems				85%				
Percent di	istribution o	of natural	stems				60%				
Regenera	tion delay f	or natura	l stems (n	egative =	= early)		0				
Years of n	natural rege	eneration					4				
No spacin	g										
Site index	the same	for planta	d and nat	ural stam							

	Table f1b
Site index the same for planted and natural stems	

	Yi	eld Table	Volume	s Used in	TFL 39 M	Managem	ent and V	Vorking	Plan No.	8	
Total					S	Site Index	K				
Age	12	15	18	21	24	27	30	33	36	39	42
10	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	1	4	7
20	0	0	0	0	0	1	4	10	19	32	44
25	0	0	0	1	3	9	20	37	61	94	120
30	0	0	0	3	12	32	61	93	137	195	241
35	0	0	2	12	40	74	120	171	238	326	410
40	0	1	9	36	78	127	190	262	363	483	590
45	0	5	27	64	120	184	265	372	495	645	776
50	0	18	47	96	165	245	354	483	631	806	959
55	2	35	69	128	210	312	441	595	766	959	1128
60	9	53	92	161	256	381	528	704	890	1097	1276
65	19	70	114	193	305	447	612	807	1010	1218	1404
70	31	88	136	224	355	511	694	905	1118	*1325	*1512
75	41	105	158	256	401	573	772	998	1216	1417	1603
80	52	123	179	287	445	633	846	1082	*1301	1495	1678
85	62	139	198	320	487	690	915	1159	1375	1561	1738
90	72	155	217	349	528	745	981	*1230	1439	1615	1785
95	82	170	235	376	566	796	1041	1292	1497	1658	1825
100	91	184	252	402	604	845	*1096	1347	1545	1694	1858
105	100	197	269	427	640	891	1146	1397	1585	1723	1886
110	108	210	286	452	674	*936	1193	1439	1621	1748	1911
115	116	223	303	475	707	977	1234	1476	1649	1770	1934
120	124	235	320	498	*739	1015	1272	1510	1674	1792	1955
125	131	246	335	*519	769	1050	1307	1540	1697	1811	1975
130	138	257	*348	539	797	1083	1338	1566	1716	1829	1993
135	145	268	361	558	824	1113	1368	1591	1734	1845	2011
140	151	*278	374	577	849	1141	1393	1611	1748	1859	2028
145	158	288	386	595	874	1167	1416	1629	1763	1874	2043
150	164	297	397	612	896	1189	1436	1644	1775	1889	2057
155	*169	305	408	628	917	1211	1455	1660	1788	1902	2071
160	174	314	419	643	938	1232	1473	1672	1800	1913	2085
165	179	321	429	658	956	1252	1490	1686	1811	1925	2097
170	184	329	438	671	974	1272	1504	1697	1822	1935	2109
175	189	336	447	684	990	1288	1516	1707	1833	1946	2121

180	193	342	456	697	1005	1304	1529	1716	1842	1957	2132
185	197	348	464	709	1020	1317	1540	1724	1849	1967	2143
190	201	354	472	720	1034	1330	1550	1731	1856	1977	2153
195	204	360	480	731	1046	1343	1559	1736	1863	1986	2164
200	208	365	487	741	1059	1355	1566	1742	1868	1994	2173
Maximum MAI	1.1	2.0	2.7	4.2	6.2	8.5	11.0	13.7	16.3	18.9	21.6
Age for Maximum MAI	155	140	130	125	120	110	100	90	80	70	70

1200/ha Douglas-fir

500/ha Hemlock

85%

60%

0

4

These volumes are from Xeno yield tables with no reductions or net downs.

The initial conditions for this table are:

Number of planted stems

Number of natural stems

Percent survival of planted stems

Percent distribution of natural stems

Regeneration delay for natural stems (negative = early)

Years of natural regeneration

No spacing

Site index for natural stems is 3 m. less than planted stems

	Table f2a Yield Table Volumes Used in TFL 39 Management and Working Plan No. 8											
	Yi	eld Table	Volume	s Used in				Norking I	Plan No. 8	8		
Total		. – 1		1		Site Index		1	1	[
Age	12	15	18	21	24	27	30	33	36	39	42	
10	0	0	0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0	2	4	9	
20	0	0	0	0	0	2	5	12	21	35	53	
25	0	0	0	1	5	12	26	44	67	96	135	
30	0	0	1	5	17	38	65	98	139	191	262	
35	0	0	3	16	42	79	121	172	237	320	419	
40	0	1	11	37	78	130	188	262	348	462	601	
45	0	4	27	63	118	185	263	355	469	621	796	
50	0	13	46	93	161	244	338	454	600	786	990	
55	1	24	66	124	205	301	415	559	734	949	1175	
60	4	36	87	154	248	357	494	665	866	1105	1343	
65	10	49	108	184	289	416	575	770	994	1249	1488	
70	16	61	129	214	328	474	654	870	1115	1378	*1608	
75	23	74	148	242	368	531	731	967	1225	*1489	1702	
80	29	86	167	268	407	587	806	1059	1326	1581	1773	
85	35	98	184	293	445	641	878	1144	*1415	1656	1826	
90	41	109	202	317	482	694	945	1224	1492	1716	1864	
95	47	119	218	340	518	745	1010	*1297	1557	1762	1893	
100	53	130	233	363	553	793	1071	1363	1612	1797	1916	
105	58	139	247	386	586	839	*1128	1422	1656	1823	1936	
110	63	148	260	408	618	883	1181	1474	1692	1846	1954	
115	68	157	273	428	649	925	1229	1519	1725	1865	1970	
120	73	165	*285	447	*679	*965	1275	1560	1752	1880	1985	
125	78	172	297	*467	707	1004	1318	1595	1774	1894	1999	
130	82	180	308	485	734	1039	1357	1624	1792	1905	2012	
135	86	*187	319	503	759	1073	1391	1651	1808	1917	2024	
140	90	194	329	520	783	1106	1423	1675	1822	1927	2036	
145	94	200	339	536	807	1136	1450	1693	1834	1938	2047	
150	98	206	348	551	831	1165	1477	1710	1845	1947	2059	
155	101	212	358	566	854	1193	1502	1726	1856	1957	2070	
160	*105	218	367	581	875	1218	1525	1738	1866	1967	2082	
165	108	223	376	595	895	1242	1546	1748	1875	1977	2092	
170	111	228	384	609	915	1266	1566	1758	1882	1986	2103	
175	114	233	392	622	934	1287	1584	1769	1889	1992	2113	
180	117	238	400	635	951	1307	1598	1778	1895	2001	2123	
185	120	242	407	647	969	1326	1612	1786	1901	2008	2133	
190	122	246	415	659	986	1343	1624	1794	1906	2015	2143	
195	125	250	422	670	1001	1359	1634	1801	1911	2022	2153	

200	127	254	428	681	1017	1375	1646	1806	1917	2029	2163		
Maximum MAI	0.7	1.4	2.4	3.7	5.7	8.0	10.7	13.6	16.7	19.9	23.0		
Age for Maximum MAI	160	135	120	125	120	120	105	95	85	75	70		
	se volumes are from Xeno yield tables with no reductions or net downs.												
			table are:										
Number o	of planted	stems					1200/h	a Dougla	s-fir				
Number o	of natural s	stems					1200/h	a Dougla	s-fir				
Percent s	urvival of	planted s	tems				90%	-					
Percent d	istribution	of natura	al stems				75%						
Regenera	tion delay	/ for natur	al stems (negative	= early)		0						
Years of r	atural reg	generatior	า	, ,	• /		4						
No spacir		-											
Site index	Site index the same for planted and natural stems												

	line same				Tab	le f2b					
	Yie	eld Table	Volumes	s Used in				Norking I	Plan No. 8	8	
Total						Site Index					
Age	12	15	18	21	24	27	30	33	36	39	42
10	0	0	0	0	0	0	0	0	0	0	0
15 20	0 0	0 0	0 0	0 0	0 0	0 1	0 5	0 13	2 26	7 45	10 58
20 25	0	0	0	1	3	11	25	47	20 77	45 118	143
30	0	0	0	3	13	35	66	109	162	230	273
35	0	0	2	11	38	80	129	193	271	372	425
40	Ő	1	7	31	76	136	204	292	390	521	594
45	Ő	6	20	60	121	197	287	392	515	676	776
50	0	19	40	93	170	263	369	496	643	836	949
55	3	37	63	128	219	327	451	601	774	977	1099
60	11	58	87	164	270	391	533	707	893	1096	1224
65	22	79	111	199	318	453	615	807	1000	*1198	*1333
70	34	101	136	235	364	512	697	900	1093	1283	1425
75	48	124	160	269	408	572	774	984	*1174	1355	1499
80	61	146	184	301	449	632	847	*1059	1245	1414	1561
85	75	167	206	330	490	689	913	1125	1306	1458	1611
90	88	187	228	358	530	743	974	1184	1357	1498	1654
95	102	206	248	385	570	796	*1030	1235	1400	1531	1691
100 105	115 126	223 240	266 283	410 434	609	843 *888	1079 1125	1281 1321	1436 1466	1560 1586	1723 1751
105	126	240 256	283	434 457	645 680	928	1125	1321	1466	1608	1751
115	137	256	300	437 481	715	928 968	1200	1354	1494	1628	1800
120	157	286	331	504	*747	1002	1232	1412	1537	1646	1822
125	167	300	345	*525	776	1035	1261	1432	1553	1664	1842
130	176	313	*359	546	804	1064	1286	1450	1569	1679	1861
135	185	325	372	566	830	1090	1310	1469	1584	1693	1879
140	193	*338	385	585	855	1115	1330	1487	1600	1708	1895
145	201	349	396	604	879	1138	1349	1502	1615	1722	1910
150	209	360	407	621	902	1158	1365	1514	1629	1735	1924
155	*216	370	418	637	923	1177	1380	1526	1640	1746	1938
160	222	380	427	652	941	1194	1394	1536	1648	1758	1951
165	229	389	437	667	959	1210	1407	1544	1658	1768	1963
170	235	397	447	681	973	1225	1420	1554	1666	1777	1975
175	241	405	455	694	987	1239	1429	1561	1674	1787	1986
180	246	412	464	707	1000	1250	1437	1568	1682	1797	1998
185	251	419	472	719	1013	1260	1445	1573	1690	1804	2008
190 195	256 261	425	480	730	1026 1037	1269 1277	1451 1457	1579 1584	1696 1703	1812	2018 2028
195 200	261	431 437	487 494	740 750	1037	1277	1457	1584 1589	1703	1820 1826	2028 2037
Maximum MAI	1.4	2.4	2.8	4.2	6.2	8.5	10.8	13.2	15.7	18.4	20.5
Age for	155	140	130	125	120	105	95	80	75	65	65

Maximum MAI													
These vol	lumes are	from Xer	no yield ta	bles with	no reduct	ions or ne	t downs.						
The initial	condition	ns for this	table are:										
Number o	of planted	stems					1200/ł	na Dougla	s-fir				
Number o	of natural	stems					1200/h	na Hemloo	ck				
Percent s	Number of natural stems1200/ha HemlockPercent survival of planted stems90%												
Percent d	listributior	of natura	al stems				75%						
Regenera	tion delay	y for natur	al stems	negative	= early)		0						
Years of r	natural reg	generatior	า				4						
No spacing													
Site index	Site index for natural stems is 3 m. less than planted stems												

						le f3a					
	Yi	ield Table	e Volume	s Used in				Working	Plan No.	8	
Total Age	12	15	18	21	24	Site Index 27	(30	33	36	39	42
10	0	0	0	0	0	0	0	0	0	1	3
15	0	0	0	0	0	0	0	2	5	11	22
20	0	0	0	0	1	3	9	20	36	59	90
25	0 0	0	0	2	8	21	41	67	98	142	197
30	0	0	2	8	25	52	88	130	181	247	330
35	0	1	5	21	52	96	149	210	280	373	490
40	0	2	13	40	88	149	217	297	391	514	668
45	0	5	26	65	130	205	289	388	509	663	856
50	0	11	42	94	174	262	361	482	631	819	1041
55	1	20	60	126	218	318	433	577	756	973	1212
60	3	30	80	157	259	372	505	674	879	1117	1360
65	7	40	101	187	298	425	577	770	994	1247	*1483
70	11	51	122	216	336	478	648	865	1102	*1359	1577
75	16	63	142	243	373	529	720	955	1198	1454	1648
80	21	75	161	268	408	578	789	1038	1283	1529	1698
85	25	87	179	292	442	627	856	1116	*1365	1586	1736
90	30	98	196	315	474	675	918 079	*1188	1427	1629	1762
95 100	35 40	109 120	212 227	336 357	505 536	722 767	978 *1033	1252 1307	1482 1527	1660 1685	1781 1798
100	40	120	227	357	566	810	1033	1307	1527	1705	1796
105	45 50	130	241 254	396	*594	851	1064	1358	1556	1705	1826
115	50 54	148	267	*415	621	*891	1176	1403	1607	1738	1839
120	59	157	*279	432	647	928	1217	1474	1620	1752	1852
125	63	165	290	450	673	963	1254	1502	1633	1764	1865
130	68	172	301	465	698	995	1288	1526	1648	1776	1879
135	72	180	311	481	722	1026	1320	1547	1659	1786	1892
140	76	*186	321	496	746	1056	1349	1567	1670	1796	1904
145	80	193	330	511	768	1083	1375	1583	1680	1807	1917
150	83	199	339	525	788	1109	1398	1595	1688	1818	1929
155	87	205	348	539	808	1133	1418	1607	1694	1827	1941
160	90	211	356	552	828	1156	1437	1615	1702	1836	1954
165	94	216	364	564	846	1177	1454	1622	1712	1845	1966
170	97	221	372	576	863	1197	1468	1628	1720	1854	1978
175	100	226	380	587	881	1216	1482	1636	1726	1864	1989
180	*103	231	387	599	897	1235	1497	1644	1729	1874	2000
185	106	235	394	610	913	1254	1508	1651	1733	1882	2010
190	109	239	400	621	929	1270	1520	1657	1741	1891	2021
195	111	243	407	631 642	943	1285	1531	1662	1746	1897	2031
200	114	247	413	642	958	1300	1540	1668	1754	1906	2040
Maximum MAI	0.6	1.3	2.3	3.6	5.4	7.7	10.3	13.2	16.1	19.4	22.8
Age for Maximum MAI	180	140	120	115	110	115	100	90	85	70	65

These volumes are from Xeno yield tables with no reductions or net downs.

The initial conditions for this table are:	
Number of planted stems	1200/ha Douglas-fir
Number of natural stems	3000/ha Douglas-fir
Percent survival of planted stems	90%
Percent distribution of natural stems	90%
Regeneration delay for natural stems (negative = early)	-1
Years of natural regeneration	5
No spacing	

Site index the same for planted and natural stems

						le f3b					
	Yi	ield Table	e Volume	s Used in			ent and V	Norking	Plan No.	8	
Total Age	12	15	18	21	24	Site Index 27	(30	33	36	39	42
10	0	0	0	0	0	0	0	0	0	2	3
15	0	0	0	0	0	0	0	2	8	20	25
20	Ő	0	0	0 0	Ő	3	11	27	52	89	102
25	Ő	0 0	0	1	6	20	45	80	132	198	217
30	0	0	1	5	20	52	101	160	237	331	354
35	0	1	2	14	49	104	176	258	357	471	500
40	0	3	6	34	92	169	260	360	479	614	650
45	0	11	17	64	143	238	345	462	598	758	798
50	1	27	36	101	198	308	427	561	716	880	930
55	6	50	60	141	254	375	507	655	819	*979	*1038
60	17	75	86	183	308	439	581	740	*911	1047	1116
65	31	102	115	224	359	498	650	818	984	1101	1187
70	47	131	144	265	407	553	715	891	1045	1140	1239
75	63	161	174	302	449	604	775	*956	1093	1169	1279
80	82	191	202	335	489	653	831	1010	1131	1190	1305
85	100	219	229	366	527	699	*885	1058	1161	1215	1336
90	119	244	253	396	563	*742	931	1093	1188	1239	1365
95	138	267	275	423	598	781	972	1125	1211	1262	1391
100	155	289	296	448	*630	820	1009	1148	1229	1278	1420
105	170	310	315	473	660	857	1037	1165	1240	1288	1442
110	185	329	333	*496	688	894	1062	1182	1251	1310	1457
115	199	347	350	518	713	923	1085	1197	1264	1332	1479
120	212	365	*366	539	739	951	1104	1209	1275	1343	1497
125	225	*381	381	559	763	976	1119	1218	1285	1355	1515
130	237	396	395	578	786	997	1134	1225	1294	1370	1536
135	249	410	408	595	809	1015	1145	1237	1301	1381	1552
140	260	424	421	612	828	1033	1153	1247	1310	1392	1568
145	270	437	433	627	847	1048	1161	1255	1320	1402	1585
150	*280	449	445	640	864	1061	1167	1263	1327	1410	1600
155	289	460	456	653	879	1071	1173	1267	1338	1417	1612
160	297	471	466	664	893	1080	1179	1273	1346	1422	1623
165	305	481	475	674	906	1086	1184	1277	1355	1433	1638
170	313	490	484	685	916	1090	1188	1283	1361	1443	1648
175	320	499	492	695	926	1094	1191	1289	1366	1450	1659
180	326	507	501	704	934	1097	1194	1297	1372	1460	1670
185 190	332 338	515 522	508 515	713 722	942 949	1100 1102	1196 1198	1301 1305	1375 1379	1467 1476	1677 1683
190	338 343	522 528	515	722	949 954	1102	1198	1305	1379	1476	1683
200	343 348	528 535	521 527	730	954 959	1104	1200	1308	1384	1480	1693
Maximum MAI	1.9	3.0	3.0	4.5	6.3	8.2	10.4	12.7	15.2	17.8	18.9
Age for Maximum MAI	150	125	120	110	100	90	85	75	60	55	55
							-				

These volumes are from Xeno yield tables with no reductions or net downs.

The initial conditions for this table are: Number of planted stems

^{1200/}ha Douglas-fir

Number of natural stems	3000/ha Hemlock
Percent survival of planted stems	90%
Percent distribution of natural stems	90%
Regeneration delay for natural stems (negative = early)	-1
Years of natural regeneration	5
No spacing	
Site index for natural stems is 3 m. less than planted stems	

	Table f4 Yield Table Volumes Used in TFL 39 Management and Working Plan No. 8													
	Yie	eld Table	Volume	s Used in				Vorking I	Plan No. 8	3				
Total					5	Site Index								
Age	12	15	18	21	24	27	30	33	36	39	42			
10	0	0	0	0	0	0	0	0	0	0	0			
15	0	0	0	0	0	0	0	0	1	2	4			
20	0	0	0	0	0	1	3	5	9	15	23			
25	0	0	0	1	2	6	11	19	30	45	64			
30	0	0	1	2	8	18	32	49	71	99	135			
35 40	0	0	2 7	8	22	41 70	64 105	93	129	174	230			
40 45	0 0	1 3	16	21 37	43 66	104	105 151	147 209	199 279	263 363	341 463			
43 50	0	8	28	54	92	104	202	209	364	468	403 591			
55	1	16	39	72	120	180	256	346	452	576	718			
60	3	23	52	91	148	221	310	417	542	683	841			
65	7	30	64	110	177	261	365	488	630	787	957			
70	11	37	76	129	205	301	420	557	715	886	1066			
75	15	15 45 88 148 233 341 474 625 796 979 11												
80	18	51	100	167	261	380	525	691	874	1067	1263			
85	22	58	111	185	288	418	576	754	946	1147	1351			
90	26	65	123	202	314	455	625	813	1014	1224	*1434			
95	29	71	133	219	339	491	672	868	1078	*1295	1512			
100	32	77	144	236	364	526	717	921	*1137	1361	1584			
105	35	83	154	252	387	559	760	971	1193	1424	1653			
110	38	88	164	267	410	591	800	*1018	1245	1481	1718			
115	41	94	173	282	432	622	839	1062	1295	1535	1780			
120 125	43	99	182	296	454	650 *670	*876	1102	1342	1586	1838			
125	46 48	104 109	190 199	310 323	474 494	*678 705	910 943	1142 1179	1388 1429	1635 1681	1893 1946			
130	40 51	109	*207	323 *335	494 *513	705	943 974	1214	1429	1725	1946			
135	53	113	207	348	531	755	1004	1214	1409	1725	2042			
140	55	*122	222	359	548	733	1004	1240	1543	1807	2042			
150	57	126	229	371	565	801	1058	1308	1577	1845	2130			
155	59	130	236	382	581	822	1082	1336	1608	1881	2170			
160	*61	134	242	392	596	842	1106	1364	1638	1917	2209			
165	63	137	249	402	611	862	1128	1391	1667	1951	2246			
170	65	141	255	412	625	881	1149	1415	1696	1983	2281			
175	67	144	260	422	639	898	1169	1439	1724	2014	2315			
180	68	148	266	431	653	916	1188	1462	1749	2044	2348			
185	70	151	272	439	665	932	1208	1483	1773	2072	2379			
190	71	154	277	448	677	947	1225	1506	1797	2098	2409			
195	73	156	282	456	689	962	1243	1527	1819	2124	2438			
200	74	159	287	463	700	977	1260	1546	1841	2150	2465			
Maximum MAI	0.4	0.8	1.5	2.5	3.8	5.4	7.3	9.3	11.4	13.6	15.9			
Age for Maximum MAI	160	145	135	135	135	125	120	110	100	95	90			
These vol	umes are	from Xen	o vield tal	hles with i	no reducti	ons or ne	t downs							

These volumes are from Xeno yield tables with no reductions or net downs.

The initial conditions for this table are:

Number of natural stems Percent distribution of natural stems

Years of natural regeneration

600/ha Douglas-fir 70% 5

No spacing

	N:		Malanaa			ole f5				<u></u>		
Total	Y IO	eld l'able	volumes	s Used in	Site I		ent and v	vorking i	Plan No. 8	3		
Age	12	15	18	21	24	27	30	33	36	39	42	
10	0	0	0	0	0	0	0	0	0	0	1	
15	0	0	0	0	0	0	0	1	2	5	9	
20	0	0	0	0	0	2	6	11	19	31	47	
25	0	0	0	1	5	12	23	39	60	87	124	
30	0	0	1	5	16	35	60	91	130	179	240	
35	0	0	4	16	41	74	115	163	223	294	383	
40	0	1	12	37	76	123	180	246	327	423	538	
45 50	0 0	5 14	28 47	64 93	116 157	177 233	250 322	334 424	437 550	557 694	698 858	
55	2	26	67	123	199	233	393	424 514	662	829	1013	
55 60	6	38	87	123	240	200 343	393 464	604	773	829 960	1158	
65	12	51	107	182	240	395	534	693	879	1084	1292	
70	18	63	127	209	319	447	602	779	982	1198	1414	
75	25	75	146	236	356	498	668	862	1078	1303	*1523	
80	31	86	164	261	391	547	731	941	1169	*1399	1623	
85	37	98	181	286	426	593	793	1015	1253	1487	1715	
90	43	108	197	309	460	638	852	1085	*1330	1566	1799	
95	49	118	212	331	492	683	908	1152	1401	1640	1878	
100	54	128	227	352	522	725	961	*1213	1466	1708	1951	
105	59	137	240	372	552	764	*1012	1270	1527	1772	2020	
110	64	145	253	392	580	*802	1059	1323	1584	1832	2084	
115	69	153	266	411	*607	838	1103	1372	1636	1888	2145	
120	74	161	*277	*429	634	873	1144	1418	1683	1940	2202	
125	78	169	289	446	659	907	1184	1461	1728	1989	2257	
130	82	*176	300	462	683	939	1222	1501	1770	2036	2309	
135 140	86 90	182 189	310 320	478 493	706 728	970 998	1256 1289	1538 1573	1810 1848	2079 2121	2358 2404	
140	90 93	109	320	493 508	748	1025	1320	1607	1885	2121	2404	
150	97	200	338	521	769	1020	1350	1637	1918	2197	2487	
155	*100	206	347	535	788	1077	1378	1666	1952	2234	2527	
160	103	211	355	547	807	1100	1404	1693	1983	2269	2564	
165	106	216	363	560	825	1123	1429	1719	2014	2303	2600	
170	109	221	371	572	842	1144	1453	1744	2043	2335	2635	
175	112	226	378	583	858	1164	1476	1767	2069	2365	2667	
180	114	230	386	595	874	1183	1496	1789	2094	2394	2699	
185	117	234	393	605	890	1200	1516	1810	2119	2421	2730	
190	119	238	399	616	905	1218	1535	1832	2143	2446	2759	
195	122	242	406	626	920	1235	1553	1852	2166	2470	2786	
200	124	246	412	635	934	1251	1570	1870	2185	2493	2813	
Maximum MAI	0.6	1.4	2.3	3.6	5.3	7.3	9.6	12.1	14.8	17.5	20.3	
Age for Maximum MAI 155 130 120 120 115 110 105 100 90 80 75												
These volu	These volumes are from Xeno yield tables with no reductions or net downs.											
The initial	conditions	s for this t	able are:									
Number of					150	0/ha Dou	glas-fir					
Percent distribution of natural stems 90%												
Years of n		eneration			5							
No spacin	g											

_	-	-	
- T		•	
	an		T
(av		1.0

Г

MAI Age for 155 125 110 105 110 100 95 85 80 70 Maximum MAI Maximum Maximum <t< th=""><th></th><th colspan="8">Table 16</th></t<>		Table 16										
Age 12 15 18 21 24 27 30 33 36 39 42 10 0	Tatal											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	40	45	40	01							40
15 0 0 0 0 0 0 1 3 7 15 20 0 0 0 2 7 18 35 59 89 128 179 30 0 0 2 7 23 49 84 127 177 241 318 35 0 1 5 21 54 99 153 215 285 337 476 40 0 2 15 46 98 159 230 310 399 510 638 45 0 6 33 78 146 223 384 498 630 743 922 1118 60 6 45 105 184 2267 399 528 680 653 1064 129 1117 70 20 75 152 247 338 504 666 853 1064 129 1617 80 35 103 147 274	-											
20 0 0 0 2 7 18 17 30 49 75 30 0 0 2 7 23 49 84 127 177 241 318 35 0 1 5 21 54 99 153 215 285 373 476 40 0 2 15 46 98 159 230 310 399 510 638 45 0 6 33 78 146 222 308 405 514 648 802 55 2 30 80 149 242 343 466 590 743 922 1118 65 13 60 129 216 328 452 590 768 961 1176 1392 167 75 28 89 174 2247 368 504 668 853 <												
25 0 0 2 7 18 35 59 89 128 179 30 0 0 2 7 23 49 84 127 177 241 318 35 0 1 5 21 54 99 153 215 285 373 476 40 0 2 15 46 98 159 230 310 399 510 638 50 0 16 56 114 195 283 384 498 630 786 992 60 6 45 105 184 287 399 528 680 853 1053 1281 161 70 20 75 152 247 386 504 666 853 1064 1289 151 75 28 91 113 1253 1486 172 1807 113												
30 0 0 2 7 23 49 84 127 177 241 318 35 0 1 5 21 54 99 153 215 285 373 476 40 0 2 15 46 98 159 230 310 399 510 638 45 0 6 6 33 78 146 222 308 405 514 648 802 55 2 30 80 149 242 343 458 500 74 922 118 65 13 60 129 216 328 452 598 680 853 1053 1281 1617 70 20 75 152 247 368 504 666 653 1064 1289 1617 1412 1650 1879 70 276 471 5												
35 0 1 5 21 54 99 153 215 285 373 476 40 0 2 15 46 98 159 230 310 399 510 638 50 0 16 56 114 195 283 384 498 630 786 984 55 2 30 80 149 242 334 458 590 743 922 1118 60 6 45 105 184 287 399 528 680 853 1051 1171 70 20 75 152 247 368 504 666 853 1064 1282 1171 80 35 103 195 303 441 602 794 1013 1252 144 84 2117 214 328 475 648 856 1083 1671 <td></td>												
40 0 2 15 46 98 159 230 310 399 510 688 45 0 16 56 114 195 283 384 498 630 786 994 55 2 30 80 149 242 343 458 590 743 922 1118 60 6 45 105 184 287 399 528 680 853 1053 1261 65 13 60 129 216 328 452 598 768 961 176 1392 1617 75 28 89 174 276 406 554 731 935 1162 1392 1617 80 35 103 195 303 441 602 794 1013 1253 '1486 1772 1800 95 56 142 249 375 540 735 971 '1724 1412 1650 1872 1800 1817												
45 0 6 33 78 146 222 308 408 630 786 964 55 2 30 80 149 242 343 458 590 743 922 1118 60 6 445 105 184 287 399 528 680 853 1053 1261 65 13 60 129 216 328 452 588 768 961 1176 1392 1511 70 20 75 152 247 368 504 666 853 1064 1289 1511 75 28 89 174 276 406 554 731 935 1162 1392 1611 128 1712 865 136 1064 1289 1712 185 1775 1842 1661 1847 128 1172 1845 1441 1722 1844 106 1849 172 1845 1450 1849 1730 2018 21710 1284												
50 0 16 56 114 195 283 384 498 630 786 994 55 2 30 80 149 242 343 458 590 743 922 1118 66 6 45 105 184 287 399 528 680 853 1064 1289 1176 1392 1161 1392 1176 1392 1617 70 20 75 152 247 368 504 666 853 1064 1386 1771 1393 1162 1392 1617 80 35 103 195 303 441 602 794 1013 1253 *1486 1772 1806 *1386 1571 1342 1650 1877 1801 1152 1392 1651 1782 1861 102 184 1786 184 1722 1953 164 1203 154												
55 2 30 80 149 242 343 458 590 743 922 1118 60 6 45 105 184 287 399 528 680 853 1053 1261 65 13 60 129 216 328 452 598 768 961 1176 1392 11617 70 20 75 152 247 368 504 666 853 1064 1289 "151 80 35 103 195 303 441 602 794 1013 1253 "1486 1712 85 42 117 214 328 475 648 856 1086 "1336 1572 180 95 56 142 249 375 540 735 971 "124 1481 172 1845 100 63 153 265 397												
60 6 45 105 1184 287 399 528 680 853 1053 1291 70 20 75 152 247 368 504 666 853 1064 1289 "1511 70 20 75 152 247 368 504 666 853 1064 1289 "1511 80 35 103 195 303 441 602 794 1013 1253 "1486 1772 80 35 103 195 303 441 602 794 1013 1253 "1486 1772 1800 95 56 142 249 375 570 "776<"1024												
66 13 60 129 216 328 452 598 678 961 1176 1392 70 20 75 152 247 368 504 666 853 1064 1289 *1511 75 28 89 174 276 406 554 731 935 1162 1392 1617 80 35 103 195 303 441 602 794 1013 1253 *1486 1712 85 42 117 214 328 475 648 856 108 *1544 1762 1800 90 49 129 232 352 570 776 *1024 1285 1544 1762 180 100 63 153 265 397 570 *776 *1024 183 1654 1903 2149 115 81 183 307 454 654												
75 28 89 174 276 406 554 731 935 1162 1392 1617 80 35 103 195 303 441 602 794 1013 1253 *1486 1712 85 42 117 214 328 475 540 735 971 *124 1481 1772 1850 95 56 142 249 375 540 735 971 *124 1481 1722 1954 100 63 153 2265 397 570 "776 *1024 1285 1544 1780 2023 105 69 164 280 *417 599 815 1075 1342 1601 1847 2088 115 81 183 307 454 654 888 1168 1443 1764 2006 2261 125 92 *201 331 489 703 954 1250 1531 1790 2052 2313												
80 35 103 195 303 441 602 794 1013 1253 *1486 1712 86 42 117 214 328 475 648 856 1006 *1336 1572 1800 90 49 129 232 352 507 692 914 1157 1412 1650 1879 95 56 142 249 375 540 735 971 *1224 1481 1722 1954 100 63 153 265 397 570 *776 *1024 128 1544 176 2013 100 75 174 *294 436 *628 852 1122 1393 1654 1903 2149 110 75 174 *294 436 *628 852 1121 1489 1742 2062 2313 111 30 97 209 342								666				
85 42 117 214 328 475 648 856 1086 *1336 1572 1800 90 49 129 232 352 507 692 914 1157 1412 1650 1879 95 56 142 249 375 570 *776 *1024 1285 1544 1762 1285 100 63 153 265 397 570 *776 *1024 1285 1544 1786 2028 100 63 153 265 397 570 *776 *1024 1384 100 1487 2088 110 75 174 *294 436 *628 852 1122 1333 1654 1903 2149 115 81 183 307 454 654 888 1168 1433 170 2062 2261 125 92 1201 1425 150						406	554					
90 49 129 232 352 507 692 914 1157 1412 1650 1879 95 56 142 249 375 540 7735 971 *1224 1481 1722 1954 100 63 153 265 397 570 *776 *1024 1285 1544 1786 2023 105 69 164 280 *417 599 815 1075 1342 1601 1847 2088 110 75 174 '294 436 654 888 1168 1443 1704 1957 2207 120 86 192 319 472 680 922 1210 1489 1749 2006 2261 125 92 '201 331 489 703 954 1250 1531 1790 2052 2361 135 102 216 353 521 748 1015 1322 1605 1868 2137 2408 1												
95 56 142 249 375 540 735 971 *1224 1481 1722 1954 100 63 153 265 397 570 *776 *1024 1285 1544 1786 2023 105 69 164 280 *417 599 815 1075 1342 1601 1847 2088 110 75 174 *294 436 *628 852 1122 1393 1654 1903 2149 125 86 192 319 472 680 922 1210 1489 1779 2052 2311 130 97 209 342 505 726 985 1287 1569 1830 2096 2361 135 102 216 353 577 704 143 1355 1671 1938 2215 2494 150 115 237 382 564 810 1098 1414 1702 1971 2249 2533												
100 63 153 265 397 570 *776 *1024 1285 1544 1786 2023 105 69 164 280 *417 599 815 1075 1342 1601 1847 2088 110 75 174 *294 436 *628 852 1122 1393 1654 1903 2149 115 81 183 307 454 654 888 1168 1443 1704 1957 2207 120 86 192 313 489 703 954 1250 1531 1790 2052 2313 130 97 209 342 505 726 985 1287 1569 1830 2096 2361 135 102 216 353 521 790 1071 1385 1671 1938 2177 2452 145 111 233 382 564 <td></td>												
105 69 164 280 *417 599 815 1075 1342 1601 1847 2088 110 75 174 *294 436 *628 852 1122 1393 1654 1903 2149 115 81 183 307 454 654 888 1168 1443 1704 1957 2207 120 86 192 319 472 680 922 1210 1489 1749 2006 2261 125 92 *201 331 489 703 954 1250 1531 1790 2052 2313 130 97 209 342 505 726 985 1287 1609 1830 2062 2317 2408 140 106 223 363 537 770 1043 1355 1639 1903 2177 2452 145 111 230 373 <td></td>												
110 75 174 *294 436 *628 852 1122 1393 1654 1903 2149 115 81 183 307 454 654 888 1168 1443 1704 1957 2201 120 86 192 319 472 680 922 1210 1489 1749 2006 2261 125 92 *201 331 4489 703 954 1250 1531 1749 2006 2261 135 102 216 353 521 748 1015 1322 1605 1886 2137 2408 140 106 223 363 537 770 1043 1355 1639 1903 2177 2452 145 111 230 373 551 790 1071 1385 1671 1938 2215 2494 150 115 237 382 564 810 1098 1414 1702 1971 2249 2533												
1158118330745465488811681443170419572207120861923194726809221210148917492006226112592*201331489703954125015311790205223131309720934250572698512871569183020962361135102216353521748101513221605186821372408140106223363537770104313551639190321772452145111230373551790107113851671193822152494150115237382564810109814141702197122492533155*1192433915778291122144117312001228325711601222483995908471146146617592027231826071701302594156158811191151218072084238126751751332644236268981212153418512137246227361801362694306379141231155418512137246												
120 86 192 319 472 680 922 1210 1489 1749 2006 2261 125 92 *201 331 489 703 954 1250 1531 1790 2052 2313 130 97 209 342 505 726 985 1287 1569 1830 2096 2361 140 106 223 363 537 770 1043 1355 1639 1903 2177 2452 145 111 230 373 551 790 1071 1385 1671 1938 2215 2494 150 115 237 382 564 810 1098 1414 1702 1971 2249 2533 155 *119 243 391 577 829 1122 1441 1731 2001 227 2318 2607 165 126 254 407 603 865 1169 1489 1783 2056 2350 2642												
125 92 *201 331 489 703 954 1250 1531 1790 2052 2313 130 97 209 342 505 726 985 1287 1569 1830 2096 2361 135 102 216 353 521 748 1015 1322 1605 1868 2137 2408 140 106 223 363 537 770 1043 1355 1639 1903 2177 2452 145 111 230 373 551 790 1071 1385 1671 1938 2215 2494 150 115 237 382 564 810 1098 1414 1702 1971 2249 2533 155 *119 243 391 577 829 1122 1441 1731 2001 2283 2571 166 126 254 407 603 865 1169 1489 1783 2056 2360 2461 2765												
130 97 209 342 505 726 985 1287 1569 1830 2096 2361 135 102 216 353 521 748 1015 1322 1605 1868 2137 2408 140 106 223 363 537 770 1043 1355 1639 1903 2177 2452 145 111 230 373 551 790 1071 1385 1671 1938 2215 2494 150 115 237 382 564 810 1098 1414 1702 1971 2249 2533 155 *119 243 391 577 829 1122 1441 1731 2001 2283 2571 160 122 248 399 590 847 1146 1466 1759 2027 2318 2607 165 126 254 407 603 865 1169 1489 1783 2056 2350 2642 2736												
135 102 216 353 521 748 1015 1322 1605 1868 2137 2408 140 106 223 363 537 770 1043 1355 1639 1903 2177 2452 145 111 230 373 551 790 1071 1385 1671 1938 2215 2494 150 115 237 382 564 810 1098 1414 1702 1971 2249 2533 155 *119 243 391 577 829 1122 1441 1731 2001 2283 2571 160 122 248 399 590 847 1146 1466 1759 2027 2318 2607 165 126 254 407 603 865 1169 1489 1783 2056 2350 2642 170 130 259 415 615 881 1191 1512 1807 2436 2736 180												
140 106 223 363 537 770 1043 1355 1639 1903 2177 2452 145 111 230 373 551 790 1071 1385 1671 1938 2215 2494 150 115 237 382 564 810 1098 1414 1702 1971 2249 2533 155 *119 243 391 577 829 1122 1441 1731 2001 2283 2571 160 122 248 399 590 847 1146 1466 1759 2027 2318 2667 165 126 254 407 603 865 1169 1489 1783 2056 2350 2642 170 130 259 415 615 881 1191 1512 1807 2084 2381 2675 175 133 264 423 626 898 1212 1534 1851 2137 2436 2736												
145 111 230 373 551 790 1071 1385 1671 1938 2215 2494 150 115 237 382 564 810 1098 1414 1702 1971 2249 2533 155 *119 243 391 577 829 1122 1441 1731 2001 2283 2571 160 122 248 399 590 847 1146 1466 1759 2027 2318 2607 165 126 254 407 603 865 1169 1489 1783 2056 2350 2642 170 130 259 415 615 881 1191 1512 1807 2084 2381 2676 175 133 264 423 626 898 1212 1534 1829 2111 2410 2706 180 136 269 430 637 914 1231 1554 1851 2137 2436 27765												
150 115 237 382 564 810 1098 1414 1702 1971 2249 2533 155 *119 243 391 577 829 1122 1441 1731 2001 2283 2571 160 122 248 399 590 847 1146 1466 1759 2027 2318 2607 165 126 254 407 603 865 1169 1489 1783 2056 2350 2642 170 130 259 415 615 881 1191 1512 1807 2084 2381 2675 175 133 264 423 626 898 1212 1534 1829 2111 2410 2706 180 136 269 430 637 914 1231 1554 1851 2137 2436 2736 180 136 269 433 657 943 1268 1592 1890 2185 2487 2792												
155 *119 243 391 577 829 1122 1441 1731 2001 2283 2571 160 122 248 399 590 847 1146 1466 1759 2027 2318 2607 165 126 254 407 603 865 1169 1489 1783 2056 2350 2642 170 130 259 415 615 881 1191 1512 1807 2084 2381 2675 175 133 264 423 626 898 1212 1534 1829 2111 2410 2706 180 136 269 430 637 914 1231 1554 1851 2137 2436 2736 185 139 274 437 647 929 1250 1574 1871 2162 2461 2765 190 142 278 443 657 943 1268 1592 1890 2185 2487 2792												
165 126 254 407 603 865 1169 1489 1783 2056 2350 2642 170 130 259 415 615 881 1191 1512 1807 2084 2381 2675 175 133 264 423 626 898 1212 1534 1829 2111 2410 2706 180 136 269 430 637 914 1231 1554 1851 2137 2436 2736 185 139 274 437 647 929 1250 1574 1871 2162 2461 2765 190 142 278 443 657 943 1268 1592 1890 2185 2487 2792 195 145 282 450 667 957 1286 1610 1909 2204 2509 2818 200 147 286 455 676 970 1302 1627 1927 2225 2531 2844												
170 130 259 415 615 881 1191 1512 1807 2084 2381 2675 175 133 264 423 626 898 1212 1534 1829 2111 2410 2706 180 136 269 430 637 914 1231 1554 1851 2137 2436 2736 185 139 274 437 647 929 1250 1574 1871 2162 2461 2765 190 142 278 443 657 943 1268 1592 1890 2185 2487 2792 195 145 282 450 667 957 1286 1610 1909 2204 2509 2818 200 147 286 455 676 970 1302 1627 1927 2225 2531 2844 Maximum 0.8 1.6 2.7 4.0 5.7 7.8 10.2 12.9 15.7 18.6 21.6 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>												
175 133 264 423 626 898 1212 1534 1829 2111 2410 2706 180 136 269 430 637 914 1231 1554 1851 2137 2436 2736 185 139 274 437 647 929 1250 1574 1871 2162 2461 2765 190 142 278 443 657 943 1268 1592 1890 2185 2487 2792 195 145 282 450 667 957 1286 1610 1909 2204 2509 2818 200 147 286 455 676 970 1302 1627 1927 2225 2531 2844 Maximum 0.8 1.6 2.7 4.0 5.7 7.8 10.2 12.9 15.7 18.6 21.6 MAI 105 110 100 100 95 85 80 70 Maximum MAI 105												
180 136 269 430 637 914 1231 1554 1851 2137 2436 2736 185 139 274 437 647 929 1250 1574 1871 2162 2461 2765 190 142 278 443 657 943 1268 1592 1890 2185 2487 2792 195 145 282 450 667 957 1286 1610 1909 2204 2509 2818 200 147 286 455 676 970 1302 1627 1927 2225 2531 2844 Maximum 0.8 1.6 2.7 4.0 5.7 7.8 10.2 12.9 15.7 18.6 21.6 MAI 105 110 100 100 95 85 80 70 Maximum MAI 105 110 100 100 95 85 80 70 Maximum MAI 100 100 100												
185 139 274 437 647 929 1250 1574 1871 2162 2461 2765 190 142 278 443 657 943 1268 1592 1890 2185 2487 2792 195 145 282 450 667 957 1286 1610 1909 2204 2509 2818 200 147 286 455 676 970 1302 1627 1927 2225 2531 2844 Maximum 0.8 1.6 2.7 4.0 5.7 7.8 10.2 12.9 15.7 18.6 21.6 Age for MAI 105 110 100 100 95 85 80 70 Maximum MAI 105 110 100 100 95 85 80 70 Maximum 155 125 110 105 110 100 95 85 80 70 Maximum MAI 3000/ha Douglas-fir 90% 90% </td <td></td>												
190 142 278 443 657 943 1268 1592 1890 2185 2487 2792 195 145 282 450 667 957 1286 1610 1909 2204 2509 2818 200 147 286 455 676 970 1302 1627 1927 2225 2531 2844 Maximum 0.8 1.6 2.7 4.0 5.7 7.8 10.2 12.9 15.7 18.6 21.6 Age for 155 125 110 105 110 100 100 95 85 80 70 Maximum MAI 125 110 105 110 100 100 95 85 80 70 Maximum MAI 3000/ha 100 95 85 80 70 Maximum Soft tables with no reductions or net downs. 100 95 85 80 70 These volumes are from Xeno yield tables with no reductions or net downs. 3000/ha Douglas-fir 90%												
195 145 282 450 667 957 1286 1610 1909 2204 2509 2818 200 147 286 455 676 970 1302 1627 1927 2225 2531 2844 Maximum 0.8 1.6 2.7 4.0 5.7 7.8 10.2 12.9 15.7 18.6 21.6 Age for 155 125 110 105 110 100 100 95 85 80 70 Maximum MAI 125 110 105 110 100 100 95 85 80 70 Maximum MAI 125 110 105 110 100 100 95 85 80 70 Maximum MAI 3000/ha 100 95 85 80 70 Maximum Solutions for this table are: 3000/ha Douglas-fir 90% 90% 90% 5 5 5 5 5												
200 147 286 455 676 970 1302 1627 1927 2225 2531 2844 Maximum MAI 0.8 1.6 2.7 4.0 5.7 7.8 10.2 12.9 15.7 18.6 21.6 Age for Maximum MAI 155 125 110 105 110 100 100 95 85 80 70 Maximum MAI 125 110 105 110 100 100 95 85 80 70 These volumes are from Xeno yield tables with no reductions or net downs. 100 95 85 80 70 The initial conditions for this table are: Number of natural stems 3000/ha Douglas-fir 90% 90% 90% 90% 5 5 5 5 5 5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100												
Maximum MAI0.81.62.74.05.77.810.212.915.718.621.6Age for Maximum MAI15512511010511010010095858070MAIMAI10010010095858070These volumes are from Xeno yield tables with no reductions or net downs.The initial conditions for this table are: Number of natural stems Percent distribution of natural stems Years of natural regeneration3000/ha Douglas-fir 90% 5												
MAI Age for 155 125 110 105 110 100 100 95 85 80 70 Maximum MAI 125 110 105 110 100 100 95 85 80 70 MAI MAI 100 100 95 85 80 70 MAI Image: Maximum MAI 100 100 95 85 80 70 These volumes are from Xeno yield tables with no reductions or net downs. Image: Maximum Air												
Maximum MAI Maximum MAI Maximum Maximum Maximum Maximum Maximum Maximum Maximum		0.8	1.6	2.7	4.0	5.7	7.8	10.2	12.9	15.7	18.6	21.6
The initial conditions for this table are: 3000/ha Douglas-fir Number of natural stems 3000/ha Douglas-fir Percent distribution of natural stems 90% Years of natural regeneration 5	Maximum	Age for Maximum 155 125 110 105 110 100 100 95 85 80 70										
Number of natural stems3000/ha Douglas-firPercent distribution of natural stems90%Years of natural regeneration5	These vol	These volumes are from Xeno yield tables with no reductions or net downs.										
Number of natural stems3000/ha Douglas-firPercent distribution of natural stems90%Years of natural regeneration5	The initial	condition	s for this t	able are								
Percent distribution of natural stems90%Years of natural regeneration5						300	0/ha Dou	glas-fir				
Years of natural regeneration 5					stems							

Table f6

Table f7

	Yield Table Volumes Used in TFL 39 Management and Working Plan No. 8
Total	Site Index
Age	

[12	15	18	21	24	27	30	33	36	39	42
10	0	0	0	0	0	0	0	0	0	1	4
15	0	0	0	0	0	0	0	1	3	9	23
20	0	0	0	0	0	3	11	23	42	68	106
25	0	0	0	2	9	24	50	81	122	170	232
30	0	0	2	9	30	64	111	162	223	291	377
35	0	1	6	25	66	122	189	257	336	424	530
40	0	2	17	52	113	188	272	355	450	556	685
45	0	7	36	87	167	256	354	449	562	687	842
50	0	16	59	126	220	321	429	539	671	820	999
55	2	30	85	165	271	381	499	626	779	953	1150
60	5	44	112	203	318	436	568	711	887	1080	1291
65	11	60	138	239	360	488	633	794	993	1201	1419
70	18	75	164	272	399	538	698	875	1092	1316	*1537
75	25	91	188	302	436	585	760	956	1185	*1418	1640
80	33	106	210	329	470	631	820	1032	1276	1509	1734
85	40	121	232	355	503	675	881	1107	*1361	1593	1818
90	47	135	251	379	*534	717	935	1179	1437	1671	1896
95	54	149	268	*401	564	*758	*987	*1245	1507	1742	1968
100	61	162	285	421	592	798	1039	1305	1571	1805	2035
105	67	174	300	441	619	836	1088	1363	1630	1865	2099
110	74	185	*314	460	645	873	1136	1415	1680	1918	2158
115	80	195	328	477	670	908	1181	1464	1726	1970	2210
120	85	205	340	494	694	941	1223	1510	1772	2018	2262
125	91	214	351	510	718	974	1262	1550	1812	2065	2309
130	96	*223	362	526	740	1005	1300	1586	1853	2108	2355
135	101	231	372	540	762	1035	1334	1623	1889	2147	2396
140	106	239	382	555	783	1063	1365	1654	1925	2184	2440
145	111	246	392	568	804	1090	1395	1687	1958	2221	2482
150	116	253	401	580	823	1116	1422	1715	1989	2256	2521
155	120	259	409	593	841	1140	1450	1745	2019	2292	2558
160	124	265	417	605	858	1164	1477	1772	2045	2324	2594
165	*128	271	425	616	875	1187	1503	1796	2070	2354	2629
170	132	277	433	628	891	1209	1526	1817	2095	2385	2660
175	136	282	439	638	907	1229	1549	1839	2117	2414	2689
180	139	287	446	648	923	1249	1568	1859	2141	2441	2718
185	143	292	453	658	938	1267	1587	1878	2162	2468	2745
190	146	297	459	668	952	1286	1606	1895	2180	2491	2771
195	149	301	465	677	966	1304	1621	1911	2201	2513	2798
200	152	305	471	686	979	1320	1637	1928	2220	2535	2823
Maximum MAI	0.8	1.7	2.9	4.2	5.9	8.0	10.4	13.1	16.0	18.9	22.0
Age for Maximum MAI	165	130	110	95	90	95	95	95	85	75	70
These volu	umes are f	from Xen	o yield tab	les with r	no reduction	ons or net	downs.				
			-								
	The initial conditions for this table are: Number of natural stems 6000/ha Douglas-fir										
	ercent dis			stoms	90%		yias-111				
	ears of na			3161113	90 /a 5)					
					5						
No spacing											

ATTACHMENT 2

LETTERS OF APPROVAL

1. Operability Mapping	Page 88
Terms of Reference	
Block 1	
Block 2	
Block 7	
2. Inventory Recompilation, Application of Inventory Audit results and	Page 93
Breakage and Waste 2 Allowances.	
3. TFL 39 Inventory Audit Results (N.J. Smith)	Page 95
4. Soils	Page 97
5. Recreation and Visuals	Page 101
Block 1	
Block 6	

File: 19700-20/TFL39

July 23, 1998

MacMillan Bloedel Limited 35 Front Street Nanaimo, British Columbia V9R 5H9

Dear Peter Kofoed:

Re: Tree Farm License 39, Terms of Reference for a Review and Update of Operability Mapping in TFL 39, dated April 16, 1998

The Ministry of Forests staff have reviewed the above proposal and find it acceptable for use in estimating the timber harvesting base for the purpose of timber supply analysis in preparation of Management Plan No. 8.

The review also concluded that your proposal is similar to the methodolgy being applied to the Queen Charlotte Islands (QCI) Timber Supply Area as part of the timber supply review of that management unit. In order to ensure that this consistency is maintained, please consult with the QCI district staff, as part of this process.

In addition, further consultation with staff of the QCI and Mid Coast Forest Districts is required to ensure that concerns raised specific to this issue by these two forest districts in the allowable annual cut rationale for Management Plan No. 7 are addressed.

Yours truly,

Darrell Robb Acting Regional Manager Vancouver Forest Region

cc: Don Sluggett, District Manager Campbell River Forest District

> Jack Dryburgh, District Manager Port McNeill Forest District

Ministry of Vancouver Regional Office Forests

Mailing Address 2100 Labieux Nanaimo BC V9T 6E9 Tel: (250) 751-7134 Fax: (250) 751-7198

Location Nanaimo MacMillan Bloedel Limited Page 2

> Greg Hemphill, District Manager Sunshine Coast Forest District

Cindy Stern, District Manager Queen Charlotte Islands Forest District

Otto Pflanz, District Manager Mid Coast Forest District

J.B. Koch, Senior Analyst, Tree Farm Licences Timber Supply Branch

Doug Stewart, TFL Forester Vancouver Forest Region

BRITISH	Ministry of		
	Forests	Sunshine Coast Forest District	MEMORANDUM
			Org. to Val

RECEIVED

JAN 0 6 2000

VANCOUVER OFFICE

File: 19710-30/TFL 39 #8

December 17, 1999

CLASSIFIED

To: Ken Collingwood

From: Greg Hemphill

Re: Operability Mapping for Block 1 of Tree Farm Licence 39

My staff has reviewed Weyerhaeuser's operability mapping of Tree Farm Licence 39, Block 1. Changes from the mapping used for Management Plan #7 were evaluated and are believed to be acceptable for the purposes of timber supply analysis for Management Plan #8.

dreg Hemphill Acting Bu

District Manager Sunshine Coast Forest District

pc: Weyerhaeuser Company Limited – Stillwater Division Attention: Walt Cowlard

Camoba

Campbell River Forest District

MEMORANDUM

NON 5 1 5000

File: 19710-30/TFL39

November 10, 2000

To: Ken Collingwood Regional Manager Vancouver Forest Region

From: Donald R. Sluggett District Manager

Re: Operability Mapping for Tree Farm Licence 39, Block 2

Campbell River Forest District staff has completed their review of the most recent operability mapping for TFL39, Block 2. Our review consisted of an office review of air photography and maps followed by a helicopter flight of several sites on September 21, 2000. Shane Renouf, RPF, Engineer with Weyerhaeuser, North Island Timberlands, accompanied the flight. Areas examined in the office were Stewart Lake, John Fraser Lake and Consort Creek. Areas examined by helicopter were the Tsitika River (including Andrea Creek, Catherine Creek, and Claude Elliot Creek) and the Upper Eve River. The helicopter review focused on non-conventional and marginally economic operability categories.

The issue of road access to Andrea Creek was discussed during the flight and remains a concern. This area lies west of a new protected area (Robson Bight) and road construction from the north will be difficult due to adverse grade. We recommend a more detailed road access plan for this area be submitted for our review. If conventional road access is not feasible to this area, a reclassification of the operability types will be required as well as an estimate of the change in operable timber volumes resulting from this reclassification.

Our overall conclusion is that the mapping is satisfactory and is acceptable for use in the timber supply analysis for Management Plan No. 8.

Any questions regarding TFL 39, Management Plan No. 8 or this letter please contact Maddalena Di Iorio Dunn, District Planner, of this office at 250-286-9304.

Donald R. Sluggett District Manager

pc: Peter Kofoed, Weyerhaeuser Company Limited, Nanaimo

MAY 1 0 1999

File: 19710-30 TFL 39 MP # 8

May 10, 1999

Stan Price, R.P.F. MacMillan Bloedel Limited P.O. Box 5000 Port McNeill, British Columbia V0N 2R0

Dear Stan Price:

Thank you for the opportunity to review the revised operability mapping for the Block 7 portion of Tree Farm Licence (TFL) 39 on April 22, 1999, and again on May 7, 1999. I am satisfied that the revised operability mapping as presented and discussed at the May 7, 1999, meeting is acceptable for the purpose of timber supply analysis. The physical mapping along with suitable net downs for terrain and other *Forest Practices Code of British Columbia Act* constraints will provide a reasonable representation of the timber harvesting land base. From our discussion I understand that the marginal economic areas will be modelled separately so that their impact and contribution can be assessed.

Though changes to the operability mapping are not required at this time, I do however, offer the following suggestions for refinement in the future:

- 1) The economic criteria for marginal and uneconomic areas should be tested and customised to reflect the specific operating conditions present in Block 7.
- 2) The net downs for terrain should be reviewed against the actual experienced deletions attributable to terrain.
- 3) A polygon review should be conducted to assess the viability of helicopter areas including marginal economic areas that may be beyond a reasonable operable flight distance.

Yours truly,

Λs

Edward Frisby, R.P.F. Tenures Officer Mid Coast Forest District

pc: Michael, MacMillan Bloedel Limited, Nanaimo

Ministry of Forests	Mid Coast Forest District	Location: Sawmill Road Hagensborg, British Columbia	Mailing Address: P.O. Box 1000 Bella Coola, British Columbia V0T 1C0		
			Tel: Fax:	(250) 982-2000 (250) 982-2090	

File: 13390-30/TFL 39

January 12, 1999

Peter Kofoed, RPF Planning Forester MacMillan Bloedel Limited 65 Front Street Nanaimo, British Columbia V9R 5H9

Dear Peter Kofoed:

I have reviewed your proposal and the request to recompile the Tree Farm License (TFL) 39 inventory for the upcoming Management Plan (MP) #8 as presented in your letter of October 30, 1998. I agree with your general approach, and provide the following comments:

1.0) Inventory Recompilation

The proposal is acceptable.

2.0) Application of Inventory audit results in the MP #8 analysis

The proposal is acceptable, however, I recommend that a sensitivity analysis of inventory volumes be provided for the MC 1 types for the ratio of inventory to ground test. As you are aware, our position is that overall total volumes should be adjusted regardless of statistical significance.

3.0) Ministry of Forests Work on Loss Factors and Taper Equations in the Queen Charlotte Islands (QCI)

At this time we are not in a position to release the adjusted new taper loss factor models for the QCI, and therefore this information cannot be used by MacMillan Bloedel in MP #8.

Ministry of	Resource Inventory Branch	Location	Mailing Address
Forests		722 Johnson Street	P.O. Box 9516 Victoria, BC V8W 9C2
			Tel: (250) 387-1314

Fax: (250) 387-5999

Peter Kofoed, RPF Page 2

Breakage and Waste 2 Allowance for MP #8

The proposal is acceptable.

Please accept my apologies for the delay in approving the inventory adjustments. Please call the undersigned @ (250) 387-6722 with any questions or concerns.

Yours truly,

Retyped from original (no signature)

Dave Gilbert Director Resources Inventory Branch 8-25-99

D.E. Gilbert Director, Resources Inventory Branch Ministry of Forests 722 Johnson St. Victoria, B.C. V8W 3E7

Dear Sir,

RE: Addendum and addition to audit of Tree Farm License (TFL) 39 and use of the inventory in Management Plan (MP) # 8

This note updates the letter of Oct. 30, 1998. The memo is the same one sent then with the addition of the Block 5 (Phillips Arm) results. Rather than use Block 5 in the sensitivity analysis we intend to use the attached ratio for the MC III in the base case.

Note that a mistake was made in the 1998 letter: the adjustment for Block IV MC III (photocoded) will be + 26% not 17% (the inventory and audit volumes are unchanged).

If you have any questions or concerns do not hesitate to contact me.

Sincerely,

N.J. Smith Analyst

cc. Peter Kofoed Keith Tudor Ian Turner

	Nanaimo Woodlands			Aillan Bloedel Limited TER-OFFICE MEMO
TO:	P.J. Kofoed	FROM:	N. Smith Phone: FAX:	755-3517 755-3550
		DATE:	August 25	5, 1999

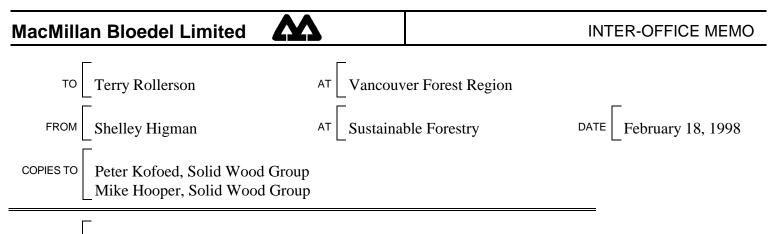
SUBJECT: TFL 39 Inventory Audit Results – addendum for Ian Turner's Memo Aug 5, 1999

I have used lan's numbers, removed unnecessary statistics, added areas (1995) to give indication of area affected, actual ratios and our proposed inventory adjustment ratios using the agreed procedures.

Attached are the results of the TFL 39 Inventory Audit.

1964 Inventory Stands (MC1)

		Blocks					
		1	2	4	5	6	7
•	Inventory ¹	765.8	765.2	896.4	759.5	688.3	660.7
•	Audit	758.8	834.7	848.2	856.6	616.0	629.6
٠	Observations	71	116	66	91	200	100
٠	Df	70	115	65	90	199	99
٠	Т	0.14580	1.78010	0.95118	1.91134	3.10807	0.95552
٠	P(T<=t) two-tail	0.88450	0.07770	0.34503	0.05887	0.00216	0.34164
٠	t Critical two-tail	1.99444	1.98081	1.99714	1.98667	1.97196	1.98422
٠	actual ratio	0.99	1.09	0.95	1.13	0.89	0.95
٠	adjustment ratio	1.00	1.00	1.00	1.00	0.89	1.00
٠	area (ha.)	3,700	48,700	3,500	2,800	83,700	11,500
						•	


NO SIGNIFICANT DIFFERENCE (95% LEVEL) WERE NOTED IN THE 1964 INVENTORY EXCEPT IN BLOCK 6 USING AGREED PAIRED T-TEST.

1980 Photocoded stands (MCIII)

		Blocks					
		1	2	4	5	6	7
٠	Photocoded	563.6	493.6	551.3	556.1	434.6	426.7
٠	Audit	737.5	770.5	695.9	848.1	468.0	542.7
٠	Observations	78	91	20	91	96	100
٠	Df	77	90	19	90	95	99
٠	Т	3.45744	7.15911	2.18624	6.37415	1.13791	3.76650
٠	P(T<=t) two-tail	0.00089	0.00000	0.04152	0.00000	0.25802	0.00028
٠	t Critical two-tail	1.99125	1.98667	2.09320	1.98667	1.98525	1.98422
٠	actual ratio	1.31	1.56	1.26	1.53	1.08	1.27
٠	adjustment ratio	1.31	1.56	1.26	1.53	1.08	1.27
٠	area (ha.)	7,400	12,100	1,900	4,600	10,500	11,000

SIGNIFICANT DIFFERENCES (95% LEVEL) WERE NOTED IN ALL BLOCKS EXCEPT FOR BLOCK 6 USING AGREED PAIRED T-TEST.

¹ Dead useless removed and Kozak's Taper equation

SUBJECT TFL 39 MP #8 Netdowns for Terrain Stability

Thank you for meeting with me on February 11, 1998 to discuss suitable netdown percentages for the terrain in MacMillan Bloedel's TFL 39. The netdown percentages will be used in the Timber Supply Analysis for Management Plan #8.

To summarize, the following is what we agreed upon as netdown percentages:

Block	Division	Мар Туре	Mapper	Netdown
1	Stillwater	Es	Madrone	Es1 @ 90%
			(1993)	Es2 @ 20%
2	Eve, Menzies, Kelsey	Es, V-Class and VI-	Es: Ryder (1993)	Es:
		Class		Es1 @ 85%
				Es2 @ 15%
			V-Class: Maynard	V-Class:
			('95-'96)	V @ 90%
				IV @ $\leq 20\%$ *
			VI-Class: Dunkley &	VI-Class:
			Rollerson	VI @ 100%
				V @ 90%
				IV @20%
3	Port McNeill	Es	J.M.Ryder	Es1 @ 85%
			(1993)	Es2 @ 15%
4	Port McNeill	Es	J.M.Ryder	Es1 @ 85%
			(1993)	Es2 @ 15%
5	Stillwater	Es	Madrone	Es1 @ 90%
			(1993)	Es2 @ 20%
6	Queen Charlotte	VI-Class	Dunkley and Rollerson	VI @ 100%
			-	V @ 90%
				IV @20%
7	Port McNeill	V-Class	J.M.Ryder	V @ 90%
			(1995)	IV @ $\leq 20\%$ *

* Explained below

As discussed, for the recent mapping carried out in Block 2 (5-Class mapping on two 1:20,000 scale mapsheets by D. Maynard) and Block 7 (5-Class mapping on nine 1:20,000 scale mapsheets by J.M. Ryder), the Class IV netdown percent will correspond to the percentage of gullied Class IV polygons, which will be calculated as follows:

% Class IV Netdown = 100 * (# gullied Class IV Polygons) / (total # Class IV Polygons)

If the netdown percentage determined in the above equation is greater than 20%, then 20% will be used as the netdown percent.

We require approval on this approach before proceeding with the Timber Supply Analysis for MP #8.

Thank you for your response in this matter. Please contact me at 755-3421 should you have any further questions.

Shelley Higman, P.Geo. Land Use Planning Advisory Team Scanned Fax From Terry Rollerson to Shelley Higman

Rollerson, Terry FO, 07:11 AM 2/24/98 , RE: TFL 39 Netdowns Return-Path: <Terry.Rollerson@gems9.gov.bc.ca> Content-return: allowed Date: Tue, 24 Feb 1998 07:11:37 -0800 From: "Rollerson, Terry FOR:EX" <Terry.Rollerson@gems9.gov.bc.ca>
Subject: RE: TFL 39 Netdowns To: 'Shelley Higman' <shelleyh@mail.islandnet.com> Cc: "Sutherland, Gary FOR:EX" <Gary.Sutherland@gems9.gov.bc.ca> Shelly: I have reviewed your memo on the proposed TFL 39 netdowns. I think that these netdowns for terrain stability are quite satisfactory. I will forward this mail to Gary Sutherland in Planning so that he can forward it to his staff. Best regards, Terry Rollerson Research Manager - Vancouver Forest Region Telephone: 250-751-7121, Fax: 250-751-7198 mailto:Terry.Rollerson@gems9.gov.bc.ca > -----> From: Shelley Higman[SMTP:shelleyh@mail.islandnet.com] > Sent: February 12, 1998 2:12 PM > To: Rollerson, Terry FOR: EX TFL 39 Netdowns > Subject: > <<File: 39SOIL#8.doc>> > Hi Terry, > Attached is the netdown memo we discussed for your review. If you > can't > open the file, please let me know. > Cheers, > Shelley

Printed for Shelley Higman < shelleyhemail.islandnet.com>

1

January 14, 2000

Shelley Higman, P.Eng/P.Geo Weyerhauser 65 Front Street Nanaimo, B.C. V9R 5H9

Dear Ms Higman:

Thank you for your letter of November 23, 1999. During our meeting of October 15 with Terry Rollerson of Golder Associates Ltd., and in your letter, you request changes to the soil netdowns for Block 7, TFL 39.

If the current netdown factors for terrain stability are applied with the five-class terrain stability mapping done in 1996, the total soil netdown becomes much higher than previous soil netdowns. The primary reason for this is the amount of Class IV terrain identified in the 1996 mapping. In this type of mapping much of the Class IV terrain may be susceptible to road-related landslides, but will rarely have clearcut-related landslides. Therefore these types of Class IV polygons should not be included in netdowns for the AAC calculation. In addition, it appears from my review of the terrain mapping that some Class V terrain may have operationally viable areas.

The request to change the soil netdowns for Class V terrain to 80%, and to change the soil netdown for Class IV terrain to 5% is reasonable. The AAC soil netdown calculation for Block 7, TFL 39 should use these netdown factors. Note that if the 1996 terrain mapping for the Namu area should be modified and used in future AAC calculations, then the netdown factors should also be changed. In particular, if polygons are identified as IVR (Class IV for roads, but Class III or lower for clearcutting), then the Class IV netdown factor will need to be increased.

Yours truly,

lom killars

Tom Millard Research Geomorphologist Vancouver Forest Region

ļ

File: ORCS 12860-02

April 6, 2000

Rod Tysdal Weyerhaeuser Company Limited Stillwater Division 201 7373 Duncan Street Powell River, British Columbia V8A 1W6

Dear Rod Tysdal:

Thank you for your letter of February 14, 2000. My staff has reviewed your proposal outlining recreation net downs for the Tree Farm Licence (TFL) 39 Block 1 timber supply analysis. The areas identified specifically for recreation along with the more significant net downs for visual quality, wildlife and biodiversity will adequately manage and conserve the recreation resources of TFL 39 Block 1. Your proposal is acceptable to the Ministry of Forests.

If you have any further questions please contact Barry Miller, District Planning Forester at 485-0737

Yours trul

Greg Hemphill District Manager Sunshine Coast Forest District

	THE GOVERNMENT OF BRITISH COLUMBIA IS AN 'EM	PLOYMENT EQUITY EMPLOYER
Ministry of Forests	Sunshine Coast Forest District	Malling Add 7077 Dunca Powell Rive
		Tel: (6

 EMPLOYER
 •

 Mailing Address:
 7077 Duncah Street

 Powell River, BC V&A 1W1
 Tel:

 Tel:
 (604) 485-0700

 Fax:
 (604) 485-0799

요즘 승규는 것 같아?

File: 16350-30/TFL39

January 10, 2000

Peter Kofoed Weyerhaeuser 65 Front Street Nanaimo, British Columbia V9R 5H9

Dear Peter Kofoed:

The updated Recreation Inventory (features and ROS), and the new Visual Landscape Inventory (VLI), for the Block 6 portion of Tree Farm Licence (TFL) 39, within the Queen Charlotte Islands Forest District have been reviewed by Ministry of Forests staff and are hereby approved for use in the Recreation Analysis Report and the TFL timber supply analysis, subject to the following conditions:

- Although Karst terrain has been properly identified on Louise Island, there is inadequate recognition of the recreation feature class significance within some areas (e.g., polygon #0906, mapsheet 103B.092). This area has previously been identified as having high potential for Cave/Karst development according to the reconnaissance level inventory (scale 1:250,000), completed in 1994, and recently updated as of March 1999. Accordingly, those polygons with recreation feature KOO falling within the high Cave/Karst potential, should more appropriately be classed as recreation feature class 1 until more detailed Karst inventory work has been undertaken to verify the presence of Cave/Karst features. Similarly, the recreation feature class within polygon #0871 on mapsheet 103B.091, should be classed 1 rather than 2 to reflect the moderate to high Cave/Karst potential that has been identified at the reconnaissance level inventory.
- 2) There are several coding inconsistencies between the inventory report and the mapsheets (e.g., mapsheet 103B.092, polygons 0909, 0912 and 0914-0917). The report indicates BH0, however, the mapsheets show AH0, and this should be corrected to reflect the proper coding.
- 3) The inventory report prepared in October 1997, includes material that is not required (e.g., Page 29, Section 2, "Implications of Feature Significance and Feature Class") and does not include information that is considered essential (e.g., conclusions or recommendations). This should be amended to meet the format and content requirements of the inventory report.
- 4) Some of the information expressed in the VLI map labels is not to the May 1997 standard. My staff does realize that at the time the VLI was being updated, standards were still being

Page	1	of 3

Ministry of Forests	Vancouver Regional Office	Location: 2100 Labieux Road, Nanaimo	Mailing Address: 2100 Labieux Road Nanaimo, BC V9T 6E9	
			Tel: Fax:	(250) 751-7001 (250) 751-7190

Peter Kofoed

developed. Kevin Lee, Regional Landscape Forester, Vancouver Forest Region, has had discussions with Mike Hooper of your office on the possibility of updating the attributes of the inventory database to the current standards. These changes have to do with the removal of the Visual Sensitivity Rating data, adding Visual Related factor data, and determining the Visual Sensitivity Class. These minor changes are desirable so that a comparative examination across the entire TFL 39 will be possible, and it is valuable information to use operationally. They will not affect the existing Recommended Visual Quality Class and the Visual Absorption Capability information. The latter ratings can still be used by providing information to Rory Annett, District Manager, Queen Charlotte Islands Forest District, to determine the extent of the scenic areas to be managed within Block 6.

It should be realized, that although I have approved the VLI, it is the District Manager who has the sole responsibility to determine the size and management requirements of the scenic areas under Section 1 of the *Operational Planning Regulations*. This description (ie.size and management requirements) will be modelled into the timber supply analysis for TFL 39 Block 6.

I note that the recreation inventory has identified a large additional area of Er1 and Er2 relative to that identified in Management Plan #7 for TFL 39, Block 6. As your draft information package for TFL 39 indicates, Weyerhaueser has initiated a project to review the TFL 39 recreation netdowns for strategic analysis. The results of this review should also be incorporated into the timber supply analysis for TFL 39, Block 6.

Should you have any further questions on this review, please contact Doug Herchmer, Recreation Forester, Vancouver Forest Region, at (250) 751-7104, or Kevin Lee, Landscape Forester, at (250) 751-7112.

Yours truly,

10 lalla

Ken Collingwood Regional Manager Vancouver Forest Region

pc: Rory Annett, District Manager Queen Charlotte Islands Forest District

> Doug Herchmer, Recreation Forester Vancouver Forest Region

Kevin Lee, Landscape Forester Vancouver Forest Region

Don Benn, Juan de Fuca Consultants, 698 Rockridge Place, Victoria, B.C. V9E 1H3

Page 2 of 3