Cybersecurity at the Intersection of IoT, Industrial Controls, and Smart Cities

Del Rodillas

Director, Industrial and IoT Cybersecurity Product Solutions

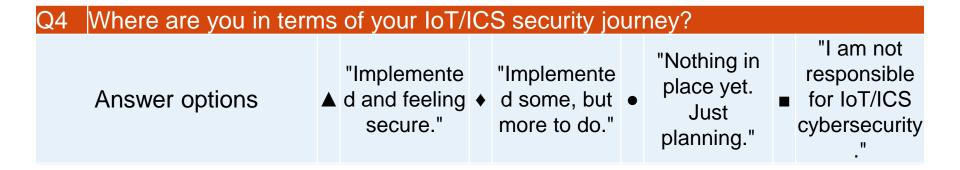
A Little About Myself

- 20+ years in High Tech Industry
 - Engineering, Business Operations, Product Management & Marketing
- First job as a Manufacturing Yield Engineer
 - MS Electrical Engineering (Santa Clara Univ.)
 - Semiconductor industry
- 6+ years at Palo Alto Networks
 - Industrial and IoT cybersecurity
 - Marketing and business strategy
 - GICSP certified (Industrial Cybersecurity)
 - Masters Business Administration (Wharton)

MIX Smart City Conference CIO Survey Results

| How important is IoT Security to you? | Top 3 | Initiative." | Top 3 | Initiative.

Q2 "My responsibility includes securing Industrial Control Systems"


Answer options ▲ "Agree." ◆ "Disagree." ● "Not sure."

MIX Smart City Conference CIO Survey Results

Q3 "I have a smart city initiative involving IoT."

Answer options ▲ "Agree" ♦ "Disagree"

MIX Smart City Conference CIO Survey Results

Where is the best place to secure IoT?

"The IoT device itself."

"The IoT enterprise network."

"The ISP / carrier network."

"The ISP / carrier network."

"The ISP / carrier network."

Revisiting the definition of IoT

"Any networked device that performs a single function, delivers a single application, or performs a single service."

IoT in Consumer, Enterprise, and Industrial/OT

Industrial Control Systems and IoT

Phase I Master Plan

- AMI Advanced Metering Infrastructure
- Downtown digital kiosks
- Building & Facilities Automation
- FirstNet

A Smart City is one in which the latest technologies and data-driven insights are leveraged to improve the quality of life, civic engagement, economic development, service delivery, and community vibrancy for its citizens, businesses and visitors.

"You can't have a successful Smart City initiative without IoT"

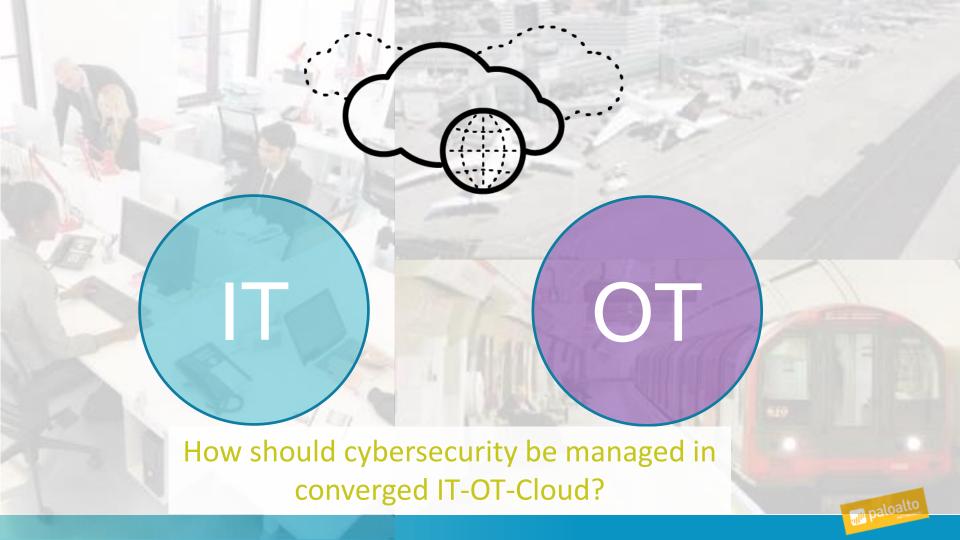
- Lester Godsey, CISO, City of MESA

IoT/IIoT Initiatives at a State Government

Non Line-of-sight UAV

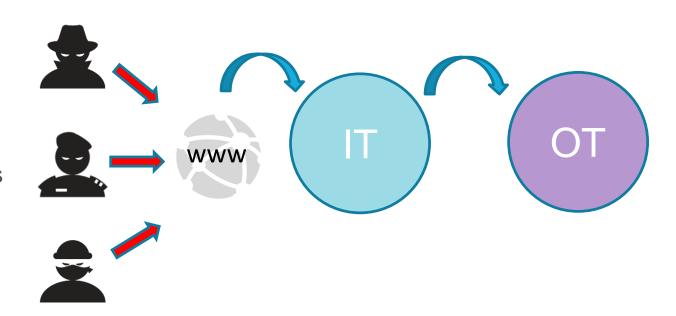
Acoustic fiber in Roadways

Pipeline monitoring



"In 3 years we went from being afraid of technology taking away jobs to technology enabling the creation of wealth". This entails proper cybersecurity strategy.

- CTO of State Government



Cyberattacks Involving Pivot from IT-OT with Cyberphysical Impact

German Steel Mill (2015)

Crash Override, Ukraine Grid Attacks (2015, 2016)

> Petya Ransomware Attacks (2017)

More than DDoS, e.g. Mirai

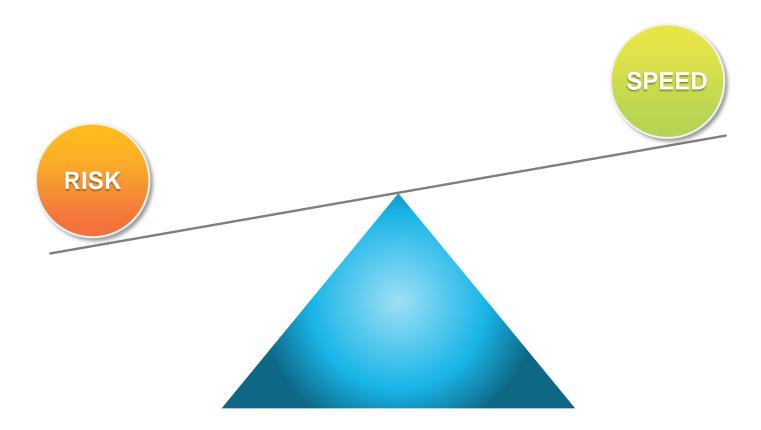
Casino Gets Hacked Through Its Internet-Connected Fish Tank Thermometer

Transportation

Germany's
Deutsche Bahn
national railway
operator

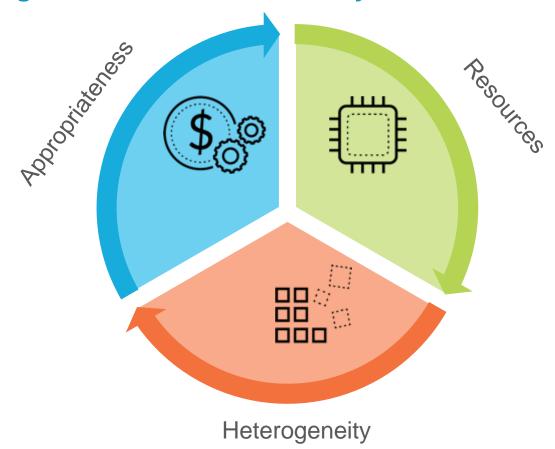
Medical Equipment

MRI machines from a major US device maker were affected

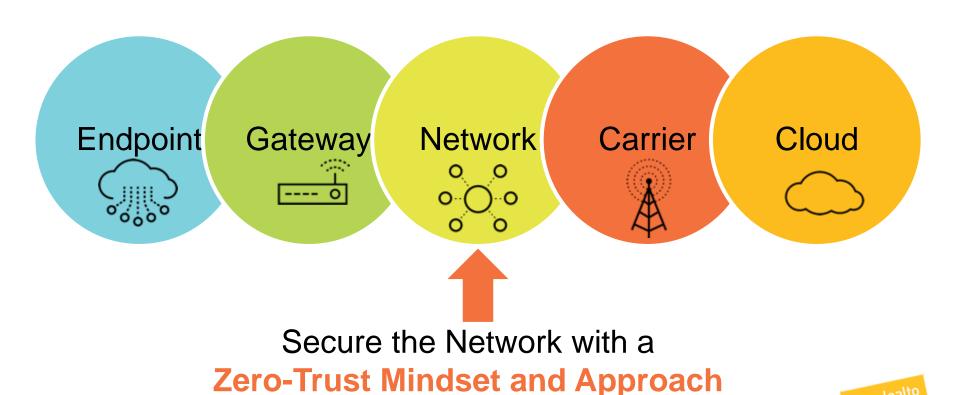


Q-Park

Payment systems were affected



THE CHALLENGE FOR IT LEADERS



The challenges with IoT device security

Network Security – Biggest bang for the buck

TRUST is a dangerous VULNERABILITY

that is EXPLOITED by MALICIOUS actors

ZERO TRUST DESIGN CONCEPTS

DESIGN FROM THE INSIDE > OUT DETERMINE WHO/WHAT NEEDS ACCESS

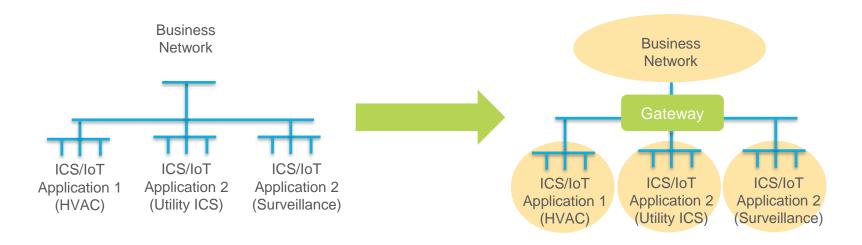
INSPECT AND LOG ALL TRAFFIC

Segmentation Gateway, Micro-Perimeters

A ZERO TRUST STRATEGY REDUCES ATTACK OPPORTUNITIES

PROBLEM ACTION BENEFIT

FREE ACCESS
INCREASES RISK


LIMIT ACCESS TO SENSITIVE DATA

REDUCE INCIDENT VOLUME

Network Segmentation is fundamental

- Set yourself up for Zero-trust
- □ Visibility and enforcement (granular)
- ☐ Segment IT from OT
- ☐ Create IoT application clusters

IT Applications vs. ICS/IoT Applications

Modbus DNP3

Profinet IO OPC MQTT

CIP EtherNet/IP OSIsoft PI Schneider Oasys

Synchrophasor GE EGD

IP-based protocols which could be secured by Next-generation Firewalls

paloalto

SCADA remediation effort	IoT Initiative
Establish a DMZ between ICS and city network	
Upgrade legacy systems that have know vulnerabilities and/or losing vendor support	
Develop cybersecurity policy and procedures for SCADA	
Create zones within the ICS to provide barriers to contain malware and limit breaches	
Generate an ICS strategic plan and perform a risk assessment	

Device awareness leads to more granular and secure zero-trust policies

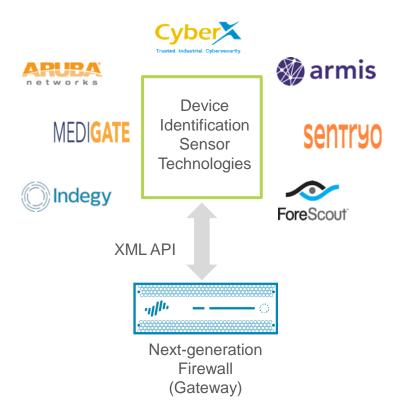
Vs.

Known IP Unknown Device

Known IP Known Device

Type: Chiller

Vendor: Berg


Protocol: Modbus, SSH, and HTTPS

Vulnerabilities

Action	Device	From Zone	To Zone	Application
Allow	Chiller	HVAC	Operator	Modbus, SSH, HTTPS

paloalto parvores

Automated IoT Policy Creation and Threat Response

- API Integration: Sensor ⇔ NGFW
- Automated Policy Creation & Threat Response
 - Assign polices to IoT devices
 - Quarantine or limit network access of IoT devices or communication between IoT devices
- Value
 - Better situational awareness
 - Automatically reduce attack surface
 - Real-time threat prevention
 - Reduced operational burden

Section Key Take-aways

- IT-OT integration is a runaway train that cannot be stopped Plan for it
- Zero-trust mindset reduces your attack surfaces Apply it to IoT
- Risk-based approach can help determine your segmentation strategy

Questions to Ask Your Self & Organization

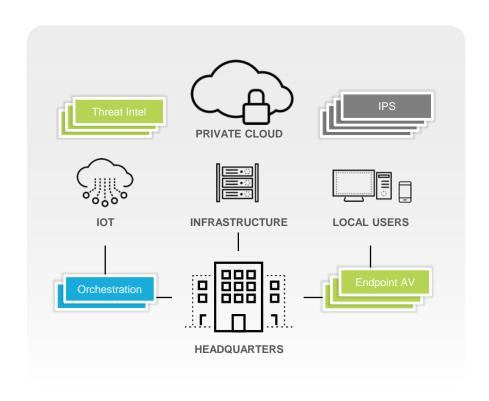
- How segmented is our IT and OT?
 - Are my IoT/ICS application clusters separated?
- Do we have policies defined for our loTs? For admins/vendors interacting with loTs?
- Are our policies granular or coarse grained?
- Do we know what IoTs are in our network?
- Can I detect IoT misbehavior? What is IoT "proper" behavior?
- Are we able to quarantine or limit IoT device access to the network in the event of an attack?

When "bad" things get in ...

Reduce the attack surface (Zero-trust)

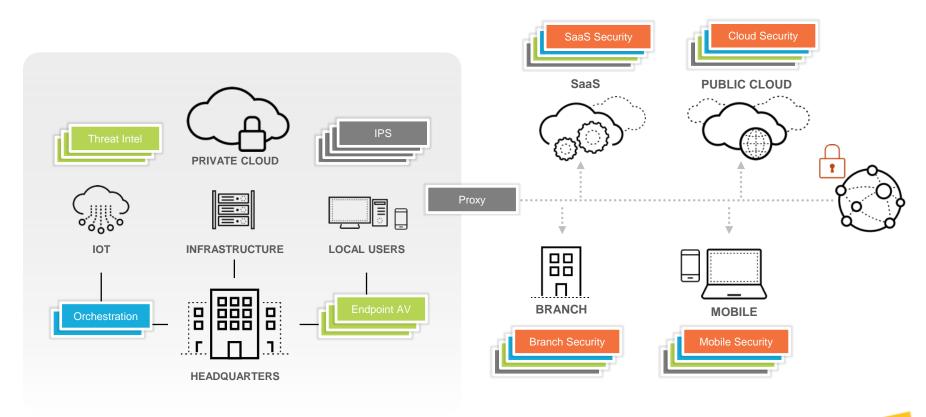
Stop attacks by **Known Threats**

Quickly identify & stop attacks by **Unknown Threats**


- IPS / IDS
- URL Filtering
- Endpoint protection
- Sandbox
- Behavioral Analytics
- Advanced Endpoint protection

Automation?

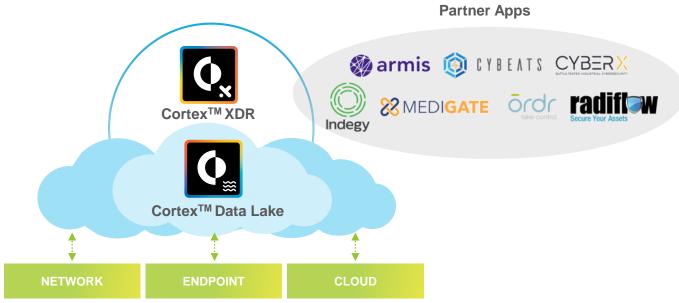
Threat intelligence?



DISCONNECTED TOOLS DON'T PROVIDE EFFECTIVE SECURITY

TOTALLY INEFFECTIVE FOR CLOUD, IoT AND MOBILE WORKFORCE

SECURITY MUST TRANSFORM



Securing the Future with Cortex and Cortex XDR

Automatically detect attacks using rich data & cloud-based behavioral analytics

Accelerate investigations by stitching data together to reveal root cause

Tightly integrate with enforcement points to stop threats & adapt defenses

Section Key Take-aways

- Hardening systems cannot fully prevent successful attacks
- Must implement technologies that stop both known and unknown threats at the network, endpoint and the cloud
- Threat intelligence should aggregate multiple sources and make them accessible to the network, endpoint, and cloud
- An approach based on combining disjoint point products is not the answer
 - Cybersecurity ineffectiveness and operational burden are exacerbated
- A prevention-focused platform which provides automation is required

Questions to Ask Your Self & Organization

- Do we have disjointed point products for IPS, URL Filtering and Sandboxing protecting our devices and networks across the IoT value chain?
- Have we starting evaluating behavioral analytics technologies?
- How are we addressing these capabilities to secure our IoT infrastructure in AWS/Azure/GCP?
- Is there an opportunity to reduce the number of products/vendors for the above functions?

