# Whitebark Pine: Seeds and Germination





### Dave Kolotelo



July 14, 2011

Whitebark Pine Ecosystem Foundation of Canada Meeting

### **Overview** perspective relative to planting seedlings

- Background Seeds and Germination
- Whitebark pine pretreatment review
  - 1. Soak
  - 2. Warm stratification
  - 3. Sanitation
  - 4. Cold Stratification
  - 5. Clipping
- Dibbling Germinants
- Ex situ Collection Testing





### Seed Production (Owens et al 2008)





• 77% of scales are fertile in whitebark – contrast this with the 20-25% observed in lodgepole pine !

•Seed Efficiency =filled seeds/total seeds = 59.3%

•32.7 aborted seeds per cone



Not pollinated small flat ovules @ pollination small rounded ovules @ fertilization full size seeds, contents aborted/dry @ early embryo full size seeds, contents collapsed @ late embryo full seeds, larger collapsed embryo Damage by insects or disease

### Ability to determine stages of seed abortion post-collection with non-processed seed

### Cone Scales Break - Do Not Flex

- Whitebark pine lacks the anatomy for flexing
  - Course-fibre tracheids not present = no differential shrinkage of on top and bottom of cone scale
  - Whitebark scales have a thin fracture zone
  - Thickened scale may have a heat diffusion function?



# Whitebark pine has evolved attractive seedsCROP PROTECTION is critical !



## Seeds

• *Pinus albicaulis* has some significant differences compared to most pines:



- <u>Wingless seeds</u> (other dispersers)
- <u>Seed 'Immaturity'</u> relative to other conifers "variability"
  - Embryos not fully elongated on most seeds in most years
  - Embryos will mature given proper 'conditioning'
- <u>Thick seed coat</u> reduces rate of deterioration and allows for short-term 'seed bank' to persist
- <u>Deep embryo dormancy</u>

#### "variable"

- Evidence for <u>seed coat dormancy</u> based on the success of clipping treatments
- <u>Fungal problems</u> can be significant, especially during 'warm conditioning' to allow embryo maturation
- <u>Lipids</u> account for over 50% of seed dry weight, but a notable proportion of unstable storage reserves is noted

### Germination

### Germination is not a population characteristic

- Varies by individual year (some may always be low)
  - Seed abortion factors compound starts with pollination success
- Varies by type and extent of processing
  - 2 kg seed @ 40% germination
  - 1 Kg seed @ 80% germination
  - X-ray empty seed removal (physiology vs. operational)
- Varies by type of pretreatment
  - Duration of warm and cold stratification
  - Clipping?
- Varies by germination criteria
  - Radicle emergence vs. seed coat shedding vs. seedling
  - Duration of assessment 14 days vs. 28 days vs. ++ (staggered)
  - Sample size (4 x100) vs. (4 X 25) = highly variable





### Whitebark Pine Treatment

- 1. Soak imbibe seed nothing happens until
- 2. Warm stratification embryo maturation
- 3. Sanitation required especially In warm treatment
- 4. Cold stratification overcome embryo dormancy
- 5. Clipping overcome seed coat dormancy





# Soak

### Metabolic Activitaion

- We currently use a 48-hour running water soak (RWS)
  - Imbibe the seed
  - Reduce the level of contaminants (i.e. Fusarium)
  - <u>Some sanitize seed before initial soak</u>
- Hard, but permeable seed coat specific tissues offer protection from drying, predators and microbes
- Water uptake was initially quite rapid reaching 30% within one day, but uptake continued to 96 hours (Leadem 1985)
- "Burr" methodology also introduces a weekly RWS !!

### Whitebark Pine Imbibition Pattern



HOURS

# **Warm Stratification**

#### Maturation

embryos 30-50% cavity still capable of germinating Implications for processing! Immaturity  $\rightarrow$  Variability

- We currently use 20° C for 28 days
  - Swelling of embryo and megagametophyte
    - cutinization of hypocotyl, stomata and resin ducts
    - Vascular tissue differentiation
    - Expansion of glandular trichomes in cotyledons and hypocotyl
  - Tillman-Sutela et. al 2007

Dormancy overcome by removal of inhibitors through repeated soak and changes in growth regulators during stratification rather than actual embryo growth

- Warm stratification required and potentially large benefits exist by introducing a soak during the warm stratification phase – possibly also the cold stratification phase. We'll adjust our procedures
- Fungal problems prevalent in warm stratification





### Fungi found on Whitebark pine

#### • Fusarium

- Phoma
- Cephalosporium
- Gliocladium
- Penicillium
- Chromolosporium
- Rhizopus
- Cladosporium
- Trichoderma
- Mainly saprophytic fungi
- Probably comes in after initiation of

'cone dissection' by Clark's nutcracker – via air or beak







## Sanitation

- Conditions good for fungal growth during warm stratification
  Elevated temperatures, high humidity
- We sanitize with H<sub>2</sub>O<sub>2</sub> as required (can be > once /week) To sanitize before and/or after soaking? WHEN?
  - 1) Initial sanitation may result in uptake of non-desirable compounds?
  - 2) Use of hydrogen peroxide may result in oxygenation benefit once  $H_2O_2$  breaks down?

Bleach vs. Hydrogen Peroxide ? Cinnamon! WHAT? Some have used ethanol (70%) to spot-sanitize

# Be prepared to employ some form of sanitation treatment

# **Cold Stratification**

### **Overcome embryo dormancy** We have used 2 months as a minimum - try and increase

- "All" evidence points to longer cold stratification resulting in increased, more uniform germination
  - Some results have shown increases after additional warm (germination) followed by increased cold stratification (i.e. low germination – put back in cooler)
- Sanitation not as critical introduction of soaks at this stage may also removes inhibitors (YC) ?

# Clipping

### Remove Barrier (Physical Dormancy)

- Most studies indicate performing this at treatment end (*emergence barrier*) vs. pre-soak (*water uptake barrier*)
- Pre-soak clipping may also allow fungi to enter seed and deteriorate contents
- Some studies show this has a large benefit to germination, others not so – probably seedlot and treatment related
- Labour intensive step
- Re-hydration may assist clipping





# **Dibbling Germinants**

- In our germination trials we have attempted to dibble germinants directly into styroblocks
- Information was the product seedlings the byproduct
- Dave Enns (Landing nursery) has done a great job for us
  - Dibble as early as possible (don't wait until radicle is 4X seed coat)
  - Remove fungal infested seeds to reduce further losses

# **Ex Situ Collection Testing**

- GCTAC of the Forest Genetics Council has invested in whitebark pine collections and received seedlot donations
- To have representative sample from populations in BC (10+ individuals/site)
- Single tree collections primarily
  - Genetic sampling / conservation
  - Studies of genetic architecture
  - Potential for blister rust/ other trait evaluation
- Some bulk collections (seedlots) donated
- Some collections obtained separately with Research Branch funding

### **GCTAC Collections**

- 29 Collections (26 Sites Apex/Lime/Blackcomb Mt X2)
  - Almost 50 Kg of seed
  - 317 individual tree collections
  - 5 bulk collections
- Will test a 'representative sample' of families within each collection
- Obtain a provenance estimate of seed quality
- Where do we have extra?
  - National Seed Bank
  - Restoration work
- Starting in roughly October for May sowing