# Integrated Stewardship Strategy for the Merritt TSA

# **Data Package**

Version 1.1

March 31, 2018

Project 419-36

Prepared by:

Forsite Consultants Ltd. 330 – 42<sup>nd</sup> Street SW PO Box 2079 Salmon Arm, BC V1E 4R1 250.832.3366



Prepared for:

BC Ministry of Forest, Lands and Natural Resource Operations Resource Practices Branch PO Box 9513 Stn Prov Govt Victoria, BC V8W 9C2



## Table of Contents

|   | Tab  | le of Contents                                          | i         |
|---|------|---------------------------------------------------------|-----------|
|   | List | of Figures                                              | . iii     |
|   | List | of Tables                                               | . iv      |
|   | List | of Acronyms                                             | v         |
|   | Ack  | nowledgements                                           | . vi      |
|   | Doc  | cument Revision History                                 | .vii      |
| 1 | Ir   | ntroduction                                             | 1         |
| - | 1 1  | Droject Area                                            | 1         |
|   | 1.1  | Contoxt                                                 | ייי.<br>ר |
| _ | 1.2  |                                                         | 2         |
| 2 | N    | lodelling Approach                                      | 2         |
|   | 2.1  | Model                                                   | 2         |
|   | 2.2  | Data Sources                                            | 3         |
|   | 2.3  | Forest Inventory Updates                                | 6         |
| 3 | В    | ase Case Scenario                                       | 10        |
|   | 3.1  | Land Base Assumptions                                   | 11        |
|   |      | 3.1.1 Non-TSA Ownership                                 | 13        |
|   |      | 3.1.2 Non-Forest and Non-Productive                     | 13        |
|   |      | 3.1.3 Roads, Trails, and Landings                       | 14        |
|   |      | 3.1.4 Parks and Protected Areas                         | 14        |
|   |      | 3.1.5 Environmentally Sensitive Areas                   | 15        |
|   |      | 3.1.6 Inoperable                                        | 15        |
|   |      | 3.1.7 Archaeological Sites                              | 16        |
|   |      | 3.1.8 Riparian Zones                                    | 16        |
|   |      | 3.1.9 Heritage Trails                                   | 17        |
|   |      | 3.1.10 Wildlife Habitat Areas                           | 17        |
|   |      | 3.1.11 Old Growth Management Areas                      | 18        |
|   |      | 3.1.12 Coastal Tailed Frog                              | 18        |
|   |      | 3.1.13 Ungulate Winter Range Snow Interception Areas    | 18        |
|   |      | 3.1.14 Wildlife Tree Retention                          | 20        |
|   |      | 3.1.15 Williamson's Sapsucker Habitat Suitability       | 20        |
|   | 3.2  | Non-Timber Management Assumptions                       | 21        |
|   |      | 3.2.1 Landscape-Level Biodiversity                      | 21        |
|   |      | 3.2.2 Stand-Level Biodiversity                          | 23        |
|   |      | 3.2.3 Patch Size Distribution                           | 23        |
|   |      | 3.2.4 Visual Quality                                    | 23        |
|   |      | 3.2.5 Wildlife Habitat Areas and Ungulate Winter Ranges | 24        |
|   |      | 3.2.6 Equivalent Clearcut Area                          | 24        |
|   |      | 3.2.7 Community Watersheds                              | 26        |
|   |      | 3.2.8 Proposed Fisheries Sensitive Watersheds           | 26        |
|   |      | 3.2.9 Proposed Nicola Temperature Sensitive Watershed   | 27        |
|   |      | 3.2.10 Cumulative Effects Assessment Watersheds         | 27        |
|   |      | 3.2.11 Mule Deer Winter Range                           | 29        |
|   |      | 3.2.12 Moose Winter Kange                               | 29        |
|   |      | 3.2.13 Coastal Failed Frog                              | 29        |
|   |      | 3.2.14 Marten                                           | 29        |
|   |      | 3.2.15 Adjacency                                        | 30        |
|   | 2 2  | 3.2.16 Other Resource Features                          | 30        |
|   | 3.3  | narvesurig Assumptions                                  | 3U<br>20  |
|   |      | 3.3.1 Utilization Levels                                | 30        |
|   |      | 2.2.2 Minimum Harvest Criteria                          | 20        |
|   |      | 2.2.4 Harvest Opening Sizes                             | 50<br>21  |
|   |      | 2.2.5 Harvest Opening Sizes                             | 31<br>31  |
|   |      | 3.3.5 Harvest Fromes                                    | 31        |
|   | 2 /  | Natural Disturbance Accumptions                         | 37        |
|   | 5.4  | Natural Distarbance Assumptions                         | 52        |



|   |           | 3.4.1 Natural Disturbance within Non-THLB                                |          |
|---|-----------|--------------------------------------------------------------------------|----------|
|   |           | 3.4.2 Natural Disturbance within the THLB                                | 32       |
|   | 35        | Growth and Yield Assumptions                                             | 33       |
|   | 5.5       | 3.5.1 Analysis Unit Characteristics                                      | 22       |
|   |           | 3.5.2 Dry Belt Fir                                                       | 34       |
|   |           | 3.5.2 Stand Projection Models                                            | 35       |
|   |           | 3.5.5 Stand Pojection Models                                             | 35       |
|   |           | 3.5.5 Decay, wasced Stand Definition                                     | 36       |
|   |           | 2.5.6 Operational Adjustment Eactors Applied to Managed Stand Vields     | 26       |
|   |           | 2.5.7 Operational Augustinent racios Applieu to Manageu Stand Heius      | 26       |
|   |           | 2.5.7 Site index Assignments                                             | 50<br>27 |
|   |           | 2.5.0 Not Satisfactorily Restocked                                       | /د<br>حد |
|   |           | 3.5.9 Select Seed Use / Genetic Gain                                     | 37       |
|   |           | 3.5.10 Regeneration                                                      | 37       |
|   |           | 3.5.11 Deciduous                                                         | 39       |
|   |           | 3.5.12 Stands impacted by Wildlifes                                      | 39       |
|   |           | 3.5.13 Stands impacted by Mountain Pine Beetle (MPB)                     | 39       |
|   |           | 3.5.14 Mountain Pine Beetle Impacts on Managed Stands                    | 42       |
|   |           | 3.5.15 Stands Impacted by Spruce Beetle and Western Spruce Budworm       | 42       |
|   | 2.6       | 3.5.16 Silviculture systems                                              | 42       |
|   | 3.6       | Modeling Assumptions                                                     | 43       |
|   |           | 3.6.1 Grade 4 Credit                                                     | 43       |
| 4 | Α         | dditional Data Layers                                                    | 43       |
|   | 4.1       | Fire Management Layers                                                   | 43       |
|   |           | 4.1.1 Fire Management Planning Units and Fire Breaks                     | 43       |
|   |           | 4.1.2 Provincial Strategic Threat Analysis 2015 Wildfire Threat Analysis | 44       |
|   | 4.2       | Forest Inventory Layers                                                  | 44       |
|   |           | 4.2.1 Pruned and Fertilized Areas                                        | 44       |
|   | 4.3       | Other Layers                                                             | 44       |
|   |           | 4.3.1 Stoyoma Spiritual Area                                             | 44       |
|   |           | 4.3.2 Licensee Operating Areas                                           | 44       |
| 5 | C.        | ansitivity Analysas                                                      | лл       |
| 5 |           |                                                                          |          |
|   | 5.1       | Old Seral Requirements                                                   | 44       |
|   | 5.2       | Mature Plus Old Serai Requirements                                       | 44       |
|   | 5.3       | Contiguous Pine Leading Patches                                          | 44       |
|   | 5.4<br>ГГ | Sustainable Rate of Cut in Fisheries Sensitive Watersneus                | 45<br>45 |
|   | 5.5       | ISR Greenup Approach                                                     | 45       |
|   | 5.6       | Additional Riparian Butters for Small Streams                            | 45       |
|   | 5.7       | Wildlife Tree Retention                                                  | 45       |
|   |           | 5.7.1 Forest Planning and Practices Regulation WTR.                      | 45       |
|   | - 0       | 5.7.2 Licensee Forest Stewardship Plan WTR                               | 46       |
|   | 5.8       | Additional Riparian Buffers for Coastal Tailed Frog                      | 46       |
| 6 | R         | eserve Scenario                                                          | 46       |
|   | 6.1       | Approach                                                                 | 47       |
|   | 6.2       | Stand Features                                                           | 48       |
|   | 6.3       | Anchors                                                                  | 49       |
|   | 6.4       | Constraints                                                              | 50       |
|   | 6.5       | Criteria and Thresholds                                                  | 50       |
|   |           | 6.5.1 Old Forest                                                         | 51       |
|   |           | 6.5.2 Patch Size                                                         | 51       |
|   |           | 6.5.3 Interior Old Forest                                                | 52       |
|   | 6.6       | Analysis Steps                                                           | 53       |
|   |           | 6.6.1 Pre-Processing                                                     | 53       |
|   |           | 6.6.2 Processing                                                         | 54       |
|   |           | 6.6.3 Post-Processing                                                    | 54       |
|   |           | 6.6.4 Adjustments                                                        | 54       |
|   |           | 6.6.5 Implementation                                                     | 54       |
| 7 | н         | larvest Scenario                                                         |          |
| - |           |                                                                          |          |

| 7        | '.1 Minimu           | m Harvest Criteria                                    | 55     |
|----------|----------------------|-------------------------------------------------------|--------|
| 7        | 2.2 Revised          | Harvest Opening Sizes                                 | 55     |
| 7        | .3 Smooth            | Selection Harvest Flow                                | 56     |
| 7        | .4 Wildfire          | Management and Harvest Priority                       | 56     |
| 8        | Silvicultu           | re Scenario                                           | .56    |
| 9        | Combine              | d Scenario                                            | .58    |
| 10       | Referenc             | es                                                    | .61    |
| Ap       | pendix 1             | Non-Spatial Old Growth Objectives                     | 1      |
| Ap       | pendix 2             | Analysis Unit Details                                 | 1      |
|          |                      |                                                       |        |
| Ap       | pendix 3             | Silvicultural Systems                                 | 1      |
| Ap<br>Ap | pendix 3<br>pendix 4 | Silvicultural Systems<br>Criteria for Scoring Anchors | 1<br>1 |

## List of Figures

| Figure 1  | Merritt TSA                                                                      | 1  |
|-----------|----------------------------------------------------------------------------------|----|
| Figure 2  | Area impacted by year from Mountain Pine Beetle                                  | 8  |
| Figure 3  | Area impacted by year from Spruce Beetle                                         | 8  |
| Figure 4  | Area impacted by year from Western Balsam Bark Beetle                            | 9  |
| Figure 5  | Area impacted by year from Western Spruce Budworm                                | 10 |
| Figure 6  | BEC zone distribution across the crown forested land base                        | 12 |
| Figure 7  | Age class distribution across the crown forested land base                       | 13 |
| Figure 8  | Landscape Units and Biodiversity Emphasis Option                                 | 22 |
| Figure 9  | Cumulative Effects Watersheds / Hazard Ratings                                   | 28 |
| Figure 10 | Distribution of natural and managed stand site indices over the THLB             | 37 |
| Figure 11 | Example of how natural yields were impacted by MPB                               | 41 |
| Figure 12 | Shelf life loss of MPB-attacked, dead overstory trees                            | 41 |
| Figure 13 | Approach for ranking stands as candidate reserves                                | 47 |
| Figure 14 | Interior old forest buffering example in unit where old forest is >120 years old | 53 |

## List of Tables

| Table 1  | Spatial data sources                                                           | 4         |
|----------|--------------------------------------------------------------------------------|-----------|
| Table 2  | Disturbance Classes for Bark Beetles                                           | 7         |
| Table 3  | Disturbance classes for western spruce budworm                                 | 9         |
| Table 4  | Wildfire Areas                                                                 | 10        |
| Table 5  | Merritt TSA land base area summary                                             | 11        |
| Table 6  | Parks and protected areas summary.                                             |           |
| Table 7  | Environmentally sensitive areas summary                                        |           |
| Table 8  | Inoperable summary                                                             | 16        |
| Table 9  | Rinarian zone huffer widths and retention levels                               | 16        |
| Table 10 | Rinarian areas summary                                                         | 17        |
| Table 11 | Heritage trail summary                                                         | 17        |
| Table 12 | Wildlife habitat area Summary                                                  | 18        |
| Table 13 | Required Area of Snow Intercention Cover by Snownack Zone                      | 19        |
| Table 14 | Snow Intercention Cover Attributes and Step-down if requirements not available | 19        |
| Table 15 | Lingulate Winter Range Snow Intercention Cover Area Summary                    | 20        |
| Table 16 | Live Tree Retention Targets for WISA Low/Moderate Suitability                  | 20        |
| Table 17 | Mature alus old seral requirements                                             | 21        |
| Table 18 | Patch size targets                                                             | 22        |
| Table 19 | Maximum percent depudation by visual quality objective                         | 23<br>24  |
| Table 20 | Criteria for estimating hydrological recovery of logged stands (IWAD)          | 24<br>24  |
| Table 20 | ECA estimates associated with MDB affected forest stands                       | 24        |
| Table 21 | Community Watersheds                                                           | 25        |
| Table 22 | Droposed Eisborios Sonsitivo Watersheds                                        | 20        |
| Table 23 | Litilization Lovels                                                            | 20        |
| Table 24 | Minimum harvest thresholds                                                     | 50        |
| Table 25 | Harvost Datch Sizo Targote                                                     | J1        |
| Table 20 | Annual natural disturbance limits in the forested non THLP by REC Zone/NDT     | בכ<br>בכ  |
| Table 27 | Non recoverable losses                                                         | 52        |
| Table 20 | Criteria used to group stands into analysis units                              | 24        |
| Table 29 | Dry Bolt Fir overlap with other constraints                                    | 54<br>2E  |
| Table 30 | Dry Beit Fil Overlap with other constraints                                    |           |
|          | Begeneration Dathways                                                          | ، د<br>ەد |
| Table 32 | Regenerated Stand Characteristics                                              | 00        |
| Table 33 | Negeliel aleu Staliu Cilaiacteristics                                          | 0C        |
| Table 24 | Approach to reflect pact attack MPP impacts to violds for patural stands       | 40        |
|          | Approach to reflect post-attack wipb impacts to yields for flatural status     | 40        |
| Table 30 | Volume classes for Dry Beit Fir Selection System Field Curves                  | 42        |
|          | Crode 4 Credit                                                                 | 43        |
|          | Datch size thresholds for Mature I Old DL loading Stands                       | 43        |
|          | Patch size thresholds for Mature + Old PI-leading Stands.                      | 45        |
| Table 40 | FPPR WIR Targets by BEC Zone                                                   | 40        |
|          | Licensee FSP WTR Talgets by BEC 2019                                           | 40        |
|          | Rationale for Stand Features Scoring                                           | 48        |
| Table 43 | Stand Feature Scoring                                                          | 49        |
| Table 44 | Anchor Scoring                                                                 | 49        |
| Table 45 | Constraint Scoring                                                             | 50        |
| Table 45 | Area (na) of Old Forest Required by BEC Variant (version 5) and Landscape Unit | 51        |
| Table 47 | Interim patti size Criteria                                                    | 51        |
| Table 48 | Criteria for identifying interior old forest                                   | 52        |
| Table 49 | ractics Applied in the Silviculture Scenario                                   | 5/        |
| Table 50 | Fertilization Response for Fd, PI and Natural Stands                           | 58        |
| Table 51 | Tertilization Response for Multiple SX Treatments                              | 58        |
| Table 52 | ractics Applied in the Combined Scenario                                       | 59        |

## List of Acronyms

| AU      | Analysis Units                                                 |
|---------|----------------------------------------------------------------|
| BCMPB   | BC Mountain Pine Beetle Model                                  |
| BEC     | Biogeoclimatic Ecosystem Classification                        |
| BMP     | Best Management Practice                                       |
| CFLB    | Crown Forested Land Base                                       |
| CTF     | Coastal Tailed Frog                                            |
| ECA     | Equivalent Clearcut Area                                       |
| ESA     | Environmentally Sensitive Area                                 |
| FLNRO   | BC Ministry of Forests, Lands and Natural Resource Operations  |
| FPPR    | Forest Planning and Practices Regulation                       |
| FREP    | Forest and Range Evaluation Program                            |
| FRPA    | Forest and Range Practices Act                                 |
| FSP     | Forest Stewardship Plan                                        |
| FSW     | Fisheries Sensitive Watershed                                  |
| FTA     | Forest Tenure Administration                                   |
| GAR     | Government Action Regulation                                   |
| GIS     | Geographic Information System                                  |
| ISS     | Integrated Stewardship Strategy                                |
| IWAP    | Interior Watershed Assessment Procedure                        |
| MPB     | Mountain Pine Beetle                                           |
| NDT     | Natural Disturbance Type                                       |
| NRL     | Non-Recoverable Losses                                         |
| NSR     | Not Satisfactorily Restocked                                   |
| OAF     | Operational Adjustment Factor                                  |
| OGMA    | Old Growth Management Area                                     |
| PHR     | Post-Harvest Regenerated                                       |
| RESULTS | Reporting Silviculture Updates and Land status Tracking System |
| SIBEC   | Site Index Biogeoclimatic Ecosystem Classification correlation |
| SIC     | Snow Interception Cover                                        |
| THLB    | Timber Harvesting Land Base                                    |
| TIPSY   | Table Interpolation Program for Stand Yields                   |
| TRIM    | Terrain and Resource Information Mapping                       |
| TSA     | Timber Supply Area                                             |
| TSR     | Timber Supply Review                                           |
| TSS     | Temperature Sensitive Stream                                   |
| UWR     | Ungulate Winter Range                                          |
| VAC     | Visual Absorption Capability                                   |
| VDYP    | Variable Density Yield Prediction                              |
| VEG     | Visually Effective Green-up                                    |
| VQO     | Visual Quality Objective                                       |
| VRI     | Vegetation Resources Inventory                                 |
| WHA     | Wildlife Habitat Area                                          |
| WISA    | Williamson's Sapsucker                                         |
| WTR     | Wildlife Tree Retention                                        |

### Acknowledgements

The ISS Project Team acknowledges and thanks the following individuals who contributed in the completion of this document:

- Andrew Snetsinger, FLNRO (Merritt)
- Barry Snowdon, FLNRO (Victoria)
- Bryce Bancroft, Symmetree (Victoria)
- John Surgenor, FLNRO (Kamloops)
- Patrick Bryant, Forsite (Salmon Arm)
- Paul Rehsler, FLNRO (Victoria)
- Rob Kennett, Forsite (Salmon Arm)
- Suzanne Shears, FLNRO (Merritt)

| Version | Date            | Notes/Revisions                                                                                                          |  |
|---------|-----------------|--------------------------------------------------------------------------------------------------------------------------|--|
| 1.0     | August 31, 2017 | First version distributed to project team for review and comment.                                                        |  |
| 1.1     | March 31, 2018  | Included various edits throughout the document for clarification and context.                                            |  |
|         |                 | Updated document title from "Integrated Stewardship Strategy" to<br>"Integrated Stewardship Strategy"                    |  |
|         |                 | Added List of Acronyms, Acknowledgments, Document Revision<br>History, plus:                                             |  |
|         |                 | <ul> <li>Section 6 - Reserve Scenario (merged from separate, edited<br/>Reserve Scenario report, version 1.1)</li> </ul> |  |
|         |                 | Section 7 - Harvest Scenario                                                                                             |  |
|         |                 | Section 8 - Silviculture Scenario                                                                                        |  |
|         |                 | Section 9 - Combined Scenario                                                                                            |  |

## **Document Revision History**

#### 1 Introduction

The British Columbia Ministry of Forests, Lands and Natural Resource Operations initiated an Integrated Stewardship Strategy (ISS) for the Merritt Timber Supply Area (TSA). The data package describes the information that is material to the analysis including the model used, data inputs and assumptions.

#### 1.1 Project Area

The Merritt TSA is situated in south-central BC (Figure 1) and is approximately 1.13 million hectares in size. It is within the Thompson Okanagan Forest Region and is administered from the Cascades Natural Resource District office located in the town of Merritt. It is bounded on the north by the Kamloops TSA, on the west by the Lillooet and Fraser TSAs, and on the east by the Okanagan TSA. Manning Park, Cathedral Park and the border between Canada and the United States of America are on the south.

The Merritt TSA includes the mountainous terrain and steep river valleys of the Cascade Mountains in the west and the relatively dry, flat Thompson Plateau in the east. The TSA encompasses two major river systems: the Similkameen and the Nicola.



Figure 1 Merritt TSA



Approximately 71 % of the TSA is forested crown land, and about 49% is considered to be the current THLB (46% future THLB). Lodgepole pine comprises approximately half of the forested land base, with Douglas-fir, spruce, ponderosa pine, subalpine fir, and trembling aspen making up the majority of the remainder. There are also minor amounts of western red cedar, western larch, and western hemlock.

#### 1.2 Context

The data package is the fifth of nine documents developed through the ISS process:

- 1. Situation Analysis describes in general terms the situation for the unit this could be in the form of a PowerPoint presentation with associated notes or a compendium document.
- Landscape Reserve Strategy review and analyze existing and proposed management zonation and develop strategy options that provide for the sustainable management of non-timber values.
- 3. Landscape Harvest Strategy review and analyze current and planned timber harvesting plans, infrastructure, and capabilities in the context of the distribution of MPB-killed pine salvage opportunities and the landscape reserve strategy. This must consider the current salvage period and the transition into the mid-term timber supply.
- 4. Silviculture Strategy provides treatment options, associated targets, timeframes and benefits to minimize the impact of the MPB infestation over the mid-term timber supply.
- 5. **Data Package** describes the information that is material to the analysis including the model used, data inputs and assumptions.
- 6. Analysis Report provides modeling outputs and rationale for choosing a preferred scenario.
- 7. Operational plan direction for the implementation of the preferred scenario.
- 8. Final Report summary of all project work completed.
- 9. Monitoring Plan direction on monitoring the implementation of the ISS; establishing a list appropriate performance indicators, developing monitoring responsibilities and timeframe and a reporting format and schedule.

#### 2 Modelling Approach

#### 2.1 Model

The PATCHWORKS <sup>™</sup> modeling software was used for forecasting and analysis. This suite of tools is sold and maintained by Spatial Planning Systems Inc. of Deep River, Ontario (Tom Moore - www.spatial.ca).

PATCHWORKS is a fully spatial forest estate model that can incorporate real world operational considerations into a strategic planning framework. It utilizes a goal seeking approach and an optimization heuristic to schedule activities across time and space in order to find a solution that best balances the targets/goals defined by the user. Targets can be applied to any aspect of the problem formulation. For example, the solution can be influenced by issues such as mature/old forest retention levels, young seral disturbance levels, patch size distributions, conifer harvest volume, growing stock levels, snag densities, Coarse Woody Debris levels, Equivalent Clearcut Areas, specific mill volumes by species, road building/hauling costs, delivered wood costs, net present values, etc. The PATCHWORKS model continually generates alternative solutions until the user decides a stable solution has been



found. Solutions with attributes that fall outside of specified ranges (targets) are penalized and the goal seeking algorithm works to minimize these penalties – resulting in a solution that reflects the user objectives and priorities. Patchworks' flexible interactive approach is unique in several respects:

- PATCHWORKS' interface allows for highly interactive analysis of trade-offs between competing sustainability goals.
- PATCHWORKS software integrates operational-scale decision-making within a strategic-analysis environment: realistic spatial harvest allocations can be optimized over long-term planning horizons. Patchworks can simultaneously evaluate forest operations and log transportation problems using a multiple-product to multiple-destination formulation. The model can identify in precise detail how wood flows to mills over a complex set of road construction and transportation alternatives.
- Allocation decisions can be made considering one or many objectives simultaneously and objectives can be weighted for importance relative to each other. (softer vs. harder constraints)
- Allocation decisions can include choices between stand treatment types (Clearcut vs. selection cut, fertilization, rehabilitation, etc.).
- Unlimited capacity to represent a problem only solution times limit model size.
- Fully customizable reporting on economic, social, and environmental conditions over time.

Reports are built web-ready to share analysis results easily – even comparisons of multiple indicators across multiple scenarios.

#### 2.2 Data Sources

Table 1 lists the spatial data and sources used for this analysis.

March 31, 2018

| Snatial Data                        | Source                                    | Feature Name                      | Effective |
|-------------------------------------|-------------------------------------------|-----------------------------------|-----------|
| TSA Boundary                        | WHSE ADMIN BOUNDARIES                     | FADM TSA                          | 2013      |
| Parks and Protected Areas           | WHSE TANTALIS                             | TA PARK ECORES PA SVW             | 2015      |
| Ownership                           | WHSE FOREST VEGETATION                    | F OWN                             | 2015      |
| Managed Licences                    | WHSE FOREST TENURE                        | FTEN MANAGED LICENCE POLY S       | 2015      |
| Managea Electrices                  |                                           | VW                                | 2015      |
| Licencee Operating Areas            | FAIB – Merritt_District_Data              | Op_Areas                          | 2014      |
| Biogeoclimatic Ecosystems (BECv9)   | WHSE_FOREST_VEGETATION                    | BEC_BIOGEOCLIMATIC_POLY           | 2015      |
| Biogeoclimatic Ecosystems (BECv5)   | Forsite Archives                          | BECv5                             | 2003      |
| Landscape Units (LU)                | WHSE_LAND_USE_PLANNING                    | RMP_LANDSCAPE_UNIT_SVW            | 2015      |
| Old Growth Management Areas         | FAIB – Merritt_District_Data.gdb          | March_2014_Merritt_Pseudo_OG      | 2014      |
| (OGMA)                              |                                           | MAS                               |           |
| Ungulate Winter Ranges (UWR)        | WHSE_WILDLIFE_MANAGEMENT                  | WCP_UNGULATE_WINTER_RANGE         | 2015      |
|                                     |                                           | _SP                               |           |
| Moose Winter Range                  | Section 7 Notice website                  | Merritt_TSA_moose.shp             | 2016      |
| Wildlife Habitat Areas (WHA)        | WHSE_WILDLIFE_MANAGEMENT                  | WCP_WILDLIFE_HABITAT_AREA_P       | 2015      |
|                                     |                                           | ULY<br>Final Western AQ Medal sha | 2015      |
| Williamson's Sapsucker Habitat      | GEOBC FTP site                            | Final_western_AO_wodel.shp        | 2015      |
| Suitability                         |                                           | Western AQ 2012 nexts sha         | 2012      |
| Constal Tailed Free Deint Locations |                                           | MERR TSA Tailed From Doints chr   | 2012      |
| Coastal Tailed Frog Point Locations | FLINRO                                    | MERR_TSA_Tailed_Frog_Points.shp   | 2017      |
| Coastal falled Frog watersheds      | FEINRO                                    | ds shn                            | 2017      |
| Community Watersheds                | WHSE WATER MANAGEMENT                     | WLS COMMUNITY WS PUB SVW          | 2015      |
| Fisheries Sensitive Watersheds      | LRDW                                      | WHSE WILDLIFE MANAGMENT W         | 2016      |
| Tishenes sensitive watersheas       |                                           | CP FISH SENS WS PROPOSED SP       | 2010      |
|                                     |                                           |                                   |           |
| Temperature Sensitive Stream        | DCS                                       | Nicola_Water_shed.shp             | 2015      |
| Watersheds                          |                                           |                                   |           |
| Cumulative Effects Watersheds       | FLNRO                                     | Merritt_ISS_watersheds.shp        | 2017      |
| Cumulative Effects WS H40 line      | FLNRO                                     | Merritt_H40.shp                   | 2017      |
| Cumulative Effects WS H60 line      | FLNRO                                     | Merritt_H60.shp                   | 2017      |
| Visual Landscape Inventory          | WHSE_FOREST_VEGETATION                    | REC_VISUAL_LANDSCAPE_INVENTO      | 2015      |
|                                     |                                           | RY                                |           |
| Stoyoma Area of Interest            | Tolko                                     | Stoyoma area of                   | 2015      |
| Horitago Trailc                     | WHSE EODEST TENILIDE                      | INTEREST_REGION.SND               | 2015      |
| Heritage Trail Duffers              | Exercite - Concrated from Heritage        |                                   | 2015      |
| Heritage Irali Bullers              | Trails                                    |                                   | 2015      |
| Lakeshore Management Classes        | FAIB – Merritt District Data              | Lake Class                        | 2014      |
| Wetland Classes                     | FAIB – Merritt District Data              | <br>Wetland Class                 | 2014      |
| Stream Classes                      | <br>FAIB – Merritt_District_Data          | Stream_Class                      | 2014      |
| Lake Buffers                        | Forsite – Generated from Lake Class       | Lake Buf                          | 2015      |
| Stream Buffers                      | <br>Forsite – Generated from Stream_Class | Strm_Buf                          | 2015      |
| Wetland Buffers                     | Forsite – Generated from                  | Wet_Buf                           | 2015      |
|                                     | Wetland_Class                             |                                   |           |
| Roads                               | FAIB – Merritt_District_Data              | TME_Custom_Roads_2012_digitize    | 2012      |
|                                     |                                           | d; and                            |           |
|                                     | Fourity Concerns of from FAID reads       | TME_roadMerge_atts_2013_proj      | 2015      |
| Road Buffers                        | Forsite – Generated from FAIB roads       | ROad_But                          | 2015      |
| Environmentally Sensitive Areas     | FAIB – Merritt_District_Data              | ESA_HIGN_DCS                      | 1990s     |
| Operability Lines                   |                                           |                                   | 1991      |
| Lense Creater Than (5%)             | FAID - IVIETTILL_DISTRICT_DATA            | I SIVI_CIDSS_S_IVIE               | 2014      |
| Slopes Greater I nan 65%            |                                           |                                   | 2014      |
| Elevation Bands (200m)              | Forsite                                   | Elevation                         | 2016      |
| Aspect                              |                                           |                                   | 2016      |
| Forest Inventory –VRI               |                                           |                                   | 2014      |
| Forest Inventory – Depletions       |                                           | CONSOLIDATED_CUTBLOCKS_2015       | 2015      |
| Forest Inventory – Cut Blocks       |                                           | FIEN_CUI_BLUCK_PULY_SVW           | 2016      |
| Porest inventory – Results          | WIISE_FOREST_VEGETATION                   | NJLI_OPEININGS_SVW                | 2010      |
| Openings                            |                                           |                                   |           |

| Spatial Data                                       | Source                             | Feature Name                             | Effective |
|----------------------------------------------------|------------------------------------|------------------------------------------|-----------|
| Forest Inventory – Reserves                        | WHSE_FOREST_VEGETATION             | RSLT_FOREST_COVER_RESERVE_SV<br>W        | 2016      |
| Forest Inventory – Licensee Blocks<br>and Reserves | Various                            | Various                                  | 2016      |
| Forest Inventory – Managed Site<br>Index           | FAIB                               | SPROD_18                                 | 2015      |
| Pruned/Fertilized                                  | WHSE_FOREST_VEGETATION             | RSLT_ACTIVITY_TREATMENT_S<br>VW          | 2015      |
| Wildfires – Historic (2010-2015)                   | WHSE_LAND_AND_NATURAL_RESOUR<br>CE | PROT_HISTORICAL_FIRE_POLYS_SP            | 2015      |
| Wildfires – Current (2016)                         | WHSE_LAND_AND_NATURAL_RESOUR<br>CE | PROT_CURRENT_FIRE_POLYS_SP               | 2016      |
| Fire Management Planning Units                     | DCS: TME_FMP_Subunits              | Fmp_subunit                              | 2015      |
| Fire Breaks from Merritt FMP                       | DCS : TME_Proposed_Fuel_Breaks     | Fire_breaks                              | 2015      |
| Wildland Urban Interfaces                          | FLNRO PSTA Data                    | Wildland_Urban_Interface_Buffer_<br>Area | 2015      |

#### 2.3 Forest Inventory Updates

The forest inventory was initially acquired from the provincial data distribution service. Aerial photography for most of the current forest inventory was taken in 1991. However, the attributes associated with this inventory have been projected to January 1, 2014. The Vegetation Resource Inventory Management System is also used to update the original inventory. In this process, new harvest and free-growing data were extracted from the Reporting Silviculture Updates and Land status Tracking System (RESULTS), verified and integrated into the Vegetation Resources Inventory (VRI). Further updates to these data were required to prepare the inventory for this analysis.

#### **Disturbance**

The forest inventory was updated for logging disturbance to 2016 using data from the following sources:

- RESULTs Openings and Reserves
- Forest Tenure Administration (FTA) blocks
- Forest Analysis and Inventory Branch Consolidated Blocks 2016
- Licensee blocks 2016

A GIS process was used to identify the best information to use for the update, with the goal of eliminating artifact slivers from the Landsat imagery source in the consolidated blocks data. There were also issues with the data coding for some of the RESULTs openings (e.g. coded as reserves). These were resolved to the degree possible manually using the labels assigned to wildlife tree retention. Areas within wildlife tree patches were excluded from harvested blocks when completing the disturbance update.

Ages in the resultant were updated for areas identified as being disturbed by applying a three year regeneration delay to the date of disturbance. Only polygons meeting the following criteria were updated to minimize the risk of overwriting ages & heights that had already been captured in existing updates to the VRI:

- VRI harvest date was null
- Existing inventory age greater than 40 years

#### Managed stand site indices

Managed stand site indices were calculated for each forest polygon using its leading species and the 2014 provincial site productivity layer which provides SIBEC estimates for site series identified in the predictive ecosystem mapping for the Merritt TSA. Values were assigned to forest cover polygons using area-weighted averages from the raster dataset. The site index values for pine were increase by 4.87 percent to maintain consistency with TSR 2015.

#### Past incremental treatments

To assist in developing silviculture strategies, boundaries for past pruning and fertilization activities were extracted from RESULTS then incorporated and flagged into the forest inventory. There may be areas treated in the past that were not included in the RESULTS data. These missing treatments, largely were therefore unavailable for this analysis. No adjustments were made to forest attributes for these stands.

#### Mountain Pine Beetle

The BC FLNRO conducts annual forest health aerial flights that identify tree mortality from tree foliage colour, and categorizes it according to the severity classes outlined in Table 2. The mountain pine beetle infestation climbed rapidly from 2004 to 2008, after which it has been in decline (Figure 2).

The 2014 update to the Provincial Forest Cover incorporates changes to account for current MPB losses:

- Stand density and volume estimates were adjusted / prorated based on the BCMPB Model and a Year-of-Death data layer. These updates were reflected in the "live" and "dead" attributes in the inventory, either for individual species or for the stand as a whole. For stands where dead volumes for individual species have not been provided, it can be assumed that the dead stand volume is 100% pine (personal communication with Tim Salkeld, 2014).
- Growth and yield projections utilized the dead stand percentage available in the inventory and no additional future mortality from MPB was implemented.

| ;               |                                                     |  |
|-----------------|-----------------------------------------------------|--|
| Intensity Class | Disturbance Description                             |  |
| Trace           | <1% of the trees in the polygon recently killed.    |  |
| Light           | 1-10% of the trees in the polygon recently killed.  |  |
| Moderate        | 11-29% of the trees in the polygon recently killed. |  |
| Severe          | 30-49% of the trees in the polygon recently killed. |  |
| Very Severe     | 50%+ of the trees in the polygon recently killed.   |  |

Table 2 Disturbance Classes for Bark Beetles



Figure 2Area impacted by year from Mountain Pine Beetle

#### Spruce Beetle

Based on the FLNRO annual forest health aerial flights that identify tree mortality from tree foliage colour, it is evident that spruce beetle has been a concern in the Merritt TSA since 2007 (Figure 3), with an average of 2,607 hectares each year showing signs of infestation. The breakdown by severity class as defined in (Table 2) is approximately 32.0% Trace/Light, 53.6% Moderate, and 14.4% Severe/Very Severe. Unlike the mountain pine beetle, spruce beetle infestations can be managed through the application of various forest health measures that utilize trap trees and sanitation harvest. This analysis did not account for volume losses to the inventory beyond those already considered in the natural stand volume projections in VDYP7 (section 3.5.2).



Figure 3Area impacted by year from Spruce Beetle

#### Western Balsam Bark Beetle

Figure 4 summarizes the levels of Western Balsam Bark Beetle infestation identified in the annual FLNRO forest health aerial flights. It is evident that there are ongoing endemic infestations with mostly trace or light levels of attack. Therefore, this analysis did not account for volume losses to the inventory beyond those already considered in the natural stand volume projections in VDYP7 (section 3.5.2).



Figure 4 Area impacted by year from Western Balsam Bark Beetle

#### Western Spruce Budworm

Western spruce budworm feeds primarily on Douglas-fir. Because of the budworm's preferential feeding on current year's buds and foliage, height growth is severely reduced or eliminated during years of defoliation. A single year of defoliation by spruce budworm generally has little impact on tree mortality but repeated budworm defoliation can cause tree mortality, a reduction in growth rates, and reduced lumber quality. Over the past decade, western spruce budworm has impacted an average of 122,783 hectares each year at intensity classes of 73% trace/light, 26.5% moderate, 0.5% severe, 0% grey (see Table 3 and Figure 5). These forest health aerial flights have recorded some damage but very little tree mortality (grey attack) as a result of damage from western spruce budworm. Accordingly, this analysis did not account for volume losses to the inventory beyond those already considered in the natural stand volume projections in VDYP7 (section 3.5.2).

| Table 3 | Disturbance classes | for western spruce | budworm |
|---------|---------------------|--------------------|---------|
|---------|---------------------|--------------------|---------|

| Intensity Class | Disturbance Description                                                                                 |
|-----------------|---------------------------------------------------------------------------------------------------------|
| Light           | Some branch tip and upper crown defoliation, barely visible from the air.                               |
| Moderate        | Noticeably thin foliage, top third of many trees severely defoliated, some completely stripped.         |
| Severe          | Bare branch tips and completely defoliated tops, most trees sustaining more than 50% total defoliation. |
| Grey            | Cumulative foliage damage resulting in mortality, recorded at end of damage agent cycle.                |



Figure 5 Area impacted by year from Western Spruce Budworm

#### <u>Wildfires</u>

An examination of the VRI revealed that fires prior to 2010 had already been incorporated. Therefore, fires greater than 10 hectares in size that occurred between 2010 and 2016 were included in the resultant and ages were reset to zero. Table 4 summarizes the gross area of wildfires, and the areas that were reset to age zero (i.e. forested areas).

| Table 4   | Wildfire Areas |               |
|-----------|----------------|---------------|
| Fire Year | Gross Area     | Area reset to |
|           | (ha)           | Age 0 (ha)    |
| 2010      | 37.4           | 29.7          |
| 2011      | 11.1           | 4.3           |
| 2012      | 495.1          | 287.9         |
| 2013      | 102.6          | 49.8          |
| 2014      | 1,112.8        | 770.1         |
| 2015      | 470.5          | 390.0         |
| 2016      | 104.8          | 49.2          |
| Total     | 2,334.3        | 1,581.0       |

#### Volume Adjustments

No volume adjustments were applied to the forest inventory, consistent with the process used for TSR 2015.

#### *3 Base Case Scenario*

This section describes the assumptions used to model the base case scenario (status quo management). This scenario will provide the base from which to compare various silviculture treatment or other scenarios.



#### 3.1 Land Base Assumptions

Land base assumptions were used to define the crown forested land base (CFLB) and timber harvesting land base (THLB) in the TSA. The THLB is designated to support timber harvesting while the CFLB is identified as the broader productive forest that can contribute toward meeting non-timber objectives (e.g. biodiversity).

Table 5 provides a summary of the land base area by netdown category for the ISS Base Case. The Merritt TSA covers a total area of approximately 1.13 million hectares. From this total area, approximately 71.2% is considered the CFLB while 49.7% is considered the current THLB. The ISS Base Case THLB is approximately 97.5% of the THLB reported for the TSR Base Case. It is also noted that there are an additional 25,552 hectares of THLB in the Base Case that will not get harvested because of the minimum harvest criteria that is applied in the model (Refer to Section 3.3.3 for details). These have not been excluded from the THLB because alternate harvest scenarios may change this criteria.

|                                               | Gross<br>Areas (Ha) | Effective<br>Areas (Ha) | Percent of<br>Total Area<br>(%) | Percent<br>of CFLB<br>(%) |
|-----------------------------------------------|---------------------|-------------------------|---------------------------------|---------------------------|
| Total Area                                    | 1,131,163           | 1,131,163               | 100.0%                          |                           |
| less:                                         |                     |                         |                                 |                           |
| Private Land, Federal Land, etc.              | 195,392             | 195,392                 | 17.3%                           |                           |
| Community Forests                             | 12,924              | 12,924                  | 1.1%                            |                           |
| Woodlots                                      | 14,257              | 14,257                  | 1.3%                            |                           |
| Non-Forest (Alpine)                           | 16,409              | 16,409                  | 1.5%                            |                           |
| Non-Forest (Rock)                             | 10,611              | 9,353                   | 0.8%                            |                           |
| Non-Forest (Water)                            | 17,890              | 14,738                  | 1.3%                            |                           |
| Non-Forest (Vegetation)                       | 136,997             | 31,985                  | 2.8%                            |                           |
| Non-Forest (Low productivity)                 | 2,351               | 2,176                   | 0.2%                            |                           |
| Non-Forest (Urban)                            | 10,068              | 6,083                   | 0.5%                            |                           |
| Non-Forest (Unclassified)                     | 253                 | 253                     | 0.0%                            |                           |
| Non-Forest (Roads)                            | 20,423              | 14,522                  | 1.3%                            |                           |
| Non-Forest (Landings – Aspatial)              | 7,709               | *7,709                  | 0.7%                            |                           |
| Crown Forested Land Base                      |                     | 805,366                 | 71.2%                           | 100.0%                    |
| less:                                         |                     |                         |                                 |                           |
| Parks, Reserves and Protected Areas           | 17,539              | 13,286                  | 1.2%                            | 1.6%                      |
| Environmentally Sensitive Areas               | 67,050              | 45,705                  | 4.0%                            | 5.7%                      |
| Physically Inoperable                         | 91,569              | 37,943                  | 3.4%                            | 4.7%                      |
| Archaeological Sites (Aspatial)               |                     | *558                    | 0.0%                            | 0.1%                      |
| Riparian Areas                                | 66,944              | 34,240                  | 3.0%                            | 4.3%                      |
| Heritage Trails                               | 933                 | 655                     | 0.1%                            | 0.1%                      |
| Wildlife Habitat Areas                        | 7,335               | 4,464                   | 0.4%                            | 0.6%                      |
| Old Growth Management Areas                   | 114,600             | 51,944                  | 4.6%                            | 6.4%                      |
| Coastal Tailed Frog                           | 230                 | 44                      | 0.0%                            |                           |
| Ungulate Winter Range Snow Interception Cover | 45,366              | 29,818                  | 2.6%                            | 3.7%                      |
| Existing Wildlife Tree Patches                | 14,856              | 9,649                   | 0.8%                            | 1.2%                      |
| Wildlife Tree Retention (Aspatial, Estimated) |                     | * 14,390                | 1.3%                            | 1.8%                      |
| Timber Harvesting Land Base (current)         |                     | 562,670                 | 49.7%                           | 69.9%                     |

#### Table 5 Merritt TSA land base area summary



| less:                                       |          |       |       |
|---------------------------------------------|----------|-------|-------|
| Future Wildlife Tree Retention (Aspatial)   | *23,484  | 2.1%  | 2.9%  |
| Future Roads (Aspatial)                     | **11,701 | 1.0%  | 1.5%  |
| Williamson's Sapsucker Retention (Aspatial) | 2,103    | 0.2%  | 0.3%  |
| Timber Harvesting Land Base (future)        | 525,382  | 46.4% | 65.2% |

\* Aspatial netdowns were applied in the model but were not reflected in the GIS dataset areas.

\*\* To be applied with a yield table reduction

More detailed descriptions of these land base assumptions are provided within the following subsections. After applying these assumptions, the landbase was summarized below according to BEC zones and age classes.

The distribution of the major BEC zones for both the THLB and Non-THLB (together equalling the CFLB) are shown in Figure 6.



#### Figure 6 BEC zone distribution across the crown forested land base

Considering the magnitude of area affected by the MPB and across the spectrum of age classes, we can expect a large shift of future stands into a narrow age class range. Once mature, these stands will become available for harvest again in a common period. It will be necessary to find ways to break up this age class cohort and minimize the risk of future MPB outbreaks.

After applying assumptions to reflect changes in stand age from disturbances (i.e., fire and harvesting) the current age class distribution on both the THLB and Non-THLB are shown in Figure 7.



*Figure 7* Age class distribution across the crown forested land base

#### 3.1.1 Non-TSA Ownership

Ownership considered outside of the TSA was identified using the ownership data source. For this analysis, the CFLB was spatially reduced for all areas identified as private land (40N), federal reserve (50N), Indian reserve (52N), military reserve (53N), TFLs (72B), woodlots (77A, 77B), community forests (79B), and miscellaneous leases (99N). In addition, woodlots and community forests were identified using the managed licence data source.

Areas retained within the CFLB included: ecological reserves (60N), public reserves (61C, 61N), TSA lands (62C), provincial parks (63N), crown reserves (67N), crown biodiversity, mining and tourism areas (68N) and miscellaneous reserves (69C, 69N).

#### 3.1.2 Non-Forest and Non-Productive

A similar process to that used for TSR 2015 was followed to identify areas that were either non-forest or non-productive. This process uses the British Columbia Land Classification Scheme and site index within the VRI in conjunction with past logging, as follows:

- All polygons were initially assumed to be non-forest
- Polygons with a site index >=5 were re-coded as forest
- Polygons with evidence of logging (either through the disturbance update or with a harvest date) were re-coded as forest
- Polygons without a site index but coded as either "TC" (tall conifer) or "TB" (tall broadleaf) in BCLCS\_LEVEL\_4 with a logging history were re-coded as forest
- Polygons with a BCLCS\_LEVEL\_4 of "RO" (rock) or BCLCS\_LEVEL\_5 of "LA" (lake), "UR" (urban), "GP" (gravel pit), "MI" (mine), "RS" (river sediment), "ES" (exposed soil), "RZ" (road surface), "RI" (river/stream) were coded as non-forest.

After a polygon was determined to be either forest or non-forest using the above process, it was assigned to a category as follows:

• Alpine : *BCLCS\_LEVEL\_3* = "A"



- Rock: BCLCS\_LEVEL\_4 = "RO" or BCLCS\_LEVEL\_5 in "GP", "MI", "RS", "ES", or "RZ"
- Water: BCLCS\_LEVEL\_3 = "W" or BCLCS\_LEVEL\_5 in "LA", "RE", "RI", or "OC"
- Non Forest Vegetation: BCLCS\_LEVEL\_4 in "ST", "SL", "HE", "HF", "HG", "BY", "BM", or "BL"
- Low Productivity: Site Index <= 5 and Site Index not null
- Urban: BCLCS\_LEVEL\_5 = "UR"
- Unclassified: Not captured by above criteria

#### 3.1.3 Roads, Trails, and Landings

A spatial reduction for existing roads was completed using the consolidated roads dataset used for TSR 2015. The 20,932 kilometres of roads in this dataset were current to 2012, and were buffered by 10 metres. Areas contained within the buffers were considered to be non-forest and not available for harvesting.

An aspatial reduction for existing landings was applied using the assumptions documented for TSR 2015. All harvested areas to date had their area reduced by 2.4% prior to modelling.

A reduction of 3.5% for future roads was used for the modelling, and implemented by applying a reduction to the yield curves for future managed stands (i.e. stands currently greater than 30 years of age). This reduction is consistent with the assumptions used for TSR 2015, which were based on the 2008 Sustainable Forest Management Plan prepared for the Merritt TSA in March 2009 using local knowledge. FREP soils monitoring carried out in the Cascades District supports this assumption. This reduction equates to an allowance of 12,879 hectares for future roads.

#### 3.1.4 Parks and Protected Areas

Productive forest within parks and protected areas is part of the CFLB that contributes to meeting requirements for non-timber values. However, these areas were not generally available for harvest. These areas were identified by applying the assumptions documented for TSR 2015. Miscellaneous Crown Reserves (69N) and Crown Christmas Tree Permits were also included in this category. Table 6 summarizes these areas.

| Name                              | Gross<br>Area (ha) | Effective<br>Area(ha) |
|-----------------------------------|--------------------|-----------------------|
| Kentucky-Alleyne Park             | 190.3              | 111.1                 |
| Allison Lake Park                 | 20.6               | 10.0                  |
| Bromley Rock Park                 | 150.4              | 116.0                 |
| Coldwater River Park              | 69.2               | 67.3                  |
| E.C. Manning Park                 | 12,963.7           | 10,360.2              |
| Monck Park                        | 120.0              | 54.5                  |
| Otter Lake Park                   | 52.6               | 16.2                  |
| Stemwinder Park                   | 3.5                | 3.5                   |
| Soap Lake Ecological Reserve      | 937.5              | 788.4                 |
| Whipsaw Creek Ecological Reserve  | 32.4               | 25.9                  |
| Coquihalla Summit Recreation Area | 2,729.1            | 1,627.8               |
| Brent Mountain Protected Area     | 13.0               | 12.1                  |
| Crown Miscellaneous Reserves      | 240.2              | 78.1                  |
| Crown Christmas Tree Permits      | 16.1               | 15.2                  |
| Total                             | 17,538.6           | 13,286.3              |

Table 6Parks and protected areas summary



#### 3.1.5 Environmentally Sensitive Areas

Areas with high environmental sensitivity were fully excluded from the THLB, unless there was evidence of previous logging. The ESA mapping dates back to the 1990s, with six categories identified (A, H, P, R, S, and W). The individual polygons contained one or more of these codes, as shown in the area summary contained in Table 7.

| ESA Code | Description                                                         | Gross Area<br>(ha) | Effective<br>Area(ha) |
|----------|---------------------------------------------------------------------|--------------------|-----------------------|
| А        | Snow avalanche                                                      | 362.3              | 362.2                 |
| AP       | Snow avalanche, potential regeneration problems                     | 334.9              | 284.1                 |
| н        | Water intake                                                        | 108.1              | 83.9                  |
| Р        | Potential regeneration problems                                     | 40,493.2           | 26,423.9              |
| PR       | Potential regeneration problems, recreation/viewing                 | 144.8              | 94.1                  |
| R        | Recreation/viewing values                                           | 1,310.2            | 766.4                 |
| S        | Unstable soils                                                      | 6,969.4            | 4,446.0               |
| SA       | Unstable soils, snow avalanche                                      | 5.9                | 5.9                   |
| SP       | Unstable soils, potential regeneration problems                     | 16,571.9           | 12,582.6              |
| SPR      | Unstable soils, potential regeneration problems, recreation/viewing | 547.1              | 543.3                 |
| SW       | Unstable soils, wildlife                                            | 50.4               | 17.5                  |
| W        | Wildlife                                                            | 152.0              | 95.6                  |
| Total    |                                                                     | 67,50.2            | 45,705.5              |

Table 7 Environmentally sensitive areas summary

#### 3.1.6 **Inoperable**

Inoperable areas were identified using a combination of operability lines, terrain stability mapping, and slope, using similar logic and data to that used for TSR 2015. Table 8 summarizes the areas for these categories.

#### **Operability Lines**

The operability dataset referenced in TSR 2015 was used in this analysis, with all areas outside the operability lines excluded from the THLB unless they showed evidence of previous harvesting. Operability lines were delineated by District staff using 1991 air photos, and considered slope, topography, access, soil instability, elevation, and timber quality. These lines were reviewed by both District and industry staff and adjusted as necessary.

#### **Terrain Stability**

TSR 2015 indicated that terrain classification mapping has been completed for approximately 15% of the Merritt TSA. Areas identified as Terrain Class V were excluded from the THLB unless they showed evidence of previous harvesting.

#### <u>Slope</u>

Slopes greater than 65% were excluded from the THLB for areas where terrain classification mapping has not been completed, unless there was evidence of previous harvesting. The slope polygons used were obtained from Forest Analysis and Inventory Branch.

#### Table 8Inoperable summary

| Operability Criteria       | Gross     | Effective |
|----------------------------|-----------|-----------|
|                            | Area (ha) | Area(ha)  |
| District Operability Lines | 79,793.0  | 31,529.0  |
| Terrain Class V *          | 1,751.2   | 1,515.1   |
| Slopes Greater Than 65 % * | 10,025.2  | 4,898.83  |
| Total                      | 91,569.4  | 37.942.9  |

\*Gross Area excludes area already captured by previous criteria

#### 3.1.7 Archaeological Sites

Spatial locations of archaeological sites were not made available to Forsite. Rather, district staff suggested applying an aspatial netdown to account for archaeological sites. This was implemented by applying a proportionate area reduction to all stands not already netted out of the land base for factors up to and including operability. The reduction was based on removing the same total area as the effective area reported for archaeology in TSR 2015 (558 hectares).

#### 3.1.8 **Riparian Zones**

Riparian buffer areas were created using TSR 2015 datasets for lakes, wetlands, and streams. Buffer widths were consistent with those used for TSR 2015, except for selected S4, S5, and S6 Temperature Sensitive Streams (TSS) within the proposed Nicola Temperature Sensitive Watershed (see Section 3.2.9), which had their widths increased to either 20 or 30 metres. Riparian buffers are summarized in Table 9, while Table 10 contains a summary of the areas excluded for riparian management.

| Tuble 5  | mpanan     |           | i matilis and i |                 |                  |                         |
|----------|------------|-----------|-----------------|-----------------|------------------|-------------------------|
| Feature  | Class      | Reserve   | Management      | Management      | TSR Effective    | ISS Base Case Effective |
|          |            | Zone      | Zone Width      | Zone Basal Area | Buffer Width for | Buffer Width for        |
|          |            | Width (m) | (m)             | Retention (%)   | Modelling (m)    | Modelling (m)           |
| Lake     | А          |           | 200             | 100             | 200              | 200                     |
|          | В          |           | 200             | 50              | 100              | 100                     |
|          | С          |           | 200             | 25              | 50               | 50                      |
|          | D          |           | 200             | 10              | 20               | 20                      |
|          | E          |           | 200             | 5               | 10               | 10                      |
|          | L1         | 10        | 0               | 25              | 10               | 10                      |
|          | L2         | 10        | 20              | 10              | 12               | 12                      |
|          | L3         | 0         | 30              | 10              | 3                | 3                       |
|          | L4         | 0         | 30              | 10              | 3                | 3                       |
| Wetlands | W1         | 10        | 40              | 10              | 14               | 14                      |
|          | W2         | 10        | 20              | 10              | 12               | 12                      |
|          | W3         | 0         | 30              | 0               | 0                | 0                       |
|          | W4         | 0         | 30              | 10              | 3                | 3                       |
|          | W5         | 10        | 40              | 10              | 14               | 14                      |
| Streams  | S1-A       | 0         | 100             | 20              | 20               | 20                      |
|          | S1-B       | 50        | 29              | 29              | 54               | 54                      |
|          | S2         | 30        | 20              | 20              | 34               | 34                      |
|          | <b>S</b> 3 | 20        | 20              | 20              | 24               | 24                      |
|          | S4         | 0         | 30              | 10              | 3                | 3 or 30*                |
|          | S5         | 0         | 30              | 10              | 3                | 3 or 30*                |
|          | S6         | 0         | 20              | 0               | 0                | 0 or 20*                |

Table 9 Riparian zone buffer widths and retention levels

Note: S1-A and S1-B classification determined using TRIM Feature Codes for double/single line features;

All S4 streams were assumed to be fish bearing; Indicated widths are for each side of the stream.

\* Larger buffer widths are for selected streams in the Nicola Temperature Sensitive Watershed

| Riparian Criteria                         | Gross     | Effective |
|-------------------------------------------|-----------|-----------|
|                                           | Area (ha) | Area(ha)  |
| Lakes                                     | 5,983.7   | 2,846.5   |
| Wetlands*                                 | 1,308.5   | 705.2     |
| Streams (S1 to S3) *                      | 27,479.1  | 13,709.2  |
| Streams (S4 to S6 excluding TSS streams)* | 2,013.6   | 1472.9    |
| Streams (S4 to S6 TSS streams)*           | 30,159.3  | 15,506.1  |
| Total                                     | 66,944.2  | 34,239.9  |

#### Table 10 Riparian areas summary

\*Gross Area excludes area already captured by previous criteria

A sensitivity analysis will increase the buffers on small streams (S4, S5, and S6) to 10 metres. This will result in a 16,469 hectare increase to the gross area for riparian buffers, and a 10,904 hectare increase for the THLB riparian netdown.

#### 3.1.9 Heritage Trails

Buffered areas around heritage trails referenced in TSR 2015 were excluded from the THLB. The trails were selected from the *FTEN\_RECREATION\_LINES\_SVW* dataset and buffered by 100 metres on each side. Table 11 summarizes the length and buffered area for each trail.

| Table 11 | Heritage | trail | summary |
|----------|----------|-------|---------|
|          |          |       |         |

| Heritage Trail Name | Length (km) | Gross Area<br>(ha) | Effective<br>Area(ha) |
|---------------------|-------------|--------------------|-----------------------|
| Dewdney             | 15.52       | 306.7              | 235.5                 |
| Hope Pass           | 4.82        | 94.5               | 66.9                  |
| Hudson Bay Brigade  | 22.85       | 449.6              | 285.3                 |
| Whatcom             | 4.02        | 82.2               | 67.4                  |
| Total               | 47.21       | 933.0              | 655.1                 |

#### 3.1.10 Wildlife Habitat Areas

Wildlife Habitat Areas (WHA) were identified and excluded from the THLB where harvesting would not be possible. Either full or partial netdowns were used consistent with the approach used in TSR 2015. Note that one more WHA for snakes has been added compared to TSR 2015. Table 12 summarizes the WHA areas.

| Species                   | WHA Identifiers                                                | Gross     | Effective |
|---------------------------|----------------------------------------------------------------|-----------|-----------|
|                           |                                                                | Area (ha) | Area(ha)  |
| Coastal Tailed Frog*      | 3-004, 3-005, 3-014, 3-015, 3-016, 3-017, 3-148, 3-150, 8-011, | 348.6     | 138.6     |
|                           | 8-012, 8-013, 8-077, 8-078, 8-079, 8-080, 8-081, 8-082         |           |           |
| Data Sensitive (Snakes)** | 3-008, 3-009, 3-046, 3-047, 3-048, 3-140, 3-183                | 1,258.5   | 0.0       |
| Great Basin Spadefoot     | 3-126                                                          | 45.0      | 0.4       |
| Grizzly Bear              | 3-026, 3-027, 8-083, 8-084, 8-085, 8-086, 8-087, 8-088, 8-089  | 4,500.7   | 2,511.2   |
| Lewis's Woodpecker        | 3-082, 3-083, 3-103, 3-104                                     | 76.8      | 0.0       |
| Western Screech Owl***    | 3-068, 8-125, 8-260                                            | 184.2     | 48.7      |
| Williamson's Sapsucker    | 3-090, 3-091, 3-092, 3-093, 3-094, 3-095, 3-129, 3-130, 3-131, | 2,180.2   | 1,764.8   |
|                           | 3-132, 3-133, 3-134, 3-135, 3-137, 3-139, 3-142, 3-143, 3-167, |           |           |
|                           | 3-168, 3-169, 3-170, 3-202, 3-203, 3-204, 3-205, 3-206, 3-207, |           |           |
|                           | 3-208, 3-209, 3-210, 3-211, 3-212, 3-213, 3-214, 3-215, 3-216, |           |           |
|                           | 3-217, 3-218, 3-219, 3-220, 8-096, 8-097, 8-098, 8-100, 3-394, |           |           |
|                           | 8-395, 8-396, 8-397, 8-398, 8-399, 8-400, 8-401, 8-402, 8-403, |           |           |
|                           | 8-404, 8-405                                                   |           |           |
| Total                     |                                                                | 8,594.0   | 4,463.7   |

Table 12Wildlife habitat area Summary

\* A 75%% reduction was used for the management zone for Coastal Tailed Frog in 3-148 and 3-150.

\*\* No area was deleted for snakes, however the WHA identifiers are included here for completeness of documentation. \*\*\* A 75% reduction was used for the management zone for Western Screech Owl in 8-125 and 8-126.

#### 3.1.11 Old Growth Management Areas

FLNRO staff and licensees have agreed on non-legal, spatial Old Growth Management Areas (OGMA) in order to manage for the old growth requirements outlined in the Order Establishing Provincial Non-Spatial Old Growth Objectives that took effect in June 30, 2004. The OGMA dataset that was used for TSR 2015 was obtained from Forest Analysis and Inventory Branch, and all OGMAs were excluded from the THLB. The gross area of OGMAs was 114,600.6 hectares, and the effective area removed was 51,944.4 hectares.

#### 3.1.12 Coastal Tailed Frog

The ISS Base Case includes a net down for Coastal Tailed Frog (CTF) that was not included in TSR 2015. Point locations and watershed boundaries for known occurrences of CTF were provided by FLNRO. Small streams within 100 metres of these points were buffered by 33 metres on each side and removed from the landbase. The gross area of these buffers is 229.6 hectares, and the effective area removed was 43.6 hectares.

A sensitivity analysis will explore the impact of buffering all small streams within the CTF watersheds by 33 metres. This will increase the gross area within the CTF buffers to 9,420.4 hectares and result in a total THLB reduction of 3,259.9 hectares, not allowing for any overlap with the WTR area budget.

#### 3.1.13 Ungulate Winter Range Snow Interception Areas

Although Patchworks is well suited to modelling ungulate winter range (UWR) through application of cover constraints, district staff requested that a similar approach be followed for the base case to that used in TSR 2015. TSR 2015 used a spatial netdown where stands within ungulate winter range cells were hierarchically identified based on their suitability for snow interception cover (SIC) according to the Government Action Regulation (GAR) Order #3-003 established on January 21, 2008.

This analysis used the following process in order to identify the areas that would be netted out of the landbase for ungulate winter range.

1. Resultant polygons within UWR planning cells were classified as either Shallow, Moderate, or Deep snowpack using their biogeoclimatic ecosystem classification as outlined in Table 13.



- In accordance with TSR 2015, only Moderate snowpack zones were considered due to the relatively small area in Deep (331.7 forested hectares) and the ability to meet Shallow requirement through operational practices.
- 3. The required area of SIC for each UWR cell was calculated using 33% of the Moderate snowpack zone area within the cell. This resulted in a total of 49,991.0 hectares of SIC being required, if possible.
- 4. Resultant polygons were ranked according to their suitability as snow interception cover using the criteria outlined in Table 14.
- 5. Resultant polygons classified as Moderate snowpack zone within each planning cell were sorted in order by their SIC suitability rank, overlap with OGMAs, overlap with visual quality objectives, and polygon size.
- 6. The sort order outlined above was used to determine the resultant polygons to use for the spatial netdown. Polygons were assigned until either the required area of SIC was reached, or there were no more suitable candidates.
- 7. No attempt was made to split the last polygon assigned within an individual UWR cell. This means that the required amount of SIC was exceeded in some planning cells.

Using the above process resulted in 45,366.5 hectares being assigned as snow interception cover, as summarized in Table 15. Approximately 47.1% of this met the requirements for SIC, with the remainder being assigned from polygons meeting the stepdown ranking criteria. Approximately 27.4% overlapped with OGMAs, and 30.9% overlapped with visual quality objective polygons.

| Snowpack Zone<br>(SZ) | BEC Units                                   | SIC Requirement<br>(% of planning cell) |
|-----------------------|---------------------------------------------|-----------------------------------------|
| Shallow               | BG, PP, IDFxh1, IDFxh1a, IDFxh2, IDFxh2a    | 15%                                     |
| Moderate              | IDFdk1, IDFdk1a, IDFdk2, IDFdk3, IDFunk, MS | 33%                                     |
| Deep                  | ESSF, ICH, CWH                              | 40%                                     |

 Table 13 Required Area of Snow Interception Cover by Snowpack Zone

|                               | •                     |                   |              |                   |
|-------------------------------|-----------------------|-------------------|--------------|-------------------|
| SIC Suitability Rank<br>Order | Snowpack<br>Zone (SZ) | Species           | Age          | Canopy<br>Closure |
| Meets Requirements            | Shallow               | Douglas-fir > 70% | >= 121 years | n/a               |
|                               | Moderate              | Douglas-fir > 70% | >= 121 years | >= 36%            |
|                               | Deep                  | Douglas-fir > 70% | >= 121 years | >= 46%            |
| Stepdown 1                    | All                   | Douglas-fir > 70% | >=81 years   | >= 36%            |
| Stepdown 2                    | All                   | Douglas-fir > 50% | >= 81 years  | >= 36%            |
| Stepdown 3                    | All                   | Douglas-fir > 50% | >=81 years   | >= 16%            |
| Stepdown 4                    | All                   | Douglas-fir > 30% | >= 81 years  | >= 16%            |

Table 14 Snow Interception Cover Attributes and Step-down if requirements not available

| SIC Suitability Rank | Gross Area | Overlap with    | Overlap with   | Effective Area |
|----------------------|------------|-----------------|----------------|----------------|
| Order                | (ha)       | OGMA (gross ha) | VQO (gross ha) | (ha)           |
| Meets Requirements   | 21,372.4   | 6,272.0         | 6,106.5        | 13,919.1       |
| Stepdown 1           | 3,765.3    | 740.4           | 1,309.7        | 2,820.5        |
| Stepdown 2           | 9,987.0    | 2,543.6         | 3,492.4        | 6,860.4        |
| Stepdown 3           | 8,011.1    | 2,510.3         | 2,433.7        | 4,565.9        |
| Stepdown 4           | 2,230.7    | 356.9           | 671.0          | 1,651.7        |
| Total                | 45,366.5   | 12,423.2        | 14,013.3       | 29,817.6       |

#### 3.1.14 Wildlife Tree Retention

As discussed in Section 2.3, existing Wildlife Tree Retention (WTR) areas were identified through the process used to identify updates for harvesting disturbance. 100 percent of these WTRs were excluded from the THLB spatially. The gross area of existing WTRs was 14,856.5 hectares, and the effective area removed was 9,649.0 hectares.

TSR 2015 used an aspatial WTR totalling 8.1% of the unconstrained landbase. Therefore, a further aspatial netdown was undertaken to achieve a total WTR reduction of 8.1%. The required additional percentage to achieve 8.1% overall WTR was calculated, and the additional area required was distributed proportionately across the landbase remaining at this point in the netdown.

From a modeling perspective, all of the aspatial WTR area is assigned to the non THLB as it will make no difference to the model (i.e. past or future WTRs were considered to be unavailable for harvest). However, for purposes of completing Table 5, it was necessary to estimate how much of the aspatial WTR netdown is attributed to previous harvesting. This was completed by determining the proportion of the THLB that is in existing managed stands (i.e. stands less than or equal to 30 years old).

#### 3.1.15 Williamson's Sapsucker Habitat Suitability

Williamson's Sapsucker (WISA) is listed under Schedule 1 of the federal *Species at Risk Act*, and is on the provincial Red list in British Columbia. TSR 2015 did not include habitat requirements for Williamson's Sapsucker other than through THLB reductions for Wildlife Habitat Areas as outlined in Section 3.1.10. The ISS Base Case will include additional requirements for WISA as follows.

Best Management Practices (BMP) have been identified as an essential action in the provincial recovery plan. These BMPs apply nest tree retention and recruitment targets within low and moderate suitability habitat classes and within 500 metres of confirmed and probable nest sites. These retention targets range between 85 and 225+ live trees per hectare as outlined in Table 16.

The total THLB area affected by these requirements is 10,827 hectares, and the average THLB live stems per hectare using VRI information is calculated to be 500. After adjusting for 8.1% wildlife tree retention, the required stems per hectare retention is 143 stems per hectare or 29%. This was modelled as additional in block retention for areas within low/moderate suitability habitat classes and within 500 metres of nest sites. Dry Belt fir polygons that have been assigned to be managed with a selection harvest system will not have the additional retention requirement applied. After taking this into account, 7,251 hectares will require the additional retention, which equates to a THLB impact of 2,103 hectares.

| Average Live Tree Retention Target<br>(sph) | % Area of New<br>Cutblocks |  |  |
|---------------------------------------------|----------------------------|--|--|
| 85-125                                      | 5-15                       |  |  |
| 126-175                                     | 25-35                      |  |  |
| 176-225                                     | 40-50                      |  |  |
| > 225                                       | 10-20                      |  |  |
| 183 (Weighted Average)                      |                            |  |  |

| Table 16 | Live Tree | Retention | <b>Targets</b> | for WISA | Low/Moderate | Suitability |
|----------|-----------|-----------|----------------|----------|--------------|-------------|
|          |           |           |                |          |              |             |

#### 3.2 Non-Timber Management Assumptions

This section describes the criteria and considerations used to model non-timber resources.

#### 3.2.1 Landscape-Level Biodiversity

Biodiversity emphasis options have been assigned to landscape units in the Merritt TSA. In some cases, more than one option has been assigned within an individual landscape unit, as shown in Figure 8.

An Order Establishing Provincial Non-Spatial Old Growth Objectives has been established and took effect in June 30, 2004. This order provides minimum areas of old growth that must be retained by landscape unit and biogeoclimatic zone (BEC version 5), as summarized in Appendix 1. Informal Old Growth Management Areas have been agreed to by FLNRO staff and licensees to address landscape-level biodiversity and the requirements of this order. These OGMAs were removed from the THLB for the base case through the land base netdown process described in Section 3.1.11.

TSR 2015 did not set old or mature plus old seral stage targets, and this was used for the base case. However, a sensitivity analysis will implement the old seral targets contained in the non-spatial old growth order in addition to the removal of OGMAs from the THLB. Disturbance in the non-THLB (including OGMAs) will also be implemented as outlined in Section 3.4.1.

Table 17 outlines the minimum retention targets for mature plus old seral stages as outlined in the Biodiversity Guidebook. The status of mature plus old seral stage targets by landscape unit/BEC (version 9) variant was reported but not constrained for the base case. Weighted values were used for landscape units with more than one biodiversity emphasis option. Targets within the CFLB were applied as a sensitivity analysis.

The amount of early seral stage by landscape unit / BEC variant was also reported but not constrained.

|          |                                   |     | Minimum    | Biodiver | sity emphasis (% | Retention) |
|----------|-----------------------------------|-----|------------|----------|------------------|------------|
| BEC zone | BEC variant                       | NDT | Mature Age | Low      | Intermediate     | High       |
| BG       | xh2, xw1,                         | 4   | 101        | 17       | 34               | 51         |
| PP       | xh1, xh1a, xh2, xh2a              | 4   | 101        | 17       | 34               | 51         |
| IDF      | dk1, dk1a,dk2,xh1, xh1a, xh2,xh2a | 4   | 101        | 17       | 34               | 51         |
| MS       | xk1, xk2                          | 3a  | 101        | 14       | 26               | 39         |
| MS       | dm2, mw1                          | 3b  | 101        | 14       | 26               | 39         |
| ESSF     | dc2, dcw, xc1, xc2, xcw           | 3a  | 121        | 14       | 23               | 34         |
| ESSF     | mw, mw1, mww                      | 2   | 121        | 14       | 28               | 42         |
| ESSF     | dcp, mwp, xcp                     | 5   | N/A        |          |                  |            |
| CWH      | ms1                               | 2   | 81         | 17       | 34               | 51         |
| MH       | mm2                               | 1   | 121        | 19       | 36               | 54         |
| IMA      | Unp                               | 5   | N/A        |          |                  |            |



Note: There is very little THLB in the NDT1 (115 ha) and NDT5 (150 ha), so these will not be modelled.



*Figure 8 Landscape Units and Biodiversity Emphasis Option* 

#### 3.2.2 Stand-Level Biodiversity

Wildlife tree retention targets are specified in individual licensee Forest Stewardship Plans (FSPs). Wildlife tree retention has been dealt with in this analysis through a THLB reduction as discussed in Section 3.1.14 based on FREP monitoring results and these FSP commitments. Sensitivity analyses will examine alternate levels of WTR.

#### 3.2.3 Patch Size Distribution

Patch sizes were not modelled in TSR 2015. The ISS Base Case model was configured to create, where possible, patches that are consistent with very young seral (<20yr) patch size distributions as defined in the Biodiversity Guidebook. This is meant to control the spatial distribution of harvest on the landbase while avoiding strict 40 hectare green-up rules and or unrealistically sized harvest openings.

Patches were defined as contiguous areas less than 20 years of age. Stands within 50 metres of each other were considered to be contiguous so patches can be made up of a single cutblock or an aggregation of cutblocks close together.

Very young seral patch size targets were applied according to NDTs shown in Table 18. The weight assigned to these targets was set relatively low so as to encourage the intended distribution without unduly affecting timber supply.

Patch sizes for mature plus old seral stages were reported without implementing targets.

|     |                         | Patch Sizes (ha) |        |          | Target Forested Area (%) |        |       |
|-----|-------------------------|------------------|--------|----------|--------------------------|--------|-------|
| NDT | BEC Unit                | Small            | Medium | Large    | Small                    | Medium | Large |
| 1   | MHmm                    | <40              | 40-80  | 80-250   | 30-40                    | 30-40  | 20-40 |
| 2   | ESSFmw, CWHms           | <40              | 40-80  | 80-250   | 30-40                    | 30-40  | 20-40 |
| 3a  | MSxk, ESSFdc/xc         | <40              | 40-80  | 250-1000 | 10-20                    | 10-20  | 60-80 |
| 3b  | MSdm/mw                 | <40              | 40-250 | 80-250   | 20-30                    | 25-40  | 30-50 |
| 4   | BGxh/xw, PPxh, IDFdk/xh | <40              | 40-80  | 80-250   | 30-40                    | 30-40  | 20-30 |

#### Table 18 Patch size targets

Note: Only early seral stands (Age <20 years) were modelled; target sizes/% adopted from the biodiversity guidebook.

#### 3.2.4 Visual Quality

There are over 1,000 scenic areas or polygons within the Merritt TSA that require maintenance of visual quality objectives (VQO). During harvest design, maximum denudation limits were considered for each individual VQO polygon. A similar approach to that used for TSR 2015 was used for modelling. Each combination of VQO and Visual Absorption Capability (VAC) was assigned a maximum denudation percentage. These percentages were determined by dividing the allowable percent alteration range for the VQO class into thirds, and then using the midpoint of each third as the allowable percentage alteration for the VAC class. Weighted average Visually Effective Green-up (VEG) heights were then calculated for each VQO class by considering the average slopes of the visual polygons and the VEG heights required by slope as specified in the TSR technical document. Table 19 summarizes these targets. For each analysis unit, Site Tools was used to derive ages for the VEG heights. Any stands managed with selection silvicultural systems were assumed to be visually greened up.

An issue with the VQO polygons was identified after modelling commenced. It appears that the VQO dataset has been built up by combining data from several sources, resulting in individual "resultant" polygons that do not reflect the original intent of the scenic area inventories, and in some cases were unrealistically small. This will likely cause the model to be overly constrained as VQO requirements must be met on smaller polygons than intended. As cleanup and rationalization of the VQO data is beyond



the scope of this project, it was decided to not constrain individual VQO polygons less than 10 hectares in size.

| Visual Quality    | Visual     | Number of       | Area in    | Area in    | Maximum    | VEG Height |
|-------------------|------------|-----------------|------------|------------|------------|------------|
| Objectives        | Absorption | Visual Polygons | CFLB       | THLB       | Denudation |            |
|                   | Capability | in CFLB         | (hectares) | (hectares) | (%)        |            |
| Preservation      | Low        | 5               | 385        | 103        | 0.2        | 5.6 metres |
|                   | Moderate   | 23              | 1,189      | 476        | 0.5        |            |
|                   | High       | 4               | 3          | 0          | 0.8        |            |
| Retention         | Low        | 84              | 9,247      | 4,672      | 2.0        | 5.7 metres |
|                   | Moderate   | 187             | 15,937     | 7,294      | 3.0        |            |
|                   | High       | 18              | 686        | 350        | 4.0        |            |
| Partial Retention | Low        | 82              | 13,259     | 6,727      | 6.7        | 5.3 metres |
|                   | Moderate   | 409             | 79,560     | 52,856     | 10.0       |            |
|                   | High       | 36              | 7,136      | 4,819      | 13.3       |            |
| Modification      | Low        | 6               | 1,450      | 784        | 16.7       | 4.8 metres |
|                   | Moderate   | 106             | 16,876     | 13,783     | 20.0       |            |
|                   | High       | 78              | 7,351      | 5,274      | 23.3       |            |

 Table 19 Maximum percent denudation by visual quality objective

Note: Polygons with a null VAC were assigned to the Moderate Class

#### 3.2.5 Wildlife Habitat Areas and Ungulate Winter Ranges

Wildlife Habitat Areas (WHAs) and Ungulate Winter Ranges (UWR) were established within the study area, as discussed in Section 3.1.10 and Section 3.1.13. These areas were removed from the THLB through the netdown process. Therefore, no further constraints were required for the base case scenario.

#### 3.2.6 Equivalent Clearcut Area

The level of disturbance in a watershed can impact stream flows, sediment delivery, channel stability, riparian function and aquatic habitat. Assessing equivalent clearcut areas (ECA) is a coarse-level indicator of forest disturbance and recovery in a watershed. ECAs do not directly pose constraints on harvesting but can act as red flags to identify when professional hydrologists should be consulted for management recommendations. Disturbance limits used in operational circumstances typically vary by watershed and basin relative to professional hydrologic recommendations.

#### Harvested Stands

Until recently, hydrologic recovery of logged stands was estimated using the Interior Watershed Assessment Procedure (IWAP). Table 20 summarizes the IWAP hydrologic recovery assumptions that are based on stand height.

|                           | , ,         | , , ,        | , , , ,,          |
|---------------------------|-------------|--------------|-------------------|
| Stand Height Stand Height |             | Hydrologic   | Equivalent        |
| Minimum (m)               | Maximum (m) | Recovery (%) | Clearcut Area (%) |
| 0.0                       | 3.0         | 0            | 100               |
| 3.0                       | 5.0         | 25           | 75                |
| 5.0                       | 7.0         | 50           | 50                |
| 7.0                       | 9.0         | 75           | 25                |
| 9.0                       | 12.0        | 90           | 10                |
| >12                       | n/a         | 100          | 0                 |

 Table 20 Criteria for estimating hydrological recovery of logged stands (IWAP)

In 2015, a new hydrologic recovery curve based on a mature stand height of 25 metres (Winkler and Boon 2017) was published. This curve uses the following equation to estimate ECA based on stand height, and was used to calculate ECA in the ISS Base Case Scenario.

ECA (25m) percent = 100 - (100\*(1-exp(-0.24\*(ht-2)))\*2.909)

#### **Mountain Pine Beetle**

Significant uncertainty exists regarding the hydrologic impact of dead pine trees and residual forest canopy, but it is clear that snow interception and shading can be considerably reduced for stands attacked by MPB. As well, incomplete information on existing advanced regeneration makes it difficult to estimate the rate of hydrologic recovery of these stands.

In this analysis, the ECA of any unsalvaged stand impacted by MPB was assigned an ECA value shown in Table 21.

#### Adjustments for Anthropogenic Disturbance and non-CFLB Areas

Within Patchworks, ECA is calculated based on the CFLB area of the watershed unit, and only considers the growth and disturbance (i.e. harvesting or non-THLB disturbance) that occurs within this landbase. Therefore, ECA calculated within the model must be adjusted to correspond more closely with the ECA that would be calculated as part of a hydrologic assessment. This was completed as a post-processing exercise as necessary. In cases where ECA targets were set, the targets were adjusted accordingly to ensure the model is appropriately constrained. The required adjustments are provided below.

ECA is normally calculated based on the gross area of the watershed. As non-CFLB land is not included in the modelling framework, ECA targets were adjusted to reflect the gross areas of the watershed, including non-CFLB land. For this analyses, watershed areas outside the Merritt TSA will not be modelled or included.

In addition, man-made disturbances such as urban areas were assigned an ECA of 100%. Therefore, ECA targets were adjusted to reflect the existing anthropogenic disturbance within each watershed. Finally, forested land excluded from the CFLB (e.g. private land) will also contribute to ECA. For purposes of this analysis, the current ECA status of forested, non-CFLB lands was assumed to continue for the duration of the simulations, and ECA targets were adjusted to reflect this ongoing ECA.

| Time since<br>attack (yrs) | Pine Content Dead<br>Class (30-50% | Pine Content Dead<br>Class (50-70%) | Pine Content Dead<br>Class (>70%) |
|----------------------------|------------------------------------|-------------------------------------|-----------------------------------|
| 0-5                        | 5                                  | 5                                   | 10                                |
| 6-10                       | 10                                 | 15                                  | 30                                |
| 11-15                      | 15                                 | 20                                  | 40                                |
| 16-20                      | 20                                 | 30                                  | 45                                |
| 21-25                      | 20                                 | 30                                  | 45                                |
| 26-30                      | 15                                 | 20                                  | 40                                |
| 31-35                      | 10                                 | 15                                  | 30                                |
| 36-40                      | 5                                  | 10                                  | 15                                |
| 41-45                      | 0                                  | 5                                   | 20                                |
| 46-50                      | 0                                  | 0                                   | 15                                |
| 51-55                      | 0                                  | 0                                   | 10                                |
| 56-60                      | 0                                  | 0                                   | 5                                 |
| 61+                        | 0                                  | 0                                   | 0                                 |

 Table 21 ECA estimates associated with MPB affected forest stands

#### 3.2.7 Community Watersheds

There are nine community watersheds in the Merritt TSA, with approximately 72% of their forested area considered to be THLB (Table 22). Although community watersheds were not included in the analysis for TSR 2015, they were included in the base case for this project. A maximum ECA value of 30% was used for this analysis to approximate typical conditions where harvesting would be curtailed in most community watersheds.

For this analysis, ECAs were assessed in each of these watersheds using the 2015 Winkler hydrologic recovery curves for logged areas and the MPB ECA assumptions discussed in Section 3.2.6.

| Community Watershed | Gross Area<br>(ha) | CFLB Area<br>(ha) | THLB Area<br>(ha) |
|---------------------|--------------------|-------------------|-------------------|
| Anderson            | 275.0              | 273.8             | 120.3             |
| Bell                | 332.0              | 329.8             | 197.9             |
| Brook               | 3,010.0            | 2,967.8           | 2,154.7           |
| Dillard             | 3,871.2            | 3,817.0           | 3,182.6           |
| Hackett             | 163.7              | 160.9             | 113.7             |
| Kwinshatin          | 2,726.7            | 2,706.9           | 1,606.4           |
| Lee                 | 463.7              | 458.9             | 319.9             |
| Skuagam             | 451.0              | 447.4             | 251.0             |
| Trout               | 1,956.0            | 1,940.7           | 1,546.4           |
| Total               | 13,249.3           | 13,103.2          | 9,492.9           |

#### Table 22 Community Watersheds

Note: The majority of the Trout watershed is in the Okanagan TSA

#### 3.2.8 **Proposed Fisheries Sensitive Watersheds**

Fisheries Sensitive Watersheds are proposed within the Merritt TSA. The proposed Order requires a maximum ECA of 25% above the snowline for a subset of the watershed units, as outlined in Table 23. This requirement was not modelled in TSR 2015, but was included in the ISS Base Case using the 2015 Winkler hydrologic recovery curves for logged areas and the MPB ECA assumptions discussed in Section 3.2.6.

The proposed Order also requires a "sustainable rate of cut" for all of the watershed units. The effects of implementing this requirement were included as a sensitivity analysis by limiting the harvested area per period to a value based on THLB area / silviculture system and average rotation age for each watershed. The right column of Table 23 lists the average rotation age for the clearcut harvesting within each watershed. For selection harvesting, the average time between entries is 34 years.

For modelling purposes the following tolerances were set for the annual area harvested to allow for operational reality:

- Clearcut systems: 90% of target area to 105% of target area
- Selection systems: 85% of target area to 115% of target area

|                          | Entire Watershed |           | Areas Abov | Clearcut   |            |           |              |
|--------------------------|------------------|-----------|------------|------------|------------|-----------|--------------|
|                          |                  |           |            | Maximu     | Im 25% ECA | Applies   | Rotation Age |
| Fisheries Sensitive      | Gross Area       | CFLB Area | THLB Area  | Gross Area | CFLB Area  | THLB Area |              |
| Watershed Unit           | (ha)             | (ha)      | (ha)       | (ha)       | (ha)       | (ha)      |              |
| Brook Creek              | 4,234.2          | 4,183.2   | 2,755.3    | 3,410.2    | 3,362.8    | 2,384.5   | 84           |
| Coldwater River          | 20,043.6         | 19,935.9  | 8,758.3    | -          | -          | -         | 74           |
| East Upper Maka Creek    | 5,825.3          | 5,783.4   | 4,093.0    | 4,127.4    | 4,098.3    | 3,129.5   | 80           |
| Godey Creek              | 5,254.0          | 5,225.3   | 1,594.1    | -          | -          | -         | 71           |
| Juliet Creek             | 6,912.0          | 6,898.6   | 2,115.2    | 6,421.2    | 6,410.4    | 1,800.2   | 84           |
| July Creek               | 2,121.3          | 2,115.7   | 704.1      | 2,019.5    | 2,013.9    | 691.9     | 86           |
| Maka Creek Residual      | 9,184.5          | 9,082.8   | 6,105.7    | 3,758.3    | 3,736.3    | 2,506.6   | 76           |
| Midday Creek             | 8,665.4          | 8,581.5   | 4,330.1    | -          | -          | -         | 76           |
| Richardson Creek         | 2,269.2          | 2,262.1   | 963.9      | -          | -          | -         | 82           |
| South Prospect Creek     | 4,377.1          | 4,371.1   | 1,239.5    | 3,943.2    | 3,938.6    | 986.5     | 95           |
| South Upper Spius Creek  | 3,786.2          | 3,745.5   | 2,756.6    | 2,053.2    | 2,036.3    | 1,492.1   | 80           |
| Southwest Prospect Creek | 2,018.8          | 2,015.4   | 798.7      | 1,919.2    | 1,916.1    | 733.7     | 108          |
| Spius Creek              | 20,506.7         | 20,369.9  | 11,534.2   | -          | -          | -         | 78           |
| Teepee Creek             | 2,442.1          | 2,429.2   | 1,601.1    | 2,154.9    | 2,144.4    | 1,371.6   | 79           |
| Upper Coldwater          | 11,286.8         | 11,263.3  | 4,769.3    | 9,413.7    | 9,393.4    | 3,835.9   | 83           |
| Upper Coldwater Residual | 11,653.8         | 11,591.4  | 6,080.7    | 6,920.6    | 6,879.3    | 4,268.4   | 78           |
| Upper Maka Creek         | 6,593.9          | 6,574.0   | 2,256.9    | 5,166.8    | 5,154.4    | 1,496.0   | 80           |
| Upper Prospect Creek     | 3,780.5          | 3,764.9   | 1,605.5    | 3,712.7    | 3,697.7    | 1,563.1   | 105          |
| Upper Spius Creek        | 9,234.8          | 9,207.6   | 3,665.0    | 6,961.0    | 6,940.0    | 2,430.0   | 89           |
| Voght Creek              | 21,046.2         | 20,850.9  | 10,790.8   | -          | -          | -         | 73           |
| West Prospect Creek      | 3,197.2          | 3,194.3   | 1,498.8    | 3,153.7    | 3,150.9    | 1,479.6   | 106          |
| West Upper Spius Creek   | 3,421.0          | 3,393.6   | 2,123.8    | 2,668.2    | 2,647.4    | 1,680.6   | 92           |
| Total                    | 167,854.6        | 166,839.5 | 82,140.6   | 67,803.7   | 67,520.4   | 31,850.2  |              |

Table 23 Proposed Fisheries Sensitive Watersheds

#### 3.2.9 **Proposed Nicola Temperature Sensitive Watershed**

There is a proposal to designate the Nicola Watershed as a Temperature Sensitive Watershed. The Base Case will include enhanced riparian buffers for selected small streams within the watershed. Streams were selected for the enhanced buffers using the following process;

- The base stream classification layer was used to identify fish-bearing streams. All S1, S2, S3, and S4 streams were assumed to contain fish.
- Streams upstream from fish streams were selected until the stream order changed, provided that the upstream length was at least 100 metres. If the stream order changed at the boundary of the fish stream and the upstream segment, the upstream portion was selected until the order changed again.

Once the small streams were selected, 30 metre buffers were created on both sides of S4 and S5 streams, and 20 metre buffers were created on both sides of S6 streams. These buffers were netted out of the THLB.

#### 3.2.10 Cumulative Effects Assessment Watersheds

The Cumulative Effects Assessment project that is being completed in the Merritt TSA provided spatial data and stream flow hazard rating for 162 watershed units in the Merritt TSA, along with the H40 and H60 snowlines. The ISS Base Case will report the ECA for these watershed units above the H40 snowline



and the H60 snowline. Although the ECA was not constrained, the thresholds of interest were 25% ECA for watershed units with a hazard rating of "High", and 35% ECA for watershed units with hazard ratings of "Low" and "Moderate". Figure 9 provides an overview of the hazard ratings.

For this analysis, ECAs were assessed in each of these units using the 2015 Winkler hydrologic recovery curves for logged areas and the MPB ECA assumptions discussed in Section 3.2.6. Only the areas contained within the Merritt TSA were considered for those units that span the TSA boundary.



Figure 9 Cumulative Effects Watersheds / Hazard Ratings
## 3.2.11 Mule Deer Winter Range

Section 3.1.13 outlined the landbase netdown undertaken to meet the snow interception cover requirements of Government Action Regulation (GAR) Order #3-003. Similar to TSR2015, no further constraints were implemented for the ISS Base Case to model mule deer habitat requirements.

## 3.2.12 Moose Winter Range

TSR 2015 did not model moose habitat requirements as it was assumed they would not have any impact on timber supply. The ISS Base Case will model and report on moose habitat within the Section 7 notice moose polygon, as follows:

- Forage: Maintain a minimum of 15% of the net forested land base in early seral stands, which were defined as < 25 years of age for IDF/ICH BEC zones and < 35 years in MS and ESSF BEC zones. Although this was implemented as a constraint, it is not expected to impact timber supply.
- Cover: Report the area of coniferous stands >= 16 metres in height. No threshold were applied.
- Cover: Report on the proportion of cover that is in patches >= 20 hectares. Report at 0, 25, 50, and 100 years.
- Cover: Report on the area of cover that is within 200 metres of lakes, wetlands, and streams. No threshold were applied.

The total CFLB area of the moose polygon is 503,999 hectares and the CFLB area within 200 metres of riparian features is 317,806 hectares.

### 3.2.13 Coastal Tailed Frog

TSR 2015 did not consider Coastal Tailed Frog other than through the netdown for wildlife habitat areas. The ISS Base Case will model and report on coastal tailed frog in two ways. First, habitat in the vicinity of known CTF point locations was netted out of the THLB as discussed in Section 3.1.12.

Second, FLNRO provided boundaries for watershed units where CTF is known to occur. Because many of these watersheds overlapped, it was necessary to rationalize the units into large watershed, watershed, basin, sub-basin and residual units. Through this process, 298 watershed units were created with a gross area of 83,340 hectares, CFLB area of 82,876 hectares, and THLB area of 50,371 hectares. For this analysis, ECAs were assessed and reported in each of these units using the 2015 Winkler hydrologic recovery curves for logged areas and the MPB ECA assumptions discussed in Section 3.2.6. Targets will not be implemented.

A sensitivity analysis will consider the impact of increasing buffer widths on all small streams within the CTF watersheds as outlined in Section 3.1.12.

#### 3.2.14 Marten

Marten has been identified as a potential species of concern in the Merritt TSA. TSR 2015 did not include any modelling for Marten habitat. The ISS Base Case will implement the following reporting criteria:

- Early seral stage area was reported within the MS and ESSF BEC zones. No thresholds were applied.
- Mature plus old seral stage area was reported within the CWHms, ESSFdc, ESSFdcw, ESSFxc, ESSFmw, and ESSFmww BEC variants. No thresholds were applied.



## 3.2.15 Adjacency

TSR 2015 modelled adjacency requirements by limiting the proportion of THLB area with a height of less than 3 metres to 33% within each Fresh Water Atlas watershed. The ISS Base Case will not implement this constraint, but rather, will use the patch size capabilities within the Patchworks model to encourage harvest locations to mimic natural disturbance patterns as outlined in Section 3.2.3.

A sensitivity scenario will implement the adjacency constraints instead of patch size targets. This sensitivity will use the cumulative effects watershed units rather than the Fresh Water Atlas watersheds as the basis for the constraint. Landscape units were the basis for those parts of the TSA where cumulative effects watersheds were not defined.

## 3.2.16 Other Resource Features

Various resource features for cultural and archaeological sites, and research installations (e.g., permanent sample plots) that exist throughout the TSA were considered and typically protected within reserve areas during operational planning. Accordingly, no further modelling assumptions were applied for other resource features in this analysis.

## 3.3 Harvesting Assumptions

This section describes the criteria and considerations used to model timber harvesting activities.

## 3.3.1 Utilization Levels

The minimum merchantable timber specifications for all species and analysis units (natural and managed) are shown in Table 24.

| Species        | Minimum<br>Diameter at<br>Breast Height | Maximum<br>Stump<br>Height | Minimum<br>Top Diameter<br>Inside Bark |
|----------------|-----------------------------------------|----------------------------|----------------------------------------|
| Lodgepole pine | 12.5 cm                                 | 30.0 cm                    | 10.0 cm                                |
| Other Conifer  | 17.5 cm                                 | 30.0 cm                    | 10.0 cm                                |
| Deciduous      | 17.5 cm                                 | 30.0 cm                    | 10.0 cm                                |

#### Table 24Utilization Levels

## 3.3.2 Volume Exclusions

No species-specific volume exclusions were applied in this analysis.

Volume from deciduous species in predominately coniferous stands is typically not harvested today but this may present future harvest opportunities. Accordingly, merchantable volumes for both deciduous and coniferous stand types were tracked and reported in the analysis. Harvest levels were set to target coniferous volumes while deciduous volumes harvested were considered incidental.

#### 3.3.3 Minimum Harvest Criteria

Minimum harvestable criteria were used to determine the age when stands become available for harvesting. For the base case, the criteria used in TSR 2015 were applied, as shown in Table 25. The effect of using alternate criteria may be explored through sensitivity analyses and strategy development.

The model will only harvest stands whose merchantable volumes meet these minimum thresholds now or sometime in the future. There are 25,552 hectares of THLB stands that will never be harvested because they do not meet the minimum merchantable volume criteria. These effectively become non-THLB, and are categorized as follows:



| • | Deciduous Leading :  | 4,495 hectares  |
|---|----------------------|-----------------|
| • | Douglas-fir Leading: | 16,807 hectares |
|   |                      |                 |

• Ponderosa pine Leading: 4,251 hectares

#### Table 25 Minimum harvest thresholds

|                          | Minimum<br>Merchantable | Minimum<br>volume | Minimum     |
|--------------------------|-------------------------|-------------------|-------------|
| Stand Type               | Volume                  | per tree          | Age (years) |
| Even-aged Natural        | 150 m³/ha               | 0.2 m³            | N/A         |
| Even-aged Managed        | 150 m³/ha               | 0.2 m³            | 60          |
| Uneven-aged Dry Belt fir | 120 m³/ha               | 0.2 m³            | N/A         |

#### 3.3.4 Harvest Opening Sizes

The patch size capabilities of Patchworks were used to encourage the model to create harvest openings that are realistic. This was applied within a 5 year period, and are discussed in Section 3.2.3 along with the very young seral patch size targets The targets were implemented as outlined in Table 26, and the target weight were set relatively low to avoid unduly impacting the harvest flow.

#### Table 26Harvest Patch Size Targets

|                     | Harvest Patch Targets (%) |           |           |          |
|---------------------|---------------------------|-----------|-----------|----------|
| Silviculture System | 0-5 ha                    | 5-20 ha   | 20-100 ha | 100 + ha |
| Clearcut            | 0 to 5%                   | 5 to 50%  | 10 to 70% | 0 to 10% |
| Selection           | 0 to 5%                   | 10 to 50% | 10 to 80% | 0 to 15% |

## 3.3.5 Harvest Profiles

Harvest profiles can be configured in the model to track or limit harvest profiles for each time period. This section describes the profiles that may be applied. Strategy / scenario development may require the incorporation of additional profiles as the project progresses.

#### 3.3.5.1 Product Profile

Modelling products distributions delivered to the mill is a complex and often criticized exercise. The considerations required for this are not trivial: stand-level variations for predicting products on the stump, harvesting practices, preferred log specifications specific to each manufacturing facility. This is further complicated by the damage from insects – particularly shelf-life, and other disturbances (e.g., piece size, decay, checking, and blue-stain).

Rather than categorizing harvested products as a model input, this analysis will track and report species harvested by age class. Through a post-processing exercise, product distributions can then be combined with the harvest summaries (as a model output). With this approach, one can easily adjust the product distribution with specific assumptions to generate new product profiles.

As this approach applies product distributions through a post-modelling process, the model will not be configured to regulate the harvest flow for any specific product, or combination of species and age class.

#### 3.3.6 Silvicultural Systems

The most common silvicultural system implemented within the TSA is clearcut with reserves. However, selection systems were modelled in dry-belt Douglas-fir stands.



The modelled silvicultural systems simplified prescribed harvest treatments with unique responses. Yield curves for each silvicultural system treatment were developed for existing and future managed stands. The approach applied to model these treatments is shown in Appendix 3.

## 3.4 Natural Disturbance Assumptions

Natural disturbance assumptions define the extent and frequency of natural disturbances across the land base. Assumptions used to model disturbance within and outside the THLB are explained below.

## 3.4.1 Natural Disturbance within Non-THLB

For this analysis, a constant area was disturbed annually within each BGC Zone and natural disturbance type (NDT). The area of disturbance varied based on the biogeoclimatic variants present, their associated natural disturbance intervals and old seral definitions, as outlined in the Biodiversity Guidebook (B.C. Ministry of Forests and B.C. Ministry of Environment, Lands and Parks 1995). Table 27 shows the process used to determine the annual disturbance limits applied to the forested non-THLB. Note that disturbances were not applied to the small amount of NDT5 within the TSA.

| BEC ZONE | NDT | Disturbance<br>Interval<br>(yrs) | "OLD"<br>Defn (yrs) | % Area ><br>OLD* | Effective<br>Rotation Age<br>(yrs)* | Contributing<br>Non-THLB<br>Area (ha) | Annual Area<br>Disturbed (ha)<br>(area/rot age) |
|----------|-----|----------------------------------|---------------------|------------------|-------------------------------------|---------------------------------------|-------------------------------------------------|
| CWH      | 2   | 200                              | 250                 | 29%              | 350                                 | 1,434                                 | 4                                               |
| ESSF     | 3a  | 150                              | 140                 | 39%              | 231                                 | 20,214                                | 88                                              |
| ESSF     | 2   | 200                              | 250                 | 29%              | 350                                 | 36,956                                | 106                                             |
| MS       | 3a  | 150                              | 140                 | 39%              | 231                                 | 22,398                                | 97                                              |
| MS       | 3b  | 150                              | 140                 | 39%              | 231                                 | 24,217                                | 105                                             |
| IDF      | 4   | 250                              | 250                 | 37%              | 395                                 | 114,418                               | 290                                             |
| PP/BG    | 4   | 350                              | 250                 | 49%              | 490                                 | 6,916                                 | 14                                              |
| Total    |     |                                  |                     |                  |                                     | 226,553                               | 704                                             |

Table 27 Annual natural disturbance limits in the forested non-THLB by BEC Zone/NDT

\* % area old = exp (-[old age / disturbance interval]), Effective rotation age = old age / (1 – % area old)

To reduce the number of modeled zones required, modeling disturbance was simplified to BGC/NDT combinations for applying annual disturbances. Stands were randomly selected to account for these natural disturbance areas. Ages were then adjusted in each period according to the effective rotation age so that all stands within each unit were turned over once throughout the effective rotation. This process continued throughout the planning horizon and avoided seral requirements because disturbance was selected randomly; independent of modeled harvest priority.

Across the Non-THLB, approximately 793 ha (0.31%) is disturbed each year, resulting in an average disturbance turn-over of the non-THLB approximately every 319 years (range is 231 to 490 years).

## 3.4.2 Natural Disturbance within the THLB

Throughout the planning horizon, natural disturbance within the THLB was addressed as nonrecoverable losses (NRL). These are estimates of annual volume losses resulting from catastrophic events such as insect epidemics, fires, wind damage or other agents.

Table 28 shows the NRL figures used for this analysis, which are based on the TSR 2015 technical document. Note that the loss for MPB is not applied until year 16 (i.e. post salvage) as it is assumed the yield assumptions adequately deal with MPB losses during the salvage period.



| Period   | Damaging Agent | Annual NRL (m <sup>3</sup> /yr) |
|----------|----------------|---------------------------------|
| Year 16+ | MPB            | 35,000                          |
| All      | Fire           | 22,097                          |
| All      | Spruce Beetle  | 7,150                           |
| All      | Wind           | 18,000                          |
|          | Total          | 82,247                          |

#### Table 28Non-recoverable losses

Modelling natural disturbance within the THLB involved removing the total NRL (47,247 or 82,247 m<sup>3</sup>/yr) from the annual target harvest level achieved in the model for the applicable period.

#### 3.5 Growth and Yield Assumptions

Growth and yield assumptions describe how net volumes for natural and managed stands are developed and incorporated in the model. They also describe changes in other tree and stand attributes over time (e.g., height, tree diameters, presence of dead trees, etc.).

#### 3.5.1 Analysis Unit Characteristics

Stands were grouped into analysis units (AU) to reduce the complexity and volume of information in the model and for assigning potential treatments and transitions to yield curves following harvest. The analysis units are complex because of the desire to reflect MPB impacts, past silvicultural investments, potential future silviculture investments, and other resource criteria such as fire management. The criteria used to group stands are provided in Table 29.

#### Table 29 Criteria used to group stands into analysis units



Wildfire Impacted

A detailed list of the analysis units and TIPSY inputs is provided in Appendix 2.

For existing natural stands, a VDYP yield was first generated for each forest polygon then area-weighted averages of these curves were calculated according to the assigned AUs. For MPB-impacted stands, yield curves were also adjusted to reflect the future trajectories for both live and dead portions of the stand using the average dead/live ratio from the forest inventory for the stands in the AU (max 20% span in any AU).

#### 3.5.2 Dry Belt Fir

The process documented for TSR 2015 was used to define Dry Belt Fir. All Douglas-fir leading, south facing polygons within the IDF and PP biogeoclimatic zones were categorized as Dry Belt Fir, with the exception of those stands in the IDFdk which also needed to be below 1200 metres in elevation.



Managed stands (i.e. stands less than 30 years of age) were excluded from Dry Belt Fir as it is assumed they are being managed with clearcut silviculture systems.

There is considerable overlap with other constraints on the landbase, as detailed in Table 30. Of the 59,002 hectares of dry-belt fir, roughly 28,234 hectares are in the THLB, and 17,165 hectares are in areas without overlapping constraints.

Consistent with 2015 TSR, twenty percent of Dry Belt Fir is assumed to be harvested using conventional clearcut with reserve silviculture systems, and the remaining eighty percent was harvested using a selection silviculture system. For purposes of modeling, Dry Belt Fir polygons were assigned to be harvested with a selection system until the required area was achieved using the following criteria:

- First priority overlap with a VQO polygon, or Williamson's Sapsucker BMP area (within 500 m of nest or in Low or Moderate habitat suitability)
- Second priority same VRI "feature\_id" as a first priority polygon
- > Third priority picked from a list sorted by VRI "feature\_id"

#### Table 30 Dry Belt Fir overlap with other constraints

| Overlap Category               | THLB Area | Non-THLB  | Total CFLB |
|--------------------------------|-----------|-----------|------------|
|                                | (ha)      | Area (ha) | Area (ha)  |
| Parks/Protected Areas          | `         | 272       | 272        |
| ESA                            |           | 7,951     | 7,951      |
| Inoperable                     |           | 6,268     | 6,268      |
| Riparian                       |           | 2,590     | 2,590      |
| WHA                            |           | 580       | 580        |
| OGMA                           |           | 8,093     | 8,093      |
| Coastal Tailed Frog            |           | 1         | 1          |
| UWR                            |           | 4,845     | 4,845      |
| WTR                            |           | 167       | 167        |
| WISA*                          | 1,634     |           | 1,634      |
| WISA & VQO – Retention         | 516       |           | 516        |
| WISA & VQO – Partial Retention | 1,239     |           | 1,239      |
| WISA & VQO – Modification      | 188       |           | 188        |
| VQO - Preservation             | 102       |           | 102        |
| VQO - Retention                | 1,571     |           | 1,571      |
| VQO – Partial Retention        | 5,362     |           | 5,362      |
| VQO - Modification             | 458       |           | 458        |
| Unconstrained                  | 17,165    |           | 16,864     |
| Total                          | 28,234    | 30,767    | 59,002     |

#### 3.5.3 Stand Projection Models

Yield curves developed for the forest estate model were prepared using the following stand projection models:

- > Existing natural stands: Variable Density Yield Prediction (VDYP) 7
- Existing and future managed stands: Table Interpolation Program for Stand Yields (TIPSY) 4.3

#### 3.5.4 Decay, Waste, and Breakage

For natural stands, default reductions to stand volume for decay, waste and breakage were applied to the VDYP7 model for Forest Inventory Zones C and D. Reductions for decay, waste and breakage are also



incorporated in the TIPSY model for managed stands as operational adjustment factors (section 3.5.6) that affect both the magnitude and the shape of the yield curve.

## 3.5.5 Managed Stand Definition

To project stand growth and yield, stands were classified as natural or managed stands based on their silviculture regime. Natural stands were established naturally under various scenarios that affect the timing and stocking of stands while managed stands were post-harvest regenerated based on specific silviculture treatments. In this analysis, post-harvest regenerated (PHR) stands less than 30 years old were assumed to be managed while those 30 years and older were handled as natural stands. Existing managed stands were further classified into new managed (age 0 to 10 years) and old managed (age 10 to 29 years).

## 3.5.6 Operational Adjustment Factors Applied to Managed Stand Yields

The TIPSY projection model reports the potential yield of a specific site, species and management regime. Operational adjustment factors (OAFs) were applied to reflect the operational environment accordingly:

- OAF1 of 15% to address a constant reduction for unmapped stocking gaps (e.g., nonproductive areas, management effects, and losses due to forest health and random risk factors).
- > OAF2 of 5% to address dynamic reductions over the life of the stand such as decay, waste and breakage and some forest health concerns.

## 3.5.7 Site Index Assignments

Managed stand site index reflects the potential productive capacity of a stand. The inventory site index was used as the site productivity input to develop yield curves for existing natural stands while the managed site index was used for existing managed and future managed stands.

For this analysis, site index for managed stands was calculated as area-weighted averages from provincial site productivity estimates. These estimates were based on the provincial site productivity tile SIBEC estimates and site series identified in the predictive ecosystem mapping for the Merritt TSA (section 2.3). The distribution of natural and managed stand site indices across the THLB is shown in Figure 10. The area-weighted average site index of the THLB for natural stands is 14.5 m. After the THLB is converted into managed stands the average site index increases to 18.0 m.



Figure 10 Distribution of natural and managed stand site indices over the THLB

## 3.5.8 Not Satisfactorily Restocked

Not satisfactorily restocked (NSR) is defined as a forested area that does not have a sufficient number of well-spaced trees of desirable species. This definition does specify why the area is NSR (harvesting or natural disturbances) but does suggest that NSR areas require some remedy or consideration (i.e., it is not satisfactory).

*Current* NSR typically refers to stands recently disturbed (i.e., since 1987) that are not yet declared as being stocked while *backlog* NSR refers to stands disturbed prior to 1987 that are not declared as satisfactorily restocked. Back NSR is not considered an issue in the Merritt TSA and was thus not addressed in this analysis.

Current NSR is addressed in the analysis as part of the regular regeneration assumptions (average regeneration delay). NSR was also considered in yields for stands affected by natural disturbance (i.e., extended regeneration delays in fire areas).

#### 3.5.9 Select Seed Use / Genetic Gain

Genetic gains were applied to existing managed stands less than 10 years old, and to future managed stands using the assumptions documented for TSR 2015. These assumptions were based on a review of Tree Improvement Branch data for stands planted since 2004. Unlike TSR 2015 which used the same gain for both existing and future managed stands, this analysis will differentiate between the two and apply the values outlined in Table 31.

| Table 31 Genetic guilts for existing and fature managed stands |                         |                       |  |  |  |  |  |
|----------------------------------------------------------------|-------------------------|-----------------------|--|--|--|--|--|
| Species                                                        | Existing Managed Stands | Future Managed Stands |  |  |  |  |  |
| Lodgepole Pine                                                 | 1.7%                    | 3.7%                  |  |  |  |  |  |
| Spruce                                                         | 13.3%                   | 17.3%                 |  |  |  |  |  |

 Table 31 Genetic gains for existing and future managed stands

#### 3.5.10 Regeneration

Regeneration assumptions for future managed stands were adapted from those used in TSR 2015, which used "Free Growing" data from RESULTS to estimate the probability of lead species conversion for

existing BEC/lead species combinations (Table 32), combined with the regeneration delay, species composition, and density by BEC/lead species for existing managed stands (Table 33. This approach was simplified to produce a single regeneration pathway for each existing BEC/lead species combination by weighting the TSR 2015 values. The resulting species compositions are provided in Table 34, and regeneration assumptions for existing and future managed stand analysis units are provided in Appendix 2.

| BEC Zone    | Existing Lead Species | Regenerating Lead Species | Probability of Lead Species |
|-------------|-----------------------|---------------------------|-----------------------------|
|             |                       |                           | Conversion                  |
| ESSF/CWH/MH | Balsam                | Balsam                    | 25%                         |
|             |                       | Lodgepole Pine            | 15%                         |
|             |                       | Spruce                    | 60%                         |
|             | Douglas-fir           | Lodgepole Pine            | 100%                        |
|             | Lodgepole Pine        | Balsam                    | 17%                         |
|             |                       | Lodgepole Pine            | 76%                         |
|             |                       | Spruce                    | 7%                          |
|             | Spruce                | Balsam                    | 27%                         |
|             |                       | Lodgepole Pine            | 41%                         |
|             |                       | Spruce                    | 32%                         |
| BG/PP/IDF   | Douglas-fir           | Douglas-fir               | 22%                         |
|             |                       | Lodgepole Pine            | 78%                         |
|             | Lodgepole Pine        | Douglas-fir               | 12%                         |
|             |                       | Lodgepole Pine            | 88%                         |
|             | Ponderosa Pine        | Lodgepole Pine            | 100%                        |
|             | Spruce                | Lodgepole Pine            | 87%                         |
|             |                       | Spruce                    | 13%                         |
| MS          | Balsam                | Lodgepole Pine            | 92%                         |
|             |                       | Spruce                    | 8%                          |
|             | Douglas-fir           | Douglas-fir               | 11%                         |
|             |                       | Lodgepole Pine            | 89%                         |
|             | Lodgepole Pine        | Lodgepole Pine            | 100%                        |
|             | Spruce                | Balsam                    | 7%                          |
|             |                       | Lodgepole Pine            | 83%                         |
|             |                       | Spruce                    | 10%                         |

#### Table 32Regeneration Pathways

| BEC Zone    | Regenerating   | <b>Regeneration Delay</b> | Composition     | Regeneration | Density |
|-------------|----------------|---------------------------|-----------------|--------------|---------|
|             | Lead Species   |                           |                 | Туре         |         |
| ESSF/CWH/MH | Balsam         | 2                         | BL60SX24PL16    | Natural      | 4700    |
|             | Lodgepole Pine | 2                         | PL69SX16BL15    | Planted      | 1200    |
|             | Spruce         | 2                         | SX64BL27PL9     | Planted      | 1200    |
| BG/PP/IDF   | Douglas-fir    | 3                         | FD67PL33        | Planted      | 1000    |
|             | Lodgepole Pine | 2                         | PL86FD14        | Planted      | 1200    |
|             | Spruce         | 1                         | SX60PL22BL10FD8 | Planted      | 1000    |
| MS          | Balsam         | 2                         | BL62PL22SX16    | Natural      | 5500    |
|             | Douglas-fir    | 2                         | FD59PL21BL13SX7 | Planted      | 1000    |
|             | Lodgepole Pine | 2                         | PL82BL10SX8     | Planted      | 1300    |
|             | Spruce         | 2                         | SX60PL18BL16FD6 | Planted      | 1200    |

| BEC Zone    | Existing Lead  | Lodgepole Pine % | Douglas-fir % | Spruce % | Balsam % |
|-------------|----------------|------------------|---------------|----------|----------|
|             | Species        |                  |               |          |          |
| ESSF/CWH/MH | Balsam         | 19.8             | -             | 46.8     | 33.4     |
|             | Douglas-fir    | 69.0             | -             | 16.0     | 15.0     |
|             | Lodgepole Pine | 55.8             | -             | 20.7     | 23.5     |
|             | Spruce         | 35.5             | -             | 33.5     | 31.0     |
| BG/PP/IDF   | Douglas-fir    | 74.3             | 25.7          | -        | -        |
|             | Lodgepole Pine | 79.6             | 20.4          | -        | -        |
|             | Ponderosa Pine | 86.0             | 14.0          | -        | -        |
|             | Spruce         | 76.0             | 12.2          | 8.3      | 3.5      |
| MS          | Balsam         | 76.9             | 0.5           | 12.2     | 10.4     |
|             | Douglas-fir    | 75.3             | 6.5           | 7.9      | 10.3     |
|             | Lodgepole Pine | 82.0             | -             | 8.0      | 10.0     |
|             | Spruce         | 71.4             | 0.6           | 13.8     | 14.2     |

#### Table 34 Weighted Species Composition for Regenerated Stands

#### 3.5.11 Deciduous

Deciduous volumes were included in this analysis for both leading species and mixed stands. In the base scenario, however, deciduous volumes harvested were tracked as a separate product while harvest targets were based on coniferous volumes. Moreover, only coniferous volumes contribute in determining minimum harvest age.

#### 3.5.12 Stands Impacted by Wildfires

The approach taken to update the forest inventory impacted by past wildfires was discussed in section 2.3. The following approach was used to adjust yield curves accordingly:

- <u>Live stands</u>: existing natural yield curve (VDYP)
- Unlogged, dead stands: existing natural yield curve (VDYP) with 30 year regeneration delay from the year of disturbance
- Logged, dead stands (plantations): existing managed curve (TIPSY) with 7 year regeneration delay from the year of disturbance.

#### 3.5.13 Stands Impacted by Mountain Pine Beetle (MPB)

Using current forest inventory attributes, VDYP was used to generate full volume yield curves for each natural stand. These curves were then adjusted to develop volume curves that reflect MPB impacts on pine mortality, shelf-life, and regenerating volume similar to the approach used for TSR 2015.

#### 3.5.13.1 MPB Mortality and Age of Attack

VRI volume attributes were used to determine the percentage of pine that was impacted by MPB for each polygon in the inventory. Each polygon that was impacted by MPB was then assigned an age of attack based on the VRI attribute "*earliest\_nonlogging\_dist\_date*". Analysis units were assigned based on the age of attack in 5 year classes, and percentage of pine killed in 20% classes.

#### 3.5.13.2 MPB Yield Tables

Natural (unsalvaged) stands were assigned four yield curves; combined to reflect growth and yield over time. The four stand components (live non-pine volume, live pine volume, dead merchantable pine volume, and naturally regenerating understory volume) are described in Table 35 and illustrated in Figure 11.

| Stand                   | Timing <sup>(1)</sup>                               | Yield Adjustments <sup>(2)</sup>                                                                                                                                                                                        |
|-------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Component               |                                                     |                                                                                                                                                                                                                         |
| Dead pine               | $\circ$ From year of death                          | $\circ$ VDYP used to project yields for each polygon                                                                                                                                                                    |
| overstory               |                                                     | $\circ$ Yield and density reduced according to attack severity                                                                                                                                                          |
| trees                   |                                                     | <ul> <li>(Dead% x Yield)</li> </ul>                                                                                                                                                                                     |
|                         |                                                     | <ul> <li>Yield drops to 0 m<sup>3</sup>/ha over 32 years (see shelf life assumptions<br/>below).</li> </ul>                                                                                                             |
| Live pine               | $\circ$ From year of death                          | $\circ$ VDYP used to project yields for each polygon                                                                                                                                                                    |
| overstory<br>trees      |                                                     | <ul> <li>Yield and density reduced according to attack severity ((100%-<br/>Dead%) x Yield)</li> </ul>                                                                                                                  |
|                         |                                                     | <ul> <li>Yield calculated as the incremental growth from the original<br/>unattacked projection: LV = UV x (1-AS), where LV is live volume, UV<br/>is unattacked volume and AS is percent attack severity.</li> </ul>   |
| Non-pine                | $\circ$ From year of death                          | $\circ$ VDYP used to project yields for each polygon                                                                                                                                                                    |
| overstory<br>trees      |                                                     | <ul> <li>Yield and density of non-pine species unaffected by death of pine<br/>component</li> </ul>                                                                                                                     |
| Regenerating understory | <ul> <li>20 years from year<br/>of death</li> </ul> | <ul> <li>Uses original non-killed pine volume at corresponding regen age<br/>times attack severity:</li> </ul>                                                                                                          |
| trees <sup>(3)</sup>    |                                                     | <ul> <li>E.g. volume at 20 years from death = un-attacked pine volume<br/>at age 20 times attack severity, volume at 30 years from death =<br/>un-attacked pine volume at age 30 times attack severity, etc.</li> </ul> |

#### Table 35 Approach to reflect post-attack MPB impacts to yields for natural stands

1. Year of death was determined as the VRI "earliest non-logging disturbance date"

2. Dead % applies to the pine component.

3. The approach for yields of regenerating understory trees is adapted from TSR 2015 approach.

The example in Figure 11 below (100 yr old stand at time of attack in 2007, 60% dead), shows the stand's dead merchantable volume declines over the 32 years following attack (red dashed line), while the remaining live pine (orange line) and live non-pine (green line) portions of the stand continue to grow. Understory regeneration (purple line) begins to contribute volume in 2047. The sum of the four curves provides the total merchantable volume at any time. In this example, the stand recovers to post attack volumes in 2167 (160 years from year of death). This is only an example for discussion.

These stands are considered ineligible for harvesting when the total merchantable volume for the stand (dead + live + regeneration) falls below the minimum volume threshold (150 m<sup>3</sup>/ha). In this example, this occurs about 11 years after death and lasts for about 40 years.



Figure 11 Example of how natural yields were impacted by MPB

#### 3.5.13.3 Shelf Life Assumptions

Shelf life is the time a tree/stand will remain economically viable to harvest. The following shelf life function, shown graphically in Figure 12 was used to reduce volumes at various ages beyond the year of attack:





*Figure 12* Shelf life loss of MPB-attacked, dead overstory trees



### 3.5.13.4 Regenerating understory volume

The approach used in TSR 2015 was adapted for use in this analysis. The regenerating volume was calculated based on the un-attacked pine curve and the percentage of pine killed, as follows. The un-attacked pine volume curve was first multiplied by the percentage of pine killed to calculate regenerating volumes at each age. This regenerating curve was then applied starting at the age of attack (i.e. the regenerating volume at age of attack plus 20 = pine volume at age 20 times pine percentage killed).

## 3.5.14 Mountain Pine Beetle Impacts on Managed Stands

TSR 2015 indicated that the MPB impacts observed in managed stands are not believed to be of sufficient severity to impact growth, and therefore did not adjust managed stand volumes. A similar approach is used for this analysis.

## 3.5.15 Stands Impacted by Spruce Beetle and Western Spruce Budworm

Past damage from spruce beetle and western spruce budworm (section 2.3) suggests that at least some damage is likely to occur on existing and future stands. However, no specific adjustments were made to existing and future yields or annual target harvest levels beyond those considered for endemic insect losses incorporated into OAF2 (see 3.5.6) and non-recoverable losses for insects (section 3.4.2).

## 3.5.16 Silviculture systems

The silviculture systems used to model various management regimes are discussed below while the modelling approach for these treatments is shown in Appendix 3.

#### Clearcut System

Clearcut with reserves was assumed to be the silviculture system used for all stand types other than the 80% of Dry Belt Fir stands that would be harvested using a selection system, as outlined in Section 3.5.2.

#### Selection System

Selection silviculture systems were modeled for Dry Belt Fir stands using the approach outlined in TSR 2015. Inventory polygons within the THLB were classified into three groups based on their 17.5 cm+ live inventory conifer volume so that each group had roughly 1/3 of the area weighted volume. The area weighted average live inventory volume for each group was the starting volume assigned to the yield curve for each group (Table 36).

The starting volume for each group was incremented by 1.74 m<sup>3</sup>/ha per year, as per TSR 2015 which was based on re-measurements from the Pothole Creek Dry Belt Fir partial cutting research trial. The yield curves were incremented in a linear fashion until plateauing at 300 m<sup>3</sup>/ha.

The minimum harvest threshold was set to 120 m<sup>3</sup>/ha. Fifty percent of the volume could be removed at harvest, at which time the stand is no longer eligible until it grows back to the minimum threshold.

#### Table 36 Volume classes for Dry Belt Fir Selection System Yield Curves

| Volume Class | Volume range<br>(m³/ha) | THLB Area<br>(ha) | Average Volume<br>(m³/ha) |
|--------------|-------------------------|-------------------|---------------------------|
| Low          | < 114                   | 13,576            | 56.9                      |
| Medium       | >= 114 and < 175        | 5,301             | 141.7                     |
| High         | >= 175                  | 3,150             | 232.2                     |

#### 3.6 Modeling Assumptions

General assumptions were incorporated into the model to improve its efficiency or to produce results that are more realistic spatially. Table 37 summarizes the modelling assumptions employed in this analysis.

| Criteria                                    | Assumption                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Minimum Polygon Size                        | Very small resultant polygons were merged into neighbouring polygons through a smart geoprocessing exercise to eliminate sliver polygons based on their size, shape, and source layer (e.g. smaller polygons were retained for riparian buffers than for landscape units, and larger long skinny polygons were eliminated vs smaller round polygons). |
| Blocking                                    | To improve modelling performance, resultant polygons were blocked (or grouped) where possible by maintaining the same AUs and 10-year age classes and the model was configured for a target harvest opening size of 20 ha and a maximum opening size of 50 ha.                                                                                        |
| Planning Horizon<br>Harvest Flow Objectives | <ul> <li>A 200 year planning horizon was applied reported in 5-year increments (i.e., 40 periods).</li> <li>Achieve the long term and mid-term harvest levels achieved in the TSR benchmark scenario after adjusting for the reduction in THLB.</li> </ul>                                                                                            |
|                                             | <ul> <li>Do not provide a transition between the mid-term and long-term harvest levels in order<br/>to better understand the effects of future ISS scenarios</li> </ul>                                                                                                                                                                               |
|                                             | <ul> <li>Obtain the best short term harvest levels that do not drop more than 5% per 5-year<br/>period, and that do not impact mid-term harvest levels.</li> </ul>                                                                                                                                                                                    |
|                                             | <ul> <li>TBD for other scenarios</li> </ul>                                                                                                                                                                                                                                                                                                           |

Table 37 Modelling assumptions

## 3.6.1 Grade 4 Credit

The approach documented in the TSR 2015 technical paper was used to account for Grade 4 credits. The volumes indicated in Table 38 were removed from the annual harvest level achieved in the model over the applicable period.

| Period     | Grade 4 Credit (m <sup>3</sup> /yr) |
|------------|-------------------------------------|
| Year 1-5   | 150,000                             |
| Year 6-10  | 100,000                             |
| Year 11-15 | 50,000                              |

# 4 Additional Data Layers

A number of data layers not required for the base case were incorporated into the resultant used for the analysis to allow for additional strategies or scenarios to be developed. A brief description of these layers follows:

#### 4.1 Fire Management Layers

#### 4.1.1 Fire Management Planning Units and Fire Breaks

A Fire Management Plan has been developed for the Merritt TSA. Twenty-nine fire management planning units cover the TSA and have been included in the resultant. Spatial data representing proposed fire breaks has also been included.



## 4.1.2 **Provincial Strategic Threat Analysis 2015 Wildfire Threat Analysis**

The Provincial Strategic Threat Analysis 2015 Wildfire Threat Analysis is used to inform government's landscape fire management planning and the Strategic Wildfire Prevention Initiative fuel treatment programs. Wildland Urban Interface polygons and from this analysis have been incorporated into the resultant dataset.

### 4.2 Forest Inventory Layers

### 4.2.1 **Pruned and Fertilized Areas**

Areas that were previously pruned or fertilized were extracted from RESULTS and incorporated into the dataset. There are approximately 125 hectares of pruned stands, and 820 hectares that have been fertilized.

## 4.3 Other Layers

## 4.3.1 Stoyoma Spiritual Area

The Stoyoma Mountain area is spiritually important to First Nations and has been included in the resultant.

#### 4.3.2 Licensee Operating Areas

Major licensee operating areas have been included in the resultant, in anticipation of summaries being required at this level.

# 5 Sensitivity Analyses

#### 5.1 Old Seral Requirements

A sensitivity analysis was completed that implements the old seral requirements by landscape unit and BEC as specified in the Order Establishing Provincial Non-Spatial Old Growth Objectives. Refer to Section 3.2.1 for details of these requirements.

#### 5.2 Mature Plus Old Seral Requirements

A sensitivity analysis was completed that implements the mature plus seral requirements by landscape unit and BEC as specified in the Biodiversity Guidebook. Refer to Section 3.2.1 for details of these requirements.

#### 5.3 Contiguous Pine Leading Patches

TSR 2015 did not consider limiting the amount of contiguous mature pine leading patches. The ISS Base Case will undertake a sensitivity analysis to explore the impact of limiting mature pine leading patches by implementing the targets outlined in Table 39.



|     |                         |       | Patch Sizes (ha) |          | Target Patch Area (%) |        | (%)   |
|-----|-------------------------|-------|------------------|----------|-----------------------|--------|-------|
| NDT | BEC Unit                | Small | Medium           | Large    | Small                 | Medium | Large |
| 3a  | MSxk, ESSFdc/xc         | <40   | 40-250           | 250-1000 | 30-40                 | 20-30  | 40-60 |
| 3b  | MSdm/mw                 | <40   | 40-80            | 80-250   | 20-30                 | 25-45  | 20-40 |
| 4   | BGxh/xw, PPxh, IDFdk/xh | <40   | 40-80            | 80-250   | 40-50                 | 35-45  | 10-20 |

#### Table 39 Patch size thresholds for Mature + Old Pl-leading Stands.

#### 5.4 Sustainable Rate of Cut in Fisheries Sensitive Watersheds

In addition to the ECA cap above the snowline for selected watersheds, the proposed Fisheries Sensitive Watershed (FSW) Order requires a "sustainable rate of cut" for all of the FSW watershed units. The effects of implementing this requirement was included as a sensitivity analysis by limiting the harvested area per period to a maximum value based on THLB area and average rotation age. The values applied are described in Table 23 within Section 3.2.8.

#### 5.5 TSR Greenup Approach

A sensitivity analysis was completed that uses the TSR 2015 approach for adjacency rather than the patch size approach described in Section 3.2.3. Adjacency was modelled by limiting the proportion of THLB area with a height of less than 3 metres to 33% within each cumulative effects watershed unit. Landscape units were used for those parts of the TSA where cumulative effects watersheds were not defined.

#### 5.6 Additional Riparian Buffers for Small Streams

This sensitivity will investigate the impact of applying enhanced riparian buffers (10 metres on each side) for S4, S5, and S6 streams. This will increase the riparian netdown by 10,904 hectares, or approximately 1.9% of the current TSA THLB. Most of this increase occurs outside the Nicola TSS watershed which already has enhanced buffers applied to selected small streams for the Base Case.

#### 5.7 Wildlife Tree Retention

Two sensitivity analyses will examine the effect of changing the wildlife tree retention targets from the 8.1 percent target.

#### 5.7.1 Forest Planning and Practices Regulation WTR

The FREP analysis used for TSR 2015 determined that there was currently 14.7% total WTR, with 8.1% on the THLB. The Forest Planning and Practices Regulation (FPPR) requires 7% total WTR. It was assumed that the FREP split between non-THLB/THLB will apply to this requirement. Therefore, this sensitivity will implement 3.9% WTR on the THLB (i.e. 7% \* 8.1/14.7). The assignment will take into account the proportion of existing WTR by BEC, as shown in Table 40. Assuming the excess WTR in the MS is retained, the resulting overall WTR retention was 5.3%.

| BEC Zone | Existing THLB WTR % | Additional THLB WTR % |
|----------|---------------------|-----------------------|
| ESSF     | 1.7                 | 2.5                   |
| MS       | 10.7                | 0.0                   |
| IDF      | 2.4                 | 1.5                   |
| PP       | 0.4                 | 3.5                   |
| CWH      | 0.0                 | 3.9                   |

#### Table 40 FPPR WTR Targets by BEC Zone

#### 5.7.2 Licensee Forest Stewardship Plan WTR

Licensee FSPs define gross WTR requirements by BEC zone. The corresponding targets for THLB WTR were determined by applying the FREP factor of 8.1/14.7 to these gross targets and taking into account the proportion of existing WTR by BEC zone, as shown in Table 41. Assuming the excess WTR in the MS is retained, the resulting overall WTR retention was 5.1%.

|          |                | argets by bee eor |                     |                       |
|----------|----------------|-------------------|---------------------|-----------------------|
| BEC Zone | FSP Gross WTR% | FSP THLB WTR%     | Existing THLB WTR % | Additional THLB WTR % |
| ESSF     | 4.5            | 2.5               | 1.7                 | 0.8                   |
| MS       | 3.0            | 1.7               | 10.7                | 0                     |
| IDF      | 7.0            | 3.9               | 2.4                 | 1.5                   |
| PP       | 17.0           | 9.4               | 0.4                 | 9.0                   |
| CWH      | 12.0           | 6.6               | 0.0                 | 6.6                   |

Table 41 Licensee FSP WTR Targets by BEC Zone

## 5.8 Additional Riparian Buffers for Coastal Tailed Frog

This sensitivity will investigate the impact of applying enhanced riparian buffers (33 metres on each side) to small streams within the watershed units where Coastal Tailed Frog is known to occur. The existing THLB area in these watershed units is 49,587 hectares. The enhanced buffers will result in a THLB reduction of 3,216 hectares (6.5% of the CTF watershed THLB or 0.6% of the current TSA THLB), not allowing for any overlap with the WTR budget.

# 6 Reserve Scenario

The Reserves scenario was designed to address the question, "Where and how should we reserve forested stands to address landscape-level biodiversity and non-timber values while, wherever possible, minimizing impacts to the working forest?" The underlying purpose of this scenario was to explore ways to maintain the harvestable area while providing for the full range of values on the landbase. This tactic was approached by maximizing relative scores assigned across the landbase for old forests, patch size, and interior old forest.

Results are not intended to be applied as reserves in an operational sense. Rather, these candidate reserves provide additional information – as starting point – for revising existing reserves or developing recruitment strategies; involving a collaborative planning team to review one landscape unit at a time.

We recognize that we currently do not have full information regarding First Nations values. While tactics to address specific First Nations values may not be directly modelled in this Reserve Scenario, they are considered within other scenarios where appropriate information is available. We will continue to work with First Nations to understand and incorporate their values into the Reserve and other Scenarios as information becomes available.



#### 6.1 Approach

The following aspects guided the development of this reserve scenario:

- 1. Landscape-level exercise to stabilize and maximize THLB by overlapping reserves where possible (colocation).
- 2. Meet the requirements of multiple values on the land base that provide equivalent or greater ecological benefits.
- 3. Assess existing constraints (e.g., legal habitat designations).
- 4. Prioritize stand types according to current and future habitat capability.
- 5. Identify areas with increased retention (i.e., Coarse Woody Debris, Wildlife Tree Retention, and connectivity) (e.g., key wildlife species, increased in-block retention); ensure both scale are considered here (landscape- and stand-level e.g., riparian reserves).
- 6. Manage rare sites/ecosystems (see Conservation Data Center); use existing Predictive Ecosystem mapping/Sensitive Ecosystems Inventory data to map sites.
- 7. Evaluate overall production of the landbase for all values while maintaining a sustainable forest industry; establish a baseline.
- 8. Without further work to assess selected stands in the field, this will NOT produce an operational-level scenario. However, it should provide a solid start to build from.

This analysis involved two general steps. First, each stand was assigned a relative score that promotes, or demotes, those most appropriate as candidate reserves. Then, a model is used to select candidate reserves that steadily meet landscape-level criteria and thresholds.



#### Figure 13 Approach for ranking stands as candidate reserves

A stand's total score, determined by the spatial exercise, is the sum of the anchor scores (number of overlapping anchors), constraint scores, and stand features. Stands were then sorted by their total scores – those with the highest values were the most desirable candidate reserves. Candidate reserves



were selected through a forest modelling exercise that assesses the combined score for each stand relative to established one or more landscape-level thresholds. In this case, candidate reserves must address multiple thresholds. In addition, to maintain an appropriate spatial pattern for reserves, stands with higher scores were also grouped to accommodate patch size distribution criteria. This prevents the 'shot-gun' pattern that otherwise results if only the highest scoring stands were selected.

#### 6.2 Stand Features

Stand features scoring utilizes vegetation and other attributes to rank stands based on their overall suitability as candidate reserves. Stands were evaluated using the indicators described in Table 42.

| Indicator                    | Rationale                                                                                  |
|------------------------------|--------------------------------------------------------------------------------------------|
| Seral Stage                  | Overarching intent is to designate reserves in old seral stand types because they          |
|                              | typically do not occur when forests are managed using economic rotation ages.              |
|                              | Retaining old stands on the land base ensures habitat / biodiversity niches continue to    |
|                              | exist. Seral stage is assigned to VRI polygons using age and BEC zone.                     |
| Species Composition          | Non-pine leading or deciduous leading stands are higher contributors to biodiversity       |
|                              | and old growth habitats. A higher diversity of species mix lends to a higher potential for |
|                              | biodiversity, however species mix will be to a certain extent captured in the rare         |
|                              | ecosystem classification.                                                                  |
| Dry-belt Douglas-fir         | Douglas-fir leading, south facing polygons within the IDF and PP biogeoclimatic zones      |
|                              | (except those stands in the IDFdk), below 1200 metres in elevation.                        |
| Tree Height                  | Connection between height, age and site productivity – taller trees for a given age can    |
| -                            | provide valuable habitat and recruitment for future snags.                                 |
| Deadwood Abundance           | Desirable stands consist of old, large, living and dead trees with coarse woody debris.    |
|                              | Snags are an important contributor to biodiversity.                                        |
| Vertical Complexity          | Higher levels of vertical structure / complexity are linked with old growth stands.        |
| Old / Mature Interior Forest | The quality of old growth habitat is affected by edge conditions versus interior old       |
|                              | forest. Areas large enough to provide interior old forest condition are preferred.         |

Table 42 Rationale for Stand Features Scoring

Stand-level indicators were divided into categories that align with scoring for old forest criteria. In addition, categories and scoring considers stand resilience while negative values reflect undesirable stand characteristics.

In some cases, stand feature scores provided the 'tie-breaking' assessment between two stands identified as candidate reserves. These scores were developed and assessed independently of scores developed for anchors and constraints.

The total score for a stand is the sum of the applicable category scores – for example, a coniferous stand in the old seral stage (9 points), that's non-pine leading (0 points), 26 m tall (1 point), with a non-uniform vertical complexity (4 points) has a total score of 14 points.

| Indicator                  | Category                            | Score |
|----------------------------|-------------------------------------|-------|
| Seral Stage                | Young                               | 0     |
|                            | Mid                                 | 2     |
|                            | Mature Conifer (>120 years)         | 5     |
|                            | Old Conifer (see Table 46)          | 9     |
|                            | Very Old Conifer (Old + 50 years)   | 10    |
|                            | Mature Deciduous (>40 years)        | 10    |
|                            | Old Deciduous (>100 years)          | 8     |
|                            | Very Old Deciduous (Old + 50 years) | 5     |
| Species Composition        | Deciduous-leading                   | 5     |
|                            | Ponderosa Pine (≥ 50%)              | 5     |
|                            | Lodgepole Pine-leading (≥ 70%)      | -1    |
| Dry-belt Douglas-fir       | Yes (See Constraints)               | 3     |
| Tree Height                | ≥ 20 m                              | 1     |
| Deadwood Abundance         | 5 to 30%                            | 2     |
|                            | > 70%                               | -2    |
| Vertical Complexity        | 4 - Non-Uniform                     | 4     |
|                            | 5 - Very Non-Uniform                | 5     |
| Old/Mature Interior Forest | Yes                                 | 3     |

#### Table 43 Stand Feature Scoring

#### 6.3 Anchors

Anchors are resource management areas that cannot be harvested because of a legal requirement or physical limitation. All anchors were assigned the same score (10) so that the combined score for stands with overlapping anchors was replicated (e.g., a stand with 3 overlapping anchors is given a score of 30).

Scoring for these areas was developed and assessed separately. The detailed criteria for scoring anchors are listed in Table 44 and described in Appendix 4. While some components may not affect THLB (e.g., wetland and grassland species like snakes and Great Basin Spadefoot), they were still identified as no-harvest to potentially build candidate reserves upon.

#### Table 44 Anchor Scoring

| Anchors                                             | Score |
|-----------------------------------------------------|-------|
| WHA (core): Coastal Tailed Frog                     | 10    |
| WHA (core): Data Sensitive (snakes)                 | 10    |
| WHA (core): Great Basin Spadefoot                   | 10    |
| WHA (core): Grizzly Bear                            | 10    |
| WHA (core): Lewis's Woodpecker                      | 10    |
| WHA (core): Western Screech Owl                     | 10    |
| WHA (core): Williamson's Sapsucker                  | 10    |
| UWR (core): Mountain Goat                           | 10    |
| Parks and Protected Areas                           | 10    |
| Environmentally Sensitive Areas                     | 10    |
| Slope Class >65% or Terrain Stability Class 5       | 10    |
| Legally Established Heritage Trails                 | 10    |
| Research Sites (i.e. PSP with 50m buffer)           | 10    |
| Effective Riparian Reserves (including TSS buffers) | 10    |
| Whitebark Pine (exists)                             | 10    |
| Wetlands (adjacency); recognize this value          | 10    |
| Cultural Survival Areas - (No Go) *                 | 10    |
| Cultural Heritage Resources – (No-Go) *             | 10    |
| Archaeological Sites **                             | 10    |

\* Data not available at this time

\*\* Not permitted to use data at this time



#### 6.4 Constraints

Constraints are resource management areas that restrict harvesting on a portion of stands (i.e., conditional harvest). Like stand features, constraints were used to influence selection when a choice is presented. Constraints were scored (from 1 to 10 - Table 45) based on their perceived impact to timber availability (i.e., the higher the score, the greater the impact to timber supply relative to other constraints). The total score for a stand is the sum of all applicable category scores for that stand including those for multiple overlapping constraints. Detailed criteria for scoring constraints based on timber impact are described in Appendix 5.

| Constraints                                                                   | Score |
|-------------------------------------------------------------------------------|-------|
| OGMA                                                                          | 9     |
| Wildlife Habitat Area: Coastal Tailed Frog                                    | 8     |
| Wildlife Habitat Area: Lewis's Woodpecker                                     | 7     |
| Wildlife Habitat Area: Western Screech Owl                                    | 9     |
| Best Management Practice: Williamson's Sapsucker                              | 5     |
| Ungulate Winter Range: Mountain Goat                                          | 6     |
| Ungulate Winter Range: Mule Deer, Bighorn Sheep, Elk (Shallow Snowpack)       | 2     |
| Ungulate Winter Range: Mule Deer, Bighorn Sheep, Elk (Moderate/Deep Snowpack) | 7     |
| Ungulate Winter Range: Moose                                                  | 1     |
| Fisheries Sensitive Watersheds: Proposed (above snowline in specified basins) | 2     |
| Community Watersheds                                                          | 5     |
| Riparian Management Zones (provides for other values)                         | 5     |
| Recreation - Use, Recreation and Enjoyment of the Public Reserve (UREP)       | 7     |
| Visual Quality Objectives: Preservation (P)                                   | 10    |
| Visual Quality Objectives: Retention (R)                                      | 7     |
| Visual Quality Objectives: Partial Retention (PR)                             | 3     |
| Landscape Level Fuel Breaks                                                   | -2    |
| Wildland Urban Interface                                                      | -2    |
| Wildlife Tree Retention                                                       | 6     |
| Operability 2 (Slope ≥0 and <45%; SI ≥9 to <12)                               | 2     |
| Operability 3 (Slope ≥45 and <65%; SI ≥12 to <16)                             | 3     |
| Operability 4 (Slope ≥45 and <65%; SI ≥9 to <12)                              | 6     |
| Operability 5 (Slope ≥0 and <45%; SI <9)                                      | 8     |
| Operability 6 (Slope ≥45 and <65%; SI <9)                                     | 9     |
| Logged THLB with Slope ≥65%; SI <9                                            | 10    |
| Logged THLB with Slope ≥65%; SI ≥9 and <12                                    | 8     |
| Logged THLB with Slope ≥65%; SI 12                                            | 6     |
| Inoperable (from operability Lines, terrain mapping, and slope ≥65%)          | 8     |
| Cultural Survival Areas*                                                      | n/a   |
| Cultural Heritage Resources*                                                  | n/a   |

*Note: SI refers to inventory/natural stand Site Index* 

\* Data not available at this time

#### 6.5 Criteria and Thresholds

Threshold(s) were used to evaluate when the required objective is met with the candidate reserves. Thresholds are the indicators and targets to be maintained or enhanced through this analysis. In modelling terms, these are typically forest cover requirements configured as target levels that the model seeks to achieve as:

- minimum or maximum levels,
- units in percent or area,



- over a given unit (e.g., watershed or landscape unit), or
- across specified periods (not applicable for this reserve scenario).

Stands were ranked and grouped relative to each landscape-level threshold until the appropriate requirements are met.

For this analysis, landscape-level thresholds were assessed for old forest retention and patch size, and tracked for interior old forest.

#### 6.5.1 Old Forest

BEC version 5 was used to assess the target old forest retention designated in hectares, as shown in Table 46.

| Min Age      | 251 | 251   | 251   | 251   | 251    | 251    | 251   | 251   | 251 | 141    | 141   | 141    | 251 | 251   | Total   |
|--------------|-----|-------|-------|-------|--------|--------|-------|-------|-----|--------|-------|--------|-----|-------|---------|
| Landscape    | CWH | ESSF  | ESSF  | ESSF  | IDF    | IDF    | IDF   | IDF   | МН  | MS     | MS    | MS     | PP  | PP    |         |
| Unit         | ms1 | dc2   | mw    | хс    | dk1    | dk2    | xh1   | xh2   | mm2 | dm2    | mw    | xk     | xh1 | xh2   |         |
| Coldwater    | 132 | 721   | 794   |       | 2,169  | 1,673  | 754   | 493   |     | 705    | 294   | 567    |     | 110   | 8,412   |
| Hayes        |     | 3     |       | 732   | 1,097  | 1,725  | 330   |       |     | 2,533  |       | 4,055  |     |       | 10,475  |
| Lower Nicola |     | 606   | 32    | 150   | 2,561  | 534    |       | 4,784 |     | 618    |       | 5,591  |     | 1,002 | 15,878  |
| McNulty      |     |       |       | 1,519 | 445    |        | 160   |       |     | 1,078  |       | 1,574  |     |       | 4,776   |
| Otter        |     | 407   |       | 30    | 1,063  | 3,439  | 182   | 64    |     | 1,770  |       | 153    |     |       | 7,108   |
| Similkameen  |     | 2,552 | 35    | 1,360 | 74     | 2,782  | 233   |       |     | 4,388  |       |        |     |       | 11,424  |
| Smith-Willis |     |       |       | 961   | 367    | 2,260  | 839   |       |     | 880    |       | 3,836  | 0   |       | 9,143   |
| Spius        | 10  | 1,162 | 2,410 |       | 224    | 1,814  | 51    | 762   | 40  | 1,715  | 731   | 25     |     | 7     | 8,951   |
| Summers      |     | 93    |       | 215   | 2,451  | 1,673  | 644   |       |     | 1,971  |       | 763    | 15  |       | 7,825   |
| Swakum       |     |       |       |       | 4,660  |        |       | 1,244 |     |        |       | 3,048  |     | 270   | 9,222   |
| Tulameen     | 88  | 2,437 | 3,471 | 16    |        | 919    | 18    |       |     | 1,840  | 649   |        |     |       | 9,438   |
| Upper Nicola |     |       |       | 163   | 4,923  | 15     |       | 734   |     | 158    |       | 4,657  |     | 106   | 10,756  |
| Total        | 230 | 7,981 | 6,742 | 5,146 | 20,034 | 16,834 | 3,211 | 8,081 | 40  | 17,656 | 1,674 | 24,269 | 15  | 1,495 | 113,408 |

Table 46 Area (ha) of Old Forest Required by BEC Variant (version 5) and Landscape Unit

*Source: 2004 Order Establishing Provincial Non-spatial Old Growth Objectives (Table 2 of Appendix 2)* 

#### 6.5.2 Patch Size

This analysis was originally designed as a Geographic Information System exercise but given the complexities involved with assessing reserves relative to multiple thresholds and the desire to group reserves into larger areas where appropriate, we had to change this exercise to a spatial model (i.e., Patchworks). Criteria for defining patch size were not available for the Merritt TSA, so we implemented an interim set of arbitrary criteria aimed to promote larger patches while avoiding small patches (Table 47). To avoid patch splitting resulting from narrow riparian or road buffers, a distance threshold for combining patches (i.e., combine where patches are under 10m) was applied by clean topology in a raster environment.

Table 47Interim patch size criteria

| Area (ha) | Target             | Attractor |
|-----------|--------------------|-----------|
| 1-10      | < 0%               |           |
| 10-100    | < 10%              |           |
| 100-500   | < 100% (no target) |           |
| 500-1000  | > 40%              |           |
| 1000-1500 | >30%               |           |
| 1500+     | < 100% (no target) | Yes       |

Patches were combined where the distance between patches was under 10m.



## 6.5.3 Interior Old Forest

Interior old forest is an area of 'old seral' forest or natural forest area, which is buffered from younger age classes or anthropogenic disturbances.

The Merritt TSA does not have targets for interior old forest, so criteria for defining interior old forest were not available. Consequently, exploring this element required the adoption of criteria from another management unit – in this case, Prince George TSA (FLNRO 2004). While these criteria were applied to define interior old forest, targets were not applied or controlled in the model. Rather, interior old forests were tracked and reported for areas selected as candidate reserves.

Interior old forest was identified based on the definition for old seral forests (section 6.5.1) and the age class of adjacent stands, as shown in Table 48 and Figure 14.

| Stand Type                         | Adjacent Age Class | Buffer Distance |
|------------------------------------|--------------------|-----------------|
| Pine- and deciduous-leading stands | 1 to 3             | 200 metres      |
|                                    | 4 to 9             | 0 metres        |
| All other species-leading stands   | 1 to 4             | 200 metres      |
|                                    | 5 to 9             | 0 metres        |

## Table 48 Criteria for identifying interior old forest

A buffer of 200 metres extending from the edge of the old forest into the old forest (see legend for Figure 14), is excluded to calculating the amount of old interior forest for:

- transportation corridors attributed to all primary access roads (e.g. Forest Service Roads),
- pipelines,
- railways, and
- hydro transmission corridors.

Buffers were not applied to secondary and tertiary roads. Initially, interior forest included natural nonforest (e.g., lakes, wetlands, rock) to eliminate unnecessary 'edges'. These features were then erased from the interior layer. The buffer area of old forest stands were maintained as edge buffer areas.





#### 6.6 Analysis Steps

The subsections below briefly describe the analysis steps taken; including work to prepare the model prior to processing, modelling itself, and following each run.

#### 6.6.1 **Pre-Processing**

A copy of the 'resultant' (overlays of spatial data developed for the ISS Base Case analysis) provided an initial spatial dataset to work with. Additional spatial data - not required for the ISS Base Case - were added to the resultant for the Reserve Scenario:

- Operability,
- Interior Old Forest, and
- Interior Old Forest Edges

Assessment criteria were then calculated as separate fields in the database:

- 1) identify/flag non-pine leading stands,
- 2) assign seral stage; specifically to determine old seral forest, and
- 3) create interior old patches (section 6.5.3).

Scores for stand features, anchors, and constraints were assigned in separate fields, then combined scores were calculated into additional fields. This was done through a python script, which accessed Excel spreadsheets that recorded each indicator and their score.



#### 6.6.2 **Processing**

The basic approach to modelling this reserve scenario was to maximize the cumulative score while trending towards a set of landscape-level criteria and thresholds. A Patchworks<sup>™</sup> model was built with the following components:

- 1) Product accounts for the thresholds defined in section 6.5 were created as old forest accounts for old forest polygons/targets, in the following order:
  - 1. Old NHLB
  - 2. Old
  - 3. Old + Mat NHLB
  - 4. Old + Mat
  - 5. Old + Mat + Mid + Early
- 2) A minimum area target was set on each of these product accounts with decreasing weights and a maximum area target was set on each of these product accounts with a steady weight.
- 3) Anchors within the NHLB were 'hard-coded' to always be selected as candidate reserves.
- 4) A general 'reserved' account was created so that polygons spanning two assessment units (e.g., BEC/LU) would be considered part of the same patch.
- 5) Patch size criteria were applied.
- 6) A basic 'maximize score' target was applied across the entire the landbase so that scores would accumulate as the model-selected candidate reserves. Meanwhile, a (soft) target was assigned so that the model was rewarded for selecting NHLB.

#### 6.6.3 **Post-Processing**

Unfortunately, Patchworks<sup>™</sup> does not track dynamically-buffered areas – required with old interior forest as candidate reserves are selected. Our approach was to increase the roundness of the reserves selected (increasing the area to edge ratio of a polygon) and to increase the size of the patches selected. However, if polygons within edges are not selected, then the old interior forest polygons are no longer 'interior'. So, an additional assessment of the candidate reserves must be undertaken to confirm that the old forest interior thresholds are, in fact, maintained and identify where they are not.

#### 6.6.4 Adjustments

The Reserve Scenario modelling process was developed to accommodate adjustments with the stand scoring and the criteria and thresholds assigned. Implementing these adjustments as sensitivities can be done fairly easily but changes to spatial designations (e.g., turning draft wildlife habitat designations off) require more work to rebuild and/or redefine the resultant.

#### 6.6.5 Implementation

The approach anticipated for implementing candidate reserves in the Preferred Scenario is to 'lock' the selected areas from harvesting for some period over the short term (e.g., 20 years). In this case, edge polygons identified to maintain forest interior thresholds will also be included with the candidate reserves.



# 7 Harvest Scenario

The Harvest scenario aimed to answer the question "Which stands should be prioritized for harvest/salvage in the short term (and what are the mid/long term consequences of not following this strategy)?" The Harvest scenario can also be used to illustrate differences in species profile that may occur if harvest is not distributed well (i.e., volume looks alright in the future, but economics become much more challenging). The underlying purpose of the Harvest scenario was to explore tactics aimed to improve timber harvesting opportunities, and to determine if harvesting could be used as a tool to reduce the impacts from wildfire without unduly impacting timber supply. Three tactics were explored: 1) minimum harvest criteria, 2) harvest feasibility, and 3) wildfire management and harvest priority.

## 7.1 Minimum Harvest Criteria

The minimum harvest criteria (MHC) set for the ISS Base Case scenario limits harvesting to stands with a merchantable volume of at least 150 m<sup>3</sup>/ha. For the harvest scenario, alternate minimum harvest criteria were explored. The effects of allowing harvest of lower volume stands was explored by categorizing harvest opportunities in four volume classes, as follows:

- >= 200 m³/ha
- 150 to 200 m<sup>3</sup>/ha
- 100 to 150 m<sup>3</sup>/ha
- 75 to 100 m<sup>3</sup>/ha.

In addition, the minimum harvest criteria for managed stands was changed to require achievement of 95% Culmination MAI (CMAI), and be at least 60 years of age for all runs.

Two runs were completed with alternative minimum harvest criteria. Run 1 required stands to be at least 200 m<sup>3</sup>/ha to be eligible for harvest. Run 2 allowed stands with at least 75 m<sup>3</sup>/ha to be harvested, provided that the volume achieved from stands with at least 200 m<sup>3</sup>/ha was at least as much as from Run 1.

A sensitivity analysis (Run 3) was also completed to explore the impact of not utilizing Ponderosa pine. In this run, all Ponderosa pine volume was excluded from the harvest flow, and minimum harvest criterion was set to 75 m<sup>3</sup>/ha based on non-Ponderosa pine volumes only.

#### 7.2 Revised Harvest Opening Sizes

In the ISS Base Case (section 3.3.4), harvest blocks in the 0 to 5 hectare range were encouraged to be a maximum of 5% of the harvest area. Since the weight was set such that timber supply was not affected, this target was not achieved in the resulting runs.

The Harvest Scenario was designed to provide more operationally feasible harvest opening sizes. No blocks less than 1 hectare in size were allowed, and blocks between 1 hectare and 5 hectares in size were limited to a maximum of 5% of the harvest area. The weight on the 1 to 5 hectare target was set so that only a very minor variation above 5% was allowed. These requirements were applied to all harvest scenario runs.



#### 7.3 Smooth Selection Harvest Flow

The ISS Base Case did not place any limits on the amount of volume harvested using selection harvest systems. As a result, there were large fluctuations from period to period in the amount of selection harvest. The Harvest Scenario attempts to "smooth" the volume flow from selection harvest by encouraging the model to achieve selection volumes between 34,000 m<sup>3</sup>/year and 37,600 m<sup>3</sup>/year.

#### 7.4 Wildfire Management and Harvest Priority

The wildfire management tactic aimed to incorporate stand and landscape-level wildfire management to address the potential impact or risk of fire. This involved placing higher harvest priorities in the first 10 years for stands that were located in Wildland Urban Interfaces (THLB Area ~79,600 ha), proposed Fire Breaks (THLB Area ~69,250 ha), or rated as extreme fire threat according to the 2015 Provincial Strategic Threat Analysis (PSTA) – wildfire threat component dataset for Merritt TSA (THLB Area ~218,650 ha). After accounting for overlaps, the approximately 317,700 hectares of THLB area was prioritized for harvest as a wildfire management tactic.

A sensitivity analysis (Run 4) was also completed to explore the impact of applying alternate stocking standards for regenerated stands in the Wildland Urban Interface (WUI) areas. This run was based on Run 2 (minimum 75 m<sup>3</sup>/ha), with all planted stands in the WUIs regenerated using TIPSY yield generated with "clumped" regeneration method and initial density of 600 stems per hectare.

# 8 Silviculture Scenario

The Silviculture Scenario examined tactics aimed to enhance timber quantity and quality over the midand long-term, as well as, improve biodiversity, wildlife habitat, and cultural interests. This scenario integrated three key silviculture tactics: 1) fertilization, 2) enhanced basic silviculture, and 3) rehabilitating MPB impacted stands. The Silviculture Scenario reflects the best combination of these treatments applied to stands within the Merritt TSA, while assuming a steady funding level of \$3 million per year over the first 20 years of the planning horizon. Specific tactics and approaches are briefly summarized in Table 49.

The model was created using managed stand analysis units based on those used for TSR 2015. These did not align well with the fertilization treatments specified in Table 49 due to the mixed species compositions in the analysis units (i.e. no 100% pure Sx stands to be considered for multiple treatments). Therefore, weighted responses were created based on the species compositions of the managed stand analysis units, and all managed stands were assumed to be treated every five years.

Similarly, under the enhanced basic silviculture tactic, the response for using planting instead of natural regeneration was weighted for those analysis units with a blend of natural and planting regeneration.

| Tactic                 | Element               | Description                                                                                | Criteria                                                                                                                                                                              |
|------------------------|-----------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                       |                                                                                            | o <100m³/ha live volume                                                                                                                                                               |
|                        | Eligible Stands       | Links and MDD imported                                                                     | <ul> <li>IDF: Fd mSI &gt;17.0; Pl mSI &gt;17.8; Sx mSI &gt;16.1&gt;=40%</li> </ul>                                                                                                    |
|                        |                       | stands, min 40% dead, >40                                                                  | <ul> <li>MS: Fd mSI &gt;18.0; Pl mSI &gt;17.39; Bl mSI &gt;17.3; Sx mSI &gt;17.3</li> </ul>                                                                                           |
|                        |                       |                                                                                            | <ul> <li>ESSF: Fd mSI &gt;15.0; Pl mSI &gt;14.1; Bl mSI &gt;15.8; Sx mSI &gt;14.7</li> </ul>                                                                                          |
|                        | Timing                | Stands unlikely to be                                                                      | <ul> <li>According to minimum harvest criteria that are less than<br/>'low volume stands'</li> </ul>                                                                                  |
| Rehabilitation of      |                       | salvageu/ narvesteu                                                                        | <ul> <li>Next 40 years only</li> </ul>                                                                                                                                                |
| MPB impacted<br>stands | Treatment<br>Response | Transition stands onto future<br>managed stands as if<br>harvested                         | <ul> <li>Regular future AUs, or enhanced future AU (where stand<br/>eligibility overlaps)</li> </ul>                                                                                  |
|                        | Costs                 | Marginally Economic (>=<br>50m <sup>3</sup> /ha) -<br>Harvest/Knockdown/Site<br>Prep/Plant | ○ \$1,500/ha                                                                                                                                                                          |
|                        |                       | Uneconomic (<50m³/ha) -<br>Knockdown/Site Prep/Plant                                       | ○ \$2,000/ha                                                                                                                                                                          |
|                        |                       | Rehab 'incentive' within WUI                                                               | $\circ~$ Reduce treatment by \$500/ha                                                                                                                                                 |
|                        | Anticipated<br>Issues | No Distance cost with access so good throughout TSA                                        | • N/A                                                                                                                                                                                 |
|                        | Elizible Stands       | Young natural stands                                                                       | <ul> <li>Age 30 to 80</li> </ul>                                                                                                                                                      |
|                        |                       | Existing managed stands                                                                    | ○ Age 25 to 55                                                                                                                                                                        |
|                        |                       | Current/future managed<br>stands                                                           | ○ Age 25 to 55                                                                                                                                                                        |
|                        |                       | Species (model selects<br>priority)                                                        | ○ (Sx & Fdi & Pli) >= 80%                                                                                                                                                             |
|                        | Ligible Stands        | BEC Zones                                                                                  | <ul> <li>MS, ESSF, IDF dk1, dk2 (non drybelt)</li> </ul>                                                                                                                              |
|                        |                       | Site index (not thresholds                                                                 | <ul> <li>IDF: Sx 16.1, Fir 17.0, Pine 17.8</li> </ul>                                                                                                                                 |
|                        |                       | correspond to existing AUs;                                                                | <ul> <li>MS: Sx mSI &gt;17.3; Fd mSI &gt;18.0; Pl mSI &gt;17.39</li> </ul>                                                                                                            |
|                        |                       | not from FFT guidelines                                                                    | • ESSF: Sx mSI >14.7; Fd mSI >15.0; Pl mSI >14.1                                                                                                                                      |
|                        |                       | Slope                                                                                      | o <= 45% (entire stand)                                                                                                                                                               |
| Fertilization          | Timing                | See Fertilization response<br>tables below (Table 50 &<br>Table 51)                        | <ul> <li>Application every 5 or 10 years, progressively closest<br/>from harvesting, delay harvest eligibility 10 yrs after last<br/>application</li> </ul>                           |
|                        | Treatment             | See Fertilization response<br>tables below (Table 50 &<br>Table 51)                        |                                                                                                                                                                                       |
|                        | Response              | Transition stands onto future managed stands                                               | • Locked from harvesting, 10 years after last application.                                                                                                                            |
|                        | Costs                 | Fertilization costs for all stands                                                         | <ul> <li>Fd, PI: \$450/ha for each application</li> <li>Sx single treatment: \$450/ha for each application</li> <li>Sx multiple treatments : \$600/ha for each application</li> </ul> |
|                        | Anticipated<br>Issues | First Nations' concerns                                                                    |                                                                                                                                                                                       |
| Enhanced               | Eligible Stands       | All clearcut stands                                                                        |                                                                                                                                                                                       |
| Silviculture           | Timing                | Stands harvested in the model                                                              | ○ Future managed                                                                                                                                                                      |

 Table 49 Tactics Applied in the Silviculture Scenario



| Tactic | Element     | Description                                         | Criteria                                                     |
|--------|-------------|-----------------------------------------------------|--------------------------------------------------------------|
|        |             | Planting method                                     | <ul> <li>Natural to 100% planted (where possible)</li> </ul> |
|        | Treatment   | Regeneration delay                                  | <ul> <li>Decrease from 2 to 1 yrs (3 to 2 yrs)</li> </ul>    |
|        | Response    | Planting Density                                    | $\circ$ Increase to 1800 sph with genetic gains applied      |
|        | Costs       | Incremental planting of trees sown with select seed | ○ \$450/ha                                                   |
|        | COSIS       | Switch from natural to planted                      | ○ \$1000/ha                                                  |
|        | Anticipated | Currently lacks funding                             |                                                              |
|        | Issues      | mechanism                                           |                                                              |

Table 50 Fertilization Response for Fd, Pl and Natural Stands

| Number of Applications<br>Every 10 years | Stand Age<br>Window (yrs) | Fd Response<br>(gross m³/ha) | Pl Response<br>(gross m <sup>3</sup> /ha) | Natural Stands<br>(gross m³/ha) | Efficiency |
|------------------------------------------|---------------------------|------------------------------|-------------------------------------------|---------------------------------|------------|
| 1                                        | 30 - 80                   | 15                           | 12                                        | 10                              | 100%       |
| 2                                        | 30 – 70                   | 30                           | 24                                        | 20                              | 100%       |
| 3                                        | 30 - 60                   | 45                           | 36                                        | 30                              | 100%       |
| 4                                        | 30 – 50                   | 60                           | 48                                        | 40                              | 100%       |

Pl and Fd response are simple multiples of the single treatment response

Table 51 Fertilization Response for Multiple Sx Treatments

| Number of Applications<br>Every 5 years | Stand Age Window (yrs) | Sx Response<br>(gross m³/ha) | Efficiency |
|-----------------------------------------|------------------------|------------------------------|------------|
| 1                                       | 30 - 80                | 15                           | 100%       |
| 2                                       | 25 – 55                | 49                           | 100%       |
| 3                                       | 25 – 50                | 89                           | 100%       |
| 4                                       | 25 – 45                | 132                          | 100%       |
| 5                                       | 25 – 40                | 155                          | 100%       |
| 6                                       | 25 – 35                | 176                          | 100%       |

Sx response was derived from information provided by FLNRO in the document "intensive fertilization graphs.xlsx" (Rob Brockley email June 14, 2012, Mel Scott/Ralph Winter email June 15, July 28, 2012).

# 9 Combined Scenario

The Combined Scenario aimed to guide development, implementation, and monitoring of tactical plans over the first 20 years of the planning horizon. Key elements from all four scenarios (Base Case, Reserves, Harvest, and Silviculture) were included to provide an integrated strategy to this first iteration of the ISS process. Specific tactics and approaches are briefly summarized in Table 52.

Three different runs were completed for the Combined Scenario:

- **Run 1 (Spatial OGMAs)** did not incorporate elements from the Reserve Scenario and removed OGMAs from the THLB as a spatial netdown.
- **Run 2 (Candidate Reserves)** allowed harvesting to occur in spatial OGMAs where they did not overlap with Candidate Reserves. Harvesting was prevented in Candidate Reserves for the first 40 years after which time they became eligible for harvest. In addition, Old Seral Targets were implemented for the duration of the planning horizon.

• **Run 3 (Increased Fertilization Sensitivity)** is the same as Run 1, except that the slope restrictions on stands eligible for fertilization were relaxed. Specifically, stands were considered eligible if no more than 50% of their area has slopes greater than 45%.

Table 52Tactics Applied in the Combined Scenario

| Scenario  | Category                        | Tactic                    | Approach                                                                                                                                                                                                        |
|-----------|---------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Base Case | Landscape-Level<br>Biodiversity | Spatial<br>OGMAs          | <ul> <li>Run 1 – Spatial OGMAs: Include spatial OGMAs as landbase netdown to<br/>address landscape level biodiversity. (Section 3.1.11)</li> </ul>                                                              |
|           |                                 |                           | <ul> <li>Run 2 – Candidate Reserves: Spatial OGMAs that do not overlap with a<br/>Candidate Reserve were added to the THLB for the duration of the planning<br/>horizon.</li> </ul>                             |
| Base Case | Landscape-Level                 | Old Seral                 | <ul> <li>Report Only, Target Not Active (<i>Run 1 – Spatial OGMAs</i>)</li> </ul>                                                                                                                               |
|           | Biodiversity                    |                           | <ul> <li>Target Active (<i>Run 2 – Candidate Reserves</i>)</li> </ul>                                                                                                                                           |
|           |                                 |                           | <ul> <li>Implement the hectare targets for old seral according to the Non-Spatial Old<br/>Growth Order (Section 3.2.1)</li> </ul>                                                                               |
| Base Case | Landscape-Level                 | Mature-Plus-              | <ul> <li>Report Only, Target Not Active</li> </ul>                                                                                                                                                              |
|           | Biodiversity                    | Old Seral                 | <ul> <li>Implement mature-plus-old seral targets according to the biodiversity<br/>guidebook (Section 3.2.1)</li> </ul>                                                                                         |
| Base Case | Landscape-Level                 | Early Seral               | <ul> <li>Report Only, Target Not Active</li> </ul>                                                                                                                                                              |
|           | Biodiversity                    |                           | <ul> <li>Report amount of early seral stage (&lt;40 years) by NDT, as per the guidelines<br/>in the Biodiversity Guidebook (Section 3.2.1)</li> </ul>                                                           |
| Base Case | Landscape-Level                 | Patch Size –              | <ul> <li>Target Active, low weight not to impact timber supply</li> </ul>                                                                                                                                       |
|           | Biodiversity                    | Very Early<br>Seral       | <ul> <li>Implement target ranges for very early seral stage (&lt; 20 years) patches by<br/>NDT, as per the guidelines in the Biodiversity Guidebook (Section 3.2.3).</li> </ul>                                 |
| Base Case | Landscape-Level                 | Patch Size –              | <ul> <li>Report Only, Target Not Active</li> </ul>                                                                                                                                                              |
|           | Biodiversity                    | Mature-Plus-<br>Old Seral | <ul> <li>Report mature-plus-old seral stage patches by NDT relative to targets<br/>identified in the Biodiversity Guidebook (Section 3.2.3).</li> </ul>                                                         |
| Base Case | Watershed                       | Community                 | • Target Active                                                                                                                                                                                                 |
|           | Health                          | Watersheds                | <ul> <li>Implement ECA targets within all Community Watershed Units (Section 3.2.7)</li> </ul>                                                                                                                  |
| Base Case | Watershed                       | Fisheries                 | • Target Active                                                                                                                                                                                                 |
|           | Health                          | Sensitive<br>Watersheds   | <ul> <li>Implement ECA targets within all Fisheries Sensitive Watershed units where<br/>an ECA maximum is required (Section 3.2.8)</li> </ul>                                                                   |
| Base Case | Wildlife Habitat                | Coastal-Tailed            | <ul> <li>Reduce THLB for CTF Wildlife Habitat Areas and point buffers</li> </ul>                                                                                                                                |
|           | and Access                      | Frog                      | <ul> <li>Report only (no targets) the ECA within identified CTF watersheds (Section<br/>3.1.12 and Section 3.2.13)</li> </ul>                                                                                   |
| Base Case | Wildlife Habitat                | Moose                     | <ul> <li>Target Active</li> </ul>                                                                                                                                                                               |
|           | and Access                      | Forage                    | <ul> <li>Maintain a minimum 15% of the net forested land base in early seral stands.<br/>Early seral defined as &lt; 25 years for IDF/ICH and &lt;35 years in MS and ESSF<br/>zones (Section 3.2.12)</li> </ul> |
| Base Case | Wildlife Habitat                | Moose Cover               | <ul> <li>Report Only, Target Not Active</li> </ul>                                                                                                                                                              |
|           | and Access                      |                           | <ul> <li>Report the area of coniferous stands &gt;= 16 metres in height</li> </ul>                                                                                                                              |
|           |                                 |                           | <ul> <li>Report the proportion of cover that is in patches &gt;= 20 hectares</li> </ul>                                                                                                                         |
|           |                                 |                           | <ul> <li>Report on the area of cover that is within 200 metres of lakes, wetlands and<br/>streams</li> </ul>                                                                                                    |
| Base Case | Wildlife Habitat                | Marten                    | <ul> <li>Report Only, Target Not Active</li> </ul>                                                                                                                                                              |
|           | and Access                      | Habitat                   | <ul> <li>Report the amount of early seral in the MS and ESSF zones, plus amount of<br/>old and very old within specific subzones (Section 3.2.14)</li> </ul>                                                    |



| Scenario               | Category                           | Tactic                            | Approach                                                                                                                                                                     |
|------------------------|------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Base Case              | Other                              | Visuals                           | • Target Active                                                                                                                                                              |
|                        |                                    |                                   | <ul> <li>Implement disturbance limits to individual visual polygons according to their recommend VQO</li> </ul>                                                              |
| Base Case              | Other                              | Adjacency                         | • Target Active                                                                                                                                                              |
| Sensitivity            |                                    | Constraints                       | <ul> <li>Implement requirement to limit area below 3 m tall to a maximum of 33%<br/>within a cumulative effects watershed (Section 3.2.15)</li> </ul>                        |
| Reserve                | Candidate<br>Reserves              | Total Score                       | <ul> <li>Candidate Reserves identified by maximizing the total score for anchors,<br/>stand features, and constraints</li> </ul>                                             |
|                        |                                    |                                   | o Run 1 – Spatial OGMAs: Candidate Reserves not implemented                                                                                                                  |
|                        |                                    |                                   | <ul> <li>Run 2 – Candidate Reserves: Harvesting within Candidate Reserves<br/>prevented for the first 40 years of the planning horizon.</li> </ul>                           |
| Harvest                | Minimum<br>Harvest Criteria        | High Volume<br>Partition          | • Establish harvest flow for higher MHC (>200 m <sup>3</sup> /ha). (Section 7.1).                                                                                            |
| Harvest                | Minimum<br>Harvest Criteria        | Low Volume<br>Classes             | <ul> <li>Establish harvest flow that includes three lower MHC classes (75-100 m<sup>3</sup>/ha, 100-150 m<sup>3</sup>/ha, 150-200 m<sup>3</sup>/ha) (Section 7.1)</li> </ul> |
|                        |                                    |                                   | $\circ$ Do not allow harvest less than 150 m³/ha on slopes >45%                                                                                                              |
| Harvest                | Minimum<br>Harvest Criteria        | CMA Criterion                     | <ul> <li>Managed stands must reach 95% of CMAI, and be at least 60 years of age to<br/>be eligible for harvest (Section 7.1)</li> </ul>                                      |
| Harvest                | Harvest Priority                   | Selection                         | <ul> <li>"Smooth" selection harvesting over time (Section 7.2)</li> </ul>                                                                                                    |
|                        |                                    | Harvesting                        | <ul> <li>Do not allow selection harvesting on slopes &gt;=45%</li> </ul>                                                                                                     |
| Harvest                | Harvest Priority                   | Harvest                           | <ul> <li>Implement harvest opening criteria as follows (Section 7.2):</li> </ul>                                                                                             |
|                        |                                    | Opening Size                      | <ul> <li>0 to 1 hectare: None allowed, hard constraint</li> </ul>                                                                                                            |
|                        |                                    |                                   | <ul> <li>1 to 5 hectares: Maximum 5% of harvest area, moderate weight</li> </ul>                                                                                             |
| Harvest                | Harvest Priority                   | Harvest                           | <ul> <li>Report flow by slope class (&lt; 45%, &gt;= 45%) to approximate harvest system</li> </ul>                                                                           |
|                        |                                    | Profile                           |                                                                                                                                                                              |
| Harvest                | Harvest Priority                   | Product<br>Profile                | <ul> <li>Report flow by species/age class to generate interactive report of product<br/>profile over time</li> </ul>                                                         |
| Harvest                | Harvest Priority                   | Wildfire Risk                     | • Target harvest in first 10 years to reduce fire risk, as follows (Section 7.4)                                                                                             |
|                        |                                    |                                   | <ul> <li>Operable stands within WUI</li> </ul>                                                                                                                               |
|                        |                                    |                                   | <ul> <li>Conifer leading stands within landscape-level fuel breaks</li> </ul>                                                                                                |
|                        |                                    |                                   | <ul> <li>Stands identified as "extreme" risk through PSTA</li> </ul>                                                                                                         |
| Harvest<br>Sensitivity | Wildfire<br>Mitigation             | Treatments<br>within WUI          | <ul> <li>Implement modified draft Fire Management Stocking Standards within<br/>Wildland Urban Interface areas (Section 7.4)</li> </ul>                                      |
| Silviculture           | Combine Rehab<br>and Fertilization | Maximize<br>harvest flow          | <ul> <li>Implement alternative treatment options for rehabilitating MPB-impacted<br/>stands, fertilization, and enhanced basic silviculture (Section 8)</li> </ul>           |
|                        | Treatments                         | with                              | $\circ~$ Annual Enhanced Basic Silviculture area limited to 50% of the annual                                                                                                |
|                        |                                    | of silv.                          | clearcut harvest area                                                                                                                                                        |
|                        |                                    | treatments                        | Maximum budget \$3M/year total                                                                                                                                               |
| Silviculture           | Minimum<br>Harvest Critera         | Reduce<br>minimum<br>harvest ages | <ul> <li>Minimum harvest age for managed stands regenerated with enhanced basic<br/>silviculture set to 95% of CMAI (can be lower than 60 years)</li> </ul>                  |
| Silviculture           | Harvest Flow                       | Increase                          | $\circ$ Adjust the harvest request to push the short/mid-term level while matching                                                                                           |
|                        |                                    | short/mid-                        | the long-term level from the Base Case                                                                                                                                       |
|                        |                                    | level                             |                                                                                                                                                                              |

## 10 References

- B.C. Ministry of Forests and B.C. Ministry of Environment, Lands and Parks. 1995. *Biodiversity Guidebook*. Guidebook, Victoria: Forest Practices Code.
- BC Mininistry of Forests. 1999. *Landscape Unit Planning Guide*. Guidebook, British Columbia: Ministry of Environment, Lands and Parks, 101.
- BC Ministry of Forest, Lands and Natural Resource Operations. 2015. "Merritt Timber Supply Area Timber Supply Review Final Technical Report, November 2015."
- BC Ministry of Forests. 1995. "Biodiversity Guidebook."
- BC Ministry of Sustainable Resource Management. 2004. "Order Establishing Provincial Non-Spatial Old Growth Objectives."
- Environment, BC Ministry of. 2004. "Notice Indicators of the Amount, Distribution and Attributes of Wildlife Habitat Required for the Winter Survival of Ungulate Species in the Merritt Timber Supply Area."
- Environment, BC Ministry of. 2008. "Order Ungulate Winter Range #U-3-003, Merritt TSA, Mule Deer."
- Forest Analysis Branch. 2004. Modeling Options for Disturbance of Areas Outside of the Timber Harvesting Land Base. Draft Working Paper, Victoria: Ministry of Forests.
- Winkler R. and S. Boon. 2017. Equivalent clearcut area as an indicator of hydrologic change in snowdominated watersheds of southern British Columbia. Prov. B.C., Victoria, B.C. Exten. Note 118. <u>www.for.gov.bc.ca/hfd/pubs/Docs/En/En118.htm</u>

# Appendix 1 Non-Spatial Old Growth Objectives

|              | BEC Label | Old Target Area (ha) | LU Name      | BEC Label | Old Target Area (ha) |
|--------------|-----------|----------------------|--------------|-----------|----------------------|
| Coldwater    | CWHms1    | 132                  | Similkameen  | ESSFdc2   | 2,552                |
| Coldwater    | ESSFdc2   | 721                  | Similkameen  | ESSFmw    | 35                   |
| Coldwater    | ESSFmw    | 794                  | Similkameen  | ESSFxc    | 1,360                |
| Coldwater    | IDFdk1    | 2,169                | Similkameen  | IDFdk1    | 74                   |
| Coldwater    | IDFdk2    | 1,673                | Similkameen  | IDFdk2    | 2,782                |
| Coldwater    | IDFxh1    | 754                  | Similkameen  | IDFxh1    | 233                  |
| Coldwater    | IDFxh2    | 493                  | Similkameen  | MSdm2     | 4,388                |
| Coldwater    | MSdm2     | 705                  | Similkameen  | Totals    | 11,425               |
| Coldwater    | MSmw      | 294                  | Smith-Willis | ESSFxc    | 961                  |
| Coldwater    | MSxk      | 567                  | Smith-Willis | IDFdk1    | 367                  |
| Coldwater    | PPxh2     | 110                  | Smith-Willis | IDFdk2    | 2,260                |
| Coldwater    | Totals    | 8,412                | Smith-Willis | IDFxh1    | 839                  |
| Hayes        | ESSFdc2   | 3                    | Smith-Willis | MSdm2     | 880                  |
| Hayes        | ESSFxc    | 732                  | Smith-Willis | MSxk      | 3,836                |
| Hayes        | IDFdk1    | 1,097                | Smith-Willis | PPxh1     | 0                    |
| Hayes        | IDFdk2    | 1,725                | Smith-Willis | Totals    | 9,144                |
| Hayes        | IDFxh1    | 330                  | Spius        | CWHms1    | 10                   |
| Hayes        | MSdm2     | 2,533                | Spius        | ESSFdc2   | 1,162                |
| ,<br>Hayes   | MSxk      | 4,055                | Spius        | ESSFmw    | 2,410                |
| Hayes        | Totals    | 10,477               | Spius        | IDFdk1    | 224                  |
| Lower Nicola | ESSFdc2   | 606                  | Spius        | IDFdk2    | 1,814                |
| Lower Nicola | ESSFmw    | 32                   | Spius        | IDFxh1    | 51                   |
| Lower Nicola | ESSFxc    | 150                  | Spius        | IDFxh2    | 762                  |
| Lower Nicola | IDFdk1    | 2,561                | Spius        | MHmm2     | 40                   |
| Lower Nicola | IDFdk2    | 534                  | Spius        | MSdm2     | 1,715                |
| Lower Nicola | IDFxh2    | 4,784                | Spius        | MSmw      | 731                  |
| Lower Nicola | MSdm2     | 618                  | Spius        | MSxk      | 25                   |
| Lower Nicola | MSxk      | 5,591                | Spius        | PPxh2     | 7                    |
| Lower Nicola | PPxh2     | 1,002                | Spius        | Totals    | 8,950                |
| Lower Nicola | Totals    | 15,877               | Summers      | ESSFdc2   | 93                   |
| McNulty      | ESSFxc    | 1,519                | Summers      | ESSFxc    | 215                  |
| ,<br>McNulty | IDFdk1    | 445                  | Summers      | IDFdk1    | 2,451                |
| McNulty      | IDFxh1    | 160                  | Summers      | IDFdk2    | 1,673                |
| McNulty      | MSdm2     | 1,078                | Summers      | IDFxh1    | 644                  |
| McNulty      | MSxk      | 1,574                | Summers      | MSdm2     | 1,971                |
| McNulty      | Totals    | 4,777                | Summers      | MSxk      | 763                  |
| Otter        | ESSFdc2   | 407                  | Summers      | PPxh1     | 15                   |
| Otter        | ESSFxc    | 30                   | Summers      | Totals    | 7,824                |
| Otter        | IDFdk1    | 1,063                | Swakum       | IDFdk1    | 4,660                |
| Otter        | IDFdk2    | 3,439                | Swakum       | IDFxh2    | 1,244                |
| Otter        | IDFxh1    | 182                  | Swakum       | MSxk      | 3,048                |
| Otter        | IDFxh2    | 64                   | Swakum       | PPxh2     | 270                  |
| Otter        | MSdm2     | 1,770                | Swakum       | Totals    | 9,223                |
| Otter        | MSxk      | 153                  | Upper Nicola | ESSFxc    | 163                  |
| Otter        | Totals    | 7,108                | Upper Nicola | IDFdk1    | 4,923                |
| Tulameen     | CWHms1    | 88                   | Upper Nicola | IDFdk2    | 15                   |
| Tulameen     | ESSFdc2   | 2,437                | Upper Nicola | IDFxh2    | 734                  |
| Tulameen     | ESSFmw    | 3,471                | Upper Nicola | MSdm2     | 158                  |
| Tulameen     | ESSFxc    | 16                   | Upper Nicola | MSxk      | 4,657                |
| Tulameen     | IDFdk2    | 919                  | Upper Nicola | PPxh2     | 106                  |
| Tulameen     | IDFxh1    | 18                   | Upper Nicola | Totals    | 10,757               |
| Tulameen     | MSdm2     | 1,840                |              |           |                      |
| Tulameen     | MSmw      | 649                  |              |           |                      |
| Tulameen     | Totals    | 9,436                |              |           |                      |



# Appendix 2 Analysis Unit Details

## Analysis Units for Existing Natural Stands

|         | ANALYSIS UNIT DESCRIPTION (Existing Natural Stands) |        |      |       |         |             | FUTURE MANAGED STAND DESCRIPTION |        |          |         |         |             |               |                 |              |
|---------|-----------------------------------------------------|--------|------|-------|---------|-------------|----------------------------------|--------|----------|---------|---------|-------------|---------------|-----------------|--------------|
|         | Land-                                               | AREA   | AU   | BEC   | Species | VRI Site    | THLB Never                       | Silv.  | Regen AU | Regen   | Regen   | Regen       | Establishment | PHR Site Index  | Species      |
| AU      | base                                                | (ha)   | Pct  | Group | Group   | Index Class | Merch Area (ha)                  | System | 500000   | Method  | Percent | Delay (yrs) | Density (sph) | Range           | Composition  |
| 500000  | THLB                                                | 3,455  | 0.6% | IDF   | DBF     | N/A         | -                                | SEL    | 500000   | N/A     |         |             |               |                 | FD100        |
| 501000  | THLB                                                | 5,802  | 1.0% | IDF   | DBF     | N/A         | -                                | SEL    | 501000   | N/A     |         |             |               |                 | FD100        |
| 502000  | THLB                                                | 14,940 | 2.6% | IDF   | DBF     | N/A         | -                                | SEL    | 502000   | N/A     |         |             |               |                 | FD100        |
| 1000000 | THLB                                                | 5,894  | 1.0% | ESSF  | BL      | <10         | -                                | CCR    | 3007     | Nat/Plt | 25/75   | 2/2         | 4700/1200     | >19.0           | SX47BL33PL20 |
| 1001000 | THLB                                                | 6,448  | 1.1% | ESSF  | BL      | <10         | -                                | CCR    | 3008     | Nat/Plt | 25/75   | 2/2         | 4700/1200     | >15.8 & <=19.0  | SX47BL33PL20 |
| 1002000 | THLB                                                | 4,976  | 0.9% | ESSF  | BL      | <10         | -                                | CCR    | 3009     | Nat/Plt | 25/75   | 2/2         | 4700/1200     | <=15.8          | SX47BL33PL20 |
| 1003000 | THLB                                                | 1,204  | 0.2% | ESSF  | BL      | >=15 & <20  | -                                | CCR    | 3007     | Nat/Plt | 25/75   | 2/2         | 4700/1200     | >19.0           | SX47BL33PL20 |
| 1004000 | THLB                                                | 658    | 0.1% | ESSF  | BL      | >=15 & <20  | -                                | CCR    | 3008     | Nat/Plt | 25/75   | 2/2         | 4700/1200     | >15.8 & <=19.0  | SX47BL33PL20 |
| 1005000 | THLB                                                | 995    | 0.2% | ESSF  | BL      | >=15 & <20  | -                                | CCR    | 3009     | Nat/Plt | 25/75   | 2/2         | 4700/1200     | <=15.8          | SX47BL33PL20 |
| 1006000 | THLB                                                | 61     | 0.0% | ESSF  | BL      | >= 20       | -                                | CCR    | 3007     | Nat/Plt | 25/75   | 2/2         | 4700/1200     | >19.0           | SX47BL33PL20 |
| 1007000 | THLB                                                | 92     | 0.0% | ESSF  | BL      | >= 20       | -                                | CCR    | 3008     | Nat/Plt | 25/75   | 2/2         | 4700/1200     | >15.8 & <=19.0  | SX47BL33PL20 |
| 1008000 | THLB                                                | 7      | 0.0% | ESSF  | BL      | >= 20       | -                                | CCR    | 3009     | Nat/Plt | 25/75   | 2/2         | 4700/1200     | <=15.8          | SX47BL33PL20 |
| 1009000 | THLB                                                | 5      | 0.0% | ESSF  | Dec     | <10         | 5                                | N/A    | 1009000  | N/A     |         |             |               |                 |              |
| 1010000 | THLB                                                | 6      | 0.0% | ESSF  | Dec     | >=15 & <20  | 5                                | N/A    | 1010000  | N/A     |         |             |               |                 |              |
| 1011000 | THLB                                                | 2      | 0.0% | ESSF  | Dec     | >= 20       | -                                | N/A    | 1011000  | N/A     |         |             |               |                 |              |
| 1012000 | THLB                                                | 139    | 0.0% | ESSF  | FD      | <10         | -                                | CCR    | 3001     | Plt     | 100     | 2           | 1200          | >19.0           | PL60SX16BL15 |
| 1013000 | THLB                                                | 104    | 0.0% | ESSF  | FD      | <10         | -                                | CCR    | 3002     | Plt     | 100     | 2           | 1200          | >15.0 & <= 19.0 | PL60SX16BL15 |
| 1014000 | THLB                                                | 12     | 0.0% | ESSF  | FD      | <10         | -                                | CCR    | 3003     | Plt     | 100     | 2           | 1200          | <= 15.0         | PL60SX16BL15 |
| 1015000 | THLB                                                | 343    | 0.1% | ESSF  | FD      | >=15 & <20  | -                                | CCR    | 3001     | Plt     | 100     | 2           | 1200          | >19.0           | PL60SX16BL15 |
| 1016000 | THLB                                                | 158    | 0.0% | ESSF  | FD      | >=15 & <20  | -                                | CCR    | 3002     | Plt     | 100     | 2           | 1200          | >15.0 & <= 19.0 | PL60SX16BL15 |
| 1017000 | THLB                                                | 24     | 0.0% | ESSF  | FD      | >=15 & <20  | -                                | CCR    | 3003     | Plt     | 100     | 2           | 1200          | <= 15.0         | PL60SX16BL15 |
| 1018000 | THLB                                                | 9      | 0.0% | ESSF  | FD      | >= 20       | -                                | CCR    | 3001     | Plt     | 100     | 2           | 1200          | >19.0           | PL60SX16BL15 |
| 1019000 | THLB                                                | 5,501  | 1.0% | ESSF  | PL      | <10         | -                                | CCR    | 3004     | Nat/Plt | 17/83   | 2/2         | 4700/1200     | >17.1           | PL56BL23SX21 |
| 1020000 | THLB                                                | 6,782  | 1.2% | ESSF  | PL      | <10         | -                                | CCR    | 3005     | Nat/Plt | 17/83   | 2/2         | 4700/1200     | >14.1 & <= 17.1 | PL56BL23SX21 |
| 1021000 | THLB                                                | 6,307  | 1.1% | ESSF  | PL      | <10         | -                                | CCR    | 3006     | Nat/Plt | 17/83   | 2/2         | 4700/1200     | <=14.1          | PL56BL23SX21 |
| 1022000 | THLB                                                | 4,260  | 0.7% | ESSF  | PL      | >=15 & <20  | -                                | CCR    | 3004     | Nat/Plt | 17/83   | 2/2         | 4700/1200     | >17.1           | PL56BL23SX21 |
| 1023000 | THLB                                                | 5,451  | 0.9% | ESSF  | PL      | >=15 & <20  | -                                | CCR    | 3005     | Nat/Plt | 17/83   | 2/2         | 4700/1200     | >14.1 & <= 17.1 | PL56BL23SX21 |
| 1024000 | THLB                                                | 3,651  | 0.6% | ESSF  | PL      | >=15 & <20  | -                                | CCR    | 3006     | Nat/Plt | 17/83   | 2/2         | 4700/1200     | <=14.1          | PL56BL23SX21 |
| 1025000 | THLB                                                | 330    | 0.1% | ESSF  | PL      | >= 20       | -                                | CCR    | 3004     | Nat/Plt | 17/83   | 2/2         | 4700/1200     | >17.1           | PL56BL23SX21 |
| 1026000 | THLB                                                | 187    | 0.0% | ESSF  | PL      | >= 20       | -                                | CCR    | 3005     | Nat/Plt | 17/83   | 2/2         | 4700/1200     | >14.1 & <= 17.1 | PL56BL23SX21 |
| 1027000 | THLB                                                | 270    | 0.0% | ESSF  | PL      | >= 20       | -                                | CCR    | 3006     | Nat/Plt | 17/83   | 2/2         | 4700/1200     | <=14.1          | PL56BL23SX21 |
|         |                                                     | 2/0    |      |       |         |             |                                  |        |          | -       |         |             |               |                 |              |

|               | ANALYSIS UNIT DESCRIPTION (Existing Natural Stands) |               |             |               |             |                    |                 |               |          | FUTURE MANAGED STAND DESCRIPTION |       |                    |                                   |                 |                |  |
|---------------|-----------------------------------------------------|---------------|-------------|---------------|-------------|--------------------|-----------------|---------------|----------|----------------------------------|-------|--------------------|-----------------------------------|-----------------|----------------|--|
|               | Land-                                               | AREA          | AU          | BEC           | Species     | VRI Site           | THLB Never      | Silv.         | Regen AU | Regen                            | Regen | Regen              | Establishment                     | PHR Site Index  | Species        |  |
| AU<br>1028000 | base<br>THIB                                        | (ha)<br>3 275 | Pct<br>0.6% | Group<br>ESSE | Group<br>SX | Index Class<br><10 | Merch Area (ha) | System<br>CCR | 3010     | Method<br>Nat/Plt                | 27/73 | Delay (yrs)<br>2/2 | <b>Density (sph)</b><br>4700/1200 | Range<br>>18.1  | PL35SX34BL31   |  |
| 1029000       | THIB                                                | 4 731         | 0.8%        | ESSE          | SX          | <10                | -               | CCR           | 3011     | Nat/Plt                          | 27/73 | 2/2                | 4700/1200                         | >14.7 & <=18.1  | PI 355X34BI 31 |  |
| 1030000       | THLB                                                | 4.541         | 0.8%        | ESSF          | SX          | <10                | -               | CCR           | 3012     | Nat/Plt                          | 27/73 | 2/2                | 4700/1200                         | <=14.7          | PL35SX34BL31   |  |
| 1031000       | THLB                                                | 2.817         | 0.5%        | ESSF          | SX          | >=15 & <20         | -               | CCR           | 3010     | Nat/Plt                          | 27/73 | 2/2                | 4700/1200                         | >18.1           | PL35SX34BL31   |  |
| 1032000       | THLB                                                | 1,468         | 0.3%        | ESSF          | SX          | >=15 & <20         | -               | CCR           | 3011     | Nat/Plt                          | 27/73 | 2/2                | 4700/1200                         | >14.7 & <=18.1  | PL35SX34BL31   |  |
| 1033000       | THLB                                                | 647           | 0.1%        | ESSF          | SX          | >=15 & <20         | -               | CCR           | 3012     | Nat/Plt                          | 27/73 | 2/2                | 4700/1200                         | <=14.7          | PL35SX34BL31   |  |
| 1034000       | THLB                                                | 312           | 0.1%        | ESSF          | SX          | >= 20              | -               | CCR           | 3010     | Nat/Plt                          | 27/73 | 2/2                | 4700/1200                         | >18.1           | PL35SX34BL31   |  |
| 1035000       | THLB                                                | 92            | 0.0%        | ESSF          | SX          | >= 20              | -               | CCR           | 3011     | Nat/Plt                          | 27/73 | 2/2                | 4700/1200                         | >14.7 & <=18.1  | PL35SX34BL31   |  |
| 1036000       | THLB                                                | 133           | 0.0%        | ESSF          | SX          | >= 20              | -               | CCR           | 3012     | Nat/Plt                          | 27/73 | 2/2                | 4700/1200                         | <=14.7          | PL35SX34BL31   |  |
| 1037000       | THLB                                                | 1,678         | 0.3%        | IDF           | Dec         | <10                | 1,537           | N/A           | 1037000  | N/A                              |       |                    |                                   |                 |                |  |
| 1038000       | THLB                                                | 2,021         | 0.4%        | IDF           | Dec         | >=15 & <20         | 1,856           | N/A           | 1038000  | N/A                              |       |                    |                                   |                 |                |  |
| 1039000       | THLB                                                | 575           | 0.1%        | IDF           | Dec         | >= 20              | -               | N/A           | 1039000  | N/A                              |       |                    |                                   |                 |                |  |
| 1040000       | THLB                                                | 12,643        | 2.2%        | IDF           | FD          | <10                | -               | CCR           | 3014     | Plt                              | 100   | 2/3                | 1200/1000                         | >18.8           | PL74FD26       |  |
| 1041000       | THLB                                                | 21,290        | 3.7%        | IDF           | FD          | <10                | -               | CCR           | 3015     | Plt                              | 100   | 2/3                | 1200/1000                         | >17.0 & <=18.8  | PL74FD26       |  |
| 1042000       | THLB                                                | 17,999        | 3.1%        | IDF           | FD          | <10                | -               | CCR           | 3016     | Plt                              | 100   | 2/3                | 1200/1000                         | <=17.0          | PL74FD26       |  |
| 1043000       | THLB                                                | 8,685         | 1.5%        | IDF           | FD          | >=15 & <20         | -               | CCR           | 3014     | Plt                              | 100   | 2/3                | 1200/1000                         | >18.8           | PL74FD26       |  |
| 1044000       | THLB                                                | 9,721         | 1.7%        | IDF           | FD          | >=15 & <20         | -               | CCR           | 3015     | Plt                              | 100   | 2/3                | 1200/1000                         | >17.0 & <=18.8  | PL74FD26       |  |
| 1045000       | THLB                                                | 4,206         | 0.7%        | IDF           | FD          | >=15 & <20         | -               | CCR           | 3016     | Plt                              | 100   | 2/3                | 1200/1000                         | <=17.0          | PL74FD26       |  |
| 1046000       | THLB                                                | 733           | 0.1%        | IDF           | FD          | >= 20              | -               | CCR           | 3014     | Plt                              | 100   | 2/3                | 1200/1000                         | >18.8           | PL74FD26       |  |
| 1047000       | THLB                                                | 356           | 0.1%        | IDF           | FD          | >= 20              | -               | CCR           | 3015     | Plt                              | 100   | 2/3                | 1200/1000                         | >17.0 & <=18.8  | PL74FD26       |  |
| 1048000       | THLB                                                | 130           | 0.0%        | IDF           | FD          | >= 20              | -               | CCR           | 3016     | Plt                              | 100   | 2/3                | 1200/1000                         | <=17.0          | PL74FD26       |  |
| 1049000       | THLB                                                | 9,521         | 1.7%        | IDF           | PL          | <10                | -               | CCR           | 3017     | Plt                              | 100   | 2/3                | 1200/1000                         | >18.9           | PL80FD20       |  |
| 1050000       | THLB                                                | 10,636        | 1.9%        | IDF           | PL          | <10                | -               | CCR           | 3018     | Plt                              | 100   | 2/3                | 1200/1000                         | >17.8 & <= 18.9 | PL80FD20       |  |
| 1051000       | THLB                                                | 9,060         | 1.6%        | IDF           | PL          | <10                | 5               | CCR           | 3019     | Plt                              | 100   | 2/3                | 1200/1000                         | <= 18.9         | PL80FD20       |  |
| 1052000       | THLB                                                | 5,068         | 0.9%        | IDF           | PL          | >=15 & <20         | 5               | CCR           | 3017     | Plt                              | 100   | 2/3                | 1200/1000                         | >18.9           | PL80FD20       |  |
| 1053000       | THLB                                                | 6,340         | 1.1%        | IDF           | PL          | >=15 & <20         | -               | CCR           | 3018     | Plt                              | 100   | 2/3                | 1200/1000                         | >17.8 & <= 18.9 | PL80FD20       |  |
| 1054000       | THLB                                                | 4,398         | 0.8%        | IDF           | PL          | >=15 & <20         | -               | CCR           | 3019     | Plt                              | 100   | 2/3                | 1200/1000                         | <= 18.9         | PL80FD20       |  |
| 1055000       | THLB                                                | 563           | 0.1%        | IDF           | PL          | >= 20              | -               | CCR           | 3017     | Plt                              | 100   | 2/3                | 1200/1000                         | >18.9           | PL80FD20       |  |
| 1056000       | THLB                                                | 294           | 0.1%        | IDF           | PL          | >= 20              | -               | CCR           | 3018     | Plt                              | 100   | 2/3                | 1200/1000                         | >17.8 & <= 18.9 | PL80FD20       |  |
| 1057000       | THLB                                                | 50            | 0.0%        | IDF           | PL          | >= 20              | -               | CCR           | 3019     | Plt                              | 100   | 2/3                | 1200/1000                         | <= 18.9         | PL80FD20       |  |
| 1058000       | THLB                                                | 4,555         | 0.8%        | IDF           | PY          | <10                | -               | CCR           | 3020     | Plt                              | 100   | 2                  | 1200                              | All             | PL86FD14       |  |
| 1059000       | THLB                                                | 914           | 0.2%        | IDF           | PY          | >=15 & <20         | -               | CCR           | 3020     | Plt                              | 100   | 2                  | 1200                              | All             | PL86FD14       |  |
| 1060000       | THLB                                                | 50            | 0.0%        | IDF           | PY          | >= 20              | -               | CCR           | 3020     | Plt                              | 100   | 2                  | 1200                              | All             | PL86FD14       |  |
| 1061000       | THLB                                                | 486           | 0.1%        | IDF           | SX          | <10                | -               | CCR           | 3021     | Plt                              | 100   | 2/1                | 1200/1000                         | >17.9           | PL76FD12SX8BL4 |  |
|               |              | ANA         | LYSIS UN    | NIT DESCRI | PTION (Exis | ting Natural Star | nds)            |        |          |               |                | FUTURE MANAG       | GED STAND DESCRIPT         | ION             |                   |
|---------------|--------------|-------------|-------------|------------|-------------|-------------------|-----------------|--------|----------|---------------|----------------|--------------------|----------------------------|-----------------|-------------------|
|               | Land-        | AREA        | AU          | BEC        | Species     | VRI Site          | THLB Never      | Silv.  | Regen AU | Regen         | Regen          | Regen              | Establishment              | PHR Site Index  | Species           |
| AU<br>1062000 | base<br>THIR | (ha)<br>578 | Pct<br>0.1% | Group      | Group<br>SX | Index Class       | Merch Area (ha) | System | 3022     | Method<br>Plt | Percent<br>100 | Delay (yrs)<br>2/1 | Density (sph)<br>1200/1000 | Range           | Composition       |
| 1063000       | THIR         | 197         | 0.0%        | IDE        | SX          | <10               | _               | CCR    | 3022     | Plt           | 100            | 2/1                | 1200/1000                  | <=16.1          | PI 76FD125X8BI 4  |
| 1064000       | THIR         | 6/9         | 0.0%        | IDE        | SX          | >=15 & <20        | _               | CCR    | 3021     | Plt           | 100            | 2/1                | 1200/1000                  | >17.9           | PI 76FD125X8BI 4  |
| 1065000       | THIR         | 649         | 0.1%        | IDE        | SX          | >=15 & <20        | _               | CCR    | 3022     | Plt           | 100            | 2/1                | 1200/1000                  | >16.1.& <=17.9  | PI 76FD125X8BI 4  |
| 1066000       | THIR         | 132         | 0.0%        | IDE        | SX          | >=15 & <20        | _               | CCR    | 3022     | Plt           | 100            | 2/1                | 1200/1000                  | <=16.1          | PI 76FD125X8BI 4  |
| 1067000       | THIR         | 35          | 0.0%        | IDE        | SX          | >= 20             | _               | CCR    | 3021     | Plt           | 100            | 2/1                | 1200/1000                  | >17.9           | PI 76FD125X8BI 4  |
| 1068000       | THIB         | 44          | 0.0%        | IDF        | SX          | >= 20             | -               | CCR    | 3022     | Plt           | 100            | 2/1                | 1200/1000                  | >16.1 & <=17.9  | PI 76FD125X8BI 4  |
| 1069000       | THIR         | 28          | 0.0%        | IDE        | SX          | >= 20             | _               | CCR    | 3023     | Plt           | 100            | 2/1                | 1200/1000                  | <=16.1          | PI 76FD125X8BI 4  |
| 1070000       | THIR         | 1 027       | 0.2%        | MS         | BI          | <10               | _               | CCR    | 3031     | Plt           | 100            | 2/1                | 1300/1200                  | >19.4           | PI 775X12BI 10ED1 |
| 1071000       | THIR         | 1 1 2 8     | 0.2%        | MS         | BI          | <10               | _               | CCR    | 3032     | Plt           | 100            | 2                  | 1300/1200                  | >17 3 & <= 19 4 | PL775X12BL10FD1   |
| 1072000       | THIB         | 772         | 0.1%        | MS         | BI          | <10               | -               | CCR    | 3033     | Plt           | 100            | - 2                | 1300/1200                  | <= 17.3         | PL775X12BL10FD1   |
| 1073000       | THIB         | 434         | 0.1%        | MS         | BI          | >=15 & <20        | -               | CCR    | 3031     | Plt           | 100            | - 2                | 1300/1200                  | >19.4           | PL775X12BL10FD1   |
| 1074000       | THLB         | 463         | 0.1%        | MS         | BL          | >=15 & <20        | -               | CCR    | 3032     | Plt           | 100            | 2                  | 1300/1200                  | >17.3 & <= 19.4 | PL77SX12BL10FD1   |
| 1075000       | THLB         | 439         | 0.1%        | MS         | BL          | >=15 & <20        | -               | CCR    | 3033     | Plt           | 100            | 2                  | 1300/1200                  | <= 17.3         | PL77SX12BL10FD1   |
| 1076000       | THLB         | 95          | 0.0%        | MS         | BL          | >= 20             | -               | CCR    | 3031     | Plt           | 100            | 2                  | 1300/1200                  | >19.4           | PL77SX12BL10FD1   |
| 1077000       | THLB         | 28          | 0.0%        | MS         | BL          | >= 20             | -               | CCR    | 3032     | Plt           | 100            | 2                  | 1300/1200                  | >17.3 & <= 19.4 | PL77SX12BL10FD1   |
| 1078000       | THLB         | 219         | 0.0%        | MS         | Dec         | <10               | -               | N/A    | 1078000  | N/A           |                |                    |                            |                 |                   |
| 1079000       | THLB         | 310         | 0.1%        | MS         | Dec         | >=15 & <20        | 1,566           | N/A    | 1079000  | N/A           |                |                    |                            |                 |                   |
| 1080000       | THLB         | 38          | 0.0%        | MS         | Dec         | >= 20             | 1,887           | N/A    | 1080000  | N/A           |                |                    |                            |                 |                   |
| 1081000       | THLB         | 2,050       | 0.4%        | MS         | FD          | <10               | 537             | CCR    | 3025     | Plt           | 100            | 2                  | 1300/1000                  | >19.3           | PL75SX8FD7        |
| 1082000       | THLB         | 3,385       | 0.6%        | MS         | FD          | <10               | 6               | CCR    | 3026     | Plt           | 100            | 2                  | 1300/1000                  | >18.0 & <= 19.3 | PL75SX8FD7        |
| 1083000       | THLB         | 3,500       | 0.6%        | MS         | FD          | <10               | -               | CCR    | 3027     | Plt           | 100            | 2                  | 1300/1000                  | <=18.0          | PL75SX8FD7        |
| 1084000       | THLB         | 3,856       | 0.7%        | MS         | FD          | >=15 & <20        | 16,800          | CCR    | 3025     | Plt           | 100            | 2                  | 1300/1000                  | >19.3           | PL75SX8FD7        |
| 1085000       | THLB         | 2,543       | 0.4%        | MS         | FD          | >=15 & <20        | -               | CCR    | 3026     | Plt           | 100            | 2                  | 1300/1000                  | >18.0 & <= 19.3 | PL75SX8FD7        |
| 1086000       | THLB         | 1,732       | 0.3%        | MS         | FD          | >=15 & <20        | -               | CCR    | 3027     | Plt           | 100            | 2                  | 1300/1000                  | <=18.0          | PL75SX8FD7        |
| 1087000       | THLB         | 172         | 0.0%        | MS         | FD          | >= 20             | -               | CCR    | 3025     | Plt           | 100            | 2                  | 1300/1000                  | >19.3           | PL75SX8FD7        |
| 1088000       | THLB         | 133         | 0.0%        | MS         | FD          | >= 20             | -               | CCR    | 3026     | Plt           | 100            | 2                  | 1300/1000                  | >18.0 & <= 19.3 | PL75SX8FD7        |
| 1089000       | THLB         | 30          | 0.0%        | MS         | FD          | >= 20             | -               | CCR    | 3027     | Plt           | 100            | 2                  | 1300/1000                  | <=18.0          | PL75SX8FD7        |
| 1090000       | THLB         | 16,769      | 2.9%        | MS         | PL          | <10               | -               | CCR    | 3028     | Plt           | 100            | 2                  | 1300                       | >17.9           | PL82BI10SX8       |
| 1091000       | THLB         | 21,024      | 3.7%        | MS         | PL          | <10               | -               | CCR    | 3029     | Plt           | 100            | 2                  | 1300                       | >17.3 & <=17.9  | PL82BI10SX8       |
| 1092000       | THLB         | 22,511      | 3.9%        | MS         | PL          | <10               | -               | CCR    | 3030     | Plt           | 100            | 2                  | 1300                       | <=17.3          | PL82BI10SX8       |
| 1093000       | THLB         | 12,112      | 2.1%        | MS         | PL          | >=15 & <20        | -               | CCR    | 3028     | Plt           | 100            | 2                  | 1300                       | >17.9           | PL82BI10SX8       |
| 1094000       | THLB         | 9,352       | 1.6%        | MS         | PL          | >=15 & <20        | -               | CCR    | 3029     | Plt           | 100            | 2                  | 1300                       | >17.3 & <=17.9  | PL82BI10SX8       |
| 1095000       | THLB         | 9,671       | 1.7%        | MS         | PL          | >=15 & <20        | -               | CCR    | 3030     | Plt           | 100            | 2                  | 1300                       | <=17.3          | PL82BI10SX8       |
|               |              |             |             |            |             |                   |                 |        | -        |               |                |                    |                            |                 |                   |

|         |       | ANA          | LYSIS UN | IT DESCRI | PTION (Exis | ting Natural Sta | nds)            |        |          |            |         | FUTURE MANA | GED STAND DESCRIPT | ION              |                  |
|---------|-------|--------------|----------|-----------|-------------|------------------|-----------------|--------|----------|------------|---------|-------------|--------------------|------------------|------------------|
|         | Land- | AREA         | AU       | BEC       | Species     | VRI Site         | THLB Never      | Silv.  | Regen AU | Regen      | Regen   | Regen       | Establishment      | PHR Site Index   | Species          |
| AU      | base  | (ha)         | Pct      | Group     | Group       | Index Class      | Merch Area (ha) | System | 2028     | Method     | Percent | Delay (yrs) | Density (sph)      | Range            | Composition      |
| 1090000 | тнів  | 1,390        | 0.2%     | MS        |             | >= 20            |                 | CCR    | 3028     | PIL<br>DIt | 100     | 2           | 1300               | >17.3            | PL82BI105X8      |
| 1097000 | тнів  | 795<br>E07   | 0.1%     | MS        |             | >= 20            |                 | CCR    | 3029     | PIL<br>DIt | 100     | 2           | 1300               | ~-17.3           | PL82BI105X8      |
| 1098000 | тнів  | 587<br>1 699 | 0.1%     | MS        | FL<br>SY    | ~10              |                 | CCR    | 3030     | Nat/DIt    | 7/02    | 2           | 1300               | <=17.3<br>\18.3  |                  |
| 1100000 | тнів  | 2 017        | 0.5%     | MS        | SX<br>SX    | <10              | 1 251           | CCR    | 3034     | Nat/Pit    | 7/03    | 2           | 5500/1300/1200     | >17 2 8 ~- 18 3  |                  |
| 1101000 | THIR  | 2,917        | 0.5%     | MS        | SX<br>SX    | <10              | 4,231           | CCR    | 3035     | Nat/Plt    | 7/93    | 2           | 5500/1300/1200     | <=17.3           | PL715X14BL14FD1  |
| 1101000 | THIB  | 1 976        | 0.3%     | MS        | SX          | >=15 & <20       |                 | CCR    | 3034     | Nat/Plt    | 7/93    | 2           | 5500/1300/1200     | \$18.3           | PI 715X14BL14FD1 |
| 1102000 | THIB  | 1,870        | 0.3%     | MS        | SX          | >=15 & <20       |                 | CCR    | 3035     | Nat/Plt    | 7/93    | 2           | 5500/1300/1200     | >17.3 & < = 18.3 | PI 715X14BL14FD1 |
| 1103000 | THIB  | 857          | 0.5%     | MS        | SX          | >=15 & <20       |                 | CCR    | 3036     | Nat/Plt    | 7/93    | 2           | 5500/1300/1200     | <=17.3           | PI 715X14BL14FD1 |
| 1105000 | THIB  | 257          | 0.1%     | MS        | SX          | >= 20            | _               | CCR    | 3034     | Nat/Plt    | 7/93    | 2           | 5500/1300/1200     | >18 3            | PI 715X14BL14FD1 |
| 1106000 | THIR  | 264          | 0.0%     | MS        | SX          | >= 20            | _               | CCR    | 3035     | Nat/Plt    | 7/93    | 2           | 5500/1300/1200     | >17 3 & <= 18 3  | PI 715X14BL14FD1 |
| 1107000 | THIB  | 12           | 0.0%     | MS        | SX          | >= 20            | _               | CCR    | 3036     | Nat/Plt    | 7/93    | 2           | 5500/1300/1200     | <=17.3           | PI 71SX14BL14FD1 |
| 1500000 | NHLB  | 9.462        | 1.6%     | ESSE      | BL          | <10              | -               | N/A    | 1500000  | N/A        | 1755    | -           | 5500, 1500, 1200   | 1110             |                  |
| 1501000 | NHLB  | 10.500       | 1.8%     | ESSE      | BL          | <10              | -               | N/A    | 1501000  | N/A        |         |             |                    |                  |                  |
| 1502000 | NHLB  | 11.451       | 2.0%     | ESSF      | BL          | <10              | -               | N/A    | 1502000  | N/A        |         |             |                    |                  |                  |
| 1503000 | NHLB  | 542          | 0.1%     | ESSF      | BL          | >=15 & <20       | -               | N/A    | 1503000  | N/A        |         |             |                    |                  |                  |
| 1504000 | NHLB  | 368          | 0.1%     | ESSF      | BL          | >=15 & <20       | -               | N/A    | 1504000  | N/A        |         |             |                    |                  |                  |
| 1505000 | NHLB  | 589          | 0.1%     | ESSF      | BL          | >=15 & <20       | -               | N/A    | 1505000  | N/A        |         |             |                    |                  |                  |
| 1506000 | NHLB  | 94           | 0.0%     | ESSF      | BL          | >= 20            | -               | N/A    | 1506000  | N/A        |         |             |                    |                  |                  |
| 1507000 | NHLB  | 187          | 0.0%     | ESSF      | BL          | >= 20            | -               | N/A    | 1507000  | N/A        |         |             |                    |                  |                  |
| 1508000 | NHLB  | -            | 0.0%     | ESSF      | BL          | >= 20            | -               | N/A    | 1508000  | N/A        |         |             |                    |                  |                  |
| 1509000 | NHLB  | 6            | 0.0%     | ESSF      | Dec         | <10              | -               | N/A    | 1509000  | N/A        |         |             |                    |                  |                  |
| 1510000 | NHLB  | 5            | 0.0%     | ESSF      | Dec         | >=15 & <20       | -               | N/A    | 1510000  | N/A        |         |             |                    |                  |                  |
| 1511000 | NHLB  | 13           | 0.0%     | ESSF      | Dec         | >= 20            | -               | N/A    | 1511000  | N/A        |         |             |                    |                  |                  |
| 1512000 | NHLB  | 73           | 0.0%     | ESSF      | FD          | <10              | 205             | N/A    | 1512000  | N/A        |         |             |                    |                  |                  |
| 1513000 | NHLB  | 84           | 0.0%     | ESSF      | FD          | <10              | 289             | N/A    | 1513000  | N/A        |         |             |                    |                  |                  |
| 1514000 | NHLB  | 312          | 0.1%     | ESSF      | FD          | <10              | -               | N/A    | 1514000  | N/A        |         |             |                    |                  |                  |
| 1515000 | NHLB  | 84           | 0.0%     | ESSF      | FD          | >=15 & <20       | -               | N/A    | 1515000  | N/A        |         |             |                    |                  |                  |
| 1516000 | NHLB  | 230          | 0.0%     | ESSF      | FD          | >=15 & <20       | -               | N/A    | 1516000  | N/A        |         |             |                    |                  |                  |
| 1517000 | NHLB  | 272          | 0.0%     | ESSF      | FD          | >=15 & <20       | -               | N/A    | 1517000  | N/A        |         |             |                    |                  |                  |
| 1518000 | NHLB  | 41           | 0.0%     | ESSF      | FD          | >= 20            | -               | N/A    | 1518000  | N/A        |         |             |                    |                  |                  |
| 1519000 | NHLB  | 3            | 0.0%     | ESSF      | FD          | >= 20            | -               | N/A    | 1519000  | N/A        |         |             |                    |                  |                  |
| 1520000 | NHLB  | 114          | 0.0%     | ESSF      | FD          | >= 20            | -               | N/A    | 1520000  | N/A        |         |             |                    |                  |                  |
| 1521000 | NHLB  | 2,613        | 0.5%     | ESSF      | PL          | <10              | -               | N/A    | 1521000  | N/A        |         |             |                    |                  |                  |

|               |              | ANA           | LYSIS UN | NIT DESCRI    | PTION (Exis | ting Natural Sta              | nds)            |        |          |               |         | FUTURE MANA | GED STAND DESCRIPT | ION            |             |
|---------------|--------------|---------------|----------|---------------|-------------|-------------------------------|-----------------|--------|----------|---------------|---------|-------------|--------------------|----------------|-------------|
|               | Land-        | AREA          | AU       | BEC           | Species     | VRI Site                      | THLB Never      | Silv.  | Regen AU | Regen         | Regen   | Regen       | Establishment      | PHR Site Index | Species     |
| AU<br>1522000 | base<br>NHLB | (ha)<br>1 764 | 0.3%     | Group<br>FSSF | Group<br>Pl | <pre>Index Class &lt;10</pre> | Merch Area (ha) | System | 1522000  | Method<br>N/A | Percent | Delay (yrs) | Density (sph)      | Range          | Composition |
| 1523000       | NHIB         | 2 718         | 0.5%     | ESSE          | PI          | <10                           | -               | N/A    | 1523000  | N/A           |         |             |                    |                |             |
| 1524000       | NHLB         | 1 003         | 0.2%     | ESSE          | PL          | >=15 & <20                    | -               | N/A    | 1524000  | N/A           |         |             |                    |                |             |
| 1525000       | NHLB         | 1,005         | 0.2%     | FSSE          | PI          | >=15 & <20                    | -               | Ν/Δ    | 1525000  | Ν/Δ           |         |             |                    |                |             |
| 1526000       | NHIB         | 61/           | 0.2%     | ESSE          | PI          | >=15 & <20                    |                 | N/A    | 1526000  | N/A           |         |             |                    |                |             |
| 1527000       | NHIB         | 56            | 0.0%     | FSSF          | PI          | >= 20                         | _               | N/A    | 1527000  | N/A           |         |             |                    |                |             |
| 1528000       | NHIB         | 14            | 0.0%     | FSSF          | PI          | >= 20                         | -               | N/A    | 1528000  | N/A           |         |             |                    |                |             |
| 1529000       | NHLB         | 121           | 0.0%     | ESSE          | PL          | >= 20                         | -               | N/A    | 1529000  | N/A           |         |             |                    |                |             |
| 1530000       | NHLB         | 2.582         | 0.4%     | ESSE          | SX          | <10                           | -               | N/A    | 1530000  | N/A           |         |             |                    |                |             |
| 1531000       | NHLB         | 2,980         | 0.5%     | ESSE          | SX          | <10                           | -               | N/A    | 1531000  | N/A           |         |             |                    |                |             |
| 1532000       | NHLB         | 4.261         | 0.7%     | ESSF          | SX          | <10                           | -               | N/A    | 1532000  | N/A           |         |             |                    |                |             |
| 1533000       | NHLB         | 1.077         | 0.2%     | ESSF          | SX          | >=15 & <20                    | -               | N/A    | 1533000  | ,<br>N/A      |         |             |                    |                |             |
| 1534000       | NHLB         | 989           | 0.2%     | ESSF          | SX          | >=15 & <20                    | -               | N/A    | 1534000  | N/A           |         |             |                    |                |             |
| 1535000       | NHLB         | 724           | 0.1%     | ESSF          | SX          | >=15 & <20                    | -               | N/A    | 1535000  | N/A           |         |             |                    |                |             |
| 1536000       | NHLB         | 234           | 0.0%     | ESSF          | SX          | >= 20                         | -               | N/A    | 1536000  | N/A           |         |             |                    |                |             |
| 1537000       | NHLB         | 359           | 0.1%     | ESSF          | SX          | >= 20                         | -               | N/A    | 1537000  | N/A           |         |             |                    |                |             |
| 1538000       | NHLB         | 214           | 0.0%     | ESSF          | SX          | >= 20                         | -               | N/A    | 1538000  | N/A           |         |             |                    |                |             |
| 1539000       | NHLB         | 1,761         | 0.3%     | IDF           | Dec         | <10                           | -               | N/A    | 1539000  | N/A           |         |             |                    |                |             |
| 1540000       | NHLB         | 1,925         | 0.3%     | IDF           | Dec         | >=15 & <20                    | -               | N/A    | 1540000  | N/A           |         |             |                    |                |             |
| 1541000       | NHLB         | 583           | 0.1%     | IDF           | Dec         | >= 20                         | -               | N/A    | 1541000  | N/A           |         |             |                    |                |             |
| 1542000       | NHLB         | 17,064        | 3.0%     | IDF           | FD          | <10                           | -               | N/A    | 1542000  | N/A           |         |             |                    |                |             |
| 1543000       | NHLB         | 22,844        | 4.0%     | IDF           | FD          | <10                           | -               | N/A    | 1543000  | N/A           |         |             |                    |                |             |
| 1544000       | NHLB         | 26,628        | 4.6%     | IDF           | FD          | <10                           | -               | N/A    | 1544000  | N/A           |         |             |                    |                |             |
| 1545000       | NHLB         | 11,529        | 2.0%     | IDF           | FD          | >=15 & <20                    | -               | N/A    | 1545000  | N/A           |         |             |                    |                |             |
| 1546000       | NHLB         | 7,679         | 1.3%     | IDF           | FD          | >=15 & <20                    | -               | N/A    | 1546000  | N/A           |         |             |                    |                |             |
| 1547000       | NHLB         | 4,036         | 0.7%     | IDF           | FD          | >=15 & <20                    | -               | N/A    | 1547000  | N/A           |         |             |                    |                |             |
| 1548000       | NHLB         | 578           | 0.1%     | IDF           | FD          | >= 20                         | -               | N/A    | 1548000  | N/A           |         |             |                    |                |             |
| 1549000       | NHLB         | 197           | 0.0%     | IDF           | FD          | >= 20                         | -               | N/A    | 1549000  | N/A           |         |             |                    |                |             |
| 1550000       | NHLB         | 89            | 0.0%     | IDF           | FD          | >= 20                         | -               | N/A    | 1550000  | N/A           |         |             |                    |                |             |
| 1551000       | NHLB         | 2,375         | 0.4%     | IDF           | PL          | <10                           | -               | N/A    | 1551000  | N/A           |         |             |                    |                |             |
| 1552000       | NHLB         | 1,757         | 0.3%     | IDF           | PL          | <10                           | -               | N/A    | 1552000  | N/A           |         |             |                    |                |             |
| 1553000       | NHLB         | 2,048         | 0.4%     | IDF           | PL          | <10                           | -               | N/A    | 1553000  | N/A           |         |             |                    |                |             |
| 1554000       | NHLB         | 1,323         | 0.2%     | IDF           | PL          | >=15 & <20                    | -               | N/A    | 1554000  | N/A           |         |             |                    |                |             |
| 1555000       | NHLB         | 1,149         | 0.2%     | IDF           | PL          | >=15 & <20                    | -               | N/A    | 1555000  | N/A           |         |             |                    |                |             |

|               |              | ANA         | LYSIS UN | IT DESCRI | PTION (Exis | ting Natural Sta | nds)            |        |          |          |         | FUTURE MANA | GED STAND DESCRIPT | ION            |             |
|---------------|--------------|-------------|----------|-----------|-------------|------------------|-----------------|--------|----------|----------|---------|-------------|--------------------|----------------|-------------|
|               | Land-        | AREA        | AU       | BEC       | Species     | VRI Site         | THLB Never      | Silv.  | Regen AU | Regen    | Regen   | Regen       | Establishment      | PHR Site Index | Species     |
| AU<br>1556000 | base<br>NHLB | (ha)<br>015 | 0.2%     | Group     | Group       | Index Class      | Merch Area (ha) | System | 1556000  | Method   | Percent | Delay (yrs) | Density (sph)      | Range          | Composition |
| 1557000       | NHIB         | 232         | 0.0%     | IDF       | PI          | >= 20            | -               | N/A    | 1557000  | N/A      |         |             |                    |                |             |
| 1558000       | NHIB         | 100         | 0.0%     | IDF       | PI          | >= 20            | -               | N/A    | 1558000  | N/A      |         |             |                    |                |             |
| 1559000       | NHLB         | 20          | 0.0%     | IDF       | PL          | >= 20            | -               | N/A    | 1559000  | N/A      |         |             |                    |                |             |
| 1560000       | NHLB         | 9.327       | 1.6%     | IDF       | PY          | <10              | -               | N/A    | 1560000  | N/A      |         |             |                    |                |             |
| 1561000       | NHLB         | 508         | 0.1%     | IDF       | PY          | >=15 & <20       | -               | N/A    | 1561000  | ,<br>N/A |         |             |                    |                |             |
| 1562000       | NHLB         | 28          | 0.0%     | IDF       | PY          | >= 20            | -               | N/A    | 1562000  | N/A      |         |             |                    |                |             |
| 1563000       | NHLB         | 360         | 0.1%     | IDF       | SX          | <10              | -               | N/A    | 1563000  | N/A      |         |             |                    |                |             |
| 1564000       | NHLB         | 334         | 0.1%     | IDF       | SX          | <10              | -               | N/A    | 1564000  | N/A      |         |             |                    |                |             |
| 1565000       | NHLB         | 37          | 0.0%     | IDF       | SX          | <10              | -               | N/A    | 1565000  | N/A      |         |             |                    |                |             |
| 1566000       | NHLB         | 530         | 0.1%     | IDF       | SX          | >=15 & <20       | -               | N/A    | 1566000  | N/A      |         |             |                    |                |             |
| 1567000       | NHLB         | 579         | 0.1%     | IDF       | SX          | >=15 & <20       | -               | N/A    | 1567000  | N/A      |         |             |                    |                |             |
| 1568000       | NHLB         | 56          | 0.0%     | IDF       | SX          | >=15 & <20       | -               | N/A    | 1568000  | N/A      |         |             |                    |                |             |
| 1569000       | NHLB         | 43          | 0.0%     | IDF       | SX          | >= 20            | -               | N/A    | 1569000  | N/A      |         |             |                    |                |             |
| 1570000       | NHLB         | 150         | 0.0%     | IDF       | SX          | >= 20            | -               | N/A    | 1570000  | N/A      |         |             |                    |                |             |
| 1571000       | NHLB         | 18          | 0.0%     | IDF       | SX          | >= 20            | -               | N/A    | 1571000  | N/A      |         |             |                    |                |             |
| 1572000       | NHLB         | 765         | 0.1%     | MS        | BL          | <10              | -               | N/A    | 1572000  | N/A      |         |             |                    |                |             |
| 1573000       | NHLB         | 270         | 0.0%     | MS        | BL          | <10              | -               | N/A    | 1573000  | N/A      |         |             |                    |                |             |
| 1574000       | NHLB         | 285         | 0.0%     | MS        | BL          | <10              | -               | N/A    | 1574000  | N/A      |         |             |                    |                |             |
| 1575000       | NHLB         | 69          | 0.0%     | MS        | BL          | >=15 & <20       | -               | N/A    | 1575000  | N/A      |         |             |                    |                |             |
| 1576000       | NHLB         | 37          | 0.0%     | MS        | BL          | >=15 & <20       | -               | N/A    | 1576000  | N/A      |         |             |                    |                |             |
| 1577000       | NHLB         | 11          | 0.0%     | MS        | BL          | >=15 & <20       | -               | N/A    | 1577000  | N/A      |         |             |                    |                |             |
| 1578000       | NHLB         | 9           | 0.0%     | MS        | BL          | >= 20            | -               | N/A    | 1578000  | N/A      |         |             |                    |                |             |
| 1579000       | NHLB         | 1           | 0.0%     | MS        | BL          | >= 20            | -               | N/A    | 1579000  | N/A      |         |             |                    |                |             |
| 1580000       | NHLB         | 209         | 0.0%     | MS        | Dec         | <10              | -               | N/A    | 1580000  | N/A      |         |             |                    |                |             |
| 1581000       | NHLB         | 255         | 0.0%     | MS        | Dec         | >=15 & <20       | -               | N/A    | 1581000  | N/A      |         |             |                    |                |             |
| 1582000       | NHLB         | 35          | 0.0%     | MS        | Dec         | >= 20            | -               | N/A    | 1582000  | N/A      |         |             |                    |                |             |
| 1583000       | NHLB         | 1,090       | 0.2%     | MS        | FD          | <10              | -               | N/A    | 1583000  | N/A      |         |             |                    |                |             |
| 1584000       | NHLB         | 2,084       | 0.4%     | MS        | FD          | <10              | -               | N/A    | 1584000  | N/A      |         |             |                    |                |             |
| 1585000       | NHLB         | 2,881       | 0.5%     | MS        | FD          | <10              | -               | N/A    | 1585000  | N/A      |         |             |                    |                |             |
| 1586000       | NHLB         | 1,666       | 0.3%     | MS        | FD          | >=15 & <20       | -               | N/A    | 1586000  | N/A      |         |             |                    |                |             |
| 1587000       | NHLB         | 857         | 0.1%     | MS        | FD          | >=15 & <20       | -               | N/A    | 1587000  | N/A      |         |             |                    |                |             |
| 1588000       | NHLB         | 1,234       | 0.2%     | MS        | FD          | >=15 & <20       | -               | N/A    | 1588000  | N/A      |         |             |                    |                |             |
| 1589000       | NHLB         | 74          | 0.0%     | MS        | FD          | >= 20            | -               | N/A    | 1589000  | N/A      |         |             |                    |                |             |

|         |       | ANA   | LYSIS UN | NIT DESCRI | PTION (Exis | ting Natural Sta | nds)            |        |          |        |         | FUTURE MANAG | GED STAND DESCRIPT | ION            |             |
|---------|-------|-------|----------|------------|-------------|------------------|-----------------|--------|----------|--------|---------|--------------|--------------------|----------------|-------------|
|         | Land- | AREA  | AU       | BEC        | Species     | VRI Site         | THLB Never      | Silv.  | Regen AU | Regen  | Regen   | Regen        | Establishment      | PHR Site Index | Species     |
| AU      | base  | (ha)  | Pct      | Group      | Group       | Index Class      | Merch Area (ha) | System |          | Method | Percent | Delay (yrs)  | Density (sph)      | Range          | Composition |
| 1590000 | NHLB  | 91    | 0.0%     | MS         | FD          | >= 20            | -               | N/A    | 1590000  | N/A    |         |              |                    |                |             |
| 1591000 | NHLB  | 96    | 0.0%     | MS         | FD          | >= 20            | -               | N/A    | 1591000  | N/A    |         |              |                    |                |             |
| 1592000 | NHLB  | 4,785 | 0.8%     | MS         | PL          | <10              | -               | N/A    | 1592000  | N/A    |         |              |                    |                |             |
| 1593000 | NHLB  | 4,214 | 0.7%     | MS         | PL          | <10              | -               | N/A    | 1593000  | N/A    |         |              |                    |                |             |
| 1594000 | NHLB  | 3,950 | 0.7%     | MS         | PL          | <10              | -               | N/A    | 1594000  | N/A    |         |              |                    |                |             |
| 1595000 | NHLB  | 2,994 | 0.5%     | MS         | PL          | >=15 & <20       | -               | N/A    | 1595000  | N/A    |         |              |                    |                |             |
| 1596000 | NHLB  | 2,312 | 0.4%     | MS         | PL          | >=15 & <20       | -               | N/A    | 1596000  | N/A    |         |              |                    |                |             |
| 1597000 | NHLB  | 1,691 | 0.3%     | MS         | PL          | >=15 & <20       | -               | N/A    | 1597000  | N/A    |         |              |                    |                |             |
| 1598000 | NHLB  | 363   | 0.1%     | MS         | PL          | >= 20            | -               | N/A    | 1598000  | N/A    |         |              |                    |                |             |
| 1599000 | NHLB  | 163   | 0.0%     | MS         | PL          | >= 20            | -               | N/A    | 1599000  | N/A    |         |              |                    |                |             |
| 1600000 | NHLB  | 62    | 0.0%     | MS         | PL          | >= 20            | -               | N/A    | 1600000  | N/A    |         |              |                    |                |             |
| 1601000 | NHLB  | 1,053 | 0.2%     | MS         | SX          | <10              | -               | N/A    | 1601000  | N/A    |         |              |                    |                |             |
| 1602000 | NHLB  | 1,788 | 0.3%     | MS         | SX          | <10              | -               | N/A    | 1602000  | N/A    |         |              |                    |                |             |
| 1603000 | NHLB  | 1,567 | 0.3%     | MS         | SX          | <10              | -               | N/A    | 1603000  | N/A    |         |              |                    |                |             |
| 1604000 | NHLB  | 1,372 | 0.2%     | MS         | SX          | >=15 & <20       | -               | N/A    | 1604000  | N/A    |         |              |                    |                |             |
| 1605000 | NHLB  | 736   | 0.1%     | MS         | SX          | >=15 & <20       | -               | N/A    | 1605000  | N/A    |         |              |                    |                |             |
| 1606000 | NHLB  | 239   | 0.0%     | MS         | SX          | >=15 & <20       | -               | N/A    | 1606000  | N/A    |         |              |                    |                |             |
| 1607000 | NHLB  | 405   | 0.1%     | MS         | SX          | >= 20            | -               | N/A    | 1607000  | N/A    |         |              |                    |                |             |
| 1608000 | NHLB  | 189   | 0.0%     | MS         | SX          | >= 20            | -               | N/A    | 1608000  | N/A    |         |              |                    |                |             |
| 1609000 | NHLB  | 32    | 0.0%     | MS         | SX          | >= 20            | -               | N/A    | 1609000  | N/A    |         |              |                    |                |             |

#### Notes:

The analysis units described here do not include criteria that divide units further (e.g., Age class for MPB attacked stands, MPB impact classes) BEC Groups: ESSF(ESSF, CWH, MH, IMA);IDF(IDF, BG, PP);MS (MS)

Species Groups: PL=Pine leading, SX=Spruce leading; BL = Balsam leading; FD=Douglas-fir leading; PY=Ponderosa Pine leading; Dec=Deciduous leading Silvicultural systems: CCR=clearcut with reserves; SEL=selection

Analysis units were stratified on basis of BEC, Leading Species, VRI Site Index, PHR Site Index, Silviculture System, and MPB years since attack / %Dead

### Analysis Units and TIPSY Inputs for Existing Managed Stands

|      |       |              |       |      | A     | NALYSIS UNI | IT DESCRIPTION (Exis | ting Manage | d Stands) |       |               |              |       | FUTURE MANAGED |
|------|-------|--------------|-------|------|-------|-------------|----------------------|-------------|-----------|-------|---------------|--------------|-------|----------------|
|      | Land- | Silviculture | AREA  | AU   | BEC   | Species     | PHR Site Index       | Regen       | Regen     | Delay | Establishment | Species      | Silv. |                |
| AU   | Base  | Era          | (ha)  | Pct  | Group | Group       | Range                | Method      | Percent   | (yrs) | Density (sph) | Composition  | Sys   | Regen AU       |
| 1001 | THLB  | Old Managed  | 1     | 0.0% | ESSF  | FD          | >19.0                | Plt         | 100       | 2     | 1200          | PL60SX16BL15 | CCR   | 3001           |
| 1002 | THLB  | Old Managed  | 13    | 0.0% | ESSF  | FD          | >15.0 & <= 19.0      | Plt         | 100       | 2     | 1200          | PL60SX16BL15 | CCR   | 3002           |
| 1003 | THLB  | Old Managed  | 3,430 | 1.5% | ESSF  | PL          | >17.1                | Nat/Plt     | 17/83     | 2/2   | 4700/1200     | PL56BL23SX21 | CCR   | 3004           |
| 1004 | THLB  | Old Managed  | 2,797 | 1.2% | ESSF  | PL          | >14.1 & <= 17.1      | Nat/Plt     | 17/83     | 2/2   | 4700/1200     | PL56BL23SX21 | CCR   | 3005           |

|      |       |              |        |      | Α     | NALYSIS UN | T DESCRIPTION (Exis | ting Manage | d Stands) |       |                |                 |       | FUTURE MANAGED |
|------|-------|--------------|--------|------|-------|------------|---------------------|-------------|-----------|-------|----------------|-----------------|-------|----------------|
|      | Land- | Silviculture | AREA   | AU   | BEC   | Species    | PHR Site Index      | Regen       | Regen     | Delay | Establishment  | Species         | Silv. |                |
| AU   | Base  | Era          | (ha)   | Pct  | Group | Group      | Range               | Method      | Percent   | (yrs) | Density (sph)  | Composition     | Sys   | Regen AU       |
| 1005 | THLB  | Old Managed  | 3,306  | 1.4% | ESSF  | PL         | <=14.1              | Nat/Plt     | 17/83     | 2/2   | 4700/1200      | PL56BL23SX21    | CCR   | 3006           |
| 1006 | THLB  | Old Managed  | 501    | 0.2% | ESSF  | BL         | >19.0               | Nat/Plt     | 25/75     | 2/2   | 4700/1200      | SX47BL33PL20    | CCR   | 3007           |
| 1007 | THLB  | Old Managed  | 1,339  | 0.6% | ESSF  | BL         | >15.8 & <=19.0      | Nat/Plt     | 25/75     | 2/2   | 4700/1200      | SX47BL33PL20    | CCR   | 3008           |
| 1008 | THLB  | Old Managed  | 792    | 0.3% | ESSF  | BL         | <=15.8              | Nat/Plt     | 25/75     | 2/2   | 4700/1200      | SX47BL33PL20    | CCR   | 3009           |
| 1009 | THLB  | Old Managed  | 2,331  | 1.0% | ESSF  | SX         | >18.1               | Nat/Plt     | 27/73     | 2/2   | 4700/1200      | PL35SX34BL31    | CCR   | 3010           |
| 1010 | THLB  | Old Managed  | 1,554  | 0.7% | ESSF  | SX         | >14.7 & <=18.1      | Nat/Plt     | 27/73     | 2/2   | 4700/1200      | PL35SX34BL31    | CCR   | 3011           |
| 1011 | THLB  | Old Managed  | 1,280  | 0.6% | ESSF  | SX         | <=14.7              | Nat/Plt     | 27/73     | 2/2   | 4700/1200      | PL35SX34BL31    | CCR   | 3012           |
| 1012 | THLB  | Old Managed  | 2,000  | 0.9% | IDF   | FD         | >18.8               | Plt         | 100       | 2/3   | 1200/1000      | PL74FD26        | CCR   | 3014           |
| 1013 | THLB  | Old Managed  | 995    | 0.4% | IDF   | FD         | >17.0 & <=18.8      | Plt         | 100       | 2/3   | 1200/1000      | PL74FD26        | CCR   | 3015           |
| 1014 | THLB  | Old Managed  | 378    | 0.2% | IDF   | FD         | <=17.0              | Plt         | 100       | 2/3   | 1200/1000      | PL74FD26        | CCR   | 3016           |
| 1015 | THLB  | Old Managed  | 9,152  | 4.0% | IDF   | PL         | >18.9               | Plt         | 100       | 2/3   | 1200/1000      | PL80FD20        | CCR   | 3017           |
| 1016 | THLB  | Old Managed  | 9,189  | 4.0% | IDF   | PL         | >17.8 & <= 18.9     | Plt         | 100       | 2/3   | 1200/1000      | PL80FD20        | CCR   | 3018           |
| 1017 | THLB  | Old Managed  | 6,169  | 2.7% | IDF   | PL         | <= 18.9             | Plt         | 100       | 2/3   | 1200/1000      | PL80FD20        | CCR   | 3019           |
| 1018 | THLB  | Old Managed  | 303    | 0.1% | IDF   | PY         | All                 | Plt         | 100       | 2     | 1200           | PL86FD14        | CCR   | 3020           |
| 1019 | THLB  | Old Managed  | 152    | 0.1% | IDF   | SX         | >17.9               | Plt         | 100       | 2/1   | 1200/1000      | PL76FD12SX8BL4  | CCR   | 3021           |
| 1020 | THLB  | Old Managed  | 69     | 0.0% | IDF   | SX         | >16.1 & <=17.9      | Plt         | 100       | 2/1   | 1200/1000      | PL76FD12SX8BL4  | CCR   | 3022           |
| 1021 | THLB  | Old Managed  | 8      | 0.0% | IDF   | SX         | <=16.1              | Plt         | 100       | 2/1   | 1200/1000      | PL76FD12SX8BL4  | CCR   | 3023           |
| 1022 | THLB  | Old Managed  | 365    | 0.2% | MS    | FD         | >19.3               | Plt         | 100       | 2     | 1300/1000      | PL75SX8FD7      | CCR   | 3025           |
| 1023 | THLB  | Old Managed  | 380    | 0.2% | MS    | FD         | >18.0 & <= 19.3     | Plt         | 100       | 2     | 1300/1000      | PL75SX8FD7      | CCR   | 3026           |
| 1024 | THLB  | Old Managed  | 163    | 0.1% | MS    | FD         | <=18.0              | Plt         | 100       | 2     | 1300/1000      | PL75SX8FD7      | CCR   | 3027           |
| 1025 | THLB  | Old Managed  | 18,123 | 7.8% | MS    | PL         | >17.9               | Plt         | 100       | 2     | 1300           | PL82BI10SX8     | CCR   | 3028           |
| 1026 | THLB  | Old Managed  | 14,538 | 6.3% | MS    | PL         | >17.3 & <=17.9      | Plt         | 100       | 2     | 1300           | PL82BI10SX8     | CCR   | 3029           |
| 1027 | THLB  | Old Managed  | 9,533  | 4.1% | MS    | PL         | <=17.3              | Plt         | 100       | 2     | 1300           | PL82BI10SX8     | CCR   | 3030           |
| 1028 | THLB  | Old Managed  | 302    | 0.1% | MS    | BL         | >19.4               | Plt         | 100       | 2     | 1300/1200      | PL77SX12BL10FD1 | CCR   | 3031           |
| 1029 | THLB  | Old Managed  | 841    | 0.4% | MS    | BL         | >17.3 & <= 19.4     | Plt         | 100       | 2     | 1300/1200      | PL77SX12BL10FD1 | CCR   | 3032           |
| 1030 | THLB  | Old Managed  | 670    | 0.3% | MS    | BL         | <= 17.3             | Plt         | 100       | 2     | 1300/1200      | PL77SX12BL10FD1 | CCR   | 3033           |
| 1031 | THLB  | Old Managed  | 832    | 0.4% | MS    | SX         | >18.3               | Nat/Plt     | 7/93      | 2     | 5500/1300/1200 | PL71SX14BL14FD1 | CCR   | 3034           |
| 1032 | THLB  | Old Managed  | 516    | 0.2% | MS    | SX         | >17.3 & <= 18.3     | Nat/Plt     | 7/93      | 2     | 5500/1300/1200 | PL71SX14BL14FD1 | CCR   | 3035           |
| 1033 | THLB  | Old Managed  | 375    | 0.2% | MS    | SX         | <=17.3              | Nat/Plt     | 7/93      | 2     | 5500/1300/1200 | PL71SX14BL14FD1 | CCR   | 3036           |
| 1501 | NHLB  | Old Managed  | 0      | 0.0% | ESSF  | PL         | >17.1               | Nat/Plt     | 17/83     | 2/2   | 4700/1200      | PL56BL23SX21    | N/A   | N/A            |
| 1502 | NHLB  | Old Managed  | 103    | 0.0% | ESSF  | PL         | >14.1 & <= 17.1     | Nat/Plt     | 17/83     | 2/2   | 4700/1200      | PL56BL23SX21    | N/A   | N/A            |
| 1503 | NHLB  | Old Managed  | 45     | 0.0% | ESSF  | PL         | <=14.1              | Nat/Plt     | 17/83     | 2/2   | 4700/1200      | PL56BL23SX21    | N/A   | N/A            |
| 1504 | NHLB  | Old Managed  | 78     | 0.0% | ESSF  | BL         | >19.0               | Nat/Plt     | 25/75     | 2/2   | 4700/1200      | SX47BL33PL20    | N/A   | N/A            |
| 1505 | NHLB  | Old Managed  | 53     | 0.0% | ESSF  | BL         | >15.8 & <=19.0      | Nat/Plt     | 25/75     | 2/2   | 4700/1200      | SX47BL33PL20    | N/A   | N/A            |
|      |       |              |        |      |       |            |                     |             |           |       |                |                 |       | 1              |

|      |       |              |       |      | A     | NALYSIS UNI | T DESCRIPTION (Exis | ting Manage | d Stands) |       |                |                 |       | FUTURE MANAGED |
|------|-------|--------------|-------|------|-------|-------------|---------------------|-------------|-----------|-------|----------------|-----------------|-------|----------------|
|      | Land- | Silviculture | AREA  | AU   | BEC   | Species     | PHR Site Index      | Regen       | Regen     | Delay | Establishment  | Species         | Silv. |                |
| AU   | Base  | Era          | (ha)  | Pct  | Group | Group       | Range               | Method      | Percent   | (yrs) | Density (sph)  | Composition     | Sys   | Regen AU       |
| 1506 | NHLB  | Old Managed  | 58    | 0.0% | ESSF  | BL          | <=15.8              | Nat/Plt     | 25/75     | 2/2   | 4700/1200      | SX47BL33PL20    | N/A   | N/A            |
| 1507 | NHLB  | Old Managed  | 22    | 0.0% | ESSF  | SX          | >18.1               | Nat/Plt     | 27/73     | 2/2   | 4700/1200      | PL35SX34BL31    | N/A   | N/A            |
| 1508 | NHLB  | Old Managed  | 122   | 0.1% | ESSF  | SX          | >14.7 & <=18.1      | Nat/Plt     | 27/73     | 2/2   | 4700/1200      | PL35SX34BL31    | N/A   | N/A            |
| 1509 | NHLB  | Old Managed  | 79    | 0.0% | ESSF  | SX          | <=14.7              | Nat/Plt     | 27/73     | 2/2   | 4700/1200      | PL35SX34BL31    | N/A   | N/A            |
| 1510 | NHLB  | Old Managed  | 34    | 0.0% | ESSF  | FD          | >18.8               | Plt         | 100       | 2/3   | 1200/1000      | PL74FD26        | N/A   | N/A            |
| 1511 | NHLB  | Old Managed  | 231   | 0.1% | IDF   | FD          | >17.0 & <=18.8      | Plt         | 100       | 2/3   | 1200/1000      | PL74FD26        | N/A   | N/A            |
| 1512 | NHLB  | Old Managed  | 85    | 0.0% | IDF   | FD          | <=17.0              | Plt         | 100       | 2/3   | 1200/1000      | PL74FD26        | N/A   | N/A            |
| 1513 | NHLB  | Old Managed  | 21    | 0.0% | IDF   | PL          | >18.9               | Plt         | 100       | 2/3   | 1200/1000      | PL80FD20        | N/A   | N/A            |
| 1514 | NHLB  | Old Managed  | 339   | 0.1% | IDF   | PL          | >17.8 & <= 18.9     | Plt         | 100       | 2/3   | 1200/1000      | PL80FD20        | N/A   | N/A            |
| 1515 | NHLB  | Old Managed  | 314   | 0.1% | IDF   | PL          | <= 18.9             | Plt         | 100       | 2/3   | 1200/1000      | PL80FD20        | N/A   | N/A            |
| 1516 | NHLB  | Old Managed  | 292   | 0.1% | IDF   | PY          | All                 | Plt         | 100       | 2     | 1200           | PL86FD14        | N/A   | N/A            |
| 1517 | NHLB  | Old Managed  | 72    | 0.0% | IDF   | SX          | >17.9               | Plt         | 100       | 2/1   | 1200/1000      | PL76FD12SX8BL4  | N/A   | N/A            |
| 1518 | NHLB  | Old Managed  | 12    | 0.0% | IDF   | SX          | >16.1 & <=17.9      | Plt         | 100       | 2/1   | 1200/1000      | PL76FD12SX8BL4  | N/A   | N/A            |
| 1519 | NHLB  | Old Managed  | 10    | 0.0% | IDF   | FD          | >19.3               | Plt         | 100       | 2     | 1300/1000      | PL75SX8FD7      | N/A   | N/A            |
| 1520 | NHLB  | Old Managed  | 2     | 0.0% | IDF   | FD          | >18.0 & <= 19.3     | Plt         | 100       | 2     | 1300/1000      | PL75SX8FD7      | N/A   | N/A            |
| 1521 | NHLB  | Old Managed  | 29    | 0.0% | MS    | FD          | <=18.0              | Plt         | 100       | 2     | 1300/1000      | PL75SX8FD7      | N/A   | N/A            |
| 1522 | NHLB  | Old Managed  | 28    | 0.0% | MS    | PL          | >17.9               | Plt         | 100       | 2     | 1300           | PL82BI10SX8     | N/A   | N/A            |
| 1523 | NHLB  | Old Managed  | 2     | 0.0% | MS    | PL          | >17.3 & <=17.9      | Plt         | 100       | 2     | 1300           | PL82BI10SX8     | N/A   | N/A            |
| 1524 | NHLB  | Old Managed  | 796   | 0.3% | MS    | PL          | <=17.3              | Plt         | 100       | 2     | 1300           | PL82BI10SX8     | N/A   | N/A            |
| 1525 | NHLB  | Old Managed  | 450   | 0.2% | MS    | BL          | >19.4               | Plt         | 100       | 2     | 1300/1200      | PL77SX12BL10FD1 | N/A   | N/A            |
| 1526 | NHLB  | Old Managed  | 215   | 0.1% | MS    | BL          | >17.3 & <= 19.4     | Plt         | 100       | 2     | 1300/1200      | PL77SX12BL10FD1 | N/A   | N/A            |
| 1527 | NHLB  | Old Managed  | 13    | 0.0% | MS    | BL          | <= 17.3             | Plt         | 100       | 2     | 1300/1200      | PL77SX12BL10FD1 | N/A   | N/A            |
| 1528 | NHLB  | Old Managed  | 26    | 0.0% | MS    | SX          | >18.3               | Nat/Plt     | 7/93      | 2     | 5500/1300/1200 | PL71SX14BL14FD1 | N/A   | N/A            |
| 1529 | NHLB  | Old Managed  | 31    | 0.0% | MS    | SX          | >17.3 & <= 18.3     | Nat/Plt     | 7/93      | 2     | 5500/1300/1200 | PL71SX14BL14FD1 | N/A   | N/A            |
| 1530 | NHLB  | Old Managed  | 56    | 0.0% | MS    | SX          | <=17.3              | Nat/Plt     | 7/93      | 2     | 5500/1300/1200 | PL71SX14BL14FD1 | N/A   | N/A            |
| 1531 | NHLB  | Old Managed  | 34    | 0.0% | MS    | SX          | >17.3 & <= 18.3     | Nat/Plt     | 7/93      | 2     | 5500/1300/1200 | PL71SX14BL14FD1 | N/A   | N/A            |
| 1532 | NHLB  | Old Managed  | 37    | 0.0% | MS    | SX          | <=17.3              | Nat/Plt     | 7/93      | 2     | 5500/1300/1200 | PL71SX14BL14FD1 | N/A   | N/A            |
| 2001 | THLB  | New Managed  | 37    | 0.0% | ESSF  | FD          | >19.0               | Plt         | 100       | 2     | 1200           | PL60SX16BL15    | CCR   | 3001           |
| 2002 | THLB  | New Managed  | 93    | 0.0% | ESSF  | FD          | >15.0 & <= 19.0     | Plt         | 100       | 2     | 1200           | PL60SX16BL15    | CCR   | 3002           |
| 2003 | THLB  | New Managed  | 0     | 0.0% | ESSF  | FD          | <= 15.0             | Plt         | 100       | 2     | 1200           | PL60SX16BL15    | CCR   | 3003           |
| 2004 | THLB  | New Managed  | 4,235 | 1.8% | ESSF  | PL          | >17.1               | Nat/Plt     | 17/83     | 2/2   | 4700/1200      | PL56BL23SX21    | CCR   | 3004           |
| 2005 | THLB  | New Managed  | 4,155 | 1.8% | ESSF  | PL          | >14.1 & <= 17.1     | Nat/Plt     | 17/83     | 2/2   | 4700/1200      | PL56BL23SX21    | CCR   | 3005           |
| 2006 | THLB  | New Managed  | 3,566 | 1.5% | ESSF  | PL          | <=14.1              | Nat/Plt     | 17/83     | 2/2   | 4700/1200      | PL56BL23SX21    | CCR   | 3006           |
| 2007 | THLB  | New Managed  | 912   | 0.4% | ESSF  | BL          | >19.0               | Nat/Plt     | 25/75     | 2/2   | 4700/1200      | SX47BL33PL20    | CCR   | 3007           |
|      |       |              |       |      |       |             |                     |             |           |       |                |                 |       | 1              |

|      |       |              |        |       | A     | NALYSIS UN | IT DESCRIPTION (Exis | ting Manage | d Stands) |       |                |                 |       | FUTURE MANAGED |
|------|-------|--------------|--------|-------|-------|------------|----------------------|-------------|-----------|-------|----------------|-----------------|-------|----------------|
|      | Land- | Silviculture | AREA   | AU    | BEC   | Species    | PHR Site Index       | Regen       | Regen     | Delay | Establishment  | Species         | Silv. |                |
| AU   | Base  | Era          | (ha)   | Pct   | Group | Group      | Range                | Method      | Percent   | (yrs) | Density (sph)  | Composition     | Sys   | Regen AU       |
| 2008 | THLB  | New Managed  | 843    | 0.4%  | ESSF  | BL         | >15.8 & <=19.0       | Nat/Plt     | 25/75     | 2/2   | 4700/1200      | SX47BL33PL20    | CCR   | 3008           |
| 2009 | THLB  | New Managed  | 372    | 0.2%  | ESSF  | BL         | <=15.8               | Nat/Plt     | 25/75     | 2/2   | 4700/1200      | SX47BL33PL20    | CCR   | 3009           |
| 2010 | THLB  | New Managed  | 458    | 0.2%  | ESSF  | SX         | >18.1                | Nat/Plt     | 27/73     | 2/2   | 4700/1200      | PL35SX34BL31    | CCR   | 3010           |
| 2011 | THLB  | New Managed  | 822    | 0.4%  | ESSF  | SX         | >14.7 & <=18.1       | Nat/Plt     | 27/73     | 2/2   | 4700/1200      | PL35SX34BL31    | CCR   | 3011           |
| 2012 | THLB  | New Managed  | 752    | 0.3%  | ESSF  | SX         | <=14.7               | Nat/Plt     | 27/73     | 2/2   | 4700/1200      | PL35SX34BL31    | CCR   | 3012           |
| 2013 | THLB  | New Managed  | 5,927  | 2.6%  | IDF   | FD         | >18.8                | Plt         | 100       | 2/3   | 1200/1000      | PL74FD26        | CCR   | 3014           |
| 2014 | THLB  | New Managed  | 4,699  | 2.0%  | IDF   | FD         | >17.0 & <=18.8       | Plt         | 100       | 2/3   | 1200/1000      | PL74FD26        | CCR   | 3015           |
| 2015 | THLB  | New Managed  | 2,080  | 0.9%  | IDF   | FD         | <=17.0               | Plt         | 100       | 2/3   | 1200/1000      | PL74FD26        | CCR   | 3016           |
| 2016 | THLB  | New Managed  | 4,834  | 2.1%  | IDF   | PL         | >18.9                | Plt         | 100       | 2/3   | 1200/1000      | PL80FD20        | CCR   | 3017           |
| 2017 | THLB  | New Managed  | 7,012  | 3.0%  | IDF   | PL         | >17.8 & <= 18.9      | Plt         | 100       | 2/3   | 1200/1000      | PL80FD20        | CCR   | 3018           |
| 2018 | THLB  | New Managed  | 8,342  | 3.6%  | IDF   | PL         | <= 18.9              | Plt         | 100       | 2/3   | 1200/1000      | PL80FD20        | CCR   | 3019           |
| 2019 | THLB  | New Managed  | 236    | 0.1%  | IDF   | PY         | All                  | Plt         | 100       | 2     | 1200           | PL86FD14        | CCR   | 3020           |
| 2020 | THLB  | New Managed  | 160    | 0.1%  | IDF   | SX         | >17.9                | Plt         | 100       | 2/1   | 1200/1000      | PL76FD12SX8BL4  | CCR   | 3021           |
| 2021 | THLB  | New Managed  | 298    | 0.1%  | IDF   | SX         | >16.1 & <=17.9       | Plt         | 100       | 2/1   | 1200/1000      | PL76FD12SX8BL4  | CCR   | 3022           |
| 2022 | THLB  | New Managed  | 53     | 0.0%  | IDF   | SX         | <=16.1               | Plt         | 100       | 2/1   | 1200/1000      | PL76FD12SX8BL4  | CCR   | 3023           |
| 2023 | THLB  | New Managed  | 653    | 0.3%  | MS    | FD         | >19.3                | Plt         | 100       | 2     | 1300/1000      | PL75SX8FD7      | CCR   | 3025           |
| 2024 | THLB  | New Managed  | 485    | 0.2%  | MS    | FD         | >18.0 & <= 19.3      | Plt         | 100       | 2     | 1300/1000      | PL75SX8FD7      | CCR   | 3026           |
| 2025 | THLB  | New Managed  | 221    | 0.1%  | MS    | FD         | <=18.0               | Plt         | 100       | 2     | 1300/1000      | PL75SX8FD7      | CCR   | 3027           |
| 2026 | THLB  | New Managed  | 23,048 | 10.0% | MS    | PL         | >17.9                | Plt         | 100       | 2     | 1300           | PL82BI10SX8     | CCR   | 3028           |
| 2027 | THLB  | New Managed  | 27,911 | 12.1% | MS    | PL         | >17.3 & <=17.9       | Plt         | 100       | 2     | 1300           | PL82BI10SX8     | CCR   | 3029           |
| 2028 | THLB  | New Managed  | 20,125 | 8.7%  | MS    | PL         | <=17.3               | Plt         | 100       | 2     | 1300           | PL82BI10SX8     | CCR   | 3030           |
| 2029 | THLB  | New Managed  | 99     | 0.0%  | MS    | BL         | >19.4                | Plt         | 100       | 2     | 1300/1200      | PL77SX12BL10FD1 | CCR   | 3031           |
| 2030 | THLB  | New Managed  | 286    | 0.1%  | MS    | BL         | >17.3 & <= 19.4      | Plt         | 100       | 2     | 1300/1200      | PL77SX12BL10FD1 | CCR   | 3032           |
| 2031 | THLB  | New Managed  | 263    | 0.1%  | MS    | BL         | <= 17.3              | Plt         | 100       | 2     | 1300/1200      | PL77SX12BL10FD1 | CCR   | 3033           |
| 2032 | THLB  | New Managed  | 499    | 0.2%  | MS    | SX         | >18.3                | Nat/Plt     | 7/93      | 2     | 5500/1300/1200 | PL71SX14BL14FD1 | CCR   | 3034           |
| 2033 | THLB  | New Managed  | 1,108  | 0.5%  | MS    | SX         | >17.3 & <= 18.3      | Nat/Plt     | 7/93      | 2     | 5500/1300/1200 | PL71SX14BL14FD1 | CCR   | 3035           |
| 2034 | THLB  | New Managed  | 972    | 0.4%  | MS    | SX         | <=17.3               | Nat/Plt     | 7/93      | 2     | 5500/1300/1200 | PL71SX14BL14FD1 | CCR   | 3036           |
| 2501 | NHLB  | New Managed  | 1      | 0.0%  | ESSF  | FD         | >19.0                | Plt         | 100       | 2     | 1200           | PL60SX16BL15    | N/A   | N/A            |
| 2502 | NHLB  | New Managed  | 6      | 0.0%  | ESSF  | FD         | >15.0 & <= 19.0      | Plt         | 100       | 2     | 1200           | PL60SX16BL15    | N/A   | N/A            |
| 2503 | NHLB  | New Managed  | 225    | 0.1%  | ESSF  | PL         | >17.1                | Nat/Plt     | 17/83     | 2/2   | 4700/1200      | PL56BL23SX21    | N/A   | N/A            |
| 2504 | NHLB  | New Managed  | 127    | 0.1%  | ESSF  | PL         | >14.1 & <= 17.1      | Nat/Plt     | 17/83     | 2/2   | 4700/1200      | PL56BL23SX21    | N/A   | N/A            |
| 2505 | NHLB  | New Managed  | 327    | 0.1%  | ESSF  | PL         | <=14.1               | Nat/Plt     | 17/83     | 2/2   | 4700/1200      | PL56BL23SX21    | N/A   | N/A            |
| 2506 | NHLB  | New Managed  | 335    | 0.1%  | ESSF  | BL         | >19.0                | Nat/Plt     | 25/75     | 2/2   | 4700/1200      | SX47BL33PL20    | N/A   | N/A            |
| 2507 | NHLB  | New Managed  | 273    | 0.1%  | ESSF  | BL         | >15.8 & <=19.0       | Nat/Plt     | 25/75     | 2/2   | 4700/1200      | SX47BL33PL20    | N/A   | N/A            |
|      |       | -            |        |       |       |            |                      | -           | -         | -     | •              |                 | -     | 1              |

|      |       |              |       |      | AI    | NALYSIS UNI | T DESCRIPTION (Exis | ting Manage | d Stands) |       |                |                 |       | FUTURE MANAGED |
|------|-------|--------------|-------|------|-------|-------------|---------------------|-------------|-----------|-------|----------------|-----------------|-------|----------------|
|      | Land- | Silviculture | AREA  | AU   | BEC   | Species     | PHR Site Index      | Regen       | Regen     | Delay | Establishment  | Species         | Silv. |                |
| AU   | Base  | Era          | (ha)  | Pct  | Group | Group       | Range               | Method      | Percent   | (yrs) | Density (sph)  | Composition     | Sys   | Regen AU       |
| 2508 | NHLB  | New Managed  | 147   | 0.1% | ESSF  | BL          | <=15.8              | Nat/Plt     | 25/75     | 2/2   | 4700/1200      | SX47BL33PL20    | N/A   | N/A            |
| 2509 | NHLB  | New Managed  | 36    | 0.0% | ESSF  | SX          | >18.1               | Nat/Plt     | 27/73     | 2/2   | 4700/1200      | PL35SX34BL31    | N/A   | N/A            |
| 2510 | NHLB  | New Managed  | 58    | 0.0% | ESSF  | SX          | >14.7 & <=18.1      | Nat/Plt     | 27/73     | 2/2   | 4700/1200      | PL35SX34BL31    | N/A   | N/A            |
| 2511 | NHLB  | New Managed  | 47    | 0.0% | ESSF  | SX          | <=14.7              | Nat/Plt     | 27/73     | 2/2   | 4700/1200      | PL35SX34BL31    | N/A   | N/A            |
| 2512 | NHLB  | New Managed  | 932   | 0.4% | IDF   | FD          | >18.8               | Plt         | 100       | 2/3   | 1200/1000      | PL74FD26        | N/A   | N/A            |
| 2513 | NHLB  | New Managed  | 273   | 0.1% | IDF   | FD          | >17.0 & <=18.8      | Plt         | 100       | 2/3   | 1200/1000      | PL74FD26        | N/A   | N/A            |
| 2514 | NHLB  | New Managed  | 380   | 0.2% | IDF   | FD          | <=17.0              | Plt         | 100       | 2/3   | 1200/1000      | PL74FD26        | N/A   | N/A            |
| 2515 | NHLB  | New Managed  | 308   | 0.1% | IDF   | PL          | >18.9               | Plt         | 100       | 2/3   | 1200/1000      | PL80FD20        | N/A   | N/A            |
| 2516 | NHLB  | New Managed  | 422   | 0.2% | IDF   | PL          | >17.8 & <= 18.9     | Plt         | 100       | 2/3   | 1200/1000      | PL80FD20        | N/A   | N/A            |
| 2517 | NHLB  | New Managed  | 619   | 0.3% | IDF   | PL          | <= 18.9             | Plt         | 100       | 2/3   | 1200/1000      | PL80FD20        | N/A   | N/A            |
| 2518 | NHLB  | New Managed  | 146   | 0.1% | IDF   | PY          | All                 | Plt         | 100       | 2     | 1200           | PL86FD14        | N/A   | N/A            |
| 2519 | NHLB  | New Managed  | 6     | 0.0% | IDF   | SX          | >17.9               | Plt         | 100       | 2/1   | 1200/1000      | PL76FD12SX8BL4  | N/A   | N/A            |
| 2520 | NHLB  | New Managed  | 57    | 0.0% | IDF   | SX          | >16.1 & <=17.9      | Plt         | 100       | 2/1   | 1200/1000      | PL76FD12SX8BL4  | N/A   | N/A            |
| 2521 | NHLB  | New Managed  | 9     | 0.0% | IDF   | SX          | <=16.1              | Plt         | 100       | 2/1   | 1200/1000      | PL76FD12SX8BL4  | N/A   | N/A            |
| 2522 | NHLB  | New Managed  | 41    | 0.0% | MS    | FD          | >19.3               | Plt         | 100       | 2     | 1300/1000      | PL75SX8FD7      | N/A   | N/A            |
| 2523 | NHLB  | New Managed  | 28    | 0.0% | MS    | FD          | >18.0 & <= 19.3     | Plt         | 100       | 2     | 1300/1000      | PL75SX8FD7      | N/A   | N/A            |
| 2524 | NHLB  | New Managed  | 20    | 0.0% | MS    | FD          | <=18.0              | Plt         | 100       | 2     | 1300/1000      | PL75SX8FD7      | N/A   | N/A            |
| 2525 | NHLB  | New Managed  | 2,155 | 0.9% | MS    | PL          | >17.9               | Plt         | 100       | 2     | 1300           | PL82BI10SX8     | N/A   | N/A            |
| 2526 | NHLB  | New Managed  | 1,541 | 0.7% | MS    | PL          | >17.3 & <=17.9      | Plt         | 100       | 2     | 1300           | PL82BI10SX8     | N/A   | N/A            |
| 2527 | NHLB  | New Managed  | 802   | 0.3% | MS    | PL          | <=17.3              | Plt         | 100       | 2     | 1300           | PL82BI10SX8     | N/A   | N/A            |
| 2528 | NHLB  | New Managed  | 3     | 0.0% | MS    | BL          | >19.4               | Plt         | 100       | 2     | 1300/1200      | PL77SX12BL10FD1 | N/A   | N/A            |
| 2529 | NHLB  | New Managed  | 18    | 0.0% | MS    | BL          | >17.3 & <= 19.4     | Plt         | 100       | 2     | 1300/1200      | PL77SX12BL10FD1 | N/A   | N/A            |
| 2530 | NHLB  | New Managed  | 18    | 0.0% | MS    | BL          | <= 17.3             | Plt         | 100       | 2     | 1300/1200      | PL77SX12BL10FD1 | N/A   | N/A            |
| 2531 | NHLB  | New Managed  | 109   | 0.0% | MS    | SX          | >18.3               | Nat/Plt     | 7/93      | 2     | 5500/1300/1200 | PL71SX14BL14FD1 | N/A   | N/A            |
| 2532 | NHLB  | New Managed  | 156   | 0.1% | MS    | SX          | >17.3 & <= 18.3     | Nat/Plt     | 7/93      | 2     | 5500/1300/1200 | PL71SX14BL14FD1 | N/A   | N/A            |
| 2533 | NHLB  | New Managed  | 68    | 0.0% | MS    | SX          | <=17.3              | Nat/Plt     | 7/93      | 2     | 5500/1300/1200 | PL71SX14BL14FD1 | N/A   | N/A            |

Notes:

BEC Groups: ESSF(ESSF, CWH, MH, IMA);IDF(IDF, BG, PP);MS (MS)

Species Groups: PL=Pine leading, SX=Spruce leading; BL = Balsam leading; FD=Douglas-fir leading (Based on Existing Species)

Stand Parameters (Site Index, Densities, Composition, Etc.) were the same for Future Managed Analysis Units and the Existing Managed Analysis Units they transition from

### Appendix 3 *Silvicultural Systems*

| Order | Stand               | Management          | BEC           | Species    | Snowpack | Habitat | Silviculture | Modelled                        | Regeneration        | Model                                                    | SI                                 |
|-------|---------------------|---------------------|---------------|------------|----------|---------|--------------|---------------------------------|---------------------|----------------------------------------------------------|------------------------------------|
|       | Туре                | Туре                | Zone          | Group      | Zone     | Туре    | System       | Treatment                       |                     |                                                          | Source                             |
| 1     | Existing<br>Natural | Non-Dry Belt<br>Fir | By BEC<br>GRP | By SPP GRP | NA       | NA      | CCR          | Clearcut                        | Natural and planted | VDYP                                                     | VRI                                |
| 2     | Existing<br>Managed | Non-Dry Belt<br>Fir | By BEC<br>GRP | By SPP GRP | NA       | NA      | CCR          | Clearcut                        | Natural and planted | TIPSY                                                    | Provincial<br>productivity<br>tile |
| 3     | Future<br>Managed   | Non-Dry Belt<br>Fir | By BEC<br>GRP | By SPP GRP | NA       | NA      | CCR          | Clearcut                        | Natural and planted | TIPSY                                                    | Provincial<br>productivity<br>tile |
| 4     | Existing<br>Natural | Dry Belt Fir        | IDF &<br>PP   | Fd leading | NA       | NA      | SEL          | Remove 60m³/ha @<br>35 yr cycle | Natural             | Linear 1.74<br>m <sup>3</sup> per<br>hectare per<br>year | N/A                                |

### Approach for modelling silvicultural systems of stand / management regimes within THLB

Notes:

Silvicultural systems (CCR = clearcut with reserves; SEL = selection;

Regeneration assumptions for these regimes are described in Appendix 2 – Analysis Units for Existing Natural Stands

# Appendix 4 *Criteria for Scoring Anchors*

| Anchors                       | Order / Units                   | Criteria (Based on Timber Impact)                           | Modelling     |
|-------------------------------|---------------------------------|-------------------------------------------------------------|---------------|
| WHA: Coastal Tailed Frog      | 3-004, 3-005,                   | No harvest in core area – no salvage – do not construct     | No harvest    |
|                               | 3-014 to 3-017,                 | stream crossing or roads within 33 m of streams and within  |               |
|                               | 3-148, 3-150,                   | 100 m of a known point location.                            |               |
|                               | 8-011 to 8-013,                 |                                                             |               |
|                               | 8-077 to 8-082                  |                                                             |               |
| http://www.env.gov.bc.ca      | /wld/documents/w                | ha/ASTR-8-077_ord.pdf                                       |               |
| http://www.env.gov.bc.ca      | /wld/documents/w                | ha/ASTR-8-078_ord.pdf                                       |               |
| http://www.env.gov.bc.ca      | /wld/documents/w                | ha/ASTR-8-079_ord.pdf                                       |               |
| http://www.env.gov.bc.ca      | /wid/documents/w                | ha/ASTR-8-080 ord.pdf                                       |               |
| http://www.env.gov.bc.ca      | /wid/documents/w                | ha/ASTR-6-081 Ord.pdf                                       |               |
| WHA: Data Sensitive           |                                 | No harvest in data sensitive areas                          | No harvest    |
| WITA. Data Sensitive          | 3-008, 3-009,<br>3-046 to 3-048 | NO haivest in uata sensitive aleas                          | NO Harvest    |
|                               | 3-140                           |                                                             |               |
| http://www.env.gov.hc.ca      | /cgi-hin/anns/faw/              | wharesult cgi?search=forest_region&forest=Cascades&submit2  | =Search       |
|                               |                                 |                                                             | <u>bearch</u> |
| WHA: Great Basin<br>Spadefoot | 3-126                           | No harvest – do not construct roads or landings             | No harvest    |
| http://www.env.gov.bc.ca      | /wld/documents/w                | ha/SPIN_3-126_ord.pdf                                       |               |
| WHA: Grizzly Bear             | 8-083 to 8-089                  | No forestry practices to be carried out – do not construct  | No harvest    |
| Wink Chilling Bear            | 2-105, 2-195, 2-                | roads, trails or landings                                   |               |
|                               | 203.                            |                                                             |               |
|                               | 3-026 to 3-028                  |                                                             |               |
| http://www.env.gov.bc.ca      | /wld/documents/w                | ha/URAR 8-083to89 Cascades ord.pdf                          |               |
| http://www.env.gov.bc.ca      | /wld/documents/w                | ha/URAR 2-097varto380 Order.pdf                             |               |
| http://www.env.gov.bc.ca      | /wld/documents/w                | ha/URAR 13-Cascades ord.pdf                                 |               |
| http://www.env.gov.bc.ca      | /wld/documents/w                | ha/URAR_3-026to028_ord.pdf                                  |               |
| WHA: Lewis's                  | 3-082, 3-083                    | Do not harvest or salvage mature timber                     | No harvest    |
| Woodpecker                    | 3-103, 3-104                    | Do not construct roads – no timber harvesting               | -             |
| http://www.env.gov.bc.ca      | /wld/documents/w                | ha/LEWO 3-080to089 ord.pdf                                  |               |
| http://www.env.gov.bc.ca      | /wld/documents/w                | ha/LEWO 3-103 104 ord.pdf                                   |               |
| WHA: Western Screech          | 3-068                           | Do not construct roads or stream crossings – do not harvest | No harvest    |
| Owl                           |                                 | or salvage – do not construct trails within 50 m of known   |               |
|                               |                                 | nest site                                                   | _             |
|                               | 8-125, 8-260                    | Do not construct new roads or stream crossings within core  |               |
|                               |                                 | area – do not harvest or salvage during breeding season     |               |
|                               |                                 | (March 1 to Aug 15) – do not harvest or salvage – do not    |               |
|                               |                                 | construct trails within 50 m of known nest site             |               |
| http://www.env.gov.bc.ca      | /wld/documents/w                | ha/WSOW-3-032,068_ord.pdf                                   |               |
| http://www.env.gov.bc.ca      | /wld/documents/w                | ha/WSOW_8-125_ord.pdf                                       |               |
| http://www.env.gov.bc.ca      | /wid/documents/w                | ha/wsUw_8-260_ord.pdf                                       | N I.          |
| WHA: Williamson's             | 3-090 to 3-095,                 | Do not construct roads – No timber harvesting               | No harvest    |
| зарзискег                     | 3-129 to 3-135,                 |                                                             |               |
|                               | 2-127, 3-139,<br>2-112 2 112    |                                                             |               |
|                               | S-142, S-143,<br>8-096 to 8-098 |                                                             |               |
|                               | 8-100                           |                                                             |               |
| http://www.env.gov.bc.ca      | /wld/documents/w                | ha/WISA 3-090 095.129 130 ord pdf                           |               |
| http://www.env.gov.bc.ca      | /wld/documents/w                | ha/WISA 3 131varto143 order.pdf                             |               |
| http://www.env.gov.bc.ca      | /wld/documents/w                | ha/WISA-8-096 098,100 ord.pdf                               |               |
| UWR: Mountain Goat            | U-2-001                         | No harvest within winter ranges – GWM applies to 500m       | No harvest    |
|                               |                                 | buffer around UWR – forest activities (incl. salvage) will  |               |
|                               |                                 | retain all forest cover (100% retention)                    |               |

| Anchors                                | Order / Units                         | Criteria (Based on Timber                                                                                                                                                                   | Criteria (Based on Timber Impact) |               |            |  |
|----------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------|------------|--|
|                                        | U-3-006                               | Do not construct roads – no permanent<br>adjacent to UWR – no forestry activities<br>June 30 (including no heli-logging/blasti<br>UWR, no ground-based or cable logging<br>adjacent to UWR) |                                   |               |            |  |
| http://www.env.gov.bc.c                | a/wld/documents/u                     | uwr/uwr_u2_001.pdf                                                                                                                                                                          |                                   |               |            |  |
| http://www.env.gov.bc.ca               | a/wld/documents/u                     | wr/u-3-006 ORAM Order.pdf                                                                                                                                                                   |                                   |               |            |  |
| Parks and Protected<br>Areas           | Multiple<br>Statutes                  | No harvest within parks.                                                                                                                                                                    | No harvest                        |               |            |  |
| Environmentally<br>Sensitive Areas     | Non-Legal                             | FLNRO Cascades District inventory (199-                                                                                                                                                     | No harvest                        |               |            |  |
|                                        |                                       | Code Description CD Area (ha)                                                                                                                                                               |                                   |               |            |  |
|                                        |                                       | Unknown                                                                                                                                                                                     |                                   | 975           |            |  |
|                                        |                                       | Snow chute and avalanche.                                                                                                                                                                   | А                                 | 362           |            |  |
|                                        |                                       | Snow chute and avalanche, regen problems.                                                                                                                                                   | AP                                | 335           |            |  |
|                                        |                                       | High water values/harvesting sensitivity.                                                                                                                                                   | н                                 | 108           |            |  |
|                                        |                                       | Regen problems.                                                                                                                                                                             | Р                                 | 40,493        |            |  |
|                                        |                                       | Regen problems, high recreational.                                                                                                                                                          | PR                                | 145           |            |  |
|                                        |                                       | High recreational.                                                                                                                                                                          | R                                 | 1,309         |            |  |
|                                        |                                       | Fragile or unstable soils.                                                                                                                                                                  | S                                 | 6,972         |            |  |
|                                        |                                       | Fragile or unstable soils, snow chute and avalanche.                                                                                                                                        | SA                                | 6             |            |  |
|                                        |                                       | Fragile or unstable soils, regen problems.                                                                                                                                                  | SP                                | 16,574        |            |  |
|                                        |                                       | Fragile or unstable soils, regen problems, high recreational.                                                                                                                               | SPR                               | 547           |            |  |
|                                        |                                       | Fragile or unstable soils, importance to wildlife.                                                                                                                                          | SW                                | 50            |            |  |
|                                        |                                       | Importance to wildlife.                                                                                                                                                                     | W                                 | 153<br>68,029 |            |  |
| Cultural Survival Areas                |                                       | Data not available at this time                                                                                                                                                             |                                   |               |            |  |
| Cultural Heritage<br>Resources         |                                       | Data not available at this time                                                                                                                                                             |                                   |               |            |  |
| Archaeological Sites                   | Arch. Sites,<br>heritage<br>features, | Protected and/or conserved areas under the <i>Heritage</i><br><i>Conservation Act</i> or through consultation with First Nations                                                            |                                   |               | No harvest |  |
|                                        | traditional use sites, etc.           | Not permitted to use data at this time.                                                                                                                                                     |                                   |               |            |  |
| Physically Inoperable                  |                                       | Slopes > 65% or Terrain Stability Class 5                                                                                                                                                   | No harvest                        |               |            |  |
| Legally Established<br>Heritage Trails |                                       | No harvesting within 100m each side of                                                                                                                                                      | No harvest                        |               |            |  |
| Research Sites (i.e. PSP)              |                                       | Permanent Sample Plot (PSP) with 50 m                                                                                                                                                       | buffer                            |               | No harvest |  |
| Effective Riparian                     |                                       | FPPR buffer widths (each side):                                                                                                                                                             |                                   |               | No harvest |  |
| Reserve Zones                          |                                       | <ul> <li>S1 (except large rivers) 100m, S2 30</li> <li>Lakeshore Management Zones (Cla 10m</li> <li>W1/W2/W5 10m</li> </ul>                                                                 |                                   |               |            |  |
| Temperature Sensitive                  |                                       | Enhanced riparian buffers (10m each sic                                                                                                                                                     | No harvest                        |               |            |  |
| Streams                                |                                       | streams within the Nicola Watershed.                                                                                                                                                        |                                   |               |            |  |
| Whitebark Pine                         |                                       | Where Pa exists within any species code inventory.                                                                                                                                          | No harvest                        |               |            |  |
| Wetlands                               |                                       | Forest Inventory where BCLCS_LEVEL_3                                                                                                                                                        | No harvest                        |               |            |  |

| Constraints                                                                                      | Order / Units                                                                                                                                                                                                                    | Criteria (Based on Timber Impact)                                                                                                                                                                                                                                                                                                                                                                     | Modelling                                                                                       |  |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| OGMA                                                                                             | Provincial<br>Non-Spatial<br>Old Growth<br>Objectives                                                                                                                                                                            | Non-legal spatial layer developed based on target areas assigned<br>by LU and BEC (v6) variant (Table 2 of Appendix 2 of the order);<br>updated by licensees from time-to-time to track minor changes<br>and replacements.                                                                                                                                                                            | No harvest                                                                                      |  |
| WHA: Coastal<br>Tailed Frog                                                                      | 3-004, 3-005,<br>3-014 to 3-<br>017,<br>3-148, 3-150,<br>8-011 to 8-<br>013, 8-077 to<br>8-082                                                                                                                                   | Minimize length of road in WHA – partial harvest in buffer areas that maintain 80% basal area – no salvage                                                                                                                                                                                                                                                                                            | Partial harvest<br>max 20% basal<br>area                                                        |  |
|                                                                                                  | 3-148, 3-150                                                                                                                                                                                                                     | Minimum 70% basal area retention within buffer areas – all high value wildlife trees retained – no salvage                                                                                                                                                                                                                                                                                            | Partial harvest<br>max 30% basal<br>area                                                        |  |
| http://www.env.g<br>http://www.env.g<br>http://www.env.g<br>http://www.env.g<br>http://www.env.g | ov.bc.ca/wld/doc<br>ov.bc.ca/wld/doc<br>ov.bc.ca/wld/doc<br>ov.bc.ca/wld/doc<br>ov.bc.ca/wld/doc<br>ov.bc.ca/wld/doc                                                                                                             | uments/wha/ASTR-8-077_ord.pdf<br>uments/wha/ASTR-8-078_ord.pdf<br>uments/wha/ASTR-8-079_ord.pdf<br>uments/wha/ASTR-8-080_ord.pdf<br>uments/wha/ASTR-8-081_ord.pdf<br>uments/wha/ASTR-8-082_ord.pdf                                                                                                                                                                                                    |                                                                                                 |  |
| WHA: Lewis's<br>Woodpecker                                                                       | 3-082, 3-083                                                                                                                                                                                                                     | If harvesting is approved: protect and retain all PP and ACT live and<br>dead $\ge$ 30 cm dbh – maintain >= 6 standing dead trees per ha ( $\ge$ 45<br>cm dbh) – partial harvest to maintain widely spaced late seral PP<br>and FD                                                                                                                                                                    | Partial harvest;<br>maintain widely<br>spaced late seral<br>PP/FD; retain all<br>PP/ACT         |  |
| http://www.env.g                                                                                 | ov.bc.ca/wld/doc                                                                                                                                                                                                                 | uments/wha/LEWO_3-080to089_ord.pdf                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                 |  |
| WHA: Western<br>Screech Owl                                                                      | 8-125, 8-260                                                                                                                                                                                                                     | Avoid constructing roads or stream crossings – in PP/IDF select<br>harvest ≤ 20% basal area provided no suitable wildlife trees are<br>removed – retain deciduous species – within RMZs retain >60%<br>trees including all suitable wildlife trees – do not construct trails<br>within 50 m of known nest site                                                                                        | Partial harvest<br>max 20% basal<br>area; retain<br>deciduous; in<br>RMZs retain ><br>60% trees |  |
|                                                                                                  | Suitable wildlife trees (WTP): ≥ 2.5 ha; PPxh/ PPdh/ IDFxh/ IDFxw/<br>IDFdk/ IDFmw/ riparian areas; cavities; deciduous preferred (AT,<br>ACT, EW, FD, PP, LW); deciduous ≥34 cm dbh, conifer ≥ 74cm dbh<br>(≥30 cm dbh recruit) |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 |  |
| http://www.env.g                                                                                 | ov.bc.ca/wld/doc                                                                                                                                                                                                                 | uments/wha/WSOW_8-125_ord.pdf                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                 |  |
| http://www.env.g<br>UWR: Mule Deer,<br>Bighorn Sheep,<br>Elk                                     | ov.bc.ca/wld/doc<br>U-3-003                                                                                                                                                                                                      | <ul> <li><u>uments/wha/WSOW_8-260_ord.pdf</u></li> <li>Forestry activities must retain min amount of snow<br/>interception cover (SIC) targets:         <ul> <li>a. Shallow (SIC 15%) – BG. PP. IDFxh1. IDFxh1a. IDFxh2.</li> </ul> </li> </ul>                                                                                                                                                       | Partial harvest<br>to maintain SIC<br>targets/attribute                                         |  |
|                                                                                                  |                                                                                                                                                                                                                                  | <ul> <li>b. Moderate (SIC 13%) = DFdk1, IDFdk1a, IDFdk2, IDFdk3, IDFunk, MS- Fd &gt; 70%, ≥ 121 years, ≥ 36% canopy closure</li> <li>c. Deep (SIC 40%) - ESSF, ICH, CWH - Fd &gt; 70%, ≥ 121 years, ≥ 46% canopy closure</li> </ul>                                                                                                                                                                   | s<br>Min patch size:<br>Shallow = 1 ha<br>Moderate = 10<br>ha                                   |  |
|                                                                                                  |                                                                                                                                                                                                                                  | <ol> <li>In Moderate SZ with insufficient forest cover, activities must retain forest cover with SIC attributes (rank order from A (high) to D (low)):         <ul> <li>a. Fd 70%, ≥ 81 years, ≥ 36% crown closure</li> <li>b. Fd 50%, ≥ 81 years, ≥ 36% crown closure</li> <li>c. Fd 50%, ≥ 81 years, ≥ 16% crown closure</li> <li>d. Fd 30%, ≥ 81 years, ≥ 16% crown closure</li> </ul> </li> </ol> | Deep = 20 ha                                                                                    |  |

## Appendix 5 *Criteria for Scoring Constraints*

| Constraints      | Order / Units                                                                                                                                                                           | Modelling                                                                                                                                     |                      |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|
|                  |                                                                                                                                                                                         | Area of roads and right of ways under permit is not included in                                                                               |                      |  |  |  |  |
|                  |                                                                                                                                                                                         | area used to calculate percent of SIC                                                                                                         |                      |  |  |  |  |
|                  |                                                                                                                                                                                         |                                                                                                                                               |                      |  |  |  |  |
|                  |                                                                                                                                                                                         | SIC: mature conifer with high % Fd, $\geq$ 140 years, $\geq$ 46% CC                                                                           |                      |  |  |  |  |
|                  |                                                                                                                                                                                         | Deep SZ: 40% in SIC, patches no less than 20ha                                                                                                |                      |  |  |  |  |
|                  |                                                                                                                                                                                         | Moderate SZ: 33% in SIC, patches no less than 10ha                                                                                            |                      |  |  |  |  |
|                  |                                                                                                                                                                                         | Shallow SZ: 15% in SIC, patches no less than 1 ha                                                                                             |                      |  |  |  |  |
|                  |                                                                                                                                                                                         | Security Cover: stands 2 2 m neight in patches 2 5 na                                                                                         | Partial baryost      |  |  |  |  |
|                  | 0-8-001                                                                                                                                                                                 | a Shallow - BG/ PP/ IDEvh: Ed > $50\%$ > $140$ years                                                                                          | to maintain SIC      |  |  |  |  |
|                  |                                                                                                                                                                                         | b. Moderate – IDEdk/ IDEdm/ IDEmw/ MS/ ICHdw: Ed >                                                                                            | targets/attribute    |  |  |  |  |
|                  |                                                                                                                                                                                         | 50%: IDFmw $\geq$ 140 years, all others $\geq$ 175 years; CC $\geq$ 36%                                                                       | S                    |  |  |  |  |
|                  |                                                                                                                                                                                         | c. Deep – ICH (except ICHdw); Fd $\geq$ 50%; $\geq$ 100 years; CC $\geq$                                                                      |                      |  |  |  |  |
|                  |                                                                                                                                                                                         | 46%                                                                                                                                           | Moderate:            |  |  |  |  |
|                  |                                                                                                                                                                                         |                                                                                                                                               | partial harvest      |  |  |  |  |
|                  |                                                                                                                                                                                         | <ul> <li>WTPs are Fd ≥ 140 years</li> </ul>                                                                                                   | uneven-aged          |  |  |  |  |
|                  |                                                                                                                                                                                         | <ul> <li>Moderate (except IDFmw) ≤ 50% SIC by pcell can be NTHLB</li> </ul>                                                                   | system with          |  |  |  |  |
|                  |                                                                                                                                                                                         | provided $\geq$ 50% Fd, $\geq$ 120 years and CC $\geq$ 36%                                                                                    | ≤20% removed         |  |  |  |  |
|                  |                                                                                                                                                                                         | - IDFmw no restrictions to % in NTHLB as long as $CC \ge 50\%$ and                                                                            | 40 year rotation;    |  |  |  |  |
|                  |                                                                                                                                                                                         | age/species conditions are met                                                                                                                | retained stands      |  |  |  |  |
|                  |                                                                                                                                                                                         | <ul> <li>Moderate – In 67% available for harvest to be uneven aged</li> <li>Sustance of Language 20% of stores recovered events 40</li> </ul> | on slopes <80%;      |  |  |  |  |
|                  |                                                                                                                                                                                         | silv. System as long as < 20% of stems removed every 40                                                                                       | ≤30% pcell ≤20       |  |  |  |  |
|                  |                                                                                                                                                                                         | - Moderate SIC stands on slopes < 80%                                                                                                         | years                |  |  |  |  |
|                  |                                                                                                                                                                                         | - Moderate $\leq 30\%$ of pcell can be $\leq 20$ years                                                                                        |                      |  |  |  |  |
| http://www.env.g | ov.bc.ca/wld/doc                                                                                                                                                                        | uments/uwr/uwr_u3_003.pdf                                                                                                                     |                      |  |  |  |  |
| http://www.env.g | gov.bc.ca/wld/doc                                                                                                                                                                       | uments/uwr/u-8-001_ord.pdf                                                                                                                    |                      |  |  |  |  |
| http://www.env.g | ov.bc.ca/esd/dist                                                                                                                                                                       | data/ecosystems/frpa/Approved_FRPR_sec7_WLPPR_sec9_Notices_ar                                                                                 | d_Supporting_Inf     |  |  |  |  |
| o/UWR/Timber_S   | upply_Areas/Mer                                                                                                                                                                         | ritt_TSA/Supporting_Info/Docs/Supporting_info_Merritt%20TSA_UWR                                                                               | .pdf                 |  |  |  |  |
| UWR: Mountain    | U-3-006                                                                                                                                                                                 | Harvesting must result in: uneven aged stands with $\ge$ 50% pre-                                                                             | Maintain SIC/        |  |  |  |  |
| Goat             |                                                                                                                                                                                         | harvest basal area in mature stems (> 100 years) retained;                                                                                    | thermal cover        |  |  |  |  |
|                  |                                                                                                                                                                                         | cutblocks $\leq$ 5ha or 200m in one dimension; $\leq$ 33% forested area $<$                                                                   | with stands >        |  |  |  |  |
|                  |                                                                                                                                                                                         | 33 years; maintain SIC/thermal cover by retaining Fd leading stands                                                                           | 50% Fa, ≥            |  |  |  |  |
|                  |                                                                                                                                                                                         | 2 neight class 2 and 2 crown closure class 8                                                                                                  | 10.5111, 270%        |  |  |  |  |
|                  |                                                                                                                                                                                         | Escape terrain: slopes > $30^{\circ}$ and < $60^{\circ}$                                                                                      | Partial harvest      |  |  |  |  |
|                  |                                                                                                                                                                                         | Forage: high snow interception characteristics, warm southerly                                                                                | max 50% basal        |  |  |  |  |
|                  |                                                                                                                                                                                         | aspects in coastal/transition areas and/or high-                                                                                              | area, retain         |  |  |  |  |
|                  |                                                                                                                                                                                         | exposure/windswept slopes                                                                                                                     | stands > 100         |  |  |  |  |
|                  |                                                                                                                                                                                         | Termal/Security Cover: $\leq$ 33% of forested habitat within 200 m of                                                                         | years; cutblocks     |  |  |  |  |
|                  |                                                                                                                                                                                         | escape terrain in early seral (< 40 years) over one rotation and $\ge$                                                                        | ≤ 5ha; ≤ 33% <       |  |  |  |  |
|                  |                                                                                                                                                                                         | 50% basal area of mature and old stems retained at all times                                                                                  | 33 years             |  |  |  |  |
|                  |                                                                                                                                                                                         | Snow Interception/ Thermal Cover: Fd leading stands $\geq$ 12m height                                                                         |                      |  |  |  |  |
| http://www.enc.  | tou be co luded de -                                                                                                                                                                    | with large, well developed crowns, $\geq 10\%$ CC                                                                                             |                      |  |  |  |  |
| http://www.env.g | http://www.env.gov.bc.ca/wid/documents/uwr/u-3-006_ORAM_Order.pdf                                                                                                                       |                                                                                                                                               |                      |  |  |  |  |
| o/UWR/Timber S   | nitp.//www.env.gov.bc.ca/esu/uistuata/ecosystems/irpa/Approved_FKPK_sec/_WLPPK_sec9_Notices_and_Supporting_Inf_<br>o/LIWR/Timber_Supply_Areas/Merritt_TSA/Notice/Merritt%20TSA_LIWR.pdf |                                                                                                                                               |                      |  |  |  |  |
| UWR: Moose       | FPPR Sec 7                                                                                                                                                                              | Forage: maintain min 15% forested landbase in early seral stands:                                                                             | Forage: retain       |  |  |  |  |
|                  | Notice                                                                                                                                                                                  | IDF/ICH < 25 years, MS/ESSF < 35 years                                                                                                        | 15% in early         |  |  |  |  |
|                  |                                                                                                                                                                                         | Cover: conifer stands $\geq$ 16 m height with relatively high CC; $\geq$ 50%                                                                  | seral                |  |  |  |  |
|                  |                                                                                                                                                                                         | cover in patches $\geq$ 20 ha; where possible cover close to riparian                                                                         |                      |  |  |  |  |
|                  |                                                                                                                                                                                         | features                                                                                                                                      | Cover: conifer       |  |  |  |  |
|                  |                                                                                                                                                                                         |                                                                                                                                               | stands ≥ 16m         |  |  |  |  |
|                  |                                                                                                                                                                                         |                                                                                                                                               | with high CC, $\geq$ |  |  |  |  |
|                  |                                                                                                                                                                                         |                                                                                                                                               | 50% in patches ≥     |  |  |  |  |
| http://www.opu.c | toy be caloed dist                                                                                                                                                                      | data/acosystems/frna/Annroved EPDP soc7 WIDDP soc9 Natissa ar                                                                                 | 20 lia               |  |  |  |  |

http://www.env.gov.bc.ca/esd/distdata/ecosystems/frpa/Approved\_FRPR\_sec7\_WLPPR\_sec9\_Notices\_and\_Supporting\_Inf\_ o/UWR/Timber\_Supply\_Areas/Merritt\_TSA/Notice/Merritt%20TSA\_UWR.pdf

March 31, 2018

| Constraints                                 | Order / Units                                                                                  | Criteria (Based on Timber Impact)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Modelling                                                                                                      |
|---------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| DRAFT: Fisheries<br>Sensitive<br>Watersheds | Spius,<br>Prospect,<br>Maka, Upper<br>Spius, Juliet,<br>Upper<br>Coldwater                     | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TBD                                                                                                            |
| Community<br>Watersheds                     | Anderson,<br>Bell, Brook,<br>Dillard,<br>Hackett,<br>Kwinshatin,<br>Lee,<br>Skuagam,<br>Thomas | maximum allowable ECA as per licensee's FSPs – young seral limit<br>of 30% under 6.6 m height with 100 m buffer reserve upstream of<br>water intakes                                                                                                                                                                                                                                                                                                                                                            | Max 30% of<br>young seral<br>stands (by CWS)<br>< 6.6 m                                                        |
| Riparian<br>Management<br>Zones             |                                                                                                | Modified FPPR buffer widths (each side) and basal area (BA)         retention based on licensee FSPs:         S1-A 100m 20% BA         S1-B/S2/S3 20m 20% BA         S4 fish/S5 30m 10% BA         S4 no fish 30m 0% BA         S6 20m 10% BA         L1 25% BA         L2 20m 10% BA         L3/L4 30m 10% BA         LMZ 200m - Class B 50% BA, Class C 25% BA, Class D 10% BA, Class E 5% BA         W1/W5 40m 10% BA         W1/W5 40m 10% BA         W1/W5 40m 10% BA         W3 30m         W4 30m 10% BA | Minimum basal<br>area retention<br>by riparian class<br>and applicable<br>management<br>zone (buffer<br>width) |
| Recreation                                  | Heritage<br>Trails:<br>Dewdney,<br>Hope Pass,<br>Hudson's Bay<br>Brigade,<br>Whatcom           | 200 m right of way – requires permit for any alterations – must<br>meet VQO Retention (activities not visually evident – perspective<br>view below Visually Effective Green-up)                                                                                                                                                                                                                                                                                                                                 | Max 4%                                                                                                         |
| Visual Quality<br>Objectives                | Preservation<br>(P)                                                                            | No visible activities – percent alteration per VQO 0.17-0.83% –<br>perspective view below Visually Effective Green-up (VEG) (based<br>on slope)                                                                                                                                                                                                                                                                                                                                                                 | Max 0.83%                                                                                                      |
|                                             | Retention (R)                                                                                  | Activities not visually evident – percent alteration per VQO 2-4% – perspective view below VEG                                                                                                                                                                                                                                                                                                                                                                                                                  | Max 4%                                                                                                         |
|                                             | Partial<br>Retention<br>(PR)                                                                   | Activities visible but minimal – percent alteration per VQO 6.7-<br>13.3% – perspective view below VEG                                                                                                                                                                                                                                                                                                                                                                                                          | Max 13.3%                                                                                                      |
| Landscape Level<br>Fuel Breaks              | N/A                                                                                            | FLNRO Cascades Natural Resource District – Fire Management Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No thresholds.                                                                                                 |
| Wildland Urban<br>Interface                 | N/A                                                                                            | Provincial Strategic Threat Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No thresholds.                                                                                                 |
| Wildlife Tree<br>Retention                  | N/A                                                                                            | RESULTS reserves; WTR already removed from depletion areas (blocks)                                                                                                                                                                                                                                                                                                                                                                                                                                             | No thresholds.                                                                                                 |

>65

| Constraints | Order / Units | Criteria (Based on Timber Impact)                                                |               |             |              |     | Modelling<br>No thresholds. |  |
|-------------|---------------|----------------------------------------------------------------------------------|---------------|-------------|--------------|-----|-----------------------------|--|
| Operability | N/A           | Adopt the following relative scores to distinguish timber harvesting preference: |               |             |              |     |                             |  |
|             |               |                                                                                  | Site Index    |             |              |     |                             |  |
|             |               | Slope                                                                            | <u>&lt;</u> 9 | ≥9&<12      | ≥12&<16      | ≥16 |                             |  |
|             |               | 0-45                                                                             | 8             | 2           | 0            | 0   |                             |  |
|             |               | 45-65                                                                            | 9             | 6           | 3            | 0   |                             |  |
|             |               | >65                                                                              | Alre          | ady conside | ered as anch | ors |                             |  |