

Blueberry Fertilization Demonstration Trials

November 20, 2014 BC Blueberry Council Field Day

David Poon¹, Eric Gerbrandt², Mark Sweeney¹

- 1. BC Ministry of Agriculture
- 2. University of the Fraser Valley

Introduction

Source: Strik, B. Nutrient management in raspberry and blueberry. Presentation at 2013 Washington Small Fruit Conference http://whatcom.wsu.edu/ag/edu/sfc/2013presentations.html

Objectives

- Determine the effect of changing nitrogen (N) rates and number of applications on blueberry bud set and yield
- Observe leaf N and mineral N in soil, and determine whether they explain treatment effects on blueberry bud set and yield

Methods - Duke trial (8-yr old planting)

- Base granular fertilizer on April 11, 2014
 171 lb N/acre
- 4 treatments, each with a different number of drips @ 13.3 lb N/acre per drip

Treatment	May 4	May 12	May 19	May 26	Total N (lbs/ac)
0 Drips					171
1 Drip			٠		184.3
3 Drips		•	٠	•	210.9
4 Drips	•	•	•	•	224.2

Methods - Reka trial (12-yr old planting)

- Base granular fertilizer on April 11, 2014
 50 lb N/acre
- 3 treatments with a different number of drips
 @ 13.3 lb N/acre per drip

Treatment	May 12	May 19	Total N (lbs/ac)
0 Drips			50
1 Drip		٠	63.3
2 Drips	•	•	76.6

Bud Set and Flower Counts

- 4 rows for each treatment
- Baseline data in 2014

Yield and Fruit Size

- Yield from each row of the experiment
- Fruit weight sampled x 3 from each of 10 plants in each row
- In 2015 and beyond:
 - Can we increase yield by improving bud-set?
 - How does this relate to soil/tissue nitrogen?

Methods

Leaf tissue

Preliminary results for soil nitrogen: ammonium (NH₄) and nitrate (NO₃) at 0-30 cm depth

Duke

Reka

Discussion

Nitrate NO₃

There's *potential*, esp. in the Duke trial, to avoid excess N by decreasing N rates or adjusting timing of N fertilization.

Expected Outcomes

Avoid reduced bud set

Avoid excess N uptake

Ammonium NH₄

Nitrate NO₃

In the long term, optimizing N may save fertilizer \$ and prevent losses in yield potential.

The project is funded in part through *Growing Forward 2,* a federal-provincial-territorial initiative.

We thank the blueberry growers for their cooperation and the BC Blueberry Council for their assistance with outreach.

A federal-provincial-territorial initiative

Corrections and Updates

- The original presentation indicated the Reka plants were 18 years old at the time of the presentation. They were 12.
- Slide 9 was updated after the presentation with comments that were provided verbally.

A federal-provincial-territorial initiative

