

Geoexchange for BC Public Sector Organizations

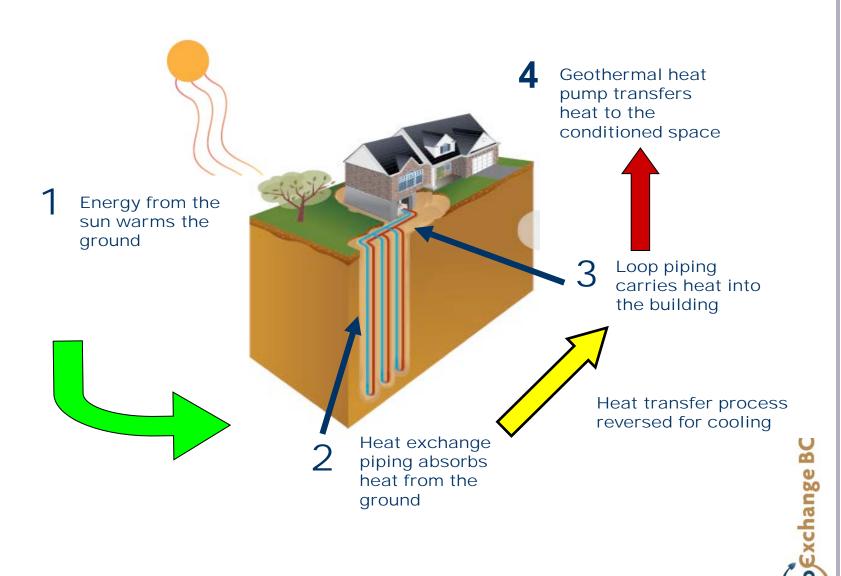
Jeff Quibell, P.Eng. Chair of the Board, GeoExchange BC

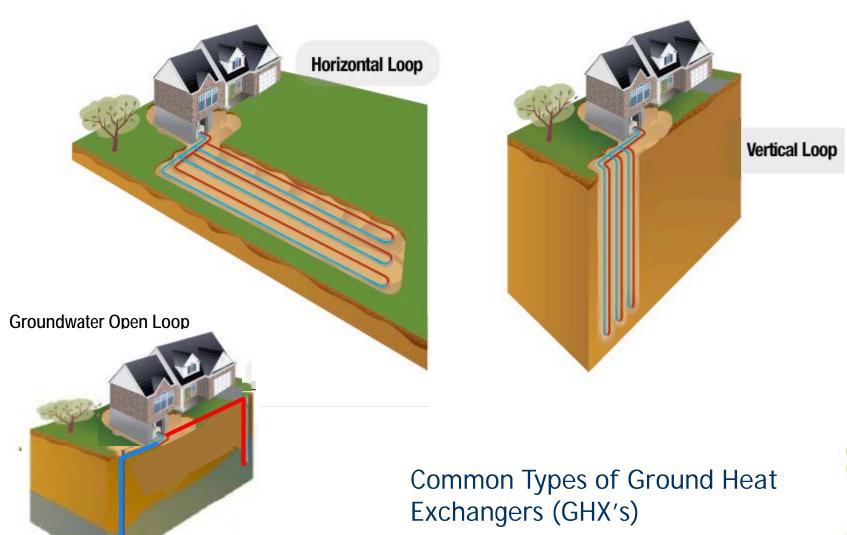
Carbon Neutral Government Symposium

December 3, 2014

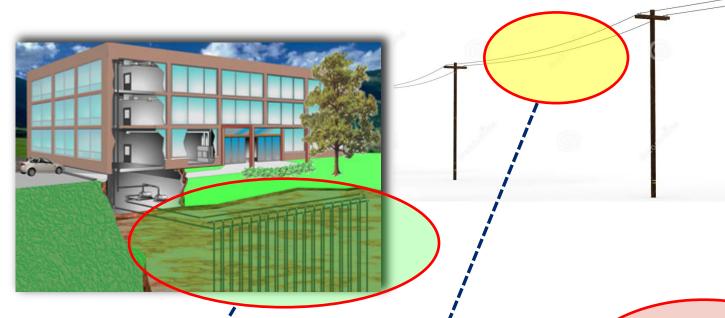
WHO WE ARE

- Non-profit industry association
 - Private and public interests
 - Designers, installers, utilities, developers, municipalities, and government agencies
- Incubated 2002 joint initiative BC Hydro and GVRD
- Evolved to non-profit association status in 2004
- Governed by volunteer elected directors who lead a series of activity-based committees


WHAT WE DO


- Provide leadership for geoexchange in BC
- Improve recognition of technology merits and limitations
- Promote best-practices unique BC settings
- Promote improvement of geox reliability and reputation
- Help build capacity to meet new code and regulation requirements (e.g., MoE, Building Code)
- ❖ Work with government, utilities, and other stakeholders

GEOEXCHANGE FUNDAMENTALS



GROUND HEAT EXCHANGE OPTIONS

COP LEVERAGING CONCEPT

2.6 units Renewable heat absorbed from ground 1 unit electricity from utility

3.6 units Heat Delivered to Building

3.6

Coefficient of Performance =

Heat delivered (3.6 units)
Electricity used (1.0 unit)

seo Exchange B

GHG REDUCTION POTENTIAL

Assume Building with:

- ≥ 500 kW peak heating load
- ≥ 2,000 equivalent annual full load hrs
- ➤ Located in BC Hydro service area

Then:

- ➤ Annual Heat demand = 1 million kWh/yr
- ➤ Converts to 3600 GJ/yr

Gas-Fired Boiler Base Case

- > Assume AFUE = 90%
- ➤ Nat Gas input = 4000 GJ (3600 GJ output)
- ➤ 49.99 kgCO₂e/GJ emission factor

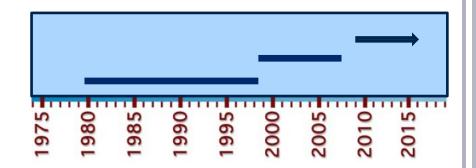
200 tons CO₂e

Geoexchange

- ➤ Assume heating seasonal system COP = 3.6
- ➤ Heat harnessed from ground = 2,600 GJ
- Compressor heat = 1,000 GJ (drawing on BC Hydro electricity)
- ➤ 4.0 kgCO₂e/GJ emission factor for BC Hydro electricity

4.0 tons CO₂e 98% Reduction from Base Case o Exchange BC

GEOEXCHANGE BC GUIDELINE SET



- Comprehensive 5-volume guideline for BC
- First volume in 2004 latest this year 10 years in the making
- Meet a clear need for solutions for BC ground and climate settings
- Intended for larger commercial or institutional applications
- Dozens of BC authors and reviewers wealth of "lessons-learned" experience
- Best-in-Class resource guide truly unique to address challenges and opportunities in BC
- Although BC focused, received international recognition

HISTORICAL PESPECTIVE

- ❖ Geoexchange 1.0 Era (1980 1999)
 - > Early adopters, "cottage industry", trial & error approach
 - Dedicated and committed independent innovators
- ❖ Geoexchange 2.0 Era (2000 2008)
 - Very rapid (unsustainable) industry expansion with sharp rise in energy costs and new interest in GHG emissions
 - Latest Fad over-promised and under-delivered many poor performing systems
- Geoexchange 3.0 Era (2009 Present)
 - Market correction, low natural gas price cause significant contraction for all renewables (including geoexchange)
 - Higher ratio of public sector projects
 - Renewed focus on quality and performance

ACTUAL OUTCOMES

- ❖ Too many poor outcomes during the Geoexchange 2.0 Era
- Perception of poor reliability sometimes deserved
- Problems not the fault of the technology per se <u>always</u> the fault of the way in which it is implemented
- **❖** Severe underperformance can result from:
 - Relatively small deficiencies that can be relatively easy to rectify (such as inadequate commissioning - very common)
 - Or fundamental deficiencies that may be difficult and expensive to rectify

GEOEXCHANGE - MORE SUSCEPTIBLE TO POOR OUTCOMES?

- Technically, geoexchange principle is simple....
 - Complexity lies in coordinating a varied, multidisciplined team on work scopes straddling traditional divide between mechanical and civil engineering
 - Geoexchange teams include drillers, plumbers, excavators, refrigeration mechanics, electricians, engineers, architects - with no other reason to collaborate other than geoexchange
 - Effective team leadership and thoughtful procurement strategies are crucial to manage to favourable outcomes
 - Concealed work poor workmanship can be easy to hide
 - Susceptibility to high expectations low tolerance for poor performance

RESTORING CONFIDENCE

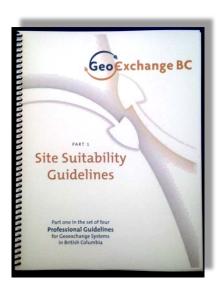
The *Geoexchange 3.0 Era* can be efficient and reliable if:

- Thoughtful attention to site suitability
- Careful selection of the type of system best-suited to the site
- Methodical design
- Careful and accountable installation
- Adequate site reviews by designer
- ❖ Appropriate QA/QC procedures during construction
- Methodical system commissioning
- Follow-up performance monitoring

GeoExchange BC Guidelines comprehensively address <u>all of</u> these considerations

GEOEXCHANGE BC GUIDELINES

- ❖ Part 1 Site Suitability
- ❖ Part 2 Design
- Part 3 Commissioning
- Part 4 Procurement
- User Guide



PART 1 - SITE SUITABILITY ANALYSIS

- Structured evaluation to assess common GHX types
- Avoid template thinking no one-size-fits-all
- Respect geological variability that is common in BC
 - Gather sufficient information to choose best-suited GHX type
 - Gather sufficient information to adapt the specific design to take best advantage of the setting
- Reason this is important GHX cost per unit capacity can vary by a factor of 10 times !!!

GeoExchange BC Part 1 *Site Suitability Guideline* describes a structured assessment method

STAGED SUITABILITY ASSESSMENT

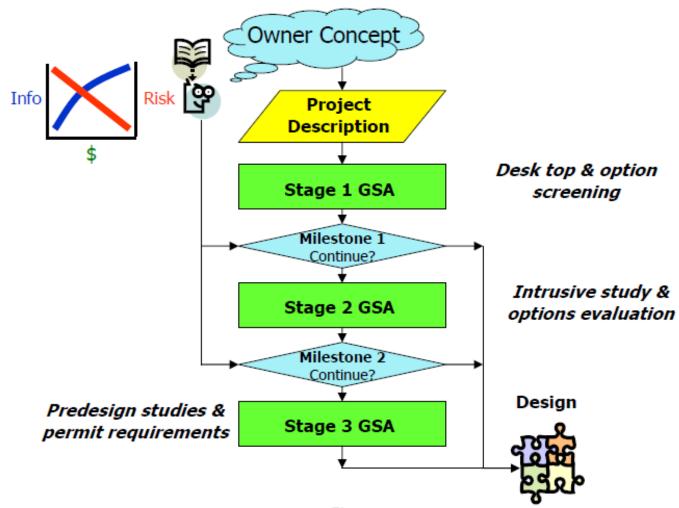
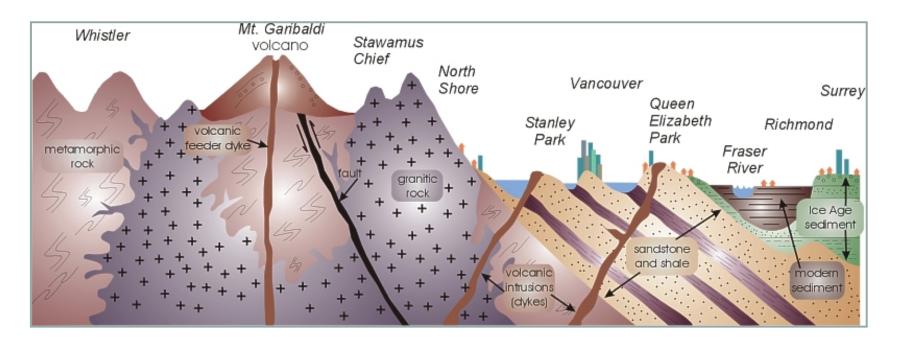
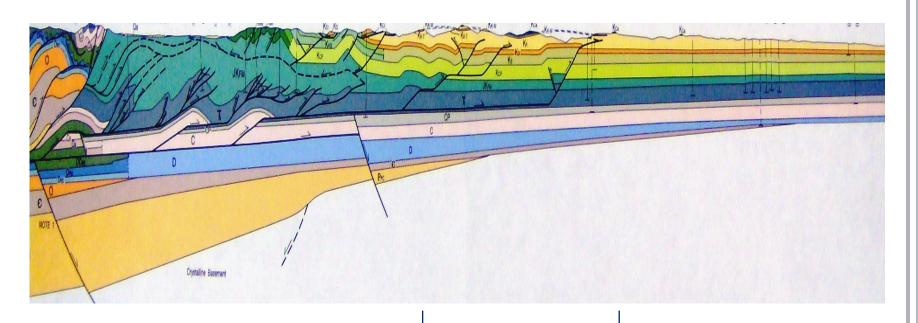



Figure 5.1 Flow chart depicting three stage geoexchange suitability assessment process


RESPECT BC GEOLOGY

Whistler Surrey

EXAMPLE SETTINGS - VANCOUVER

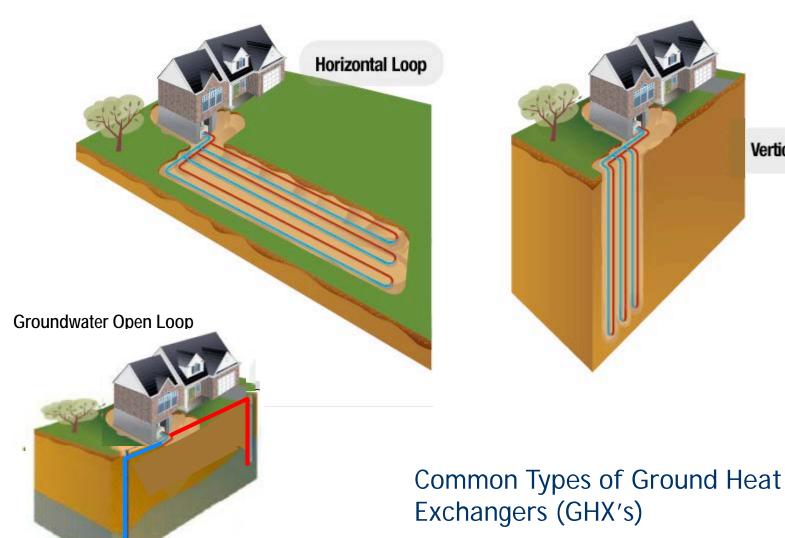


o Exchange BC

AGAIN - RESPECT BC GEOLOGY

Pine Pass Area

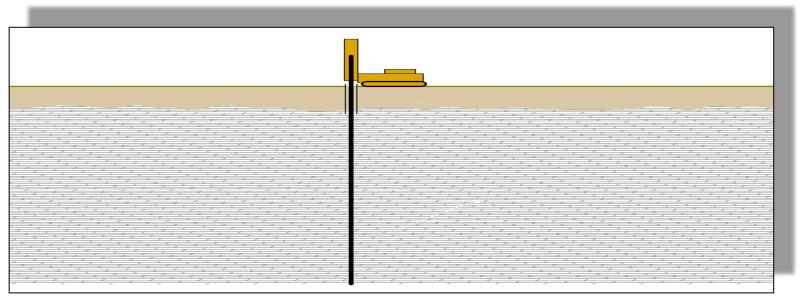
Dawson Creek Area

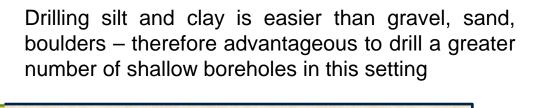

Rocky Mountain Front Ranges

Foothills

Prairies

GHX OPTIONS


Vertical Loop

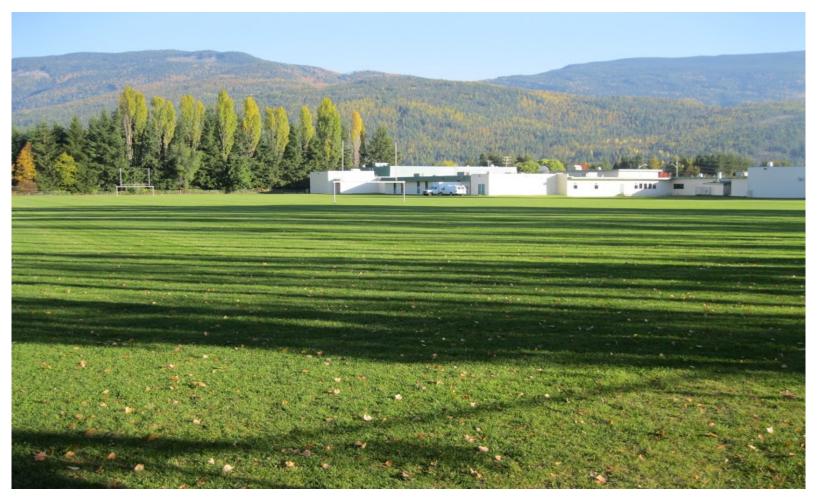

Vertical Borehole Method

Most adaptable method and often only suitable method for many sites

Adapt Design for Ground Conditions

Silt and Clay

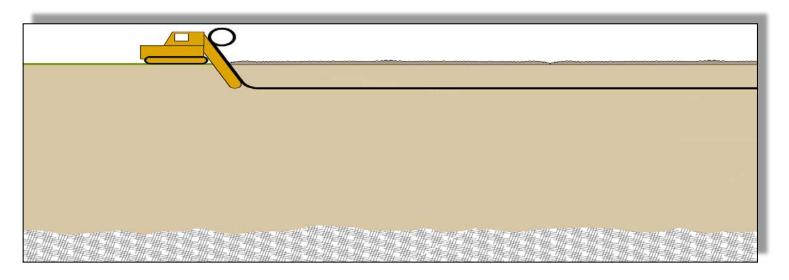
Adapt Design for Ground Conditions


Drilling in granite is easier than gravel, sand, boulders – therefore advantageous to drill deeper boreholes in this setting

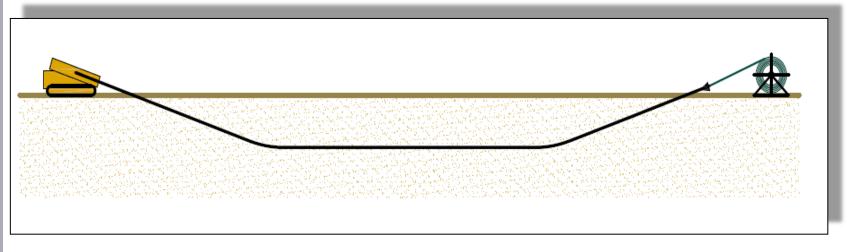
Gravel, Sand, and Boulders

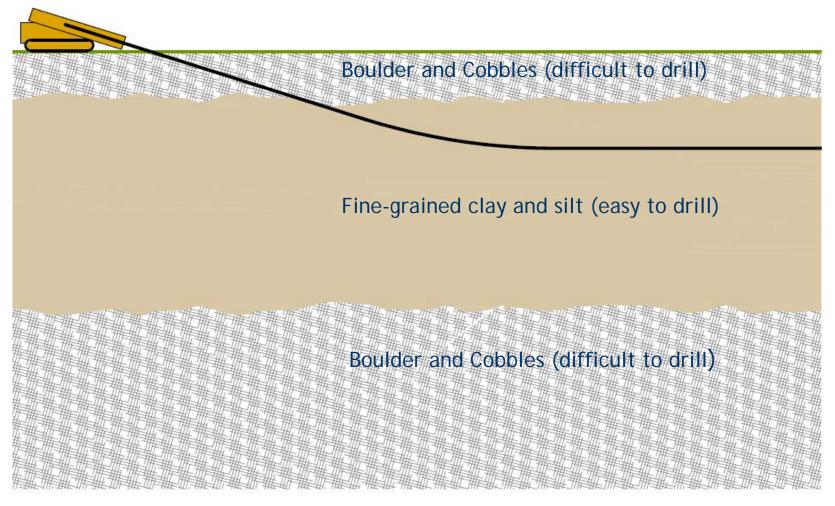
Granite

SPECIAL CASES

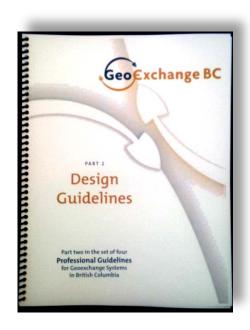

Example: Schools with large Land to Building Area Ratio

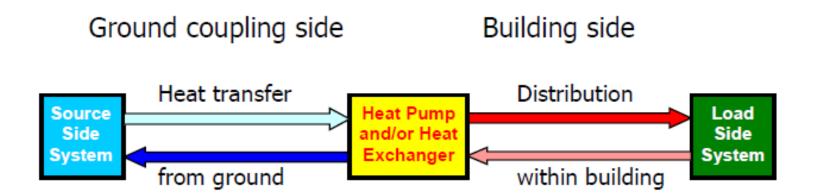
Unique opportunities for <u>horizontal ground loop configurations</u>


Chain Trench Method



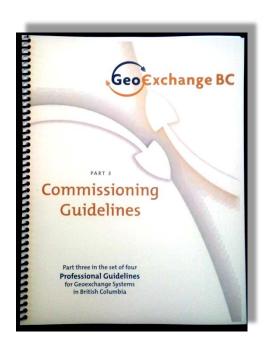
Horizontal Directional Drilled (HDD) Method


Adapt Design for Ground Conditions


PART 2 - DESIGN

- GeoExchange BC Part 2 Design Guideline outlines design strategies and objectives particularly for BC settings
- Mechanical Design and GHX Design
- Intended to be used as a BC supplement to ASHRAE and other resource guides
- Theme minimize temperature lifts in system for high performance and durability
- Incorporate QA/QC measures
 - Designer needs to thoroughly review installation (much concealed work)

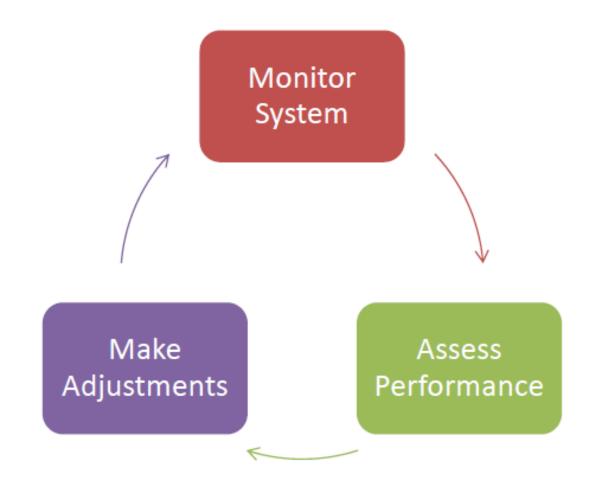
DESIGN OBJECTIVES



- ❖ COP of 3.5 or higher routinely achievable
- Design Considerations
 - New or retrofit retrofits can be very challenging
 - Central or Distributed heat pump systems
 - Hybrid combinations and apportioning loads
 - Low temperature distribution systems when possible
 - Seek simplicity when possible

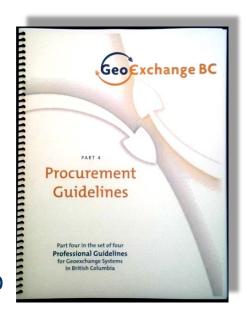
PART 3 - COMMISSIONING

- Critical steps often overlooked
- Air is an enemy thorough purging of air is critical
- Good designs simplify commissioning
- Significant number of systems are never commissioned properly
- Systemic and methodical approach is required
- GeoExchange BC Part 3 Commissioning guideline describes a methodical step-bystep approach



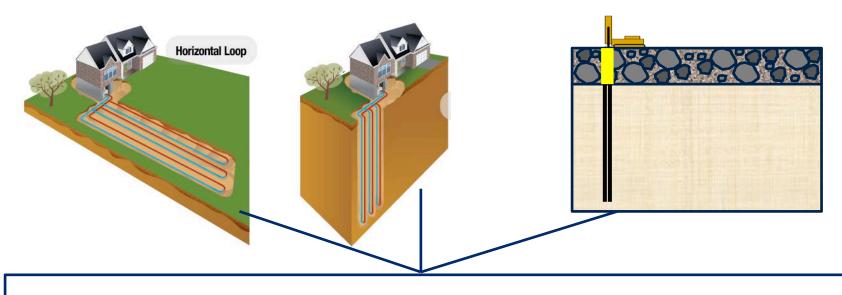
CHECKLIST APPROACH

GeoExchange VCL GHX Schedule C - Pressure and Flow Test Record Sheet														
Pageof Project: Project Number:														
L. PRESSURE TEST														
Header ID Date		Start Pressure Start Time End Pressure End Time				Pressure loss Comments								
		(psl)		(pel)	(min 12 hours)	(pa)								
Whole System														
Final whole system pressure test witnessed by Signed: (Witness) Date:														
II. FLOW TEST														
	Ι	Design Flowrate				Design Flowrate +30%				Design Flowrate - 30%				
Header ID	Date	Calculated Flow	Measured Flow	Inlet Pressure	Outlet Pressure	Calculated Flow	Measured Flow	Inlet Pressure	Outlet Pressure	Calculated Flow	Measured Flow	Inlet Pressure	Outlet Pressure	
		(USgpm)	(USgpm)	(pai)	(pel)	(Utigpm)	(Utigpm)	(pal)	(pal)	(USgpm)	(USgpm)	(pai)	(pai)	
													\vdash	
											\vdash			
Signed: (Installer)														


System Monitoring Pre-requisite to Efficient Performance

PART 4 - PROCUREMENT

- The Part 4 Procurement Guideline describes several types of procurement strategies
- ❖ Tenders for GHX contracts need to provide adequate information for contractors so they can adequately manage risk and for owners to reduce costly change orders
- Poor tender packages lacking crucial information is a very common problem plaguing the industry


RIGHT PEOPLE... RIGHT SCOPE... RIGHT TIME...

- Successful geoexchange systems manage to <u>engage</u> the <u>right people</u>, on the <u>right scope</u>, at the <u>right</u> <u>time</u>.
- ❖ With cost for GHX capacity varying by factor of 10x, skilled guidance can deliver value

GEOEXCHANGE SYSTEM COST

Cost ranges due to site setting and skill of designer to adapt to setting Cost/kW Capacity ranges from less than \$300 to more than \$2000

PORTFOLIO ASSESSMENTS

- Portfolio assessments more benefit at less cost
 - Units costs for geox capacity vary greatly from site-to-site
 - Retrofit compatibility varies greatly from site-to-site
 - Future life and maintainability of existing systems varies
- Some buildings much better suited than others for geoexchange
- Decision matrix approach

	Ground Setting	Retrofit Compatibility	Existing System Needs Upgrade
Building A	A	▼ ▼	A
Building B	▼	▼ ▼	V
Building C		A A	A
Building E	▼ ▼	A A	A
Building F	A	▼	▼

FURTHER QUESTIONS

Jeff Quibell, P. Eng. Chair of Board (Volunteer Position)

David Cookson, B.Eng., MBA Project Director (Staff Position)

david.cookson@geoexchangebc.com

Tel: 1.604.800.9091

