Silviculture Strategy Workshop Prince George, B.C. January17th and 18th, 2012

Past and Existing Silviculture Strategies

- A Type 1 Strategy in March 2000.
- An update in March 2003 to incorporate the changes resulting from TSR II and the MPB epidemic.
- Another update in March 2006 to further address the MPB epidemic.
- Type 2 Strategy completed in March 2008.

Methodology

- 1. Key issues
- 2. Review and revise (?) objectives relative to the key issues.
- 3. Review key silviculture strategies and, where necessary, revise or delete regimes or develop new regimes.
- 4. Research and development of additional potential strategies and treatment regimes.

Methodology Cont'd

- 5. Evaluation and Analysis of the key scenarios and selection of a preferred strategy.
- 6. Development of an updated 5-year silviculture program.
- 7. Compilation of a draft report to be reviewed by selected constituents.
- 8. Finalization of report and strategy.

Methodology Cont'd

Analysis

- Forest estate modeling.
- Forest-level models input.
- Stand level economics needs discussion (NPV).

Methodology Cont'd

- Stand level economics may not work for mid term mitigation.
- Discount rate.
- Differences in NPVs more relevant than details.
- Financial rotation?

Prince George TSA Overview

Previous Analysis and Identification of Key Issues

Large TSA with a total area of almost 8 million ha

THLB around 3 million ha depending on the analysis;

- Iand withdrawals;
- economic operability definition

Analysis	Ft. St. James	Vanderhoof	Prince George	Total
TSR 2	1,326,164 ha	784,670 ha	1,277,341 ha	3,388,145 ha
Expedited				3,325,683 ha
FESL 2008	1,228,777 ha	751,205 ha	1,323,259 ha	3,303,241 ha
TSR 4	978,917 ha	739,757 ha	1,377,451 ha	3,096,125 ha

THLB 3,096,125 ha

Most significant netdown factors reducing THLB after nonforest etc:

- not economical (939,390 ha), problem forest types(143,945 ha)
- ungulates (127,941 ha), riparian and WTP (353,759 ha), terrain (162,149 ha)
- parks

History of the AAC

Year	AAC m ³	MPB Uplift	Partitions
1996	9,363,661		C/H 290,000
2002	12,244,000	3,000,000	C/H 110,000 deciduous 160,000 Supply Block A 400,000
2004	14,944,000	5,700,000	C/H 110,000 deciduous 160,000 Supply Block A 400,000
2011	12,500,000	3,256,000	C/H 23,000 deciduous 160,000 Non pine etc 3.5 million

Timber Supply

Statements from 2008:

- Prince George TSA does not have a big mid-term timber supply problem. Large growing stock in Fort St. James.
- Social and economic problem.
- Constraints: no growing stock locally, old growth, economically available timber (Ministry analysis, large impact).
- Harvest attacked pine stands, immediate rehab 😳

Antti's dogma:

- The timber in Vanderhoof will run out due to the accelerated harvesting of the infested pine stands, or the decaying of those stands that will not get harvested.
- In the Prince George Forest District, the future harvest is heavily constrained by the PG TSA old growth order.
- This leaves only one option: if the TSA is to maintain its timber supply at reasonable levels a large portion of the harvest in the late short term and medium term must come from the Fort St. James Forest District. Also, a significant portion of this harvest is going to be balsam.

- MPB is most important issue affecting timber supply.
- Several past analyses have predicted the impact.
- In spite of differences in analyses, similar trends.
- Depending on the analysis the mid term is predicted to be between 6.4 million and 7.3 million and the long term between 8.7 million and 9.2 million.
- Differences caused by G&Y, THLB, shelf life assumptions.

Years from now

Key Issues

MPB Implications "Shelf Life"

Mountain Pine Beetle Cumulative Kill, 2010

Mountain Pine Beetle Cumulative Kill, 2026 (projected)

MPB Implications, shelf life

MPB Implications, shelf life

- Varies depending on area and end use.
- Harvesting of stands that have been dead up to 10 years occurs.
- Stands tend to blow down before end of shelf life.
- After 10 years, harvest opportunities diminish.
- Timber supply projections rely on continued harvest of pine leading stands.
- Silviculture cost may limit salvage, not logging cost.

MPB Implications

- Unsalvaged pine stands; the less the better.
- Focus on pine has been generally successful.
- AAC vs. Harvest

Category	2006	2,007	2,008	2009	2010	2011
AAC		14,944,000	14,944,000	14,944,000	14,944,000	12,500,000
Harvest		12,664,212	11,483,426	10,941,650	11,245,628	10,804,670
Surplus		2,279,788	3,460,574	4,002,350	3,698,372	1,695,330
% of AAC		85%	77%	73%	75%	86%
% Pine	72%	72%	76%	77%	74%	

MPB Implications

- Ministry predicts that that 160 million m³ will still come from salvaging pine stands. Reasonable assumption?
- Fort St. James pine.
- This would leave approximately 70 million m³ (200,000 ha, representing 500,000 m³ in annual cut in the long and medium term) unsalvaged.
- Harvesting attacked pine stands and immediately rehabbing them would have a positive impact on timber supply. 7% midterm impact in FESL 2008 analysis.
- Biofuel pipedream.
- Fire threat.

Land Base Constraints

- No growing stock locally (mostly Vanderhoof, to some extent PG).
- Old growth targets over the TSA.
- Old growth targets locally. At the TSA level, the PG OGO has a small impact, locally its impact is significant.
 - In the Prince George Forest District the mid term timber supply is dependent on older non-pine leading conifer stands.
- How long is old dead pine considered old?

Land Base Constraints

Highlighted units predicted to constrain timber supply

NDU/Merged Biogeoclimatic Units	Unit Label	CFLB (ha)	THLB (ha)	Target Area (ha)	Old Area (ha)	Surplus/Deficit (ha)	Old (ha), Dead Pine not old	Surplus/ Deficit
Boreal Foothills - Mountain ESSFmv 2	A1	7,031	0	2,320	5,484	3,163	4,745	2,425
McGregor Plateau ESSFwk 2	A2	15,782	8,472	4,103	7,109	3,005	7,108	3,004
McGregor Plateau SBS mk 1	A3	69,757	55,520	8,371	28,076	19,705	23,063	14,692
McGregor Plateau SBS wk 1	A4	227,722	180,609	59,208	58,141	(1,067)	54,494	(4,714)
Moist Interior - Mountain ESSFmv 3	A5	14,085	10,106	4,085	4,019	(66)	2,048	(2,037)
Moist Interior - Mountain ESSFwk 1	A6	16,388	12,203	4,752	7,365	2,613	7,266	2,513
Moist Interior - Plateau SBS mh	A7	4,268	2,091	726	1,246	521	1,246	521
Moist Interior - Plateau SBS mc 2	A8	9,306	6,902	1,117	2,198	1,081	476	(641)
Moist Interior - Plateau SBS mw	A9	34,157	26,384	4,099	5,208	1,109	2,710	(1,388)
Moist Interior - Plateau SBS wk 1	A10	40,565	31,567	6,896	14,741	7,845	12,907	6,011
Moist Interior - Plateau SBS dw 2	A11	129,857	100,431	15,583	31,507	15,924	12,829	(2,754)
Moist Interior - Plateau SBS dw 3	A12	161,537	116,907	19,384	35,179	15,795	18,270	(1,115)
Moist Interior - Plateau SBS mk 1	A13	361,246	266,708	43,349	99,889	56,540	60,182	16,833
Wet Mountain ESSFwk 2	A14	124,795	21,405	62,398	95,354	32,957	95,342	32,945
Wet Mountain ESSFwc 3	A15	16,375	105	13,755	10,541	(3,214)	10,541	(3,214)
Wet Mountain SBS wk 1	A16	35,545	25,331	9,242	14,466	5,224	14,401	5,159
Wet Mountain SBS vk	A17	120,103	65,750	60,052	83,409	23,358	82,763	22,712
Wet Trench - Mountain Eswcp	A18	2,212	57	1,770	1,643	(127)	1,640	(129)
Wet Trench - Mountain ESSFwk 2	A19	63,629	14,032	30,542	51,395	20,854	51,279	20,737
Wet Trench - Mountain ESSFwc 3	A20	97,570	6,852	78,056	80,457	2,401	80,334	2,277
Wet Trench - Mountain ESSFwk 1	A21	116,871	60,961	56,098	66,784	10,687	66,574	10,476
Wet Trench - Valley ICH wk 3	A22	28,287	14,221	14,992	17,361	2,370	17,177	2,185
Wet Trench - Valley ICH vk 2	A23	151,965	69,051	80,541	91,413	10,872	91,086	10,545
Wet Trench - Valley SBS wk 1	A24	135,470	104,945	40,641	35,281	(5,360)	32,509	(8,132)
Wet Trench - Valley SBS vk	A25	159,117	97,637	73,194	69,302	(3,892)	66,080	(7,114)

Land Base Constraints

- Age Class Distribution
- The small size of age class 3 limits forest management options to some extent. Age class 2.
- Quality of Stands Currently AC 1, 2 and 3
- From 30 to 35 years on 30% and later 60% of harvest predicted to come from pine leading stands. Does the quality of these plantations support this?
- 20% to 40% of mid term timber supply is predicted to come from balsam leading stands. Fort St. James.

Land Base Constraints

Ungulates and Visuals not significant constraints.

Timber Quality

What is Quality?

Factors

- Dead pine stands recovery and quality in the short term
- Remaining non-pine stands short and mid-term quality
- Existing immature pine and other mid-term quality
- Minimum harvest criteria mid-term quality
- Future markets for forest products- short to long term
- Forest health and fire protection affect above

Current Situation

- Depends on the operation, OSB in 100-mile 70 m³/ha
- Recover going down but pine still useable in PG TSA
- Piece size down to 0.2 m² for pine, 0.13 0.14 in some TSAs
- Spruce pressures
- -Pulp

Future

- Desires depend on operations; stud vs. larger products
- No management explicitly for quality in TSA; tenure security
- Full site occupancy, healthy stands important
- Planting densities and future options
- Desired future condition?
- Fibre rather than piece size?

Future

Is reforestation generally successful?

Are current planting/growing densities producing the quantity and quality of timber supply that is acceptable?

How do we "guarantee" that the timber that we depend on in the near future is resilient and protected? Fire, pests.

Smaller piece sizes may buy timber supply, but at what cost?

Mitigate the effects of the MPB epidemic on the timber supply through incremental silviculture.

- Prompt rehabilitation of NRL areas
- Increase the growth and yield of natural non-pine leading stands
- Increase the growth and yield of existing non-pine leading managed stands
- Pine likely ok now
- Assess current backlog and impeded stands and treat where necessary/beneficial

Manage the fire risk to timber supply caused by the MPB epidemic.

- Prompt rehabilitation of NRL areas
- Prescribed burning
- Fire breaks, general planning considering fire risk

Initiate a review of basic silviculture practices in the context of the MPB epidemic and future risks of pests and diseases.

- Planting/regeneration densities
- Species composition

Existing Strategies

Type 1 and Type 2

Keep options open for the future.

- Planting/regeneration densities
- Species composition
- Density control
- Fertilization

Targets unreasonable given the potentially available funding.

Activity	Rank	Year 1 ha	Year 2 ha	Year 3 ha	Year 4 ha	Year 5 ha	Total ha
NRL Reforestation	А	500,000	0	0	0	0	500,000
Strategy							
NRL Reforestation	А	5,000	10,000	20,000	20,000	20,000	75,000
Backlog Surveys-	А	50,000	50,000	10,000			110,000
reclassification and							
treatment scheduling,							
survey of impeded strands							
included.							
Fert. spruce leading stands	В	2,000	2,000	2,000	2,000	2,000	10,000
Backlog impeded stands	В	2,500	2,500	1,000			6,000
Backlog NSR	В	1,000	1,000	500			2,500
Repressed stand surveys	С	5,000			0	0	5,000
Repressed stand	С	500	500				1,000
treatments							
Total		566,000	66,000	33,500	22,000	22,000	709,500

Targets unreasonable given the potentially available funding.

Activity	Rank	Year 1 \$	Year 2 \$	Year 3 \$	Year 4 \$	Year 5 \$	Total \$
NRL Reforestation Strategy	А	250,000	0	0	0	0	250,000
NRL Reforestation	А	6,500,000	13,000,000	26,000,000	26,000,000	26,000,000	97,500,000
Backlog Surveys- reclassification and treatment scheduling survey of impeded strands included.	A	1,650,000	1,650,000	330,000	0	0	3,630,000
Fert. spruce leading stands	В	972,000	972,000	972,000	972,000	972,000	4,860,000
Backlog impeded stands	В	2,475,000	2,475,000	990,000	0	0	5,940,000
Backlog NSR	В	990,000	990,000	495,000	0	0	2,475,000
Repressed stand surveys	С	165,000	0	0	0	0	165,000
Repressed stand treatments	С	650,000	650,000	0	0	0	1,300,000
Total \$		13,652,000	19,737,000	28,787,000	26,972,000	26,972,000	116,120,000

The Minister's Discussion Paper

- Maintain or improve forest and range health, resiliency and diversity.
- Maximize value of the diversity of forest and range products over the longer term:
 - Maintain genetic diversity.
 - Facilitate adaptation to climate change.
 - Increase the ability of BC's forest and range ecosystems to sequester carbon.

The Minister's Discussion Paper and the FMP Idea

Objectives for:

- Species at the landscape
- Retention at the landscape
- Timber (AAC)
- The Land Based Investment Strategy

Existing Strategies

Licensee SFM Plans

Potential Strategies

- The stands and sites targeted for treatments
- What will residual stands look like
- Costs
- Timber supply and quality impacts (timing and magnitude)
- Desired future condition
 - **Difficulties or uncertainties**

Potential Strategies

- **1.** Basic Reforestation
- Planting versus natural regeneration
- Initial densities
- Species mixes (ecology, productivity and reliability)
- Genetically improved seed

- 2. Reforestation of Unharvested MPB Stands
- Non-starter?
- If treated, which ones?
- What treatments at what cost?

- **3. Backlog Reforestation and Treatment of Impeded Stands**
- How significant?
- Protection of previous investments makes sense

- 3. Fertilization
- Likely the most attractive option to increase timber supply.

Potential Strategies

- 4. Density Management
- Juvenile spacing
- Commercial thinning
- May not be on top of list.
- Future

