KALUM TIMBER SUPPLY AREA

Vegetation Resources Inventory Project Implementation Plan

PREPARED BY: LM FOREST RESOURCE SOLUTIONS LTD.

MAY 28, 2004

EXECUTIVE SUMMARY

This VRI Ground Sampling Project Implementation Plan (VPIP) has been developed for VRI timber emphasis ground sampling in the Kalum TSA during the 2004 fiscal year. This preliminary plan was prepared by LM Forest Resource Solutions Ltd.. The purpose of this VPIP is to summarize identified VRI needs and provide details for implementation of timber emphasis ground sampling and net volume adjustment factoring (NVAF) in terms of geographic area, scheduling, priorities, plot location, estimated costs by year, and roles and responsibilities. This information may be used by the DFAM group to assist in long term planning.

The recommended minimum target population is Vegetated Treed (VT) stands over 120 years of age within the operable landbase within the Kalum TSA. Sample polygons should be selected over the entire target population using probability proportional to size with replacement (PPSWR) sampling. Sample polygons will be stratified into 2 strata based on forest type (leading-species groups), specifically, hemlock leading and other leading. Each of these strata will be further sub-stratified into high, medium and low volume classifications, for a total of 6 strata for sample polygons. NVAF sampling should be also be completed. The estimated total cost of the ground sampling VRI inventory is approximately \$220,500 for 50 ground sample clusters and 85 NVAF trees. This cost includes administration, installation of the VRI sample clusters, NVAF, helicopter access, mentoring, quality assurance, statistical analysis, and inventory file adjustment.

This plan must be approved by MSRM and MoF prior to implementation. As well, it is recommended that this plan be reviewed by the stakeholders to ensure it meets their business needs.

Table of Contents

EX	ECU	FIVE SUMMARY	I		
1.	INT	RODUCTION	1		
	1.1	VEGETATION RESOURCES INVENTORY OVERVIEW	1		
	1.2	BACKGROUND	1		
	1.3	RATIONALE	2		
	1.4	Landbase	3		
2.	SAI	MPLING PLAN	5		
	2.1	Overview	5		
	2.2	Inventory Objectives	5		
	2.3	TARGET POPULATION	6		
	2.4	Sample Size	6		
	2.5	SAMPLE SELECTION	7		
	2.6	Measurements	7		
	2.7	NET VOLUME ADJUSTMENT FACTOR SAMPLING	8		
	2.8	WITHIN POLYGON VARIATION SAMPLING	8		
3.	IM	PLEMENTATION PLAN	9		
	3.1	Overview	9		
	Schei	DULE	9		
	STAGE	5.1	9		
	STAGE	E 2	9		
	3.2	SAMPLE PACKAGES	9		
	3.3	Project Support	10		
	3.4	Fieldwork	10		
	3.5	QUALITY ASSURANCE	10		
	3.6	DATA COMPILATION, ANALYSIS, AND ADJUSTMENT	10		
	3.7	ROLES AND RESPONSIBILITIES	10		
	3.8	Approximate Costs	11		
AP	PENI	DIX A – GLOSSARY OF TERMS	12		
AP	PENI	DIX B - LIST OF SAMPLE POLYGONS	16		
AP	PENI	DIX C – SAMPLE SELECTION DOCUMENTATION	20		
AP	PENI	DIX D – OPERABLE LANDBASE CRITERIA	24		
AP	PENI	DIX E – COMPARISON BETWEEN THE POPULATION AND THE SAMPLE POLYGONS	26		
AP	APPENDIX F – NVAF SAMPLING POLYGON SELECTION				
AP	APPENDIX G – APPROVAL/SIGNING				

Table 1.	Target Population Area by Leading Species.	4
Table 2.	Sample Cluster Distribution in the Target Population	6
Table 3.	Target Population Area by Leading Species.	1

List of Figures

Figure 1.	Decreasing sampling error with	increasing sample size	ś
1 15010 11	Deereusing sumpting error with	mereusing sumpre size	1

1. INTRODUCTION

1.1 Vegetation Resources Inventory Overview

The Vegetation Resources Inventory is designed to answer two questions:

- 1. Where is the resource located?
- 2. How much of a given vegetation resource (for example, timber or coarse woody debris) is within an inventory unit?

The Vegetation Resources Inventory is carried out in two phases. Phase I (Photo Interpretation) involves estimating vegetation polygon characteristics from existing information, aerial photography, and other sources. No statistical based ground sampling is done in Phase I. Phase II (Ground Sampling) provides the information necessary to determine how much of a given characteristic is within the inventory area.

Ground samples alone cannot be collected in sufficient numbers to provide the specific locations of the vegetation characteristics being inventoried. Ground measurements are used to estimate population attributes. The relationship between the attributes from the photo estimates and ground samples is used to adjust the Phase I, photo-interpreted polygon estimate. Population attributes are used to adjust the description for each polygon.

1.2 Background

This Vegetation Resources Inventory (VRI) Project Implementation Plan (VPIP) was prepared by LM Forest Resource Solutions and is based on the Kalum TSA VRI Strategic Inventory Plan (VSIP) finalized in April 2004. The VSIP outlined VRI activities and products needed to address forest management and inventory issues in the Kalum Timber Supply Area (TSA), as identified by stakeholders. The VSIP provided strategies for photo interpretation, timber emphasis ground sampling, monitoring, and associated research projects in the TSA.

The VPIP identifies the needs for VRI management inventories, and provides the details for implementation of timber emphasis VRI ground sampling and NVAF in terms of geographic areas, scheduling, priorities, plot location coordination, estimated inventory costs by year, and roles and responsibilities.

1.3 Rationale

Stakeholders identified the need to obtain more information on standing volume, particularly decay, in the Kalum Timber Supply Area. The issue of decay was also identified by the chief forester in the 1999 Kalum Timber Supply Review. It was noted in this document that the short and mid term timber supply in the Kalum TSA is very sensitive to uncertainty in existing stand volume estimates. The chief forester recommended that information be gathered that could be used to reflect appropriate timber supply assumptions in the next analysis for existing stand volumes, in particular the amount of decay.

An inventory audit, performed in the Kalum TSA in 1997, showed no significant difference between audit and inventory standing volumes ($509m^3$ /ha in the audit vs. $496m^3$ /ha in the inventory data base (a 3% gain)) for the mature forested land base (60 yrs+). Only 31 of the 50 audit samples, however, were in the operable landbase, and audit volumes for the operable area were predicted to be 2% less than inventory values. The difference between these two estimates ($9m^3$ /ha) was also not statistically significant. No meaningful comparisons could be made of the nineteen samples located in **in**operable forested areas due to the small sample size.

The audit did, however, reveal that for the entire forested land base, the yield model (VDYP) is underestimating volume by 9% on average. Loss factors are a significant consideration in this assertion. If, for example, incorrect loss factors result in an overestimate of volumes, audit results could be significantly different. Height, another driver of yield, was indicated to be overestimated by 7% in the inventory database.

The audit also showed that 60% of the growth type groups were accurately predicted in the inventory database. At the stand level, the correlation between the inventory and audit was weak, which may be attributed to the heterogeneity in stands in the Kalum TSA.

Timber emphasis Phase II ground sampling in VT stands over 120 years old in the operable landbase within the Kalum TSA will provide statistically valid timber volumes and polygon-specific tree attributes. It is expected that ground sampling and NVAF will result in the following outcomes:

- Fewer errors in the database quantified in the inventory audit because there will be a means to adjust the photo-interpreted attribute values.
- Acquisition of more accurate information on actual decay and waste.
- A basis for developing more accurate taper equations or adjustments to taper (More accurate taper equations or adjustments to taper will not be a direct product of this plan,

but the information gained in this project will allow for the development of such products).

These outcomes will contribute to the next timber supply review (TSR) in the Kalum TSA, expected prior to November 2007.

1.4 Landbase

The Kalum TSA lies within the Northern Interior Forest Region and is administered from the Kalum Forest District office in Terrace. The Kalum TSA comprises a total of 539,319 hectares centred on the community of Terrace. The TSA is bordered by the Nass, Kispiox, North Coast and Bulkley TSAs, as well as two Tree Farm Licenses (TFL 1 and TFL 41). Adjacent to the TSA are several parks, including the Nisga'a Memorial Lava Bed Provincial Park, the Lakelse Lake Provincial Park, the Exchamsiks River Provincial Park and the Gitnadoix River Recreation Area.

Of the 539,319 hectares in the TSA, 36,213 hectares or approximately 6.7 percent are not managed directly by the British Columbia Forest Service (BCFS), including parks, ecological reserves, private land and various special use permit areas. An additional 305,698 hectares, or approximately 57 percent, are non-productive areas which include rock, swamp, alpine areas and water bodies. Productive forest land managed by the BCFS totals 197,408 hectares or roughly 37 percent of the total area. Further reductions applied to the productive forest land base result in 98,256 hectares or approximately 50 percent of the productive forest land considered to be available for timber harvesting. Hemlock species dominate in stands on about 76 percent of the area, balsam dominates on 8 percent, spruce on 6 percent, and lodgepole pine on 5 percent.

The May 2000 Nisga'a final agreement identifies a total of 32,286 ha in the Kalum Forest District. Approximately 4,700 ha are in the timber harvesting landbase. The largest reduction in area was to TFL 1 and the reduction to the Kalum TSA was minimal.

The landbase selected for the target population is Vegetated Treed (VT) stands over 120 years of age within the operable landbase of the Kalum TSA. FIP files projected to 2002 were utilized to assemble the target population. The BC Land Cover Classification Scheme (BCLCS) was not an attribute of these files. In absence of the BCLCS, a surrogate measure for VT was utilized. A measure of greater than or equal to 10% crown closure was used in lieu of the VT classification (greater than or equal to 10% tree cover). Only 4 stands, totaling less than 100 ha, were equal to

10% crown closure in our target population. Every other stand included in the target population measured 20% crown closure or greater.

The utilization of the FIP files as opposed to the vegetation files (which include VRI attributes) was necessary for this project as there was some urgency in developing the plan for implementation in the current fiscal year. The utilization of these files will likely increase the time spent on the analysis and adjustment.

The operable landbase in the Kalum Forest District was being updated concurrent to the preparation of this plan. The operability criteria used to determine operable stands for the purposes of this project have been included in Appendix D, although the slope parameters had not been applied at the time this document was prepared. To address the slope parameters, each <u>sample</u> polygon was individually reviewed for slope. The operable slope limit used was 90%, consistent with the operability review in the Kalum Forest District. Polygons with any portion of operable terrain were considered operable for this exercise. No polygons were split in this operability definition. Slope data from MSRM was used to determine slopes.

Leading Species	Area (ha)	Percent (%)
Н	10,155.8	
Hm	8,744.7	
Hw	44,178.8	
Sub-total	63,079.3	85.1
Ac	1,125.0	
At	126.3	
В	403.0	
Ba	5,208.7	
Bl	3.4	
Cw	1,103.3	
Dr	<0.1	
Е	<0.1	
Ep	8.7	
Pl	638.0	
S	1,588.1	
SS	711.1	
Sw	28.8	
Yc	72.4	
Sub-total	11,016.8	14.9
TOTAL	74,096.1	100

Table 1 reflects the target population by leading species. This information was used in the development of the sampling list.

2. SAMPLING PLAN

2.1 Overview

The information presented here includes: inventory objectives, target population, sample size and selection, and the VRI tools to be used.

2.2 Inventory Objectives

The primary objective of this initiative is to provide a statistically valid estimate for volume loss due to decay on all old growth species for the Kalum TSA.

The objective of the VRI ground sampling timber emphasis inventory is to:

Install an adequate number of Phase II VRI sample clusters to adjust the timber inventory in VT stands over 120 years old in the operable landbase within the Kalum TSA, to achieve a sampling error of $\pm 15\%$ (95% probability) for overall net timber volumes in these areas.

It is expected that the sampling error of \pm 15% will be achieved with the estimated sample size. This expectation will be realized after ground sampling is complete. If the sampling error is not achieved, there are two available options. The first option would be to secure funding for a second year of sampling to make up the number of samples required to achieve the target sampling error. The second option would be to present the information in TSR regardless and advocate for its consideration.

The objective of NVAF sampling is to:

Complete an adequate number of NVAF samples to achieve the following sample errors_at the 95% level of probability.

Hemlock 8 to 12% Other Species 12 to 15% Dead Potential 20 to 30%

All Live Trees 6 to 10%

The above sample errors were derived by Will Smith (2004).

Net timber volume is gross volume minus stumps, tops, decay, waste, and breakage. Decay and waste will be estimated using VRI call grading/net factoring and NVAF sampling. Breakage will be estimated using existing loss factors, which were produced in 1976 using the best science of the day.

2.3 Target Population

The recommended minimum target population is Vegetated Treed (VT) stands over 120 years of age within the operable landbase within the Kalum TSA. Parks, park reserves or equivalents, and provincial ecological reserves have not been included in the sample population, as well as private lands and federal and Indian reserves.

2.4 Sample Size

To meet the inventory objectives (section 2.2), a minimum sample size of 50 VRI sample clusters was recommended (Table 2). Based on a coefficient of variation of 48%, it is expected that this

sample size will provide a sampling error slightly less than 15% at the 95% level of probability for the entire population. The (CV) of 48% was inflated from an inventory audit CV of 36%.

Figure 1 is included to demonstrate the impact of reducing overall target sampling error and the impact of sample size, assuming a CV of 50%. The CV for the Kalum TSA was assumed to be 48% based on the inventory audit analysis. Table 2. Sample cluster distribution inthe target population.

Landbase	Area (%)	Number of clusters
Hemlock	85	43
Other	15	7
Total	100	50

Figure 1. Decreasing sampling error with increasing sample size.¹

2.5 Sample Selection

Samples will be selected using the most current FIP files. Sample polygons will be selected using the stratified probability proportional to size with replacement (PPSWR) sample selection method. Sample polygons will be initially stratified into 2 strata based on forest type (leading-species groups), specifically, hemlock leading and other leading. Each of these strata will then be further sub-stratified into high, medium and low volume classifications (volume per hectare), for a total of 6 strata for sample polygons. Sample allocation to individual leading-species strata and substrata should be proportional to strata or sub-strata areas. The final sample population should be compared to the target population to ensure a correct representative sample has been selected. Further detail on sample selection can be found in Appendix C. A list of sample polygons is provided in Appendix B. A comparison of age and volume distribution between the sample population and the target population is available in Appendix E.

Prior to the start of ground sampling, the VPIP must be approved by MSRM and the Kalum Forest District. As administrator for the Land Based investment Program (which is the funding mechanism for this project), PricewaterhouseCoopers (PwC) will also need to approve the plan for funding.

2.6 Measurements

The ground sampling involves collecting tree attribute data on a representative sample of stands using the Vegetation Resource Inventory (VRI) procedures. VRI certified crews will gather data following the current VRI Ground Sampling Manual. Measurements will be recorded using VRI Card Types 1-3 (CH Header, CP Compass, CL Cluster Layout), and 8-11 (TD Tree Details, TL Tree Loss Indicators, TS Small Tree, Stump and Site Tree Data, TA Auxiliary Tree Card). In accordance

¹The CV, or coefficient of variation, is estimated from the inventory audit data.

with the procedures for VRI, GPS co-ordinates will be collected at the tiepoint, as well as for each integrated plot center.

2.7 Net Volume Adjustment Factor Sampling

NVAF sampling involves detailed stem analysis of sample trees, calculation of actual net volume, and calculation of the ratio between actual net volume and estimated net volume (where estimated net volume is obtained from net factoring and taper equations). NVAF data is used to adjust the estimated net tree volume to account for hidden decay and possible taper equation bias (e.g. in hemlock stands). The recommended minimum sample size is eighty-five trees (45 hemlock / 30 other / 10 dead potential) selected at random from ground sample polygons. A total list of dead potential trees should be constructed during enhancement of sample clusters, and 10 trees should be randomly selected from this list. The trees are destructively sampled for NVAF. For more information on the selection of trees to be felled, please see the NVAF sampling manual at: srmwww.gov.bc.ca/tib/vri/vri/standards/nvaf/nvaf_2k4.pdf

It is recommended that sample clusters be enhanced for NVAF at the time of ground sample establishment. It is believed that the coastal old growth characteristics of the target population would make enhancement at the time of NVAF sampling a difficult task. Crews should have adequate time to complete ground sampling and enhancements in one field day. 25 sample polygons are recommended for NVAF sampling, and two randomly selected auxiliary plots are recommended for enhancement at each cluster. A randomly selected sample list of the planned 25 polygons has been created based on the area weighted stratification and is included in Appendix F.

The recommended hemlock NVAF sample size should capture a wide range of diameters, as well as risk groups and heights to facilitate trends analysis within the species for taper and loss error (Will Smith 2004). The total sample size of 85 will likely allow for post stratification to improve the precision of the inventory's overall averages and totals. As well, the sample should provide an excellent basis for further sampling if required.

2.8 Within Polygon Variation Sampling

No WPV sampling is planned at this time. WPV sampling provides information to estimate individual polygon error, assessed as the difference between adjusted polygon value and "true" value for that polygon based on intensive sampling of sample polygons.

3. IMPLEMENTATION PLAN

3.1 Overview

One year of ground sampling and NVAF has been recommended for the Kalum TSA. The project is anticipated to receive funding under the Land Based Investment Program of FIA in 2004. Given the finite funding and timeframe, stakeholders must make every effort to ensure that the project is completed on schedule to ensure that the data will provide an overall unbiased estimate.

Implementation of VRI ground sampling and NVAF could begin immediately following approval of this plan.

Schedule

The VRI will be implemented as follows (approximate schedule):

Stage 1

- 1. Finalize draft plan objectives based on VSIP approval by stakeholders (May 2004) (LM)
- 2. Finalize VPIP. (Jun 2004) (LM)
- 3. Obtain Stakeholder approval on VPIP. (Jun 2004) (LM, Kalum Forest District)
- 4. Select sample locations in polygons using GIS (Jun 2004) (LM)
- 5. Prepare access plan (Jun 2004) (LM)
- 6. Prepare sample packages; each to include photo stereo-pair for access, document photo photocopies, sample cluster location maps, and access maps. (Jun 2004) (LM)
- 7. Obtain approval and funding confirmation from PwC (Jun 2004) (KFD)

Stage 2

8. Tender and select contract crews, and award contracts (Jun 2004) (Stakeholder representative)
 9. Conduct quality assurance (10% check) (Jul-Sep 2004) (MSRM Northern Interior Forest Region).
 10. Complete VRI and NVAF sampling. (Jul-Sep 2004) (Contractor)

11. Validate and compile data from completed sample clusters and perform final analysis / adjust inventory files / prepare final report (Nov 2004) (Stakeholder representative)

3.2 Sample Packages

Field sample packages should include most current photo stereo-pairs (or photocopies) for access, copy of document photo (where possible), sample cluster location and access maps clearly indicating sample cluster location and polygon boundaries; and overview maps for general polygon location. Maps will be plotted showing the VRI grid overlays and selected sample locations. Sample locations within a polygon will be selected using GIS.

3.3 Project Support

The MOF will provide aluminum stakes, field maps, photos, and field cards to the contract crews. Provision of other equipment such as GPS will be the responsibility of the contract crews.

MRSM will provide mentoring to the contractor. A regional MSRM official will be present at the onset of the fieldwork to provide training and support for the first 1 to 3 days of ground sampling. Mentoring for the NVAF portion of the contract should be provided by an expert cruiser and certified faller.

3.4 Fieldwork

Fieldwork will be completed using VRI measurement protocols and VRI certified crews (timber emphasis). The VRI Card Types 1-3 and 8-11 should be completed to address timber emphasis issues using the most up to data VRI Ground Sampling manual.

3.5 Quality Assurance

Ground sampling quality assurance is the responsibility of stakeholders. MSRM may provide guidance in the performance of quality assurance activities. The VRI quality assurance standards typically require inspection of at least 10% of the samples. The field crews are responsible for the quality control of their own work.

NVAF quality assurance will likely be conducted by an independent contractor.

3.6 Data Compilation, Analysis, and Adjustment

Data will be compiled by the contractor and entered into TIMVEG. Error-free data will then be stored by MSRM in their system. Incomplete or incorrect data submissions will be delivered back to the contractor for correction. The stakeholders are responsible for the statistical analysis and database adjustment as well, and a competent contractor should be chosen for these tasks.

3.7 Roles and Responsibilities

General:

- Select and review the sample polygons (LM).
- Select sample locations within polygons (LM).
- Prepare all sample packages (LM).

- Prepare Access Plan (LM).
- Ensure sample packages are assembled and complete (LM).
- Approve implementation plan (Stakeholders, MSRM, MoF).
- Submit plan to PwC for funding (Kalum Forest District).
- Coordinate project activities, and ensure all contractors are qualified and certified; and tender and manage fieldwork contracts (Kalum Forest District/stakeholders).
- Award VRI contracts (Stakeholders).
- Assess access and coordinate the use of helicopters (contractor).
- Mentor ground sampling crews (MSRM).
- Mentor NVAF crews (MSRM or contractor).
- Conduct ground sample quality assurance (MSRM)
- Conduct NVAF quality assurance (MSRM or contractor).
- Validate and compile data (contractor-quality assurance by MSRM).
- Statistical analysis and adjustment (contractor)
- Audit of statistical analysis and adjustment (MSRM)

3.8 Approximate Costs

Estimated sample sizes and costs for completion of ground sampling and NVAF are listed in Table 3. The estimated total cost is \$220,500. Efforts will be made early on in the project to determine the appropriateness of the estimated budget. The most variable factors are the bid price per sample and the number of samples that require helicopter access.

Table 3. Estimated costs for the timber emphasis VRI and NVAF in the Kalum TSA.

VRI Activity	Units	Unit Cost(\$)	Total Cost (\$)
Contract Administration	1	10,000	10,000
Timber Emphasis Plots	50 clusters	1,500/cluster	75,000
NVAF	85 trees	600/tree	51,000
Helicopter Access	37 drops	1,500	55,500
Mentoring (crew training)	1	4,000	4,000
Quality Assurance	1	10,000	10,000
Compilation, Analysis, Adjustment	1	15,000	15,000
Total			220,500

APPENDIX A – GLOSSARY OF TERMS²

District-wide VRI

This is synonymous with provincial VRI; see Provincial VRI.

Ground Sampling

Ground sampling is the field measurement of timber, ecology, range, and/or coarse woody debris values at one or more locations within each sample polygon. Sample polygons are selected proportional to their area from a sorted list. To accommodate a wide variety of resources, various types and sizes of sampling units (e.g., fixed and variable plots, transects) are used to make the measurements.

Inventory Unit

An inventory unit is the target population from which the samples are chosen. For the provincial VRI, the inventory unit is the Forest District, which includes the timber harvesting landbase, parks, recreational areas, private, and federal lands. For management inventories, the inventory unit is a subset of the provincial VRI inventory unit that focuses on a geographic area or specific attribute set, depending upon sampling objectives.

Landcover Classification

The BC Land Cover Classification Scheme (BCLCS) was designed specifically to meet VRI requirements, in addition to providing general information useful for "global vegetation accounting" and "integrated resource management." The BCLCS is hierarchical and reflects the current state of the landcover (e.g., presence or absence of vegetation, type and density of vegetation) and such fixed characteristics as landscape position (i.e., wetland, upland, alpine). There are two main classes of polygons: Vegetated and Non-Vegetated.

Management VRI

Management VRI are specialized inventories that provide detailed information required for specific resource management, i.e., day-to-day forest management. One or more VRI sampling procedures may be used for management inventories. Management inventories may focus on specific resource types (e.g., timber, range, ecology), geographic areas (e.g., landscape unit, TFL), attribute sets (e.g.,

² Source: Ft Nelson TSA VRI Ground Sample and Monitoring Project Implementation Plan

Douglas-fir leading stands, age class 4+). They may use one or more of the following tools (e.g., photo-interpretation, ground sampling, NVAF sampling).

National Forest Inventory (NFI)

The NFI provides information on Canada's resources across all provinces and allows the Federal Government a consistent framework for reporting on Canada's inventory. The inventory unit for the NFI is the entire country, although it is implemented province-by-province.

Net Volume Adjustment Factor (NVAF) Sampling

NVAF sampling provides factors to adjust net tree volume estimated from net factoring and taper equations. The adjustment accounts for hidden decay and possible taper equation bias. NVAF sampling involves detailed stem analysis of sample trees, calculation of actual net volume, and calculation of the ratio between actual net volume and estimated net volume (where estimated net volume is obtained from net factoring and taper equations).

Photo-Interpretation

Photo-interpretation involves subjective delineation of polygons and photo estimation of attributes for all polygons in an inventory unit. Medium scale aerial photographs (1:15,000) are most often used in photo-interpretation. However, if existing photo-based inventory is acceptable, the database can be translated into VRI format and upgraded to include the additional VRI attributes.

Post-Stratification

Post-stratification involves dividing inventory unit into mutually exclusive sub-populations (strata) *after* ground sampling has been completed. Samples that fall in each post-stratum are analyzed separately and the results are applied to the corresponding population post-strata to improve the precision of the inventory's overall averages and totals.

Pre-Stratification

Pre-stratification divides an inventory unit into mutually exclusive sub-populations (strata) *before* ground sampling to provide estimates for specific areas, or to increase the confidence in the overall estimates by considering special characteristics of each stratum.

PPSWR (Probability Proportional to Size With Replacement)

This is a sample selection method in which samples (polygons) are selected with probability proportional to their size. That is, the larger polygons have a higher chance of being included in the sample.

Provincial VRI

The provincial VRI provides baseline data for provincial inventory reporting, monitoring, and research. All sampling procedures from the VRI toolbox are used for this inventory at the Forest District level. The databases generated from each District inventory will be compiled to create the provincial VRI database. The provincial VRI has also been referred to in the past as the District VRI.

Resource-Specific Interpretations

Resource-Specific Interpretations (RSI) use the Resource Inventory Committee (RIC) standard VRI baseline data products (provincial VRI or management inventory), in combination with other data sets and analysis (outside of that required to produce VRI), to produce information to address specific-resource management issues (e.g., TSR review, important ecosystems, important habitats). These interpretations include ecosystem interpretations and habitat interpretations.

Retrofit

Retrofitting is the process of translating and upgrading an existing photo-based inventory to VRI standards. If the polygon linework and attributes are of acceptable quality, the existing FIP (Forest Inventory Planning) databases are translated to VIF (Vegetation Inventory Files) databases and the additional attributes required by the VRI are re-estimated from aerial photographs.

Sample Size

The sample size for an inventory is the minimum number of ground samples to be established in an inventory unit to meet the target precision.

Statistical Analysis

Statistical analysis is the process of adjusting the values of the photo-interpretation variables using ground sampling observations. For each sampled polygon, ground observations are compared to photo-estimated values to develop an adjustment factor. This factor is then applied to all polygons in the photo interpretation database to produce the final adjusted database.

Sub-unit

Sub-unit describes the inventory unit of a management inventory (i.e., the management inventory target population is a subset of the provincial VRI inventory unit). A sub-unit may be defined by a specific geographic area (e.g., operable landbase) or stand type (e.g., problem forest types) within the Forest District.

Target Precision

Target precision expresses the amount of variation in key attributes (e.g., timber volume) desired in the final results. Target precision, usually expressed as the coefficient of variation (CV), is used to calculate the minimum sample size for subsequent ground sampling.

Vegetation Resources Inventory (VRI)

VRI is an improved vegetation inventory process for assessing quantity and quality of BC's vegetation resources. The VRI process is designed to include a flexible set of sampling procedures for collecting vegetation resource information. The VRI is essentially a toolbox of procedures, which include:

- *Photo-interpretation*: the delineation of polygons from aerial photography and the estimation of resource attributes.
- *Ground sampling*: the establishment of plot clusters in selected polygons to measure timber, ecological, and/or range attributes.
- *NVAF Sampling*: stem analysis sampling of individual trees for net volume adjustment.
- *WPV Sampling*: intensive sampling of selected polygons to determine the error between the estimated attribute values and the "true" attribute values.
- *Statistical Adjustment*: the adjustment of the photo-interpreted estimates for all polygons in an inventory unit or management unit using the values measured during ground sampling.

The VRI can be deployed over the entire province (provincial VRI) measuring timber and nontimber resources, or over a large management unit (management VRI) measuring selected resources in specific portions of the landbase. The VRI sampling process produces spatial and non-spatial databases that can be used in multiple resource management applications including timber, ecosystem, and wildlife habitat management.

Within Polygon Variation Sampling

WPV sampling provides information for expressing the true individual polygon error, assessed as the difference between the adjusted polygon value and the "true" value for that polygon. The "true" value for the polygon is an estimate derived from a small sample of polygons that are intensively sampled on the ground.

APPENDIX B - LIST OF SAMPLE POLYGONS

The following sample polygon list contains 150 polygons divided into six sub-strata, defined as:

- Hemlock leading, high volume classification
- Hemlock leading, low volume classification
- Hemlock leading, medium volume classification
- Other (than hemlock) leading, high volume classification
- Other (than hemlock) low volume classification
- Other (than hemlock) medium volume classification

Each sub-stratum contains **3 times** the planned number of sample polygons, bringing the total list to 150, although only 50 samples are planned for ground sampling. The extra sample polygons have been included for the following reasons:

 A polygon may be need to be dropped if unsafe conditions or extremely poor access exists. If either of these conditions exist, you must follow these standards: <u>http://srmwww.gov.bc.ca/tib/vri/vri/standards/index.html</u>
 If a plot is dropped in accordance with these standards, the project administrator should be

notified immediately.

- Samples falling in completely inoperable polygons (as defined in section 1.4) will be removed from the population. The assessment of an inoperable polygon will not be made by the field crews while in the field. All samples will be assessed in the office for operability using the stated slope standards. Once a sample has been deemed operable in the office... every reasonable effort will be made to sample it in the field.
- A polygon may have been disturbed since the last projection and not have the intended attributes (e.g. the stand has been logged and is therefore, by definition not VT and outside the population of interest).
- The stakeholders may wish to expand on this research at a future date.

= Planned sample polygon list (n=50) for VRI ground sampling (selected using probability proportional to size with replacement). The total list included in this appendix contains 150 polygons.

Other Leading, High Volume Sub-Strata							
OBJECTID MAPSTAND	SP PCT1 S C1 C	P PCT2 SP 2 C3	PCT3 SP PCT4 C4	Shape_Area pri	ority		

853 103P017 119	BA	80 S	20	0	0	382786.70146800000	1
229 1031034 230	CW	50 H	30 S	20	0	206467.24476500000	2
700 1031078 134	BA	60 HM	40	0	0	442221.18721900000	3
166 1031028 2274	S	50 HW	30 BA	20	0	34831.52493950000	4
708 1031078 80	BA	60 HW	40	0	0	1137055.07956000000	5
896 103P013 184	BA	40 HW	40 S	20	0	172529.62468700000	6
860 103P013 297	BA	40 S	40 HW	20	0	50266.20781300000	7
700 1031078 134	BA	60 HM	40	0	0	442221 18721900000	8
721 103P013 178	S	50 HW	30 BA	20	0	125032 24500100000	9
Other Leading, Low Volu	me Si	ub-Strata	OU DI	20	•	120002.2 1000 100000	0
030 103P014 45		100	0	0	0	0/216 27800150000	1
		40 DR	30 HW	20 PI	10	57791 8098910000	2
698 1031077 183	RA	40 DIX	20 HW	201	10	98018 35025050000	23
Other Loading Medium \		o Sub-Strata	201100	20	0	30010.33023030000	5
			20	0	0	157600 24562500000	1
			20 40 CW		10	137699.24565500000	1
	00				10	221675.45521800000	2
	BA			10	0	1326708.76184000000	3
	BA	70 HVV	30	0	0	586848.30481200000	4
828 103P017 170	BA	70 HM	20 5	10	0	1238641.92547000000	5
752 1031086 13	S	60 AC	20 CW	10 HVV	10	52970.80987450000	6
258 1031039 190	BA	50 HM	30 HW	20	0	102164.95328200000	(
818 103P017 166	BA	70 S	20 HW	10	0	1112077.62594000000	8
744 1031088 154	В	60 H	30 S	10	0	432719.08400000000	9
Hemlock Leading, High V	/olum	e Sub-Strata					
2432 1031060 135	HW	80 BA	20	0	0	922841.79956400000	1
2243 1031060 46	HW	60 BA	40	0	0	1278145.31206000000	2
2102 1031059 235	HW	60 BA	40	0	0	444639.53000000000	3
3049 1031079 437	HW	70 BA	30	0	0	1017494.68846000000	4
2225 1031059 226	HW	60 BA	40	0	0	1043244.80328000000	5
3462 103P007 90	HW	50 S	30 BA	20	0	442384.0085000000	6
2340 1031055 141	HW	70 BA	20 AC	10	0	324220.49431300000	7
2382 1031067 353	HW	80 SS	20	0	0	25663.25281400000	8
2524 1031058 44	HM	50 HW	30 BA	10 SS	10	370090.40243700000	9
3289 1031089 25	Н	70 B	20 CW	10	0	926878.33918700000	10
2076 1031056 289	HW	60 BA	40	0	0	250427.32062500000	11
2129 1031057 39	HW	50 BA	50	0	0	125774.28293800000	12
3625 103P013 244	HW	60 BA	30 S	10	0	199255.70643700000	13
3183 1031078 64	HW	60 BA	40	0	0	429667,34865700000	14
3085 1031079 341	HW	100	0	0	0	148069.65132600000	15
167 103H097 161	HW	50 BA	50	0	0	173490.91902600000	16
946 1031034 189	Н	60 B	40	0	0	134534.03907900000	17
2518 1031058 40	HW	40 BA	40 SS	20	0	285696 66318800000	18
3265 1031089 29	HW	65 B	25 CW	10	0	1976958.93456000000	19
2897 1031069 146	HW	70 BA	20 CW	10	0	633000 19062400000	20
3498 103P007 121	HW	60 S	20 BA	20	0	266785 15715700000	21
3502 103P007 45	HW	50 BA	30 5	20	0	471539 69581200000	22
2440 1031059 38	HW	60 BA	40	0	0	69560 57103200000	22
908 1031030 151	H/V/	50 BA	<u></u> -0 30 НМ	20	0	416972 2220000	20
1428 1031048 358	H\\/	22 03	30 (1)	10	0	321704 3211800000	24
3173 1031070 60	Ц/γ/	80 BA	20	0	0	685042 6/1//00000	20
	Н	60 BA	20 40	0	0	26262 18212550000	20 27
	і і Ц\//	60 BA	40	0	0	637627 1726000000	21
137 1031000 213	1100	UU DA	40	0	0	03/02/.1/300000000	20

3473 103P007 197 HW 60 BA 40 SS 20 0 0 225653 932653 930B3 300B 10 CW 10 560753 86528300000 30 2579 1031068 254 HM 50 BA 40 HW 10 0 609622 5504500000 33 22431 1031069 46 HW 60 BA 40 HW 10 0 12781453 12060000 33 2188 1031037 197 HW 70 BA 20 120146 33106 123105 46 40 0 0 1174980 9689400000 38 3165 1031079 67 HW 60 BA 40 0 0 1174980 9689400000 41 2661 1031068 109 HW 70 BA 30 0 0 18747 8943700000 42 2031031069 94 HW 70 BA 30 0 0 1									
2518 1031058 40 HW 40 BA 40 SS 20 0 225696.66313800000 30 697 1031034 366 H 50 S 30 B 10 CW 10 560753.86528300000 32 2243 1031069 43 HW 40 BA 40 HW 10 0 609622.55640500000 33 2243 1031069 43 HW 40 BA 40 HW 20 220537.61584500000 34 3165 1031047 16 HW 70 CW 30 0 0 12016.431000000 33 3165 1031079 67 HW 60 BA 40 0 0 1174980.96894000000 39 1731 1031068 17 HW 50 BA 30 0 0 187478.9043700000 42 3083 1031079 9 HW 70 BA 30 0 0 187478.9043700000 42 32607 1031085 16 HW <t< td=""><td></td><td>3473 103P007 197</td><td>HW</td><td>60 BA</td><td>40</td><td>0</td><td>0</td><td>325653.93634600000</td><td>29</td></t<>		3473 103P007 197	HW	60 BA	40	0	0	325653.93634600000	29
697 103103 366 H 50 S 30 B 10 CW 10 560753 86528300000 31 2273 1031068 624 HW 60 BA 40 HW 10 0 606622 55040500000 33 2188 1031067 97 HW 70 BA 20 W 10 1276163 5126600000 35 1558 103107 197 HW 70 BA 20 W 10 1127616437 6331000000 37 3165 1031079 67 HW 60 BA 40 0 0 1174980 96894000000 39 31781 1031066 77 HW 60 BA 30 0 0 1174980 96894000000 41 2661 1031069 77 HW 70 BA 30 0 0 1374453.8701560000 42 20131031069 374<		2518 103 058 40	НW	40 BA	40 SS	20	0	285696.66318800000	30
2579 1031068 254 HM 50 A 40 HW 10 0 609622 550405500000 32 2243 1031069 44 HW 60 A 40 HW 20 2778145 3126600000 33 2188 1031069 43 HW 70 BA 20 CW 10 0 112010.64310000000 35 5158 1031079 67 HW 60 BA 40 0 0 1174980.96894000000 33 3165 1031079 67 HW 60 BA 40 0 0 1174980.96894000000 33 3165 1031069 77 HW 50 BA 30 0 0 139453.87015600000 42 3083 1031059 45 HW 70 BA 30 0 0 187478.90443700000 42 3083 1031057 76 HW 70 BA		697 1031034 366	Н	50 S	30 B	10 CW	10	560753.86528300000	31
2243 1031060 46 HW 60 BA 40 N 0 1278145.3120600000 33 2188 1031059 HW 40 BA 40 HM 20 0 220537.6158450000 34 974 1031037 197 HW 70 CW 30 0 0 25036.824650000 35 1558 1031059 159 HW 70 BA 30 0 0 155417.53750000000 38 3165 1031079 67 HW 60 BA 40 0 0 1174190.9689400000 38 3165 1031079 67 HW 60 BA 30 0 0 308795.942580000 41 2611031059 147 HW 70 BA 30 0 0 139453.8701560000 42 2510131058 16 HW 40 SS 30 0 139453.870156000 42 4257103168140		2579 1031068 254	HM	50 BA	40 HW	10	0	609622 55040500000	32
2188 1031069 493 HW 40 BA 40 HM 20 220537.61584500000 34 974 1031037 197 HW 70 BA 20 CW 10 0 112010.6431000000 35 1565 1031047 186 HW 70 CW 30 0 0 495417.5375000000 37 3165 1031079 67 HW 60 BA 40 0 0 1174980.96694000000 38 3165 1031079 67 HW 60 BA 40 0 0 187478.9043730000 42 3000 0 187478.9043730000 42 303 0 0 384778.5043870000 43 2507 1031059 45 HW 70 BA 30 0 0 899621.433400000 47 2527 1031058 140 HW 50 BA 50 0 0 104349.199050000 47 2107 1031058 148 HM 35 BA		2243 1031060 46	HW	60 BA	40	0	0	1278145 3120600000	33
974 1031037 197 HW 70 BA 20 CW 10 112010.6431000000 35 1558 1031047 186 HW 70 CW 30 0 25036.824650000 36 2244 1031059 157 HW 60 BA 40 0 1174980.96894000000 38 3165 1031046 77 HW 60 BA 40 0 0 1174980.96894000000 40 13201031046 77 HW 70 BA 30 0 308795.9426980000 41 12611031069 374 HW 70 BA 30 0 139453.8701560000 43 2507 1031059 45 HW 40 SS 30 0 276770.55693700000 44 4335 1031058 16 HW 40 SS 30 0 276770.55693700000 47 2521 1031058 16 HW 40 <td></td> <td>2188 1031069 493</td> <td>HW</td> <td>40 BA</td> <td>40 HM</td> <td>20</td> <td>0</td> <td>220537 61584500000</td> <td>34</td>		2188 1031069 493	HW	40 BA	40 HM	20	0	220537 61584500000	34
155 103 112 103 112 <td></td> <td>974 1031037 197</td> <td>HW</td> <td>70 BA</td> <td>20 CW</td> <td>10</td> <td>0</td> <td>112010 6431000000</td> <td>35</td>		974 1031037 197	HW	70 BA	20 CW	10	0	112010 6431000000	35
1336 1031059 159 HW 70 BA 30 0 0 12365 1365 1031079 67 HW 60 BA 40 0 0 1174980.9869400000 38 3165 1031079 67 HW 60 BA 40 0 0 1174980.9869400000 40 1201 1031069 37 H HW 70 BA 30 0 0 38675.9426980000 41 2661 1031069 37 H HW 70 BA 30 0 0 39453.57016600000 42 3083 1031059 45 HW 60 BA 30 0 0 39453.770569370000 42 2527 1031058 16 HW 40 SS 30 BA 30 0 0 633465100000 47 2107 1031056 216 HW 70 BA 10 CW 10 SS 10 37898.80693700000 42 2257 1031056 216 HW 50 BA		1558 1031047 186			30	0	0	25036 82465650000	36
1 103 IOS 103 IOS 104 IO 103 IOS 0 0 143411330000000 33 3165 1031079 67 HW 60 BA 40 0 0 1174980.98894000000 38 3165 1031067 97 HW 60 BA 30 0 0 408332.69418600000 40 1920 1031008 109 HW 70 BA 30 0 0 187478.9043700000 42 3083 1031079 9 HW 70 BA 30 0 0 187478.9043700000 44 3435 1031059 45 HW 60 BA 30 CW 10 0 276770.55693700000 44 3435 1031058 140 HW 70 BA 10 CW 10 SS 10 137898.8045610000 46 2257 1031058 140 HW 50 BA 20 0 243713.70278100000 3 1027 1031045 148 HM 35 HW		2211 1031050 150		70 BA	30	0	0	495417 5375000000	37
3165 1031079 0 1W 60 BA 40 0 0 1174303.98834000000 36 3165 1031078 67 HW 50 BA 30 HW 20 0 408332.68418600000 40 1920 1031008 109 HW 70 BA 30 0 0 308795.94269800000 41 2661 1031059 374 HW 70 BA 30 0 0 137478.9044370000 42 3083 1031059 95 HW 60 BA 30 0 0 139453.8701560000 43 2527 1031058 16 HW 40 SS 30 BA 30 0 0 14343456100000 46 2527 1031054 148 HM 35 BA 30 0 632061.02562500000 21 1031045 148 HM 35 BA 30 0 632061.02562500000 3 1027 1031045 148 HM 35 BA 30 </td <td></td> <td>2244 1031039 139</td> <td></td> <td>60 BA</td> <td>40</td> <td>0</td> <td>0</td> <td>117/080 0680/000000</td> <td>38</td>		2244 1031039 139		60 BA	40	0	0	117/080 0680/000000	38
1303 1031046 77 HM 50 60 0 117450030900000 40 1201 1031046 77 HM 50 84 100000 40 1201 1031069 174 W 70 BA 30 0 0 308755.94268800000 41 2661 1031079 90 HW 50 BA 50 0 0 138453.8701560000 42 3083 1031079 90 HW 50 BA 30 0 0 187478.90443700000 42 3083 1031079 90 HW 50 BA 30 0 0 193453.87015600000 43 4335 1031058 16 HW 40 SS 30 BA 30 0 14349.999050000 47 2107 1031052 14 HW 35 BA 30 0 632061.02562500000 1 1238 10310465 14W 90 EX 30 BA 20 243713.7027810000 3 1027		2165 1021070 67		60 BA	40	0	0	1174980.90094000000	20
International form Story ZO Story ZO Story ZO Story ZO Story Story <t< td=""><td></td><td>1791 1021079 07</td><td></td><td></td><td>40 20 LIM</td><td>20</td><td>0</td><td>1174980.90894000000</td><td>39</td></t<>		1791 1021079 07			40 20 LIM	20	0	1174980.90894000000	39
1320 103069 37 HW 70 BA 50 0 0 3023 39429500000 42 3083 1031069 34 HW 50 BA 50 0 0 139473.80443700000 42 3083 1031059 45 HW 60 BA 30 0 276770.55693700000 44 3435 103P007 Fd HW 70 BA 30 0 278188.80456100000 45 2521 1031058 16 HW 40 SS 30 BA 30 0 1037998.8069370000 48 Hemlock Leading, Low Volume Sub-Strata				30 BA	20	20	0	408332.09418000000	40
2061 1031079 90 HW 50 BA 50 0 0 167478.39445100000 43 2507 1031059 45 HW 60 BA 30 0 0 276770.55693700000 44 3435 1031058 16 HW 40 SS 30 BA 30 0 276170.55693700000 45 2527 1031058 140 HW 50 BA 50 0 0 1043439.1990500000 47 2107 1031056 16 HW 40 CW 10 CW 10 288.803370000 48 Hemiock Leading, Low Volume Sub-Strata 10 0 44371.370278100000 3 1027 1031038 39 HW 50 VC 30 BA 20 0 243713.70278100000 3 1027 1031088 38 HW 50 VC 30 AT 10 0 261966.63744500000 6 1504444.23065		1920 1031000 109			30	0	0	308795.94209800000	41
3063 1031059 90 HW 50 50 0 0 12533.701300000 44 3435 1031059 90 HW 70 BA 30 0 0 276770.55693700000 44 3435 1031056 16 HW 70 BA 30 0 0 17848.8045610000 45 2107 1031056 216 HW 70 BA 10 CW 10 317898.80693700000 47 2107 1031045 148 HM 35 HW 30 BA 30 0 632061.02562500000 2 109 1031045 148 HM 35 HW 30 BA 20 0 243713.70278100000 2 109 1031046 26 HW 50 BA 20 CW 20 S 10 261086.63740500000 6 10310304 204 HW 50 BA 20 CW <t< td=""><td></td><td>2001 1031009 374</td><td></td><td></td><td>30 50</td><td>0</td><td>0</td><td>10/4/0.90443/00000</td><td>42</td></t<>		2001 1031009 374			30 50	0	0	10/4/0.90443/00000	42
2507 1031005 45 HW 60 BA 30 0 0 27710.35693700000 45 3435 1031058 16 HW 40 SS 30 0 0 278188.8045610000 46 2257 1031056 16 HW 70 BA 10 CW 10 137898.80693700000 47 1549 1031045 148 HM 35 HW 30 0 632061.02562500000 1 238 103H096 65 HW 90 CW 10 0 0 44976.24208750000 2 109 103H086 54 HW 50 YC 30 BA 20 0 243713.70278100000 3 1027 1031038 239 HW 90 BA 10 0 261066.6374050000 6 1030104 26 HW 80 BA 10 S 10 281143.986750000 7 3751 1031047 422 HW		3083 1031079 90		50 BA		0	0	139453.87015600000	43
3435 103H007 76 HW 70 BA 30 0 0 898214.3340600000 46 2527 1031058 140 HW 50 BA 50 0 0 104349.1999050000 47 2107 1031055 216 HW 70 BA 10 CW 10 SS 10 137898.8069370000 48 Hemlock Leading, Low Volume Sub-Strata 544 HM 35 HW 35 BA 30 0 632061.02562500000 2 109 1031045 148 HM 35 HW 30 BA 20 0 243713.7027810000 3 1027 1031082.39 HW 90 BA 10 0 0 1750747.0550000000 6 1399 1031044 126 H 60 B 40 0 0 245914.52306500000 7 3103103044 126 H 60 B 20 CW 20 S 10 201844.984440000 8 1528 1031047 </td <td></td> <td>2507 1031059 45</td> <td>HVV</td> <td>60 BA</td> <td>30 CW</td> <td>10</td> <td>0</td> <td>276770.55693700000</td> <td>44</td>		2507 1031059 45	HVV	60 BA	30 CW	10	0	276770.55693700000	44
2521 1031058 16 HW 40 SS 30 0 2278188.80466110000 46 2267 1031056 216 HW 70 BA 10 CW 10 SS 10 137898.80693700000 47 Hemlock Leading, Low Volume Sub-Strata 5 HA 30 0 632061.02562500000 23 1031045 148 HM 35 BA 20 0 44976.24208750000 23 1027 10310465 HW 90 CW 10 0 0 44976.24208750000 24 1027 1031046 24 HW 90 BA 10 0 0 425914.52306500000 5 2913 1031069 38 HW 80 BA 10 0 26166.63740500000 7 3751 1031046 204 HW 50 BA 20 CW 20 SS 10 21844.98484400000 8 1528		3435 103P007 76	HVV	70 BA	30	0	0	899621.43340600000	45
2257 1031058 140 HW 50 0 0 104349.19990500000 47 2107 1031056 216 HW 70 BA 10 CW 10 SS 10 137898.80693700000 48 Hemiock Leading, Low Volume Sub-Strata 1549 1031045 148 HM 35 HW 90 CW 10 0 632061.02562500000 2 109 103H086 54 HW 90 CW 10 0 0 243713.70278100000 3 1027 1031038 239 HW 90 BA 10 0 0 125914.52306500000 5 2913 1031069 38 HW 80 BA 10 10 0 281796.40664300000 7 3751 1031042 04 HW 60 BL 30 10 0 117162.74551400000 10 1933 1031037 76 HW 60 S <		2521 1031058 16	HW	40 SS	30 BA	30	0	278188.80456100000	46
2107 103056 216 HW 70 BA 10 CW 10 SS 10 137898.80693700000 48 Hemlock Leading, Low Volume Sub-Strata 15449 1031045 148 HW 35 HW 35 BA 30 0 632061.02562500000 2 109 103H086 54 HW 50 YC 30 BA 20 0 243713.70278100000 3 1027 1031038 239 HW 90 BA 10 0 0 1750747.055000000000 4 1399 1031044 126 H 60 B 40 0 0 261066.6374050000 5 2913 1031069 38 HW 80 BA 10 S 10 0 216464.6300000 7 3761 1039056 7 HW 60 PL 30 AT 10 0 11762.74551400000 10 1933 1031037 766 HW 70 S 15 BA 15 0 48454.1096780000 11 725 <td></td> <td>2257 1031058 140</td> <td>HW</td> <td>50 BA</td> <td>50</td> <td>0</td> <td>0</td> <td>104349.19990500000</td> <td>47</td>		2257 1031058 140	HW	50 BA	50	0	0	104349.19990500000	47
Hemlock Leading, Low Volume Sub-Strata 1549 1031045 148 HM 35 HW 35 BA 30 0 632061.0256250000 2 109 103H086 54 HW 90 CW 10 0 0 44976.24208750000 2 109 103H086 54 HW 90 CW 10 0 0 1750747.05500000000 4 1399 1031044 126 H 60 B 40 0 0 243713.70278100000 5 2913 1031069 38 HW 80 BA 10 S 10 261066.63740500000 6 1500 1031046 204 HW 50 BA 20 CW 20 SS 10 287996.40664300000 7 3751 103P036 7 HW 60 PL 30 AT 10 0 201844.9848400000 8 1528 1031047 422 HW 68 CW 20 BA 10 SS 2 821113.99657500000 10 1933 1031037 766 HW 70 S 15 BA 15 0 48454.10967800000 12 </td <td></td> <td>2107 1031056 216</td> <td>HW</td> <td>70 BA</td> <td>10 CW</td> <td>10 SS</td> <td>10</td> <td>137898.80693700000</td> <td>48</td>		2107 1031056 216	HW	70 BA	10 CW	10 SS	10	137898.80693700000	48
1549 103H096 65 HW 90 CW 10 0 0 44976.24208750000 2 109 103H086 54 HW 90 CX 30 0 44976.24208750000 3 1027 1031038 239 HW 90 BA 10 0 0 1750747.0550000000 4 1399 1031044 126 H 60 B 40 0 0 425914.5230650000 5 2913 1031069 38 HW 80 BA 10 S 10 261066.6374050000 6 1500 1031046 204 HW 50 BA 20 CW 20 S 10 201844.98484400000 8 1528 1031047 422 HW 68 CW 20 BA 10 S 2 821113.9965750000 10 1933 1031037 766 HW 70 S 15 BA 15 0 48454.10967800000 12 3221 1031077 24	Hemle	ock Leading, Low \	/olume	e Sub-Strata					
238 103 H096 65 HW 90 CW 10 0 0 44976.24208750000 23 109 103H086 54 HW 90 BA 10 0 0 243713.70278100000 3 1027 103I038 239 HW 90 BA 10 0 0 1450747.0550000000 4 1399 103I044 126 H 60 B 40 0 0 425914.52306500000 6 1309 103I046 204 HW 50 BA 20 CW 20 SS 10 261066.6374050000 7 3751 103P036 7 HW 60 PL 30 AT 10 0 201844.98440000 8 1528 103I047 422 HW 68 CW 20 BA 10 SS 2 821113.9965750000 10 1933 103I037 766 HW 70 S 15 BA 15 0 48454.1996780000 12 3221 103I037 766 HW 70 S 15 BA 15 0 175692.87456100000 13		1549 1031045 148	HM	35 HW	35 BA	30	0	632061.02562500000	1
109 103H086 54 HW 50 YC 30 BA 20 0 243713.70278100000 34 1399 1031044 126 H 60 B 40 0 0 425914.52306500000 5 2913 1031069 38 HW 80 BA 10 S 10 0 261066.63740500000 6 1500 1031046 204 HW 50 BA 20 CW 20 SS 10 287996.40664300000 7 3751 103P036 7 HW 60 PL 30 AT 10 0 201844.98484400000 8 1528 1031047 422 HW 68 CW 20 BA 10 SS 2 821113.99657500000 10 1933 1031037 766 HW 70 S 15 BA 15 0 48454.1096780000 11 725 1031038 93 HW 60 CW 40 0 0 91578.48918750000 13 1414 1031045 14		238 103H096 65	HW	90 CW	10	0	0	44976.24208750000	2
1027 1031038 239 HW 90 BA 10 0 0 1750747.05500000000 4 1399 1031044 126 H 60 B 40 0 0 425914.5230650000 5 2913 1031069 38 HW 80 BA 10 S 10 0 261066.6374050000 6 1500 1031046 204 HW 50 BA 20 CW 20 SS 10 287996.40664300000 7 3751 103P036 7 HW 60 PL 30 AT 10 0 201844.98484400000 8 1528 1031047 422 HW 68 CW 20 BA 10 SS 2 821113.9965750000 10 1933 1031037 766 HW 70 S 15 BA 15 0 48454.10967800000 12 3221 1031077 24 HW 90 PL 10 0 0 328826.0563450000 14 64 103H086 68		109 103H086 54	HW	50 YC	30 BA	20	0	243713.70278100000	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1027 1031038 239	HW	90 BA	10	0	0	1750747.05500000000	4
2913 1031069 38 HW 80 BA 10 S 10 0 261066.63740500000 6 1500 1031046 204 HW 50 BA 20 CW 20 SS 10 287996.40664300000 7 3751 103P036 7 HW 60 PL 30 AT 10 0 201844.98484400000 8 1528 1031047 422 HW 68 CW 20 BA 10 SS 2 821113.99657500000 9 3443 103P014 5 H 60 B 30 S 10 0 117162.74551400000 10 1933 1031037 766 HW 70 S 15 BA 15 0 48454.10967800000 12 3221 1031077 24 HW 90 PL 10 0 0 91578.48918750000 13 1414 1031045 337 HW 40 EP 30 SS 10 CW 10 328826.05634500000 14 64 103H086 68 HW 70 CW 20 BA 10 0 47009.56418750000 17 3476 103P003 128 HW 90 S 10 0 325349.		1399 1031044 126	Н	60 B	40	0	0	425914.52306500000	5
1500 100 100 20 CW 20 SS 10 287996.40664300000 7 3751 103P036 7 HW 60 PL 30 AT 10 0 201844.98484400000 8 1528 103I047 422 HW 68 CW 20 BA 10 SS 2 821113.99657500000 10 1933 103I037 766 HW 70 S 15 BA 15 0 48454.10967800000 11 725 103I038 93 HW 60 CW 40 0 0 175692.8745610000 12 3221 103I07 24 HW 90 PL 10 0 4709.56418750000 15 8721 103I038 237 HW 40 EP 30 SS 10 0 309015.11089200000 16 2395 103I036 16 HW 40 A 0 0		2913 1031069 38	HW	80 BA	10 S	10	0	261066.63740500000	6
3751 103P036 7 HW 60 PL 30 AT 10 0 201844.98484400000 8 1528 1031047 422 HW 68 CW 20 BA 10 SS 2 821113.99657500000 9 3443 103D014 5 H 60 B 30 S 10 0 117162.74551400000 10 1933 103037 766 HW 70 S 15 BA 15 0 48454.10967800000 12 3221 1031037 24 HW 90 PL 10 0 91578.48918750000 13 1414 1031045 337 HW 40 EP 30 SS 10 CW 10 328826.0563450000 14 64 103H086 68 HW 70 CW 20 BA 10 0 47009.56418750000 15 872 1031038 278 HW 90 BA 10 0 352349.215500000 17 3476 103P003 128 HW 90 S		1500 1031046 204	HW	50 BA	20 CW	20 SS	10	287996.40664300000	7
1528 103/047 422 HW 68 CW 20 BA 10 SS 2 821113.99657500000 9 3443 103P014 5 H 60 B 30 S 10 0 117162.74551400000 10 1933 103/037 766 HW 70 S 15 BA 15 0 48454.1096780000 12 3221 103/077 24 HW 90 PL 10 0 91578.48918750000 13 1414 103/045 337 HW 40 EP 30 SS 10 W 10 32826.0563450000 14 64 103H086 68 HW 70 CW 20 BA 10 0 47009.56418750000 15 872 103/038 278 HW 90 BA 10 0 309015.11089200000 17 3476 103P003 128 HW 90 S 10 0 255742.88		3751 103P036 7	HW	60 PL	30 AT	10	0	201844.98484400000	8
3443 103P014 5 H 60 B 30 S 10 0 117162.74551400000 10 1933 1031037 766 HW 70 S 15 BA 15 0 48454.10967800000 11 725 1031038 93 HW 60 CW 40 0 0 175692.87456100000 12 3221 1031077 24 HW 90 PL 10 0 0 91578.48918750000 13 1414 1031075 24 HW 90 PL 10 0 0 91578.48918750000 13 1414 1031045 337 HW 40 EP 30 SS 10 CW 10 328826.0563450000 14 64 103H086 68 HW 70 CW 20 BA 10 0 47009.5641875000 16 2395 1031036 16 HW 60 BA 40 0 0 101701.34228100000 17 3476 103P003 128 HW<		1528 1031047 422	HW	68 CW	20 BA	10 SS	2	821113.99657500000	9
1933 1031037 766 HW 70 S 15 BA 15 0 48454.10967800000 11 725 1031038 93 HW 60 CW 40 0 0 175692.87456100000 12 3221 1031077 24 HW 90 PL 10 0 0 91578.48918750000 13 1414 1031045 337 HW 40 EP 30 SS 10 CW 10 328826.0563450000 14 64 103H086 68 HW 70 CW 20 BA 10 0 47009.56418750000 15 872 1031036 16 HW 90 BA 10 0 0 309015.11089200000 16 2395 1031056 16 HW 90 S 10 0 0 352349.21550000000 18 1813 1031007 19 HW 100 0 365687.35292100000 20 1937 1031033 138 H 60 B 30		3443 103P014 5	Н	60 B	30 S	10	0	117162.74551400000	10
725 1031038 93 HW 60 CW 40 0 0 175692.87456100000 12 3221 1031077 24 HW 90 PL 10 0 0 91578.48918750000 13 1414 1031045 337 HW 40 EP 30 SS 10 CW 10 328826.05634500000 14 64 103H086 68 HW 70 CW 20 BA 10 0 47009.56418750000 15 872 1031038 278 HW 90 BA 10 0 0 309015.11089200000 16 2395 1031056 16 HW 60 BA 40 0 0 101701.34228100000 17 3476 103P003 128 HW 90 S 10 0 3552349.21550000000 18 1813 1031007 19 HW 100 0 0 255742.88461100000 19 1009 1031038 210 HW 70 BA 20 CW 10 865687.35292100000 22 950 1031035 40 <td></td> <td>1933 1031037 766</td> <td>HW</td> <td>70 S</td> <td>15 BA</td> <td>15</td> <td>0</td> <td>48454.10967800000</td> <td>11</td>		1933 1031037 766	HW	70 S	15 BA	15	0	48454.10967800000	11
3221 1031077 24 HW 90 PL 10 0 0 91578.48918750000 13 1414 1031045 337 HW 40 EP 30 SS 10 CW 10 328826.05634500000 14 64 103H086 68 HW 70 CW 20 BA 10 0 47009.56418750000 15 872 1031038 278 HW 90 BA 10 0 0 309015.11089200000 16 2395 1031056 16 HW 60 BA 40 0 0 101701.34228100000 17 3476 103P003 128 HW 90 S 10 0 0 352349.2155000000 18 1813 1031007 19 HW 100 0 0 255742.88461100000 19 1009 1031038 210 HW 70 BA 20 CW 10 0 365687.35292100000 20 1937 1031033 138 H 60 B 30 S 10 0 81378.87423550000 21 132 103H086 58 HW 60 YC 30 BA 10 290768.62839200000		725 1031038 93	HW	60 CW	40	0	0	175692.87456100000	12
1414 1031045 337 HW 40 EP 30 SS 10 CW 10 328826.05634500000 14 64 103H086 68 HW 70 CW 20 BA 10 0 47009.56418750000 15 872 1031038 278 HW 90 BA 10 0 0 309015.11089200000 16 2395 1031056 16 HW 60 BA 40 0 0 101701.34228100000 17 3476 103P003 128 HW 90 S 10 0 0 352349.2155000000 18 1813 1031007 19 HW 100 0 0 255742.88461100000 19 1009 1031038 210 HW 70 BA 20 CW 10 0 365687.35292100000 20 1937 1031033 138 H 60 B 30 S 10 0 81378.87423550000 21 132 103H086 58 HW 60 YC 30 BA 10 0 290768.62839200000 22 950		3221 1031077 24	HW	90 PL	10	0	0	91578.48918750000	13
64 103H086 68 HW 70 CW 20 BA 10 0 47009.56418750000 15 872 103I038 278 HW 90 BA 10 0 0 309015.11089200000 16 2395 103I056 16 HW 60 BA 40 0 0 101701.34228100000 17 3476 103P003 128 HW 90 S 10 0 0 352349.21550000000 18 1813 103I007 19 HW 100 0 0 0 255742.88461100000 19 1009 103I038 210 HW 70 BA 20 CW 10 0 365687.35292100000 20 1937 103I033 138 H 60 B 30 S 10 0 81378.87423550000 21 132 103H086 58 HW 60 YC 30 BA 10 0 290768.62839200000 22 950 103I035 40 HM 50 BA 20 0 1155888.56644000000 24 67 103I018 2020 HW 50 BA 20 CW 20 SS 10 83290.76		1414 103 045 337	HW	40 EP	30 SS	10 CW	10	328826.05634500000	14
872 1031038 278 HW 90 BA 10 0 0 309015.11089200000 16 2395 1031056 16 HW 60 BA 40 0 0 101701.34228100000 17 3476 103P003 128 HW 90 S 10 0 0 352349.2155000000 18 1813 1031007 19 HW 100 0 0 0 255742.88461100000 19 1009 1031038 210 HW 70 BA 20 CW 10 0 365687.35292100000 20 1937 1031033 138 H 60 B 30 S 10 0 81378.87423550000 21 132 103H086 58 HW 60 YC 30 BA 10 0 290768.62839200000 22 950 1031035 40 HM 50 BA 20 0 1155888.56644000000 24 67 1031018 2020 HW 50 BA 20 CW 20 SS 10 83290.76090650000 25 1317 1031046 145 HW 40 EP 30 SS 10 CW 10 86		64 103H086 68	HW	70 CW	20 BA	10	0	47009.56418750000	15
2395 1031056 16 HW 60 BA 40 0 0 101701.34228100000 17 3476 103P003 128 HW 90 S 10 0 0 352349.21550000000 18 1813 1031007 19 HW 100 0 0 255742.88461100000 19 1009 1031038 210 HW 70 BA 20 CW 10 0 365687.35292100000 20 1937 1031033 138 H 60 B 30 S 10 0 81378.87423550000 21 132 103H086 58 HW 60 YC 30 BA 10 0 290768.6283920000 22 950 1031035 40 HM 50 BA 50 0 0 141511.15098500000 23 1577 1031048 473 HM 80 BA 20 0 0 1155888.56644000000 24 67 1031018 2020 HW 50 BA 20 CW 20 SS 10 83290.76090650000 25 1317 1031046 145 HW 40 EP 30 SS 10 CW 10 86657.60784250000 26 1528 1		872 1031038 278	HW	90 BA	10	0	0	309015.11089200000	16
3476 103P003 128 HW 90 S 10 0 0 352349.21550000000 18 1813 1031007 19 HW 100 0 0 0 255742.88461100000 19 1009 1031038 210 HW 70 BA 20 CW 10 0 365687.35292100000 20 1937 1031033 138 H 60 B 30 S 10 0 81378.87423550000 21 132 103H086 58 HW 60 YC 30 BA 10 0 290768.62839200000 22 950 1031035 40 HM 50 BA 50 0 0 141511.15098500000 23 1577 1031048 473 HM 80 BA 20 0 0 1155888.56644000000 24 67 1031018 2020 HW 50 BA 20 CW 20 SS 10 83290.76090650000 25 1317 1031046 145 HW 40 EP 30 SS 10 CW 10 86657.60784250000 27 <		2395 1031056 16	HW	60 BA	40	0	0	101701.34228100000	17
1813 1031007 19 HW 100 0 0 0 255742.88461100000 19 1009 1031038 210 HW 70 BA 20 CW 10 0 365687.35292100000 20 1937 1031033 138 H 60 B 30 S 10 0 81378.87423550000 21 132 103H086 58 HW 60 YC 30 BA 10 0 290768.62839200000 22 950 103I035 40 HM 50 BA 50 0 0 141511.15098500000 23 1577 103I048 473 HM 80 BA 20 0 0 1155888.56644000000 24 67 103I018 2020 HW 50 BA 20 CW 20 SS 10 83290.76090650000 25 1317 103I046 145 HW 40 EP 30 SS 10 CW 10 86657.60784250000 26 1528 103I047 422 HW 68 CW 20 BA 10 SS 2 821113.99657500000 27 3101 103I079 266 HW 80		3476 103P003 128	HW	90 S	10	0	0	352349.21550000000	18
1009 1031038 210 HW 70 BA 20 CW 10 0 365687.35292100000 20 1937 1031033 138 H 60 B 30 S 10 0 81378.87423550000 21 132 103H086 58 HW 60 YC 30 BA 10 0 290768.62839200000 22 950 103I035 40 HM 50 BA 50 0 0 141511.15098500000 23 1577 103I048 473 HM 80 BA 20 0 0 1155888.56644000000 24 67 103I018 2020 HW 50 BA 20 CW 20 SS 10 83290.76090650000 25 1317 103I046 145 HW 40 EP 30 SS 10 W 86657.60784250000 26 1528 103I047 422 HW 68 CW 20 BA 10 SS 2 821113.99657500000 <td< td=""><td></td><td>1813 1031007 19</td><td>HW</td><td>100</td><td>0</td><td>0</td><td>0</td><td>255742.88461100000</td><td>19</td></td<>		1813 1031007 19	HW	100	0	0	0	255742.88461100000	19
1937 1031033 138 H 60 B 30 S 10 0 81378.87423550000 21 132 103H086 58 HW 60 YC 30 BA 10 0 290768.6283920000 22 950 103I035 40 HM 50 BA 50 0 0 141511.1509850000 23 1577 103I048 473 HM 80 BA 20 0 0 1155888.5664400000 24 67 103I018 2020 HW 50 BA 20 CW 20 SS 10 83290.76090650000 25 1317 103I046 145 HW 40 EP 30 SS 10 CW 10 86657.60784250000 26 1528 103I047 422 HW 68 CW 20 BA 10 SS 2 821113.99657500000 27 3101 103I079 266 HW 80 BA 20 0 0 512639.98737400000 28 3141 103I077 218 HW 100 0 0 172312.35775200000 29 1616 103I043 103 H 60 CW 40 <td></td> <td>1009 103 038 210</td> <td>HW</td> <td>70 BA</td> <td>20 CW</td> <td>10</td> <td>0</td> <td>365687.35292100000</td> <td>20</td>		1009 103 038 210	HW	70 BA	20 CW	10	0	365687.35292100000	20
132 103H086 58 HW 60 YC 30 BA 10 0 290768.62839200000 22 950 103l035 40 HM 50 BA 50 0 0 141511.15098500000 23 1577 103l048 473 HM 80 BA 20 0 0 1155888.56644000000 24 67 103l018 2020 HW 50 BA 20 CW 20 SS 10 83290.76090650000 25 1317 103l046 145 HW 40 EP 30 SS 10 CW 10 86657.60784250000 26 1528 103l047 422 HW 68 CW 20 BA 10 SS 2 821113.99657500000 27 3101 103l079 266 HW 80 BA 20 0 0 512639.98737400000 28 3141 103l077 218 HW 100 0 0 0 99906.92596850000 29 1616 103l043 103 H 60 CW 40 0 0 172312.35775200000 30 920 103l037 31 HW 40 HM 40 BA 20 0 100878.85162600000 31		1937 1031033 138	Н	60 B	30 S	10	0	81378.87423550000	21
950 103l035 40 HM 50 BA 50 0 0 141511.15098500000 23 1577 103l048 473 HM 80 BA 20 0 0 1155888.56644000000 24 67 103l018 2020 HW 50 BA 20 CW 20 SS 10 83290.76090650000 25 1317 103l046 145 HW 40 EP 30 SS 10 CW 10 86657.60784250000 26 1528 103l047 422 HW 68 CW 20 BA 10 SS 2 821113.99657500000 27 3101 103l079 266 HW 80 BA 20 0 0 512639.98737400000 28 3141 103l077 218 HW 100 0 0 99906.92596850000 29 1616 103l043 103 H 60 CW 40 0 0 172312.35775200000 30 920 103l037 31 HW <t< td=""><td></td><td>132 103H086 58</td><td>HW</td><td>60 YC</td><td>30 BA</td><td>10</td><td>0</td><td>290768.62839200000</td><td>22</td></t<>		132 103H086 58	HW	60 YC	30 BA	10	0	290768.62839200000	22
1577 103I048 473 HM 80 BA 20 0 0 1155888.56644000000 24 67 103I018 2020 HW 50 BA 20 CW 20 SS 10 83290.76090650000 25 1317 103I046 145 HW 40 EP 30 SS 10 CW 10 86657.60784250000 26 1528 103I047 422 HW 68 CW 20 BA 10 SS 2 821113.99657500000 27 3101 103I079 266 HW 80 BA 20 0 0 512639.98737400000 28 3141 103I077 218 HW 100 0 0 0 99906.92596850000 29 1616 103I043 103 H 60 CW 40 0 0 172312.35775200000 30 920 103I037 31 HW 40 HM 40 BA 20 0 100878.85162600000 31		950 1031035 40	HM	50 BA	50	0	0	141511.15098500000	23
67 103I018 2020HW50 BA20 CW20 SS1083290.76090650000251317 103I046145HW40 EP30 SS10 CW1086657.60784250000261528 103I047422HW68 CW20 BA10 SS2821113.99657500000273101 103I079266HW80 BA2000512639.98737400000283141 103I077218HW10000099906.92596850000291616103I043103H60 CW4000172312.3577520000030920 103I03731HW40 HM40 BA200100878.8516260000031		1577 103/048 473	HM	80 BA	20	0	0	1155888.56644000000	24
1317 103I046 145 HW 40 EP 30 SS 10 CW 10 86657.60784250000 26 1528 103I047 422 HW 68 CW 20 BA 10 SS 2 821113.99657500000 27 3101 103I079 266 HW 80 BA 20 0 0 512639.98737400000 28 3141 103I077 218 HW 100 0 0 99906.92596850000 29 1616 103I043 103 H 60 CW 40 0 0 172312.35775200000 30 920 103I037 31 HW 40 HM 40 BA 20 0 100878.85162600000 31		67 1031018 2020	HW	50 BA	20 CW	20 SS	10	83290.76090650000	25
1528 103I047 422 HW 68 CW 20 BA 10 SS 2 821113.99657500000 27 3101 103I079 266 HW 80 BA 20 0 0 512639.98737400000 28 3141 103I077 218 HW 100 0 0 0 99906.92596850000 29 1616 103I043 103 H 60 CW 40 0 0 172312.35775200000 30 920 103I037 31 HW 40 HM 40 BA 20 0 100878.85162600000 31		1317 103/046 145	HW	40 EP	30 SS	10 CW	10	86657.60784250000	26
3101 103I079 266 HW 80 BA 20 0 0 512639.98737400000 28 3141 103I077 218 HW 100 0 0 0 99906.92596850000 29 1616 103I043 103 H 60 CW 40 0 0 172312.35775200000 30 920 103I037 31 HW 40 HM 40 BA 20 0 100878.85162600000 31		1528 103/047 422	HW	68 CW	20 BA	10 SS	2	821113.99657500000	27
3141 103I077 218 HW 100 0 0 99906.92596850000 29 1616 103I043 103 H 60 CW 40 0 0 172312.35775200000 30 920 103I037 31 HW 40 HM 40 BA 20 0 100878.85162600000 31		3101 103/079 266	HW	80 BA	20	0	0	512639.98737400000	28
1616 103I043 103 H 60 CW 40 0 0 172312.35775200000 30 920 103I037 31 HW 40 HM 40 BA 20 0 100878.85162600000 31		3141 1031077 218	HW	100	0	0	0 0	99906,92596850000	29
920 103l037 31 HW 40 HM 40 BA 20 0 100878.85162600000 31		1616 103/043 103	Н	60 CW	40	0	Ō	172312.35775200000	30
		920 1031037 31	HW	40 HM	40 BA	20	0	100878.85162600000	31

3402 1031092 387	Н	60 CW	30 S	10	0	581656.58053300000	32
1431 1031048 484	HW	70 CW	23 SS	7	0	127500.59671800000	33
1579 1031047 404	HW	85 CW	10 BA	5	0	1177257.35728000000	34
1993 1031045 264	HM	75 HW	17 BA	8	0	272850.93703100000	35
1641 1031045 169	HW	50 HM	30 BA	20	0	514051.47290800000	36
Hemlock Leading, Mediu	m Volui	me Sub-S	trata				
2731 1031070 48	HW	100	0	0	0	268105.98518700000	1
1662 1031044 28	Н	60 B	40	0	0	111207.10228300000	2
210 103H097 162	HW	60 BA	20 CW	20	0	793661.28999800000	3
2609 1031068 385	HW	40 S	30 PL	20 CW	10	59471.83713150000	4
3010 1031080 160	HW	100	0	0	0	542576.83775000000	5
880 1031038 205	HW	60 BA	30 CW	10	0	260687.56964500000	6
925 1031040 36	HM	60 BA	40	0	0	771156.84950100000	7
765 1031037 130	HW	80 BA	20	0	0	27406.59323450000	8
3375 1031087 1	HW	80 BA	20	0	0	94792.68659350000	9
318 103H097 239	HW	60 YC	20 BA	20	0	244830.99348600000	10
1891 103 018 1788	HW	60 BA	40	0	0	153266.83285900000	11
1666 1031045 101	HW	50 BA	30 SS	20	0	129437.93662600000	12
973 1031039 130	HW	90 BA	10	0	0	238707.80946300000	13
6 103H086 191	HW	50 CW	40 SS	10	0	170429.10173500000	14
1617 1031046 335	HM	70 HW	20 BA	10	0	380982.27346900000	15
235 103H096 94	HW	60 CW	40	0	0	257465.68966400000	16
1614 1031045 321	HW	80 BA	20	0	0	530956.96021900000	17
3301 1031089 8	Н	60 B	40	0	0	623330.44143700000	18
2744 1031080 11	Н	60 B	40	0	0	240221.01487300000	19
799 1031038 80	HW	70 SS	30	0	0	111268.12726700000	20
2317 1031060 172	HW	80 BA	20	0	0	1532696.32588000000	21
3362 1031086 52	HW	40 PL	30 S	10 BA	10	909700.59926600000	22
3142 1031077 70	HW	40 BA	20 CW	20 S	20	143073.78175000000	23
2042 1031058 468	HW	90 BA	10	0	0	721964.40372000000	24
1636 1031046 435	HW	90 BA	10	0	0	248268.41543800000	25
3047 1031080 99	Н	90 B	10	0	0	1522077.18278000000	26
2585 1031055 47	HW	60 BA	40	0	0	547671.89743800000	27
3386 1031097 111	HM	70 BA	30	0	0	293467.41168800000	28
3484 103P007 21	HW	60 BA	20 S	20	0	1023066.95444000000	29
2001 1031044 82	Н	60 B	40	0	0	262059.36628200000	30
3482 103P007 202	НМ	50 BA	50	0	0	694313.99387400000	31
3300 1031088 40	H	70 B	30	0	0	/51/83.53903100000	32
2742 1031078 127	HVV	80 BA	20	0	0	225167.96171700000	33
1911 103H097 216	HVV	60 CW	20 BA	20	0	148783.85325000000	34
2480 1031059 80	HVV	50 BA	30 HM	20	0	352045.29265500000	35
1361 1031045 121	HVV	70 BA	20 CW	10	0	549958.02053100000	30
2583 1031054 19	H	60 B	30 5	10	0	132642.27234400000	37
			20	0	0	90109.82595450000	38
		90 BA	10	10	0	105227 2272 4200000	39
			30 60	10	0	100221.32134300000	40
			30 22	20 10	0	00210.09003100000	41
202 1031008 158			20 6 10	10	0	010000.30002400000	42
1/34 103104/ 11			40 20	0	0	00009 F.000000000	43
1589 1021044 60	пvv Ц	10 DA 60 D	30	0	0	403300.00030300000 367005 50100500000	44 15
1000 1031044 60	п	OU B	40	U	U	201392.20130200000	40

APPENDIX C – SAMPLE SELECTION DOCUMENTATION

(Vegetation Resources Inventory, Sampling Selection Procedures, GIS)

The following are the GIS steps and procedures followed to select sampling polygons for vegetation resources inventory. The steps were initially performed by Andy Muma (GIS Technician, MapWood GIS & Forest Consultants). Further analysis was performed by Dennis Rasmussen, (GIS Coordinator, Tyhee Forestry Consultants Ltd.)

The software used for the analysis was ArcGIS Desktop version 8.3. All analysis and resultant data was performed and managed using ESRI's Personal Geodatabase format.

The database used for the sample selection was received from Jim Knox of Magellan Digital Mapping, who was preparing an operability assessment of the Kalum Forest District concurrent to this plan. The database was received from the Regional District in November 2003. The graphic files are shapefiles, and the attribute files are FIP files were projected to 2002 (polygons that would reach age 120 from 2002 to 2004 counted for less than 1% of the total target population). These 2002 projections were used for this sample selection.

Step 1 ASSEMBLING POPULATION DATA

Received files from MapWood (files were adjusted following steps 1a through 1f).

Step 1a

Received two shape files from Kevin Kilpatrick. The files were a clip of the forest inventory polygons separated by FIZ A and J and appropriately named fiza_op.shp and fizj_op.shp. The data was geo-referenced to NAD 1983 and project to BC Environment Albers. No corresponding metadata was submitted. This clip was based on areas classified as cable, ground and aerial having marginal sawlog, pulp, and sawlog. This information was stated in e-mail and was received April 23 / 2004

Step 1b

Imported shape files into ESRI's Personal Geodatabase format (spatial Access.mdb file) for GIS analysis. The data was cleaned and validated at 0.5m-cluster tolerance and checked for sliver gaps and overlaps. The two feature classes created were named fizA_op and fizJ_op

Step 1c

Merged fizA_op and fizJ_op to one combined feature class called fizJ_A

Step 1d

Selected from feature classes fizJ_A all polygons 120 years and older. This selection was based on the attribute field [AGE_PRJ] meeting criteria for [AGE_PRJ] greater than or equal to 120. The resultant feature classes were named fizJ_A_120. *Note:

Step 1e SEPARATE POLYGONS BY STRATA

Selected hemlock-leading polygons from the feature fizJ_A_120. (Step 4) The selection was based on the attribute field [SPC1] meeting criteria for

[SPC1] = "HW" or "HM" or "H". The resultant feature class was named fizJ_A_120_H.

Step 1f

Selected all other non hemlock-leading polygons from the feature class fizJ_A_120_O. This selection was based on the attribute field [SPC1] meeting criteria for [SPC1] <u>not</u> equal to "HW" or "HM"or "H". The resultant feature classes were named fizJ_A_120_O.

Step 2

Imported and overlaid Ministry ownership file and created a file FizJ_A_O_120 which included all stands >120 years for ownership codes 61C, 61N, 62C, 69C, 69N, and 70N. Ownership that was excluded was codes 40N, 50N, 52N, 60N, 63N and 67N.

Step 3

Added field Totvol1 and added all volumes for utilization level 1 for species 1 to species 6.

Step 4

Selected from FizJ_A_O_120 all Hemlock leading and created a file called FizJ_A_O_120_H, and all other leading species to create a file called FizJ_A_O_120_O.

Step 5 SEPARATE STRATA INTO SUB-STRATA

Sorted resultant feature classes fizJ_A_O_120_H, and fizJ_A_O_120_O, fizA_120_O by volume. This sort was based on the attribute field [Totvol1]. The sort resulted in a count of 3,758 polygons in the hemlock leading stratum, and 1,052 polygons in the other leading stratum.

Step 6

Divide fizJ_A_O_120_H, and fizJ_A_O_120_O, total number of polygons by **3** to create three sub-strata feature classes and classify in a new field called "Totvol1_code" and classify with "H", "M" and "L" for High, medium and low volume classifications (sub-strata) for both hemlock and other leading polygons (strata).

Calculations completed as follows: fizJ_A_120_H 3758 / 3 =1252.66

Note: Hemlock High and Medium sub-strata were allocated 1253 polygons each and the Hemlock Low sub-stratum was allocated 1252 polygons.

> fizJ_A_O_120_O 1051*/3 =350.33

- Note: 1,051 polygons were used in the Other leading stratum, not 1,052. One 0.4 ha Aspen leading polygon NSR polygon was removed from the population.
- Note: Other High sub-stratum was allocated 351 polygons and Other Medium and Low sub-strata were allocated 350 polygons each.

Step 7 DETERMINE SAMPLE ALLOCATION PER SUB-STRATUM

50 is the recommended sample size for this population. 100 extra samples were included in the sample list for a total of 150 samples allocated per sub-stratum by area weight. The results of this allocation are in Table 1 below.

Step 8 DETERMINE AREA SIZE BY SUB-STRATUM AND ACCUMULATE POLYGON AREAS IN EACH SUB-STRATUM

Area fields for each sub-stratum were accumulated and calculated based on weighted sample polygons. The results of this determination are in Table 1 below.

Step 9 GENERATE AS MANY RANDOM NUMBERS AS THERE ARE ALLOCATED SAMPLES FOR EACH SUB-STRATUM AND USE THESE NUMBERS TO IDENTIFY SAMPLE POLYGONS

A random number generator was used to determine the sample polygons using the PPSWR method. The polygons were sorted based on the FC_TAG field for this exercise. Selected

sample polygons were therefore put back into the population after selection. The complete sample list is available in Appendix B.

Strata	Sub-strata	Total Polygon Area (ha)	Area (%)	# of samples (/150)	# of samples (/50)
	High	23,799.5	37.7	48	16
Hemlock	Medium	22,381.4	35.5	45	15
Leading	Low	16,898.4	26.8	36	12
	Sub Total	63,079.3	85.1	129	43
	High	4,231.2	38.4	9	3
Other	Medium	4,550.9	41.3	9	3
Leading	Low	2,234.6	20.3	3	1
	Sub Total	11,017.2	14.9	21	7
TOTAL		74,096.5		150	50

 Table 1: Sample Selection Results

APPENDIX D – OPERABLE LANDBASE CRITERIA

November 20, 2003

Kalum TSA, TFL 1 & 41 Operability - Slope Parameters for Primary Harvest Code

Primary Codes	FIZ A	FIZ J
G (Ground-based)	$\leq 30\%$ slope	<u><</u> 40% slope
C (Cable)	$> 30 \le 80\%$ slope	$>40 \le 80\%$ slope
A (Aerial)	$> 80 \le 90\%$ slope	$> 80 \le 90\%$ slope
I (Inoperable)	> 90% slope	> 90% slope

Kalum TSA, TFL 1, TFL 41 - Stand Quality Code Parameters and description

Mature = Age Class 5 - 9

Immature = Age class $\leq 4 \ (\leq 80 \text{ years})$

G, M, P, L sites are as per the Kalum TSR: Good sites: $SI \ge 26$ Medium sites: $SI \ge 15$, <26 Poor sites: $SI \ge 10$, < 15 Low sites: SI < 10. SI will be applied (also allow for the opportunity to run the model using the GMPL site class values as well)

	FIZ A		FIZ J		
S –	Coniferous Sawlog stands i.e. primarily of sawlog grade	e (licencee best estimate)			
•	Coniferous leading stands, all species, age class ≤ 5 to 7, height class ≥ 3 ; site class G or M; Net merchantable volume at minimum harvest age ≥ 300 m3/ha	•	Coniferous leading stands, all species, age class 5 to 7, height class \geq 3; site class G, M or P; Net merchantable volume at minimum harvest age \geq 250 m3/ha		
•	Spruce, Pine, Balsam, or Cedar leading stands; age class 8 or 9, height class \geq 4; Site class G or M; Net merchantable volume \geq 300 m3/ha	•	Spruce, Pine, Balsam, and Cedar leading stands; age class 8 or 9, height class \geq 3; Site class G or M; Net merchantable volume \geq 250 m3/ha		
•	Hemlock leading stands; age class 9, height class \geq 4; Site class G and M; Net merchantable volume \geq 300 m3/ha; \geq 20% Spruce, Pine, Balsam, or Cedar	•	Hemlock leading stands; age class 9, height class \geq 3; Site class G or M; Net merchantable volume \geq 250 m3/ha; \geq 20% Spruce, Pine, Balsam, and Cedar		
•	Hemlock leading stands; age class 8, height class \geq 4; Site class G and M; Net merchantable volume \geq 300 m ³ /ha	•	Hemlock leading stands; age class 8, height class \geq 3; Site class G; Net merchantable volume \geq 250 m3/ha		
•	All immature coniferous leading stands; Net merchantable volume at minimum harvest age ≥ 300	•	All immature coniferous leading stands with height class \geq 3; Net merchantable volume at minimum harvest age \geq 250 m3/ha		
	m3/ha	•	All immature coniferous leading stands with height class < 3 that have resulted from previous logging/catastrophic events where silviculture activities have taken place; Net merchantable volume at minimum harvest age ≥ 250 m3/ha		
		•			
Μ	 Marginal Coniferous Sawlog stands i.e. stands that are "pulplog" 	e not	"sawlog", but not poor enough to be designated as		

Minimum Harvest Age = Age at which 250m3/ha is achieved as per G&Y table having a height of 22m and dbh of 25 cm

•	Hemlock leading stands; age class 9, height class ≥ 4 ; Site class G and M; Net merchantable volume \geq 300m3/ha; <20% Spruce, Pine, Balsam, or Cedar	 Hemlock leading stands; age class 9, height class ≥ 3; Site class G or M; Net merchantable volume ≥ 250 m3/ha; <20% Spruce, Pine, Balsam, and Cedar 				
•	Hemlock leading stands; age class 8 or 9, height class = 3; Site class G and M; Net merchantable volume \geq 300 m ² 4 m	 Hemlock leading stands; age class 8, height class ≥ 3; Site class M; Net merchantable volume ≥ 250 m3/ha 				
•	Spruce, Pine, Balsam, and Cedar leading stands, age class 8 or 9; height class = 3; site class G and M; Net merchantable volume $> 300 \text{ m}^3/\text{ha}$	 Spruce, Pine, Balsam, and Cedar leading stands, age class 8 or 9; height class ≥ 3; site class P; Net merchantable volume ≥ 250 m3/ha. 				
•	ADDED: Deciduous leading stands with greater that 50% of the stand volume comprised of deciduous species, and with \geq 30 % Spruce and/or Cedar content.	 Deciduous leading stands with greater that 50% of the stand volume comprised of deciduous species, and with ≥ 30 % Spruce and/or Cedar content. 				
•						
P –	Coniferous Pulplog stands i.e. primarily of Pulplog grad	ade (licencee best estimate)				
•	Coniferous leading stands; age class 8 or 9, height class \geq 3; Site class P; Net merchantable volume \geq 300 m3/ha	 Hemlock leading stands; age class 8 or 9, height class ≥ 3; Site class P; Net merchantable volume ≥ 250 m3/ha 				
D-	Deciduous leading stands					
•	All stands having greater than 50% of the stand volume comprised of deciduous species and < 30 % Spruce and/or Cedar content.	• All stands having greater than 50% of the stand volume comprised of deciduous species and < 30 % Spruce and/or Cedar content.				
L -						
	- Low sites					
٠	- Low sites Conifer leading stands, age class 4 and greater, stocking classes 2,3, and 4	• Conifer leading stands, age class 4 and greater, stocking classes 2,3, and 4				
•	 Low sites Conifer leading stands, age class 4 and greater, stocking classes 2,3, and 4 Mature coniferous stands with a height class of 2 or less; 	 Conifer leading stands, age class 4 and greater, stocking classes 2,3, and 4 Mature coniferous stands with a height class of 2 or less; 				
•	Low sites Conifer leading stands, age class 4 and greater, stocking classes 2,3, and 4 Mature coniferous stands with a height class of 2 or less; Stands with volumes of \leq 300 m3 at minimum harvest age age > 140 years;	 Conifer leading stands, age class 4 and greater, stocking classes 2,3, and 4 Mature coniferous stands with a height class of 2 or less; Stands with volumes of ≤ 250 m3 at minimum harvest age age > 140 years; 				
•	Low sites Conifer leading stands, age class 4 and greater, stocking classes 2,3, and 4 Mature coniferous stands with a height class of 2 or less; Stands with volumes of \leq 300 m3 at minimum harvest age age > 140 years; Site productivity "L" or site indices of less than 10 at 50 years.	 Conifer leading stands, age class 4 and greater, stocking classes 2,3, and 4 Mature coniferous stands with a height class of 2 or less; Stands with volumes of ≤ 250 m3 at minimum harvest age age > 140 years; Site productivity "L" or site indices of less than 10 at 50 years. 				
• • •	Low sites Conifer leading stands, age class 4 and greater, stocking classes 2,3, and 4 Mature coniferous stands with a height class of 2 or less; Stands with volumes of \leq 300 m3 at minimum harvest age age > 140 years; Site productivity "L" or site indices of less than 10 at 50 years. Density problems	 Conifer leading stands, age class 4 and greater, stocking classes 2,3, and 4 Mature coniferous stands with a height class of 2 or less; Stands with volumes of ≤ 250 m3 at minimum harvest age age > 140 years; Site productivity "L" or site indices of less than 10 at 50 years. 				
• • • •	 Low sites Conifer leading stands, age class 4 and greater, stocking classes 2,3, and 4 Mature coniferous stands with a height class of 2 or less; Stands with volumes of ≤ 300 m3 at minimum harvest age age > 140 years; Site productivity "L" or site indices of less than 10 at 50 years. Density problems Coniferous leading stands, age class 5 and greater, stocking classes 2, 3, and 4; 	 Conifer leading stands, age class 4 and greater, stocking classes 2,3, and 4 Mature coniferous stands with a height class of 2 or less; Stands with volumes of ≤ 250 m3 at minimum harvest age age > 140 years; Site productivity "L" or site indices of less than 10 at 50 years. Coniferous leading stands, age class 5 and greater, stocking classes 2, 3, and 4; 				

APPENDIX E – COMPARISON BETWEEN THE POPULATION AND THE SAMPLE POLYGONS

The following tables compare the percent distribution of samples to the distribution (by area) of the total population. Relationships are depicted for the distribution of sample by mapsheet, age class, height class, and leading species. They reveal a strong co-relation between the two populations and prove that the sample selection was effective.

Mapsheet	Mapsheet Area (ha)	% Total Population Area	Sample Distribution %	# Samples
093L001	78.98064924	0.11%	0.00%	0
103H086	2221.019487	3.00%	2.67%	4
103H087	206.0041674	0.28%	0.00%	0
103H096	1446.476562	1.95%	1.33%	2
103H097	2299.916958	3.10%	2.67%	4
1031007	697.3442647	0.94%	0.67%	1
1031008	1681.635593	2.27%	2.00%	3
1031017	147.2431094	0.20%	0.00%	0
1031018	943.5286326	1.27%	1.33%	2
1031023	235.4278404	0.32%	0.00%	0
1031024	10.68798879	0.01%	0.00%	0
1031027	90.84010325	0.12%	0.00%	0
1031028	263.1140957	0.36%	0.67%	1
1031032	9.072541856	0.01%	0.00%	0
1031033	1325.602571	1.79%	0.67%	1
1031034	2455.97731	3.31%	2.67%	4
1031035	516.5431449	0.70%	0.67%	1
1031037	1263.281676	1.70%	3.33%	5
1031038	2595.039064	3.50%	4.67%	7
1031039	2025.360186	2.73%	2.00%	3
1031040	771.6692756	1.04%	0.67%	1
1031043	1087.047832	1.47%	0.67%	1
1031044	615.7386712	0.83%	2.67%	4
1031045	2660.172624	3.59%	5.33%	8
1031046	2454.199999	3.31%	4.67%	7
1031047	2482.323721	3.35%	3.33%	5
1031048	2856.555274	3.86%	2.00%	3
1031049	693.1616516	0.94%	0.00%	0
1031052	63.73578564	0.09%	0.00%	0
1031053	54.20204936	0.07%	0.00%	0
1031054	329.5013272	0.44%	1.33%	2
1031055	1029.788491	1.39%	1.33%	2
1031056	1708.504871	2.31%	2.67%	4
1031057	1934.364143	2.61%	0.67%	1
1031058	2964.746557	4.00%	4.67%	7
1031059	2362.846346	3.19%	4.00%	6

Sample - Population Comparison Mapsheet Distribution

TOTAL	74096.09519	100.00%	100.00%	150
103P036	121.7208201	0.16%	0.67%	1
103P035	438.2945032	0.59%	0.00%	0
103P025	637.8521774	0.86%	0.00%	0
103P024	10.09255659	0.01%	0.00%	0
103P023	19.5634267	0.03%	0.00%	0
103P017	968.3896604	1.31%	2.00%	3
103P015	15.526599	0.02%	0.00%	0
103P014	952.3346136	1.29%	1.33%	2
103P013	3013.019573	4.07%	2.67%	4
103P007	2421.787246	3.27%	4.67%	7
103P006	311.2874072	0.42%	0.00%	0
103P003	675.1870001	0.91%	0.67%	1
103P002	0.027404228	0.00%	0.00%	0
1031097	252.6919932	0.34%	0.67%	1
1031092	497.9478316	0.67%	0.67%	1
1031091	15.89774017	0.02%	0.00%	0
1031090	115.3649952	0.16%	0.00%	0
1031089	1565.02504	2.11%	2.00%	3
1031088	1649.775688	2.23%	1.33%	2
1031087	1318.198649	1.78%	1.33%	2
1031086	267.5645034	0.36%	1.33%	2
1031080	1013.331421	1.37%	2.00%	3
1031079	3594.788671	4.85%	4.67%	7
1031078	1223.877306	1.65%	3.33%	5
1031077	1066.111469	1.44%	2.67%	4
1031070	416.8607256	0.56%	0.67%	1
1031069	2233.909462	3.01%	2.67%	4
1031068	1919.563193	2.59%	1.33%	2
1031067	1238.033973	1.67%	1.33%	2
1031065	4.496525378	0.01%	0.00%	0
1031064	17.85781552	0.02%	0.00%	0
1031062	2.069766219	0.00%	0.00%	0
1031060	1515.990867	2.05%	2.67%	4

Sample - Population Comparison Age Class

Age Class	Area (ha)	% Total Population Area	Sample Distribution %	# Samples
6	6.61	0.01%	0.00%	0
7	2052.99	2.77%	2.00%	3
8	16024.57	21.63%	19.33%	29
9	56011.91	75.59%	78.67%	118
TOTAL	74096.1	100.00%	100.00%	150

Height Class	Area (ha)	% Total Population Area	Sample Distribution %	# Samples
	3 14950.65	20.18%	21.33%	32
4	41380.79	55.85%	56.00%	84
į	5 15535.72	20.97%	21.33%	32
(5 1879.22	2.54%	1.33%	2
7	288	0.39%	0.00%	0
8	3 61.72	0.08%	0.00%	0
TOTAL	74096.1	100.00%	100.00%	150

Sample - Population Comparison Height Class

Sample - Population Comparison Leading Species

Leading Species	Area (ha)	% Total Population Area	Sample Distribution %	# Samples
Н	10,155.80	13.71%	12.00%	18
Hm	8,744.70	11.80%	8.00%	12
Hw	44,178.80	59.62%	66.00%	99
Ac	1,125.00	1.52%	1.33%	2
At	126.3	0.17%	0.00%	0
В	403	0.54%	0.67%	1
Ba	5,208.70	7.03%	8.00%	12.00
Bl	3.4	0.00%	0.00%	0
Cw	1,103.30	1.49%	0.67%	1
Dr	0	0.00%	0.00%	0
Ε	0	0.00%	0.00%	0
Ер	8.7	0.01%	0.00%	0
Pl	638	0.86%	0.67%	1
S	1,588.10	2.14%	2.00%	3
SS	711.1	0.96%	0.67%	1
Sw	28.8	0.04%	0.00%	0
Yc	72.4	0.10%	0.00%	0
TOTAL	74,096.10	100.00%	100.00%	150

APPENDIX F – NVAF SAMPLING POLYGON SELECTION

= Planned sample list for NVAF sampling (n=25). The total sample list contains 50 polygons and represents the planned sample list for ground sampling. The 25 NVAF polygons were randomly selected from each sub-stratum of ground sample polygons.

	MAPSTA		SP	PCT1 SP	PCT2 SP	PCT3 SP	PCT/	Shane Area	priority
OBJECTID			C1	C2		C4	F 0 14	Shape_Alea	phonty
853	103P017	119	BA	80 S	20	0	0	382786.7014680000) 1
229	1031034	230	CW	50 H	30 S	20	0	206467.2447650000) 2
700	1031078	134	ΒA	60 HM	40	0	0	442221.1872190000) 3
Other Lead	Other Leading, Low Volume Sub-Strata								
939	103P014	45	AC	100	0	0	0	94216.2780015000) 1
Other Lead	Other Leading, Medium Volume Sub-Strata								
288	1031038	156	PL	80 HW	20	0	0	157699.2456350000) 1
377	1031046	459	SS	40 AC	40 CW	10 HW	10	221675.4552180000) 2
753	1031087	83	BA	50 HW	40 HM	10	0	1326708.7618400000) 3
Hemlock Le	eading, H	ligh V	'olum	ne Sub-Stra	nta				
2432	1031060	135	HW	80 BA	20	0	0	922841.7995640000) 1
2243	1031060	46	ΗW	60 BA	40	0	0	1278145.3120600000) 2
2102	1031059	235	ΗW	60 BA	40	0	0	444639.5300000000) 3
3049	1031079	437	ΗW	70 BA	30	0	0	1017494.6884600000) 4
2225	1031059	226	ΗW	60 BA	40	0	0	1043244.8032800000) 5
3462	103P007	90	ΗW	50 S	30 BA	20	0	442384.0085000000) 6
2340	1031055	141	ΗW	70 BA	20 AC	10	0	324220.4943130000) 7
2382	1031067	353	HW	80 SS	20	0	0	25663.2528140000	8 (
2524	1031058	44	ΗM	50 HW	30 BA	10 SS	10	370090.4024370000) 9
3289	1031089	25	Н	70 B	20 CW	10	0	926878.3391870000) 10
2076	1031056	289	HW	60 BA	40	0	0	250427.3206250000) 11
2129	1031057	39	HW	50 BA	50	0	0	125774.2829380000) 12
3625	103P013	244	HW	60 BA	30 S	10	0	199255.7064370000) 13
3183	1031078	64	ΗW	60 BA	40	0	0	429667.3486570000) 14
3085	1031079	341	HW	100	0	0	0	148069.6513260000) 15
167	103H097	161	HW	50 BA	50	0	0	173490.9190260000) 16
Hemlock Le	eading, L	ow V	olum	e Sub-Stra	ta				
1549	1031045	148	HM	35 HW	35 BA	30	0	632061.0256250000) 1
238	103H096	65	ΗW	90 CW	10	0	0	44976.2420875000) 2
109	103H086	54	HW	50 YC	30 BA	20	0	243713.7027810000) 3
1027	1031038	239	ΗW	90 BA	10	0	0	1750747.0550000000) 4
1399	1031044	126	Н	60 B	40	0	0	425914.5230650000) 5
2913	1031069	38	HW	80 BA	10 S	10	0	261066.6374050000) 6
1500	103l046	204	ΗW	50 BA	20 CW	20 SS	10	287996.4066430000) 7
3751	103P036	7	HW	60 PL	30 AT	10	0	201844.9848440000	8 0
1528	1031047	422	HW	68 CW	20 BA	10 SS	2	821113.9965750000) 9
3443	103P014	5	Н	60 B	30 S	10	0	117162.7455140000) <u>1</u> 0
1933	1031037	766	HW	70 S	15 BA	15	0	48454.1096780000) 11
725	1031038	93	HW	60 CW	40	0	0	175692.8745610000) 12

Other Leading, High Volume Sub-Strata

Hemlock Leading, Medium Volume Sub-Strata

:	2731 <i>°</i>	1031070	48	HW	100	0	0	0	268105.98518700000	1
	1662 ´	1031044	28	Н	60 B	40	0	0	111207.10228300000	2
	210 ⁻	103H097	162	ΗW	60 BA	20 CW	20	0	793661.28999800000	3
	2609 ′	1031068	385	ΗW	40 S	30 PL	20 CW	/ 10	59471.83713150000	4
	3010 1	1031080	160	HW	100	0	0	0	542576.83775000000	5
	880 1	1031038	205	HW	60 BA	30 CW	10	0	260687.56964500000	6
	925 ⁻	1031040	36	ΗM	60 BA	40	0	0	771156.84950100000	7
	765 [^]	1031037	130	ΗW	80 BA	20	0	0	27406.59323450000	8
	3375 ′	1031087	1	HW	80 BA	20	0	0	94792.68659350000	9
	318 ′	103H097	239	ΗW	60 YC	20 BA	20	0	244830.99348600000	10
	1891 <i>*</i>	1031018	1788	HW	60 BA	40	0	0	153266.83285900000	11
	1666 ´	1031045	101	ΗW	50 BA	30 SS	20	0	129437.93662600000	12
	973 [•]	1031039	130	HW	90 BA	10	0	0	238707.80946300000	13
	6 ′	103H086	191	ΗW	50 CW	40 SS	10	0	170429.10173500000	14
	1617 <i>*</i>	1031046	335	HM	70 HW	20 BA	10	0	380982.27346900000	15

APPENDIX G – APPROVAL/SIGNING

I have read and concur with the Kalum Timber Supply Area Strategic Inventory Plan, dated April 20, 2004. It is understood that this is an agreement-in-principle and does not commit the signatories to completing the inventory activities outlined within the plan. Modifications to this plan or more detailed plans need to be reviewed and approved by the signatories.

Ministry of Forests Forest Analysis Branch

Director

Ministry of Sustainable Resource Management, Resource Information Branch

West Fraser Mills Ltd.

New Skeena Forest Products Inc.

Bell Pole Co.