Elk Valley Water Quality Plan
Annex K. 2
Evaluation of Element Concentrations in Fish Tissues, Sediment, and Surface Water Collected from Lake Koocanusa

200 West Mercer St. • Suite 401 • Seattle, WA 98119
Phone: 206.378.1364 • Fax: 206.973.3048 • www.windwardenv.com

Technical Memorandum

To: Teck Coal Limited
From: David DeForest
Subject: Evaluation of Element Concentrations in Fish Tissues, Sediment, and Surface Water Collected from Lake Koocanusa

Date: July 16, 2014

This memorandum reviews element concentrations in fish tissues, sediment, and surface water from Lake Koocanusa in British Columbia and Montana. Trace element concentrations were compared to existing guidelines and toxicity reference values (TRVs) to evaluate current baseline data from the reservoir and the potential for trace elements to adversely affect aquatic biota.

1 TISSUE

1.1 Data

Fish tissue samples were collected predominantly between 2007 and 2013 in Canadian portions of Lake Koocanusa, and in 2008 and 2013 in US portions of the reservoir. Fish species sampled were bull trout (BT), burbot (BBT), kokanee (KKN), longnose sucker (LNS), largescale sucker (LSS), mountain whitefish (MWF), northern pikeminnow (NPM), peamouth chub (PMC), rainbow trout (RBT), and westslope cutthroat trout (WCT). This evaluation focused on selenium and mercury concentrations in fish, as they were the primary constituents analysed.

Evaluation of Elements in Lake Koocanusa

July 16, 2014

1.2 Evaluation of Selenium Concentrations in Fish

Four lines of evidence were used to evaluate selenium concentrations measured in fish tissues:
(1) Comparison to British Columbia Ministry of Environment (BCMOE) guidelines of $4 \mathrm{mg} / \mathrm{kg} \mathrm{dw}$ for whole body (WB)/muscle and $11 \mathrm{mg} / \mathrm{kg} \mathrm{dw}$ for ovaries/eggs.
(2) Comparison to draft United States Environmental Protection Agency (USEPA) criteria of $8.1 \mathrm{mg} / \mathrm{kg} \mathrm{dw}$ for $\mathrm{WB} /$ muscle 1 and $15.2 \mathrm{mg} / \mathrm{kg} \mathrm{dw}$ for ovaries/eggs.
(3) For species sampled in both exposed portions of Lake Koocanusa and non-mine influenced areas, comparison to selenium concentrations in non-mine influencedarea fish on a species-specific basis ${ }^{2}$.
(4) A probabilistic assessment of selenium risks, based on the concentration-response curve for the most sensitive species tested to date (brown trout; which is non-native and does not occur in Lake Koocanusa).

1.2.1 Comparison to BCMOE Guidelines

Selenium concentrations in Lake Koocanusa WB/muscle samples exceeded the BCMOE guideline of $4 \mathrm{mg} / \mathrm{kg} \mathrm{dw}$ at a frequency 14%, while non-mine influenced-area fish $\mathrm{WB} /$ muscle samples exceeded the BCMOE guideline at a frequency of 44% (Table 1). ${ }^{3}$ Likewise, selenium concentrations in Lake Koocanusa fish-ovary samples exceeded the BCMOE guideline of $11 \mathrm{mg} / \mathrm{kg} \mathrm{dw}$ at a frequency of 6%, while non-mine influenced-area fish-ovary samples exceeded the guideline at a frequency of 24% (Table 2).

The BCMOE guidelines of $4 \mathrm{mg} / \mathrm{kg} \mathrm{dw}$ for $\mathrm{WB} / \mathrm{muscle}$ and $11 \mathrm{mg} / \mathrm{kg} \mathrm{dw}$ for ovaries/eggs are very conservative, particularly for the Elk Valley region, as exemplified by the relatively high frequency of exceedances by non-mine influenced-area fish. Both of these fishtissue selenium guidelines include an uncertainty factor (UF) of 2 (BCMOE 2014), which is applied to an already conservative, but not unreasonable, interpretation of the data.

[^0]
Evaluation of Elements in Lake Koocanusa

1.2.2 Comparison to Draft USEPA 2014 Criteria

The draft USEPA selenium criteria currently out for review are $8.1 \mathrm{mg} / \mathrm{kg} \mathrm{dw}$ for WB fish tissue and $15.2 \mathrm{mg} / \mathrm{kg}$ dw for ovaries/eggs. Two primary differences between the USEPA draft criteria and BCMOE guidelines are that the USEPA draft criteria are based on a species sensitivity distribution (SSD) approach, and that they do not consider application of generic UFs. These draft criteria are still conservative, as they are intended to ensure nation-wide protection, and they are based on the $5^{\text {th }}$ percentile of low-effect concentrations (e.g., EC10s) for all fish species tested.

Selenium concentrations in excess of the 2014 draft USEPA criteria in Lake Koocanusa fish for $\mathrm{WB} /$ muscle tissue was 0.2%, and 2% in samples collected from non-mine influenced areas (Table 1). For ovaries, the frequency of samples exceeding the criteria was 1% for within Lake Koocanusa and 8% for non-mine influenced-area samples (Table 2). Given these results, it is clear that the UF of 2 that was used to develop the BCMOE selenium guidelines has a substantial influence on interpreting fish-tissue selenium concentrations in Lake Koocanusa and non-mine influenced areas.

1.2.3 Comparison to Non-mine Influenced Area Concentrations

As noted in Section 1.1, selenium concentrations were measured in several different fish species in both Lake Koocanusa and non-mine influenced areas. Because selenium bioaccumulation potential varies among species, the purpose of this evaluation was to compare selenium concentrations measured in Lake Koocanusa and non-mine influenced areas on a species-specific basis. There were six species for which these comparisons could be made for WB/muscle tissue, and five species for which this comparison could be made for fish ovaries. A comparison of mean, minimum, and maximum selenium concentrations is provided in Figure 1, with more detailed plots provided in Attachment A and B for WB/muscle and ovaries, respectively.

1.2.4 Probabilistic Assessment of Selenium Risks to Individual Fish

As a final line of evidence, the cumulative probability distribution of ovary selenium concentrations in samples from Lake Koocanusa was integrated with the concentrationresponse curve for brown trout, which serves as a surrogate for sensitive species, to estimate mean risk probability. Given that ovary selenium concentrations in mountain whitefish were

Evaluation of Elements in Lake Koocanusa

July 16, 2014
high in both exposed and non-mine influenced-area samples, this species was excluded from the analysis. Considering all ovary selenium data pooled across fish species, the calculated risk, based on the conservative brown trout concentration-response curve, was 1.4%. When the data for peamouth chub (PMC) were considered separately, as ovary selenium concentrations are greater in this species compared to others, the calculated risk was 1.9% (predicted risks for other individual fish species would be less than this). Accordingly, selenium risks based on the current data are predicted to be negligible to all fish species.

1.3 Evaluation of Mercury Concentrations in Fish

Mercury in fish tissues was evaluated by comparing concentrations to a BCMOE guideline of $0.033 \mathrm{mg} / \mathrm{kg}$ ww for birds ${ }^{4}$, and a dietary TRV of $0.04 \mathrm{mg} / \mathrm{kg} \mathrm{ww}$ for a piscivorous fish (Depew et al. 2012). It was assumed that all mercury measured in fish tissue was present as methylmercury (MeHg).

The BCMOE guideline of $0.033 \mathrm{mg} / \mathrm{kg}$ ww was adopted from the Canadian Council of Ministers of the Environment (CCME 2000). The guideline is based on the most-sensitive, avian, lowest-observed-adverse-effects level (LOAEL) identified by CCME 2000, which was 0.075 mg per kg of body weight (BW) per day ($\mathrm{mg} / \mathrm{kg} / \mathrm{d}$) for mallards. This LOAEL was divided by 5.6 to estimate a no-observed-adverse-effects level (NOAEL) of $0.013 \mathrm{mg} / \mathrm{kg} / \mathrm{d}$. The tolerable daily intake (TDI) for birds was then calculated as the geometric mean of the NOAEL and LOAEL, or $0.031 \mathrm{mg} / \mathrm{kg} / \mathrm{d}$. Finally, assuming a food ingestion rate (IR)-to-BW ratio of 0.94 based on the Wilson's storm petrel, a dietary reference concentration of $0.033 \mathrm{mg} / \mathrm{kg}$ ww was derived. As noted in CCME 2000, this high IR:BW ratio means that the Wilson's storm petrel consumes almost its entire body weight daily, and is therefore be conservative for birds that feed at a lower rate.

The dietary TRV of $0.04 \mathrm{mg} / \mathrm{kg}$ ww was taken from Depew et al. 2012, who recently conducted a critical review of dietary methyl mercury toxicity thresholds for fish. They identified $0.04 \mathrm{mg} / \mathrm{kg}$ ww as a protective threshold, which was the highest unbounded NOAEL for reproductive effects in walleye (the lowest LOAEL was $0.05 \mathrm{mg} / \mathrm{kg}$ ww, so just marginally higher).

[^1]

Evaluation of Elements in Lake Koocanusa

Mean mercury concentrations in WB/muscle tissue for most fish species exceed the dietary mercury guideline for birds and TRV for fish (Figure 3). For those fish species collected from both Lake Koocanusa and non-mine influenced areas (bull trout, mountain whitefish, westslope cutthroat trout), mercury concentrations had considerable overlap (Figure 3). In general, however, mercury concentrations were greater in fish collected from Lake Koocanusa than in fish collected from non-mine influenced areas. To further evaluate the ubiquitous nature of mercury in fish, mercury concentrations measured in fish muscle collected from 21 national parks in the western US were compared to concentrations measured in the reservoir. Geometric mean concentrations in each park ranged from 0.033 to $0.33 \mathrm{mg} / \mathrm{kg} \mathrm{ww}$, with a grand mean of $0.10 \mathrm{mg} / \mathrm{kg}$ ww (Figure 3; Eagles-Smith et al. 2014). The geometric mean mercury concentration measured in fish collected from Glacier National Park, the park with the closest proximity to Lake Koocanusa, was $0.23 \mathrm{mg} / \mathrm{kg}$ ww. It should be noted that fish size and trophic status have an important influence on mercury concentrations in fish, but this was not factored into this evaluation.

2 SEDIMENT

2.1 Data

Sediment samples have been collected from Lake Koocanusa north and south of the border. North of the border, samples were collected in April 2013. Seven transects were sampled, with two upstream of the Elk River mouth and five downstream (Figure 4). Up to eight sediment grab samples were collected along each transect, including up to six submerged sediment samples and up to two samples collected above the water surface on the banks of the reservoir. Transects 2 and 4 (Figure 4) were sampled again in August 2013, following a historic flood event. The Montana Department of Environmental Quality (DEQ) collected sediment samples south of the border in November 2012 and June/July 2013 (Figure 5). Trace elements in sediment samples from Montana were analyzed in the $<63-\mu \mathrm{m}$ fraction.

2.2 Effects-based Benchmarks

Trace element concentrations were compared to one or more sediment quality benchmarks, as available:

- CCME Guidelines

o Interim sediment quality guidelines (ISQGs): These are equivalent to the threshold effect levels (TELs) derived by Smith et al. 1996, which are concentrations below which adverse effects are expected to rarely occur.
o Probable effect levels (PELs): These are equivalent to the TELs derived by Smith et al. 1996, which are concentrations above which adverse effects may be expected.
- BCMOE Guidelines
o Lowest effect levels (LELs): No effects on the majority of sediment-dwelling organisms are expected at concentrations less than the LEL.
o Severe effect levels (SELs): Adverse effects on the majority of sediment-dwelling organisms are expected at concentrations greater than the SEL.
- Consensus-based Guidelines (MacDonald et al. 2000)
o Threshold effect concentrations (TECs): These are based on the geometric mean of "threshold effect" concentrations from either the published literature or derived by various regulatory jurisdictions.
o Probable effect concentrations (PECs): These are based on the geometric mean of probable effect concentrations from either the published literature or derived by various regulatory jurisdictions.

2.3 Comparison of Concentrations to Benchmarks

Maximum concentrations of all trace elements measured in Lake Koocanusa, north and south of the border, never exceeded any probable effect sediment benchmark (e.g., PEL, SEL, or PEC). The only elements with concentrations that ever exceeded the highest threshold effect benchmark (e.g., ISQG, TEC) were arsenic, cadmium, iron, manganese, and nickel (Table 3; see also Attachment C). Of these, arsenic and cadmium only exceeded the highest threshold effect benchmark in 8% and 3% of the sediment samples, respectively (Table 3). Further, the maximum arsenic and cadmium concentrations only marginally exceeded their respective threshold effect benchmarks by factors of 1.3 and 1.0, respectively. Iron, manganese, and nickel concentrations exceeded their respective highest threshold effect benchmarks with greater frequency, but there was no spatial pattern with exceedances occurring upstream and downstream of the Elk River mouth (Table 3; Attachment C). Like arsenic and cadmium, the maximum iron, manganese, and nickel concentrations only marginally exceeded their respective threshold effect concentrations by factors of $1.2,1.7$, and 1.3 , respectively.

Evaluation of Elements in Lake Koocanusa

July 16, 2014
Overall, the absence of any exceedances of probable effect benchmarks, when coupled with the low magnitudes of the exceedances of threshold effect benchmarks, indicates that trace elements in Lake Koocanusa sediment are not likely to adversely affect sediment-dwelling organisms under current conditions.

3 SURFACE WATER
 3.1 Data

Surface water samples have been collected from Lake Koocanusa (BC) since August 2013, monthly as conditions permit. Six stations have been sampled: two upstream of the mouth of the Elk River, three downstream of the mouth, and one in the east arm of the lake at the mouth of the Elk River (Figure 6). Temperature measurements were used to determine if the reservoir were stratified. If stratified, the epilimnion and hypolimnion were sampled at each station. If unstratified, samples were collected 3 m below the surface, $\sim 3 \mathrm{~m}$ above the substrate, and at an intermediate depth. The Montana Department of Environmental Quality (DEQ) has been collecting epilimnion and hypolimnion surface water samples in the same manner south of the border approximately monthly since November 2012 (Figure 7).

3.2 Effects-based Benchmarks

The effects-based benchmarks used to evaluate Lake Koocanusa surface water concentrations were primarily the approved or working BCMOE long-term water quality guidelines (WQGs) for the protection of freshwater aquatic life. Long-term WQGs are concentrations that should not be exceeded over a 30-day averaging period. The WQGs for seven constituents-cadmium, copper, lead, manganese, nickel, sulphate, and zinc-are dependent upon hardness. A hardness value of $100 \mathrm{mg} / \mathrm{L} \mathrm{CaCO}_{3}$ was used herein. The USEPA's draft water quality criterion of $1.3 \mu \mathrm{~g} / \mathrm{L}$ for lentic waters was not included in this evaluation, as the USEPA gives priority to selenium concentrations in fish tissue when those data are available (as is the case for Lake Koocanusa).

3.3 Comparison of Concentrations to WQGs

The only constituents that ever had concentrations exceeding their WQGs were iron, phosphorus, and selenium, and each only in a limited number of samples (Attachment D). Iron and phosphorous concentrations are associated with inputs from the Kootenay River and so, for
the purposes of this evaluation, do not appear to be associated with a point or non-point sources in the Elk Valley. Total selenium concentrations exceeded the WQG in 3 of 125 samples (2\%): two at the confluence of the Elk River (RG_EASTARM), and one north of the mouth of the Elk River (RG_USELK).

4 SUMMARY AND CONCLUSIONS

- A total of 6% of ovary selenium samples collected from Lake Koocanusa exceeded the BCMOE guideline of $11 \mathrm{mg} / \mathrm{kg} \mathrm{dw}$, and 1% exceeded the draft USEPA criterion of $15.2 \mathrm{mg} / \mathrm{kg}$ dw.
- Integrating the cumulative distribution of ovary selenium concentrations in fish collected from Lake Koocanusa with the concentration-response curve for the most sensitive species tested to date (brown trout) resulted in a mean risk probability of 1.4% across all species and 1.9% for PMC, which has the highest ovary selenium concentrations.
- Selenium concentrations in fish tissues (WB/muscle and ovaries) collected from nonmine influenced areas exceed BCMOE selenium guidelines and draft USEPA selenium criteria more often than fish tissues collected from Lake Koocanusa.
- Element concentrations never exceeded probable effect levels in sediment, while five constituents (arsenic, cadmium, iron, manganese, nickel) exceeded the highest threshold effect levels.
- Selenium exceeded the WQG in 3 of 125 samples.
- The strongest line of evidence for evaluating potential risks due to selenium is the concentration in fish ovaries; data available to date indicates that selenium risks to fish in Lake Koocanusa are negligible.

5 REFERENCES

BCMOE. 2014. Water quality guidelines for selenium technical report update. Water Protection and Sustainability Branch, Environmental Sustainability and Strategic Policy Division, British Columbia Ministry of Environment. 257 pp.

CCME. 2000. Canadian tissue residue guidelines for the protection of wildlife consumers of aquatic biota: Methylmercury. Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.

Depew DC, Basu N, Burgess NM, Campbell LM, Devlin EW, Drevnick PE, Hammerschmidt CR, Murphy CA, Sandheinrich MB, Wiener JG. 2012. Toxicity of dietary methylmercury to fish: Derivation of ecologically meaningful threshold concentrations. Environ Toxicol Chem 31:1536-1547.

Eagles-Smith CA, Willacker JJ, Flanagan Pritz CM. 2014. Mercury in fishes from 21 national parks in the Western United States - Inter and intra-park variation in concentrations and ecological risk. U.S. Geological Survey Open-File Report 2014-1051. 54 pp. http://dx.doi.org/10.3133/ofr20141051.

MacDonald DD, Ingersoll CG, Berger TA. 2000. Development and evaluation of consensusbased sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20-31.

Smith SL, MacDonald DD, Keenleyside KA, Ingersoll CG, Field J. 1996. A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. J Great Lakes Res 22:624-638.

Evaluation of Elements in Lake Koocanusa July 16, 2014

FIGURES

Figure 1. Comparison of mean selenium concentrations in fish species collected from both Lake Koocanusa and non-mine influenced areas (open circles represent individual samples). BT = bull trout; LNS = longnose sucker; MWF = mountain whitefish; NPM = northern pikeminnow; PMC = peamouth chub; WCT = westslope cutthroat trout.

Evaluation of Elements in Lake Koocanusa
July 16, 2014

Figure 2. Cumulative distribution of fish ovary selenium concentrations from Lake Koocanusa and comparison to concentration-response data for brown trout.

Figure 3. Comparison of mean mercury concentrations in fish species collected from both Lake Koocanusa and non-mine influenced areas (open circles represent individual samples). $\mathrm{BRB}=$ burbot; $\mathrm{BT}=$ bull trout; $\mathrm{KKN}=$ kokanee; LNS = longnose sucker; LSS = largescale sucker; MWF = mountain whitefish; NPM = northern pikeminnow; PMC = peamouth chub; RBT = rainbow trout; WCT = westslope cutthroat trout.
*Mercury concentrations in fish collected from 21 National Parks in the western U.S. are provided for perspective: open circles represent geometric mean concentration for each National Park and column represents the grand mean.

Figure 4. Sediment sampling locations in Lake Koocanusa north of the border. All transects were sampled in April 2013 and transects 2 and 4 were re-sampled in August 2013 following an historic flood event.

Figure 5. Sediment sampling locations in Lake Koocanusa south of the border.

Figure 6. Surface water sampling locations in Lake Koocanusa north of the border.

Evaluation of Elements in Lake Koocanusa
July 16, 2014

Figure 7. Surface water sampling locations in Lake Koocanusa south of the border.

TABLES

Table 1. Summary of selenium concentrations ($\mathrm{mg} / \mathrm{kg}$ dry weight) measured in fish tissue.

Table 1. Summary of selenium concentrations ($\mathrm{mg} / \mathrm{kg}$ dry weight) measured in fish tissue.

${ }^{-}$- Includes all samples collected prior to 2005
Burbot biopsy concentrations are estimated due to uncertainties associated with moisture content and sample desiccation.

Table 2. Summary of selenium concentrations ($\mathrm{mg} / \mathrm{kg}$ dry weight) measured in fish reproductive tissue.

Species Year Kokanee (KKN)	Tissue	Lake Koocanusa										Non-mine influenced locations									
		N	Min	Max	Average	Reservoir samples exceeding criteria						N	Min	Max	Average	Non-mine influenced samples exceeding criteria					
						BC WQG		$\begin{aligned} & \text { EPA Approved } \\ & \text { (Kentucky) } \end{aligned}$		EPA Draft						BC WQG		EPA Approved (Kentucky)		EPA Draft	
2008	Gonads Ovary	$\begin{aligned} & 40 \\ & 18 \end{aligned}$	2.9 2.8	4.9 4.8	$\begin{aligned} & 3.7 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 0\% } \\ & \text { 0\% } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \% \\ & 0 \% \end{aligned}$	0	$\begin{aligned} & \text { 0\% } \\ & \text { 0\% } \end{aligned}$										
2013	Gonads	28	3.1	5.6	4.2	0	0\%	0	0\%	0	0\%										
Longnose sucker (LNS)																					
2008	Gonads	8	4.0	5.6	4.8	0	0\%	0	0\%	0	0\%										
2009	Ovary											4	4.2	5.7	5.2	0	0\%	0	0\%	0	0\%
2012	Ovary											4	4.2	5.1	4.8	0	0\%	0	0\%	0	0\%
2013	Gonads	1	6.9	6.9	6.9	0	0\%	0	0\%	0	0\%										
Largescale sucker (LSS)	Ovary	1	3.9	3.9	3.9	0	0\%	0	0\%	0	0\%										
Mountain whitefish (MWF)																					
$2005{ }^{\text {a }}$	Ovary											4	19	23	20	4	100\%	2	50\%	4	100\%
$\begin{aligned} & 2006 \\ & 2000 \end{aligned}$	Ovary											5	15	42	30	5	100\%	4	80\%	5	100\%
	Gonads											8	21	36	29	8	100\%	8	100\%	8	100\%
	Ovary	1	13	13	13	1	100\%	0	0\%	0	0\%	10	19	33	26	10	100\%	9	90\%	10	100\%
	Ovary	6	8.9	24	17	5	83\%		50\%	3	50\%	11	6.8	42	22	10	91\%	6	55\%	9	82\%
Northern pikeminnow (NPM)																					
		36	2.5	5.9	3.6	0	0\%	0	0\%	0	0\%										
2009	Gonads											11	0.80	5.0	2.6	0	0\%	0	0\%	0	0\%
Peamouth chub (PMC) 2008	Gonads	24	2.4	8.1	3.9	0	0\%	0	0\%	0	0\%										
	Gonads	40	4.0	12	7.3	4	10\%	0	0\%	0	0\%	9	2.9	11	7.3	0	0\%	0	0\%	0	0\%
	Ovary	10	5.0	11	7.8	1	10\%	0	0\%		0\%										
	Gonads	31	5.4	22	9.1	6	19\%	1	3\%	2	6\%										
Rainbow trout (RBT)																					
2013	Gonads	2	4.7	4.8	4.7	0	0\%	0	0\%	0	0\%										
Westslope cutthroat trout (WCT)																					
	Ovary											39	2.0	17	8.4	${ }^{13}$	33\%	0	0\%		5\%
2006	Ovary											20	4.6	14	7.8		10\%	0	0\%	0	0\%
2008	Ovary											4	4.3	7.3	6.1	0	0\%	0	0\%	0	0\%
2009	Ovary	6	6.7	17	11	3	50\%	0	0\%	1	17\%	9	11	17	15	9	100\%	0	0\%	6	67\%
2013	Gonads	1	10	10	10	0	0\%	0	0\%	0	0\%										
Total	Ovary	42				7	17\%	3	7\%	3	7\%	110				53	48\%	21	19\%	36	33\%
	Gonad	211				10	5\%	1	0\%	2	1\%	28				8	29\%	8	29\%	8	29\%
	Grand Total =	253				17	7\%	4	2\%	5	2\%	138				61	44\%	29	21\%	44	32\%
Total (minus MWF)	Ovary	35				4	11\%	0	0\%	1	3\%	80				24	30\%	0	0\%	8	10\%
	Gonad	211				10	5\%	1	0\%	2	1\%	20				0	0\%	0	0\%	0	0\%
	Grand Total =	246				14	6\%	1	0\%	3	1\%	100				24	24\%	0	0\%	8	8\%

Table 3. Numbers of samples exceeding low effect and probable effect sediment quality guidelines for aquatic like in Lake Koocanusa.

Location Name	Description	\# of Samples Greater than SQG / Total \# of Samples									
		Arsenic		Cadmium		Iron		Manganese		Nickel	
		LowerSQG	UpperSQG								
Transect 1	South of Kootenay Mouth	0/7	0/7	0/7	0/7	2/7	0/7	2/7	0/7	0/7	0/7
Transect 2	North of the Elk River Mouth	0/12	0/12	0/12	0/12	12/12	0/12	10/12	0/12	5/12	0/12
Transect 3	South of the Elk River Mouth	0/7	0/7	0/7	0/7	2/7	0/7	2/7	0/7	0/7	0/7
Transect 4		0/12	0/12	2/12	0/12	9/12	0/12	10/12	0/12	5/12	0/12
Transect 5		0/6	0/6	0/6	0/6	3/6	0/6	4/6	0/6	0/6	0/6
Transect 6		0/5	0/5	0/5	0/5	0/5	0/5	$2 / 5$	0/5	0/6	0/5
Transect 7		0/5	0/5	0/5	0/5	3/5	0/5	5/5	0/5	0/6	0/5
K01KOOCL01	International Boundary	2/9	0/9	0/9	0/9	0/8	0/8	na	na	na	na
K01KOOCL02	Near Dodge Creek mouth	0/1	0/1	0/1	0/1	na	na	na	na	na	na
K01KOOCL03	Tenmile	3/8	0/8	0/8	0/8	0/8	0/8	na	na	na	na
K01KOOCL04	Forebay	1/8	0/8	0/8	0/8	0/8	0/8	na	na	na	na
Total $=$		6/80	0/80	2/80	0/80	31/78	0/78	35/54	0/54	10/56	0/56
Percent Observed to Exceed SQG =		8\%	0\%	3\%	0\%	39\%	0\%	65\%	0\%	18\%	0\%

Notes: 1. Lower-SQGs include: Lowest Effects Level (LEL), Threshold Effect Level (TEL), Interim Sediment Quality Guideline (ISQG), and/or Threshold Effects Concentration (TEC)
2. Upper SQGs include: Probable Effects Level (PEL), Severe Effects Level (SEL), and/or Probable Effects Concentration (PEC).
3. Transects 1 through 7 were collected in British Columbia, K01KOOCL01 through K01KOOCL04 were collected in Montana.
4. "na" = not analyzed.
5. Sediments collected in Montana are the $<63 \mu \mathrm{~m}$ fraction.
6. Arsenic SQGs (Lower $=9.8 \mu \mathrm{~g} / \mathrm{g}$; Upper $=33 \mu \mathrm{~g} / \mathrm{g}$); Cadmium SQGs (Lower $=0.99 \mu \mathrm{~g} / \mathrm{g}$; Upper $=5.0 \mu \mathrm{~g} / \mathrm{g}$); Iron SQGs (Lower $=21,200 \mu \mathrm{~g} / \mathrm{g}$; Upper $=$ $43,766 \mu \mathrm{~g} / \mathrm{g}$); Manganese SQGs (Lower $=460 \mu \mathrm{~g} / \mathrm{g}$; Upper = $1100 \mu \mathrm{~g} / \mathrm{g}$); and Nickel SQGs (Lower = $22.7 \mu \mathrm{~g} / \mathrm{g}$; Upper $=48.6 \mu \mathrm{~g} / \mathrm{g}$)

ATTACHMENT A

Plots of Selenium Concentrations in Fish Tissues (Whole Body and Muscle)

Summary figures showing fish tissue concentrations in Lake Koocanusa

The following is a series of box-\&-whisker plots showing selenium concentrations measured in tissue samples collected from reference areas and within Lake Koocanusa since 1996.

Ref. Locations (NMI) in the Elk Valley and Lake Koocanusa (upstream of mining activities) 591 samples collected from 31 locations
Lake Koocanusa
680 samples collected from 33 locations
Fish tissue includes muscle samples and whole fish.
Concentrations are presented with the y-axis on a log-scale
Results not detected are included at the reported detection limit.

Parameters shown on a wet weight basis were converted from the dry weight results as follows:
$\mathrm{mg} / \mathrm{kg}$ wet-weight $=[\mathrm{mg} / \mathrm{kg}$ dry-weight $]$ * [1 - (percent moisture)/100]
if percent moisture was not reported, the average moisture from the same location and tissue type from other years was used.

LEGEND

Comparison guidelines
$B C$ WQG for aquatic life $4 \mathrm{mg} / \mathrm{kg} \mathrm{dw}$ selenium
EPA Approved (Kentucky) $8.6 \mathrm{mg} / \mathrm{kg}$ dw whole body

$8.1 \mathrm{mg} / \mathrm{kg}$ dw whole body
$11.8 \mathrm{mg} / \mathrm{kg}$ dw muscle
BC WQG for selenium update (2012)
Kentucky Division of Water (2013)
Draft U.S. EPA (2014)
The draft 2014 EPA criteria are presented for illustration purposes only. Public comment and external peer review are necessary before the values are finalized.
These values are subject to change.
Ref. Locations (NMI) = Non-mine Influenced Areas as classified by previous studies.

Feeding guild (species included)
O Insectivores (Westslope cutthroat trout, Mountain whitefish, Lake whitefish, Kokanee)

- Benthivores (Longnose sucker, Largescale sucker, Sculpin)
- Omnivores (Peamouth chub, Brook trout, Rainbow trout)

O Piscivores (Bull trout, Lake trout, Northern pikeminnow, Burbot)

Burbot biopsyconcentrations are estimated due to uncertainties associated with moisture content and sample desication.

Fish tissue concentrations from Lake Koocanusa by feeding guild

Summary figures showing fish tissue concentrations in Lake Koocanusa

The following is a series of box-\&-whisker plots showing selenium concentrations measured in tissue samples collected from reference areas and within Lake Koocanusa since 1996.

Ref. Locations (NMI) in the Elk Valley and Lake Koocanusa (upstream of mining activities) 591 samples collected from 31 locations
Lake Koocanusa
680 samples collected from 33 locations
Fish tissue includes muscle samples and whole fish.
Concentrations are presented with the y-axis on a log-scale
Results not detected are included at the reported detection limit.

Parameters shown on a wet weight basis were converted from the dry weight results as follows:
$\mathrm{mg} / \mathrm{kg}$ wet-weight $=[\mathrm{mg} / \mathrm{kg}$ dry-weight $]$ * [1 - (percent moisture)/100]
if percent moisture was not reported, the average moisture from the same location and tissue type from other years was used.

LEGEND

Comparison guidelines
$B C$ WQG for aquatic life $4 \mathrm{mg} / \mathrm{kg} \mathrm{dw}$ selenium
EPA Approved (Kentucky) $8.6 \mathrm{mg} / \mathrm{kg}$ dw whole body

$8.1 \mathrm{mg} / \mathrm{kg}$ dw whole body
$11.8 \mathrm{mg} / \mathrm{kg}$ dw muscle
BC WQG for selenium update (2012)
Kentucky Division of Water (2013)
Draft U.S. EPA (2014)
The draft 2014 EPA criteria are presented for illustration purposes only. Public comment and external peer review are necessary before the values are finalized.
These values are subject to change.
Ref. Locations (NMI) = Non-mine Influenced Areas as classified by previous studies.

Species

$\boldsymbol{\nabla}$	Westslope cutthroat trout (WCT)	$\boldsymbol{\nabla}$	Sculpin (SCU)
$\boldsymbol{\nabla}$	Peamouth chub (PMC)	$\boldsymbol{\nabla}$	Rainbow trout (RBT)
$\boldsymbol{\nabla}$	Kokanee (KKN)	$\boldsymbol{\nabla}$	Lake whitefish (LWF)
$\boldsymbol{\nabla}$	Northern pikeminnow (NPM)	$\boldsymbol{\nabla}$	Lake trout (LT)
$\boldsymbol{\nabla}$	Mountain whitefish (MWF)	$\boldsymbol{\nabla}$	Largescale sucker (LSS)
$\boldsymbol{\nabla}$	Longnose sucker (LNS)	$\boldsymbol{\nabla}$	Brook trout (EB)
$\boldsymbol{\nabla}$	Bull trout (BT)	0	Burbot (BRB)

Burbot biopsyconcentrations are estimated due to uncertainties associated with moisture content and sample desication.

Fish tissue concentrations from Lake Koocanusa by species

Fish tissue concentrations from Lake Koocanusa - BT only

Fish tissue concentrations from Lake Koocanusa - BT only

Fish tissue concentrations from Lake Koocanusa - LNS only

Fish tissue concentrations from Lake Koocanusa - LNS only

Fish tissue concentrations from Lake Koocanusa - MWF only

Fish tissue concentrations from Lake Koocanusa - MWF only

Fish tissue concentrations from Lake Koocanusa - NPM only

Fish tissue concentrations from Lake Koocanusa - NPM only

Fish tissue concentrations from Lake Koocanusa - PMC only

Fish tissue concentrations from Lake Koocanusa - PMC only

Fish tissue concentrations from Lake Koocanusa - WCT only

Fish tissue concentrations from Lake Koocanusa - WCT only

Fish tissue concentrations from Lake Koocanusa - KKN only

Fish tissue concentrations from Lake Koocanusa - RBT only

Fish tissue concentrations from Lake Koocanusa - LSS only

Fish tissue concentrations from Lake Koocanusa - BRB only

ATTACHMENT B

Plots of Selenium Concentrations in Fish Reproductive Tissues (Ovaries)

Summary figures showing fish reproductive tissue concentrations in Lake Koocanusa

The following is a series of box-\&-whisker plots showing selenium concentrations measured in tissue samples collected from reference areas and within Lake Koocanusa since 1996.

Ref. Locations (NMI) in the Elk Valley and Lake Koocanusa (upstream of mining activities) 138 samples collected from 14 locations
Lake Koocanusa
253 samples collected from 10 locations
Fish reproductive tissue includes ovary and gonad samples.
Concentrations are presented with the y-axis on a log-scale
Results not detected are included at the reported detection limit.
Parameters shown on a wet weight basis were converted from the dry weight results as follows:
$\mathrm{mg} / \mathrm{kg}$ wet-weight $=[\mathrm{mg} / \mathrm{kg}$ dry-weight $]$ * [1 - (percent moisture)/100]
if percent moisture was not reported, the average moisture from the same location and tissue type from other years was used.

LEGEND

Comparison guidelines
BC WQG for aquatic life $11 \mathrm{mg} / \mathrm{kg}$ dw selenium
EPA Approved (Kentucky) $19.3 \mathrm{mg} / \mathrm{kg}$ dw ovary

15.2 mg/kg dw ovary

BC WQG for selenium update (2012)
Kentucky Division of Water (2013)
Draft U.S. EPA (2014)
The draft 2014 EPA criteria are presented for illustration purposes only. Public comment and external peer review are necessary before the values are finalized.
These values are subject to change.
Ref. Locations (NMI) = Non-mine Influenced Areas as classified by previous studies.

Feeding guild (species included)
O Insectivores (Westslope cutthroat trout, Mountain whitefish, Kokanee)

- Benthivores (Longnose sucker, Largescale sucker)
- Omnivores (Peamouth chub, Rainbow trout)

O Piscivores (Northern pikeminnow,

Fish Reproductive tissue concentrations from Lake Koocanusa by feeding guild

Summary figures showing fish reproductive tissue concentrations in Lake Koocanusa

The following is a series of box-\&-whisker plots showing selenium concentrations measured in tissue samples collected from reference areas and within Lake Koocanusa since 1996.

Ref. Locations (NMI) in the Elk Valley and Lake Koocanusa (upstream of mining activities) 138 samples collected from 14 locations
Lake Koocanusa
253 samples collected from 10 locations
Fish reproductive tissue includes ovary and gonad samples.
Concentrations are presented with the y-axis on a log-scale
Results not detected are included at the reported detection limit.
Parameters shown on a wet weight basis were converted from the dry weight results as follows:
$\mathrm{mg} / \mathrm{kg}$ wet-weight $=[\mathrm{mg} / \mathrm{kg}$ dry-weight $]$ * [1 - (percent moisture)/100]
if percent moisture was not reported, the average moisture from the same location and tissue type from other years was used.

LEGEND

Comparison guidelines
$B C W Q G$ for aquatic life $11 \mathrm{mg} / \mathrm{kg}$ dw selenium
EPA Approved (Kentucky) $19.3 \mathrm{mg} / \mathrm{kg}$ dw ovary

15.2 mg/kg dw ovary

BC WQG for selenium update (2012)
Kentucky Division of Water (2013)
Draft U.S. EPA (2014)
The draft 2014 EPA criteria are presented for illustration purposes only. Public comment and external peer review are necessary before the values are finalized.
These values are subject to change.
Ref. Locations (NMI) = Non-mine Influenced Areas as classified by previous studies.

Species
$\boldsymbol{\nabla}$ Westslope cutthroat trout (WCT)
Rainbow trout (RBT)
∇ Peamouth chub (PMC)
∇ Largescale sucker (LSS)
Kokanee (KKN)
∇ Northern pikeminnow (NPM)
∇ Mountain whitefish (MWF)
∇ Longnose sucker (LNS)

Fish Reproductive tissue concentrations from Lake Koocanusa by species

Fish Reproductive tissue concentrations from Lake Koocanusa - LNS only

Fish Reproductive tissue concentrations from Lake Koocanusa - LNS only

Fish Reproductive tissue concentrations from Lake Koocanusa - MWF only

Fish Reproductive tissue concentrations from Lake Koocanusa - MWF only

Fish Reproductive tissue concentrations from Lake Koocanusa - NPM only

Fish Reproductive tissue concentrations from Lake Koocanusa - NPM only

Fish Reproductive tissue concentrations from Lake Koocanusa - PMC only

Fish Reproductive tissue concentrations from Lake Koocanusa - PMC only

Fish Reproductive tissue concentrations from Lake Koocanusa - WCT only

Fish Reproductive tissue concentrations from Lake Koocanusa - WCT only

Fish Reproductive tissue concentrations from Lake Koocanusa - KKN only

Fish Reproductive tissue concentrations from Lake Koocanusa - RBT only

Fish Reproductive tissue concentrations from Lake Koocanusa - LSS only

ATTACHMENT C

Plots of Selenium Concentrations in Sediment

Summary figures showing sediment concentrations from Lake Koocanusa

Sediment samples were collected from throughout Lake Koocanusa, including Canada and the US, from November 2012 to August 2013.

Lake Koocanusa in Canada
64 samples from 7 transects
Lake Koocanusa in the U.S.
26 samples from 4 locations

Concentrations were measured on bulk sediment (or 1 mm sieved) and the finer 0.063 mm sieved fraction. Results not detected are included at the reported detection limit.

LEGEND

Canadian	U.S.	Comparison Guidelines
Transects	Locations	Long-term sediment quality guideline, British Columbia
- Transect 1	- K01KOOCL01	
- Transect 2	- K01KOOCL02	CCME, Probable effect level (PEL)
- Transect 3	- K01KOOCL03	CCME, Interim sediment quality guideline (ISQG)
- Transect 4	- K01KOOCL04	BC MOE, Probable effect level (PEL)
- Transect 5		- - - BC MOE, Lowest effect level (LEL)
- Transect 6		
- Transect 7		- _ - Consensus-based, Probable effect Iconcentration (PEC)

Moisture in sediment from Lake Koocanusa

Total Organic Carbon in sediment from Lake Koocanusa

Sulfur in sediment from Lake Koocanusa

Aluminum in sediment from Lake Koocanusa

Antimony in sediment from Lake Koocanusa

Arsenic in sediment from Lake Koocanusa

Barium in sediment from Lake Koocanusa

Beryllium in sediment from Lake Koocanusa

Bismuth in sediment from Lake Koocanusa

Boron in sediment from Lake Koocanusa

Calcium in sediment from Lake Koocanusa

Cobalt in sediment from Lake Koocanusa

Lithium in sediment from Lake Koocanusa

Magnesium in sediment from Lake Koocanusa

Manganese in sediment from Lake Koocanusa

Mercury in sediment from Lake Koocanusa

Molybdenum in sediment from Lake Koocanusa

Nickel in sediment from Lake Koocanusa

Phosphorus in sediment from Lake Koocanusa

Potassium in sediment from Lake Koocanusa

Selenium in sediment from Lake Koocanusa

Silver in sediment from Lake Koocanusa

Sodium in sediment from Lake Koocanusa

Strontium in sediment from Lake Koocanusa

Thallium in sediment from Lake Koocanusa

Tin in sediment from Lake Koocanusa

Titanium in sediment from Lake Koocanusa

Uranium in sediment from Lake Koocanusa

Vanadium in sediment from Lake Koocanusa

Zinc in sediment from Lake Koocanusa

ATTACHMENT D

Plots of Selenium Concentrations in Surface Water

Summary figures showing analyte concentrations in the Elk Valley (Management Unit 6) and Lake Koocanusa samples collected by the state of Montana

The following is a series of box-and-whisker plots and time-series plots for analyte concentrations in surface waters collected from Lake Koocanusa and at or near the mouth of the Elk River. Data shown in the plots that follow are for locations within Management Unit 6 (MU6) and also for locations south of the International border (i.e., in Montana). All stations are identified in the box-and-whisker plots. Description of the stations included is as follows:

```
Lake Koocanusa northern portion (RG_WARDB)
Lake Koocanusa upstream of Elk River (RG_USELK)
Elk River at highway 93 bridge; BC monitoring station (BC08NK0003)
Elk River at the mouth (RG_ELKMOUTH)
Lake Koocanusa near the mouth of Elk River (RG_EASTARM)
Lake Koocanusa downstream of Elk River (RG_DSELK)
Lake Koocanusa downstream of Elk River (RG_GRASMERE)
Lake Koocanusa near the border with U.S. (RG_BORDER)
Lake Koocanusa at International boundary; MT DEQ (K01KOOCL01)
Lake Koocanusa near the mouth of Dodge Creek; MT DEQ (K01KOOCL02)
Lake Koocanusa near Tenmile Creek; MT DEQ (K01KOOCLO3)
Lake Koocanusa in forebay; MT DEQ (K01KOOCL04)
```

On the upper panel of each page, box-and-whisker plots are presented to illustrate the statistical properties of each station (see legend below for description of the box-and-whisker statistics). Data for these stations progress from upstream to downstream. Data for the Elk River stations are between the thin vertical lines. The remaining data are for Lake Koocanusa. A thick vertical line indicates the International border. Total concentrations are shown with blue data points and dissolved concentrations are shown with black data points, with the exception of the data plotted in the remaining time-series panels. Green data points in the top panel represent total concentrations and are shown as a time-series in the middle panel. Orange data points in the top panel represent dissolved concentrations and are shown as time-series in the bottom panel. Below detection limit samples (BDLs) are plotted as " $<$ ", and are plotted at the detection limit. For constituents where water quality guidelines (WQGs) exist, the guideline value(s) is also shown. Long-term WQGs are shown with a dashed orange line, whereas short-term WQGs are shown with a solid orange line. Hardness-based WQGs are shown as the WQG calculated with median hardness from appropriate locations (i.e. for Lake Koocanusa the median hardness is calculated from the Lake Koocanusa stations considered in this analysis; for the Elk River, the median hardness is calculated from the upstream Elk River station, GH_ER2). Summary statistics for the total and dissolved fractions are provided at the bottom of the page, if applicable. Maximum likelihood estimation (MLE) methods were used to calculate summary statistics if the proportion of BDLs was greater than 0%, but less than 80%. In addition to summary statistics for each station, the $90^{\text {th }}$ and $95^{\text {th }}$ percentiles are shown for the upstream Lake Koocanusa station (i.e. RG_WARDB); they are described as: "U/S $90^{\text {th }} \%$ \%tile" and "U/S 95 ${ }^{\text {th }} \%$ tile".

For most analytes, concentrations are shown with y-axis on a log-scale because of wide ranging concentrations and to allow for comparison with WQGs (which may be much higher than reported analyte concentrations). For alkalinity, dissolved organic carbon, hardness, and total suspended solids, pH , concentrations are shown with linear y-axes.

LEGEND

	TOTAL		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean			212
Geo_mean	64.7	58.6	72.2
Median	64.7	58.6	44.8
Mle_used	Y	Y	N
Dist	lognormal	lognormal	no_dist
N_total	515	177	44
N_bdl	5	1	0
N_non_bdl	510	176	44
Min_detect	0.6	0.6	6.1
Max_detect	9850	3830	1570
Min_date	$1990-02-12$	$2004-01-26$	$2011-01-17$
Max_date	$2013-05-13$	$2013-05-13$	$2013-05-13$
U/S 90th \%tile	620		
U/S 95th \%tile	857		

	DISSOLVED		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean			
Geo_mean	2.56	2.42	3.25
Median	2.56	2.42	3.25
Mle_used	Y	Y	Y
Dist	lognormal	lognormal	lognormal
N_total	183	165	44
N_bdl	7	7	1
N_non_bdl	176	158	43
Min_detect	0.2	0.2	0.5
Max_detect	709	510	111
Min_date	$2003-04-07$	$2004-01-26$	$2011-01-17$
Max_date	$2013-05-13$	$2013-05-13$	$2013-05-13$
U/S 90th \%tile	12.8		
U/S 95th \%tile	16.6		

	TOTAL		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean			
Geo_mean	0.00128	0.0014	0.0017
Median	0.00128	0.0014	0.0017
Mle_used	Y	Y	Y
Dist	lognormal	lognormal	lognormal
N_total	198	177	44
N_bdl	79	66	16
N_non_bdl	119	111	28
Min_detect	0.001	0.001	0.001
Max_detect	0.043	0.043	0.031
Min_date	$2003-03-09$	$2004-01-26$	$2011-01-17$
Max_date	$2013-05-13$	$2013-05-13$	$2013-05-13$
U/S 90th \%tile	0.5		
U/S 95th \%tile	0.5		

	DISSOLVED		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean	0.00113	0.00112	0.00116
Geo_mean	0.00105	0.00105	0.00106
Median	0.001	0.001	0.001
Mle_used	N	N	N
Dist	no_dist	no_dist	no_dist
N_total	183	165	44
N_bdl	158	141	36
N_non_bdl	25	24	8
Min_detect	0.001	0.001	0.001
Max_detect	0.007	0.007	0.007
Min_date	$2003-04-07$	$2004-01-26$	$2011-01-17$
Max_date	$2013-05-13$	$2013-05-13$	$2013-05-13$
U/S 90th \%tile	0.5		
U/S 95th \%tile	0.5		

	TOTAL		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean			
Geo_mean	10.5	10.5	10.5
Median	10.5	10.5	10.5
Mle_used	Y	Y	Y
Dist	lognormal	lognormal	lognormal
N_total	7	7	7
N_bdl	3	3	3
N_non_bdl	4	4	4
Min_detect	11	11	11
Max_detect	13	13	13
Min_date	$2013-08-06$	$2013-08-06$	$2013-08-06$
Max_date	$2014-01-07$	$2014-01-07$	$2014-01-07$
U/S 90th \%tile	12.7		
U/S 95th \%tile	13.4		

	DISSOLVED		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean	10	10	10
Geo_mean	10	10	10
Median	10	10	10
Mle_used	N	N	N
Dist	no_dist	no_dist	no_dist
N_total	7	7	7
N_bdl	7	7	7
N_non_bdl	0	0	0
Min_detect			
Max_detect			
Min_date	$2013-08-06$	$2013-08-06$	$2013-08-06$
Max_date	$2014-01-07$	$2014-01-07$	$2014-01-07$
U/S 90th \%tile	10		
U/S 95th \%tile	10		

10^{2}	Dissolved								
	08/15/2013		09/01/2013		09/15/2013	10/01/2013	10/15/		11/01/2013
	TOTAL					DISSOLVED			
	Parameter		Last 10 yrs			Parameter		Last 10 yrs	
	Mean	38.2	38.2	38.2		Mean	37.5	37.5	37.5
	Geo_mean	38.1	38.1	38.1		Geo_mean	37.4	37.4	37.4
	Median	38.9	38.9	38.9		Median	38	38	38
	Mle_used	N	N	N		Mle_used	N	N	N
		no_dist	no_dist	no_dist		Dist	no_dist	no_dist	no_dist
	N_total	13	13	13		N_total	13	13	13
	N_bdl	0	0	0		N_bdl	0	0	0
	N_non_bdl	13	13	13		N_non_bdl	13	13	13
	Min_detect	33.6	33.6	33.6		Min_detect	32.3	32.3	32.3
	Max_detect	45.3	45.3	45.3		Max_detect	45.5	45.5	45.5
	Min_date	2013-08-07	2013-08-07	2013-08-07		Min_date	2013-08-07	2013-08-07	2013-08-07
	Max_date	2013-11-06	2013-11-06	2013-11-06		Max_date	2013-11-06	2013-11-06	2013-11-06
	U/S 90th \%tile	45.8				U/S 90th \%tile	45.5		
	U/S 95th \%tile	47.9				U/S 95th \%tile			

	TOTAL		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean	57.4	57.4	57.4
Geo_mean	57.3	57.3	57.3
Median	56.6	56.6	56.6
Mle_used	N	N	N
Dist	no_dist	no_dist	no_dist
N_total	16	16	16
N_bdl	0	0	0
N_non_bdl	16	16	16
Min_detect	51	51	51
Max_detect	66.2	66.2	66.2
Min_date	$2011-09-06$	$2011-09-06$	$2011-09-06$
Max_date	$2014-01-07$	$2014-01-07$	$2014-01-07$
U/S 90th \%tile	45.8		
U/S 95th \%tile	47.9		

	DISSOLVED		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean	57	57	57
Geo_mean	56.8	56.8	56.8
Median	55.5	55.5	55.5
Mle_used	N	N	N
Dist	no_dist	no_dist	no_dist
N_total	16	16	16
N_bdl	0	0	0
N_non_bdl	16	16	16
Min_detect	51.9	51.9	51.9
Max_detect	67.8	67.8	67.8
Min_date	$2011-09-06$	$2011-09-06$	$2011-09-06$
Max_date	$2014-01-07$	$2014-01-07$	$2014-01-07$
U/S 90th \%tile	45.5		
U/S 95th \%tile	48		

	TOTAL		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean	34	34	34
Geo_mean	34	34	34
Median	34	34	34
Mle_used	N	N	N
Dist	no_dist	no_dist	no_dist
N_total	2	2	2
N_bdl	0	0	0
N_non_bdl	2	2	2
Min_detect	34	34	34
Max_detect	34	34	34
Min_date	$2012-11-14$	$2012-11-14$	$2012-11-14$
Max_date	$2012-11-14$	$2012-11-14$	$2012-11-14$
U/S 90th \%tile	45.8		
U/S 95th \%tile	47.9		

	DISSOLVED		
Parameter	All yrs	Last 10 yrs	
Mean			
Geo_mean			
Median			
Mle_used			
Dist			
N_total			
N_bdl			
N_non_bdl			
Min_detect			
Max_detect			
Min_date			
Max_date			
U/S 90th \%tile	45.5		
U/S 95th \%tile	48		

	TOTAL		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean	314	314	314
Geo_mean	250	250	250
Median	436	436	436
Mle_used	N	N	N
Dist	no_dist	no_dist	no_dist
N_total	7	7	7
N_bdl	0	0	0
N_non_bdl	7	7	7
Min_detect	89	89	89
Max_detect	484	484	484
Min_date	$2013-08-06$	$2013-08-06$	$2013-08-06$
Max_date	$2014-01-07$	$2014-01-07$	$2014-01-07$
U/S 90th \%tile	684		
U/S 95th \%tile	910		

	DISSOLVED		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean	30	30	30
Geo_mean	30	30	30
Median	30	30	30
Mle_used	N	N	N
Dist	no_dist	no_dist	no_dist
N_total	7	7	7
N_bdl	7	7	7
N_non_bdl	0	0	0
Min_detect			
Max_detect			
Min_date	$2013-08-06$	$2013-08-06$	$2013-08-06$
Max_date	$2014-01-07$	$2014-01-07$	$2014-01-07$
U/S 90th \%tile	30		
U/S 95th \%tile	30		

	TOTAL		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean			376
Geo_mean	102	104	138
Median	102	104	89
Mle_used	Y	Y	N
Dist	lognormal	lognormal	no_dist
N_total	609	177	44
N_bdl	1	1	0
N_non_bdl	608	176	44
Min_detect	2.5	2.5	15.1
Max_detect	21000	4980	2550
Min_date	$1984-08-08$	$2004-01-26$	$2011-01-17$
Max_date	$2013-05-13$	$2013-05-13$	$2013-05-13$
U/S 90th \%tile	684		
U/S 95th \%tile	910		

	DISSOLVED		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean			12.6
Geo_mean	4.17	4	3.82
Median	4.17	4	2
Mle_used	Y	Y	N
Dist	lognormal	lognormal	no_dist
N_total	183	165	44
N_bdl	1	1	0
N_non_bdl	182	164	44
Min_detect	0.5	0.5	0.6
Max_detect	1090	675	98.9
Min_date	$2003-04-07$	$2004-01-26$	$2011-01-17$
Max_date	$2013-05-13$	$2013-05-13$	$2013-05-13$
U/S 90th \%tile	30		
U/S 95th \%tile	30		

	TOTAL		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean	50	50	50
Geo_mean	50	50	50
Median	50	50	50
Mle_used	N	N	N
Dist	no_dist	no_dist	no_dist
N_total	2	2	2
N_bdl	2	2	2
N_non_bdl	0	0	0
Min_detect			
Max_detect			
Min_date	$2012-11-14$	$2012-11-14$	$2012-11-14$
Max_date	$2012-11-14$	$2012-11-14$	$2012-11-14$
U/S 90th \%tile	684		
U/S 95th \%tile	910		

		DISSOLVED		
Parameter	All yrs	Last 10 yrs	Last 3 yrs	
Mean				
Geo_mean				
Median				
Me_used				
Dist				
N_total				
N_bdl				
N_non_bdl				
Min_detect				
Max_detect				
Min_date				
Max_date				
U/S 90th \%tile	30			
U/S 95th \%tile	30			

	TOTAL		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean			
Geo_mean	27.5	27.5	27.5
Median	27.5	27.5	27.5
Mle_used	Y	Y	Y
Dist	lognormal	lognormal	lognormal
N_total	14	14	14
N_bdl	2	2	2
N_non_bdl	12	12	12
Min_detect	10	10	10
Max_detect	70	70	70
Min_date	$2013-04-16$	$2013-04-16$	$2013-04-16$
Max_date	$2013-11-05$	$2013-11-05$	$2013-11-05$
U/S 90th \%tile	684		
U/S 95th \%tile	910		

		DISSOLVED	
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean	10	10	10
Geo_mean	10	10	10
Median	10	10	10
MIe_used	N	N	N
Dist	no_dist	no_dist	no_dist
N_total	14	14	14
N_bdl	14	14	14
N_non_bdl	0	0	0
Min_detect			
Max_detect			
Min_date	$2013-04-16$	$2013-04-16$	$2013-04-16$
Max_date	$2013-11-05$	$2013-11-05$	$2013-11-05$
U/S 90th \%tile	30		
U/S 95th \%tile	30		

	TOTAL		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean			
Geo_mean	12.3	12.3	12.3
Median	12.3	12.3	12.3
Mle_used	Y	Y	Y
Dist	lognormal	lognormal	lognormal
N_total	14	14	14
N_bdl	5	5	5
N_non_bdl	9	9	9
Min_detect	10	10	10
Max_detect	30	30	30
Min_date	$2013-04-16$	$2013-04-16$	$2013-04-16$
Max_date	$2013-11-05$	$2013-11-05$	$2013-11-05$
U/S 90th \%tile	684		
U/S 95th \%tile	910		

		DISSOLVED	
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean	10	10	10
Geo_mean	10	10	10
Median	10	10	10
Mle_used	N	N	N
Dist	no_dist	no_dist	no_dist
N_total	14	14	14
N_bdl	14	14	14
N_non_bdl	0	0	0
Min_detect			
Max_detect			
Min_date	$2013-04-16$	$2013-04-16$	$2013-04-16$
Max_date	$2013-11-05$	$2013-11-05$	$2013-11-05$
U/S 90th \%tile	30		
U/S 95th \%tile	30		

10^{4}	Dissolved								
						$-\quad-\quad-$	- -	- - -	- - -
						\bigcirc			
						1			T
					09/15/2013	10/01/2013	10/15		11/01/2013
							DISS		
						Parameter	All yrs	Last 10 yrs	Last 3 yrs
						Mean	0.737	0.737	0.737
						Geo_mean	0.732	0.732	0.732
						Median	0.714	0.714	0.714
						Mle_used	N		
						Dist	no_dist	no_dist	no_dist
						N_total	14	14	14
						N_bdl	0	0	0
						N_non_bdl	14	14	14
						Min_detect	0.596	0.596	0.596
						Max_detect	0.969	0.969	0.969
						Min_date	2013-08-07	2013-08-07	2013-08-07
						Max_date	2013-11-06	2013-11-06	2013-11-06
						U/S 90th \%tile	0.915		
						U/S 95th \%tile	0.947		

	TOTAL		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean	1.05	1.05	1.05
Geo_mean	1.04	1.04	1.04
Median	1	1	1
Mle_used	N	N	N
Dist	no_dist	no_dist	no_dist
N_total	14	14	14
N_bdl	0	0	0
N_non_bdl	14	14	14
Min_detect	0.7	0.7	0.7
Max_detect	1.4	1.4	1.4
Min_date	$2013-04-16$	$2013-04-16$	$2013-04-16$
Max_date	$2013-11-05$	$2013-11-05$	$2013-11-05$
U/S 90th \%tile	0.135		
U/S 95th \%tile	0.143		

	DISSOLVED		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean			
Geo_mean	0.956	0.956	0.956
Median	0.956	0.956	0.956
Mle_used	Y	Y	Y
Dist	lognormal	lognormal	lognormal
N_total	14	14	14
N_bdl	1	1	1
N_non_bdl	13	13	13
Min_detect	0.7	0.7	0.7
Max_detect	1.6	1.6	1.6
Min_date	$2013-04-16$	$2013-04-16$	$2013-04-16$
Max_date	$2013-11-05$	$2013-11-05$	$2013-11-05$
U/S 90th \%tile	0.14		
U/S 95th \%tile	0.164		

	TOTAL		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean	1.09	1.09	1.09
Geo_mean	1.07	1.07	1.07
Median	1.1	1.1	1.1
Mle_used	N	N	N
Dist	no_dist	no_dist	no_dist
N_total	14	14	14
N_bdl	0	0	0
N_non_bdl	14	14	14
Min_detect	0.8	0.8	0.8
Max_detect	1.3	1.3	1.3
Min_date	$2013-04-16$	$2013-04-16$	$2013-04-16$
Max_date	$2013-11-05$	$2013-11-05$	$2013-11-05$
U/S 90th \%tile	0.135		
U/S 95th \%tile	0.143		

	DISSOLVED		
Parameter	All yrs	Last 10 yrs	Last 3 yrs
Mean			
Geo_mean	0.971	0.971	0.971
Median	0.971	0.971	0.971
Mle_used	Y	Y	Y
Dist	lognormal	lognormal	lognormal
N_total	14	14	14
N_bdl	1	1	1
N_non_bdl	13	13	13
Min_detect	0.7	0.7	0.7
Max_detect	1.4	1.4	1.4
Min_date	$2013-04-16$	$2013-04-16$	$2013-04-16$
Max_date	$2013-11-05$	$2013-11-05$	$2013-11-05$
U/S 90th \%tile	0.14		
U/S 95th \%tile	0.164		

$\begin{aligned} & 10^{3} \\ & 10^{2} \end{aligned}$	Dissolved								
	E								
10^{-2}	E-								
10^{-3}									
					1	1			1
	08/15/2013		09/01/2013		09/15/2013	10/01/2013	10/15/2013		11/01/2013
	TOTAL					DISSOLVED			
	Parameter	All yrs	Last 10 yrs			Parameter	All yrs	Last 10 yrs	Last 3 yrs
	Mean	0.0106	0.0106	0.0106		Mean	0.01	0.01	0.01
	Geo_mean	0.0105	0.0105	0.0105		Geo_mean	0.01	0.01	0.01
	Median	0.01	0.01	0.01		Median	0.01	0.01	0.01
	Mle_used	N	N	N		Mle_used	N	N	N
	Dist	no_dist	no_dist	no_dist		Dist	no_dist	no_dist	no_dist
	N_total	13	13	13		N_total	13	13	13
	N_bdl	12	12	12		N_bdl	13	13	13
	N_non_bdl	1	1	1		N_non_bdl	0	0	0
	Min_detect	0.018	0.018	0.018		Min_detect			
	Max_detect	0.018	0.018	0.018		Max_detect			
	Min_date	2013-08-07	2013-08-07	2013-08-07		Min_date	2013-08-07	2013-08-07	2013-08-07
	Max_date	2013-11-06	2013-11-06	2013-11-06		Max_date	2013-11-06	2013-11-06	2013-11-06
	U/S 90th \%tile	0.0118				U/S 90th \%tile	0.01		
	U/S 95th \%tile	0.0122				U/S 95th \%tile	0.01		

$\begin{aligned} & 10^{3} \\ & 10^{2} \end{aligned}$	Dissolved									
	08/15/2013		09/01/2013		-1	10/01/2013	10/15/2013		11/01/2013	
	TOTAL					DISSOLVED				
	Parameter	All yrs	Last 10 yrs	Last 3 yrs		Parameter	All yrs	Last 10 yrs	Last 3 yrs	
	Mean	142	142	142		Mean	135	135	135	
	Geo_mean	142	142	142		Geo_mean	134	134	134	
	Median	144	144	144		Median	136	136	136	
	Mle_used	N	N	N		Mle_used	N	N	N	
	Dist	no_dist	no_dist	no_dist		Dist	no_dist	no_dist	no_dist	
	N_total	14	14			N_total		14		
	N_bdl	0	0	0		N_bdl	0	0	0	
	N_non_bdl	14	14	14		N_non_bdl	14	14	14	
	Min_detect	123	123	123		Min_detect	115	115	115	
	Max_detect	162	162	162		Max_detect	151	151	151	
	Min_date	2013-08-07	2013-08-07	2013-08-07		Min_date	2013-08-07	2013-08-07	2013-08-07	
	Max_date	2013-11-06	2013-11-06	2013-11-06		Max_date	2013-11-06	2013-11-06	2013-11-06	
	U/S 90th \%tile	197				U/S 90th \%tile	190			
	U/S 95th \%tile	209				U/S 95th \%tile	202			

[^0]: ${ }^{1}$ The USEPA recommended draft selenium criteria of $8.1 \mathrm{mg} / \mathrm{kg} \mathrm{dw}$ for whole body and $11.8 \mathrm{mg} / \mathrm{kg} \mathrm{dw}$ for muscle, but the whole body selenium criterion of $8.1 \mathrm{mg} / \mathrm{kg} \mathrm{dw}$ was conservatively applied to muscle selenium data for simplicity.
 ${ }^{2}$ A description of non-mine influenced area samples is available in the draft 2014 Aquatic Environment Synthesis Report, with a significant portion of the non-mine influenced data being collected within the Transboundary Flathead River Drainage (e.g., Flathead Lake, upper Flathead River, and Wigwam River drainages).
 ${ }^{3}$ Burbot data were excluded due to uncertainties associated with moisture content and desiccation, while mountain whitefish data were excluded because this species tends to have relatively high selenium concentrations regardless of capture location (exposed or non-mine influenced areas).

[^1]: ${ }^{4}$ http://www.env.gov.bc.ca/wat/wq/BCguidelines/mercury/mercury.html\#tab5.

