

# Seed Planning Basics

Dave Kolotelo

# Seed Planning Inputs

- Sowing Guidelines
  - Review input variables
- Seed Efficiency
- Seed Pricing
- Big Picture simplicity
- Seed Planning Zone complications
- Variables to Consider
- Seedlot Selection



## Sowing Guidelines

- SPAR default method of calculating Potential seedlings
  - Amount of seed
  - Seeds per gram
  - Seeds per seedling (from a table based on 2% GC results)

| Germination         | Sowing | Correction | Nursery  | Seeds        |
|---------------------|--------|------------|----------|--------------|
| Capacity (%)        | Factor | (Oversow)  | Handling | Supplied Per |
|                     |        | Factor     | Factor   | Seedling     |
| 100-99              | 1.2    | 1.25       | 0.20     | 1.76         |
| 98-97               | 1.4    | 1.27       | 0.20     | 1.91         |
| <mark>96</mark> -95 | 1.6    | 1.27       | 0.20     | 2.18         |
| 94-93               | 1.7    | 1.28       | 0.20     | 2.42         |
| 92-91               | 1.9    | 1.27       | 0.20     | 2.56         |
| 90-89               | 2.0    | 1.26       | 0.20     | 2.78         |

Guidelines are not different for "A" and "B" class seed

2007 Adjustments for Pli
Improved ease to adjust grams
Encourage gram adjustments (only order what you will sow!)



#### http://www.for.gov.bc.ca/hti/spar/2007\_sowing\_guidelines.htm

#### 1996, 1999 and 2001 Comparison



•1996 stepwise allotment streamlined

•introduced fractional sowing factors

- •refined changes in GC (2% vs. 5%)
- •refined changes in oversow (1% vs. 5%)
- •refined changes in sowing factor (0.1 vs. 1.0)

#### **How do the Sowing Guidelines Work?**

- You need to know
  - Weight of seed or seedlings desir( Germination Sowing Canacity (%) Eactor
  - seeds per gram (SPG) of seedlot
  - germination capacity (GC) of seedlot

| re | Germination<br>Capacity (%) | Sowing<br>Factor | Correction<br>(Oversow) | Nursery<br>Handling | Seeds<br>Supplied Per |
|----|-----------------------------|------------------|-------------------------|---------------------|-----------------------|
|    | 100-99                      | 12               | 1 25                    | 0.20                | 1 76                  |
| ot | 98-97                       | 1.4              | 1.27                    | 0.20                | 1.91                  |
|    | <mark>96</mark> -95         | 1.6              | 1.27                    | 0.20                | 2.18                  |
|    | 94-93                       | 1.7              | 1.28                    | 0.20                | 2.42                  |
|    | 92-91                       | 1.9              | 1.27                    | 0.20                | 2.56                  |
|    | 90-89                       | 2.0              | 1.26                    | 0.20                | 2.78                  |

- Obtain seeds supplied per seedling from Table 1
- Insert into the following equation
- grams= <u># seedlings needed \* Seeds/seedling</u> Seeds per Gram
- 50 000 seedlings GC = 96% SPG = 509
- from Table 1 we determine that 2.18 seeds are supplied per seedling.
- grams= <u>50 000 \* 2.18</u> = 214.1 grams 509
   SPAR will round up to nearest gram = 215

## Seed Size

Seeds per gram is not considered in seed pricing Do people consider SPG (all else equal)?

Is there good evidence to indicate larger seeds –

- Increase sowing efficiency ✓
- Germinate 'better' 🗵
  - Seed size only explains 3.7% of the variation in germination capacity
  - Seed size only explains 4.6 % of variability in germination rate
- Result in higher # recoverable seedlings ? Fdc NO - ???
- Is there any cost advantage?

| PLI    | Α   | В    |
|--------|-----|------|
| # lots | 51  | 1569 |
| Ave.   | 251 | 338  |
| Min    | 213 | 216  |
| Мах    | 309 | 458  |





## Seed Cost of an Average SRQ



#### Seed Efficiency



We do not want to reduce seedling production!

We want to increase seed efficiency (order only seed you will sow!)

- Efficiency measured as difference between requested and calculated
- calculated is based on gram adjustments (savings)
  - How much seed we save (in terms of potential seedlings)
- 2007 Pli 125 M requested 107 M calculated =18 M saved

Thank you to everyone who reduced grams, but more important reduced the amount of returned seed

## **Seed Pricing**

 Seed owned by the MFR and identified as SURPLUS on SPAR is sold according to the following price schedule

#### **Ministry Surplus Seed Price Schedule**

http://www.for.gov.bc.ca/TIP/publications/updates/vol2no1.pdf

- details the pricing structure for Ministry-owned tree seed
- Privately owned seed can be sold at any price, some follow the Ministry prices, some don't
- MFR price list also provides price reduction

Pli

<u>% of seedlot</u> Species average % i.e 88/93\*1482 = \$1402



#### Seed Supply +Demand – BIG Picture

Potential Trees - 5 Year average (2003-2007) 21/3/07



- **Pli 118 M = 18 years**
- Sx 75 M = 44 years
- Fdi 16 M = 16 years
- Lw 7 M = 16 years
- **Overall 27 years**

Demand Uncertainties MPB → further AAC increases ? Species selection choices ? Stocking levels ? Degree of reliance on natural regeneration ?

Wildfires – new/increased pest problems

Climate Change

#### **Demand Uncertainties** Looking to the Past ??? **New Game** Potential Trees Requested (Millions) 1993-2007 otential Trees (Millions) PI -SX -FDI LW

#### Sensitivity analysis – predicting range of outcomes

#### MPB Seed Analysis - Pli



Years supply colour coded by SPZ >20 years supply 10 to 20 years supply <10 years supply

#### Assumptions

- •Only B-seed = 98.5% of Pli inventory
- •Seedlots w/multiple SPZ divided equally (B+ & others)
- •2004-2006 Pli average request by SPZ used as demand•Inventory based on August 26
- Inventory /demand results in estimates of years supply

#### Does not represent availability 92% Pli seed "Reserved"

Base case is based on Inventory demand +20% and+40% increase in demand scenarios





### B+ Seed Transfer Advantage



Nechako River example – BLK, CP, MGR, MRB, NCH, QL



## How to deal with SPZ issue?

- SPU Demand (Sowing Requests) are assigned to both Natural and Orchard SP7 Sowing Request Totals (2003-2007)
  - Can summarize Potential trees either way •
  - Natural SPZ = Total provincial coverage •
  - Orchard SPZ = Area under orchard coverage •
- Same total trees two different lenses
- Three regressive lenses
  - Inventory of A-class seed by SPU
  - Expected orchard production by SPU 2007-2030 [FGC]
  - Inventory of B-class seed by natural stand SPZ





- BC interior No surprises
- Sx, Lw –lots of surplus A class seed GW↑
- Fdi orchards starting / GW  $\uparrow \uparrow$  /
- Pli orchard production issues
  - LARGE current investments
  - LARGE natural stand inventories (TOA exception)

**MPB** Seed Planning **Bulletins** 

# Supply – Genetic Considerations

|                    | PLI  | SX    | FDI   | LW    |
|--------------------|------|-------|-------|-------|
| # Seedlots         | 71   | 103   | 9     | 16    |
| Pot. Trees M       | 24   | 295   | 0.6   | 34    |
| Pot. > GW 5        | 19   | 250   | 0.6   | 30    |
| % A-seed inventory | 1.2% | 9.0%  | 0.2%  | 30.6% |
| % A seed Use-5Yr   | 10.6 | 78.4  | 3.6   | 70.9  |
| % A Seed Use- 07   | 12.2 | 82.2  | 10.1  | 70.0  |
| % A SURPLUS        | 0.2% | 83.6% | 0.0%  | 61.0% |
| GW ave.            | 9.2  | 12.7  | 19.8  | 14.6  |
| GW wt. POT         | 7.3  | 15.5  | 23.1  | 12.9  |
| GW MAX             | 17%  | 30%   | 28%   | 34%   |
| % ZND              | 7.6% | 7.6%  | 25.8% | 4.5%  |



## Pli Orchard Production and Gain



