

Highway 91/17 and Deltaport Way Upgrade Project – Groundwater and Surface Water Monitoring Report

Photo Credit: Hemmera, 2020

Prepared for:

Ministry of Transportation and Infrastructure Hwy 91/17 Project

8100A Nordel Way Delta, BC V4G 8A9 Project No. 105052-01

June 22, 2021

Prepared by:

Hemmera Envirochem Inc. 18th Floor, 4730 Kingsway Burnaby, BC V5H 0C6 T: 604.669.0424 F: 604.669.0430 hemmera.com

TABLE OF CONTENTS

LIST O	F ACRC	NYMS	AND ABBR	EVIATIONS	IV	
LIST O	F SYME			DF MEASURE	IV	
1.0	INTRO	DUCTIO	N		. 1	
	1.1 Monitoring Objectives1					
2.0	ВАСК	GROUN	D		. 2	
	2.1	Burns E	Bog History		. 2	
	2.2	Previou	us Studies		. 2	
	2.3	Climate	ə		. 3	
	2.4	Burns E	Bog Water C	Chemistry	. 3	
3.0	FIELD	метно	DS		. 5	
	3.1	Study S	Scope		. 5	
	3.2	Field P	rogram		. 5	
		3.2.1	Continuou	s Water Level Monitoring	. 5	
			3.2.1.1	Groundwater Monitoring Wells	.5	
			3.2.1.2	Surface Water Stations	.7	
		3.2.2	Quarterly I	Monitoring and Sampling	. 8	
			3.2.2.1	Groundwater Sampling		
			3.2.2.2	Surface Water Sampling		
		3.2.3		ater Quality Sondes		
	3.3		•			
		3.3.1		r Data Processing		
	3.4	-		and Quality Control (QA/QC)		
		3.4.1	Field	······		
			3.4.1.1	Leveloggers		
		3.4.2	Laboratory	/	12	
4.0	RESUL	.TS			13	
	4.1	Field O	bservations	;	13	
	4.2	Water I	Level and F	low	13	
		4.2.1	Groundwa	ter Levels	13	
			4.2.1.1	Group 1 (SFPR monitoring wells)	15	
			4.2.1.2	Group 2 (Highway 91C/Nordel Way Interchange)	16	
			4.2.1.3	Group 3 (Highway 91/Nordel Way)	16	
			4.2.1.4	Group 4 (Highway 91/72 nd Avenue Interchange)	16	
			4.2.1.5	Group 5 (DNR monitoring wells)	17	

		4.2.2	Groundwater Flow Directions	28
		4.2.3	Surface Water Levels	28
	4.3	Bog Wa	iter Type	34
	4.4	Water C	Quality	36
		4.4.1	Groundwater Quality	36
		4.4.2	Surface Water Quality	36
	4.5	Quality	Assurance and Quality Control	37
5.0	SUMM	ARY AN	D CONCLUSIONS	38
6.0	RECON	/MEND/	ATIONS	39
7.0	STATE	MENT C	OF LIMITATIONS	40
8.0	CLOSU	IRE		41
9.0	REFER	ENCES		42

LIST OF TABLES (WITHIN TEXT)

Table A	Groundwater Monitoring Wells	6
Table B	Surface Water Stations	7
Table C	Groundwater Analytical Plan	8
Table D	Surface Water Analytical Plan	9
Table E	BC ENV Recommended DQOs for Surface Water and Groundwater	11
Table F	Groundwater Monitoring Results	14
Table G	Surface Water Levels	29
Table H	Bog Water Type	35
Table I	Groundwater Sampling/Monitoring Plan	39
Table J	Surface Water Sampling/Monitoring Plan	40

LIST OF FIGURES (WITHIN TEXT)

Figure A	Groundwater Elevations (m asl) and Precipitation for Group 1	18
Figure B	Groundwater Levels (m bgs) and Precipitation for Group 1	19
Figure C	Groundwater Elevations (m asl) and Precipitation for Group 2	20
Figure D	Groundwater Levels (m bgs) and Precipitation for Group 2	21
Figure E	Groundwater Elevation (m asl) and Precipitation for Group 3	22
Figure F	Groundwater Levels (m bgs) and Precipitation for Group 3	23
Figure G	Groundwater Elevations (m asl) and Precipitation for Group 4	24
Figure H	Groundwater Levels (m bgs) and Precipitation for Group 4	25
Figure I	Groundwater Elevation (m asl) and Precipitation for Group 5	26
Figure J	Groundwater Levels (m bgs) and Precipitation for Group 5	27

Figure K	Surface Water Elevations (m asl) and Precipitation for Group A	С
Figure L	Water Head Relative to Transducer (m) and Precipitation for Group A	1
Figure M	Surface Water Elevations (m asl) and Precipitation for Group B	2
Figure N	Water Head Relative to Transducer (m) and Precipitation for Group B	3

LIST OF APPENDICES

TABLES (APPENDED)

Table 1	Groundwater Analytical Results
Table 2	Surface Water Analytical Results
Table 3	Relative Percent Difference (RPD) Calculations

FIGURES (APPENDED)

Figure 1	Groundwater and Surface Water Sampling Locations
----------	--

Figure 2 Spatial Distribution of Bog Water Types

APPENDICES

- Appendix B Sampling Event Summary
- Appendix C Laboratory Certificates of Analysis

LIST OF ACRONYMS AND ABBREVIATIONS

Acronym / Abbreviation	Definition			
AWf	Freshwater Aquatic Life			
BC ENV	British Columbia Ministry of Environment and Climate Change Strategy			
BTEX	Benzene, toluene, ethylbenzene, and xylene			
DNR	Delta Nature Reserve			
DO	Dissolved oxygen			
DOC	Dissolved organic carbon			
DQO	Data Quality Objective			
EC	Electrical conductivity			
GW	Groundwater			
HEPH	Heavy Extractable Petroleum Hydrocarbon			
LEPH	Light Extractable Petroleum Hydrocarbon			
MTBE	Methyl tert-butyl ether			
m asl	Meters above sea level			
ORP	Oxidation reduction potential			
РАН	Polycyclic Aromatic Hydrocarbon			
QA/QC	Quality Assurance/ Quality Control			
RPD	Relative Percent Difference			
SW	Surface Water			
TDS	Total Dissolved Solids			
ТКМ	Total Kjeldahl Nitrogen			
TOC	Total Organic Carbon			
VPH	Volatile Petroleum Hydrocarbons			

LIST OF SYMBOLS AND UNITS OF MEASURE

Symbol / Unit of Measure	Definition		
°C	Degrees Celsius		
mm	Millimeter		
mg/L	Milligram per Litre		
m bgs	Meters below ground surface		
µg/L	Micrograms per litre		

1.0 INTRODUCTION

The Highway 91/17 and Deltaport Way Upgrade Project (the "Project") includes several improvements to Highway 91, Highway 91 Connector, Highway 17 and Deltaport Way to improve travel safety, reliability and efficiency to allow for growth in goods and commercial movement. The project area is shown in **Figure 1**. Hemmera Envirochem Inc. (Hemmera) was retained to continue an ongoing surface water (SW) and groundwater (GW) monitoring program to monitor potential effects of the Project on surrounding groundwater conditions. Potential changes to ambient water quality and flow characteristics, as a result of the Highway 91/17, are important to monitor to ensure protection of the unique ecosystems associated with Burns Bog.

Burns Bog covers roughly 3,000 hectares of the Fraser River delta between the south arm of the Fraser River and Boundary Bay of which the Burns Bog Ecological Conservancy Area (BBECA) constitutes approximately 2,000 hectares. It is the largest undeveloped urban landmass in North America and the largest raised bog on the west coast of the Americas. Burns Bog is unique because of its size, diversity of flora and fauna.

The groundwater monitoring program has been carried out since September 2018 and is the continuation of a program that has been conducted since 2006 in support of construction of the South Fraser Perimeter Road (SFPR). The areas of focus for the monitoring program are: areas within and adjacent to the BBECA and Delta Nature Reserve (DNR) and several drainages leading from the Project to the Fraser River.

1.1 Monitoring Objectives

The objective of this monitoring program is to measure water quality and quantity around the Project as potential indicators of effects to ecological values associated with the BBECA, the DNR and several drainages by assessing the following:

- Groundwater levels and characteristics (including water quality)
- Surface water flow characteristics, drainage patterns, and surface water quality
- Bog water chemistry and classification

2.0 BACKGROUND

The project area is in North Delta, British Columbia (BC) (**Figure 1**) and includes several jurisdictions and features around the northeastern portion of Burns Bog that may potentially be impacted by the Highway 91/17 Project:

- Burns Bog Ecological Conservancy Area currently under joint Metro Vancouver and City of Delta governance
- Delta Nature Reserve City of Delta jurisdiction
- Gravel Ridge ditch also known as 96th St Ditch City of Delta jurisdiction
- Pump station and flood box at the Gravel Ridge ditch outlet to Fraser River operated by City of Delta
- Silda Ditch City of Delta jurisdiction
- Flood Box at Silda ditch outlet to the Fraser River City of Delta jurisdiction
- Burns Bog East-West Perimeter Ditch
- Rights of way for BC Hydro and Fortis BC
- MK Delta Lands Group property
- Sunbury Delta Investments property.

2.1 Burns Bog History

Burns Bog has been used by Indigenous people, including the Tsawwassen, Semiahmoo, Sto:lo, Katzie, and Musqueam First Nations for thousands of years. The bog produces various important food sources and medicinal plants for the people in the region (City of Delta, 2021).

Peat extraction and other industrial activities impacted the bog's drainage and ecosystem throughout the 20th century. A summary of the historical industrial activities and changes to the bog can be found in the 2019 report by Hatfield entitled *Highway 91/17 & Deltaport Upgrade Project: Groundwater and Surface Water Baseline* (Hatfield 2019).

2.2 **Previous Studies**

A baseline study was completed by Hatfield from September 2018 to July 2019 (Hatfield 2019) to assess the surface water and groundwater flow, water levels, drainage patterns, water quality and bog water chemistry in Burns Bog surrounding the Project. The 2019 baseline report also reviewed the following previous studies completed in the Project area:

- Hebda et al. 200. Burns Bog Ecosystem Review, Synthesis Report for Bruns Bog, South Fraser River Delta, South-western British Columbia, Canada. Environmental Assessment Office, Victoria. March 2000.
- Golder Associates Inc. 2006. South Fraser Perimeter Road Hydrogeology Impact Assessment. Prepared for Ministry of Transportation and Infrastructure. October 2019.
- Golder Associates Inc. 2009. Results of Groundwater Monitoring Program from May 2006 through June 2009 in the Vicinity of Burns Bog, South Fraser Perimeter Road. Prepared for the Ministry of Transportation and Infrastructure. July 2009.

- Golder Associates Inc. 2017. Results of Groundwater Monitoring Program from April 2016 through March 2017 in the Vicinity of Burns Bog, South Fraser Perimeter Road. Prepared for the Ministry of Transportation and Infrastructure. June 2017.
- EBA, A Tetra Tech Company. 2013. South Fraser Perimeter Road, Burns Bog Hydrology Mitigation Monitoring: 2012-2013 Annual Monitoring. Prepared for Ministry of Transportation and Infrastructure. September 2013.
- Tetra-Tech. 2017. South Fraser Perimeter Road, Burns Bog Hydrology Mitigation Monitoring: 2016 Annual Monitoring. Prepared for Ministry of Transportation and Infrastructure.
- Enterprise Geoscience Services Ltd. 2013. Hydrology Baseline Report 10770, 72 Ave Delta, BC. Prepared for MK Delta Land Group. January 2013.
- Howie, SA. 2012. Lagg Characteristics of Burns Bog: Final Report to Metro Vancouver Regional Parks. Prepared for Metro Vancouver Regional Parks. May 2012.
- Owen. 2018. Hydrology of the Delta Nature Reserve. Prepared for the Burns Bog Conservation Society. September 2018.
- Sims, R. 2018. Summary Report (April 2018): Water Monitoring Wells Adjacent to the Highway 91/72 Avenue Interchange. Prepared for Ministry of Transportation and Infrastructure. April 2018.

This report relied on the baseline report (Hatfield 2019) for information about previous studies, previous sampling results and locations and builds on studies of similar scope that have been has been conducted since 2006 to monitor effects of SFPR construction on hydrology, hydrogeology, and water quality in and around the bog.

A bridging report was prepared by Hatfield, *Highway 91/17 & Deltaport Way Upgrade Project: Bridging Period Groundwater and Surface Water Baseline Monitoring*, dated August 2020, which outlines the data collected by Hatfield from July 2019 to July 2020. This data has been incorporated into this report.

2.3 Climate

Burns Bog is located in the Lower Mainland of British Columbia and is considered to have a moderate climate. The average annual temperature (from 1981 to 2010) is 10.4 °C (at the Vancouver International Airport; Environment Canada climate station ID 1108447, located approximately 20 km west-northwest of the study area). The lowest temperatures are recorded in December and maximum temperatures on average occur in July and August. The Vancouver International Airport receives on average 1,189 mm of precipitation per year, with an average of 168.9 days per year recording 0.2 mm or more precipitation. The average precipitation per month ranges from 35.6 mm in July, to 188.9 in November.

2.4 Burns Bog Water Chemistry

As indicated in Hatfield, 2019, the water chemistry within Burns Bog itself is generally nutrient poor, as precipitation is its primary water source. The water chemistry can be identified by low pH and low calcium concentrations, which is caused by the exchange processes occurring through contact with the bog peat, where calcium is replaced in porewater by hydrogen ions, causing the pH to decrease.

Three designated water types were identified by Hatfield 2019 based on descriptions from *Burns Bog Ecosystem Review: Water Chemistry* (Balfour and Banack 2000). The three water types were used to describe the water chemistry in and around Burns Bog, based on observed calcium concentrations and pH values as follows:

- Type I (bog water): with pH values from 3.5 5.5 and calcium concentrations ranging from 0-3 mg/L
- Type II (transitional water): with pH values from 4.5 6.0 and calcium concentrations ranging between 3 10 mg/L
- Type II (non-bog water): with pH values from 5.0 8.0 and calcium concentrations > 10 mg/L.

Based on studies reviewed by Hatfield (2019), electrical conductivity (EC), a surrogate for Total Dissolved Solids (TDS), can be an additional indicator of water type. Bog water is low in dissolved solids and therefore has a very low EC. Ion concentrations are expected to increase toward the margins of the bog due to mixing with mineralized "non-bog" type water and therefore increasing the EC.

3.0 FIELD METHODS

3.1 Study Scope

The field program was completed using the baseline program by Hatfield (2019), which was based on recommendations by Sims (2018b). This included:

- Seasonal monitoring: groundwater and surface water monitoring conducted quarterly to assess seasonality in water quality and flow characteristics.
- Continuous monitoring using level-loggers at key locations for water level and in-situ indicator parameters (pH, specific conductivity, and water temperature) to assess changes over time and response to storm events. Potential water quality impacts on Burns Bog related to flooding events, especially because of urban stormwater runoff, are a key consideration of the Highway 91/17 Project stormwater runoff plan (Binnie 2018).

The data collected by Hatfield from July 2019 to July 2020 has been incorporated in this report along with the data collected during field programs carried out by Hemmera.

3.2 Field Program

The field program was completed from September 2019 to December 2020 and consisted of the following tasks:

- Field reconnaissance to confirm the status of monitoring equipment installed by Hatfield for the purposes of the baseline and bridging monitoring programs (completed in September and October 2020 by Hemmera).
- Continuous and quarterly monitoring of water levels and water quality.

The September 2019, April 2020 and June 2020 field events were completed by Hatfield and have been reported on in the Bridging Period report (Hatfield 2020) as well as in this report. The October and December 2020 field events were completed by Hemmera staff and are reported on in this document. Field photos are included in **Appendix A**.

3.2.1 Continuous Water Level Monitoring

3.2.1.1 Groundwater Monitoring Wells

Table A outlines the groundwater monitoring wells installed throughout the project and includes planned sampling frequency and expected presence of Solinst M5 Leveloggers (Levelogger) based on the baseline monitoring report (Hatfield, 2019). The installation details for each well can be found in Hatfield, 2019. **Figure 1** shows the locations of the groundwater monitoring wells.

Table A Groundwater Monitoring Wells

	Loca	ation ¹	Compliant Discussed ²	Levelogger
Well ID	Easting	Northing	Sampling Planned ²	Expected (Y/N)
MW06-Q2	502975	5443744	Y	Y
MW06-Q3S	502976	5443447	Y	Y
MW08-Q4(1)	502988	5443884	Y	Y
MW08-Q4(2)	502988	5443884	Y	Y
MW08-Q4(3)	502987	5443882	Y	Y
MW01	505458	5442528	Y	Y
MW03	505295	5442451	Y	Y
MW05	505026	5442378	Y	Y
GW04	503481	5443533	Y	Y
GW18-01	503750	5443756	Y	Y
GW18-02	503624	5443641	Y	Y
GW18-03	504369	5443395	Y	Y
GW18-04	504182	5443272	Y	Y
GW18-05	503941	5443133	Y	Y
GW18-06	504864	5443303	Y	Y
GW18-07 ³	504913	5443838	Y	Y ³

Notes:

^{1.} All coordinates are shown in NAD 83 UTM Zone 10.

^{2.} Sampled Quarterly for pH, Conductivity and Total Calcium and annually as outlined in **Section 3.2.2.1**.

^{3.} In addition to a Levelogger, GW18-07 also had a Barologger installed to measure atmospheric pressure changes.

Water level measurements were collected continuously using Leveloggers, which were installed in each monitoring well across the Highway 91/17 Project area. The monitoring network is grouped as outlined below and shown on **Figure 1**:

- Group 1 (north of the BBECA, bog-like ecosystem): MW06-Q3S, MW06-Q2, MW08-Q4(1), MW08-Q40(3): a 435 m long north to south transect located south of Highway 17 near the western end of the Highway 91/17 Project footprint.
- Group 2 (north of the BBECA, on private property, bog-like ecosystem): GW04, GW18-02 and GW18-01: a 355 m long transect, extending northeast to southwest to the south of Highway 91C.
- Group 3 (north of the BBECA, on private property, bog-like ecosystem): GW18-05, GW18-04 and GW18-03: a 495 m long transect, orientated northeast to southwest to the south of the Nordel Way Truck Parking.
- Group 4 (in the BBECA): MW05, MW03 and MW01: a 450 m long east to west transect located across Highway 91 at the 72nd Avenue exit, south of the Highway 91/17 Project footprint.
- Group 5 (in the DNR): GW18-06 and GW18-07: located within the DNR, east of the Highway 91/17 Project footprint.

Leveloggers were suspended from J-plug caps in each well using stainless steel aircraft cable and clamps. Each Levelogger was deployed at the bottom of the well to ensure that the removal of the J-plug would not interfere with water level measurements. Leveloggers were programed to collect water level measurements every 60 minutes and data was downloaded during each quarterly sampling event. A Solinst Barologger (Barologger) was installed in monitoring well GW18-07 to measure variations in barometric pressure. In the event of gaps in the Barologger data, hourly atmospheric pressure from a nearby Environment Canada climate station within Burns Bog was used. The data from the Barologger and the Environment Canada climate station was used for barometric compensation of the groundwater level.

During each quarterly monitoring and sampling event, water level measurements were collected manually at each monitoring well from the top of the well casing and were recorded to the nearest centimeter.

3.2.1.2 Surface Water Stations

Table B shows the surface water station locations, planned sampling locations and the presence of Leveloggers and water quality sondes (based on the baseline water quality report by Hatfield (2019). **Figure 1** shows the locations of the surface water stations.

Station ID	Loca	ntion ¹	Sampling	Levelogger	Water Quality
Station ID	Easting	Northing	Planned ²	(Y/N)	Sonde (Y/N)
WQ01	503123	5443856	Y	Y	Y
WQ02	503123	5443768	Y	Y	Y
WQ03	503858	5443787	Y	Y	Y
WQ04	504723	5443105	Y	Y	Y
WS01	503128	544446	Y	Y	N
WS02	503718	5444431	Y	Y	N
WS03	503856	5443556	Y	Y	N
WS04	504842	5443013	Y	Y	N
WS05-E	505207	5442448	Y	Y	N
WS05-W	505136	5442409	Y	Y	N
DNR01	504885	5443902	Y	-	-
DNR02	504775	5443185	Y	-	-

Table B Surface Water Stations

Notes:

^{1.} All coordinates are shown in NAD 83 UTM Zone 10.

^{2.} Sampled Quarterly for pH, conductivity and calcium and sampled annually as outlined in **Section 3.2.2.2**.

^{3.} There are no stilling wells at DNR01 and DNR02 and therefore Leveloggers cannot be installed at these locations.

Surface water levels were measured continuously with a Levelogger. The surface water station network was divided into two groups:

- Group 1 includes stations that are along drainage ditches which ultimately discharge at Gravel Ridge (WQ01, WQ02, WQ03, WS01, WS03). These locations are primarily located on private late north of the BBECA.
- Group 2 includes the stations that are along drainage ditches which ultimately discharge at Silda (WS05-E, WS05-W, WQ04, WS02). WS05-E and WS05-W are within the BBECA and WS04 is adjacent to the DNR.

Leveloggers were suspended in each surface water station stilling well on a piece of rebar. Each Levelogger was deployed at the bottom of the stilling well to ensure surface water level fluctuation would not result in the Levelogger being out of water during drier seasons. Leveloggers were programed to collect water level measurements every 15 minutes and data was downloaded during each quarterly sampling event. The Barologger in monitoring well GW18-07 was used for barometric compensation of the surface water levels along with supplemental data from the Environment Canada climate station within Burns Bog.

3.2.2 Quarterly Monitoring and Sampling

Groundwater and surface water samples were to be collected from each respective monitoring stations during quarterly monitoring and sampling events. The September 2019 and April 2020 sampling events were completed by Hatfield and have been reported on in the Bridging Period report (Hatfield, 2020) as well as included in this report. The October and December 2020 field events were completed by Hemmera staff and presented in this document.

The quarterly events also included the collection of manual water level measurements, in-situ field parameters and the download of the continuous Levelogger data. The water quality Sondes were not found in the October or December 2020 events. These were not removed by Hatfield or MOTI, and it is unknown why or how they were missing (see **Section 3.2.3**).

3.2.2.1 Groundwater Sampling

Groundwater quality samples were planned to be collected from the monitoring wells identified in **Table A**, based on the analytical sampling plan outlined in **Table C**.

Table C	Groundwater Analytical Plan

Quarterly Sampling Events	Detailed Sampling Event (January)					
Total Calcium Conductivity pH	Alkalinity Anions Total Organic Carbon (TOC) Total Cyanide Colour Total Metals Dissolved Metals Total Phosphate Total Dissolved Phosphate Dissolved Orthophosphate	Total Dissolved Solids (TDS) Total Kjeldahl Nitrogen (TKN) Volatile Petroleum Hydrocarbons (VPH) – includes BTEX (Benzene, toluene, ethylbenzene, and xylene) Methyl tert-butyl ether (MTBE) Light Extractable Petroleum Hydrocarbons and Heavy Extractable Petroleum Hydrocarbons (LEPH/HEPH) Tannins and Lignins Polycyclic Aromatic Hydrocarbons (PAHs)				

The analysis was selected to be consistent with the baseline water quality monitoring program, however due to the transitional period between work completed by Hatfield and Hemmera, the full-scale analytical suite, to be completed annually during the detailed sampling event, was not completed for groundwater in 2020. A summary of the sampling completed by location and date is provided in **Appendix B**.

Groundwater samples were collected by Hemmera according to established procedures outlined in the BC ENV's *British Columbia Field Sampling Manual* and included the following tasks:

- Monitoring wells were purged and measurements for temperature, DO, pH, specific conductivity and oxidation reduction potential were collected.
- Where measurements of the above-listed parameters stabilized (indicating purging of representative formation groundwater) sampling of groundwater was completed using a bailer. Field duplicates were collected concurrently by alternating filling sample bottles during collection.
- Visual and olfactory observations of the groundwater were noted during sampling (i.e. sheen, color, transparency, silt content, and odor if present).

Sampling procedures for the Bridging period completed by Hatfield can be found in the Bridging Period Groundwater and Surface Water Monitoring report (Hatfield, 2020), the data from the Bridging period has been included in this report.

3.2.2.2 Surface Water Sampling

Surface water samples were planned to be collected from the surface water stations identified in **Table B**, based on the analytical sampling plan outlined in **Table D**.

Quarterly Sampling Events	Detailed Sampling Event (January)						
Total Calcium Conductivity pH	Alkalinity Anions Biological Oxygen Demand (BOD) Dissolved Organic Carbon (DOC) TOC Chemical Oxygen Demand (COD) Colour Total Metals Dissolved Metals Salinity	TDS Total Suspended Solids (TSS) Turbidity Mineral Oil & Grease Oil & Grease PAHs Tannins and Lignins Total Coliform Fecal Coliform					

Table D Surface Water Analytical Plan

The analysis was selected to be consistent with the baseline water quality monitoring, however due to the transitional period between work completed by Hatfield and Hemmera, the full annual monitoring plan was not completed. **Table F** outlines the locations where samples were collected by sampling date. A full analytical suite, to be completed annually, was completed at WS01 and WS02 in September 2019 and February 2020, but no other surface water locations were sampled by Hatfield. A summary of the sampling completed by location and date is provided in **Appendix B**.

Surface water samples were collected according to established procedures outlined in the BC ENV's *British Columbia Field Sampling Manual.* The following tasks were completed during the surface water sampling program:

- Sample locations were located by use of GPS coordinates recorded from the previous sampling events.
- Surface water samples were collected upstream of the sampler by immersing clean new sample bottles into the body of water, taking care to limit the amount of sediment entering the bottle.
- Where a preserving agent was required to retain sample integrity, the preserving agent was added once the sample collection bottle was adequately filled.
- Surface water physical characteristics at each sampling location were measured for temperature, pH, DO, specific conductance, oxidation reduction potential, and turbidity.

3.2.3 Surface Water Quality Sondes

While continuous water quality monitoring was conducted in the baseline study using YSI Sondes (Sondes) at four surface water stations to measure pH, temperature, and conductivity continuously, no Sondes monitors were deployed in the field, nor were Sondes monitors located in 2020, during the period that this monitoring report covers. Sondes will be replaced and included in future monitoring events.

3.3 Data Analysis

3.3.1 Levelogger Data Processing

Data was downloaded from Leveloggers deployed at groundwater wells and surface water stations and processed following each quarterly monitoring event. The barometric data from the Barologger was used to correct the total pressure readings for each Levelogger to determine groundwater head at each location. This was completed by subtracting the barometric pressure from the total (barometric and water) pressure measured by the Levelogger.

Data were analyzed using Solinst Levelogger Software (Solinst 2020). Anomalous data and data points from when the Leveloggers were removed for data download were removed from the data set. Manual measurements from quarterly field visits assisted in the interpolation of linear drift corrections and offsets. Manual well measurements are presented in **Table F** and **Table G**.

The water level data was then compared to precipitation using precipitation data from the Vancouver International Airport climate station.

The length of the cable hanging the Leveloggers is required such that pressure heads recorded by the Levelogger can be converted to groundwater elevations. This allows for the Levelogger measurements to be verified using the following relationship:

Top of Casing – Cable Length = Levelogger Elevation 1 Top of Casing – Depth To Water – Pressure Head = Levelogger Elevation 2

3.4 Quality Assurance and Quality Control (QA/QC)

This section describes the set of processes used to measure and assure the quality and integrity of the samples both in the field and in the laboratory.

3.4.1 Field

Hemmera's field quality assurance/quality control program (QA/QC) included practicing standard groundwater and surface water sampling protocols to minimise the potential for cross contamination between samples. The field QA/QC procedure also included the collection and analysis of field duplicates. Where field duplicates were collected, relative percent difference (RPD) calculations were completed between characterization samples and their duplicates. RPDs are calculated as the difference between a sample and its field duplicate, over the average of the two values. RPDs were not calculated where concentrations were less than five times the detection limit, which is too low to accurately calculate RPD values. RPD calculations were completed for surface water and groundwater samples and are presented with analytical results in **Tables 1** to **3** (following report text). The RPD data quality objectives (DQOs) used in this investigation for groundwater and soil are listed below in **Table E**.

Table E BC ENV Recommended DQOs for Surface Water and Groundwater

Parameter Category	DQOs
Metals in Water	20%
General Inorganics in Water	20%
Organics in Water	30%

Groundwater and surface water sample analyses were completed by Bureau Veritas Laboratories (BV) and ALS Laboratories (ALS). The samples were subjected to QA/QC procedures specific to the laboratory. Laboratory QA/QC included internal/surrogate standards, replicates and duplicates, method blanks and method spikes. Laboratory QA/QC results from BV and ALS are included with each certified laboratory report (**Appendix C**).

3.4.1.1 Leveloggers

During the collection of the data from the Leveloggers, steps were taken in the field to improve the quality of the data collected over the course of the monitoring program. As stated in **Section 3.3.1**, depth to water (DTW) was used to determine if the Leveloggers have significant drift or error occurring. When Levelogger Elevation 1 and Levelogger Elevation 2 are within 0.01 m of each other, this indicates the Levelogger is deployed at a known elevation and is not significantly drifting. Pressure readings recorded by each Levelogger can then be added to Levelogger can be accurately converted to groundwater elevation verified by depth to water measurements.

To facilitate this quality check, at each field program DTW was measured prior to retrieval and then the Levelogger data was downloaded and the Levelogger was reprogramed. During re-deployment, the cable length was measured again and a second DTW measurement was recorded. This allowed for comparison with the original deployment, as well as comparison for subsequent retrieval, download, and redeployment.

3.4.2 Laboratory

Water analyses were completed by BV and ALS. Test methods used by the labs followed approved test reference methods with some modifications where they would improve performance. The samples submitted to the laboratory were subjected to QA/QC procedures specific to the laboratory. Laboratory QA/QC included internal/surrogate standards, replicates and duplicates, method blanks and method spikes. Laboratory QA/QC procedures are included in each certified laboratory report, and all met the required QA/QC measures set forth by the BC ENV's *British Columbia Field Sampling Manual.* Certified lab reports are included in **Appendix C**.

4.0 RESULTS

4.1 Field Observations

It was observed that some of the metal aircraft cables used to suspend the Leveloggers in the monitoring wells are rusting and may be at risk of breaking resulting in the Levelogger falling to the bottom of the well. Leveloggers were missing from locations GW18-07 and MW08-Q4(2) and had likely already fallen to the bottom of the wells. Field photos are included in **Appendix A**.

4.2 Water Level and Flow

4.2.1 Groundwater Levels

Continuous groundwater level measurements were collected from groundwater monitoring wells from August 2019 until December 2020. **Table F** shows the groundwater levels at each location for each monitoring event, including the water levels collected using Levelogger data, manual water level measurements and groundwater elevation. According to the baseline report (Hatfield 2019), the vertical survey of some monitoring wells (GW18-04 and GW18-07) may not be accurate due to the challenging field conditions that may have impacted the survey results. This inaccuracy of the survey results is further discussed in the baseline report (Hatfield 2019), however due to these inaccuracies the water levels relative to geodetic datum are not used for these two locations.

Table F Groundwater Monitoring Results

Group	Station	Maximum Groundwater Level		Minimum Groundwater Level		Water Level Range from	Manual Water Level	Manual Water
		Date	Level (m bgs)	Date	Level (m bgs)	Minimum to Maximum (m)	Measurement Date	Level (m asl)
Group 1	MW06-Q2	February 1, 2020		October 2, 2020			October 2 2020	1.79
	MW06-Q3S	February 1, 2020	-0.301	October 2, 2020	1.620	0.634	October 2 2020	1.85
	MW08-Q4(1)	February 1, 2020	-0.140	September 21, 2020	0.623	0.763	September 21, 2020	1.40
	MW08-Q4(3)	February 1, 2020	0.423	September 23, 2020	0.623	0.200	September 21, 2020	1.07
	GW04	November 19, 2019	0.121	October 8, 2020	1.412	1.291	-	
Group 2	GW18-01	February 1, 2020	-0.186	October 1, 2020	1.047	1.233	October 1 2020	1.07
	GW18-02	February 1, 2020	-0.342	October 1, 2020	0.848	1.189	October 1 2020	1.66
	GW18-03	February 1, 2020	-0.456	September 12, 2019	0.203	0.659	October 1 2020	2.50
Group 3	GW18-04	June 16, 2020	0.149	September 22, 2020	0.608	0.460	-	
	GW18-05	June 16, 2020	-0.039	September 23, 2020	0.308	0.347	-	
	MW01	January 31, 2020	-0.191	August 19, 2020	0.763	0.954	October 14 2020	3.77
Group 4	MW03	January 31, 2020	-0.367	September 12, 2019	1.045	1.411	October 2 2020	3.35
	MW05	February 1, 2020	0.179	September 12, 2019	0.816	0.638	-	
Group 5	GW18-06	June 16, 2020	0.513	August 23, 2020	0.815	0.302	-	
	GW18-07	February 1, 2020	-0.539	August 20, 2019	0.247	0.786	-	

The water level data for Leveloggers in each of the five designated groups were graphed relative to time and precipitation data, as outlined in the following Sections. The data is presented on graphs showing metres below ground surface (m bgs) and metres above sea level (m asl), based on survey data collected by Hatfield. As discussed, the survey data for several locations may not be fully representative of field conditions, and it is also possible that the elevation of the monitoring wells may have changed over time due to the nature of the ground conditions.

The data collected from the Leveloggers represents pressure head that is converted to groundwater elevation through the length of cable on which the Levelogger is hung. The length of cable used to convert the data from August 2019 to June 2020 was slightly different than was used to convert the data from June 2020 to December 2020. A consistent cable length will be used for future events.

In addition, there is low confidence in the barometric data collected following the October 14, 2020 monitoring event. After downloading the barometric data and resetting the Barologger, there was an anomalous increase of approximately 10 kPa, that resulted in abnormal compensation for the Leveloggers. It is recommended that the unit be checked and recalibrated. As such, data from October 14, 2020 to December 1, 2020 has not been considered in the analysis. To account for some error in the compensation using the Barologger data, additional manual correction of the data from June to December 2020 was carried out.

Groundwater levels for all wells exhibit variability in response to seasonal precipitation and individual precipitation events. Generally, there is a steady increase in groundwater level beginning in September 2019 and reaching a maximum in February 2020. Groundwater levels remain high in most wells until late spring in April 2020 and decrease gradually through the summer and fall. High individual precipitation events, such as those in October 2019 and February 2020 are reflected in increases in groundwater levels across most wells on-site. Seasonal fluctuations and precipitation responses are discussed in more detail for each grouping below.

4.2.1.1 Group 1 (SFPR monitoring wells)

Group 1 is located north of the BBECA and south of the SFPR, in a bog-like ecosystem. Groundwater elevations and levels in MW06-Q2, MW06-Q3S, MW08-Q4(1), and MW08-Q4(3) are shown in the **Figure A** and **Figure B**. Groundwater levels for August 2019 to October 2020 were consistent with those measured during the October 2018 to August 2019 events. The groundwater levels for the wells screened in peat (MW06-Q2, MW06-Q3S and MW06-Q4(1)) are within the same range, while the level for MW08-Q4(3) is approximately 1 m lower owing to a deeper screen depth in the sand unit underlying the peat.

In the Hatfield 2019 Groundwater and Surface Water Baseline report, diurnal water level fluctuations in the Fraser River were found to cause dampened tidal response in the ditches in the downgradient portion of the Highway 91/17 Project area and were inferred to affect groundwater levels. The tidal influence in Group 1 wells was noted to be relatively small, with MW08-Q4(3) exhibiting the strongest response. The data collected from August 2019 to October 2020 is consistent with previous findings, and as such the groundwater wells are inferred to be tidally influenced.

Negative water level readings (m bgs) occurred in MW06-Q2, MW06-Q3S and MW08-Q4(1) between November 2019 and April 2020. This is interpreted to reflect water levels rising above ground surface, and was confirmed by Hatfield field staff in January 2019, the surface water was observed to also be high at the time.

Data was not collected from the following:

- MOW06-Q3S: June 2020 to October 2020
- MW06-Q2 and MW08-Q4(1): August 2020 to September/October 2020

4.2.1.2 Group 2 (Highway 91C/Nordel Way Interchange)

Group 2 is located on private property, to the north of the BBECA and south of the SFPR, in a bog-like ecosystem. Groundwater elevation and levels in GW04, GW18-01 and GW18-02 are shown on **Figure C** and **Figure D**, and are generally consistent with those recorded during the October 2018 to August 2019 events. However, water levels at GW04 were approximately 1 m higher in 2020 than 2019, this increase in water level was not observed in any other location in this area and may be attributed to measurement error. Data will continue to be collected from this location to monitor the water levels. Hatfield 2019, noted that a minor tidal influence was observed in the monitoring wells, which is less significant in comparison to the influence of precipitation events on water levels. As noted in Group 1, negative readings at GW18-01 and GW18-02 are indicative of flooding events, where water levels were above ground surface.

Data was not collected from the following:

- GW04: June 2020 to October 2020
- GW18-02: August 2020 to October 2020

4.2.1.3 Group 3 (Highway 91/Nordel Way)

Group 3 is located on private property, to the north of the BBECA and west of Highway 91, in a bog-like ecosystem. Groundwater levels in GW18-03, GW18-04 and GW18-05 are shown on **Figure E** and **Figure F**. The data for GW18-04 and GW18-05 is incomplete, as barometric data from August 2019 to June 2020 was not available for compensation. GW18-03 exhibits similar groundwater level seasonal patterns and responses to precipitation events. Maximum groundwater levels were observed in GW18-04 and GW18-05 in June 2020, however, groundwater levels were not measured in February 2020 at these locations when the maximum groundwater levels would be expected to be.

GW18-05 was not accessed by Hatfield during the 2019 or early 2020 events, and data was not collected from the Levelogger in GW18-05.

4.2.1.4 Group 4 (Highway 91/72nd Avenue Interchange)

Group 4 is located on within the BBECA. Groundwater levels in MW01, MW03 and MW05 are shown on **Figure G** and **Figure H**. Within this group of wells, MW01 and MW03 on the east side of Highway 91 show slightly larger seasonal fluctuations and responses to precipitation events than MW05. Groundwater levels at each of the wells are generally consistent with those recorded from October 2018 to August 2019.

Partial data was collected from MW01 and MW03 from late August to October 2020.

4.2.1.5 Group 5 (DNR monitoring wells)

Group 5 is located on within the DNR. Water levels in GW18-06 and GW18-07 in the DNR are shown on **Figure I** and **Figure J**. There is a significant amount of missing data from GW18-06, though declining water levels from June to August 2020 are consistent with those of other wells across the site. Water level data from GW18-07 is consistent with seasonal patterns in other wells and exhibits responses to precipitation events, however these responses are amplified as a result of periodic flooding relative to those observed in other groups of monitoring wells; from September 2019 to March 2020 the water level in GW18-07 is near ground level or above. Maximum groundwater levels were observed in GW18-06 in June 2020, however, groundwater levels were not measured in February 2020 at these locations, when the maximum groundwater levels would be expected to be.

As the Levelogger was missing from GW18-07, data was not collected for June to December 2020.

Figure A Groundwater Elevations (m asl) and Precipitation for Group 1

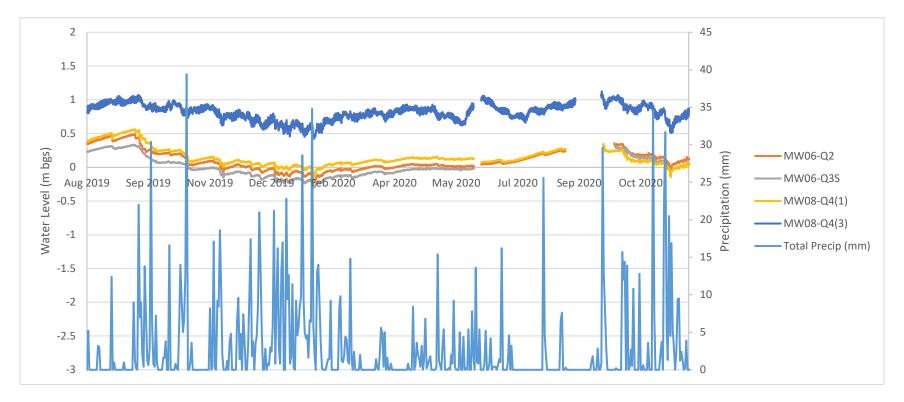


Figure B Groundwater Levels (m bgs) and Precipitation for Group 1

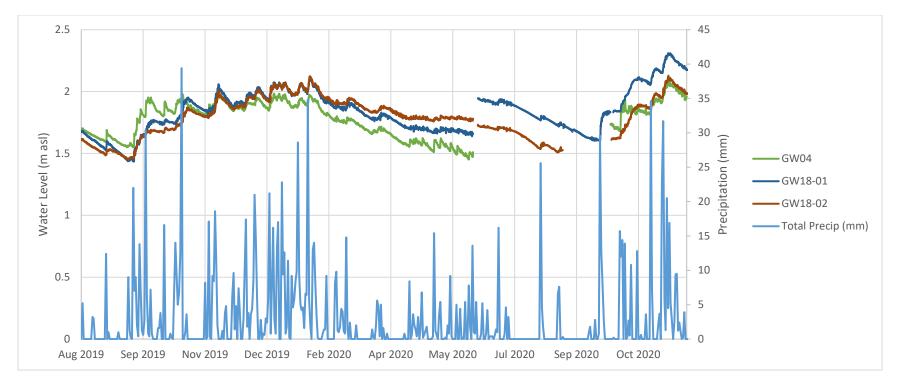


Figure C Groundwater Elevations (m asl) and Precipitation for Group 2

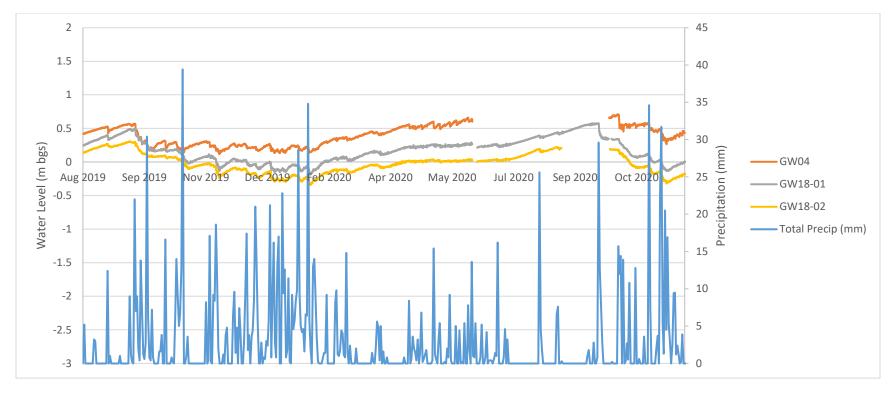


Figure D Groundwater Levels (m bgs) and Precipitation for Group 2

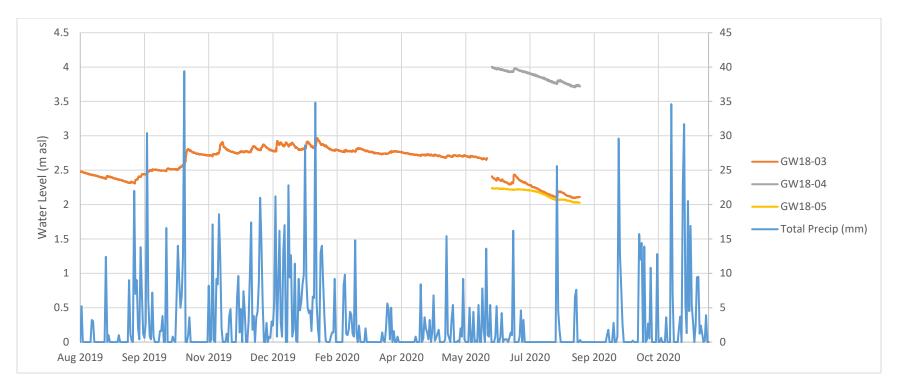


Figure E Groundwater Elevation (m asl) and Precipitation for Group 3

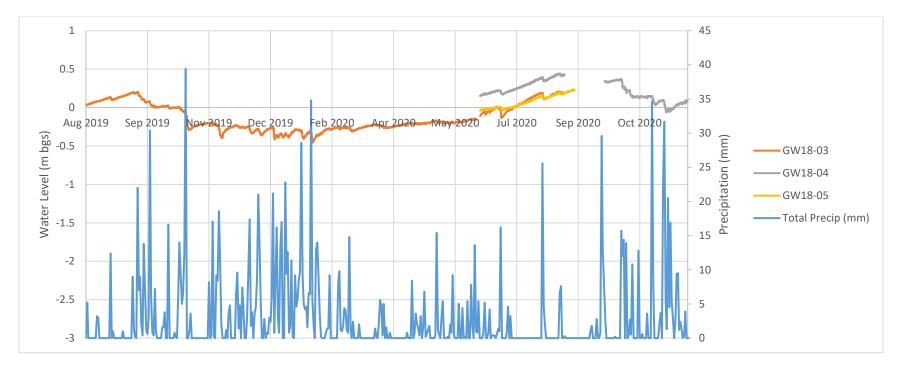


Figure F Groundwater Levels (m bgs) and Precipitation for Group 3

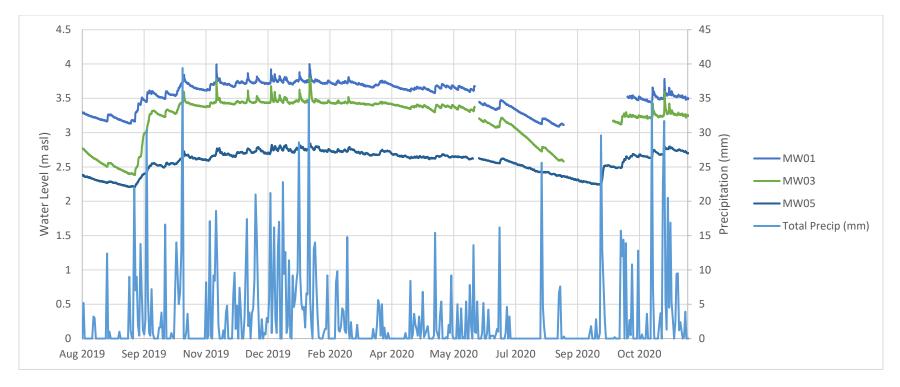


Figure G Groundwater Elevations (m asl) and Precipitation for Group 4

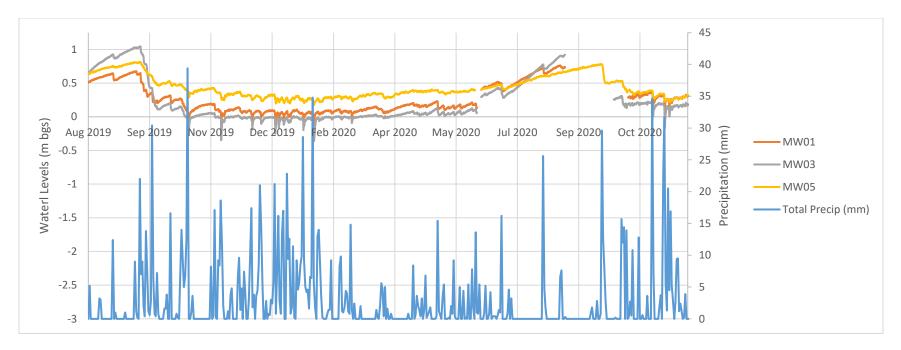


Figure H Groundwater Levels (m bgs) and Precipitation for Group 4

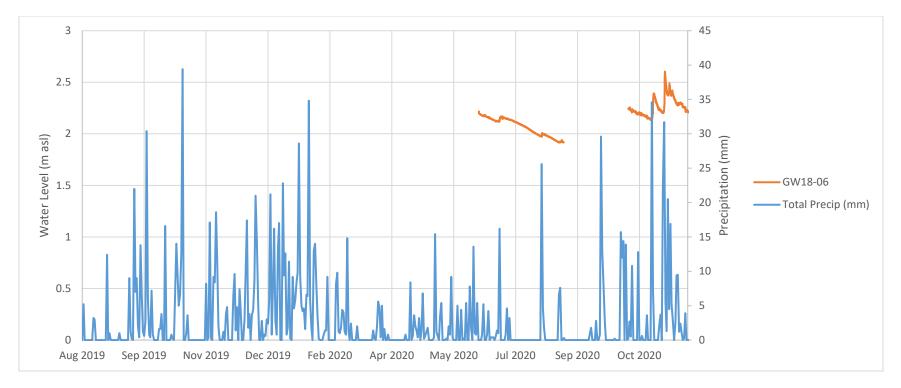


Figure I Groundwater Elevation (m asl) and Precipitation for Group 5

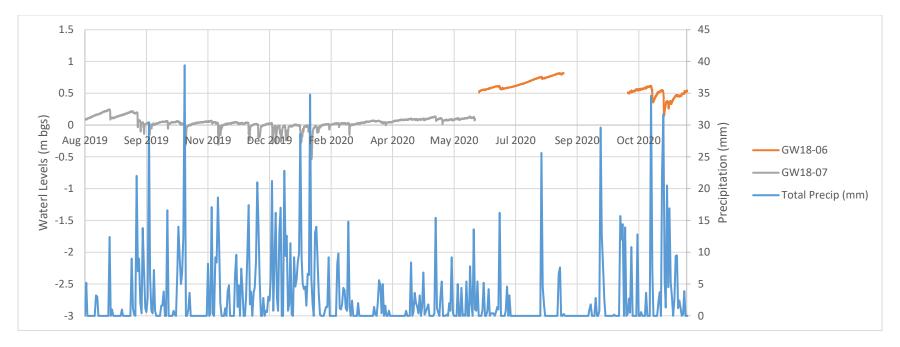


Figure J Groundwater Levels (m bgs) and Precipitation for Group 5

4.2.2 Groundwater Flow Directions

Groundwater water levels are summarized on **Table F**. In general, maximum water levels were observed in February 2020 and minimum water levels were observed in September 2019, coinciding with seasonal variations in precipitation.

Water levels across the Site are likely indicative of a complex flow pattern, with groundwater flow through the peat towards, or away from, the surface water ditches. However, groundwater levels at each station may also reflect the accuracy of the elevation survey, the flat topography of the area, and changes in the elevation of each screen owing to the nature of the peat. Based on the uncertainty of relating water level measurements from each location to each other, the groundwater flow has not been mapped at this time and will be in the future if further surveying of the groundwater and surface water locations is carried out.

4.2.3 Surface Water Levels

Surface water levels from nine surface water stations were analyzed using continuous level measurements from August 2019 to December 2020. The surface water stations are divided into two groups:

- Group A includes stations that are along drainage ditches that ultimately discharge at Gravel Ridge (WQ01, WQ02, WQ03, WS01, and WS03) shown on **Figure 1**.
- Group B includes stations that are along drainage ditches which ultimately discharge at Silda (WS05-E, WS05-W, WQ04, WS02 and WS04) shown on **Figure 1**.

A summary of the range of surface water levels at each station over the monitoring period is provided in **Table G**. Surface water level variations over the monitoring period are generally in the 0.6 to 1.0 m range, which is an increase over the October 2018 to August 2019 monitoring period; WS05-W has a smaller range of 0.3 m, interpreted to be due to culvert blockage, and WS01/WS02 have a range of 1.7 to 1.8 m due to tidal influence.

Figure K, **Figure L**, **Figure M** and **Figure N** show water level height above the Levelogger, m asl and recorded precipitation during the monitoring period. However, water level above sea level for stations WS01, WS02 and WS05-W is not shown as these stations have not been surveyed with high accuracy. As with the groundwater data, issues with barometric compensation have reduced confidence in data from October to December 2020. As such, this data is not included as part of this discussion.

Similar to groundwater levels, the water levels observed at surface water monitoring stations reflected seasonal patterns and responses to precipitation that were generally consistent with those recorded during the previous monitoring period. Water levels at most stations were observed to vary throughout the year, with a general increase beginning in October 2019, and declining in March/April 2020 with a decrease in precipitation events. WSO5-W is the exception to this pattern, as it exhibits a relatively dampened response to seasonal variations and precipitation events in comparison to other monitoring stations. This dampened response was inferred by Hatfield to be due to construction and culvert replacement around the Highway 91/72nd Avenue intersection, which may have resulted in obstructions within the ditch.

WS04 was destroyed and rebuilt during the 2019 monitoring program, but the data collected from August 2019 to October 2020 indicates that the surface water in the vicinity of the stations is similarly influenced by seasonal variation and individual precipitation events, it has been included in Group 2.

At WS01 and WS02, located North of the Project at the Gravel Ridge Pump Station and Silda Flood Box, groundwater levels response to seasonal variations and individual precipitation events is evident, though masked by daily water level fluctuations that are strongly tidally influenced. As such, the surface water variation at these stations is different from those installed further south in the Project area.

Group	Station	Minimum Surface Water Level		Maximum Surfa	Water Level Range between Minimum and	
		Date	Level (m)	Date	Level (m)	Maximum (m)
	WQ01	2019-09-07	0.771	2020-02-01	1.492	0.721
	WQ02	2020-07-24	0.366	2020-02-01	1.129	0.762
A	WQ03	2019-09-07	0.238	2020-02-01	1.026	0.788
	WS01	2020-10-06	0.148	2020-01-12	1.941	1.793
	WS03	2020-11-03	-0.024	2020-02-01	1.225	1.249
В	WS05-E	2019-08-19	-0.002	2020-02-01	0.611	0.613
	WS05-W	2020-09-22	0.435	2019-11-19	0.729	0.294
	WQ04	2019-09-07	0.545	2020-02-01	1.265	0.721
	WS02	2020-10-12	-0.049	2020-01-23	1.692	1.740
	WS04	2019-09-07	0.157	2020-02-01	1.281	1.124

Table GSurface Water Levels

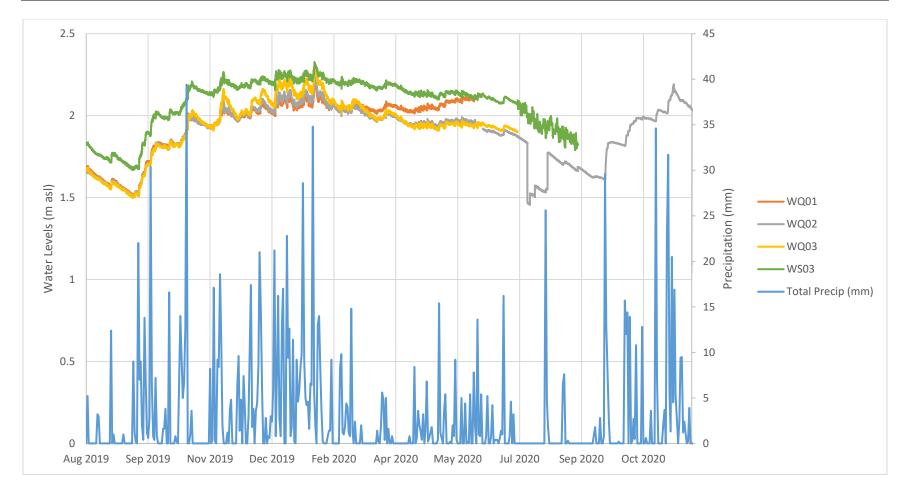


Figure K Surface Water Elevations (m asl) and Precipitation for Group A

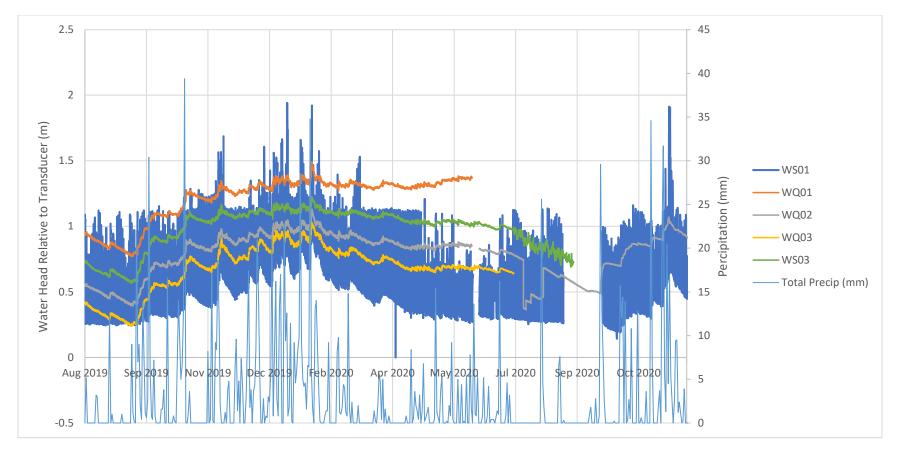


Figure L Water Head Relative to Transducer (m) and Precipitation for Group A

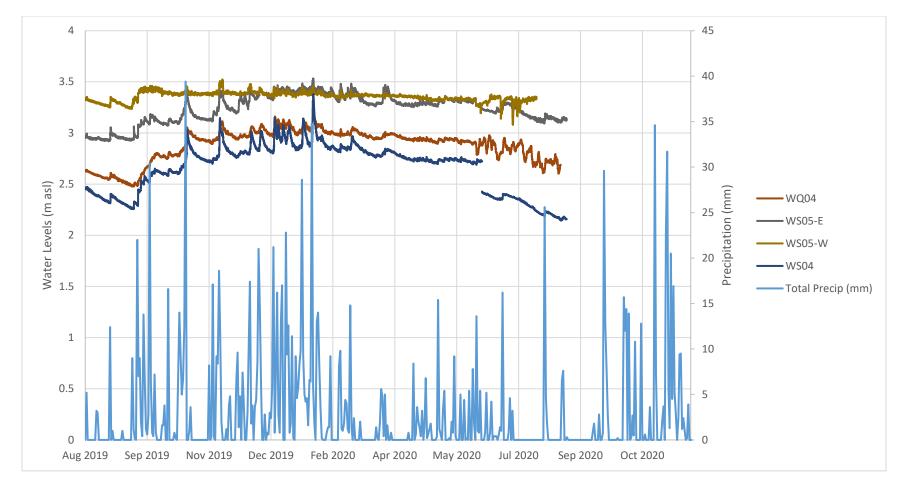


Figure M Surface Water Elevations (m asl) and Precipitation for Group B

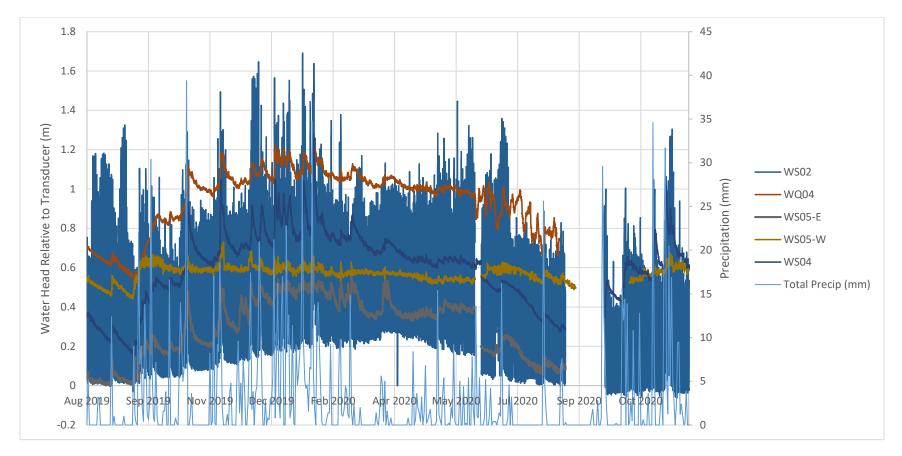


Figure N Water Head Relative to Transducer (m) and Precipitation for Group B

4.3 Bog Water Type

In September 2018, a bog water type survey was conducted using pH and total calcium concentrations based on the classifications outlined below. These data were used to delineate the spatial distribution of bog water (Type I), transitional water in the lagg zone (Type II) and mineralized water (Type III).

Three designated water types were used by Hatfield 2019 based on descriptions from Balfour and Banack, 2000. The three water types to describe the water chemistry in and around Burns Bog were based on observed calcium concentrations and pH values as follows:

- Type I (bog water): with pH values from 3.5 5.5 and calcium concentrations ranging from 0 3 mg/L.
- Type II (transitional water): with pH values from 4.5 6.0 and calcium concentrations ranging between 3 10 mg/L.
- Type III (non-bog water): with pH values from 5.0 8.0 and calcium concentrations > 10 mg/L.

Based on the 2018 survey, the general extent of the bog water types was identified as follows:

- Type III mineralized water was identified in the drainage network adjacent to the highways and interchanges, extending northward between Highway 91/C and the Fraser River.
- Type II transitional water was variable:
 - To the south of Highway 17 (SFPR), the transitional zone was narrow, approximately 15 m wide.
 - To south of the Highway 91 connector and the Highway 91/Nordel Interchange, the width of the lagg zone was 100 to 400 m.
 - To the west of the 91/72nd Avenue Interchange, the lagg zone narrowed (approximately 50 m wide).
 - To the east of Highway 91, the lagg zone covered most of the DNR area.
- Type I bog water was identified to the west of the lagg zone.

Field and analytical data from the September/October and December 2020 sampling events were used to classify each location into the three categories. The extent of the different types of water is shown on **Figure 2** for these two events. The coloured half circles surrounding each location represent each sampling event, so that seasonal variation of water type, if present, can be investigated.

Table H presents the bog water type by location for each sampling event conducted since October 2018. Note that bog water characteristics were not monitored or sampled by Hatfield in 2020.

Table HBog Water Type

Location	October 2018	January 2019	April 2019	July 2019	Sept./Oct. 2020	December 2020
		Hatfield	Baseline		Hemr	nera
GW04	I	I	I	I.	-	1
GW18-01	ш	II	П	Ш	Ш	ш
GW18-02	III	II	I	II	I	I
GW18-03	I	II	I	II	I	I
GW18-04	П	II	I	I	I	П
GW18-05	Ш	II	П	II	-	П
GW18-06	П	I	П	II	I	П
GW18-07	Ш	II	Ш	Ш	Ш	П
MW01	П	II	П	II	I	П
MW03	Ш	II	Ш	Ш	=	Ш
MW05	I	I	I	I	Ш	I
MW06-Q2	I	I	I	I	I.	I
MW06-Q3S	I	I	I	I	I.	I
MW08-Q4(1)	I	I	I	I	I.	I
MW08-Q4(2)	I	I	I	I	I.	I
MW08-Q4(3)	Ш	Ш	Ш	Ш	=	Ш
DNR01	Ш	Ш	Ш	Ш	=	Ш
DNR02	I	I	I	II	I	П
WQ01	П	I	I	II	I	I
WQ02	I	I	I	I	I.	I
WQ03	Ш	I	I	I	=	Ш
WQ04	Ш	II	П	Ш	Ш	Ш
WS03	Ш	I	I	II	Ш	I
WS04	Ш	II	П	Ш	I	Ш
WS05-E	-	Ш	-	-	Ш	Ш
WS05-W	Ш	-	-	-	I	Ш

The bog water types observed in fall 2018 were consistent with fall 2020, with the following exceptions:

- Decreased mineralization¹ at GW18-01, GW18-02, DNR01, WQ04, WS04 and WS05-W.
- Increased mineralization² at GW18-07, MW05 and DNR02.

¹ Decreased mineralization = Bog Water changed from Type III to II, Type III to I or Type II to I.

² Increased mineralization = Bog Water changed from Type I to II, Type I to III or Type II to III.

The bog water types observed in winter 2018 were consistent with winter 2020, with the following exceptions:

• Increased mineralization at GW18-01, GW18-06, MW03, DNR02 and WQ03.

During the comparison of the fall and winter 2020 events, some short-term increases in mineralization were observed in locations GW18-01, GW18-02, DNR01 and WS05-W, while short-term decreases in mineralization were observed in locations MW05, WQ01 and WS03.

Overall, no temporal trends in mineralization (i.e., increasing or decreasing) were identified over the course of the six sampling events available, and short-term increases in mineralization observed in the 2020 sampling events do not seem to be indicative of a longer-term trend. The general spatial extent of bog water types in 2020 was consistent with the 2018 survey.

4.4 Water Quality

Certificates of Analysis (CoAs) from BV are provided in **Appendix C**. The CoAs from the work preformed by Hatfield are included in the 2019 Baseline report (Hatfield, 2019). The groundwater and surface water quality results are provided in the following sections.

4.4.1 Groundwater Quality

In the 2019 baseline water quality report, groundwater analytical results were compared to the BC CSR freshwater aquatic life (AWf) standards. Due to the transition between baseline monitoring and annual monitoring, the 2020 Q1 (January) sampling event for groundwater, which was to include extensive analysis of groundwater was not completed in 2020. The groundwater samples analyzed in 2020 were only analyzed for specific conductivity, pH and calcium. These parameters do not have standards under the BC CSR AWf. **Table 1** (following the text) shows the groundwater analytical data including the data from the baseline monitoring report.

4.4.2 Surface Water Quality

Surface water quality analytical results were compared to the BC WQG freshwater guidelines as shown in **Table 2**. WS01 and WS02 were analyzed for the full suite of parameters in September 2019 and April 2020. The samples collected by Hemmera in September/October 2020 and December 2020 were analyzed for specific conductivity, pH and calcium. There are no guidelines for these parameters.

As discussed in the Bridging Period monitoring report (Hatfield, 2020), the following exceedances of the BC WQG AWf were noted:

- Dissolved aluminium at WS01 in April 2020
- Dissolved iron at WS01 in September 2019 and April 2020
- Total iron at both WS01 and WS02 in September 2019 and April 2020
- Total manganese at WS02 in September 2019
- Total zinc at WS01 and WS02 in September 2019

Despite exceeding the applicable guidelines, the concentrations were consistent with exceedances identified by Hatfield (2019) in the baseline monitoring program at both upstream and downstream locations.

In addition to re-screening the analytical data to confirm exceedances, the Biotic Ligand Model (BLM) (BC ENV, 2019) was completed to calculate the appropriate guidelines for copper. The BLM uses temperature, pH, hardness and dissolved organic carbon (DOC) to calculate an appropriate guideline for copper for each sample. The following exceedances of the calculated guidelines for dissolved copper were noted:

• WS01 and its duplicate sample in April 2020, with concentrations of 2.34 and 3.08 µg/L respectively. The guideline calculated for both samples was 0.2 µg/L.

The BLM was not used to calculate guidelines for copper for samples from the baseline monitoring period due to a lack of temperature data which is a required input for the model. Copper concentrations between baseline samples and bridging period samples (WS01 and WS02) were similar.

4.5 Quality Assurance and Quality Control

The relative percent differences were calculated between the duplicates and the parent samples (**Table 3**). Data quality objectives, as outlined in **Section 3.4**, were met with the following exceptions:

- Calcium for the DNR02 duplicate collected on December 12th, 2020, with an RPD value of 26.02%
- Copper for WS02 duplicate collected on September 13th, 2019, with an RPD value of 24.48%
- Chemical Oxygen Demand for WS01 duplicate collected on April 11th, 2020, with an RPD value of 97.21%

The difference in calcium concentration between the parent sample and duplicate at DNR02 did not impact analysis of the bog water type. Both the parent and duplicate samples for WS02 exceed the BCWQG FW for copper. The difference between the parent and duplicate sample for chemical oxygen demand for WS01 may be impacted by difference in turbidity between the samples, or as a result of stirring up sediment and organic matter during the sampling process. While there are no guidelines for chemical oxygen demand, the difference, however, may indicate an issue with sampling protocol/techniques or lab analysis. Despite the RPD values for these three duplicate parameters being greater than the data quality objectives, they do not effect the validity of the samples or the ability to compare the data to guidelines, therefore the data from the samples collected is considered to be valid.

5.0 SUMMARY AND CONCLUSIONS

Groundwater and surface monitoring was completed during four field events (September 2019, April 2020, September/October 2020, and December 2020). During these events, samples were collected, and water level data was downloaded from Leveloggers deployed in the field for continuous measurements.

Water quality samples were collected for WS01 and WS02 and were compared to the BC WQG AWf guidelines and exceedances of dissolved aluminum, total and dissolved iron, dissolved copper, total manganese, and total zinc were identified. The constituents that exceed water quality guidelines are common in the area and, were previously identified in upstream and downstream locations by Hatfield (2019).

Bog water types were classified in 2020 and compared to the existing data. The results indicate that:

- A short-term increase (over the fall to winter 2020 events) in mineralization was observed in locations GW18-01, GW18-02, DNR01 and WS05-W.
- A short-term decrease (over the fall to winter 2020 events) in mineralization was observed in locations MW05, WQ01 and WS03.
- The bog water types in fall 2018 were generally consistent with fall 2020.
- The bog water types in winter 2018 were generally consistent with winter 2020.
- The general spatial extent of bog water types in 2020 was consistent with the 2018 survey.

Considered in the context of previously collected monitoring data, short-term trends in increases in mineralization at some sites during the 2020 sampling events, are not thought to reflect a long-term temporal trend of increasing mineralization. Rather, such temporary increases, which have been observed during previous sampling events and appear to occur on an annual basis during winter months, appear to be reflective of rainy periods. Where similar changes were noted in previous data, the increases were temporary and water chemistry reverted back to the conditions seen previously later in the calendar year. This dynamic has been noted in areas with Type II water, which has the potential to change between Type I, Type II and Type III water, as water levels within and around the bog fluctuate due to seasons patterns of precipitation.

6.0 **RECOMMENDATIONS**

Based on the Hatfield 2019 baseline water quality report, the recommended future monitoring plans are outlined in **Table I** and **Table J**. By following these recommended sampling plans, including the installation of continuous monitoring equipment, small impacts over time due to the Project could be detected. Locations that do not currently have continuous monitoring equipment are marked in bold.

The following is recommended for the 2021 sampling program, and is currently underway:

- Sampling and monitoring should continue to be conducted quarterly, and analysis should be completed based on the sampling analytical schedule outlined in **Sections 3.2.2.1** and **3.2.2.2**.
- Levelogger data should be downloaded during each quarterly sampling event.
- Field parameters including pH, DO (mg/L), specific conductivity, temperature, oxidation reduction potential (ORP) and turbidity should be collected at each location.
- The depth to water and depth to bottom should be measured at each monitoring well.
- Leveloggers should be set to record data every 60 minutes (on the hour). The Barologger should be set to record data every 60 minutes (on the hour) to be in sync with the Leveloggers.
- Aircraft wire used for installation of Leveloggers should be replaced at all locations and all cable lengths remeasured.

In addition to the programs which are already underway, the following is also recommended:

- Missing Leveloggers and Sondes should be replaced.
- The lifetime of the batteries in the Sondes should be monitored.
- Groundwater stations GW18-04 and GW18-07 along with surface water stations WS01, WS02 and WS05-W should be re-surveyed for elevation.

Well ID	Loca	ation	Sampling Planned	Levelogger
Weil ID	Easting	Northing	Sampling Flanned	Expected
MW06-Q2	502975	5443744	Y	Y
MW06-Q3S	502976	5443447	Y	Y
MW08-Q4(1)	502988	5443884	Y	Y
MW08-Q4(2)	502988	5443884	Ν	Ν
MW08-Q4(3)	502987	5443882	Y	Y
MW01	505458	5442528	Y	Y
MW03	505295	5442451	Y	Y
MW05	505026	5442378	Y	Y
GW04	503481	5443533	Y	Y
GW18-01	503750	5443756	Y	Y
GW18-02	503624	5443641	Y	Y

Table I Groundwater Sampling/Monitoring Plan

Well ID	Loca	ation	Sampling Planned	Levelogger
Vvenito	Easting	Northing	Sampling Planned	Expected
GW18-03	504369	5443395	Y	Y
GW18-04	504182	5443272	Y	Y
GW18-05	503941	5443133	Y	Y
GW18-06	504864	5443303	Y	Y
GW18-07	504913	5443838	Y	Y

Table J Surface Water Sampling/Monitoring Plan

Station ID	Loc	cation	Sampling	Lovelager	Water Quality
Station ID	Easting	Northing	Planned	Levelogger	Sonde
WQ01	503123	5443856	Y	Y	Y
WQ02	503123	5443768	Y	Y	Y
WQ03	503858	5443787	Y	Y	Y
WQ04	504723	5443105	Y	Y	Y
WS01	503128	544446	Y	Y	Ν
WS02	503718	5444431	Y	Y	Ν
WS03	503856	5443556	-	Y	Ν
WS04	504842	5443013	Y	Y	Ν
WS05-E	505207	5442448	Y	Y	Ν
WS05-W	505136	5442409	Y	Y	Ν
DNR01	504885	5443902	Y	-	-
DNR02	504775	5443185	Y	-	-

7.0 STATEMENT OF LIMITATIONS

This Work was performed in accordance with Contract 089-CS-0001 between Hemmera Envirochem Inc. (Hemmera), a wholly owned subsidiary of Ausenco Engineering Canada Inc. (Ausenco), and Ministry of Transportation and Infrastructure (Client), dated July 6, 2020, amended on November 2, 2020 (Contract). This Report has been prepared by Hemmera, based on fieldwork conducted by Hemmera, for sole benefit and use by Ministry of Transportation and Infrastructure. In performing this Work, Hemmera has relied in good faith on information provided by others, and has assumed that the information provided by those individuals is both complete and accurate. This Work was performed to current industry standard practice for similar environmental work, within the relevant jurisdiction and same locale. The findings presented herein should be considered within the context of the scope of work and project terms of reference; further, the findings are time sensitive and are considered valid only at the time the Report was produced. The conclusions and recommendations contained in this Report are based upon the applicable guidelines, regulations, and legislation existing at the time the Report was produced; any changes in the regulatory regime may alter the conclusions and/or recommendations.

8.0 CLOSURE

We sincerely appreciate the opportunity to have assisted you with this project and if there are any questions, please do not hesitate to contact the undersigned by phone at 604.669.0424.

Report prepared by: Hemmera Envirochem Inc.

Emma Zapf-Gilje, M.Sc., A.Ag. Environmental Scientist

Report reviewed by: Hemmera Envirochem Inc.

Seth Kingsbury, B.Sc., P.Ag. Senior Project Manager

Report prepared by: Hemmera Envirochem Inc.

Evelyn Playle, B.A.Sc., P.Eng. Environmental Engineer

Report reviewed by: Hemmera Envirochem Inc.

Malcolm Smith, M.Sc., R.P.Bio. VP Environmental Planning and Ecology

9.0 REFERENCES

- British Columbia Ministry of Environment and Climate Change Strategy, 2013. British Columbia Field Sampling Manual: 2013 – For Continuous Monitoring and Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment and Biological Samples. Last Updated March 2004.
- British Columbia Ministry of Environment and Climate Change Strategy, 2015. British Columbia Environmental Laboratory Manual: 2015. Last Updated February 2016.
- British Columbia Ministry of Environment and Climate Change Strategy. 2017. Working Water Quality Guidelines for British Columbia (2017).
- British Columbia Ministry of Environment and Climate Change Strategy. 2019. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture, Summary Report, March 2019.
- British Columbia Ministry of Environment and Climate Change Strategy. 2019. Copper Water Quality Guideline for the Protection of Freshwater Aquatic Life – User's Guide. Water Quality Guideline Series, WQG-03-2. Prov. B.C., Victoria B.C.
- British Columbia, 2019. Environmental Management Act, 1996, Contaminated Sites Regulation, B.C. Reg. 375/96. latest amendment B.C. Reg. 253/2016, January 24, 2019.
- Balfour, J. Banack, L. 2002. Burns Bog Ecosystem Review: Water Chemistry. Report prepared for Delta Fraser Properties partnership and the Environmental Assessment Office .
- Hatfield. 2019. Highway 91/17 & Deltaport Way Upgrade Project: Groundwater and Surface Water Baseline. December 2019.
- Hatfield. 2020. Highway 91/17 & Deltaport Way Upgrade Project: Bridging Period Groundwater and Surface Water Baseline Monitoring. August 2020.

TABLES

- Table 1
 Groundwater Analytical Results
- Table 2 Surface Water Analytical Results
- Table 3
 Relative Percent Difference (RPD) Calculations

		г	Location	G	W04	1	GW18-01		1	GW18-02			CW/	18-03			GW18-04		GW/	18-05		GW18-06	
		-	Sample ID			GW18-01	GW18-01	GW1801	GW18-02		GW18-02	GW18-03			GW18-03	GW18-04		GW1804		GW 18 05	GW18-06	GW18-06	GW18 06
		ŀ	Sample Date				01/10/2020					15/01/2019			08/12/2020								02/12/2020
		ľ	BCCSR 3.2 - AWf		1			1			10.00000000			1	1000 12020	1.0.0.0		100000000000000000000000000000000000000	1.0.0.0		1	1	10
Parameter	Units	EQL																					
Field	•																						
DO (Field)	mg/L			-	-	-	4.94	9.8	-	-	0.51	-	4.9	0.02	3.11	-	1.05	2.41	-	2.2	-	2.91	-
Field ORP (mV)	mV			-	171.4	-	105	-20.2	-	74	116.5	-	164.2	145.5	103.6	-	158.3	27.3	-	27.3	-	127.9	60.1
Field																							
pH (Field)	pH Units			5.56	4.47	5.8	6.22	6.77	6.17	5.89	5.67	6.17	5.38	5.56	5.42	6.41	5.56	5.27	6.58	5.75	6.22	5.54	6.2
EC (field)	µS/cm			32	54	150	294.5	353.3	126	123.6	110.5	154	148.5	77.9	123.1	113	183.3	58.7	167	58.7	94	68.5	99
Temp (Field)	°C			-	5.3	-	13.6	7.2	-	8.9	15.5	-	12.1	14.7	7.4	-	9.8	7.9	-	8.1	-	17.8	8.3
Field	1				1			1	1			1	1		1	1	1	1	1		1		
Turbidity	NTU			-	130	748	592	-	-	-	95.6	-	203	242	-	-	43.8	169	-	185	-	96.6	-
					T	45.0	r	1		r	T	00.5	1	T	1			1	00.7			T	
Alkalinity (total as CaCO3)	mg/L			<1	-	15.8	-	-	26	-	-	20.5	-	-	-	11.4	-	-	26.7	-	3.6	-	-
Ammonia (as N)	mg/L		Varies - see Notes	0.247	-	0.144	-	-	2.97	-	-	0.188	-	-	-	2.53	-	-	4.76	-	1.37	-	-
Bromide	mg/L		1500	<0.05 3.7	-	<0.05 8.2	-	-	<0.05 4	-	-	<0.05 2	-	-	-	<0.05 12.8	-	-	<0.05 8.2	-	<0.05 5.7	-	-
Chloride Electrical Conductivity (lab)	mg/L µS/cm	2	1000	<u> </u>	42	64.9	- 79	- 110	68.6	- 77	- 51	90.3	- 110	- 35	- 110	87.7	- 110	- 61	8.2	- 70	43.1	- 66	- 58
Fluoride	mg/L	-	Varies - see Notes	<0.02	42	0.09	-	-	<0.02	-	-	0.07	-		-	<0.02	-	-	0.05	- 10	0.03		-
Hardness as CaCO3	mg/L		Valies - 366 NOI63	5.9	- 11.2	24.4	-	116	13.2	19.2	-	29.4	-	-	-	14.4	-	-	22.3	-	13.1	-	21.6
Nitrate (as N)	mg/L	<u>⊦</u> ∣	400	<0.005	-	0.012	-	-	0.012	-	-	0.008	-	-	-	0.013	-	-	0.012	-	0.009	-	-
Nitrite (as N)	mg/L		Varies - see Notes	<0.000	-	< 0.012	-	-	< 0.012	-	-	< 0.000	-	-	-	< 0.001	-	-	< 0.0012	-	0.002	-	-
Ortho Phosphate (Filtered)	µg/L			4	-	239	-	-	6	-	-	158	-	-	-	33	-	-	158	-	23	-	_
pH (Lab)	pH Units			4.12	5.14	6.37	6.53	6.24	6.76	6.06	5.82	5.84	6.18	5.22	6.11	5.64	5.72	5.54	6.48	5.79	5.6	4.77	5.49
Phosphorus	µg/L			80	-	760	-	-	90	-	-	250	-	-	-	110	-	-	630	-	120	-	-
Phosphorus (Filtered)	µg/L			10	-	364	-	-	18	-	-	212	-	-	-	78	-	-	243	-	128	-	-
Sulfate as SO4 - turbidimetric	µg/L			<300	-	<300	-	-	<300	-	-	<300	-	-	-	<300	-	-	<300	-	320	-	-
Total Dissolved Solids	mg/L			103	-	259	-	-	169	-	-	218	-	-	-	150	-	-	146	-	142	-	-
Total Kjeldahl Nitrogen	µg/L			3180	-	3300	-	-	3980	-	-	3510	-	-	-	4250	-	-	7240	-	3120	-	-
Organics	_					-			-				-	-	<u>.</u>				-		_		
Total Organic Carbon	µg/L			79,200	-	101,000	-	-	32,300	-	-	65,800	-	-	-	58,600	-	-	100,000	-	59,800	-	-
Metals											1	1		1		1	1						
Aluminium	µg/L			468	-	5590	-	-	355	-	-	1090	-	-	-	1180	-	-	4630	-	1320	-	-
Aluminium (Filtered)	µg/L			202	-	873	-	-	182	-	-	748	-	-	-	874	-	-	431	-	2930	-	-
Antimony	µg/L		90	0.2	-	0.4	-	-	0.1	-	-	0.4	-	-	-	0.2	-	-	0.3	-	0.1	-	-
Antimony (Filtered)	µg/L		90	0.1	-	0.2	-	-	<0.1	-	-	0.3	-	-	-	0.1	-	-	<0.1	-	0.2	-	-
Arsenic Arsenic (Filtered)	µg/L		50 50	1 0.8	-	2.7 1.3	-	-	0.6	-	-	4.7	-	-	-	1.8	-	-	2.3	-	2.1	-	-
Arsenic (Filtered) Barium	μg/L μg/L		10000	4.7	-	59.1	-	-	17.7	-	-	4 25.1	-	-	-	1.4 19.5	-	-	0.8	-	1.9	-	-
Barium (Filtered)	µg/L	1	10000	3.7		19.1	-	-	16	-	-	23.1	-	-	-	19.3	-	-	16.3	-	44.1	-	-
Beryllium	µg/L		1.5	<0.1		0.2	-	-	<0.1	-	-	<0.1	-	-	-	<0.1	-	-	<0.1	-	<0.1	-	-
Beryllium (Filtered)	µg/L		1.5	<0.1	-	<0.1	-	-	<0.1	-	-	<0.1	-	-	-	<0.1	-	-	<0.1	-	<0.1	-	_
Bismuth	µg/L		1.0	< 0.05	-	0.07	-	-	< 0.05	-	-	0.08	-	-	-	< 0.05	-	-	0.05	-	< 0.05	-	-
Bismuth (Filtered)	µg/L			< 0.05	-	<0.05	-	-	< 0.05	-	-	0.05	-	-	-	< 0.05	-	-	<0.05	-	< 0.05	-	-
Boron	μg/L		12000	<10	-	<10	-	-	<10	-	-	<10	-	-	-	<10	-	-	<10	-	<10	-	-
Boron (Filtered)	µg/L		12000	<10	-	<10	-	-	<10	-	-	<10	-	-	-	<10	-	-	<10	-	<10	-	-
Cadmium	µg/L		Varies - see Notes	0.013	-	0.068	-	-	0.027	-	-	0.068	-	-	-	0.031	-	-	0.084	-	0.015	-	-
Cadmium (Filtered)	µg/L		Varies - see Notes	<0.005	-	0.019	-	-	<0.005	-	-	0.038	-	-	-	0.023	-	-	<0.005	-	0.044	-	-
Calcium	mg/L	0		1.44	2.39	6.53	7.72	15.9	3.21	3.96	2.46	4.28	4.45	2.14	5.22	3.07	3.51	3.33	5.75	3.27	2.3	2.9	3.86
Calcium (Filtered)	mg/L			1.17	-	5.5	-	-	2.89	-	-	4.57	-	-	-	2.76	-	-	5.33	-	2.83	-	-
Cesium	µg/L			0.03	-	0.33	-	-	0.01	-	-	0.03	-	-	-	0.03	-	-	0.26	-	0.06	-	-
Cesium (Filtered)	µg/L			<0.01	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	-	0.01	-	-	<0.01	-	0.14	-	-
Chromium	µg/L		10	1.2	-	13.8	-	-	2.2	-	-	5.1	-	-	-	2.7	-	-	10.7	-	3.4	-	-
Chromium (Filtered)	µg/L	\vdash	10	0.6	-	3.9	-	-	1	-	-	3.9	-	-	-	1.5	-	-	1.7	-	6.4	-	-
Cobalt	µg/L		40	0.2	-	4.6	-	-	1.7	-	-	2.2	-	-	-	1	-	-	2.8	-	1	-	-
Cobalt (Filtered)	µg/L	\vdash	40	0.1	-	2.5	-	-	1.4	-	-	1.9	-	-	-	0.7	-	-	0.8	-	1.9	-	-
Copper	µg/L	+	Varies - see Notes	2.9	-	14.5	-	-	2	-	-	12.8	-	-	-	1.7	-	-	11.2	-	2.1	-	-
Copper (Filtered)	µg/L	+	Varies - see Notes	1.4	-	5.9	-	-	0.3	-	-	9.1	-	-	-	1.9	-	-	2.1	-	7.2	-	-
Cyanide	µg/L		50	<10	-	<10	-	-	<10	-	-	<10	-	-	-	<10	-	-	<10	-	<10	-	-
Iron Iron (Filtered)	mg/L	┥┥		1.92	-	47.1	-	-	50.3	-	-	8.99	-	-	-	9.57	-	-	35.8	-	7.92	-	-
Iron (Filtered)	mg/L	┨╴┨		3.31	-	31.9	-	-	41.8	-	-	9.76	-	-	-	8.06	-	-	23.1	-	12.2	-	-
Lead Lead (Filtered)	μg/L μg/L		Varies - see Notes Varies - see Notes	1.94 0.89	-	2.75 0.55	-	-	0.21	-	-	5.01 3.3	-	-	-	0.24	-	-	2.6	-	0.68	-	-
	IHA/L		Valles - see Noles	0.09	-	0.00		-	~0.05	-	-	0.0	-	-	-	0.17	-	-	0.21	-	2.21	-	-

			Laadian	r	014/4.0.07		1	MALOA		1		N/02			N OF	1		
			Location Sample ID		GW18-07 GW18-07	GW18 07	MW01	MW01 MW-01	MW01	MW03		V03 MW03	MW20-200		W-05 MW05	MW06-Q2	MW06-Q2 MW06-Q2	MW06-Q2
			Sample ID Sample Date				17/01/2019		08/12/2020	17/01/2019	02/10/2020					16/01/2019		
			BCCSR 3.2 - AWf	21/01/2019	14/10/2020	02/12/2020	17/01/2019	14/10/2020	00/12/2020	17/01/2019	02/10/2020	00/12/2020	00/12/2020	14/10/2020	02/12/2020	10/01/2019	02/10/2020	03/12/2020
Parameter	Units	EQL	DCCOIL 3.2 - AWI															
Field	Units	LQL																
	mg/L			<u> </u>	3.01	-	-	2.09	1.58	-	11.55	2.64	2.64	1.78	-	-	3.64	2.49
Field ORP (mV)	my/L mV				148.3	67.1	_	124.1	70.4	-	126.7	83.2	83.2	120	92.5		80.5	210.5
Field					110.0	0111	I	1 12111	1 10.1		120.1	00.2	00.2	120	02.0		00.0	210.0
pH (Field)	pH Units			6.05	5.72	5.9	5.93	5.84	5.86	5.9	6.47	5.98	5.98	5.18	5.95	4.56	5.96	4.59
EC (field)	µS/cm			207	75.9	150.1	161	186	175.2	116	333	215.3	215.3	237.7	63.2	24	80.4	39.1
Temp (Field)	°C			-	13.3	8.9	-	12	9	-	15.7	6.9	6.9	12.7	9.7	-	14.2	7.3
Field							I		1 -	1		1 0.0					1	
	NTU			37.2	56.5	-	111	19	24.8	105	23.6	24.3	24.3	30.3	65	68.3	40	102
Inorganics							1		1 -	1			1		1	1	1	1
	mg/L			43.5	-	-	57.7	-	-	24	-	-	-	-	-	<1	-	-
Ammonia (as N)	mg/L		Varies - see Notes	3.95	-	-	3.18	-	-	0.556	-	-	-	-	-	0.508	-	-
Bromide	mg/L			< 0.05	-	-	0.17	-	-	< 0.05	-	-	-	-	-	< 0.05	-	-
Chloride	mg/L		1500	9.3	-	-	35.4	-	-	19.6	-	-	-	-	-	2.6	-	-
Electrical Conductivity (lab)	μS/cm	2		135	120	120	234	190	180	124	330	230	230	310	34	36.6	33	37
Fluoride	mg/L		Varies - see Notes	<0.02	-	-	0.03	-	-	0.03	-	-	-	-	-	< 0.03	-	-
Hardness as CaCO3	mg/L	1		37	-	34.5	23.5	-	-	32.4	-	-	-	-	10	2.6	-	3.46
Nitrate (as N)	mg/L		400	<0.005	-	-	<0.005	-	-	0.006	-	-	-	-	-	< 0.005	-	-
Nitrite (as N)	mg/L		Varies - see Notes	<0.001	-	-	<0.001	-	-	0.003	-	-	-	-	-	<0.001	-	-
Ortho Phosphate (Filtered)	µg/L			121	-	-	107	-	-	8	-	-	-	-	-	<1	-	-
pH (Lab)	pH Units			6.77	7.48	6.49	6.68	6.82	6.71	6.62	6.95	6.85	6.75	7.02	5.59	4.48	5.87	4.71
Phosphorus	µg/L			200	-	-	150	-	-	70	-	-	-	-	-	40	-	-
Phosphorus (Filtered)	µg/L			187	-	-	137	-	-	42	-	-	-	-	-	19	-	-
Sulfate as SO4 - turbidimetric	µg/L			<300	-	-	<300	-	-	3930	-	-	-	-	-	<300	-	-
Total Dissolved Solids	mg/L			217	-	-	232	-	-	163	-	-	-	-	-	72	-	-
Total Kjeldahl Nitrogen	µg/L			6870	-	-	4950	-	-	2370	-	-	-	-	-	2490	-	-
Organics																		
Total Organic Carbon	µg/L			106,000	-	-	55,800	-	-	40,100	-	-	-	-	-	42,100	-	-
Metals							•	•	-						_			
Aluminium	µg/L			3540	-	-	635	-	-	877	-	-	-	-	-	306	-	-
Aluminium (Filtered)	µg/L			169	-	-	531	-	-	641	-	-	-	-	-	251	-	-
Antimony	µg/L		90	0.2	-	-	<0.1	-	-	0.1	-	-	-	-	-	<0.1	-	-
Antimony (Filtered)	µg/L		90	<0.1	-	-	<0.1	-	-	<0.1	-	-	-	-	-	<0.1	-	-
Arsenic	µg/L		50	1.3	-	-	0.9	-	-	1.6	-	-	-	-	-	0.9	-	-
Arsenic (Filtered)	µg/L		50	1	-	-	0.8	-	-	1.2	-	-	-	-	-	0.8	-	-
Barium	µg/L		10000	13.5	-	-	20.9	-	-	20.6	-	-	-	-	-	4	-	-
Barium (Filtered)	µg/L		10000	10	-	-	19	-	-	20	-	-	-	-	-	4.1	-	-
Beryllium	µg/L		1.5	<0.1	-	-	<0.1	-	-	<0.1	-	-	-	-	-	<0.1	-	-
Beryllium (Filtered)	µg/L		1.5	<0.1	-	-	<0.1	-	-	<0.1	-	-	-	-	-	< 0.1	-	-
Bismuth Bismuth (Filtered)	µg/L			<0.05	-	-	< 0.05	-	-	<0.05	-	-	-	-	-	< 0.05	-	-
Bismuth (Filtered)	µg/L		12000	< 0.05	-	-	<0.05	-	-	<0.05	-	-	-	-	-	< 0.05	-	-
Boron Boron (Filtered)	µg/L		12000 12000	<10	-	-	30	-		<10		-	-	-	-	<10	-	-
Cadmium	µg/L		Varies - see Notes	<10 0.034	-	-	30 0.009	-	-	<10	-	-	-	-	-	<10 0.011	-	-
Cadmium Cadmium (Filtered)	μg/L μg/L		Varies - see Notes	0.034	-	-	0.009	-	-	0.024	-	-	-	-	-	0.011	-	-
Cadmium (Filtered) Calcium		0	valles - see notes	8.13	- 12.8	- 7.92	5.07	- 5.33	- 5.67	8.07	- 15.9	- 12.3	- 11.7	- 17.4	- 1.31	0.008	- 1.01	0.577
Calcium Calcium (Filtered)	mg/L mg/L	J		7.55	- 12.8	- 1.92	4.72	- 5.33	5.07	8.07	- 15.9	12.3	- 11.7	- 17.4	-	0.4	-	0.577
Cesium	µg/L			0.03	-	-	<0.01			<0.01						0.38	-	
Cesium (Filtered)	µg/L µg/L			0.03	-	-	< 0.01	-		<0.01	-	-	-	-	-	0.02	-	-
Cesium (Filtered) Chromium	µg/L µg/L		10	2.2	-	-	1.1	-		1.3	-	-	-	-	-	1.3	-	-
Chromium (Filtered)	µg/L µg/L		10	1.6	-	-	0.9	-		0.8	-	-	-	-	-	0.6	-	-
Chiomium (Filtered)	µg/L		40	0.4	-	-	0.9	-	-	0.8	-	-	-	-	-	0.0	-	-
Cobalt (Filtered)	µg/L		40	0.4	-	-	0.6	-		0.9	-	-	-	-	-	0.2	-	-
Copper	µg/L		Varies - see Notes	4	-	-	1.3			4	-	-	-	-	-	7.3	-	-
Copper (Filtered)	µg/L		Varies - see Notes	2.2	-	-	0.7	-	-	1.7	-	-	-	-	-	3.8	-	-
Cyanide	µg/L		50	<10	-	-	<10			<10	-	-	-	-	-	<10	-	-
Iron	mg/L			6.54	-	-	1.83	-		1.13	-	-	-	-	-	4.43	-	-
Iron (Filtered)	mg/L			5.52	-	-	1.5	-		0.98	-	-	-	-	-	3.44	-	-
												+						
Lead	µg/L		Varies - see Notes	1.73	-	-	0.28			0.85	-	-	-			0.47	-	-

			Location	r	MW0	6-Q3S			MW08-Q4 (1)		MW08-Q4(2)			MW08	3-Q4(3)	
				MW05-Q3S	MW05-Q3S		MW06-Q3S	MW08-Q4 (1)			MW08-Q4(2)	MW08-Q4 (2)		MW08-Q4(3			MW08-Q4(3
			Sample Date						16/01/2019	04/12/2020	16/01/2019	21/09/2020	04/12/2020	16/01/2019	21/09/2020		04/12/2020
			BCCSR 3.2 - AWf		•	•					•	•	•	•	•	•	1
Parameter	Units	EQL															
Field																	
DO (Field)	mg/L			-	-	4.7	-	4.59	-	-	-	3.01	5.8	-	1.31	1.31	1.67
Field ORP (mV)	mV			-	-	51	209.5	311.5	-	283.4	-	283.9	232.4	-	99	99	164
Field																	
pH (Field)	pH Units			6.47	5.19	6.88	4.67	3.32	3.46	3.63	4.7	3.97	4.62	6.61	5.86	5.86	6.74
EC (field)	µS/cm			134	41	279.6	39.4	72.4	55	119.6	34	54.5	61.5	182	217	217	169.9
Temp (Field)	°C			-	-	16	8.6	15.9	-	9.8	-	14.4	10.5	-	12.9	12.9	11
Field					<u>.</u>	-			-	-	-	-	-	-			
Turbidity	NTU			303	39.7	12.9	104	216	112	24.8	233	40.4	14.8	20.8	-	54.3	134
norganics					1	1			-	-		-	1	1	-1		
Alkalinity (total as CaCO3)	mg/L			6.2	3.5	-	-	-	<1	-	4.4	-	-	111	-	-	-
Ammonia (as N)	mg/L		Varies - see Notes	0.592	0.761	-	-	-	0.348	-	1.02	-	-	0.792	-	-	-
Bromide	mg/L			<0.05	<0.05	-	-	-	< 0.05	-	< 0.05	-	-	<0.05	-	-	-
Chloride	mg/L		1500	3.4	4.9	-	-	-	3.2	-	3.7	-	-	2.6	-	-	-
Electrical Conductivity (lab)	µS/cm	2		34.4	46.6	29	37	95	74.1	100	41.4	47	58	206	170	180	170
Fluoride	mg/L		Varies - see Notes	< 0.03	0.02	-	-	-	0.03	-	0.05	-	-	0.08	-	-	-
Hardness as CaCO3	mg/L	1	400	4.6	9.4	-	6.64	-	2.7	-	6.3	-	-	88.4	-	-	-
Nitrate (as N)	mg/L		400	< 0.005	0.009	-	-	-	< 0.005	-	< 0.005	-	-	< 0.005	-	-	-
Nitrite (as N)	mg/L		Varies - see Notes	< 0.001	< 0.001	-	-	-	< 0.001	-	< 0.001	-	-	< 0.001	-	-	-
Ortho Phosphate (Filtered)	µg/L			<1 5.77	3 5.09	- 5.02	-	-	14	-	42	-	-	74	-	- 7.15	- 7.52
pH (Lab)	pH Units						4.96	3.92	5.77	3.74	5.4	5.2	4.58		6.98	7.15	7.52
Phosphorus	µg/L			130	40	-	-	-	70	-	-	-	-	120	-	-	-
Phosphorus (Filtered) Sulfate as SO4 - turbidimetric	µg/L			19 <300	32 <300	-	-	-	22 <300	-	69 <300	-	-	82 <300	-	-	-
Total Dissolved Solids	µg/L			<300 87	<300	-	-	-	<300	-	<300	-	-	214	-	-	-
Total Kjeldahl Nitrogen	mg/L µg/L			3430	2160	-	-	-	2730	-	3940	-	-	1940	-	-	-
	µg/∟			3430	2100	-	-	-	2730	-	3940	-	-	1940	-	-	
Organics Total Organic Carbon	µg/L			60,400	67,100	-		T	65,100	-	47,500	Т	Т	14,300	1	-	+
Metals	µg/∟			00,400	07,100	-	-	-	05,100	-	47,500	-	-	14,300	-	-	
Aluminium	µg/L			2950	201	-	-	-	389	-	1900	-	-	338	-	-	-
Aluminium (Filtered)	µg/L			429	177	-	-	-	238	-	785	-	-	14	-	-	-
Antimony	µg/L		90	2	0.2	_	_	-	0.3		0.1			<0.1		-	-
Antimony (Filtered)	µg/L		90	<0.1	<0.1	-	-	-	0.1	-	<0.1	-	-	<0.1	-	-	-
Arsenic	µg/L		50	1	1.4	-	-	-	1.7	-	0.7	-	-	0.9	-	-	-
Arsenic (Filtered)	µg/L		50	0.5	1.2	-	-	-	1.4	-	0.5	-	-	0.7	-	-	-
Barium	µg/L		10000	23	2.7	-	-	-	3.2	-	26.8	-	-	36.3	-	-	-
Barium (Filtered)	µg/L		10000	9.7	2.3	-	-	-	1.4	-	19.4	-	-	33.8	-	-	-
Beryllium	µg/L		1.5	<0.1	<0.1	-	-	-	<0.1	-	<0.1	-	-	<0.1	-	-	-
Beryllium (Filtered)	µg/L		1.5	<0.1	<0.1	-	-	-	<0.1	-	<0.1	-	-	<0.1	-	-	-
Bismuth	µg/L			< 0.05	< 0.05	-	-	-	< 0.05	-	< 0.05	-	-	< 0.05	-	-	-
Bismuth (Filtered)	µg/L			<0.05	< 0.05	-	-	-	< 0.05	-	<0.05	-	-	< 0.05	-	-	-
Boron	µg/L		12000	<10	<10	-	-	-	<10	-	<10	-	-	<10	-	-	-
Boron (Filtered)	µg/L		12000	<10	<10	-	-	-	<10	-	<10	-	-	<10	-	-	-
Cadmium	µg/L		Varies - see Notes	0.082	0.034	-	-	-	0.015	-	0.026	-	-	0.014	-	-	-
Cadmium (Filtered)	µg/L		Varies - see Notes	0.01	0.023	-	-	-	0.011	-	0.009	-	-	<0.005	-	-	-
Calcium	mg/L	0		1.19	1.23	0.515	1.24	1.51	0.64	1.1	1.47	1.52	1.7	19.4	15.9	15.5	15.2
Calcium (Filtered)	mg/L			0.89	1.27	-	-	-	0.53	-	1.35	-	-	20	-	-	-
Cesium	µg/L			0.22	0.02	-	-	-	0.03	-	0.1	-	-	0.03	-	-	-
Cesium (Filtered)	µg/L			0.02	0.02	-	-	-	0.02	-	0.01	-	-	<0.01	-	-	-
Chromium	µg/L		10	9	1.3	-	-	-	0.9	-	2.6	-	-	9.2	-	-	-
Chromium (Filtered)	µg/L		10	1.4	0.5	-	-	-	0.5	-	0.6	-	-	7	-	-	-
Cobalt	µg/L		40	1.4	0.4	-	-	-	0.2	-	0.8	-	-	0.3	-	-	-
Cobalt (Filtered)	µg/L		40	0.3	0.3	-	-	-	0.1	-	0.4	-	-	<0.1	-	-	-
Copper	µg/L		Varies - see Notes	12.4	2.1	-	-	-	3.4	-	2.3	-	-	1.6	-	-	-
Copper (Filtered)	µg/L		Varies - see Notes	1.5	1.5	-	-	-	2.5	-	1.3	-	-	0.3	-	-	-
Cyanide	µg/L		50	<10	<10	-	-	-	<10	-	<10	-	-	<10	-	-	-
Iron	mg/L			29.1	13.5	-	-	-	0.37	-	2.31	-	-	16	-	-	-
Iron (Filtered)	mg/L			9.23	10.8	-	-	-	0.022	-	1.36	-	-	14.6	-	-	-
Lead	µg/L		Varies - see Notes	1.46	0.42	-	-	-	2.9	-	1.19	-	-	0.25	-	-	-
Lead (Filtered)	µg/L		Varies - see Notes	0.14	0.36	-	-	-	1.68	-	0.041	-	-	< 0.05	-	-	-

		Locatio	n GW04		GW18-01			GW18-02			GW	18-03			GW18-04		GW	18-05	1	GW18-06	
		Sample I		GW18-01		GW1801	GW18-02		GW18-02	GW18-03			GW18-03	GW18-04	GW18-04	GW1804			GW18-06	GW18-06	GW18 06
			e 14/01/2019 03/12/20			03/12/2020			01/10/2020						22/09/2020		15/01/2019				02/12/2020
		BCCSR 3.2 - AWf																			
Parameter	Units	EQL																			
Lithium	µg/L		<1 -	4	-	-	<1	-	-	3	-	-	-	<1	-	-	3	-	1	-	-
Lithium (Filtered)	µg/L		<1 -	<1	-	-	<1	-	-	2	-	-	-	<1	-	-	<1	-	2	-	-
Magnesium	mg/L		0.813 -	4.03	-	-	1.58	-	-	4.81	-	-	-	2.11	-	-	3.69	-	0.986	-	-
Magnesium (Filtered)	mg/L		0.71 -	2.59	-	-	1.45	-	-	4.36	-	-	-	1.82	-	-	2.18	-	1.47	-	-
Manganese	µg/L		8.3 -	403	-	-	359	-	-	129	-	-	-	98	-	-	248	-	50.8	-	-
Manganese (Filtered)	µg/L	0.25	17.9 -	<u> </u>	-	-	3450 0.05	-	-	140 0.025	-	-	-	90 0.025	-	-	187 0.25	· ·	85.1 0.25	· ·	-
Mercury Mercury (Filtered)	μg/L μg/L	0.25	0.1 -	0.05	-	-	<0.005	-	-	0.025	-	-	-	<0.025	-	-	<0.005	-	0.25	-	-
Molybdenum	µg/L	10000	0.08 -	0.023	-	-	0.2	-	-	0.62	-	-	-	0.19			0.86	-	0.00	-	
Molybdenum (Filtered)	µg/L	10000	< 0.05 -	0.28	-	-	0.05	-	-	0.38	_	-	-	0.09	-	-	2.1	-	0.2	-	-
Nickel	µg/L	Varies - see Notes	0.7 -	17	-	-	4.9	-	-	7.1	-	-	-	3	-	-	8.8	-	2.4	-	-
Nickel (Filtered)	µg/L	Varies - see Notes	<0.5 -	8.5	-	-	4	-	-	5.8	-	-	-	2.2	-	-	1.8	-	4.9	-	-
Potassium	mg/L		<0.05 -	0.43	-	-	0.28	-	-	0.49	-	-	-	0.28	-	-	0.69	-	0.14	-	-
Potassium (Filtered)	mg/L		<0.05 -	<0.05	-	-	0.16	-	-	0.52	-	-	-	0.28	-	-	0.28	-	0.3	-	-
Rubidium	µg/L		<0.2 -	1.7	-	-	0.6	-	-	0.5	-	-	-	0.7	-	-	2.2	-	0.5	-	-
Rubidium (Filtered)	µg/L		<0.2 -	<0.2	-	-	0.5	-	-	0.4	-	-	-	0.6	-	-	0.6	-	1.2	-	-
Selenium	µg/L	20	0.12 -	0.31	-	-	< 0.02	-	-	0.22	-	-	-	0.1	-	-	0.31	-	0.09	-	-
Selenium (Filtered)	µg/L	20	0.06 -	0.09	-	-	< 0.05	-	-	0.15	-	-	-	0.1	-	-	< 0.05	-	0.1	-	-
Silicon Silicon (Filtered)	µg/L		<u> 1000 </u>	22,100	-	-	10,900	-	-	13,900	-	-	-	5800 5380	-	-	11,900	-	5600	-	-
Silver	µg/L				-	-	10,000	-	-	13,100 0.06	-	-	-	<0.01	-	-	7810 0.05	-	7960 0.02	-	-
Silver (Filtered)	μg/L μg/L	Varies - see Notes Varies - see Notes	<0.01 -	0.06	-	-	<0.01	-	-	0.08	-	-	-	< 0.01	-	-	<0.05	-	0.02	-	-
Sodium	mg/L	Valles - see Noles	1.86 -	6.01	-	-	3.65	-	-	9.83	-	-	-	8.44			5.05	-	3.99	-	-
Sodium (Filtered)	mg/L		1.73 -	4.75	-	-	2.85	-	-	10.2	_	-	-	8.15	-	-	4.59	-	4	-	-
Strontium	µg/L		9.8 -	54.3	-	-	32.3	-	-	37.1	-	-	-	28.8	-	-	49.3	-	20.6	-	-
Strontium (Filtered)	µg/L		9.1 -	40.1	-	-	27.9	-	-	35.9	-	-	-	25.1	-	-	36.5	-	26.6	-	-
Sulfur, elemental	µg/L		<500 -	1100	-	-	<500	-	-	700	-	-	-	<500	-	-	1300	-	<500	-	-
Sulfur, elemental (Filtered)	µg/L		<500 -	<500	-	-	<500	-	-	890	-	-	-	<500	-	-	<500	-	<500	-	-
Tellurium	µg/L		<0.2 -	<0.2	-	-	<0.2	-	-	<0.2	-	-	-	<0.2	-	-	<0.2	-	<0.2	-	-
Tellurium (Filtered)	µg/L		<0.2 -	<0.2	-	-	<0.2	-	-	<0.2	-	-	-	<0.2	-	-	<0.2	-	<0.2	-	-
Thallium	µg/L	3	<0.01 -	0.04	-	-	<0.01	-	-	<0.01	-	-	-	< 0.01	-	-	0.02	-	0.01	-	-
Thallium (Filtered)	µg/L	3	<0.01 -	< 0.01	-	-	< 0.01	-	-	< 0.01	-	-	-	< 0.01	-	-	< 0.01	-	0.02	-	-
Thorium	µg/L		<0.1 -	0.4	-	-	<0.1	-	-	<0.1	-	-	-	0.1	-	-	0.3	-	<0.1	-	-
Thorium (Filtered) Tin	µg/L		0.1 -	0.2	-	-	0.1	-	-	0.1	-	-	-	0.1	-	-	0.1	-	0.2	-	-
Tin (Filtered)	μg/L μg/L		0.2 -	0.8	-	-	0.3	-	-	0.3	-	-	-	0.2	-	-	0.3	-	0.2	-	-
Titanium	µg/L	1000	17.7 -	195	-	-	15	-	-	38.7	-	-	-	20.1			141	-	45.7	-	
Titanium (Filtered)	µg/L	1000	5.9 -	38.2	-	-	3.8	-	-	31.1	-	-	-	11.3	-	-	7.2	-	122	-	-
Tungsten	µg/L		<0.1 -	<0.1	-	-	<0.1	-	-	<0.1	-	-	-	<0.1	-	-	0.1	-	<0.1	-	-
Tungsten (Filtered)	µg/L		0.1 -	0.1	-	-	0.1	-	-	0.1	-	-	-	0.1	-	-	0.2	-	0.1	-	-
Uranium	µg/L	85	0.03 -	0.57	-	-	0.04	-	-	0.09	-	-	-	0.06	-	-	0.38	-	0.06	-	-
Uranium (Filtered)	µg/L	85	0.01 -	0.23	-	-	0.02	-	-	0.07	-	-	-	0.03	-	-	0.04	-	0.28	-	-
Vanadium	µg/L		1.4 -	16.2	-	-	1.3	-	-	4.1	-	-	-	2.4	-	-	10.8	-	3.6	-	-
Vanadium (Filtered)	µg/L		0.7 -	4	-	-	0.7	-	-	3.2	-	-	-	1.7	-	-	1.4	-	9.6	-	-
Zinc	µg/L	Varies - see Notes	86 -	2320	•	-	1530	-	-	230	-	-	-	650	· ·	-	2930	· ·	526	· ·	-
Zinc (Filtered)	µg/L	Varies - see Notes	179 -	1990		-	1450	-	-	190	-	-	-	468	· ·	-	1490	· ·	765	· ·	-
Zirconium Zirconium (Eiltorod)	µg/L		0.23 -	1.25	-	-	0.18	-	-	0.25	-	-	-	0.13	-	-	0.38	-	0.29	-	-
Zirconium (Filtered) BTEX	µg/L		0.19 -	2.1	-	-	0.25	-	-	1.24	-	-	-	0.4	-	-	0.45	-	00.1	-	-
Benzene	µg/L	400	<0.5 -	<0.5	-	-	<0.5	-	-	<0.5	-	-	-	<0.5	-	-	<0.5	-	<0.5	-	-
Ethylbenzene	µg/L	2000	<0.5 -	<0.5	-	-	<0.5	-	-	<0.5	-	-	-	<0.5	-		<0.5	-	<0.5	-	-
Styrene	µg/L	720	<0.5 -	<0.5	-	-	<0.5	-	-	<0.5	-	-	-	< 0.5	-	-	<0.5	-	<0.5	-	-
Toluene	µg/L	5	<0.45 -	<0.45	-	-	<0.45	-	-	7.01	-	-	-	< 0.45	-	-	1.11	-	<0.45	-	-
Xylene (m & p)	µg/L		<0.5 -	<0.5	-	-	<0.5	-	-	<0.5	-	-	-	<0.5	-	-	<0.5	-	<0.5	-	-
Xylene (o)	µg/L		<0.5 -	<0.5	-	-	<0.5	-	-	<0.5	-	-	-	<0.5	-	-	<0.5	-	<0.5	-	-
EPH									-												
	µg/L	5000	<250 -	<250	-	-	<250	-	-	<250	-	-	-	<250	-	-	380	-	<250	-	-
EPH C19-C32	µg/L		<250 -	<250	-	-	<250	-	-	<250	-	-	-	<250	-	-	380	-	<250	-	-
LEPH HEPH	μg/L μg/L	500	<250 - <250 -	<250 <250	-	-	<250 <250	-	-	<250 <250	-	-	-	<250 <250	-	-	380 380	-	<250 <250	-	-

		Г	Location		GW18-07			MW01			M	W03		M	1W-05		MW06-Q2	
		F	Sample ID			GW18 07	MW01	MW-01	MW01	MW03	MW-03	MW03	MW20-200		MW05	MW06-Q2		MW06-Q2
			Sample Date				17/01/2019	14/10/2020	08/12/2020	17/01/2019	02/10/2020		08/12/2020	14/10/2020	02/12/2020			03/12/2020
		Ē	BCCSR 3.2 - AWf				•	•	•	•	·	·	•		•	•	•	
Parameter	Units	EQL																
Lithium	µg/L			2	-	-	<1	-	-	<1	-	-	-	-	-	<1	-	-
Lithium (Filtered)	µg/L			2	-	-	<1	-	-	<1	-	-	-	-	-	<1	-	-
Magnesium	mg/L			4.49	-	-	3.13	-	-	3.03	-	-	-	-	-	0.454	-	-
Magnesium (Filtered)	mg/L			4.41	-	-	2.84	-	-	2.91	-	-	-	-	-	0.401	-	-
Manganese	µg/L			63.3	-	-	41.1	-	-	93.1	-	-	-	-	-	25.6	-	-
Manganese (Filtered)	µg/L			54.9	-	-	36.5	-	-	84	-	-	-	-	-	21	-	-
Mercury	µg/L		0.25	0.25	-	-	< 0.005	-	-	0.011	-	-	-	-	-	0.05	-	-
Mercury (Filtered)	µg/L		0.25	0.05	-	-	0.05	-	-	0.009	-	-	-	-	-	0.006	-	-
Molybdenum	µg/L		10000	0.15	-	-	0.07	-	-	0.32	-	-	-	-	-	0.1	-	-
Molybdenum (Filtered)	µg/L		10000	0.06	-	-	<0.05	-	-	0.2	-	-	-	-	-	<0.05	-	-
Nickel	µg/L		Varies - see Notes	1.1	-	-	1.6	-	-	2.2	-	-	-	-	-	1.3	-	-
Nickel (Filtered)	µg/L		Varies - see Notes	0.7	-	-	1.3	-	-	1.8	-	-	-	-	-	0.7	-	-
Potassium	mg/L			1.48	-	-	1.53	-	-	0.91	-	-	-	-	-	0.08	-	-
Potassium (Filtered)	mg/L			1.55	-	-	1.48	-	-	0.85	-	-	-	-	-	0.13	-	-
Rubidium	µg/L			1.2	-	-	1.2	-	-	0.9	-	-	-	-	-	0.3	-	-
Rubidium (Filtered)	µg/L			1.3	-	-	1.4	-	-	0.8	-	-	-	-	-	0.3	-	-
Selenium	µg/L		20	0.15	-	-	0.12	-	-	0.18	-	-	-	-	-	0.07	-	-
Selenium (Filtered)	µg/L		20	0.09	-	-	0.12	-	-	0.23	-	-	-	-	-	<0.05	-	-
Silicon	µg/L			6200	-	-	8300	-	-	5100	-	-	-	-	-	1100	-	-
Silicon (Filtered)	µg/L			6590	-	-	8100	-	-	5250	-	-	-	-	-	1140	-	-
Silver	µg/L		Varies - see Notes	0.05	-	-	0.01	-	-	0.03	-	-	-	-	-	0.03	-	-
Silver (Filtered)	µg/L		Varies - see Notes	0.02	-	-	0.01	-	-	0.01	-	-	-	-	-	<0.01	-	-
Sodium	mg/L			16.1	-	-	39.9	-	-	15	-	-	-	-	-	1.34	-	-
Sodium (Filtered)	mg/L	_		16.7	-	-	37.3	-	-	15.1	-	-	-	-	-	1.42	-	-
Strontium	µg/L	_		60.3	-	-	48.1	-	-	59.4	-	-	-	-	-	4.7	-	-
Strontium (Filtered)	µg/L	_		62.2	-	-	43.2	-	-	64	-	-	-	-	-	4.5	-	-
Sulfur, elemental	µg/L	_		800	-	-	700	-	-	1300	-	-	-	-	-	<500	-	-
Sulfur, elemental (Filtered)	µg/L			760	-	-	640	-	-	2140	-	-	-	-	-	<500	-	-
Tellurium	µg/L	_		<0.2	-	-	<0.2	-	-	<0.2	-	-	-	-	-	<0.2	-	-
Tellurium (Filtered)	µg/L	-		<0.2	-	-	<0.2	-	-	<0.2	-	-	-	-	-	<0.2	-	-
Thallium	µg/L	_	3	<0.01	-	-	<0.01	-	-	<0.01	-	-	-	-	-	<0.01	-	-
Thallium (Filtered)	µg/L	_	3	< 0.01	-	-	<0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
Thorium	µg/L			<0.1	-	-	<0.1	-	-	<0.1	-	-	-	-	-	<0.1	-	-
Thorium (Filtered)	µg/L			0.1	-	-	0.1	-	-	0.1	-	-	-	-	-	0.1	-	-
Tin Tin (Till)	µg/L			0.4	-	-	<0.1	-	-	<0.1	-	-	-	-	-	0.6	-	-
Tin (Filtered)	µg/L	-	4000	0.1	-	-	0.1	-	-	0.1	-	-	-	-	-	0.2	-	-
Titanium	µg/L	-	1000	11	-	-	5.9	-	-	11.2	-	-	-	-	-	6.8	-	-
Titanium (Filtered)	µg/L	-	1000	6.3	-	-	3.7	-	-	7.6	-	-	-	-	-	3.8	-	-
Tungsten Tungsten (Filtered)	µg/L			<0.1	-	-	<0.1	-	-	<0.1	-	-	-	-	-	<0.1	-	-
Tungsten (Filtered)	µg/L		05	0.1	-	-	0.1	-		0.1	-	-	-	-	-	0.1	-	-
Uranium Uranium (Filtered)	µg/L		85	0.02	-	-	0.02	-	+	0.03	-	-	-	-	-	<0.01	-	-
Uranium (Filtered) Vanadium	μg/L μg/L		85	0.01	-	-	0.02	-		0.03	-	-	-	-	-	0.01	-	-
Vanadium Vanadium (Filtered)	μg/L μg/L			1.1 0.5	-	-	1.1 0.7	-	-	1.6		-	-	-	-	0.7	-	-
Zinc	μg/L μg/L		Varies - see Notes	330	-	-	4	-	-	23	-	-	-	-	-	403	-	-
Zinc (Filtered)	μg/L μg/L		Varies - see Notes	284		-	3	-		14	-	-	-	-	-	339		-
Zirconium	μg/L μg/L		Vanes - 366 NOI65	0.15	-	-	0.02	-		0.36	-	-		-	-	< 0.06		-
Zirconium (Filtered)	μg/L μg/L			0.15	-	-	0.02	-		0.30	-	-		-	-	0.14	-	-
BTEX	1 M Y L			0.10	_	_	1 0.77	_		1 0.0	_	_	_	-	_	T 1.1	_	_
Benzene	µg/L		400	<0.5	-	-	<0.5	-	-	<0.5	-	-	-	-	-	<0.5	-	-
Ethylbenzene	µg/L		2000	<0.5	-	_	<0.5	-	-	<0.5	-	-	-	-	-	<0.5	-	-
Styrene	μg/L		720	< 0.5	-	-	<0.5	-	-	<0.5	-	-	-	-	-	<0.5	-	-
Toluene	µg/L		5	<0.45	-	-	<0.45	-	-	<0.45	-	-	-	-	-	<0.45	-	-
Xylene (m & p)	μg/L		<u> </u>	<0.45	-	_	<0.40	-	-	<0.40	-	-	-	-	-	<0.45	-	-
Xylene (o)	µg/L			<0.5	-	_	<0.5	-	-	<0.5	-	-	-	-		<0.5	-	-
EPH	1mg/ =	- 1		0.0	1	1	. 0.0	1	1	1 0.0	1	1	1	1	1	0.0	1	1
EPH C10-C19	µg/L		5000	<250	-	-	<250	-	-	<250	-	-	-	-	-	<250	-	-
EPH C19-C32	µg/L			<250	-	-	<250	-	-	<250	-	-	-	-	-	<250	-	-
LEPH	μg/L		500	<250	-	-	<250	-	-	<250	-	-	-	_	-	<250	-	-
HEPH	µg/L			<250	-	-	<250	-	-	<250	-	-	-	-	-	<250	-	-
	ir"∀′ ⊑			-200	1		-200	1	1	200	1		1			-200	1	1

		Location	r	MW0	6-Q3S			MW08-Q4 (1)		MW08-Q4(2)	1		MW0	8-Q4(3)	
			MW05-Q3S	MW05-Q3S		MW06-Q3S	MW08-Q4 (1)		/ MW08-Q4(1)	MW08-Q4(2)	MW08-Q4 (2)		MW08-Q4(3)			MW08-Q4(3)
		Sample Date						16/01/2019	04/12/2020	16/01/2019	21/09/2020	04/12/2020	16/01/2019	21/09/2020	21/09/2020	
		BCCSR 3.2 - AWf								1.0.0.0					1	1
Parameter	Units EQ															
Lithium			2	<1	-	-	1	<1	-	1	1		2	-	-	-
Lithium (Filtered)	µg/L	_	<1	<1	-	-	-	<1		<1	-	-	2	-		-
				1.57			-		_	1.07	-	-	9.13		-	-
Magnesium	mg/L		1.29		-	-	-	0.428	-		-	-		-	-	-
Magnesium (Filtered)	mg/L		0.582	1.51	-	-	-	0.321	-	0.714	-	-	9.32	-	-	-
Manganese	µg/L		16.6	111	-	-	-	2.5	-	25.5	-	-	416	-	-	-
Manganese (Filtered)	µg/L		61	101	-	-	-	1.7	-	15.6	-	-	389	-	-	-
Mercury	µg/L	0.25	0.1	0.05	-	-	-	0.1	-	0.1	-	-	<0.005	-	-	-
Mercury (Filtered)	µg/L	0.25	<0.005	0.025	-	-	-	0.05	-	< 0.005	-	-	< 0.005	-	-	-
Molybdenum	µg/L	10000	0.4	0.08	-	-	-	0.07	-	0.1	-	-	0.08	-	-	-
Molybdenum (Filtered)	µg/L	10000	0.06	<0.05	-	-	-	< 0.05	-	<0.05	-	-	< 0.05	-	-	-
Nickel	µg/L	Varies - see Notes	5.2	1.4	-	-	-	0.7	-	3.7	-	-	1.4	-	-	-
Nickel (Filtered)	µg/L	Varies - see Notes	1.2	1.2	-	-	-	<0.5	-	1.8	-	-	<0.5	-	-	-
Potassium	mg/L		0.28	0.21	-	-	-	0.18	-	0.31	-	-	0.37	-	-	-
Potassium (Filtered)	mg/L		0.15	0.15	-	-	-	0.19	-	0.26	-	-	0.36	-	-	-
Rubidium	µg/L		1.8	0.3	-	-	-	0.4	-	1.1	-	-	1.1	-	-	-
Rubidium (Filtered)	µg/L		0.5	0.3	-	-	-	0.4	-	0.6	-	-	0.8	-	-	-
Selenium	µg/L	20	0.13	0.1	-	-	-	0.14	-	0.06	-	-	< 0.05	-	-	-
Selenium (Filtered)	µg/L	20	<0.05	0.07	-	-	-	0.11	-	<0.05	-	-	< 0.05	-	-	-
Silicon	µg/L		5200	1300	-	-	-	500	-	7100	-	-	28,300	-	-	-
Silicon (Filtered)	µg/L		2840	1230	-	-	-	480	-	6550	-	-	32,100	-	-	-
Silver	µg/L	Varies - see Notes	0.03	< 0.01	-	-	-	0.04	-	0.04	-	-	< 0.01	-	-	-
Silver (Filtered)	μg/L	Varies - see Notes	< 0.01	< 0.01	-	-	-	0.01	-	< 0.01	_	-	< 0.01	-	-	-
Sodium	mg/L		1.71	2.85	-	-	-	1.7	-	2.48	-	-	8.44	-	-	-
Sodium (Filtered)	mg/L		1.91	2.41	-	-	-	1.75	-	2.62	-	-	8.93	-	-	-
Strontium	µg/L		14.2	10.2	-	_	-	4.5	-	20.1	<u> </u>	-	110	_	<u> </u>	-
Strontium (Filtered)	µg/L		10.7	9.1	_	-	-	3.4	-	17.2			106	-		-
Sulfur, elemental	µg/L	_	<500	<500	-	-	-	<500		<500	-	-	<500	-		-
Sulfur, elemental (Filtered)	μg/L	_	<500	<500				<500	_	<500	-		<500			
Tellurium			<0.2	<0.2	-	-	-	<0.2	-	<0.2	-	-	<0.2	-	-	-
Tellurium (Filtered)	µg/L		<0.2	<0.2	-	-	-	<0.2	-	<0.2	-	-	<0.2	-	-	-
Thallium	µg/L	2	0.2	<0.2	-	-	-	<0.2		<0.2	-	-	<0.2	-	-	-
	µg/L	3	-		-	-	-		-		-	-		-	-	-
Thallium (Filtered)	µg/L	3	< 0.01	< 0.01	-	-	-	< 0.01	-	<0.01	-	-	< 0.01	-	-	-
Thorium	µg/L		0.2	<0.1	-	-	-	<0.1	-	<0.1	-	-	0.3	-		
Thorium (Filtered)	µg/L		0.1	0.1	-	-	-	0.1	-	0.1	-	-	0.1	-	-	-
Tin	µg/L		0.7	0.2	-	-	-	0.1	-	0.5	-	-	<0.1	-	-	-
Tin (Filtered)	µg/L		0.2	0.1	-	-	-	0.1	-	0.2	-	-	0.1	-	-	-
Titanium	µg/L	1000	99.5	5.2	-	-	-	19.3	-	43.2	-	-	31.8	-	-	-
Titanium (Filtered)	µg/L	1000	7.2	3.2	-	-	-	10.9	-	10.2	-	-	7.4	-	-	-
Tungsten	µg/L		0.2	<0.1	-	-	-	<0.1	-	<0.1	-	-	<0.1	-	-	-
Tungsten (Filtered)	µg/L		0.1	0.1	-	-	-	0.1	-	0.1	-	-	0.1	-	-	-
Uranium	µg/L	85	0.17	<0.01	-	-	-	0.01	-	0.08	-	-	0.1	-	-	-
Uranium (Filtered)	µg/L	85	0.01	0.01	-	-	-	0.01	-	0.02	-	-	0.05	-	-	-
Vanadium	µg/L		6	<0.5	-	-	-	1.3	-	3.3	-	-	11.4	-	-	-
Vanadium (Filtered)	µg/L		0.7	0.5	-	-	-	0.7	-	1.1	-	-	8.2	-	-	-
Zinc	µg/L	Varies - see Notes	901	321	-	-	-	<3	-	18	-	-	<3	-	-	-
Zinc (Filtered)	µg/L	Varies - see Notes	331	300	-	-	-	3	-	18	-	-	1	-	-	-
Zirconium	µg/L		0.19	0.12	-	-	-	0.24	-	0.16	-	-	1.83	-	-	-
Zirconium (Filtered)	µg/L		0.15	0.11	-	-	-	0.28	-	0.35	-	-	1.62	-	-	-
BTEX /				-		-					-				•	1
Benzene	µg/L	400	<0.5	<0.5	-	-	-	<0.5	-	<0.5	-	-	<0.5	-	-	-
Ethylbenzene	μg/L	2000	< 0.5	<0.5	-	-	-	< 0.5	-	<0.5	-	-	<0.5	-	-	-
Styrene	μg/L	720	< 0.5	<0.5	-	-	-	<0.5	-	<0.5	-	-	<0.5	-	-	-
Toluene	μg/L	5	<0.45	<0.45	-	-	-	<0.45	-	<0.45	-	-	<0.45	-	-	-
Xylene (m & p)	μg/L		<0.40	<0.40	-	-	-	<0.43	-	<0.40	-	-	<0.40	-	-	-
Xylene (o)	µg/L		< 0.5	<0.5	-	-	-	<0.5		<0.5	-	-	<0.5	-		-
EPH	148/2		-0.0	0.0	-	-	-	1 .0.0	-	1 -0.5	-	-	-0.0	-	1 -	+
EPH C10-C19		5000	<250	<250	1	1		<250	1	<050	1		<050			+
	µg/L	5000	<250	<250	-	-	-	<250	-	<250	-	-	<250	-		-
EPH C19-C32	µg/L	F00	<250	<250	-	-	-	<250	-	<250	-	-	<250	-	-	-
LEPH HEPH	µg/L µg/L	500	<250	<250	-	-	-	<250	-	<250	-	-	<250	-	-	-
			<250	<250	-	-	-	<250	-	<250	-	-	<250	-	- 1	-

		Г	Location		W04		GW18-01			GW18-02			GW	/18-03			GW18-04		GW	18-05		GW18-06	·
		F	Sample ID	-	GW04	GW18-01	GW18-01	GW1801	GW18-02	GW1802	GW18-02	GW18-03	GW18-03	GW18-03	GW18-03	GW18-04	GW18-04	GW1804	GW18-05	GW 18 05	GW18-06	GW18-06	GW18 06
		ŀ	Sample Date			18/01/2019		03/12/2020		03/12/2020				01/10/2020							21/01/2019		
		-	BCCSR 3.2 - AWf	14/01/2013	00/12/2020	10/01/2013	01/10/2020	00/12/2020	10/01/2013	00/12/2020	01/10/2020	10/01/2013	22/03/2020	01/10/2020	00/12/2020	10/01/2013	22/03/2020	00/12/2020	10/01/2013	104/12/2020	21/01/2013	14/10/2020	02/12/2020
Parameter	Units	EQL	B0001(0.2 - / W1																				l l
VOCs	onno																						
	ua/L		34000	< 0.5	-	<0.5	-	-	<0.5	-	-	<0.5	-	-	-	<0.5	-	-	<0.5	-	<0.5	-	-
PAH	189/-		01000	0.0		0.0			0.0			0.0				0.0			0.0		0.0	<u> </u>	
Acenaphthene	µg/L		60	< 0.01	-	< 0.01	-	-	<0.01	-	-	<0.01	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-	-
Acenaphthylene	µg/L			< 0.01	-	< 0.01	-	-	< 0.01	-	-	< 0.01	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-	-
Acridine	µg/L		0.5	< 0.01	-	< 0.01	-	-	< 0.01	-	-	< 0.01	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-	-
Anthracene	µg/L		1	< 0.01	-	< 0.01	-	-	< 0.01	-	-	< 0.01	-	-	-	< 0.01	-	-	<0.01	-	< 0.01	-	-
Benz(a)anthracene	µg/L		1	< 0.01	-	< 0.01	-	-	<0.01	-	-	< 0.01	-	-	-	< 0.01	-	-	<0.01	-	< 0.01	-	-
Benzo(a)pyrene	µg/L		0.1	<0.005	-	< 0.005	-	-	< 0.005	-	-	< 0.005	-	-	-	< 0.005	-	-	< 0.005	-	< 0.005	-	-
Benzo(b+j)fluoranthenes	µg/L			< 0.01	-	< 0.01	-	-	<0.01	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	< 0.01	-	-
Benzo(b+j+k)fluoranthene	µg/L			<0.015	-	<0.015	-	-	<0.015	-	-	<0.015	-	-	-	< 0.015	-	-	<0.015	-	<0.015	-	-
Benzo(g,h,i)perylene	µg/L			<0.01	-	<0.01	-	-	<0.01	-	-	< 0.01	-	-	-	< 0.01	-	-	<0.01	-	<0.01	-	-
Benzo(k)fluoranthene	µg/L			<0.01	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	<0.01	-	-
Chrysene	µg/L		1	<0.01	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	<0.01	-	-
Dibenz(a,h)anthracene	µg/L			<0.01	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	<0.01	-	-
Fluoranthene	µg/L		2	<0.01	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	<0.01	-	-
Fluorene	µg/L		120	<0.01	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	<0.01	-	-
Indeno(1,2,3-cd)pyrene	µg/L			<0.01	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	<0.01	-	-
Methylnaphthalene, 1-	µg/L			<0.05	-	<0.05	-	-	<0.05	-	-	<0.05	-	-	-	<0.05	-	-	<0.05	-	<0.05	-	
Methylnaphthalene, 2-	µg/L			<0.05	-	<0.05	-	-	<0.05	-	-	< 0.05	-	-	-	<0.05	-	-	<0.05	-	<0.05	-	- '
Naphthalene	µg/L		10	<0.05	-	<0.05	-	-	<0.05	-	-	<0.05	-	-	-	<0.05	-	-	<0.05	-	<0.05	-	
Phenanthrene	µg/L	↓	3	< 0.02		<0.02	-	-	<0.02	-	-	< 0.02	-	-	-	< 0.02	-	-	< 0.02	-	<0.02	-	'
Pyrene	µg/L		0.2	< 0.01		<0.01	-	-	< 0.01	-	-	< 0.01	-	-	-	< 0.01	-	-	< 0.01		< 0.01	-	!
Quinoline	µg/L		34	<0.05	-	<0.05	-	-	<0.05	-	-	<0.05	-	-	-	<0.05	-	-	<0.05	-	<0.05	-	
Biota				44.000	1	10.000	1	1	10 700	1	1	10.100	1		1	44700	1	1	00.402	1	10.000		'
Tannin & lignin	µg/L			14,300	-	13,200	-	-	12,700	-	-	18,100	-	-	-	14,700	-	-	22,100	-	13,600	-	-

			Location		GW18-07			MW01			MV	V03		MV	V-05		MW06-Q2	
			Sample ID	GW18-07	GW18-07	GW18 07	MW01	MW-01	MW01	MW03	MW-03	MW03	MW20-200	MW-05	MW05	MW06-Q2	MW06-Q2	MW06-Q2
			Sample Date	21/01/2019	14/10/2020	02/12/2020	17/01/2019	14/10/2020	08/12/2020	17/01/2019	02/10/2020	08/12/2020	08/12/2020	14/10/2020	02/12/2020	16/01/2019	02/10/2020	03/12/2020
			BCCSR 3.2 - AWf				•	•	·	·	÷		- -		•			
Parameter	Units	EQL																
VOCs																		
Methyl tert-butyl ether [MTBE]	µg/L		34000	<0.5	-	-	<0.5	-	-	<0.5	-	-	-	-	-	<0.5	-	-
PAH																		
Acenaphthene	µg/L		60	<0.01	-	-	<0.01	-	-	<0.01	-	-	-	-	-	<0.01	-	-
Acenaphthylene	µg/L			<0.01	-	-	<0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
Acridine	µg/L		0.5	<0.01	-	-	<0.01	-	-	<0.01	-	-	-	-	-	<0.01	-	-
Anthracene	µg/L		1	<0.01	-	-	<0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
Benz(a)anthracene	µg/L		1	<0.01	-	-	<0.01	-	-	<0.01	-	-	-	-	-	<0.01	-	-
Benzo(a)pyrene	µg/L		0.1	<0.005	-	-	< 0.005	-	-	<0.005	-	-	-	-	-	<0.005	-	-
Benzo(b+j)fluoranthenes	µg/L			<0.01	-	-	< 0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
Benzo(b+j+k)fluoranthene	µg/L			<0.015	-	-	<0.015	-	-	<0.015	-	-	-	-	-	<0.015	-	-
Benzo(g,h,i)perylene	µg/L			<0.01	-	-	<0.01	-	-	<0.01	-	-	-	-	-	<0.01	-	-
Benzo(k)fluoranthene	µg/L			<0.01	-	-	<0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
Chrysene	µg/L		1	<0.01	-	-	<0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
Dibenz(a,h)anthracene	µg/L			<0.01	-	-	<0.01	-	-	<0.01	-	-	-	-	-	<0.01	-	-
Fluoranthene	µg/L		2	<0.01	-	-	<0.01	-	-	<0.01	-	-	-	-	-	<0.01	-	-
Fluorene	µg/L		120	<0.01	-	-	< 0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
Indeno(1,2,3-cd)pyrene	µg/L			<0.01	-	-	<0.01	-	-	<0.01	-	-	-	-	-	<0.01	-	-
Methylnaphthalene, 1-	µg/L			<0.05	-	-	<0.05	-	-	< 0.05	-	-	-	-	-	< 0.05	-	-
Methylnaphthalene, 2-	µg/L			<0.05	-	-	<0.05	-	-	<0.05	-	-	-	-	-	<0.05	-	-
Naphthalene	µg/L		10	<0.05	-	-	<0.05	-	-	< 0.05	-	-	-	-	-	<0.05	-	-
Phenanthrene	µg/L		3	<0.02	-	-	<0.02	-	-	<0.02	-	-	-	-	-	<0.02	-	-
Pyrene	µg/L		0.2	<0.01	-	-	<0.01	-	-	<0.01	-	-	-	-	-	<0.01	-	-
Quinoline	µg/L		34	<0.05	-	-	<0.05	-	-	<0.05	-	-	-	-	-	<0.05	-	-
Biota																		
Tannin & lignin	µg/L			17,700	-	-	10,700	-	-	5600	-	-	-	-	-	16,800	-	-

			Location		MW0	6-Q3S			MW08-Q4 (1)		MW08-Q4(2)			MW08-	-Q4(3)	
			Sample ID	MW05-Q3S	MW05-Q3S	MW06-Q3	MW06-Q3S	MW08-Q4 (1)	MW08-Q4(1)	MW08-Q4(1)	MW08-Q4(2)	MW08-Q4 (2)	MW08-Q4(2)	MW08-Q4(3)	MW08-Q4 (3)	MW20-100	MW08-Q4(3)
			Sample Date	16/01/2019	18/01/2019	02/10/2020	03/12/2020	21/09/2020	16/01/2019	04/12/2020	16/01/2019	21/09/2020	04/12/2020	16/01/2019	21/09/2020	21/09/2020	04/12/2020
			BCCSR 3.2 - AWf														
Parameter	Units	EQL															
VOCs																	
Methyl tert-butyl ether [MTBE]	µg/L		34000	<0.5	<0.5	-	-	-	<0.5	-	<0.5	-	-	<0.5	-	-	-
PAH																	
Acenaphthene	µg/L		60	<0.01	<0.01	-	-	-	<0.01	-	0.02	-	-	<0.01	-	-	-
Acenaphthylene	µg/L			<0.01	<0.01	-	-	-	<0.01	-	<0.01	-	-	<0.01	-	-	-
Acridine	µg/L		0.5	<0.01	<0.01	-	-	-	<0.01	-	<0.01	-	-	<0.01	-	-	-
Anthracene	µg/L		1	<0.01	<0.01	-	-	-	<0.01	-	<0.01	-	-	<0.01	-	-	-
Benz(a)anthracene	µg/L		1	<0.01	<0.01	-	-	-	<0.01	-	<0.01	-	-	<0.01	-	-	-
Benzo(a)pyrene	µg/L		0.1	<0.005	<0.005	-	-	-	< 0.005	-	<0.005	-	-	<0.005	-	-	-
Benzo(b+j)fluoranthenes	µg/L			<0.01	<0.01	-	-	-	<0.01	-	<0.01	-	-	<0.01	-	-	-
Benzo(b+j+k)fluoranthene	µg/L			<0.015	<0.015	-	-	-	<0.015	-	<0.015	-	-	<0.015	-	-	-
Benzo(g,h,i)perylene	µg/L			<0.01	<0.01	-	-	-	<0.01	-	<0.01	-	-	<0.01	-	-	-
Benzo(k)fluoranthene	µg/L			<0.01	<0.01	-	-	-	<0.01	-	<0.01	-	-	<0.01	-	-	-
Chrysene	µg/L		1	<0.01	<0.01	-	-	-	<0.01	-	<0.01	-	-	<0.01	-	-	-
Dibenz(a,h)anthracene	µg/L			<0.01	<0.01	-	-	-	<0.01	-	<0.01	-	-	<0.01	-	-	-
Fluoranthene	µg/L		2	<0.01	<0.01	-	-	-	<0.01	-	<0.01	-	-	<0.01	-	-	-
Fluorene	µg/L		120	<0.01	<0.01	-	-	-	<0.01	-	<0.01	-	-	<0.01	-	-	-
Indeno(1,2,3-cd)pyrene	µg/L			<0.01	<0.01	-	-	-	<0.01	-	<0.01	-	-	<0.01	-	-	-
Methylnaphthalene, 1-	µg/L			<0.05	<0.05	-	-	-	<0.05	-	<0.05	-	-	< 0.05	-	-	-
Methylnaphthalene, 2-	µg/L			<0.05	<0.05	-	-	-	< 0.05	-	<0.05	-	-	< 0.05	-	-	-
Naphthalene	µg/L		10	<0.05	<0.05	-	-	-	<0.05	-	<0.05		-	<0.05	-	-	-
Phenanthrene	µg/L		3	<0.02	<0.02	-	-	-	<0.02	-	<0.02	-	-	<0.02	-	-	-
Pyrene	µg/L		0.2	<0.01	<0.01	-	-	-	<0.01	-	<0.01	-	-	<0.01	-	-	-
Quinoline	µg/L		34	<0.05	<0.05	-	-	-	<0.05	-	<0.05	-	-	<0.05	-	-	-
Biota	_					1			1		-				1		
Tannin & lignin	µg/L			2700	19,700	-	-	-	32,200	-	14,400	-	-	2800	-	-	

- (1) All values are reported as $\mu g/L$ unless otherwise noted.
- (2) = No standard or not analyzed.
- (3) BCCSR = BC Environmental Management Act, Contaminated Sites Regulation, B.C. Reg. 375/96 includes amendments up to B.C. Reg. 13/2019, Janua
- (4) BC CSR Freshwater Aquatic Life (AW_F) = Schedule 3.2 Generic Numerical Water Standards, Column 3, excluding superscript 6.
- (5) BC CSR Drinking Water (DW) = Schedule 3.2 Generic Numerical Water Standards, Column 6.

					DNR01		1		D 02			14004		1	MOOO			MOOO			MOOA	
			Location Sample Date	21/01/2010		02/12/2020	21/01/2010	23/09/2020	R02	08/12/2020	16/01/2010	WQ01	04/12/2020	17/01/2010	WQ02	03/12/2020	14/01/2010	WQ03	04/12/2020	15/01/2010	WQ04	00/12/2020
Parameter	Units		BC WQG - FW	21/01/2019	14/10/2020	02/12/2020	21/01/2019	23/09/2020	00/12/2020	00/12/2020	10/01/2019	21/09/2020	04/12/2020	11/01/2019	02/10/2020	03/12/2020	14/01/2019	01/10/2020	04/12/2020	13/01/2019	14/10/2020	09/12/2020
Field	Units	EQL	DC WQG - FW																			
DO (Field)	mg/L	_	Varies - see Notes	-	2.51	-	-	1.11	1.95	1.95	-	0.23	-	-	7.82	-	-	6.6	1.87	-	1.12	5.59
Field ORP (mV)	my/L	-		-	132.9	78.9	-	270.6	89.3	89.3	-	281.9	266.9	-	208.8	229.4	-	154.4	83.6	-	160.8	128.3
Field	1110		_		102.0	10.0	_	210.0	00.0	00.0		201.0	200.0		200.0	220.4	_	104.4	00.0		100.0	120.0
pH (Field)	pH Units		6.5-9	6.4	6.11	6.51	4.9	4.94	5.5	5.5	3.4	4.7	3.76	3.5	3.93	3.83	3.8	4.74	6.08	5.6	4.75	4.39
EC (field)	µS/cm		-	243	106.7	182.7	40	63	70.7	70.7	22	54.5	52	27	94.7	58	37	90.3	94.6	32	65.4	188.2
Temp (Field)	°C		-	-	12.1	2.9	-	15.2	7.1	7.1	-	14.8	3.2	-	13.9	2.9	-	12.6	8.1	-	10.1	8.2
Field	•				•		1	•	•	•			•	•		•			•		•	
Turbidity	NTU		-	8.7	7.53	168	5	12.7	6.51	6.51	9.7	5.7	1.56	1.4	3.56	1.62	3.1	7.42	20.5	4.7	0.97	2.11
Inorganics																						
Alkalinity (bicarbonate as CaCO3)	µg/L		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity (carbonate as CaCO3)	µg/L		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity (hydroxide) as CaCO3	µg/L		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity (total as CaCO3)	mg/L	_	-	57	-	-	7	-	-	-	<1	-	-	<1	-	-	<1	-	-	7	-	-
Biochemical Oxygen Demand (BOD)	µg/L		-	<2000	-	-	10,000	-	-	-	<2000	-	-	<2000	-	-	2000	-	-	<2000	-	-
Bromide	mg/L		-	< 0.05	-	-	< 0.05	-	-	-	< 0.05	-	-	< 0.05	-	-	< 0.05	-	-	< 0.05	-	-
Chloride	mg/L		150	< 0.5	-	-	7.2	-	-	-	2.9	-	-	2.8	-	-	6.6	-	-	7.6	-	-
Chemical Oxygen Demand (COD)	µg/L		-	52,000	-	-	42,000	-	-	-	82,000	-	-	91,000	-	-	93,000	-	-	73,000	-	-
Dissolved Hardness (Filtered)	µg/L		-	-	- 02	-	-	-	- 70	-	-	-	-	- 40	-	-	-	-	- 04	-	- 02	-
Electrical Conductivity (lab)	µS/cm	2	- Varies - see Notes	240 <0.02	92	180	41 0.04	44	73	74	36 <0.02	48	46	42 <0.02	70	51	54 0.03	72	94	53 0.04	93	57
Hardness as CaCO3	mg/L mg/L	1	valles - see NOLES	<0.02 71.4	-	- 86.8	6.54	-	-	-	<0.02 4.61	-	-	4.12	-	- 6.63	7.26	-	-	13.6	-	-
Nitrate (as N)	mg/L		- 3	<0.005	-	- 00.0	<0.005	-	-	-	0.006	-	-	<0.005	-	- 0.03	< 0.005	-	-	0.034	-	-
Nitrite (as N)	mg/L	-	Varies - see Notes	<0.003	-	-	<0.003	-	-	-	< 0.000	-	-	<0.005	-	-	<0.005	-	-	< 0.004	-	-
pH (Lab)	pH Units	-	-	7.5	6.37	7.14	6.5	6.4	6.27	6.27	4.3	5.27	4.3	4.1	4.25	4.23	4.3	4.88	6.61	6.2	5.86	5.97
Phosphorus	µg/L	-	-	110	-	-	230	-	-	-	<50	-	-	<50	-	-	<50	-	-	60		-
Phosphorus (Filtered)	μg/L	-	-	<50	-	-	<50	-	-	-	<50	-	-	<50	-	-	<50	-	-	<50	_	-
Salinity	a/L		-	0.001	-	-	0.001	-	-	-	0.001	-	-	0.001	-	-	0.001	-	-	0.001	-	-
Sulfate as SO4 - turbidimetric	µg/L		-	<300	-	-	1200	-	-	-	<300	-	-	<300	-	-	1200	-	-	1700	-	-
Total Dissolved Solids	mg/L		-	166	-	-	64	-	-	-	61	-	-	70	-	-	85	-	-	89	-	-
Total Suspended Solids	mg/l		-	29	-	-	125	-	-	-	5	-	-	3	-	-	3	-	-	28	-	-
Organics							^ 	·		•				•					•		•	÷
Dissolved Organic Carbon	mg/L		-	13	-	-	16	-	-	-	25	-	-	28	-	-	32	-	-	29	-	-
Total Organic Carbon	µg/L		-	16,000	-	-	17,000	-	-	-	28,000	-	-	30,000	-	-	47,000	-	-	30,000	-	-
Metals																						
Aluminium	µg/L	_	-	647	-	-	496	-	-	-	109	-	-	187	-	-	290	-	-	714	-	-
Aluminium (Filtered)	µg/L	_	Varies - see Notes	165	-	-	162	-	-	-	126	-	-	166	-	-	319	-	-	411	-	-
Antimony	µg/L	_	9	0.3	-	-	0.7	-	-	-	0.1	-	-	0.1	-	-	0.2	-	-	0.3	-	-
Antimony (Filtered)	µg/L		<u>9</u> 5	0.2	-	-	0.2	-	-	-	0.1	-	-	0.1	-	-	0.1	-	-	0.2	-	-
Arsenic	µg/L	-	-	3.4 3.1	-	-	1.2	-	-	-	0.5	-	-	0.8	-	-	1.1	-	-	1.6	-	-
Arsenic (Filtered) Barium	µg/L µg/L		- 1000	32.8	-	-	0.8	-	-	-	0.7	-	-	0.7	-	-	0.9	-	-	1.1 14.2	-	-
Barium (Filtered)	µg/L		1000	28.6	-	-	6.6		-	-	2.6	-		2.1	-	-	3.8	-	-	14.2	-	- -
Beryllium	µg/L		0.13	<0.1	-	-	<0.1	-	-	-	<0.1	-	-	<0.1	-	-	<0.1	-	-	<0.1	-	-
Beryllium (Filtered)	μg/L		0.13	<0.1	-	-	<0.1	-	-	-	<0.1	-	-	<0.1	-	-	<0.1	-	-	<0.1	-	-
Bismuth	μg/L		-	<0.05	-	-	0.06	-	-	-	< 0.05	-	-	<0.05	-	-	< 0.05	-	-	< 0.05	-	-
Bismuth (Filtered)	µg/L		-	<0.05	-	-	< 0.05	-	-	-	<0.05	-	-	< 0.05	-	-	< 0.05	-	-	<0.05	-	-
Boron	µg/L		1200	<10	-	-	<10	-	-	-	<10	-	-	<10	-	-	<10	-	-	<10	-	-
Boron (Filtered)	µg/L		-	<10	-	-	<10	-	-	-	<10	-	-	<10	-	-	<10	-	-	<10	-	-
Cadmium	µg/L		-	0.037	-	-	0.038	-	-	-	0.007	-	-	0.016	-	-	0.013	-	-	0.061	-	-
Cadmium (Filtered)	µg/L		-	0.013	-	-	0.022	-	-	-	0.013	-	-	0.011	-	-	0.02	-	-	0.027	-	-
		0	-	19.4	8.4	26.3	1.75	2.21	3.54	6.03	0.95	3.91	1.7	0.81	1.76	1.22	1.62	3.19	6.05	4.08	8.64	3.64
Calcium	mg/L				-	-	1.71	-	-	-	1.04	-	-	0.76	-	-	1.47	-	-	3.66	-	-
Calcium (Filtered)	mg/L		-	21.1	-									L 0.04								-
Calcium (Filtered) Cesium	mg/L µg/L		-	0.02	-	-	0.02	-	-	-	0.01	-	-	0.01	-	-	0.01	-	-	0.02	-	-
Calcium (Filtered) Cesium Cesium (Filtered)	mg/L μg/L μg/L			0.02 <0.01			<0.01	-	-	-	<0.01	-	-	<0.01	-	-	0.01	-	-	<0.01	-	-
Calcium (Filtered) Cesium Cesium (Filtered) Chromium	mg/L μg/L μg/L μg/L		-	0.02 <0.01 2	-	-	<0.01 2	-			<0.01 0.4			<0.01 0.5			0.01 0.7			<0.01 1.4		
Calcium (Filtered) Cesium Cesium (Filtered) Chromium Chromium (Filtered)	mg/L µg/L µg/L µg/L µg/L		- - 1 -	0.02 <0.01 2 0.9	-	-	<0.01 2 0.6	-	-	-	<0.01 0.4 0.3	-	-	<0.01 0.5 0.4	-	-	0.01 0.7 0.8	-	-	<0.01 1.4 0.7	-	-
Calcium (Filtered) Cesium Cesium (Filtered) Chromium Chromium (Filtered) Cobalt	mg/L µg/L µg/L µg/L µg/L µg/L µg/L		- - 1 - 4	0.02 <0.01 2 0.9 3		- - - - -	<0.01 2 0.6 0.7	- - -	-	- - - -	<0.01 0.4 0.3 0.1	- - -		<0.01 0.5 0.4 0.1	-	-	0.01 0.7 0.8 0.2			<0.01 1.4 0.7 0.5	- - - -	-
Calcium (Filtered) Cesium Cesium (Filtered) Chromium Chromium (Filtered)	mg/L µg/L µg/L µg/L µg/L		- - 1 -	0.02 <0.01 2 0.9			<0.01 2 0.6	- - -			<0.01 0.4 0.3	- - -	-	<0.01 0.5 0.4			0.01 0.7 0.8			<0.01 1.4 0.7		

										14/000				200		201	1				05.14/
			Location	11/00/2010	WS		02/12/2020	14/01/2010	11/00/2010	WS02	00/04/2020	02/12/2020		S03		S04	22/00/2020	WS05-E	00/10/2020		05-W
	1	1	Sample Date	11/09/2019	09/04/2020	09/04/2020	02/12/2020	14/01/2019	11/09/2019	11/09/2019	09/04/2020	02/12/2020	01/10/2020	04/12/2020	23/09/2020	08/12/2020	23/09/2020	08/12/2020	08/12/2020	14/10/2020	02/12/2020
Parameter	Units	EQL	BC WQG - FW																		
Field											-	-								-	_
DO (Field)	mg/L		Varies - see Notes	4.95	5.00	5.00	-	-	4.25	4.25	8.30	-	14.1	-	6.26	4.95	2.43	5.79	5.79	0.1	1
Field ORP (mV)	mV		-	147.5	84.1	84.1	228.8	-	52.2	52.2	10.3	126.4	104.1	110.2	263.1	74.1	262.5	78.1	78.1	60.5	-15.6
Field					<u>.</u>					-	-	-	-				-			-	_
pH (Field)	pH Units		6.5-9	6.72	5.85	5.85	3.72	3.8	7.06	7.06	8.16	6.7	4.1	4.39	6.04	6.08	5.65	6.26	6.26	6.37	6.26
EC (field)	µS/cm		-	210	60	60	47.2	37	750	750	380	291.3	105	29.3	186.3	79.6	258.6	149.8	149.8	344.4	904
Temp (Field)	°C		-	16.98	9.6	9.6	3.4	-	16.7	16.7	7.3	3.7	15.1	3.6	16.6	8	15.3	8.4	8.4	14.1	9.7
Field																					
Turbidity	NTU		-	10.3	1.23	1.39	2.08	10.9	74.5	66	15	12.9	3.5	7.81	6.83	5.78	17.7	9.53	9.53	24.6	99.2
Inorganics																					
Alkalinity (bicarbonate as CaCO3)	µg/L		-	57,800	-	-	-	-	135,000	139,000	-	-	-	-	-	-	-	-	-	-	-
Alkalinity (carbonate as CaCO3)	µg/L		-	<1000	-	-	-	-	<1000	<1000	-	-	-	-	-	-	-	(-)	-	-	-
Alkalinity (hydroxide) as CaCO3	µg/L		-	<1000	-	-	-	-	<1000	<1000	-	-	-	-	-	-	-	-	-	-	-
Alkalinity (total as CaCO3)	mg/L		-	57.8	-	-	-	<1	135	139	-	-	-	-	-	-	-	-	-	-	-
Biochemical Oxygen Demand (BOD)	µg/L		-	<2000	<2000	<2000	-	<2000	3000	2700	<2000	-	-	-	-	-	-	-	-	-	-
Bromide	mg/L		-	<0.05	< 0.05	<0.05	-	<0.05	<0.25	<0.25	<0.05	-	-	-	-	-	-	-	-	-	-
Chloride	mg/L		150	11.4	7.78	7.81	-	6.6	147	147	7.04	-	-	-	-	-	-	-	-	-	-
Chemical Oxygen Demand (COD)	µg/L		-	37,000	106,000	1500	-	110,000	39,000	47,000	<20,000	-	-	-	-	-	-	-	-	-	-
Dissolved Hardness (Filtered)	µg/L		-	-	23,000	23,100	-	-	-	-	64,300	-	-	-	-	-	-	- I	-	-	-
Electrical Conductivity (lab)	μS/cm	2	-	205	61	60.3	46	52	721	724	162	220	91	71	160	82	210	150	150	44	530
Fluoride	mg/L		Varies - see Notes	0.05	0.03	0.03	-	0.03	<0.1	<0.1	0.046	-	-	-	-	-	-	-	-	-	-
Hardness as CaCO3	mg/L	1	-	77.6	23.6	23.2	10.6	6.63	129	132	69.2	77.3	-	-	-	-	-	- 1	-	-	113
Nitrate (as N)	mg/L		3	0.0436	0.0108	0.0087	-	< 0.005	<0.025	<0.025	0.122	-	-	-	-	-	-	-	-	-	-
Nitrite (as N)	mg/L		Varies - see Notes	0.003	< 0.001	< 0.001	-	< 0.001	< 0.005	< 0.005	0.0023	-	-	-	-	-	-	-	-	-	-
pH (Lab)	pH Units		-	7.88	6.77	6.83	4.96	4.4	8.15	8.13	7.83	7.43	4.19	4.14	6.86	6.65	6.76	7.02	7.06	5.86	6.93
Phosphorus	ug/L		-	<50	<50	<50	-	150	<50	58	59	-	-	-	-	-	-	-	-	-	-
Phosphorus (Filtered)	µg/L		-	<50	<50	<50	-	<50	<50	<50	<50	-	-	-	-	-	-	-	-	-	-
Salinity	g/L		-	< 0.001	< 0.001	< 0.001	-	0.001	< 0.001	< 0.001	< 0.001	-	-	-	-	-	-	-	-	-	-
Sulfate as SO4 - turbidimetric	µg/L		-	27,500	750	770	-	1100	<1500	<1500	10,600	-	-	-	-	-	-	-	-	-	-
Total Dissolved Solids	mg/L		-	156	107	108	-	82	439	432	104	-	-	-	-	-	-	-	-	-	-
Total Suspended Solids	mg/l		-	<3	<3	<3	-	130	54.4	49	16.3	-	-	-	-	-	-	- 1	-	-	-
Organics	5			-		-	1		-				1	1			1	L			1
Dissolved Organic Carbon	mg/L		-	12	36	39.1	-	32	11.9	12.1	3.38	-	-	-	-	-	-	- T	-	-	-
Total Organic Carbon	µg/L		-	12,000	40,100	41,800	-	34,000	13,400	15,700	3360	-	-	-	-	-	-	- 1	-	-	-
Metals	11.5			,	-,	,	1	- ,	-,	-,			I	1			I	t			1
Aluminium	µg/L		-	165	326	314	-	662	1590	1880	587	-	-	-	-	-	-	<u> </u>	-	-	-
Aluminium (Filtered)	µg/L		Varies - see Notes	61.7	274	272	-	159	8.5	8.7	12	-	-	-	-	_	-	-	-	-	-
Antimony	µg/L		9	0.13	0.14	0.18	-	0.2	0.19	0.2	<0.1	-	-	-	_	-	-	- 1	-	-	-
Antimony (Filtered)	µg/L		9	0.11	0.13	0.13	-	<0.1	0.12	0.13	<0.1	-	-	-	-	-	-	-	-	-	-
Arsenic	μg/L		5	1.54	1.67	1.7	-	1.2	1.37	1.44	0.68	-	-	-	-	-	-	-	-	-	-
Arsenic (Filtered)	µg/L		-	1.3	1.77	1.82	-	0.5	0.76	0.77	0.39	-	-	-	-	-	-	- 1	-	-	-
Barium	μg/L		1000	22.3	8.51	8.06	-	6.9	97	100	23.2	-	-	-	-	-	-	- 1	-	-	-
Barium (Filtered)	ua/L	1	1000	21.8	8.4	9.1	-	22.6	88.2	88	17.3	-	-	-	-	-	-	†	-	-	<u> </u>
Beryllium	μg/L	1	0.13	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	- 1	-	-	-
Beryllium (Filtered)	μg/L	1	0.13	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-
Bismuth	μg/L	1	-	<0.05	< 0.05	< 0.05	-	< 0.05	< 0.05	< 0.05	< 0.05	-	-	-	-	-	-	-	-	-	-
Bismuth (Filtered)	µg/L	1	-	<0.05	< 0.05	< 0.05	-	< 0.05	< 0.05	< 0.05	< 0.05	-	-	-	-	-	-	- 1	-	-	-
Boron	μg/L	1	1200	19	11	11	-	<10	29	29	<10	-	-	-	-	-	-	- 1	-	-	-
Boron (Filtered)	μg/L	1	-	20	12	13	-	30	34	33	<10	-	-	-	-	-	-	- 1	-	-	-
Cadmium	μg/L	1	-	0.0115	0.0171	0.0138	-	0.027	0.0432	0.0468	0.0257	-	-	-	-	-	-	- 1	-	-	-
Cadmium (Filtered)	μg/L	1	-	0.0072	0.0154	0.0166	-	0.027	0.0402	0.0143	0.0162	-	-	-	-	-	-	- 1	-	-	-
Calcium	mg/L	0	-	22.1	6.39	6.28	2.53	1.78	35.2	34.8	18.8	21.6	3.61	2.31	6.38	5.73	10.5	11.4	10.8	1.11	30.5
Calcium (Filtered)	mg/L	1 ⁻	-	21.3	6.22	6.29	-	1.65	33.7	34.6	17.4	-	-	-	-	-	-	-	-	-	-
Cesium	µg/L	1	_	0.015	0.012	0.013	-	0.07	0.125	0.138	0.044	_	-	_	-	-	-	-	-	-	-
Cesium (Filtered)	μg/L	1	-	0.013	0.012	<0.013	-	0.07	0.033	0.036	<0.044	-		-	-	-	-	-	-		-
Chromium	μg/L	-	- 1	0.78	0.01	0.85	-	2.3	3.48	4.04	1.31	-	-	-	-	-	-	-		-	
Chromium (Filtered)	µg/L	+	-	0.78	0.76	0.76	-	0.4	0.33	0.38	0.12	-	-	-	-	-	-	-	-	-	-
Chromium (Filtered) Cobalt	µg/L µg/L		- 4	0.65	0.76	0.78	-	0.4	1.45	1.57	0.12		-	-	-	-	-	-	-	-	-
Cobalt (Filtered)	µg/L µg/L		-	0.24	0.4	0.39		0.5	0.92	0.91	0.52	-									
	Iµg/∟	1	-	0.10	0.37	0.30	-	U.2	0.92	0.91	0.12	-	-	-	-	-	-	-	-	-	-
Copper	µg/L		-	1.35	2.19	2.14	-	3.8	3.68	4.16	2.08	-	-	-	-	-	-	-	-	-	-

			Location		DNR01			DN	R02			WQ01			WQ02			WQ03			WQ04	
				21/01/2019		02/12/2020	21/01/2019			08/12/2020	16/01/2019		04/12/2020	17/01/2019		03/12/2020	14/01/2019		04/12/2020 1	5/01/2019		09/12/2020
Parameter	Units	EQL	BC WQG - FW	2110112010	1.1.10/2020	02/12/2020	2.10.12010	20/00/2020	00,12,2020	00, 12,2020	10/01/2010	21/00/2020	0 11 12/2020	1110112010	02/10/2020	00/12/2020	1.10.12010	01110/2020		0/01/2010	1 11 10/2020	00/12/2020
Copper (Filtered)	µg/L	-	BLM - see Notes	1	-		2.7	-	-	-	3.7	-	-	1.7	-	-	2.1	-		2.5	-	-
Iron	mg/L		1	5.97	-	-	0.95	-	-	-	0.25	-	-	0.35	-	-	0.41	_		1.09	-	-
Iron (Filtered)	mg/L		0.35	5.15	-		0.33	-	-	-	0.23	-	-	0.33	-	-	0.41	-	-	0.71		-
Lead	µg/L	-	Varies - see Notes	4.54	-		1.04	-	-	-	0.27	-	-	1.24	-	-	2.33	-	-	2.15		-
Lead (Filtered)	μg/L		Valles - See Noles	0.64			0.56				1.25			1.24			2.33			0.78		
Lithium	µg/L		-	<1	-	-	<1	-	-	-	<1	-	-	<1	-	-	<1	-	-	<1	-	-
Lithium (Filtered)	µg/L	_	1 1	<1	-		<1				<1			<1			<1			<1	-	
Magnesium	mg/L		-	4.42		-	0.693	-	-	-	0.413	-	-	0.644	-	-	0.737	-	-	1.31		-
			-	4.42	-	-	0.093	-	-	-	0.413	-	-	0.044	-	-	0.737	-	-	1.08	-	
Magnesium (Filtered)	mg/L	_	-	4.54 694	-	-	0.554	-		-	12.3	-	-		-			-		50		-
Manganese (Filtered)	µg/L	_	-	694 863	-	-	42.9	-	-	-	12.3	-	-	11.3 9.8	-	-	15.1 20.5	-	-	43.2	-	-
Manganese (Filtered)	µg/L	_	-		-	-		-	-	-		-	-		-	-		-	-		-	-
Mercury	µg/L	_	-	0.025	-	-	0.025	-	-	-	0.007	-	-	<0.005	-	-	0.006	-	-	0.05	-	-
Mercury (Filtered)	µg/L		-	< 0.005	-	-	< 0.005	-	-	-	0.006	-	-	< 0.005	-	-	0.025	-	-	0.007	-	-
Molybdenum	µg/L		1000	0.3	-	-	0.36	-	-	-	< 0.05	-	-	<0.05	-	-	0.06	-	-	0.27	-	-
Molybdenum (Filtered)	µg/L		-	0.27	-	-	0.12	-	-	-	<0.05	-	-	<0.05	-	-	0.07	-	-	0.14	-	-
Nickel	µg/L		Varies - see Notes	3	-	-	2.4	-	-	-	< 0.5	-	-	<0.5	-	-	1.1	-	-	2.4	-	-
Nickel (Filtered)	µg/L		-	2.5	-	-	1.7	-	-	-	< 0.5	-	-	<0.5	-	-	1.2	-	-	1.6	-	-
Potassium	mg/L	1	-	1.58	-	-	0.8	-	-	-	0.09	-	-	0.1	-	-	0.4	-	-	0.81	-	-
Potassium (Filtered)	mg/L	1	-	1.68	-	-	0.72	-	-	-	0.14	-	-	0.05	-	-	0.42	-	-	0.71	-	-
Rubidium	µg/L		-	1.5	-	-	1.1	-	-	-	<0.2	-	-	<0.2	-	-	0.3	-	-	1.1	-	-
Rubidium (Filtered)	µg/L		-	1.4	-	-	0.8	-	-	-	<0.2	-	-	<0.2	-	-	0.7	-	-	0.9	-	-
Selenium	µg/L		2	0.11	-	-	0.07	-	-	-	< 0.05	-	-	0.07	-	-	0.09	-	-	0.1	-	-
Selenium (Filtered)	µg/L		2	0.08	-	-	0.05	-	-	-	<0.05	-	-	0.07	-	-	0.9	-	-	0.09	-	-
Silicon	µg/L		-	5100	-	-	1900	-	-	-	200	-	-	<100	-	-	1500	-	-	2500	-	-
Silicon (Filtered)	µg/L		-	4500	-	-	1430	-	-	-	250	-	-	80	-	-	1740	-	-	2200	-	-
Silver	µg/L		Varies - see Notes	0.01	-	-	0.03	-	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	0.02	-	-
Silver (Filtered)	µg/L		-	<0.01	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-
Sodium	mg/L		-	18.7	-	-	5.48	-	-	-	1.23	-	-	1.61	-	-	4.88	-	-	6.84	-	-
Sodium (Filtered)	mg/L		-	20.1	-	-	5.79	-	-	-	1.64	-	-	1.52	-	-	4.84	-	-	6.43	-	-
Strontium	µg/L		-	111	-	-	12.4	-	-	-	5.5	-	-	4.6	-	-	9.7	-	-	31.7	-	-
Strontium (Filtered)	µg/L		-	122	-	-	11.3	-	-	-	5.8	-	-	4.4	-	-	9.2	-	-	27	-	-
Sulfur, elemental	µg/L		-	700	-	-	700	-	-	-	<500	-	-	<500	-	-	<500	-	-	800	-	-
Sulfur, elemental (Filtered)	µg/L		-	600	-	-	600	-	-	-	<500	-	-	<500	-	-	800	-	-	800	-	-
Tellurium	µg/L		-	<0.2	-	-	<0.2	-	-	-	<0.2	-	-	<0.2	-	-	<0.2	-	-	<0.2	-	-
Tellurium (Filtered)	µg/L		-	<0.2	-	-	<0.2	-	-	-	<0.2	-	-	<0.2	-	-	<0.2	-	-	<0.2	-	-
Thallium	µg/L		0.8	<0.01	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-
Thallium (Filtered)	µg/L		-	<0.01	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-
Thorium	µg/L		-	0.2	-	-	<0.1	-	-	-	<0.1	-	-	<0.1	-	-	<0.1	-	-	<0.1	-	-
Thorium (Filtered)	µg/L		-	<0.1	-	-	<0.1	-	-	-	<0.1	-	-	<0.1	-	-	<0.1	-	-	<0.1	-	-
Tin	µg/L		-	0.2	-	-	0.8	-	-	-	<0.1	-	-	<0.1	-	-	<0.1	-	-	0.1	-	-
Tin (Filtered)	µg/L		-	<0.1	-	-	<0.1	-	-	-	<0.1	-	-	<0.1	-	-	<0.1	-	-	<0.1	-	-
Titanium	µg/L		-	27.2	-	-	15.3	-	-	-	3.4	-	-	4.6	-	-	6	-	-	14.9	-	-
Titanium (Filtered)	µg/L		-	5.5	-	-	2.7	-	-	-	3.9	-	-	4.4	-	-	9	-	-	5.9	-	-
Tungsten	µg/L		-	<0.1	-	-	0.2	-	-	-	<0.1	-	-	<0.1	-	-	<0.1	-	-	<0.1	-	-
Tungsten (Filtered)	µg/L		-	<0.1	-	-	<0.1	-	-	-	<0.1	-	-	<0.1	-	-	<0.1	-	-	<0.1	-	-
Uranium	µg/L		8.5	0.06	-	-	0.02	-	-	-	<0.01	-	-	<0.01	-	-	0.02	-	-	0.03	-	-
Uranium (Filtered)	µg/L		-	0.03	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	-	0.02	-	-	0.02	-	-
Vanadium	µg/L	1	-	3.7	-	-	2	-	-	-	0.6	-	-	0.8	-	-	1.5	-	-	2.9	-	-
Vanadium (Filtered)	µg/L	1	-	2.3	-	-	0.9	-	-	-	0.6	-	-	0.6	-	-	1.4	-	-	1.6	-	-
Zinc	µg/L		Varies - see Notes	18	-	-	20	-	-	-	4	-	-	6	-	-	5	-	-	66	-	-
Zinc (Filtered)	µg/L	1	-	13	-	-	13	-	-	-	6	-	-	6	-	-	6	-	-	40	-	-
Zirconium	μg/L	1	-	0.46	-	-	0.52	-	-	-	0.1	_	-	0.16	-	-	0.26	-	-	0.29	-	-
Zirconium (Filtered)	μg/L		-	0.4	-	-	0.02	_	-	-	0.12	-	-	0.10	-	_	0.20	_	-	0.20	_	-
PHCs	159-	+		v . 1	L I		0.21		1	1	1 0.12		1	0.10		I	0.07		I	v.v I		<u> </u>
Oil and grease	µg/L	1	-	<5000	-	-	<5000	-	-	-	<5000	-	-	<5000	-	-	<5000	-	-	7000	-	-
	189'	-				-		-	-	_		-	-		_	-		-	1 1	1000	-	

			Location		WS	201				WS02			\\/\	S03	\\/	S04		WS05-E		WS	605-W
				11/09/2019		09/04/2020	02/12/2020	14/01/2019	11/09/2019	11/09/2019	09/04/2020	02/12/2020					23/09/2020		08/12/2020		
Parameter	Units	EQL		11/03/2013	00/04/2020	00/04/2020	02/12/2020	14/01/2010	11/03/2013	11/03/2013	00/04/2020	02/12/2020	01/10/2020	04/12/2020	20/00/2020	00/12/2020	20/03/2020	00/12/2020	00/12/2020	14/10/2020	02/12/2020
Copper (Filtered)	µq/L		BLM - see Notes	1.11	2.34	3.08	-	1.9	1.78	1.08	1.59	-	-	-	-	-	-	-	-	-	-
Iron	mg/L		1	2.06	1.25	1.23	-	1.08	5.72	6.29	1.11		-	_	-	-	-	-	-	-	-
Iron (Filtered)	mg/L		0.35	1.31	1.06	1.06	-	0.2	0.321	0.292	0.094	-	-	-	-	-		-	-	-	-
Lead	µq/L	_	Varies - see Notes	0.342	1.51	1.5	-	4.32	0.559	0.674	0.277	-	-	-	-	-	-	-	-	-	-
Lead (Filtered)	μg/L		-	0.152	1.32	1.3	-	1.91	< 0.05	<0.05	<0.05	-	-	-	-	_	-	-	-	-	-
Lithium	µg/L		-	1.2	<1	<1	-	<1	3.5	3.9	1.3	-	-	-	-	_	-	-	-	-	-
Lithium (Filtered)	µg/L		-	1.2	<1	<1	-	<1	3.2	3.2	<1	-	-	-	-	-	-	-	-	-	-
Magnesium	mg/L		-	5.77	1.85	1.84	-	0.852	10.8	10.3	5.39	-	-	_	-	-	-	-	-	-	-
Magnesium (Filtered)	mg/L		-	5.93	1.82	1.8	-	0.764	11	11.1	5.09	-	-	-	-	-	-	-	-	-	-
Manganese	µg/L		-	163	164	163	-	31.6	2110	2080	133	-	-	-	-	-	-	-	-	-	-
Manganese (Filtered)	µg/L		-	170	153	153	-	16.3	2420	2480	100	-	-	-	-	-	-	-	-	-	-
Mercury	µg/L	_	-	< 0.005	0.0061	0.0058	-	0.1	< 0.005	< 0.005	< 0.005	-	-	-	-	-	-	-	-	-	-
Mercury (Filtered)	µg/L		-	< 0.025	0.0067	0.0069	-	0.006	<0.025	<0.025	< 0.005	-	-	-	-	-	-	-	-	-	-
Molybdenum	µg/L		1000	0.711	0.058	0.055	-	0.15	1.37	1.36	0.858	-	-	-	-	-	-	-	-	-	-
Molybdenum (Filtered)	µg/L		-	0.69	0.055	0.082	-	< 0.05	1.45	1.41	0.92	-	-	-	-	-	-	-	-	-	-
Nickel	µg/L		Varies - see Notes	1.12	1.11	1.17	-	1.8	4.27	4.72	2.1	-	-	-	-	-	-	-	-	-	-
Nickel (Filtered)	μg/L		-	1.12	1.02	1.04	-	0.9	2	1.97	0.69	-	-	-	-	-	-	-	-	-	-
Potassium	mg/L		-	1.2	0.455	0.452	-	0.47	3.01	2.97	1.17	-	-	-	-	-	-	-	-	-	-
Potassium (Filtered)	mg/L		-	1.26	0.453	0.457	-	0.45	3.18	3.17	1.06	-	-	-	-	-	-	-	-	-	-
Rubidium	µq/L		-	1.35	0.44	0.37	-	1	3.34	3.48	1.38	-	-	-	-	-	-	-	-	-	-
Rubidium (Filtered)	µg/L		-	1.3	0.41	0.41	-	0.6	3.2	3.3	0.84	-	-	-	_	-	-	-	-	-	-
Selenium	μg/L	_	2	0.082	0.106	0.128	-	0.14	0.084	0.111	0.105	-	-	-	-	-	-	-	-	-	-
Selenium (Filtered)	µg/L	_	2	0.091	0.059	0.073	-	< 0.05	0.062	0.073	0.131	-	-	-	-	-	-	-	-	-	-
Silicon	µg/L		-	3970	830	780	-	2400	9070	9630	4670	-	-	-	-	-	-	-	-	-	-
Silicon (Filtered)	µg/L		-	4260	721	719	-	1470	7860	7790	3260	-	-	-	-	-	-	-	-	-	-
Silver	µg/L		Varies - see Notes	<0.01	< 0.01	<0.01	-	0.02	< 0.01	< 0.01	< 0.01	-	-	-	-	-	-	-	-	-	-
Silver (Filtered)	µg/L	_	-	<0.01	<0.01	<0.01	-	<0.01	<0.01	< 0.01	<0.01	-	-	-	-	-	-	-	-	-	-
Sodium	mg/L		-	9.83	5.48	5.45	-	4.83	82.7	79.9	7.26	-	-	-	-	-	-	-	-	-	-
Sodium (Filtered)	mg/L		-	10.3	5.05	5.28	-	5.22	92.7	94.6	6.65	-	-	-	-	-	-	-	-	-	-
Strontium	µq/L		-	129	36.4	35.4	-	11.4	219	219	97.9	-	-	-	-	-	-	-	-	-	-
Strontium (Filtered)	µg/L		-	123	37.7	38.5	-	10.7	205	210	98.8	-	-	-	-	-	-	-	-	-	-
Sulfur, elemental	µg/L		-	2640	570	620	-	700	1340	1250	3850	-	-	-	-	-	-	-	-	-	-
Sulfur, elemental (Filtered)	µg/L		-	2840	510	590	-	800	1050	1240	3430	-	-	-	-	-	-	-	-	-	-
Tellurium	µg/L		-	<0.2	<2	<2	-	<0.2	<0.2	<0.2	<0.2	-	-	-	-	-	-	-	-	-	-
Tellurium (Filtered)	µg/L		-	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	-	-	-	-	-	-	-	-	-	-
Thallium	µg/L		0.8	<0.01	< 0.01	<0.01	-	0.02	0.011	0.012	<0.01	-	-	-	-	-	-	-	-	-	-
Thallium (Filtered)	µg/L		-	<0.01	< 0.01	< 0.01	-	< 0.01	<0.01	<0.01	< 0.01	-	-	-	-	-	-	-	-	-	-
Thorium	μg/L		-	<0.1	<0.1	<0.1	-	<0.1	0.17	0.19	<0.1	-	-	-	-	-	-	-	-	-	-
Thorium (Filtered)	µg/L		-	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-
Tin	µg/L		-	0.11	<0.1	<0.1	-	0.1	<0.1	0.15	<0.1	-	-	-	-	-	-	-	-	-	-
Tin (Filtered)	µg/L		-	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-
Titanium	μg/L		-	7.47	9.08	8.48	-	25.7	60.8	75.6	26.2	-	-	-	-	-	-	-	-	-	-
Titanium (Filtered)	μg/L		-	3.07	6.65	6.6	-	2.9	0.33	0.37	<0.3	-	-	-	-	-	-	-	-	-	-
Tungsten	µg/L		-	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-
Tungsten (Filtered)	µg/L		-	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-
Uranium	μg/L		8.5	0.156	0.027	0.026	-	0.06	0.289	0.297	0.287	-	-	-	-	-	-	-	-	-	-
Uranium (Filtered)	µg/L		-	1.43	0.021	0.021	-	<0.01	0.218	0.215	0.257	-	-	-	-	-	-	-	-	-	-
Vanadium	µg/L		-	1.09	1.08	1.06	-	2.6	4.91	5.47	1.72	-	-	-	-	-	-	-	-	-	-
Vanadium (Filtered)	µg/L		-	0.67	0.9	0.91	-	1	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-
Zinc	µg/L		Varies - see Notes	<3	7.5	6.2	-	9	9.7	12.2	4.8	-	-	-	-	-	-	-	-	-	-
Zinc (Filtered)	µg/L		-	1.4	10	9.2	-	19	2.7	2.7	3.1	-	-	-	-	-	-	-	-	-	-
Zirconium	µg/L		-	0.23	0.3	0.28	-	0.42	0.91	1.04	0.5	-	-	-	-	-	-	-	-	-	-
Zirconium (Filtered)	μg/L		-	<0.2	0.27	0.29	-	0.15	<0.2	<0.2	<0.2	-	-	-	-	-	-	-	-	-	-
PHCs					•			·1				•					•				
Oil and grease	µq/L		-	<5000	<5000	<5000	-	<5000	<5000	<5000	<5000	-	-	-	-	-	-	-	-	-	-

		ſ	Location		DNR01			DN	IR02			WQ01			WQ02			WQ03			WQ04	
		ľ	Sample Date	21/01/2019	14/10/2020	02/12/2020	21/01/2019	23/09/2020	08/12/2020	08/12/2020	16/01/2019	21/09/2020	04/12/2020	17/01/2019	02/10/2020	03/12/2020	14/01/2019	01/10/2020 04/1	2/2020	15/01/2019	14/10/2020	09/12/2020
Parameter	Units	EQL	BC WQG - FW																			
РАН		1 1																				
Acenaphthene	µg/L		6	<0.01	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-
Acenaphthylene	µg/L		-	<0.01	-	-	< 0.01	-	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-
Acridine	µg/L		0.05	0.02	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-
Anthracene	µg/L		0.1	<0.01	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-
Benz(a)anthracene	µg/L		0.1	0.01	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-
Benzo(a)pyrene	µg/L		0.01	0.021	-	-	< 0.005	-	-	-	<0.005	-	-	< 0.005	-	-	<0.005	-	-	<0.005	-	-
Benzo(b+j)fluoranthenes	µg/L		-	0.4	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-
Benzo(b+j+k)fluoranthene	µg/L		-	0.049	-	-	<0.015	-	-	-	<0.015	-	-	<0.015	-	-	<0.015	-	-	<0.015	-	-
Benzo(g,h,i)perylene	µg/L		-	0.03	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-
Benzo(k)fluoranthene	µg/L		-	0.02	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-
Chrysene	µg/L		-	0.3	-	-	< 0.01	-	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-
Dibenz(a,h)anthracene	µg/L		-	<0.005	-	-	< 0.005	-	-	-	<0.005	-	-	<0.005	-	-	<0.005	-	-	<0.005	-	-
Fluoranthene	µg/L		0.2	0.05	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-
Fluorene	µg/L		12	<0.01	-	-	< 0.01	-	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-
Indeno(1,2,3-cd)pyrene	µg/L		-	0.03	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-
Methylnaphthalene, 1-	µg/L		-	<0.05	-	-	< 0.05	-	-	-	<0.05	-	-	<0.05	-	-	<0.05	-	-	<0.05	-	-
Methylnaphthalene, 2-	µg/L		-	<0.05	-	-	< 0.05	-	-	-	<0.05	-	-	<0.05	-	-	<0.05	-	-	<0.05	-	-
Naphthalene	µg/L		1	<0.05	-	-	< 0.05	-	-	-	<0.05	-	-	< 0.05	-	-	<0.05	-	-	<0.05	-	-
Phenanthrene	µg/L		0.3	0.02	-	-	<0.02	-	-	-	<0.02	-	-	<0.02	-	-	<0.02	-	-	<0.02	-	-
Pyrene	µg/L		0.02	0.05	-	-	<0.01	-	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-	<0.01	-	-
Quinoline	µg/L		3.4	<0.05	-	-	< 0.05	-	-	-	<0.05	-	-	<0.05	-	-	<0.05	-	-	<0.05	-	-
Biota																						
Total Coliform	CFU/100mL		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliform Bacteria - Fecal	CFU/100mL		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tannin & lignin	µg/L		-	2000	-	-	3000	-	-	-	10,000	-	-	10,000	-	-	8000	-	-	5000	-	-

		ſ	Location		WS	501				WS02			W	S03	W	S04		WS05-E		WS	05-W
		·	Sample Date	11/09/2019	09/04/2020	09/04/2020	02/12/2020	14/01/2019	11/09/2019	11/09/2019	09/04/2020	02/12/2020	01/10/2020	04/12/2020	23/09/2020	08/12/2020	23/09/2020	08/12/2020	08/12/2020	14/10/2020	02/12/2020
Parameter	Units	EQL	BC WQG - FW																		
РАН	ł																				
Acenaphthene	µg/L		6	0.021	<10	<10	-	<0.01	<0.01	<0.01	<10	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	μg/L		-	<0.01	<10	<10	-	<0.01	<0.01	<0.01	<10	-	-	-	-	-	-	-	-	-	-
Acridine	μg/L		0.05	<0.01	<10	<10	-	<0.01	<0.01	<0.01	<10	-	-	-	-	-	-	-	-	-	-
Anthracene	µg/L		0.1	<0.01	<10	<10	-	<0.01	<0.01	<0.01	<10	-	-	-	-	-	-	-	-	-	-
Benz(a)anthracene	μg/L		0.1	-	-	-	-	<0.01	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene	µg/L		0.01	<0.005	<5	<5	-	<0.005	<0.005	<0.005	<5	-	-	-	-	-	-	-	-	-	-
Benzo(b+j)fluoranthenes	μg/L		-	<0.01	<10	<10	-	<0.01	<0.01	<0.01	<10	-	-	-	-	-	-	-	-	-	-
Benzo(b+j+k)fluoranthene	μg/L		-	<0.015	<15	<15	-	<0.015	<0.015	<0.015	<15	-	-	-	-	-	-	-	-	-	-
Benzo(g,h,i)perylene	µg/L		-	<0.01	<10	<10	-	<0.01	<0.01	<0.01	<10	-	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	µg/L		-	<0.01	<10	<10	-	<0.01	<0.01	<0.01	<10	-	-	-	-	-	-	-	-	-	-
Chrysene	µg/L		-	<0.01	<10	<10	-	<0.01	<0.01	<0.01	<10	-	-	-	-	-	-	-	-	-	-
Dibenz(a,h)anthracene	µg/L		-	<0.005	<5	<5	-	<0.005	<0.005	<0.005	<5	-	-	-	-	-	-	-	-	-	-
Fluoranthene	µg/L		0.2	<0.01	<10	<10	-	<0.01	<0.01	<0.01	<10	-	-	-	-	-	-	-	-	-	-
Fluorene	µg/L		12	<0.01	<10	<10	-	<0.01	<0.01	<0.01	<10	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	μg/L		-	<0.01	<10	<10	-	<0.01	<0.01	<0.01	<10	-	-	-	-	-	-	-	-	-	-
Methylnaphthalene, 1-	μg/L		-	<0.05	<10	<10	-	<0.05	<0.05	<0.05	<10	-	-	-	-	-	-	-	-	-	-
Methylnaphthalene, 2-	µg/L		-	<0.05	<10	<10	-	<0.05	<0.05	<0.05	<10	-	-	-	-	-	-	-	-	-	-
Naphthalene	µg/L		1	<0.05	<50	<50	-	<0.05	<0.05	<0.05	<50	-	-	-	-	-	-	-	-	-	-
Phenanthrene	µg/L		0.3	<0.02	<20	<20	-	<0.02	<0.02	<0.02	<20	-	-	-	-	-	-	-	-	-	-
Pyrene	µg/L		0.02	<0.01	<10	<10	-	<0.01	<0.01	<0.01	<10	-	-	-	-	-	-	-	-	-	-
Quinoline	µg/L		3.4	<0.05	<50	<50	-	<0.05	<0.05	<0.05	<50	-	-	-	-	-	-	-	-	-	-
Bi <u>ota</u>																					
Total Coliform	CFU/100mL		-	-	<800	500	-	-	-	-	500	-	-	-	-	-	-	-	-	-	-
Coliform Bacteria - Fecal	CFU/100mL		-	106	-	-	-	-	41	42	-	-	-	-	-	-	-	-	-	-	-
Tannin & lignin	µg/L		-	-	-	-	-	9000	-	-	-	-	-	-	-	-	-	-	-	-	-

- (1) All values are reported as µg/L unless otherwise noted.
- (2) = No guideline or not analyzed.
- (3) BC WQG Approved = Approved BC Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Summary Report. Water Protection & Sustainability Branch, MOE & Climate Change Strategy. August 2019.
- (4) BC WQG Working = Working BC Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Protection & Sustainability Branch, MOE & Climate Change Strategy. June 2017.
- (5) Long-term chronic WQGs are intended to protect the most sensitive species and life stages against sub-lethal and lethal effects for indefinite exposures. An averagin perious is used for these WQGs (e.g., 5 samples in 30 days).
- (6) Short-term acute (i.e., "maximum") WQGs are set to protect against severe effects such as lethality or other equivalent measures to the most sensitive species and lifes stages over a defined short-term exposure period (e.g., 96 hours).
- (7) For working guideline sources, refer to BC Working Water Quality Guidelines document.
- (8) Aluminum (dissolved) Guideline is based on pH
- (9) Cadmium (dissolved) Guideline is based on water hardness
- (10) Copper (dissolved) Calculated using BC Biotic Ligand Model (BLM). Water chemistry (e.g. pH, DOC and hardness) is needed to calculate Cu WQGs using BC BLM. Examples of calculated Cu WQGs are provided in Table 12b.
- (11) Copper If natural background levels exceed the WQGs for aquatic life, then any allowed increase in total Cu above natural levels should be based on site-specific data.
- (12) Fluoride (F-) Guideline is hardness dependent.
- (13) Lead Guideline is based on water hardness
- (14) Manganese Guideline is based on water hardness
- (15) Mercury When MeHg $\leq 0.5\%$ of total Hg, WQG 0.02
- (16) Nickel Working Guideline is based on water hardness
- (17) Naphthalene Ambient Water Quality Guideline for Naphthalene to Protect Freshwater Life: Overview Report First Update (2007).
- (18) Nitrite WQG is based on Cl⁻ concentration, see Table 26B.
- (19) Ammonia Nitrogen to protect freshwater aquatic life BC Approved long-term chronic WQG. Table 26C. No more than 1 of 5 of the measured values can exceed 1.5 times the corresponding WQG.
- (20) Ammonia Nitrogen to protect freshwater aquatic life BC Approved short-term acute WQG, Table 26D.
- (21) Organic Carbon The 30-day median for both DOC and TOC shall be within 20% of seasonally adjusted median background levels.
- (22) Dissolved oxygen the most stringent life stage guideline was used.
- (23) Dissolved oxygen Ambient Water Quality Criteria for Dissolved Oxygen: Overview Report (1997).
- (24) Silver Guideline is based on water hardness.
- (25) Sulphate Guideline is based on water hardness.
- (26) Temperature Refer to BC Approved WQG, Table 42A & 42B.
- (27) Turbidity (clear flow) Change of 2 NTU from background level at any one time for a duration of 30 d during clear flows or in clear water.
- (28) Turbidity (clear flow) Change of 8 NTU from background level at any one time for a duration of 24 h in clear flows or in clear waters.
- (29) Turbidity (turbid flow) Change of 5 NTU from background level when background is 8-50 NTU during high flows or turbid waters.
- (30) Turbidity (turbid flow) Change from background of 10% when background is > 50 NTU at any time during high flows or turbid waters.
- (31) Total Suspended Solids (clear flow) Change of 5 mg/L from background level at any one time for a duration of 30 d during clear flows or in clear water.
- (32) Total Suspended Solids (clear flow) Change of 25 mg/L from background level at any one time for a duration of 24 h during clear flows or in clear water.
- (33) Total Suspended Solids (turbid flow) Change of 10 mg/L from background level when background is 25-100 mg/L during high flows or turbid waters.
- (34) Total Suspended Solids (turbid flow) Change from background of 10% when background is > 100 mg/L at any time during high flows or turbid waters.
- (35) Turbidity, and suspended and benthic sediments Ambient Water Quality Guidelines (Criteria) for Suspended and Benthic Sediments: Overview Report (2001).
- (36) Zinc Guideline is based on water hardness.
- (37) Zinc When the ambient Zn concentration exceeds the WQG, further degradation of the ambient or existing water quality should be avoided

Hemmera File: 105052-01 June 2021

Table 3 RPD Table

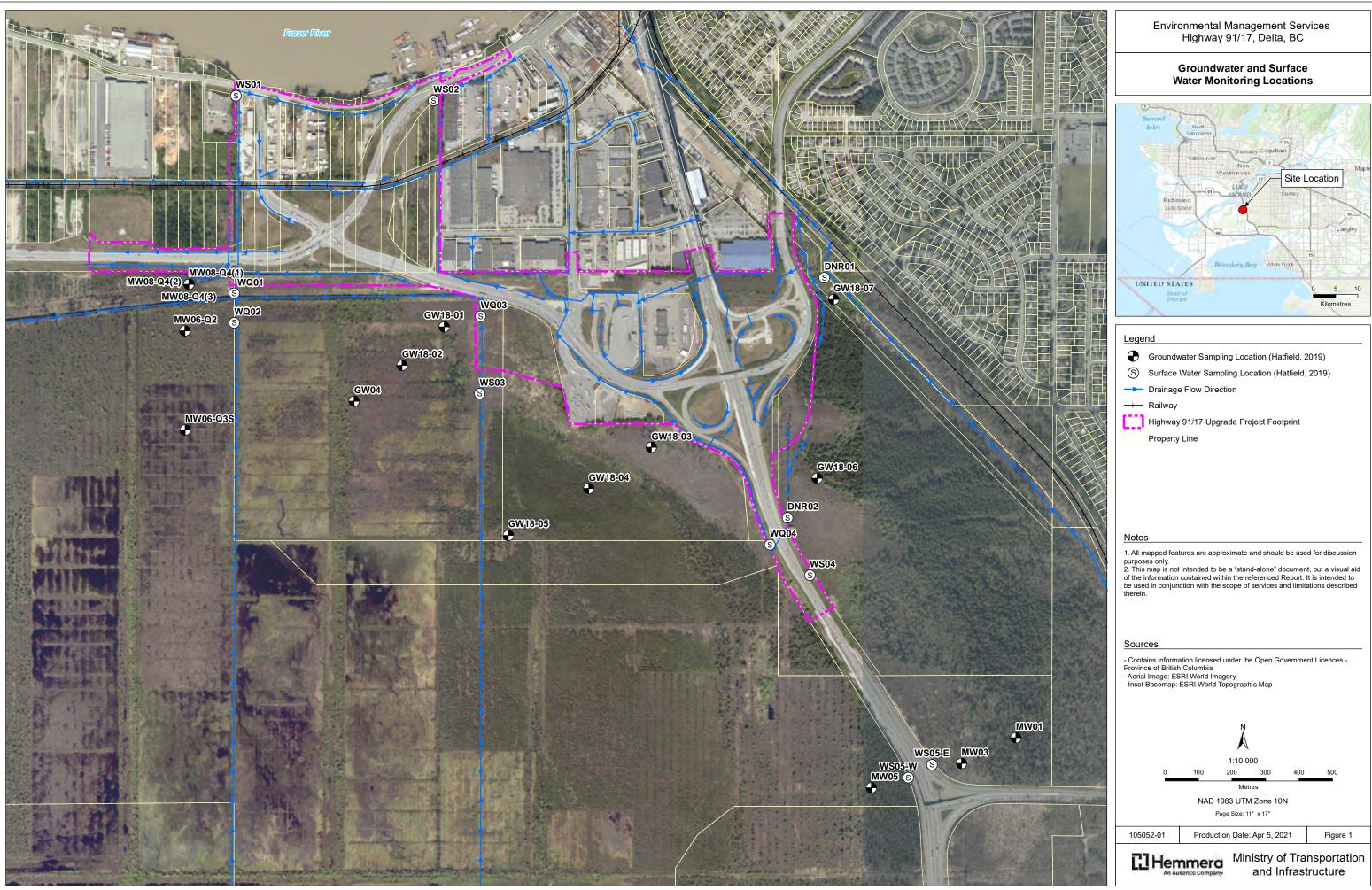

	Locatio	n DNR02	DNR02		MW03	MW03		MW08-Q4 (3	MW08-Q4 (3)		WS01	WS01		WS02	WS02		WS05-E	WS05-E	T
		DDNR02	SW20-101	RPD (%)	MW03	MW20-200	RPD (%)	MW08-Q4 (3		RPD (%)	SW-BINN854		RPD (%)		SW-BINN854	RPD (%)	SW20-100	WS05-E	RPD (%
	Sample Dat	te 08/12/2020	08/12/2020		08/12/2020	08/12/2020		21/09/2020	21/09/2020		11/04/2020	11/04/2020		13/09/2019	13/09/2019		08/12/2020	08/12/2020	1
Parameter	Units																		
norganics						-													
Alkalinity (bicarbonate as CaCO3)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	135,000	139,000	1.46%	-	-	
Alkalinity (carbonate as CaCO3)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	<1000	<1000	-	-	-	
Alkalinity (hydroxide) as CaCO3	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	<1000	<1000	-	-	-	_
Alkalinity (total as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	135	139	1.46%	-	-	-
Biochemical Oxygen Demand (BOD)	µg/L	-	-	-	-	-	-	-	-	-	<2000	<2000	-	3000	2700	5.26%	-	-	-
Bromide	mg/L	-	-	-	-	-	-	-	-	-	< 0.05	< 0.05	- 0.19%	<0.25	<0.25	-	-	-	-
Chloride Chemical Oxygen Demand (COD)	mg/L	-	-	-	-	-	-	-	-	-	7.78	7.81 1500	97.21%	147 39,000	147 47,000	0.00% 9.30%	-	-	-
Dissolved Hardness (Filtered)	μg/L μg/L	-	-	-	-	-	-	-	-	-	23,000	23,100	0.22%	· · ·			-	-	-
Electrical Conductivity (lab)	µg/∟ µS/cm	- 73	- 74	- 0.68%	- 230	- 230	- 0.00%	- 170	- 180	- 2.86%	61	60.3	0.22%	- 721	- 724	- 0.21%	- 150	- 150	- 0.00%
Fluoride	mg/L	-	- 14	- 0.00%	- 230	-	-		-	-	0.03	0.03	0.00%	<0.1	<0.1	0.2170	-	-	- 0.00%
Hardness as CaCO3	mg/L	-	-	-	-	-	-	-	-	-	23.6	23.2	0.85%	129	132	1.15%		-	
Nitrate (as N)	mg/L		-	-		-	-	-	-	-	0.0108	0.0087	10.77%	<0.025	<0.025	1.1570	-	-	-
Nitrite (as N)	mg/L				-	-		-	-		< 0.001	<0.0007	-	<0.025	<0.025				-
pH (Lab)	pH Units	6.27	6.27	0.00%	6.85	6.75	0.74%	6.98	7.15	1.20%	6.77	6.83	0.44%	8.15	8.13	0.12%	7.02	7.06	0.28%
Phosphorus	µg/L	-	-		-	-	-		-	-	<50	<50	-	<50	58	-	-	-	- 0.2070
Phosphorus (Filtered)	µg/L		-	-	-	-	-	-	-		<50	<50		<50	<50	-	-	-	-
Salinity	g/L		-		-	-	-	-	-		<0.001	<0.001		<0.001	<0.001	-	-	-	-
Sulfate as SO4 - turbidimetric	µg/L		-	-	-	-	-	-	-		750	770	1.32%	<1500	<1500	-	-	-	-
Total Dissolved Solids	mg/L	-	-	-	-	-	-	-	-	-	107	108	0.47%	439	432	0.80%	-	-	-
Total Suspended Solids	mg/l	-	-	-	-	-	-	-	-	-	<3	<3	-	54.4	49	5.22%	-	-	-
Drganics	1		1	1	1		1	1				1 - 1		1 •			1	1	
Dissolved Organic Carbon	mg/L	-	-	-	-	-	-	-	-	-	35.7	39.1	4.55%	11.9	12.1	0.83%	-	-	-
Total Organic Carbon	µg/L	-	-	-	-	-	-	-	-	-	40,100	41,800	2.08%	13,400	15,700	7.90%	-	-	-
letals			•						• • •			· · · · ·		1 /	· · · ·		•	•	
Aluminium	µg/L	-	-	-	-	-	-	-	-	-	326	314	1.88%	1590	1880	8.36%	-	-	-
Aluminium (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	274	272	0.37%	8.5	8.7	1.16%	-	-	-
Antimony	µg/L	-	-	-	-	-	-	-	-	-	0.14	0.18	12.50%	0.19	0.2	2.56%	-	-	-
Antimony (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	0.13	0.13	0.00%	0.12	0.13	4.00%	-	-	-
Arsenic	µg/L	-	-	-	-	-	-	-	-	-	1.67	1.7	0.89%	1.37	1.44	2.49%	-	-	-
Arsenic (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	1.77	1.82	1.39%	0.76	0.77	0.65%	-	-	-
Barium	µg/L	-	-	-	-	-	-	-	-	-	8.51	8.06	2.72%	97	100	1.52%	-	-	-
Barium (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	8.4	9.1	4.00%	88.2	88	0.11%	-	-	-
Beryllium	µg/L	-	-	-	-	-	-	-	-	-	<0.1	<0.1	-	<0.1	<0.1	-	-	-	-
Beryllium (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	<0.1	<0.1	-	<0.1	<0.1	-	-	-	-
Bismuth	µg/L	-	-	-	-	-	-	-	-	-	<0.05	<0.05	-	< 0.05	<0.05	-	-	-	-
Bismuth (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	<0.05	<0.05	-	< 0.05	<0.05	-	-	-	-
Boron	µg/L	-	-	-	-	-	-	-	-	-	11	11	0.00%	29	29	0.00%	-	-	-
Boron (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	12	13	4.00%	34	33	1.49%	-	-	-
Cadmium	µg/L	-	-	-	-	-	-	-	-	-	0.0171	0.0138	10.68%	0.0432	0.0468	4.00%	-	-	-
Cadmium (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	0.0154	0.0166	3.75%	0.0122	0.0143	7.92%	-	-	-
Calcium	mg/L	3.54	6.03	26.02%	12.3	11.7	2.50%	15.9	15.5	1.27%	6.39	6.28	0.87%	35.2	34.8	0.57%	11.4	10.8	2.70%
Calcium (Filtered)	mg/L	-	-	-	-	-	-	-	-	-	6.22	6.29	0.56%	33.7	34.6	1.32%	-	-	
Cesium Cesium (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	0.012	0.013	4.00%	0.125	0.138	4.94%	-	-	+ -
Cesium (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	0.01	< 0.01	-	0.033	0.036	4.35%	-	-	-
Chromium (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	0.91	0.85	3.41%	3.48	4.04	7.45%	-	-	-
Chromium (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	0.76	0.76	0.00%	0.33	0.38	7.04%	-	-	-
Cobalt (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	0.4	0.39	1.27%	1.45	1.57	3.97%	-	-	-
Cobalt (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	0.37	0.36	1.37%	0.92	0.91 4.16	0.55%	-	-	-
Copper Copper (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	2.19		<u>1.15%</u> 13.65%	3.68	4.16	6.12% 24.48%	-	-	-
Copper (Filtered)	μg/L mg/L	-	-	-	-	-	-	-	-	-	2.34	3.08 1.23	0.81%	5.72	6.29	4.75%	-	-	-
Iron Iron (Filtered)	mg/L mg/L	-	-	-	-	-	-	-	-	-	1.25	1.23	0.81%	0.321	0.29	4.75%	-	-	-
Lead	µg/L		-	-	-	-	-	-	-	-	1.00	1.06	0.33%	0.521	0.292	9.33%	-	-	-
Lead (Filtered)	µg/L		-	-	-	-	-	-	-	-	1.31	1.3	0.33%	<0.05	<0.074	9.3370	-	-	-
Lithium	µg/L	-	-	-	-	-	-	-	-	-	<1	<1	-	3.5	3.9	5.41%	-	-	-
Lithium (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	<1	<1	-	3.5	3.9	0.00%	-	-	-
Magnesium	mg/L			-	+	-		-			1.85	1.84	- 0.27%	10.8	<u> </u>	2.37%			
Magnesium (Filtered)	mg/L	-	-	-	-	-	-	-	-	-	1.82	1.04	0.27%	10.0	10.3	0.45%	-	-	-
Magnesium (Fillered) Manganese	µg/L	-	-	-	-	-	-	-	-	-	1.62	1.0	0.31%	2110	2080	0.45%	-	-	-
Manganese (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	153	153	0.00%	2110	2080	1.22%	-	-	-
Manganese (Fillered) Mercury	µg/L	-	-	-	-	-	-	-	-	-	0.0061	0.0058	2.52%	<0.005	<0.005	1.22%	-	-	-

Table 3 RPD Table

	Loca	tion DNR02	DNR02		MW03	MW03		MW08-Q4 (3	MW08-Q4 (3)		WS01	WS01		WS02	WS02		WS05-E	WS05-E	
		e ID DNR02	SW20-101	RPD (%)	MW03	MW20-200	RPD (%)	MW08-Q4 (3	1	RPD (%)	SW-BINN854		RPD (%)		SW-BINN854	RPD (%)	SW20-100	WS05-E	RPD (%)
Parameter	Units	Date 08/12/2020	08/12/2020		08/12/2020	08/12/2020		21/09/2020	21/09/2020		11/04/2020	11/04/2020		13/09/2019	13/09/2019	<u> </u>	08/12/2020	08/12/2020	
			1		1		1	1			0.058	0.055	2.65%	1.37	1.36	0.37%	1	1	+
Molybdenum Molybdenum (Filtered)	μg/L μg/L	-	-	-	-		-	-	-	-	0.058	0.055	2.65%	1.37	1.30	1.40%	-	-	-
Nickel	µg/L	-	-	-		-	-	-	-	-	1.11	1.17	2.63%	4.27	4.72	5.01%		-	
Nickel (Filtered)	µg/L	-	-	-	-	-	-	-	-		1.02	1.04	0.97%	2	1.97	0.76%		-	
Potassium	mg/L	-	-	-	-	-	-	-	-	-	0.455	0.452	0.33%	3.01	2.97	0.67%	-	-	-
Potassium (Filtered)	mg/L	-	-	-	-	-	-	-	-	-	0.453	0.457	0.44%	3.18	3.17	0.16%	-	-	-
Rubidium	µg/L	-	-	-	-	-	-	-	-	-	0.44	0.37	8.64%	3.34	3.48	2.05%	-	-	-
Rubidium (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	0.41	0.41	0.00%	3.2	3.3	1.54%	-	-	-
Selenium	µg/L	-	-	-	-	-	-	-	-	-	0.106	0.128	9.40%	0.084	0.111	13.85%	-	-	-
Selenium (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	0.059	0.073	10.61%	0.062	0.073	8.15%	-	-	-
Silicon	µg/L	-	-	-	-	-	-	-	-	-	830	780	3.11%	9070	9630	2.99%	-	-	-
Silicon (Filtered)	μg/L	-	-	-	-	-	-	-	-	-	721	719	0.14%	7860	7790	0.45%	-	-	-
Silver	µg/L	-	-	-	-	-	-	-	-	-	<0.01	<0.01	-	<0.01	<0.01	-	-	-	-
Silver (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	<0.01	<0.01	-	<0.01	<0.01	-	-	-	-
Sodium	mg/L	-	-	-	-	-	-	-	-	-	5.48	5.45	0.27%	82.7	79.9	1.72%	-	-	-
Sodium (Filtered)	mg/L	-	-	-	-	-	-	-	-	-	5.05	5.28	2.23%	92.7	94.6	1.01%	-	-	-
Strontium	µg/L	-	-	-	-	-	-	-	-	-	36.4	35.4	1.39%	219	219	0.00%	-	-	-
Strontium (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	37.7	38.5	1.05%	205	210	1.20%	-	-	-
Sulfur, elemental	µg/L	-	-	-	-	-	-	-	-	-	570	620	4.20%	1340	1250	3.47%	-	-	-
Sulfur, elemental (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	510	590	7.27%	1050	1240	8.30%	-	-	-
Tellurium	µg/L	-	-	-	-	-	-	-	-	-	<2	<2	-	<0.2	<0.2	-	-	-	-
Tellurium (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	<0.2	<0.2	-	<0.2	< 0.2	-	-	-	-
Thallium	µg/L	-	-	-	-	-	-	-	-	-	< 0.01	< 0.01	-	0.011	0.012	4.35%	-	-	-
Thallium (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	< 0.01	< 0.01	-	< 0.01	< 0.01	-	-	-	-
Thorium	µg/L	-	-	-	-	-	-	-	-	-	<0.1	<0.1	-	0.17	0.19	5.56%	-	-	-
Thorium (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	<0.1	<0.1	-	<0.1	<0.1	-	-	-	-
Tin Ti (Till I)	µg/L	-	-	-	-	-	-	-	-	-	<0.1	<0.1	-	<0.1	0.15	-	-	-	-
Tin (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	<0.1	< 0.1	-	<0.1	<0.1	-	-	-	-
Titanium	µg/L	-	-	-	-	-	-	-	-	-	9.08	8.48	3.42%	60.8	75.6	10.85%	-	-	-
Titanium (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	6.65	6.6	0.38%	0.33	0.37	5.71%	-	-	-
Tungsten Tungston (Filtered)	µg/L	-	-	-	-	-	-	-	-	-	<0.1	<0.1	-	<0.1	<0.1	-	-	-	-
Tungsten (Filtered)	µg/L	-	-	-		-	-	-	-	-		<0.1	- 1.89%	<0.1 0.289	<0.1 0.297	- 1.37%	-	-	-
Uranium Uranium (Filtered)	μg/L μg/L	-	-	-	-	-	-	-	-	-	0.027	0.026	0.00%	0.269	0.297	0.69%	-	-	
Vanadium	µg/L	-	-	-	-	-	-	-	-	-	1.08	1.06	0.00%	4.91	5.47	5.39%	-	-	-
Vanadium (Filtered)	µg/L		-	-		-	-	-	-	-	0.9	0.91	0.93%	<0.5	<0.5			-	-
Zinc	µg/L	-	-	-	-	-	-	-	-	-	7.5	6.2	9.49%	9.7	12.2	- 11.42%	-	-	-
Zinc (Filtered)	µg/L	-	-	-		-	-	-	-	-	10	9.2	4.17%	2.7	2.7	0.00%	-	-	-
Zirconium	µg/L	-	-	-	+ -	-	-	-	-		0.3	0.28	3.45%	0.91	1.04	6.67%	-	-	-
Zirconium (Filtered)	ug/L	-	-	-	-	-	-	-	-	-	0.27	0.20	3.57%	<0.2	<0.2	-	-	-	-
PHCs	Iµg/∟		_	_	_	_	_	_		_	0.27	0.25	0.0170	-0.2	-0.2		_	_	
Oil and grease	µg/L	-	-	-	-	-		-	-		<5000	<5000	-	<5000	<5000	-	-	-	-
PAH	II 5 -							•									•		
Acenaphthene	µg/L	-	-	-	-	-	-	-	-	-	<10	<10	-	<0.01	<0.01	-	-	-	-
Acenaphthylene	μg/L	-	-	-	-	-	-	-	-	-	<10	<10	-	<0.01	< 0.01	-	-	-	-
Acridine	μg/L	-	-	-	-	-	-	-	-	-	<10	<10	-	< 0.01	< 0.01	-	-	-	-
Anthracene	µg/L	-	-	-	-	-	-	-	-	-	<10	<10	-	< 0.01	< 0.01	-	-	-	-
Benzo(a)pyrene	µg/L	-	-	-	-	-	-	-	-	-	<5	<5	-	< 0.005	< 0.005	-	-	-	-
Benzo(b+j)fluoranthenes	µg/L	-	-	-	-	-	-	-	-	-	<10	<10	-	< 0.01	<0.01	-	-	-	-
Benzo(b+j+k)fluoranthene	µg/L	-	-	-	-	-	-	-	-	-	<15	<15	-	<0.015	<0.015	-	-	-	-
Benzo(g,h,i)perylene	µg/L	-	-	-	-	-	-	-	-	-	<10	<10	-	<0.01	<0.01	-	-	-	-
Benzo(k)fluoranthene	μg/L	-	-	-	-	-	-	-	-	-	<10	<10	-	<0.01	<0.01	-	-	-	-
Chrysene	μg/L	-	-	-	-	-	-	-	-	-	<10	<10	-	<0.01	<0.01	-	-	-	-
Dibenz(a,h)anthracene	μg/L	-	-	-	-	-	-	-	-	-	<5	<5	-	< 0.005	< 0.005	-	-	-	-
Fluoranthene	μg/L	-	-	-	-	-	-	-	-	-	<10	<10	-	<0.01	<0.01	-	-	-	-
Fluorene	µg/L	-	-	-	-	-	-	-	-	-	<10	<10	-	<0.01	<0.01	-	-	-	-
Indeno(1,2,3-cd)pyrene	μg/L	-	-	-	-	-	-	-	-	-	<10	<10	-	<0.01	<0.01	-	-	-	-
Methylnaphthalene, 1-	μg/L	-	-	-	-	-	-	-	-	-	<10	<10	-	<0.05	<0.05	-	-	-	-
Methylnaphthalene, 2-	µg/L	-	-	-	-	-	-	-	-	-	<10	<10	-	< 0.05	<0.05	-	-	-	-
Naphthalene	µg/L	-	-	-	-	-	-	-	-	-	<50	<50	-	< 0.05	<0.05	-	-	-	-
Phenanthrene	μg/L	-	-	-	-	-	-	-	-	-	<20	<20	-	<0.02	<0.02	-	-	-	-
Pyrene	μg/L	-	-	-	-	-	-	-	-	-	<10	<10	-	<0.01	<0.01	-	-	-	-
Quinoline	µg/L	-	-	-	-	-	-	-	-	-	<50	<50	-	<0.05	<0.05	-	-	-	-
Quinoinne													-						
iota																			
	CFU/100mL	-	-	-	-	-	-	-	-	-	<800	500	-	-	-	-	-	-	-

FIGURES

- Figure 1 Groundwater and Surface Water Sampling Locations
- Figure 2 Spatial Distribution of Bog Water Types

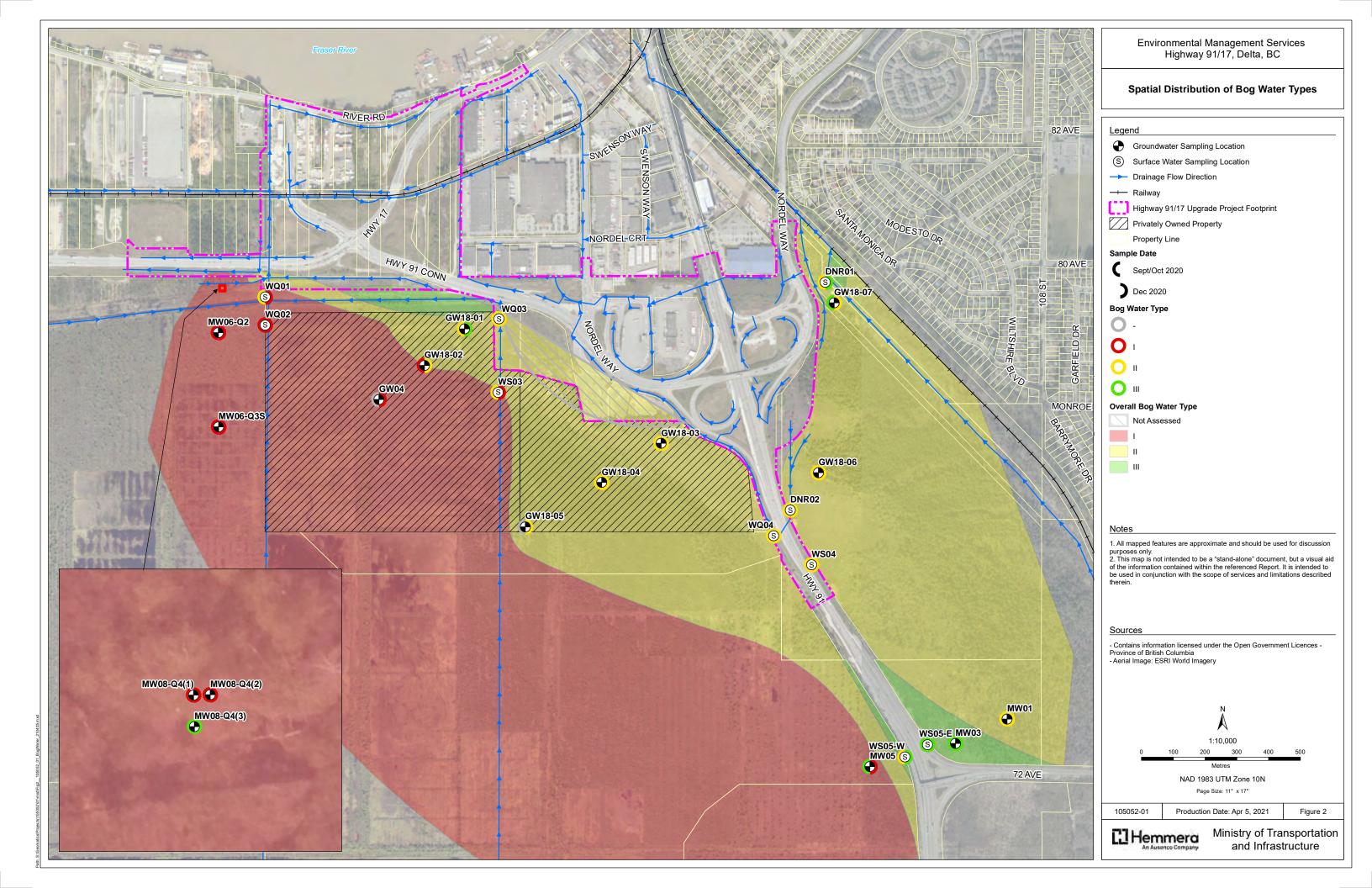


Photo 1 MW06-Q2, October 2020


Photo 2 MW06-Q3S, October 2020

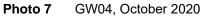

Photo 3 MW08-Q4, September 2020

Photo 8 GW18-01, October 2020

Photo 10 GW18-03, September 2020

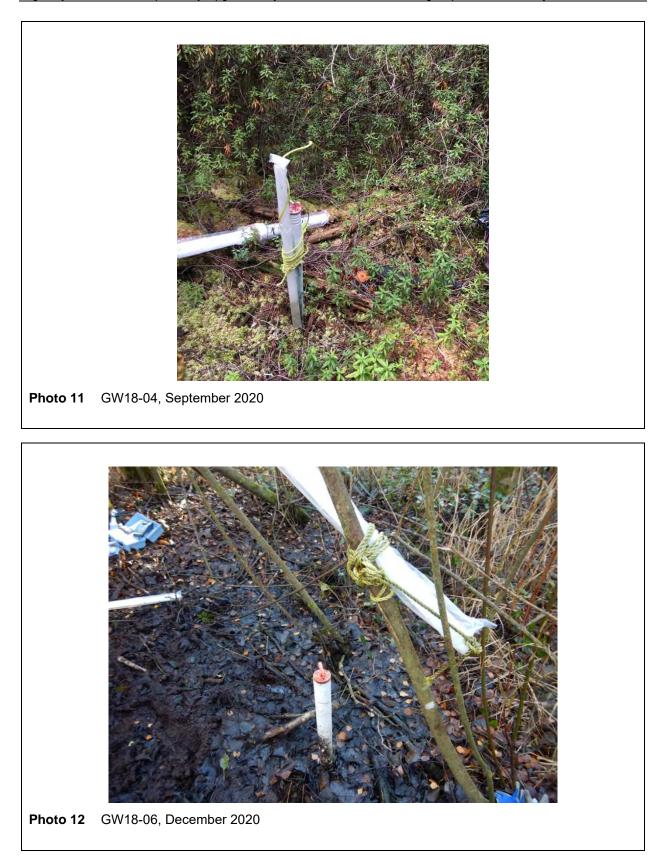


Photo 13 GW18-07, October 2020

Photo 15 WQ02, October 2020

Photo 17 WS01 located below access bridge, September 2020

Photo 18 WS02, December 2020

Photo 21 WS05-E (stilling well located at back of storm drain cover), September 2020

Photo 23 DNR01, December 2020

Not photographed: WQ03, GW18-05

APPENDIX B Sampling Event Summary

The following tables provide a summary of the sampling completed at the groundwater and surface water locations as well as the locations of continuous monitoring equipment (Leveloggers and Sondes).

Table A2020 Groundwater Sampling Summary

Well ID	Sampling Planned ²	Sampled in January (Hatfield)	Sampled in April (Hatfield)	Sampled in October (Hemmera)	Sampled in December (Hemmera)	Levelogger Expected (Y/N)	Levelogger Located ² (Y/N)
MW06-Q2	Y	N	N	Y	Y	Y	Y
MW06-Q3S	Y	N	N	Y	Y	Y	Y
MW08-Q4(1)	Y	N	N	Y	Y	Y	Y
MW08-Q4(2)	Y	N	N	Y	Y	N	Ν
MW08-Q4(3)	Y	N	N	Y	Y	Y	Y
MW01	Y	N	N	Y	Y	Y	Y
MW03	Y	N	N	Y	Y	Y	Y
MW05	Y	N	N	Y	Y	Y	Y
GW04	Y	N	N	N	Y	Y	Y
GW18-01	Y	N	N	Y	Y	Y	Y
GW18-02	Y	N	N	Y	Y	Y	Y
GW18-03	Y	N	N	Y	N	Y	Y
GW18-04	Y	N	N	Y	Y	Y	Y
GW18-05	Y	N	N	N	Y	Y	Y
GW18-06	Y	N	N	Y	Y	Y	Y
GW18-07 ¹	Y	N	N	Y	Y	Y	Ν

Notes:

^{1.} In addition to a Levelogger, GW18-07 also had a Barologger installed to measure atmospheric pressure changes.

^{2.} Located by Hemmera during October or December field events.

Table B Surface Water 2020 Sampling Summary

Station ID	Sampling Planned ¹	Sept 2019 (Hatfield)	April 2020 (Hatfield)	Sept/ October 2020 (Hemmera)	December 2020 (Hemmera)	Levelogger Expected (Y/N)	Levelogger Located ³ (Y/N)	Water Quality Sonde Expected (Y/N)	Sonde Located/ Deployed (Y/N)
WQ01	Y	N	Ν	Y	Y	Y	Y	Y	N
WQ02	Y	N	Ν	Y	Y	Y	Y	Y	N
WQ03	Y	N	Ν	Y	Y	Y	Y	Y	N
WQ04	Y	N	Ν	Y	Y	Y	Y	Y	N
WS01	Y	Y	Y	N	Y	Y	Y	N	-
WS02	Y	Y	Y	N	Y	Y	Y	N	-
WS03	Y	N	Ν	Y	Y	Y	Y	N	-
WS04	Y	N	Ν	Y	Y	Y	Y	N	-
WS05-E	Y	N	Ν	Y	Y	Y	Y	N	-
WS05-W	Y	N	Ν	Y	Y	Y	Y	N	-
DNR01	Y	N	Ν	Y	Y	-	-	-	-
DNR02	Y	N	Ν	Y	Y	-	-	-	-

Notes:

^{1.} All coordinates are shown in NAD 83 UTM Zone 10.

^{2.} There are no stilling wells at DNR01 and DNR02 and therefore Leveloggers cannot be installed at these locations.

^{3.} Located by Hemmera during October or December field events.

APPENDIX C Laboratory Certificates of Analysis

HATFIELD CONSULTANTS ATTN: Paul Kobler 200-850 Harbourside Drive North Vancouver BC V7P 0A3 Date Received:11-SEP-19Report Date:24-SEP-19 10:27 (MT)Version:FINAL

Client Phone: 604-926-3261

Certificate of Analysis

Lab Work Order #: L2345591

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED BINN8545 17-763289

Brent Mack, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2345591 CONTD.... PAGE 2 of 8 24-SEP-19 10:27 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2345591-1 SW 11-SEP-19 09:30 SW-BINN8545- 11092019-BS-01	L2345591-2 SW 11-SEP-19 09:30 SW-BINN8545- 11092019-BS-02	L2345591-3 SW 11-SEP-19 12:30 SW-BINN8545- 11092019-BS-03	
Grouping	Analyte				
WATER					
Physical Tests	Colour, True (CU)	36.1	36.3	125	
	Conductivity (uS/cm)	721	724	205	
	Hardness (as CaCO3) (mg/L)	129	132	77.6	
	рН (рН)	8.15	8.13	7.88	
	Salinity (psu)	<1.0	<1.0	<1.0	
	Total Suspended Solids (mg/L)	54.4	49.0	<3.0	
	Total Dissolved Solids (mg/L)	437	432	156	
	Turbidity (NTU)	74.5	66.0	10.3	
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	135	139	57.8	
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	
	Alkalinity, Total (as CaCO3) (mg/L)	135	139	57.8	
	Bromide (Br) (mg/L)	<0.25	<0.25	<0.050	
	Chloride (Cl) (mg/L)	147	147	11.4	
	Fluoride (F) (mg/L)	<0.10	<0.10	0.050	
	Nitrate (as N) (mg/L)	DLDS <0.025 DLDS	<0.025	0.0436	
	Nitrite (as N) (mg/L)	<0.0050 DLDS	<0.0050 DLDS	0.0030	
	Sulfate (SO4) (mg/L)	<1.5	<1.5	27.5	
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	11.9	12.1	11.9	
	Total Organic Carbon (mg/L)	13.4	15.7	12.0	
Bacteriological Tests	Coliform Bacteria - Fecal (CFU/100mL)	41	42	106	
	Coliform Bacteria - Total (CFU/100mL)	MBER 15300	MBER 11600	5900	
Total Metals	Aluminum (Al)-Total (mg/L)	1.59	1.88	0.165	
	Antimony (Sb)-Total (mg/L)	0.00019	0.00020	0.00013	
	Arsenic (As)-Total (mg/L)	0.00137	0.00144	0.00154	
	Barium (Ba)-Total (mg/L)	0.0970	0.100	0.0223	
	Beryllium (Be)-Total (mg/L)	<0.00010	<0.00010	<0.00010	
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	
	Boron (B)-Total (mg/L)	0.029	0.029	0.019	
	Cadmium (Cd)-Total (mg/L)	0.0000432	0.0000468	0.0000115	
	Calcium (Ca)-Total (mg/L)	35.2	34.8	22.1	
	Cesium (Cs)-Total (mg/L)	0.000125	0.000138	0.000015	
	Chromium (Cr)-Total (mg/L)	0.00348	0.00404	0.00078	
	Cobalt (Co)-Total (mg/L)	0.00145	0.00157	0.00024	
	Copper (Cu)-Total (mg/L)	0.00368	0.00416	0.00135	
	Iron (Fe)-Total (mg/L)	5.72	6.29	2.06	

L2345591 CONTD.... PAGE 3 of 8 24-SEP-19 10:27 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2345591-1 SW 11-SEP-19 09:30 SW-BINN8545- 11092019-BS-01	L2345591-2 SW 11-SEP-19 09:30 SW-BINN8545- 11092019-BS-02	L2345591-3 SW 11-SEP-19 12:30 SW-BINN8545- 11092019-BS-03	
Grouping	Analyte				
WATER					
Total Metals	Lead (Pb)-Total (mg/L)	0.000559	0.000674	0.000342	
	Lithium (Li)-Total (mg/L)	0.0035	0.0039	0.0012	
	Magnesium (Mg)-Total (mg/L)	10.8	10.3	5.77	
	Manganese (Mn)-Total (mg/L)	2.11	2.08	0.163	
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	
	Molybdenum (Mo)-Total (mg/L)	0.00137	0.00136	0.000711	
	Nickel (Ni)-Total (mg/L)	0.00427	0.00472	0.00112	
	Phosphorus (P)-Total (mg/L)	<0.050	0.058	<0.050	
	Potassium (K)-Total (mg/L)	3.01	2.97	1.20	
	Rubidium (Rb)-Total (mg/L)	0.00334	0.00348	0.00135	
	Selenium (Se)-Total (mg/L)	0.000084	0.000111	0.000082	
	Silicon (Si)-Total (mg/L)	9.07	9.63	3.87	
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	
	Sodium (Na)-Total (mg/L)	82.7	79.9	9.83	
	Strontium (Sr)-Total (mg/L)	0.219	0.219	0.129	
	Sulfur (S)-Total (mg/L)	1.34	1.25	2.64	
	Tellurium (Te)-Total (mg/L)	<0.00020	<0.00020	<0.00020	
	Thallium (TI)-Total (mg/L)	0.000011	0.000012	<0.000010	
	Thorium (Th)-Total (mg/L)	0.00017	0.00019	<0.00010	
	Tin (Sn)-Total (mg/L)	<0.00010	0.00015	0.00011	
	Titanium (Ti)-Total (mg/L)	0.0608	0.0756	0.00747	
	Tungsten (W)-Total (mg/L)	<0.00010	<0.00010	<0.00010	
	Uranium (U)-Total (mg/L)	0.000289	0.000297	0.000156	
	Vanadium (V)-Total (mg/L)	0.00491	0.00547	0.00109	
	Zinc (Zn)-Total (mg/L)	0.0097	0.0122	<0.0030	
	Zirconium (Zr)-Total (mg/L)	0.00091	0.00104	0.00023	
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	
	Aluminum (Al)-Dissolved (mg/L)	0.0085	0.0087	0.0617	
	Antimony (Sb)-Dissolved (mg/L)	0.00012	0.00013	0.00011	
	Arsenic (As)-Dissolved (mg/L)	0.00076	0.00077	0.00130	
	Barium (Ba)-Dissolved (mg/L)	0.0882	0.0880	0.0218	
	Beryllium (Be)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	
	Boron (B)-Dissolved (mg/L)	0.034	0.033	0.020	
	Cadmium (Cd)-Dissolved (mg/L)	0.0000122	0.0000143	0.0000072	
	Calcium (Ca)-Dissolved (mg/L)	33.7	34.6	21.3	

L2345591 CONTD.... PAGE 4 of 8 24-SEP-19 10:27 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2345591-1 SW 11-SEP-19 09:30 SW-BINN8545- 11092019-BS-01	L2345591-2 SW 11-SEP-19 09:30 SW-BINN8545- 11092019-BS-02	L2345591-3 SW 11-SEP-19 12:30 SW-BINN8545- 11092019-BS-03	
Grouping	Analyte				
WATER					
Dissolved Metals	Cesium (Cs)-Dissolved (mg/L)	0.000033	0.000036	0.000010	
	Chromium (Cr)-Dissolved (mg/L)	0.00033	0.00038	0.00065	
	Cobalt (Co)-Dissolved (mg/L)	0.00092	0.00091	0.00018	
	Copper (Cu)-Dissolved (mg/L)	0.00178	0.00108	0.00111	
	Iron (Fe)-Dissolved (mg/L)	0.321	0.292	1.31	
	Lead (Pb)-Dissolved (mg/L)	<0.000050	<0.000050	0.000152	
	Lithium (Li)-Dissolved (mg/L)	0.0032	0.0032	0.0012	
	Magnesium (Mg)-Dissolved (mg/L)	11.0	11.1	5.93	
	Manganese (Mn)-Dissolved (mg/L)	2.42	2.48	0.170	
	Mercury (Hg)-Dissolved (mg/L)	_{DLM}	<0.0000050	<0.000050	
	Molybdenum (Mo)-Dissolved (mg/L)	0.00145	0.00141	0.000690	
	Nickel (Ni)-Dissolved (mg/L)	0.00200	0.00197	0.00112	
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050	<0.050	
	Potassium (K)-Dissolved (mg/L)	3.18	3.17	1.26	
	Rubidium (Rb)-Dissolved (mg/L)	0.00320	0.00330	0.00130	
	Selenium (Se)-Dissolved (mg/L)	0.000062	0.000073	0.000091	
	Silicon (Si)-Dissolved (mg/L)	7.86	7.79	4.26	
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	
	Sodium (Na)-Dissolved (mg/L)	92.7	94.6	10.3	
	Strontium (Sr)-Dissolved (mg/L)	0.205	0.210	0.123	
	Sulfur (S)-Dissolved (mg/L)	1.05	1.24	2.84	
	Tellurium (Te)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	
	Thallium (TI)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	
	Thorium (Th)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	
	Titanium (Ti)-Dissolved (mg/L)	0.00033	0.00037	0.00307	
	Tungsten (W)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	
	Uranium (U)-Dissolved (mg/L)	0.000218	0.000215	0.000143	
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	0.00067	
	Zinc (Zn)-Dissolved (mg/L)	0.0027	0.0027	0.0014	
	Zirconium (Zr)-Dissolved (mg/L)	<0.00020	<0.00020	0.00022	
Aggregate Organics	BOD (mg/L)	3.0	2.7	<2.0	
	COD (mg/L)	39	47	37	
	Oil and Grease (mg/L)	<5.0	<5.0	<5.0	
	Tannin & Lignin (mg/L)	1.42	1.54	2.86	
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000010	<0.000010	0.000021	

L2345591 CONTD.... PAGE 5 of 8 24-SEP-19 10:27 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2345591-1 SW 11-SEP-19 09:30 SW-BINN8545- 11092019-BS-01	L2345591-2 SW 11-SEP-19 09:30 SW-BINN8545- 11092019-BS-02	L2345591-3 SW 11-SEP-19 12:30 SW-BINN8545- 11092019-BS-03	
Grouping	Analyte				
WATER					
Polycyclic Aromatic Hydrocarbons	Acenaphthylene (mg/L)	<0.000010	<0.000010	<0.000010	
	Acridine (mg/L)	<0.000010	<0.000010	<0.000010	
	Anthracene (mg/L)	<0.000010	<0.000010	<0.000010	
	Benz(a)anthracene (mg/L)	<0.000010	<0.000010	<0.000010	
	Benzo(a)pyrene (mg/L)	<0.0000050	<0.0000050	<0.0000050	
	Benzo(b&j)fluoranthene (mg/L)	<0.000010	<0.000010	<0.000010	
	Benzo(b+j+k)fluoranthene (mg/L)	<0.000015	<0.000015	<0.000015	
	Benzo(g,h,i)perylene (mg/L)	<0.000010	<0.000010	<0.000010	
	Benzo(k)fluoranthene (mg/L)	<0.000010	<0.000010	<0.000010	
	Chrysene (mg/L)	<0.000010	<0.000010	<0.000010	
	Dibenz(a,h)anthracene (mg/L)	<0.0000050	<0.0000050	<0.0000050	
	Fluoranthene (mg/L)	<0.000010	<0.000010	0.000014	
	Fluorene (mg/L)	<0.000010	<0.000010	0.000012	
	Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000010	<0.000010	<0.000010	
	1-Methylnaphthalene (mg/L)	<0.000050	<0.000050	<0.000050	
	2-Methylnaphthalene (mg/L)	<0.000050	<0.000050	<0.000050	
	Naphthalene (mg/L)	<0.000050	<0.000050	<0.000050	
	Phenanthrene (mg/L)	<0.000020	<0.000020	0.000021	
	Pyrene (mg/L)	<0.000010	<0.000010	0.000011	
	Quinoline (mg/L)	<0.000050	<0.000050	<0.000050	
	Surrogate: Acridine d9 (%)	121.8	129.9	100.3	
	Surrogate: Chrysene d12 (%)	112.7	118.1	99.3	
	Surrogate: Naphthalene d8 (%)	103.1	107.9	93.4	
	Surrogate: Phenanthrene d10 (%)	118.3	126.5	106.6	

Reference Information

L2345591 CONTD.... PAGE 6 of 8 24-SEP-19 10:27 (MT) Version: FINAL

QC Samples with Qualifiers & Comments:

•				
QC Type Descri	ption	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike		Barium (Ba)-Dissolved	MS-B	L2345591-1, -2, -3
Matrix Spike		Calcium (Ca)-Dissolved	MS-B	L2345591-1, -2, -3
Matrix Spike		Magnesium (Mg)-Dissolved	MS-B	L2345591-1, -2, -3
Matrix Spike		Manganese (Mn)-Dissolved	MS-B	L2345591-1, -2, -3
Matrix Spike		Sodium (Na)-Dissolved	MS-B	L2345591-1, -2, -3
Matrix Spike		Strontium (Sr)-Dissolved	MS-B	L2345591-1, -2, -3
Matrix Spike		Barium (Ba)-Total	MS-B	L2345591-1, -2, -3
Matrix Spike		Calcium (Ca)-Total	MS-B	L2345591-1, -2, -3
Matrix Spike		Magnesium (Mg)-Total	MS-B	L2345591-1, -2, -3
Matrix Spike		Sodium (Na)-Total	MS-B	L2345591-1, -2, -3
Matrix Spike		Strontium (Sr)-Total	MS-B	L2345591-1, -2, -3
Matrix Spike		Sulfur (S)-Total	MS-B	L2345591-1, -2, -3
Qualifiers for l	ndividual Parameters	Listed:		
Qualifier	Description			
DLDS	Detection Limit Raise	d: Dilution required due to high Dissolv	ed Solids / Electi	rical Conductivity.
DLM	Detection Limit Adjus	ted due to sample matrix effects (e.g. c	chemical interfere	ence, colour, turbidity).
MBER	Estimated Result (Mid	crobiological test). Colony count outsid	le ideal range. R	esult calculated from most nearly acceptable value.
MS-B	Matrix Spike recovery	v could not be accurately calculated due	e to high analyte	background in sample.
est Method Re	eferences:			
LS Test Code	Matrix	Test Description		Method Reference**
LK-TITR-VA	Water	Alkalinity Species by Titration		APHA 2320 Alkalinity
				otal alkalinity is determined by potentiometric titration to a hthalein alkalinity and total alkalinity values.
OD5-VA	Water	Biochemical Oxygen Demand- 5 day	у	APHA 5210 B- BIOCHEMICAL OXYGEN DEMAND
oxygen demand dissolved oxyge	I (BOD) are determined en meter. Dissolved BO	d by diluting and incubating a sample fo	or a specified time g the sample thro	cal Oxygen Demand (BOD)". All forms of biochemical e period, and measuring the oxygen depletion using a bugh a glass fibre filter prior to dilution. Carbonaceous ibation.
R-L-IC-N-VA	Water	Bromide in Water by IC (Low Level)		EPA 300.1 (mod)
Inorganic anion	s are analyzed by Ion C	Chromatography with conductivity and/c	or UV detection.	
ARBONS-DOC	-VA Water	Dissolved organic carbon by combu	stion	APHA 5310B
		edures adapted from APHA Method 53 [.] ough a 0.45 micron membrane filter pric		c Carbon (TOC)". Dissolved carbon (DOC) fractions are
ARBONS-TOC	-VA Water	Total organic carbon by combustion	I	APHA 5310B TOTAL ORGANIC CARBON (TOC)
This analysis is	carried out using proce	edures adapted from APHA Method 53	10 "Total Organic	c Carbon (TOC)".
L-IC-N-VA	Water	Chloride in Water by IC		EPA 300.1 (mod)
Inorganic anion	s are analyzed by Ion C	Chromatography with conductivity and/c	or UV detection.	
OD-COL-VA	Water	Chemical Oxygen Demand by Color	rimetric	APHA 5220 D. CHEMICAL OXYGEN DEMAND
	carried out using proce		20 "Chemical Ox	ygen Demand (COD)". Chemical oxygen demand is
OLOUR-TRUE-	VA Water	Colour (True) by Spectrometer		BCMOE Colour Single Wavelength
-				

This analysis is carried out using procedures adapted from British Columbia Environmental Manual "Colour- Single Wavelength." Colour (True Colour) is determined by filtering a sample through a 0.45 micron membrane filter followed by analysis of the filtrate using the platinum-cobalt colourimetric method. Colour measurements can be highly pH dependent, and apply to the pH of the sample as received (at time of testing), without pH adjustment.

Colour measurements can be highly pH dependent, and apply to the pH of the sample as received (at time of testing), without pH adjustment. Concurrent measurement of sample pH is recommended.

EC-PCT-VA Water Conductivity (Automated)

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

EC-SCREEN-VA

Water Conductivity Screen (Internal Use Only)

APHA 2510

APHA 2510 Auto. Conduc.

Reference Information

Qualitative analysis of cond	ductivity whe	re required during preparation of other tests - e.g. TDS,	metals, etc.
F-IC-N-VA	Water	Fluoride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion C	hromatography with conductivity and/or UV detection.	
FCOLI-MF-ENV-VA	Water	Fecal coliform by membrane filtration	APHA METHOD 9222
Coliform bacteria is enume involves an initial 24 hour i	erated by cult ncubation of	dures adapted from APHA Method 9222 "Membrane Fil suring and colony counting. A known sample volume is f the filter with the appropriate growth medium, positive r coliform. This method is used for non-turbid water with	filtered through a 0.45 micron membrane filter. The test results require further testing (up to an additional 48
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
		ss) is calculated from the sum of Calcium and Magnesi icentrations are preferentially used for the hardness cal	
HG-D-CVAA-VA	Water	Diss. Mercury in Water by CVAAS or CVAFS	APHA 3030B/EPA 1631E (mod)
Water samples are filtered with stannous chloride, and		preserved with hydrochloric acid, then undergo a cold-oxy y CVAAS or CVAFS.	kidation using bromine monochloride prior to reduction
HG-T-CVAA-VA	Water	Total Mercury in Water by CVAAS or CVAFS	EPA 1631E (mod)
Water samples undergo a	cold-oxidatio	n using bromine monochloride prior to reduction with st	annous chloride, and analyzed by CVAAS or CVAFS.
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	(0.45 um), p	reserved with nitric acid, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulf	ur): Sulfide a	nd volatile sulfur species may not be recovered by this	method.
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are digeste	d with nitric	and hydrochloric acids, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulf	ur): Sulfide a	nd volatile sulfur species may not be recovered by this	method.
NO2-L-IC-N-VA	Water	Nitrite in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion C	hromatography with conductivity and/or UV detection.	
NO3-L-IC-N-VA	Water	Nitrate in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analy	zed by lon C	hromatography with conductivity and/or UV detection.	
OGG-SF-VA	Water	Oil & Grease by Gravimetric	BCMOE (2010), EPA1664A
The procedure involves an determine Oil and Grease.	extraction of	f the entire water sample with hexane. This extract is the	nen evaporated to dryness, and the residue weighed to
PAH-ME-MS-VA	Water	PAHs in Water	EPA 3511/8270D (mod)
		hexane micro-extraction technique, with analysis by GC j)fluoranthene is reported as part of the benzo(b)fluoran	
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
electrode		dures adapted from APHA Method 4500-H "pH Value".	The pH is determined in the laboratory using a pH
It is recommended that this	•		
SALINITY-CALC-VA	Water	Salinity by conductivity meter	APHA 2520B
		alinity unit) to indicate that salinity values are derived from	s parameter that is roughly equivalent to grams per Litre. om the Practical Salinity Scale.
SO4-IC-N-VA	Water	Sulfate in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	zed by lon C	hromatography with conductivity and/or UV detection.	
TAN,LIG-WT	Water	Tannins & Lignins	APHA 5550 B-Colorimetry
hydroxyl groups that react of tannin and lignin concen	with Folin ph trations. Ho	dures adapted from APHA Method 5550 B. "Tannin & I enol reagent (tungstophosphoric and molybdophosphor wever, the reaction is not specific for lignin or tannin, no terials, both organic and inorganic, respond similarly.	ric acids) to form a blue color suitable for the estimation

in as much as many other reducing materials, both organic and inorganic, respond similarly.

Interferences: Any substance able to reduce Folin phenol reagent will produce a false positive response. Organic chemicals known to interfere include hydroxylated aromatics, proteins, humic substances, nucleic acid bases, fructose, and amines. Inorganic substances known to interfere include iron

Reference Information

(II), manganese (II), nitrite, cyanide, bisulfite, sulfite, sulfide, hydrazine, and hydroxylamine hydrochloride. Both 2 mg ferrous iron/L and 125 mg sodium sulfite/L individually produce a color equivalent to 1 mg tannic acid/L.

TCOLI-MF-ENV-VA

Total coliform by membrane filtration

This analysis is carried out using procedures adapted from APHA Method 9222 "Membrane Filter Technique for Members of the Coliform Group". Coliform bacteria is enumerated by culturing and colony counting. A known sample volume is filtered through a 0.45 micron membrane filter. The test involves an initial 24 hour incubation of the filter with the appropriate growth medium, positive results require further testing (up to an additional 48 hours) to confirm and quantify the total coliform. This method is used for non-turbid water with a low background bacteria level.

TDS-VA

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

TSS-VA

Total Suspended Solids by Gravimetric APHA 2540 D - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.

TURBIDITY-VA Water Turbidity by Meter

Water

Water

Water

APHA 2130 Turbidity

APHA METHOD 9222

APHA 2540 C - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Total Dissolved Solids by Gravimetric

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

17-763289

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Chain of Custody (COC) / Analytical Request Form L234550	Page 1 of (
Report To Contact and company name below will appear on the final report Report Format / Distribution	ntact your AM to confirm all E&P TATs (surcharges may apply)
Company: Hattiers Consultants Select Report Format: D PDF D EXCEL EDD (DIGITAL)	Regular IRJ
Contact: Paul Kobjer Quality Control (QC) Report with Report Y YES NO	
Phone: 60H - 926 - 326 Compare Results to Criteria on Report - provide details below if box checked	
	3 day [P3-25%] [Same Day, Weekend or Statutory holiday [E2 -200%]
Street: 200-850 Horbourside Dr. Email 1 or Fax PKobler@hattic ldgroup.com	Date and Time Required for all E&P TATs: dd-mmm-yy hh:mm
City/Province: North Vancouver / BC Email 2 b Stevens@hatfieldgroup-com	For tests that can not be performed according to the service level selected, you will be contacted.
Postal Code: V7P 0P3 Email 3	Analysis Request
Invoice To Same as Report To XES NO Invoice Distribution	Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below
Copy of Invoice with Report YES NO Select Invoice Distribution: K EMAIL HATL FAX	
Company:Email 1 cr Fax SAME AS ABOVE	╽╩┟ ╦╎╶╎╴╎╵╎╶╢╶╎╶┼╸┥╸┥╸┥╸┥╺┥ ╶ ┤ ╣╽
	AINE Cara Cara Cara Cara Cara Cara Cara Car
Project Information Oil and Gas Required Fields (client use)	ONTA NO ON Special ON ON D Special ON D Special ON D Special ON D Special ON D Special D Spec
ALS Account # / Quote #: 0.69520 AFE/Cost Center: PO#	NON STATES A STATES ON SOL
Job #: 3 IVN 8545 Major/Minor Code: Routing Code:	
PO / AFE: Requisitioner:	AND 8 BY C T S S S S S S S S S S S S S S S S S S
LSD: Location:	
ALS Lab Work Order # (lab use only): ALS Contact: Sampler:	[몇[2천년] 정수] 이 안 된 그 것 ㅋ ㅋ ㅋ ㅋ ㅋ 〓 ㅋ ㅋ
ALS Sample # Date Date Date	
ALS sample w Sample fille (lab use only) (This description will appear on the report) (dd-mmm-yy) (hh:mm)	
SW-BINN85215-11092019-BS-02 11-Sep-19 09:30 SW	
SW-BWN8545 11092019-85-03 11-Sep-A 12:30 SW	
	<u>┤</u> ╶┙┥┈┥╴┤╴┤╌┥╴╎╴┤╴┤╺╍┊╴┤╴╷┲╸╸
	┊┈╶┾╾┅╎╴╎╴╎╶╢╌┉┥╌╸╎╶╎╶┥╍┉╎╍╸┨╶╸┨╼╌┨
	┼╍┿╴┾╶┼╶┾┉┿┈┿╴┾╍┼╴╆╴┼╶┼╺┼╺┽╺╋╺╋╶━╸╊╴┨
	SAMPLE CONDITION AS RECEIVED (lab use only)
Drinking Water (DW) Samples ¹ (client use) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only)	
YES X NO	Ice Packs Tice Cubes Custody seal intact Yes No Custody seal intact
preserved total nutrients.	
Are samples taken from a Regulated DW System? VES X NO Are samples for human consumption/use? I VES X NO Filtered and preserved dissolved nutrients. Preserved total nutrients. Filtered dissolved wetals and Mercury.	INIITIAL COOLER TEMPERATURES *C FINAL COOLER TEMPERATURES *C
SHIPMENT RECEPTION (lab use only)	FINAL SHIPMENT RECEPTION (lab use only)
	Time: Received by: H A Date: 9 ((Time: 13 2 P

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

CERTIFICATE OF ANALYSIS

Work Order	× VA20A4628	Page	: 1 of 8
Client	: Hatfield Consultants LLP	Laboratory	: Vancouver - Environmental
Contact	: Paul Kobler	Account Manager	: Brent Mack
Address	: 200 - 850 Harbourside Drive	Address	: 8081 Lougheed Highway
	North Vancouver BC Canada V7P 0A3		Burnaby BC Canada V5A 1W9
Telephone	: 604 926 3261	Telephone	: +1 604 253 4188
Project	: BINN8545	Date Samples Received	: 09-Apr-2020 12:57
PO	:	Date Analysis Commenced	: 09-Apr-2020
C-O-C number	: 17-843602	Issue Date	: 17-Apr-2020 09:52
Sampler	:		
Site	:		
Quote number	: Q69520		
No. of samples received	: 3		
No. of samples analysed	: 3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Aaron Yu	Laboratory Analyst	Metals, Burnaby, British Columbia
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia
Brieanna Allen	Department Manager - Organics	Organics, Burnaby, British Columbia
Bruna Botti	Analyst	Inorganics - Water Quality, Burnaby, British Columbia
Caitlin Macey	Team Leader - Inorganics	Inorganics - Water Quality, Burnaby, British Columbia
Caitlin Macey	Team Leader - Inorganics	Microbiology, Burnaby, British Columbia
Evan Ben-Oliel	Metal Analyst	Metals, Burnaby, British Columbia
Jon Fisher	Department Manager - Inorganics	Inorganics, Waterloo, Ontario
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics - Water Quality, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Inorganics - Water Quality, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics - Water Quality, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
µg/L	micrograms per litre
µS/cm	Microsiemens per centimetre
CFU/100mL	colony forming units per 100 mL
CU	colour units
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units
psu	practical salinity units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in reports identified as "Preliminary Report" are considered authorized for use.

Qualifiers

Qualifier	Description
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DTC	Dissolved concentration exceeds total. Results were confirmed by re-analysis.
RRV	Reported result verified by repeat analysis.

Sub-Matrix: Surface Water			Ci	lient sample ID	SW-BINN8545-0	SW-BINN8545-0	SW-BINN8545-0	
(Matrix: Water)					9042020-BS-01	9042020-BS-02	9042020-BS-03	
			Client sampli	ing date / time	09-Apr-2020 08:45	09-Apr-2020 10:45	09-Apr-2020 10:45	
Analyte	CAS Number	Method	LOR	Unit	VA20A4628-001	VA20A4628-002	VA20A4628-003	
					Result	Result	Result	
Physical Tests								
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	69.9	12.3	12.3	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	
alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	69.9	12.3	12.3	
colour, true		E329	5.0	CU	16.0	581	589	
conductivity		E100	2.0	µS/cm	162	61.0 ^{RRV}	60.3 RRV	
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	69.2	23.6	23.2	
рН		E108	0.10	pH units	7.83	6.77	6.83	
salinity		EC100S	1.0	psu	<1.0	<1.0	<1.0	
solids, total dissolved [TDS]		E162	10	mg/L	104	107	108	
solids, total suspended [TSS]		E160-H	3.0	mg/L	16.3	<3.0	<3.0	
turbidity		E121	0.10	NTU	15.0	1.23	1.39	
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	64.3	23.0	23.1	
Anions and Nutrients								
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050	
chloride	16887-00-6	E235.Cl	0.50	mg/L	7.04	7.78	7.81	
fluoride	16984-48-8		0.020	mg/L	0.046	0.030	0.030	
nitrate (as N)		E235.NO3-L	0.0050	mg/L	0.122	0.0108	0.0087	
nitrite (as N)		E235.NO2-L	0.0010	mg/L	0.0023	<0.0010	<0.0010	
sulfate (as SO4)	14808-79-8		0.30	mg/L	10.6	0.75	0.77	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	3.38	35.7	39.1	
carbon, total organic [TOC]		E355-L	0.50	mg/L	3.36	40.1	41.8	
Bacteriological Tests								
coliforms, thermotolerant [fecal]		E012.FC	1	CFU/100mL	29	<1	5	
coliforms, total		E012.TC	1	CFU/100mL	500	800	500	
Total Metals								
aluminum, total	7429-90-5		0.0030	mg/L	0.587	0.326	0.314	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	0.00014	0.00018	

Sub-Matrix: Surface Water		Cli	ent sample ID	SW-BINN8545-0	SW-BINN8545-0	SW-BINN8545-0	
(Matrix: Water)				9042020-BS-01	9042020-BS-02	9042020-BS-03	
		Client samplir	ng date / time	09-Apr-2020 08:45	09-Apr-2020 10:45	09-Apr-2020 10:45	
Analyte	CAS Number Method	LOR	Unit	VA20A4628-001	VA20A4628-002	VA20A4628-003	
				Result	Result	Result	
Total Metals							
arsenic, total	7440-38-2 E420	0.00010	mg/L	0.00068	0.00167	0.00170	
barium, total	7440-39-3 E420	0.00010	mg/L	0.0232	0.00851	0.00806	
beryllium, total	7440-41-7 E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	
bismuth, total	7440-69-9 E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8 E420	0.010	mg/L	<0.010	0.011	0.011	
cadmium, total	7440-43-9 E420	0.0000050	mg/L	0.0000257	0.0000171	0.0000138	
calcium, total	7440-70-2 E420	0.050	mg/L	18.8	6.39	6.28	
cesium, total	7440-46-2 E420	0.000010	mg/L	0.000044	0.000012	0.000013	
chromium, total	7440-47-3 E420.Cr-L	0.00010	mg/L	0.00131	0.00091	0.00085	
cobalt, total	7440-48-4 E420	0.00010	mg/L	0.00052	0.00040	0.00039	
copper, total	7440-50-8 E420	0.00050	mg/L	0.00208	0.00219	0.00214	
iron, total	7439-89-6 E420	0.010	mg/L	1.11	1.25	1.23	
lead, total	7439-92-1 E420	0.000050	mg/L	0.000277	0.00151	0.00150	
lithium, total	7439-93-2 E420	0.0010	mg/L	0.0013	<0.0010	<0.0010	
magnesium, total	7439-95-4 E420	0.0050	mg/L	5.39	1.85	1.84	
manganese, total	7439-96-5 E420	0.00010	mg/L	0.133	0.164	0.163	
mercury, total	7439-97-6 E508	0.0000050	mg/L	<0.000050	0.0000061	0.0000058	
molybdenum, total	7439-98-7 E420	0.000050	mg/L	0.000858	0.000058	0.000055	
nickel, total	7440-02-0 E420	0.00050	mg/L	0.00210	0.00111	0.00117	
phosphorus, total	7723-14-0 E420	0.050	mg/L	0.059	<0.050	<0.050	
potassium, total	7440-09-7 E420	0.050	mg/L	1.17	0.455	0.452	
rubidium, total	7440-17-7 E420	0.00020	mg/L	0.00138	0.00044	0.00037	
selenium, total	7782-49-2 E420	0.000050	mg/L	0.000105	0.000106	0.000128	
silicon, total	7440-21-3 E420	0.10	mg/L	4.67	0.83	0.78	
silver, total	7440-22-4 E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, total	7440-23-5 E420	0.050	mg/L	7.26	5.48	5.45	
strontium, total	7440-24-6 E420	0.00020	mg/L	0.0979	0.0364	0.0354	
sulfur, total	7704-34-9 E420	0.50	mg/L	3.85	0.57	0.62	
tellurium, total	13494-80-9 E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
thallium, total	7440-28-0 E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
thorium, total	7440-29-1 E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
	7770-23-1 - 120	5.00010		0.00010		0.00010	

Sub-Matrix: Surface Water		Cli	ent sample ID	SW-BINN8545-0	SW-BINN8545-0	SW-BINN8545-0		
(Matrix: Water)				9042020-BS-01	9042020-BS-02	9042020-BS-03		
		Client samplir	ng date / time	09-Apr-2020 08:45	09-Apr-2020 10:45	09-Apr-2020 10:45		
Analyte	CAS Number Method	LOR	Unit	VA20A4628-001	VA20A4628-002	VA20A4628-003		
				Result	Result	Result		
Total Metals								
tin, total	7440-31-5 E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010		
titanium, total	7440-32-6 E420	0.00030	mg/L	0.0262	0.00908	0.00848		
tungsten, total	7440-33-7 E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010		
uranium, total	7440-61-1 E420	0.000010	mg/L	0.000287	0.000027	0.000026		
vanadium, total	7440-62-2 E420	0.00050	mg/L	0.00172	0.00108	0.00106		
zinc, total	7440-66-6 E420	0.0030	mg/L	0.0048	0.0075	0.0062		
zirconium, total	7440-67-7 E420	0.00020	mg/L	0.00050	0.00030	0.00028		
Dissolved Metals								
aluminum, dissolved	7429-90-5 E421	0.0010	mg/L	0.0120	0.274	0.272		
antimony, dissolved	7440-36-0 E421	0.00010	mg/L	<0.00010	0.00013	0.00013		
arsenic, dissolved	7440-38-2 E421	0.00010	mg/L	0.00039	0.00177	0.00182		
barium, dissolved	7440-39-3 E421	0.00010	mg/L	0.0173	0.00840	0.00910		
beryllium, dissolved	7440-41-7 E421	0.000100	mg/L	<0.000100	<0.000100	<0.000100		
bismuth, dissolved	7440-69-9 E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050		
boron, dissolved	7440-42-8 E421	0.010	mg/L	<0.010	0.012	0.013		
cadmium, dissolved	7440-43-9 E421	0.0000050	mg/L	0.0000162	0.0000154	0.0000166		
calcium, dissolved	7440-70-2 E421	0.050	mg/L	17.4	6.22	6.29		
cesium, dissolved	7440-46-2 E421	0.000010	mg/L	<0.000010	0.000010	<0.000010		
chromium, dissolved	7440-47-3 E421.Cr-L	0.00010	mg/L	0.00012	0.00076	0.00076		
cobalt, dissolved	7440-48-4 E421	0.00010	mg/L	0.00012	0.00037	0.00036		
copper, dissolved	7440-50-8 E421	0.00020	mg/L	0.00159	0.00234	0.00308 DTC		
iron, dissolved	7439-89-6 E421	0.010	mg/L	0.094	1.06	1.06		
lead, dissolved	7439-92-1 E421	0.000050	mg/L	<0.000050	0.00132	0.00130		
lithium, dissolved	7439-93-2 E421	0.0010	mg/L	<0.0010	<0.0010	<0.0010		
magnesium, dissolved	7439-95-4 E421	0.0050	mg/L	5.09	1.82	1.80		
manganese, dissolved	7439-96-5 E421	0.00010	mg/L	0.100	0.153	0.153		
mercury, dissolved	7439-97-6 E509	0.0000050	mg/L	<0.000050	0.0000067	0.0000069		
molybdenum, dissolved	7439-98-7 E421	0.000050	mg/L	0.000920	0.000055	0.000082		
nickel, dissolved	7440-02-0 E421	0.00050	mg/L	0.00069	0.00102	0.00104		
phosphorus, dissolved	7723-14-0 E421	0.050	mg/L	<0.050	<0.050	<0.050		
potassium, dissolved	7440-09-7 E421	0.050	mg/L	1.06	0.453	0.457		

Sub-Matrix: Surface Water			Cli	ent sample ID	SW-BINN8545-0	SW-BINN8545-0	SW-BINN8545-0	
(Matrix: Water)					9042020-BS-01	9042020-BS-02	9042020-BS-03	
			Client sampli	ng date / time	09-Apr-2020 08:45	09-Apr-2020 10:45	09-Apr-2020 10:45	
Analyte	CAS Number	Method	LOR	Unit	VA20A4628-001	VA20A4628-002	VA20A4628-003	
					Result	Result	Result	
Dissolved Metals								
rubidium, dissolved	7440-17-7		0.00020	mg/L	0.00084	0.00041	0.00041	
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000131	0.000059	0.000073	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	3.26	0.721	0.719	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	6.65	5.05	5.28	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0988	0.0377	0.0385	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	3.43	0.51	0.59	
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
thorium, dissolved	7440-29-1		0.00010	mg/L	<0.00010	<0.00010	<0.00010	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6		0.00030	mg/L	<0.00030	0.00665	0.00660	
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000257	0.000021	0.000021	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	0.00090	0.00091	
zinc, dissolved	7440-66-6		0.0010	mg/L	0.0031	0.0100	0.0092	
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	0.00027	0.00029	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	
Aggregate Organics								
biochemical oxygen demand [BOD]		E550	2.0	mg/L	<2.0	<2.0	<2.0	
chemical oxygen demand [COD]		E559	20	mg/L	<20	106	105	
oil & grease (gravimetric)		E567	5.0	mg/L	<5.0	<5.0	<5.0	
oil & grease, mineral (gravimetric)		E567SG	5.0	mg/L	<5.0	<5.0	<5.0	
tannin + lignin (as tannic acid)		E563	0.10	mg/L	0.37	11.6 DLHC	12.3 DLHC	
Polycyclic Aromatic Hydrocarbons				-				
acenaphthene	83-32-9	E641A	0.010	µg/L	<0.010	<0.010	<0.010	
acenaphthylene	208-96-8		0.010	μg/L	<0.010	<0.010	<0.010	
acridine	260-94-6		0.010	μg/L	<0.010	<0.010	<0.010	
anthracene	120-12-7	E641A	0.010	µg/L	<0.010	<0.010	<0.010	
benz(a)anthracene	56-55-3		0.010	μg/L	<0.010	<0.010	<0.010	

Sub-Matrix: Surface Water			Cl	ient sample ID	SW-BINN8545-0	SW-BINN8545-0	SW-BINN8545-0	
(Matrix: Water)					9042020-BS-01	9042020-BS-02	9042020-BS-03	
			Client sampli	ng date / time	09-Apr-2020 08:45	09-Apr-2020 10:45	09-Apr-2020 10:45	
Analyte	CAS Number	Method	LOR	Unit	VA20A4628-001	VA20A4628-002	VA20A4628-003	
					Result	Result	Result	
Polycyclic Aromatic Hydrocarbons								
benzo(a)pyrene	50-32-8	E641A	0.0050	µg/L	<0.0050	<0.0050	<0.0050	
benzo(b+j)fluoranthene		E641A	0.010	µg/L	<0.010	<0.010	<0.010	
benzo(b+j+k)fluoranthene		E641A	0.015	µg/L	<0.015	<0.015	<0.015	
benzo(g,h,i)perylene	191-24-2	E641A	0.010	µg/L	<0.010	<0.010	<0.010	
benzo(k)fluoranthene	207-08-9	E641A	0.010	µg/L	<0.010	<0.010	<0.010	
chrysene	218-01-9	E641A	0.010	µg/L	<0.010	<0.010	<0.010	
dibenz(a,h)anthracene	53-70-3	E641A	0.0050	μg/L	<0.0050	<0.0050	<0.0050	
fluoranthene	206-44-0	E641A	0.010	μg/L	<0.010	<0.010	<0.010	
fluorene	86-73-7	E641A	0.010	µg/L	<0.010	<0.010	<0.010	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.010	μg/L	<0.010	<0.010	<0.010	
methylnaphthalene, 1-	90-12-0	E641A	0.010	μg/L	<0.010	<0.010	<0.010	
methylnaphthalene, 2-	91-57-6	E641A	0.010	µg/L	<0.010	<0.010	<0.010	
methylnaphthalenes, 1+2-		E641A	0.015	µg/L	<0.015	<0.015	<0.015	
naphthalene	91-20-3	E641A	0.050	µg/L	<0.050	<0.050	<0.050	
phenanthrene	85-01-8	E641A	0.020	µg/L	<0.020	<0.020	<0.020	
pyrene	129-00-0	E641A	0.010	µg/L	<0.010	<0.010	<0.010	
quinoline	6027-02-7	E641A	0.050	μg/L	<0.050	<0.050	<0.050	
B(a)P total potency equivalents [B(a)P TPE]		E641A	0.010	µg/L	<0.007	<0.007	<0.007	
Polycyclic Aromatic Hydrocarbons Surrogates								
acridine-d9	34749-75-2	E641A	0.010	%	91.9	95.1	90.6	
chrysene-d12	1719-03-5	E641A	0.010	%	121	125	122	
naphthalene-d8	1146-65-2	E641A	0.010	%	79.1	86.9	81.1	
phenanthrene-d10	1517-22-2	E641A	0.010	%	106	119	111	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Your Project #: 105052-01 Your C.O.C. #: c#620737-01-01

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/09/28 Report #: R2934379 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C068671 Received: 2020/09/23. 08:00

Sample Matrix: Water # Samples Received: 7

		Date	Date		
Analyses	Quantity	/ Extracted	Analyzed	Laboratory Method	Analytical Method
Conductivity @25C	7	N/A	2020/09/24	BBY6SOP-00026	SM 23 2510 B m
Elements by CRC ICPMS (total)	7	2020/09/25	2020/09/26	BBY7SOP-00003 /	EPA 6020b R2 m
				BBY7SOP-00002	
pH @25°C (1)	7	N/A	2020/09/24	BBY6SOP-00026	SM 23 4500-H+ B m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas Laboratories endeavours to analyze samples as soon as possible after receipt.

Your Project #: 105052-01 Your C.O.C. #: c#620737-01-01

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/09/28 Report #: R2934379 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C068671 Received: 2020/09/23, 08:00

Encryption Key

Bureau Veritas Laboratories 28 Sep 2020 12:22:42

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Gail Pedersen, Key Account Specialist Email: Gail.Pedersen@bvlabs.com Phone# (604) 734 7276

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

HEMMERA ENVIROCHEM INC. Client Project #: 105052-01

RESULTS OF CHEMICAL ANALYSES OF WATER

BV Labs ID		YM5441	YM5442	YM5443	YM5444	YM5445	YM5446	YM5447		
Sampling Data		2020/09/21	2020/09/21	2020/09/21	2020/09/21	2020/09/21	2020/09/22	2020/09/22		
Sampling Date		14:46	16:03	16:37	17:01	17:01	09:38	15:05		
	UNITS	WQ01	MW08-Q4(1)	MW08-Q4(2)	MW08-Q4(3)	MW20-100	GW18-03	GW18-04	RDL	QC Batch
Misc. Inorganics										
Conductivity	uS/cm	48	95	47	170	180	110	110	2.0	A013419
рН	рН	5.27	3.92	5.20	6.98	7.15	6.18	5.72	N/A	A013418
RDL = Reportable Detection	Limit									
N/A = Not Applicable										

HEMMERA ENVIROCHEM INC. Client Project #: 105052-01

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID		YM5441	YM5442	YM5443		YM5444	YM5445		YM5446		
Sampling Data		2020/09/21	2020/09/21	2020/09/21		2020/09/21	2020/09/21		2020/09/22		
Sampling Date		14:46	16:03	16:37		17:01	17:01		09:38		
	UNITS	WQ01	MW08-Q4(1)	MW08-Q4(2)	RDL	MW08-Q4(3)	MW20-100	RDL	GW18-03	RDL	QC Batch
Fotal Metals by ICPMS											
Total Metals by ICPMS											
Total Metals by ICPMS Total Calcium (Ca)	ug/L	3910	1510	1520	50	15900	15500	100	4450	50	A016119

BV Labs ID		YM5447							
Compling Data		2020/09/22							
Sampling Date		15:05							
	UNITS	GW18-04	RDL	QC Batch					
Total Metals by ICPMS									
Total Metals by ICPMS									
Total Metals by ICPMS Total Calcium (Ca)	ug/L	3510	50	A016119					

GENERAL COMMENTS

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER) Comments

Sample YM5444 [MW08-Q4(3)] Elements by CRC ICPMS (total): RDL raised due to concentration over linear range, sample dilution required. Sample YM5445 [MW20-100] Elements by CRC ICPMS (total): RDL raised due to concentration over linear range, sample dilution required.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

HEMMERA ENVIROCHEM INC. Client Project #: 105052-01

			Matrix	Spike	Spiked	Blank	Method B	lank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
A013418	рН	2020/09/24			101	97 - 103			1.3	N/A
A013419	Conductivity	2020/09/24			101	80 - 120	<2.0	uS/cm	0	10
A016119	Total Calcium (Ca)	2020/09/26	NC	80 - 120	104	80 - 120	<50	ug/L		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

NEEDTAS	Bureau Veritas Laboratories 4609 Canada Way, Burnaby, British Columbia	i Canada V5G 1K	Tel (604) 734 7276	Toll-free 800-563-	6266 Fax(604)7	31 2386 www.bvb	bs.com					1-100	T 5100-04	line:	Page of
	INVOICE TO:			Report Inform	ation				Project Inf	ormation		- 101	戦争にいたもない。	APAR INA MUN	1.00
	O HEMMERA ENVIROCHEM INC.	Company M	tame HC	mmer	0-		Quotat	tion #	891471				K-Delston,	1.1	attle Order #:
	Floor, 4730 Kingsway	Contact Na	me				20.4		-				不同的自己的		
	aby BC V5H 0C6	Address	eplan	le.	1 de	emmella	, LO Project		105052-0			C068	8671_COC		620737
) 669-0424 Fax (604) 669-0430	Altone CON	skingt	mm	201	C.m.	Project	t. Nartie							oject Manager
	azapf-gilje@hemmera.com / Ep/outle Phil		CUMMA -	rapt g.	118Fak		Ste #					- 1		1800 HPERTON AND A	Gail Pedersen
egulatory Criteria:	/ spage		ial instructions		-	2615	Sample		BE SPECIFIC)				C#620737-01-	01	STREAM CREAM FE HAD
VCSR		aper					TSIS REQUES	TED (PLEASE	BE aPEGING)			Contraction of the local division of the loc	and the second se	d Time (TAT) Requi	INFIG.
Jean					d	A								dvance notice for rush	projects
CCME												Regular (Star			5
BC Water Quality				G	1 -	5 3							nd If Rush TAT is not sp T = 5-7 Working days fo		D
]				X	1 1	8 3							Standard TAT for certai		
Other				N/A) L PG		coning						days - contaci	t your Project Manager	for distalits.	ind Leokerson trans are
					4	30						Job Specific	c Rush TAT (if applies	s to entire submission	24
				E p	1	alle	S					1 DAY	2 Day 3 Da	y Date Require	d
SAMELES N	UST BE KEPT COOL (< 10°C) FROM TIME OF SAMPLING U	NTIL DELIVERY	TOBYLARS	is Fe	4	12tal	+					Rush Confirm	nation Number:	reth	L
Sample Barcode		Contraction of the second		etala 1	日,日,	0 10	0					# of Bottles		142014	ab for #)
Contribute Contrology	s Label Sample (Location) Identification	Date Sampled	Time Sampled	Matrix S								P 10, Duules		Comments	
					1 1 3	XX	+								
	WQ01 2	00/09/21	14:46	water		\sim						2			
	NQ01 24 MN08-Q4(1)	00/09/21	1.0	uniter	~	22	×	_				2			
	MW08-Q4(1)	00/09/21	16:03	upter			×					2			
	MW08-Q4(1) MW08-Q4(2)	00/09/21	16:03	upter	*		$\frac{1}{2}$								
	MW08-Q4(1) MW08-Q4(2) MW08-Q4(3)	00/09/21	16:03	unter			×××					2			
	MW08-Q4(1) MW08-Q4(2)	00 09 121	16:03	upiter	XXXXX		$\frac{1}{2}$					2			
	MW08-Q4(1) MW08-Q4(2) MW08-Q4(3) MW20-100	V	16:03 16:37 17:01 17:01	upiter			×××					2222			
	MW08-Q4(1) MW08-Q4(2) MW08-Q4(3) MW20-100 GW18-03 20	De 69/24	16:03 16:37 17:01 17:01 17:01 09:38				XXXX					22222			
	MW08-Q4(1) MW08-Q4(2) MW08-Q4(3) MW20-100 GW18-03 20	10/09/22	16:03 16:37 17:01 17:01	water			XXXX					2222			
	MW08-Q4(1) MW08-Q4(2) MW08-Q4(3) MW20-100 GW18-03 20	10/09/22	16:03 16:37 17:01 17:01 17:01 09:38	vater			XXXX					22222			
	MW08-Q4(1) MW08-Q4(2) MW08-Q4(3) MW20-100 GW18-03 20	10/09/22	16:03 16:37 17:01 17:01 17:01 09:38	Vater			XXXX					22222			
	MW08-Q4(1) MW08-Q4(2) MW08-Q4(3) MW20-100 GW18-03 GW18-04	10/09/22	16:03 16:37 17:01 17:01 17:01 09:38	V			XXXX					22222			
	MW08-Q4(1) MW08-Q4(2) MW08-Q4(3) MW20-100 GW18-03 GW18-04 MW20-100	10 109 / 22 10 109 / 22 10 109 / 22	16:03 16:37 17:01 17:01 17:01 09:38 15:05	RECEIVED	SY: (SignaturalPrin		XXXXXX	(4.1)WH(DO)	Time	# lives used and		22222	Lab U	ise Only	
· RELINQUEMED	MW08-Q4(1) MW08-Q4(2) MW08-Q4(3) MW20-100 GW18-03 GW18-04	10 109 / 22 10 109 / 22 10 109 / 22	16:03 16:37 17:01 17:01 17:01 09:38 15:05	RECEIVED			XXXXXX	(YYIMMIDD) 09/23	Time	# iars used and not submitted	Tame Senial	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Lab U uture_C) co. Receipt		1) Intact on Cooler?

Bureau Veritas Canada (2019) Inc.

Your Project #: 105052-01 Your C.O.C. #: 620737-03-01

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/10/01 Report #: R2936272 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C069504 Received: 2020/09/24, 17:30

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Conductivity @25C	3	N/A	2020/09/26	BBY6SOP-00026	SM 23 2510 B m
Elements by CRC ICPMS (total)	3	2020/09/30	2020/10/01	BBY7SOP-00003 /	EPA 6020b R2 m
				BBY7SOP-00002	
pH @25°C (1)	3	N/A	2020/09/26	BBY6SOP-00026	SM 23 4500-H+ B m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas Laboratories endeavours to analyze samples as soon as possible after receipt.

Your Project #: 105052-01 Your C.O.C. #: 620737-03-01

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/10/01 Report #: R2936272 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C069504 Received: 2020/09/24, 17:30

Encryption Key

Bureau Veritas Laboratories 01 Oct 2020 15:20:03

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Gail Pedersen, Key Account Specialist Email: Gail.Pedersen@bvlabs.com Phone# (604) 734 7276

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BV Labs ID		YN0306	YN0307	YN0308		
		2020/09/24	2020/09/24	2020/09/24		
Sampling Date		12:24	14:26	14:43		
COC Number		620737-03-01	620737-03-01	620737-03-01		
	UNITS	WS05-E	WS04	DNR02	RDL	QC Batch
Misc. Inorganics						
Conductivity	uS/cm	210	160	44	2.0	A018107
рН	рН	6.76	6.86	6.40	N/A	A018106
RDL = Reportable Detection L	imit					
N/A = Not Applicable						

RESULTS OF CHEMICAL ANALYSES OF WATER

BV Labs ID		YN0306	YN0307	YN0308		
Sampling Data		2020/09/24	2020/09/24	2020/09/24		
Sampling Date		12:24	14:26	14:43		
COC Number		620737-03-01	620737-03-01	620737-03-01		
	UNITS	WS05-E	WS04	DNR02	RDL	QC Batch
Total Metals by ICPMS						
Total Calcium (Ca)	ug/L	10500	6380	2210	50	A023860
	imit					

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

HEMMERA ENVIROCHEM INC. Client Project #: 105052-01

			Matrix	Spike	Spiked	Blank	Method B	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
A018106	рН	2020/09/26			101	97 - 103			0.15	N/A
A018107	Conductivity	2020/09/26			103	80 - 120	<2.0	uS/cm		
A023860	Total Calcium (Ca)	2020/10/01	98	80 - 120	99	80 - 120	<50	ug/L		
N/A = Not Ap	plicable									
Duplicate: Pa	ired analysis of a separate portion of the same sample.	Used to evaluate t	he variance in t	he measurem	ent.					

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		INVOICE TO						Report In	formati	on					Project	Information	6				Only
y Name	#1480 HEM		IROCHEM IN	IC.	Compar	Name							0	tation #	B91471	6	11	COG	IN THE	™ *#12/15/₩*#2/4/0+%##1% ■[]] \$_COC	Bottle Order
Name	Emma Zapf-0	1		_	Contact		epian	le	1				P.0		0.000.000			COU	19504		-
	18th Floor, 41 Burnaby BC		iy		Address			SIDWAY		10	hemi	nera n	No.	ect #	105052	-01					620737
	(6D4) 669-042		(60)	4) 669-0430		_	mma	2apt-s	jilip	12	- 11		Proje	ect Name						Chain Of Custody Record	Project Mana
	emma zapí-g		1 Parts 1 1 1		Phone Phone Phone Phone	m -	_	1	a	Fax.		_	Site	0							6.16
lory Cr		allo Buennine	10.0011	epiagu	in the second second									pled By						C#520737-03-01	Gall Pederse
0.0058				-	8	ecial Instruc	tions					ANALY	SIS REQUI	ESTED (PLEA	SE BE SPECIFI	C)				Turnaround Time (TAT)	Required:
R										~										Please provide advance notice for	r rush projects
ME										(P)								R	Regular (Standard) TAT:	
aner.																				plied if Rush TAT is not specified)	
Wate	er Quality								(Z	3	5							5	Standard	TAT = 5-7 Working days for most tests .	
nor	_								214	Calcium	hwith							F	Nease no lays - cor	te: Standard TAT for certain lests such as tlact your Project Manager for details.	800 and Dioxins/Furan
									pa	3	2								Job Spe	cific Rush TAT (if applies to entire subn	nission)
										~	45	-						12	1 DAY	2 Day 3 Day Date R	
				a statement	Adden Witten	an a	2.4		멸	0	endue	F d						- 1	- ADA AL	nfimation Number:	extension.
344	APLES MUST BE K	EPI COOL (< 1	IO-C) FROM TIM	E OF SAMPLIN	G UNTIL DELIVE	IT TO BY LA	BS			ota	X	0						P	Ruan Go	minimation Number	(call leb for #)
ample	Barcode Label	Sample	t (Location) Identi	fication	Date Sampled	Time:	Sampled	Matrix	Mette	P	3							8	of Bottle	s Comme	
		INC	OT-F	-	2020 1091	412	: 24	malar	1			X			-		-	-	5	2	
		INC	211	-	20201-11	110		water	N	X	X		_						2		
_		NV SI	200				:26	-+-	N	X	×.	X			_				d		
-		DIV	1202		V	14	:43	V	N	×	X	X							a		
_															_						
																			_		
_								0										-			
															-			-			
							-								-		-	-			
	UISHED BY: (Signat		Alin	Date: (YY	and the second se	rtve		RECEN	ED BY:	(Signatur	e/Print)		Dat	e: (YY/MM/DD	Time	# jars u	ised and		_	Lab Use Only	
aw	1025	mas	Up	2010/0	1/24 17	125	E	5	60	TRY	Yar		20	120000			the strange	Time Sentitive	* Tan		otly Seal Intact, on Copier
		· 0					~				23				-				111	RMS WHICH ARE AVAILABLE WHITE	Yes MNONY

Bureau Veritas Canada (2019) Inc.

Your Project #: 105052-01 Your C.O.C. #: C#620737-02-01

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/10/08 Report #: R2939719 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C071799 Received: 2020/10/01. 17:50

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	/ Extracted	Analyzed	Laboratory Method	Analytical Method
Conductivity @25C	5	N/A	2020/10/05	BBY6SOP-00026	SM 23 2510 B m
Elements by CRC ICPMS (total)	5	2020/10/06	2020/10/08	BBY7SOP-00003 /	EPA 6020b R2 m
				BBY7SOP-00002	
рН @25°С (1)	5	N/A	2020/10/05	BBY6SOP-00026	SM 23 4500-H+ B m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas Laboratories endeavours to analyze samples as soon as possible after receipt.

Your Project #: 105052-01 Your C.O.C. #: C#620737-02-01

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/10/08 Report #: R2939719 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C071799 Received: 2020/10/01, 17:50

Encryption Key

Bureau Veritas Laboratories 08 Oct 2020 12:04:06

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Gail Pedersen, Key Account Specialist Email: Gail.Pedersen@bvlabs.com Phone# (604) 734 7276

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BV Labs ID		YO4065	YO4066	YO4067	YO4068	YO4069		
Sampling Date		2020/10/01	2020/10/01	2020/10/01	2020/10/01	2020/10/01		
	UNITS	GW18-01	GW18-02	WQ03	GW18-03	W503	RDL	QC Batch
Misc. Inorganics								
Conductivity	uS/cm	79	51	72	35	91	2.0	A032843
рН	pН	6.53	5.82	4.88	5.22	4.19	N/A	A032842
RDL = Reportable Dete	ection Limit							
N/A = Not Applicable								

RESULTS OF CHEMICAL ANALYSES OF WATER

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID		YO4065		YO4066	YO4067	YO4068	YO4069		
Sampling Date		2020/10/01		2020/10/01	2020/10/01	2020/10/01	2020/10/01		
	UNITS	GW18-01	RDL	GW18-02	WQ03	GW18-03	W503	RDL	QC Batch
Total Metals by ICPMS									
Total Metals by ICPMS Total Calcium (Ca)	ug/L	7720	100	2460	3190	2140	3610	50	A034249

GENERAL COMMENTS

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER) Comments

Sample YO4065 [GW18-01] Elements by CRC ICPMS (total): RDL raised due to concentration over linear range, sample dilution required.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

HEMMERA ENVIROCHEM INC. Client Project #: 105052-01

			Matrix	Spike	Spiked	Blank	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
A032842	рН	2020/10/05			101	97 - 103			0.39	N/A
A032843	Conductivity	2020/10/05			102	80 - 120	<2.0	uS/cm	0	10
A034249	Total Calcium (Ca)	2020/10/08	100	80 - 120	100	80 - 120	<50	ug/L		
N/A = Not Ap	pplicable									
Duplicate: Pa	aired analysis of a separate portion of the same sa	mple. Used to evaluate t	the variance in t	he measurem	ent.					

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	and the second se	NVOICE TO:			Report la	format	ion			1		Project In	formation			- 1	III NEW YOR MA	CI SARAFA	WEIR AND	
spany Name		RA ENVIROCHEM INC.	Compar	ny Name						Quotation #		B91471				- 1	Relation	18181	2021	ttle Order #:
act Name	Emma Zapf-Gilje		Contact	014	141C		5			P.O.#			_			- 1	III 8752565685	8/2017/04	27 N I	
165	18th Floor, 4730 Burnaby BC V5H		Address				20	Peanu	ista-cen	Project #		105052-0	1			- cc	071799_COC	C		620737
	(604) 669-0424	Fax: (604) 669-043	0	Cmma.	-zapf= o	hill	1			Project Name	•					-				ject Manager
i i			We make Email				Fax_			5.te #									10 1	Gail Pederses
rgulatory Cra	eria:	Sport of	and the second se	pecial Instructions		11	_		AND VE	Sampled By S REQUESTED (-	_	_		_	C#620737			
CSR						- 1	-	1	- Concertain	I NEGOLOILU I	I LEASE I	DE SPECIFICI			_				(AT) Requires	
- our							(Enductivity)	S				1 1						ide advance no	Noe for rush pro	Mocus
CCME							12	UVD				1 1				1.2400.000	Standard) TAT: plied if Rush TAT is n			V
BC Water	Quality					2	nc	Ξ									TAT = 5-7 Working da		10	2
						(NIX)2	20	J				1 1				Please not	te: Standard TAT for c	cortain tests au	ch as BOD and	Doxins/Furans an
Other						65	B	S				1 1					stact your Project Man	20.11.2.2.0		csembles we
						- 20		\sim	1.00				- 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	cific Rush TAT (If ap	plies to entire	submission)	
						5	南南	5	Ŧ			1 1				1 DAY	2 Day	3 Day	hate Required	
SAM	LES MUST BE KEPT	COOL (< 10°C) FROM TIME OF SAMPL	ING UNTIL DELIVE	RY TO BY LABS		ě.	版	15	0			1 1				Rush Con	nfirmation Number	-		
Sample I	larcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	No.2	1940	10								# cf Botles	1	6	(call lab omments	Re #)
Gw	201		1			-	X		v		-		-+	-	-	-		_		
0.0			220/10/0	1	water	IN	- C	X	X		1						1			
0.1	7-02				- Contract				2.6	_	<u> </u>					2		_		
	8-02				-		x	4	x							2				
100	03						X Y	×	x				-			2				
	03		-																	
1.0	03 8-03		1				¥	×	×							2 2 2				
Gwl	03 8-03						¥ ¥	X	× ×							2				
Gwl	03 8-03		1				¥ ¥	×	× ×							2 2 2				
Gwl	03 8-03						¥ ¥	×	× ×							2 2 2				
Gwl	03 8-03						¥ ¥	×	× ×							2 2 2				
Gwl	03 8-03						¥ ¥	×	× ×							2 2 2				
Cwl Cwl	03 8-03 03						¥ ¥	×	× ×							2 2 2				
LoQ Gruli WiS	03 8-03 03	Princ) Detec(D	· · · · · · · · · · · · · · · · · · ·			VED BY	¥ ¥	× × ↓	× ×		MADO)					2 2 2				
LoQ Gruli WiS	03 8-03 03	Princi) Deter (1)	/ / / / / / / / / / / / / / / / / / /				Y Y X	× × ↓	× ×	044: DVM 2020/6/				used and Remitted	Titte See	2 2 2 2		Leb Use Only	Custody Seal	mact on Cooky?
LUG GWIS WSS	03 8-03 03 6-03 03	1, Bron -20/1	/ ///////////////////////////////////	1.50 D	Racter	i Ĉi	X X X	X X L	× × ×	2020/0/	01	17:50	notsu	R		2 2 2 2	ia Por Re	perget	Custody Seal	mad en Cooer?
· RELINGU	C3 8-03 03 C3 C3 C3 C3 C3 C3 C3 C3 C3 C	A Brown -20/1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		RECEI	N CA	X X X : ISiglatur W L	X X X	X X X X X X X X X X X X X X X X X X X	2020/6/	01	17:50	notsu	R		2 2 2 2	ia Por Re	perget	-	- 11-
Ind Gruit Ind STEVE	C3 8-03 03 C3 C3 C3 C3 C3 C3 C3 C3 C3 C	1, Bron -20/1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		RECEI	N CA	X X X : ISiglatur W L	X X X	X X X X X X X X X X X X X X X X X X X	2020/6/	01	17:50	notsu	R		2 2 2 2	ia Por Re	perget	Yes	INO AF

Your Project #: 105052-01 Site Location: BURNS BOG Your C.O.C. #: G149385

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/10/08 Report #: R2939726 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C072283 Received: 2020/10/03, 13:45

Sample Matrix: Water # Samples Received: 4

		Date	Date		
Analyses	Quantit	y Extracted	Analyzed	Laboratory Method	Analytical Method
Conductivity @25C	4	N/A	2020/10/06	BBY6SOP-00026	SM 23 2510 B m
Elements by CRC ICPMS (total)	4	2020/10/06	2020/10/08	BBY7SOP-00003 /	EPA 6020b R2 m
				BBY7SOP-00002	
pH @25°C (1)	4	N/A	2020/10/06	BBY6SOP-00026	SM 23 4500-H+ B m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas Laboratories endeavours to analyze samples as soon as possible after receipt.

Your Project #: 105052-01 Site Location: BURNS BOG Your C.O.C. #: G149385

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/10/08 Report #: R2939726 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C072283 Received: 2020/10/03, 13:45

Encryption Key

Bureau Veritas Laboratories 08 Oct 2020 12:05:11

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Gail Pedersen, Key Account Specialist Email: Gail.Pedersen@bvlabs.com Phone# (604) 734 7276

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF WATER

BV Labs ID		YO7029	YO7030	YO7031	YO7032		
Compling Data		2020/10/02	2020/10/02	2020/10/02	2020/10/02		
Sampling Date		16:00	11:00	09:30	13:00		
COC Number		G149385	G149385	G149385	G149385		
	UNITS	MW03	MN06Q2	WQ02	MW06Q3	RDL	QC Batch
Misc. Inorganics							
Conductivity	uS/cm	330	33	70	29	2.0	A032999
				4.05	F 02	NI / A	1022070
рН	рН	6.95	5.87	4.25	5.02	N/A	A032978
pH RDL = Reportable Detection L		6.95	5.87	4.25	5.02	N/A	AU32978

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID		YO7029	YO7030	YO7031	YO7032		
Sampling Date		2020/10/02	2020/10/02	2020/10/02	2020/10/02		
		16:00	11:00	09:30	13:00		
COC Number		G149385	G149385	G149385	G149385		
	UNITS	MW03	MN06Q2	WQ02	MW06Q3	RDL	QC Batch
Total Metals by ICPMS							
Total Calcium (Ca)	ug/L	15900	1010	1760	515	50	A035322
RDL = Reportable Detection L	imit						

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

HEMMERA ENVIROCHEM INC. Client Project #: 105052-01 Site Location: BURNS BOG Sampler Initials: SB

			Matrix	Spike	Spiked	Blank	Method B	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
A032978	рН	2020/10/06			101	97 - 103			2.8	N/A
A032999	Conductivity	2020/10/06			100	80 - 120	<2.0	uS/cm	0	10
A035322	Total Calcium (Ca)	2020/10/08	102	80 - 120	99	80 - 120	<50	ug/L		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Burnaby: 4606 Canada Way, Burnaby, BC V5G 1K5 Toll Free (833) 282-5227 Victoria: 851 Viewfield Road, Unit 1, Victoria, BC V5A 4V2 Toll Free (833) 282-5227 bylabs.com

CHAIN OF CUSTODY RECORD

G 149385

voice Inform	nation		1.15				Report Inf	formation (if diff	ers from invoice	;)					Proj	ect I	nforn	hatic	n.						Tumai	round Time (TAT) Required
mpany :	HE	m	nfra	4			Company:				Que	tation	5											5-70	ys Regs	ular (Most analyses)
intact Name:	E	1EL	up.	PLI	AYE		Contact Name:				1	#/AS											PLEA	SE PRO	VIDE /	ADVANCE NOTICE FOR RUSH PROJECTS
idress:	+73	0	KIN	GSWI	94		Address:]			_										2	lush TA	Y (Surcharges will be applied)
1	USH			PC					PC:		Proj	ect #:	0.5	1	05	50	52	- (0)					Same D	ay .	2 Days
one/Fax	51	3 5	588	137	8		Phone/Fax:			_	Site	Locat	ion:	1	B	6.8	NS	Î	300	· ·				1 Day		3-4 Days
ail:	2-PI	03	Lea	SHe.	mar	R.60	Hepait _				Site	#1 .	_										Date Req	uired:		
pies: _		_					Copies:				Sam	pled I	By:	S	TE	Æ	, ل	В	Rev	برد		_	Rush Cor	sfirmat	ion #:	
				1997	Labora	tory Us	e Only										Anah	rsis I	Reque	sted						Regulatory Criteria
	YES	NO	Cooler 10				1 3136									Т		Т								
Seal Pres	-	6		12		10		Depot Receptio	n						(pan	ved?			3	2	1					DC CSR
Seal Int		1	Tamp	13	12	12					1 in the		3	012.14	reser	reter			80	Alkalinity	Ê					YX CSR
	YES	-	Cooler 10								D MTBE	/ 11	14/14	ŏ	D Preserved?	L Preserved?	(pan		CO0	D.	L.					L] IN CAN
Seal Press	1	1.44			-	-						UVOC/BIEX/FI	THEP				Field Preserved?	6	laoo	- C - C		3				CCME
Seal Int	-		Temp								UNC/ STEXS / VPH	100	M		~		led			Alle		515				Drinking Water
Cooling Me	fia										8150	Ó	ā	-	kered	Pred	Õ		oride	100	at 2	J				
	125	NO	Couler 10				6.0				8			A	C Filtered?	Ã.			TDS	Conduc	搭	3				BC Water Quality
Seal Fread	-1										ò								ťó	1	14	9			MUN	C other
Seaf Int			Temp			1.1	8 11 11 12			5	X				Meta	Meet	4	ř.		1		0			DT AV	
County Non		-	-								5/4	5			hed	Med	Met	wen	ę.						N OC	
	Sar	nple	Identific	ation			Date Sampled Evyve/mm/dit)		d Matrix	# of Containers	HIN SKENS / VPH	DBTEX F1	HWAD	143	Dissofted Metals	LJ Dissolved Mercun	Total Metals		1 TSS	Hole	□ Nitrite	10			HOLD - DO NOT AMALYZE	Special Instructions
1	hi	NO	53				220/10/0	2 16:00		T						1				4		1			Ť	
0	n	0	6 0	22			2020 /10/0													1		1				
1	NO	0	2		_	_	200 1010													1		1				
1	nw	0	6 G	23		_	2020/10/00	13:00												1		1				
1.19			-			_			_		-		_					+								
	_	_				_				-	-		_	_	_	-	_	+	_	-						
	_				_			34	_	-	-		-	-	-	-	-	+	-							
	-	-				-		-		-	-			-	-	+	-	+	-	-	-			-	-	
	-	-	-		-	-			-	-	-			-	-	+	-	+	-	-	-		-			
	Unlesa	etherw	ise agreed	ta in writte	L POR 1	bmitted on	this Chain of Custody is	s subject to Bureau Ver	tái: staisdard Terms an	d Cond	Etions.	Samira	otois	Ouin	of Curb	ody ik		t is act	loopled	lement	and as	CERTER				
Reling			Signatur			1	yyyy/mm/dd):		Received by:								vy/ma		-	ime (82	
TEIGN	Bea	2	5	Row		2020	0/10/02		Art A	AA	Æ	GA	E	2	20		-	03	244 H	13:		100				
														1			.,						C	0722	83_0	.00
C-1020										Burel	au Ver	the s	Public	e a Wi	unid of	Truce	ö	-		-	-	_				88Y FCD-0002

Your C.O.C. #: G149440

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/10/22 Report #: R2945861 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C075580 Received: 2020/10/15, 10:35

Sample Matrix: Water # Samples Received: 7

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Conductivity @25C	7	N/A	2020/10/17	BBY6SOP-00026	SM 23 2510 B m
Elements by CRC ICPMS (total)	7	2020/10/20	2020/10/21	BBY7SOP-00003 /	EPA 6020b R2 m
				BBY7SOP-00002	
рН @25°С (1)	7	N/A	2020/10/17	BBY6SOP-00026	SM 23 4500-H+ B m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas Laboratories endeavours to analyze samples as soon as possible after receipt.

Your C.O.C. #: G149440

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/10/22 Report #: R2945861 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C075580 Received: 2020/10/15, 10:35

Encryption Key

Bureau Veritas Laboratories 22 Oct 2020 11:35:08

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Gail Pedersen, Key Account Specialist Email: Gail.Pedersen@bvlabs.com Phone# (604) 734 7276

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF WATER

		NO 6760	¥06760	NO 6770	1000774	1000770	NO 6770	2000774	1	
BV Labs ID		YQ6768	YQ6769	YQ6770	YQ6771	YQ6772	YQ6773	YQ6774		
Sampling Data		2020/10/14	2020/10/14	2020/10/14	2020/10/14	2020/10/14	2020/10/14	2020/10/14		
Sampling Date		10:10	14:02	13:50	12:15	15:18	11:45	11:02		
COC Number		G149440								
	UNITS	MW01	DNR-01	GW1807	WS05-W	GW1806	MW05	WQ04	RDL	QC Batch
Misc. Inorganics										
Conductivity	uS/cm	190	92	120	44	66	310	93	2.0	A052025
рН	рН	6.82	6.37	7.48	5.86	4.77	7.02	5.86	N/A	A052024
RDL = Reportable Detection L	imit									
N/A = Not Applicable										

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID		YQ6768	YQ6769	YQ6770	YQ6771	YQ6772	YQ6773	YQ6774		
Sampling Data		2020/10/14	2020/10/14	2020/10/14	2020/10/14	2020/10/14	2020/10/14	2020/10/14		
Sampling Date		10:10	14:02	13:50	12:15	15:18	11:45	11:02		
COC Number		G149440								
	UNITS	MW01	DNR-01	GW1807	WS05-W	GW1806	MW05	WQ04	RDL	QC Batch
Total Metals by ICPMS										
Total Metals by ICPMS Total Calcium (Ca)	ug/L	5330	8400	12800	1110	2900	17400	8640	50	A056224

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

HEMMERA ENVIROCHEM INC.

			Matrix	Spike	Spiked	Blank	Method B	lank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
A052024	рН	2020/10/17			101	97 - 103			1.0	N/A
A052025	Conductivity	2020/10/17			100	80 - 120	<2.0	uS/cm		
A056224	Total Calcium (Ca)	2020/10/21	NC	80 - 120	99	80 - 120	<50	ug/L		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Burnaby: 4606 Canada Way, Burnaby, BC VSG 1K5 Toll Free (833) 282-5227 Victoria: 851 Viewfield Road, Unit 1, Victoria, BC V9A 4V2 Toll Free (833) 282-5227 bilabs.com

CHAIN OF CUSTODY RECORD

G 149440

volce Information	Report Information (if differs from	woice)	Project Information Turnaround Time (TAT) Require	rd
ompany: 176mmERA	Company:	0	fon 5 - 7 Days Regular (Most analyses)	
ONESCENSING EVELYN PLAYE	Contact Name:	P.I	AFEE PLEASE PROVIDE ADVANCE NOTICE FOR RU	ISH PROJECTS
come Lotso Kingsbray F13	Address:		Rush TAT (Surcharges will be applied	ed)
Burnely PC:	PC:	Pe	a: Same Day 2 Days	
hone/Fax: +1 519 5882378	Phone/Fax:	Sit	cation: Day 3-4 Days	
nait	Email:	Sit	Date Required:	
oples:	Copies:	5a	Rush Confirmation #:	
Laboratory I	ise Only		Analysis Requested Regulatory Co	riteria
YES NO Cooler ID				
Seal Present	Depot Reception		VI AMA	
Sent Island MAA 3000 3 12 1		Tag	HI Preserved Preserved Ved? Annenonia XSS XS 31	
YES NO Cooler 10		MTBC	VILLE COD	
Sed Present				
Seal Intect Temp		VOC / BTEXS / VPM	Drinking Water	
Cooling Media		or Exc	CD Drinking Water	
YES NO Cooler ID		8	BC Water Quality	
Seal Present	-	ć		
Seal Intact Temp		8 7	obved Mercury O obved Mercury O i Mercury O tee O apponor AMALTZE	
Gooling Media		C vi	Method Method	
Sample Identification	Date Sampled Time Sampled (bitmen) M	R of Containers	Other PAN Dissolved Metals Dissolved Metals	ctions
MWOI	2020 /ie/ky 10:10		Y U	
DNR-01	2020 110 114 14 02			
Gw1807	2020 110 114 13 - 50		v V	
WS05-W	1020 /10/14 12:15		V V	
GW1806	200 /10/14 15:18		VV	
MW05	2020/10/14 11:45		UU	
WG 04	2020 /10 114 11:02			
Different atherisation increased to in written work collocations	a this Chains of Costrody in a direct to Burney Market of a second		ing of this Chain of Custody document is acknowledgement and acceptance of o	-
	The second se	d Jay: (Signat		
	10/15 10:25 May		ROD 200/10/15 10:35	S
			C075580_COC	

Your Project #: 105052-01 Site Location: BURNS BOG Your C.O.C. #: g155958

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/12/11 Report #: R2966122 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: C089057 Received: 2020/12/02, 15:25

Sample Matrix: Water # Samples Received: 7

Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Analytical Method
Conductivity @25C	7	N/A	2020/12/03	BBY6SOP-00026	SM 23 2510 B m
Hardness Total (calculated as CaCO3) (1)	7	N/A	2020/12/09	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (total)	7	2020/12/07	2020/12/09	BBY7SOP-00003 / BBY7SOP-00002	EPA 6020b R2 m
pH @25°C (2)	7	N/A	2020/12/03	BBY6SOP-00026	SM 23 4500-H+ B m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) "Total Hardness" was calculated from Total Ca and Mg concentrations and may be biased high (Hardness, or Dissolved Hardness, calculated from Dissolved Ca and Mg, should be used for compliance if available).

(2) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas Laboratories endeavours to analyze samples as soon as possible after receipt.

Your Project #: 105052-01 Site Location: BURNS BOG Your C.O.C. #: g155958

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/12/11 Report #: R2966122 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: C089057 Received: 2020/12/02, 15:25

Encryption Key

Genne Mor

Carmen McKay Key Account Specialist 11 Dec 2020 10:30:15

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Gail Pedersen, Key Account Specialist Email: Gail.Pedersen@bvlabs.com Phone# (604) 734 7276

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF WATER

BV Labs ID		YY8986	YY8987	YY8988	YY8989	YY8990	YY8991	YY8992						
Sampling Date		2020/12/02		2020/12/02	2020/12/02		2020/12/02	2020/12/02						
		08:20	10:00	12:02	12:20	13:30	14:10	11:05						
COC Number		g155958	g155958	g155958	g155958	g155958	g155958	g155958						
	UNITS	WS01	WS02	GW18 07	DNR01	WS05-W	MW05	GW18 06	RDL	QC Batch				
alculated Parameters														
Total Hardness (CaCO3)	mg/L	10.6	77.3	34.5	86.8	113	10.0	21.6	0.50	A101377				
Misc. Inorganics	•	•	•	•					•					
Conductivity	uS/cm	46	220	120	180	530	34	58	2.0	A103451				
рН	рН	4.96	7.43	6.49	7.14	6.93	5.59	5.49	N/A	A103429				
RDL = Reportable Detection	Limit													
N/A = Not Applicable														

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID		YY8986	YY8987	YY8988	YY8989	YY8990	YY8991	YY8992		
Compling Data		2020/12/02	2020/12/02	2020/12/02	2020/12/02	2020/12/02	2020/12/02	2020/12/02		
Sampling Date		08:20	10:00	12:02	12:20	13:30	14:10	11:05		
COC Number		g155958								
	UNITS	WS01	WS02	GW18 07	DNR01	WS05-W	MW05	GW18 06	RDL	QC Batch
Total Metals by ICPMS										
Total Calcium (Ca)	ug/L	2530	21600	7920	26300	30500	1310	3860	50	A106386

GENERAL COMMENTS

As per client request, the client ID for sample YY8989 was changed from DWR01 to DNR01. The client request was received 2020/12/11.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

HEMMERA ENVIROCHEM INC. Client Project #: 105052-01 Site Location: BURNS BOG Sampler Initials: SB

			Matrix	Spike	Spiked	Blank	Method B	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
A103429	рН	2020/12/03			102	97 - 103			0.28	N/A
A103451	Conductivity	2020/12/03			100	80 - 120	<2.0	uS/cm	0.60	10
A106386	Total Calcium (Ca)	2020/12/09	104	80 - 120	101	80 - 120	<50	ug/L		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Burnaby: 4606 Canada Way, Burnaby, BC V5G 1K5 Toll Free (833) 282-5227 Victoria: 851 Viewfield Road, Unit 1, Victoria, BC V9A 4V2 Toll Free (833) 282-5227 bulabs.com

CHAIN OF CUSTODY RECORD

G 155958

Page

nvoice Informat	ion						Report In	form	ation (if differs	from invoice)	1				Pro	ject	Inform	nati	on							Tur	naro	ound Time (TAT) Required
Company :	46	in	m	ERA	1		Company:					Que	tation	1											P	5-7D	lays R	tegul	lar (Most analyses)
and the second sec		_	41		LAYL	ê.	Contact Name:					P.O.	#/AF	ER:											PLEA	SE PR	ovic	DE AI	DVANCE NOTICE FOR RUSH PROJECTS
uddress: 4-	73	0	KI	nasw			Address:																			0	Rush	h TAT	(Surcharges will be applied)
				5 PC						PC:		Proj	ect#:	е.,	1	05	50	50	2 -	0	1					Same	Day		2 Days
hone/Fax: 5	19	-	588	23	78		Phone/Fax:					Site	Locat	tion:		P	her	:45	1	30	9					1 Day			3-4 Days
imail: 24	Ple	410	20	HEM	mRig	. 00	Email:					Site			_										Date Red	quired	÷		
oples:		5					Coples:				_	Sam	pled	8y:	5	TE	UE	2	P	R	si	J		_	Rush Co	nfirma	tion	#:	
					Laborat	ory Use	Only											Ana	lysis	Req	uest	ed						Τ	Regulatory Criteria
	TES	NO	Cooler II	1							Γ	Γ															1	Τ	
Seal Present		N		0	0	0		Dep	pot Reception							(paul	Sbar			2		à	2						BC CSR
Seal Intaci	4	A	Temp	4	B	B						185		5	DF2-F4	D Presen	D Preserved?			Sulphate	8	Alkalinity	omm						YK CSR
Cooling Media	11			-								D MTBE	HI.	1/1	ő	â	ô	ved?	2 pan	ő	00	á l	ă						
1.	115	NO	Coeler II										OVC/BTEX/F1	HEP!				CField Preserved?	reset	- 1				5					CCME
Seal Present Seal Intact	_	_	Temp	×								/vpi	18	Hd3				ield P	ield p		000	AllA		3					Drinking Water
Cooling Media		-										TEOS	ò	Ő		ered?	cred?	Ď	Ď	oride	-	Conductivity	ate	J					
	115	NO	Cooler II				1					VOC / BTEXS / VPH			Ê	Eltered?	Bib			- Huoride	Tros	S I	Tion [1					BC Water Quality
Seal Present		-		-								Ň				~	늘				Ĕ1	34	4	9				IALYZ	C Other
Seal Intact			Temp								2	_	1			Metal	Merci	2	à		_			-				DT AN	
Cooling Media						-		_			Containers	/vp				ved A	ved h	Meta	Merci	de			-	4				ON O	
	San	nple	Identifi	cation			Date Sample (yyyy/mm/d		Time Sampled (hbumm)	Matrix	II of Con	BTEXS / VPH	BTEXF1	HMA	Hda	Dissolved Metals	Dissolved Mercury	Total Metals	L Total Mercury	Chloride	128	Hd	Nitrite	H				HOLD - DO NOT ANALYZE	Special Instructions
NI.	50	21					2020 m	02	08.20		2											1		1					
W.							2achlo		10:00		2											1		"					
Gu			07				happing	2	17:02		2											1		4					
Dr							2020/2/	02	12:20		h											•		14-					
WS	0	5	- 0	2			2020/n/o	12	13:30		2									-		1		1					
M							2020/21	2	14:10		2									_		*		1	_			_	
Gw	15	80	6				200/11	02	11:05		2									_		7		1	_		_	_	
1																			_	_		_			_		-	-	
								-				-	1						_	_		_			_		-	-	
0	-											L	_						_			_						1	
Relinguis							this Chain of Custod yyyy/mm/dd]:		ject to Bureau Veritas'	Received by			_	<u></u>				/yy/m				-	hcmr		e di our t				
199253		-		-	-	-		-				_		_	_	_			_		_		_		-		1118	517	- 18-18-18-18-18-18-18-18-18-18-18-18-18-1
3 Box	S	TEV	62	BRO	لارزين	202	0/12/02	15	:20	6	- (-01	ey	10	11	20	220	5/1	</td <td>90</td> <td>15</td> <td>11</td> <td>2</td> <td>2</td> <td></td> <td></td> <td>R</td> <td>Η</td> <td></td>	90	15	11	2	2			R	Η	
																											IR	r.R	KCHANKA DWANE TO POST
OC-1020											Bure	au Ver	ritas	Shapi	ngaV	Vorld o	of Trus	tD								CC)89	05	7_COC

Your Project #: 105052-01 Site Location: BURNS BOG Your C.O.C. #: G155959

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/12/10 Report #: R2965925 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C089469 Received: 2020/12/03, 16:45

Sample Matrix: Water # Samples Received: 6

Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Analytical Method
Conductivity @25C	6	N/A	2020/12/04	BBY6SOP-00026	SM 23 2510 B m
Hardness Total (calculated as CaCO3) (1)	6	N/A	2020/12/10	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (total)	6	2020/12/07	2020/12/09	BBY7SOP-00003 / BBY7SOP-00002	EPA 6020b R2 m
pH @25°C (2)	6	N/A	2020/12/04	BBY6SOP-00026	SM 23 4500-H+ B m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) "Total Hardness" was calculated from Total Ca and Mg concentrations and may be biased high (Hardness, or Dissolved Hardness, calculated from Dissolved Ca and Mg, should be used for compliance if available).

(2) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas Laboratories endeavours to analyze samples as soon as possible after receipt.

Your Project #: 105052-01 Site Location: BURNS BOG Your C.O.C. #: G155959

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/12/10 Report #: R2965925 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C089469 Received: 2020/12/03, 16:45

Encryption Key

Bureau Veritas Laboratories 10 Dec 2020 16:36:58

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Gail Pedersen, Key Account Specialist Email: Gail.Pedersen@bvlabs.com Phone# (604) 734 7276

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF WATER

V Labs ID V71057 V71058 V71059 V71060 V71061 V71062														
BV Labs ID		YZ1057	YZ1058	YZ1059	YZ1060	YZ1061	YZ1062							
Compling Data		2020/12/03	2020/12/03	2020/12/03	2020/12/03	2020/12/03	2020/12/03							
Sampling Date		10:30	09:50	11:45	12:30	13:40	15:15							
COC Number		G155959	G155959	G155959	G155959	G155959	G155959							
UNITS MW06-Q2 MW06-Q3S GW04 GW1802 GW1801 WQ 02 RDL QC Bate														
alculated Parameters														
Total Hardness (CaCO3)	mg/L	3.46	6.64	11.2	19.2	116	6.63	0.50	A102474					
Misc. Inorganics		•	•	•			•	•	,					
Conductivity	uS/cm	37	37	42	77	110	51	2.0	A104935					
рН	pН	4.71	4.96	5.14	6.06	6.24	4.23	N/A	A104934					
RDL = Reportable Detection	n Limit													
N/A = Not Applicable														

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID		YZ1057	YZ1058	YZ1059	YZ1060		YZ1061		YZ1062				
Sampling Data		2020/12/03	2020/12/03	2020/12/03	2020/12/03		2020/12/03		2020/12/03				
Sampling Date		10:30	09:50	11:45	12:30		13:40		15:15				
COC Number		G155959	G155959	G155959	G155959		G155959		G155959				
	UNITS	MW06-Q2	MW06-Q3S	GW04	GW1802	RDL	GW1801	RDL	WQ 02	RDL	QC Batch		
Total Metals by ICPMS													
Total Calcium (Ca)	ug/L	577	1240	2390	3960	50	15900	250	1220	50	A107069		
RDL = Reportable Detection Limit													

GENERAL COMMENTS

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER) Comments

Sample YZ1061 [GW1801] Elements by CRC ICPMS (total): RDL raised due to concentration over linear range, sample dilution required.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

HEMMERA ENVIROCHEM INC. Client Project #: 105052-01 Site Location: BURNS BOG Sampler Initials: SB

			Matrix	Spike	Spiked	Blank	Method B	lank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS
A104934	pH	2020/12/04			102	97 - 103		
A104935	Conductivity	2020/12/04			101	80 - 120	<2.0	uS/cm
A107069	Total Calcium (Ca)	2020/12/09	NC	80 - 120	102	80 - 120	<50	ug/L

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Burnaby: 4606 Canada Way, Burnaby, BC VSG 1K5 Toll Free (833) 282-5227 Victoria: 851 Viewfield Road, Unit 1, Victoria, BC V9A 4V2 Toll Free (833) 282-5227 bylabs.com

CHAIN OF CUSTODY RECORD

G 155959

Invoice Informa	ation	_	_			_	Report Inform	nation [if differs	from invoice	e)					Proj	ect	Infor	mati	on					- 8	Turna	round Time (TAT) Required
Company:	161	nn	60	N.			Company:				ax	tation	n .										Ø	5-7.04	ys Reg	ular (Most analyses)
Contact Name:	E	IEL	41	2 81	AYL	£	Contact Name:				P.O	R/AF	ER:										PLEA	SE PRO	VIDE /	ADVANCE NOTICE FOR RUSH PROJECTS
Address:	7	30	12	ices.			Address]			_										8	ush TA	T (Surcharges will be applied)
_V	5	14	30	SP	c. '		_		PC:	_	Pro	ect #:	11	10	20	50	5	2 -	0	í				Same D	by .	2 Days
Phone/Fax: _5	19	1	588	23	378	_	Phone/Fax:				Site	Locat	Son:						Bo					1 Day		[] 3-4 Days
Email: 2	ple	ملهد	0	Her	men	1.000	Email:			_	Site	£.					_	1	-	<u></u>			Date Rec	quired:	_	
Copies:		2		_			Copies:		_		San	pled	By:	S	1.23	V.	0	B	Ro	No			Rush Cor	nfirmat	ion #:	
10 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	123	-11	1.5		Labor	ratory Us	se Only		100	T							Ana	lysis	Requ	ested	E.,					Regulatory Criteria
	725	NO	Cooler	0		100		100	10054	T	Г						Ī			Т	Т				T	
Seal Present		6			11	1.1	De	pot Reception							694	29				12	1					BC CSR
Seal Intact Cooling Media		3	Tanp	11	11	10				1	181		3	- 14	- Level	elec.			3	8	- Mu					
	VES	80	Couler 1		-	-					D MT86	181	1/10	012-14	D Preserv	- Preserved?	(PAA	(pan	- Sulphate	1 (00)	ĥ					VK CSR
Seal Present		~		-	-						1	DVOC/BTEX/F1	H				Eleld Preserved?	Veser	- 1	11		1				CCME
Seal Intact		-	1000	12.	183						VOC/BTDS/VPH	18	(PH)		. [eld p	2	ľ			3				Orinking Water
Cooling Media					1	0					102	Ó	Ó	104	fed	Filtered?	Ď	Ď	Fluoride		ate	3				
The state	115	80	Coaler 1	0			2				12			Â	훕.	ē			Ĩ	2 3	- Nitrate	13				BC Water Quality
Seal Presant				T	T	1	-			Ε.	ľ					冐		ł		No N	44	10			ALVZ	Other
Seal Intact			Sump							2		1			Aetal	Atrici		ŝ	ĥ	1					T AN	
Cooling Media						_		-		taine	42/	=			vedA	f par	Veta	Merco	8			3			ON O	
	San	nple	Identif	ication			Date Sampled (yyyy/mm/dd)	Time Sampled (Mumm)	Matrix	II of Conta	08115/3	Datex F1	HVG	Ha	Dissolved Metals	L Dissolved Mercur	Total Metals	Total Mercury	CNori	Sint Class	- Natrite	10			HOLD - DO NOT AKALYZE	Special Instructions
Mu	30	6 .	- 0	2		_	2020 10 /03	10.30		2	Г											1			1	
mus	10	6 -	· Q	30	S		2010/10/03			2												1				
G	20	12-					1020/12/03	11-45		12												1				
Gul	8	07	_				2020/n /03	12:30		2										1		1				
Gw	18	0	1				200/12/03			2										1	•	1				
wa	20	2					2020/12/03	15:15		2										1	-	1				
		_	_	_																						
										-				_	-	-	_			-			4		1	
2										-				_	-	4	_	-	+	-			_			-
0	Utileir		the better	(to in and	ine sind -	And I a	this Chain of Custody is sub	and the Reserve of Street	disadient from the						10											
Relinguis							www.mm/dd]: Tim	and the second se	Received by:				-	-	-	-	yy/m		-	Time			e of 0s			ulus a agradad 📗 —
						_		LISTO DA STUDIE	The second s		0.000						0.17.1		_	-		and.		C08	9469	9_COC -
A.B.	210	-	51	EVEL	, IORC	ww	2020/0/02	16:30 -	> Ren	eg	re	La	pog		Ja	N	101	03	1	6:4	V	100				
													1													

COC-1020

Bureau Ventas Shaping a World of Trust D

88Y FCD-00077/13

Your Project #: 105052-01 Site Location: BURNS BAG Your C.O.C. #: G155956

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/12/10 Report #: R2965968 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C089853 Received: 2020/12/04, 17:05

Sample Matrix: Water # Samples Received: 7

		Date	Date		
Analyses	Quantity	y Extracted	Analyzed	Laboratory Method	Analytical Method
Conductivity @25C	7	N/A	2020/12/07	BBY6SOP-00026	SM 23 2510 B m
Elements by CRC ICPMS (total)	7	2020/12/08	2020/12/09	BBY7SOP-00003 /	EPA 6020b R2 m
				BBY7SOP-00002	
рН @25°С (1)	7	N/A	2020/12/07	BBY6SOP-00026	SM 23 4500-H+ B m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas Laboratories endeavours to analyze samples as soon as possible after receipt.

Your Project #: 105052-01 Site Location: BURNS BAG Your C.O.C. #: G155956

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/12/10 Report #: R2965968 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C089853 Received: 2020/12/04, 17:05

Encryption Key

Bureau Veritas Laboratories 10 Dec 2020 17:27:38

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Gail Pedersen, Key Account Specialist Email: Gail.Pedersen@bvlabs.com Phone# (604) 734 7276

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF WATER

Conductivity pH	uS/cm	71	72 4.13	46 4.30	100 3.74	58 4.58	170 7.52	94 6.61	2.0	A107213
Misc. Inorganics										
	UNITS	W503	W503 Lab-Dup	WQ01	MW08-Q4(1)	MW08-Q4(2)	MW08-Q4(3)	WQ03	RDL	QC Batch
COC Number		G155956								
Sampling Date		2020/12/04 13:49	2020/12/04 13:49	2020/12/04 09:30	2020/12/04 11:20	2020/12/04 12:00	2020/12/04 11:00	2020/12/04 15:20		
BV Labs ID		YZ3246	YZ3246	YZ3247	YZ3248	YZ3249	YZ3250	YZ3251		

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

BV Labs ID		YZ3252		
Sampling Date		2020/12/04 14:38		
COC Number		G155956		
	UNITS	GW 18 05	RDL	QC Batch
Misc. Inorganics				
Conductivity	uS/cm	70	2.0	A107213
рН	рН	5.79	N/A	A107211
RDL = Reportable Detection L				

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID		YZ3246	YZ3247	YZ3248	YZ3249		YZ3250		YZ3251		
Compling Data		2020/12/04	2020/12/04	2020/12/04	2020/12/04		2020/12/04		2020/12/04		
Sampling Date		13:49	09:30	11:20	12:00		11:00		15:20		
COC Number		G155956	G155956	G155956	G155956		G155956		G155956		
	UNITS	W503	WQ01	MW08-Q4(1)	MW08-04(2)	RDL	MW08-Q4(3)	RDL	WQ03	RDL	OC Batch
	ONT		110(01								
Total Metals by ICPMS	onno									1	
Total Metals by ICPMS Total Calcium (Ca)	ug/L	2310	1700	1100	1700	50	15200	100	6050	50	A108444

BV Labs ID		YZ3252		
Sampling Date		2020/12/04		
		14:38		
COC Number		G155956		
	UNITS	GW 18 05	RDL	QC Batch
Total Metals by ICPMS				
Total Calcium (Ca)	ug/L	3270	50	A108444
RDL = Reportable Detection L	imit			

GENERAL COMMENTS

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER) Comments

Sample YZ3250 [MW08-Q4(3)] Elements by CRC ICPMS (total): RDL raised due to concentration over linear range, sample dilution required.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

HEMMERA ENVIROCHEM INC. Client Project #: 105052-01 Site Location: BURNS BAG Sampler Initials: SB

				Spike	Spiked	Blank	Method B	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
A107211	рН	2020/12/07			102	97 - 103			0.24	N/A
A107213	Conductivity	2020/12/07			97	80 - 120	<2.0	uS/cm	0.28	10
A108444	Total Calcium (Ca)	2020/12/09	99	80 - 120	98	80 - 120	<50	ug/L		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Burnaby: 4606 Canada Way, Burnaby, BC VSG 1K5 Toll Free (833) 282-5227 Victoria: 851 Viewfield Road, Unit 1, Victoria, BC V9A 4V2 Toll Free (833) 282-5227 bvlabs.com

CHAIN OF CUSTODY RECORD

Page

Invoice Inform	nation		_			_	Report	inform	nation (if diff	lers from invoice	e)					Pro	ject	Infor	mat	tion						-	. 3	lurnar	round Time (TAT) Required
Company :			MER				Company:					Que	otatio	n											D	5	- 7 Day	rs Regs	ular (Most analyses)
iontact Name:	EU	ELY	N	PLA	TLE		Contact Name	ĸ .				P.0	#/AF	E#:	_										PL	EASE	PRO		ADVANCE NOTICE FOR RUSH PROJECTS
uddress:				-			Address:																				R	ush TA	T (Surcharges will be applied)
				6 00						PC:		Pro	ject #:		_	le	5	05	2	- 2	21				C] \$4	ime Da	iy.	2 Days
				23			Phone/Fax:	_				Site	Locat	tion:			B	un	5	0	300	1			C] 1	Day		3-4 Days
mail: C	Pla	Al	Q	Her	mero.	. (01	Email:	_				Site	#:	_							-	2			Date F	tequ	ired:		
opies:		~					Copies:	_				San	npled	By:		Eer	121	1 1	30	0	20	_			Rush (Confi	irmati	on #:	
51					Labora	itory Us	e Only											Ana	lysi	s Re	ques	ted							Regulatory Criteria
	YES	NO	Cooler ID	0.07				0.00				Т														Т	Т	1	
Seal Prese		1		100				De	pot Receptio	n						(pa	5par					2	onia						BC CSR
Seal Into Cooling Med		15	Temp	14	13	13						臣		-	022-54	esen	eser			lphat	000	Alkalinity	nmo						
	YES	NO	Cooler 10	-	113	-	1					D MTBE	11/	1/ 84	ő	Presen	Ô	(pan	ved?	ñ	ĥ		h						YK CSR
-	_	~	COOMPTIN	-	-	-							12	HEPH				Field Preserved?	Field Preserved?										CCME
Seal Prese	-		Temp	200	1.5	-						14	00/	Han				eld P	eld P		000	vity		2					Drinking Water
Cooling Med	fa .	10			1.50							TEGS	ò	ā		red?	fbah	Ď	Ď	ride	F	Conductivity	ate	CIL					C criming water
	YES	NO	Cooler 10									VOC / BTEXS / VPH			12	Elltered?	1 Line			Fluc	Tros [Coo	Intrate	5					BC Water Quality
Seal Prese	et			T	1	1						ă				1.1.1	2			μ	n n	N	ш	9				ALYZI	C Other
Seal Inta		1.1	Temp	1913	1.00	0.1					2		1			Aetak	Aercu		è,		-							T AN	And Vois
Cooling Med	fa	100				1	-	_	_	_	aine	NP				ved A	ved A	vietal	vierci	ę				-				DO NOT ANALYZE	
	Sar	nple l	dentifi	cation			Date Sampl (vyvy/mm/d		Time Sample (hb:mm)	nd Matrix	# of Containers	BTEXS / VPH	DBTEX F1	HVAL	Hd3	Dissolved Metals	Dissolved Men	Total Metals	Total Mercury	Chloride	D 155	Ha	D Nitrite	10/				HOLD - D(Special Instructions
V	NSC	33					2020/12	0H	13:40	j	2											1		1		t	1	-	
	DI						2020/12/	ol+	09:30		h											1		1		T			
m	NO	8.	·Q	4 (1)		Dezo/n/c	54	11:20		2											1		1					
				4 (2			2020/12/	04	12:00		2											1		1					
m	00	8 -	-Qu	+ (3)		2010/2	-	11:00	7	2											1		4					
	Q				50		2020/12	04	15:20	2	2											>		1					
	in	18	0	5			2020/n/	dr.	14:38	2	2																		
												-														-			
9		_								_															_				
•	thelier																												
Relingu						1	this Chain of Callod yyyy/mm/dd):	1		ites' standard ferms an Received by						-					-				e of our	terr			
. 0					15		11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	-		1 10	- Drawna		1					nv/m		1000			h:mr	nja				11 1 1 11	A REPORT AND A R
Show	5	TEV	Cu I	3Ro	313	2020	/12/04	16	-25	> Por	gu	ı	lor	100	M	V	2	6)	2/	04	17	0	5						enserensensen in
											50				1													III K.	A MARIZIN HOVE HEATING THE AND
DC-1020											Burn	aio Mer	ini i	Chiani.	1.0	inder a	f Thie	+D -	_		-	-		-		-	C	089	853_COC

Your Project #: 105052-01 Site Location: BURNS BAG Your C.O.C. #: G156063

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/12/15 Report #: R2967422 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C090649 Received: 2020/12/08, 15:55

Sample Matrix: Water # Samples Received: 9

		Date	Date		
Analyses	Quantit	y Extracted	Analyzed	Laboratory Method	Analytical Method
Conductivity @25C	9	N/A	2020/12/10	BBY6SOP-00026	SM 23 2510 B m
Elements by CRC ICPMS (total)	9	2020/12/11	2020/12/11	BBY7SOP-00003 /	EPA 6020b R2 m
				BBY7SOP-00002	
рН @25°С (1)	9	N/A	2020/12/10	BBY6SOP-00026	SM 23 4500-H+ B m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas Laboratories endeavours to analyze samples as soon as possible after receipt.

Your Project #: 105052-01 Site Location: BURNS BAG Your C.O.C. #: G156063

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/12/15 Report #: R2967422 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C090649 Received: 2020/12/08, 15:55

Encryption Key

Bureau Veritas Laboratories 15 Dec 2020 10:14:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Gail Pedersen, Key Account Specialist Email: Gail.Pedersen@bvlabs.com Phone# (604) 734 7276

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF WATER

BV Labs ID		YZ9944	YZ9945	YZ9946	YZ9947		YZ9948	YZ9949		
Compling Data		2020/12/08	2020/12/08	2020/12/08	2020/12/08		2020/12/08	2020/12/08		
Sampling Date		10:00	11:04	11:04	14:30		14:10	11:45		
COC Number		G156063	G156063	G156063	G156063		G156063	G156063		
	UNITS	GW18-03	WS05-E	SW20-100	SW20-101	QC Batch	WS04	MW20-200	RDL	QC Batch
Misc. Inorganics										
Conductivity	uS/cm	110	150	150	74	A112536	82	230	2.0	A112529
рН	рН	6.11	7.06	7.02	6.27	A112535	6.65	6.75	N/A	A112527
RDL = Reportable Det	ection Limit								•	

N/A = Not Applicable

BV Labs ID		YZ9950	YZ9951	YZ9951	YZ9952		
Sampling Date		2020/12/08	2020/12/08	2020/12/08	2020/12/08		
		11:45	12:45	12:45	14:30		
COC Number		G156063	G156063	G156063	G156063		
	UNITS	MW03	MW01	MW01 Lab-Dup	DNR02	RDL	QC Batch
Misc. Inorganics							
Conductivity	uS/cm	230	180	180	73	2.0	A112529
рН	рН	6.85	6.71	6.77	6.27	N/A	A112527
RDL = Reportable Detect	tion Limit						
Lab-Dup = Laboratory In	itiated Duplic	ate					
N/A = Not Applicable							

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID		YZ9944	YZ9945	YZ9946	YZ9947	YZ9948	YZ9949	YZ9950		
Compling Data		2020/12/08	2020/12/08	2020/12/08	2020/12/08	2020/12/08	2020/12/08	2020/12/08		
Sampling Date		10:00	11:04	11:04	14:30	14:10	11:45	11:45		
COC Number		G156063								
	UNITS	GW18-03	WS05-E	SW20-100	SW20-101	WS04	MW20-200	MW03	RDL	QC Batch
Total Metals by ICPMS	I	1						1		
Total Metals by ICPMS Total Calcium (Ca)	ug/L	5220	10800	11400	6030	5730	11700	12300	50	A111615

BV Labs ID		YZ9951	YZ9952		
Sampling Date		2020/12/08	2020/12/08		
Samping Date		12:45	14:30		
COC Number		G156063	G156063		
	UNITS	MW01	DNR02	RDL	QC Batch
Total Metals by ICPMS					
Total Calcium (Ca)	ug/L	5670	3540	50	A111615
RDL = Reportable Detection L	imit				

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

HEMMERA ENVIROCHEM INC. Client Project #: 105052-01 Site Location: BURNS BAG Sampler Initials: DL

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPD)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
A111615	Total Calcium (Ca)	2020/12/11	NC	80 - 120	97	80 - 120	<50	ug/L		
A112527	рН	2020/12/10			101	97 - 103			0.89	N/A
A112529	Conductivity	2020/12/10			99	80 - 120	<2.0	uS/cm	1.1	10
A112535	рН	2020/12/10			101	97 - 103				
A112536	Conductivity	2020/12/10			98	80 - 120	<2.0	uS/cm		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Burnaby: 4606 Canada Way, Burnaby, BC V5G 1KS Toll Free (833) 282-5227 Victoria: 853 Viewfield Road, Unit 1, Victoria, BC V9A 4V2 Toll Free (833) 282-5227 Bvlabs.com

CHAIN OF CUSTODY RECORD

voice Information	Report Information (if differs from invoice)	Project Information	Turnaround Time (TAT) Required
Hennerg	Company:	Quotation	S - 7 Days Regular (Most analyses)
Mart Name: E. Playle	Contact Name:	P.O. #/AFE#:	PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS
om 4730 Kingswary	Address:		Rush TAT (Surcharges will be applied)
V5HOCG PC	PC:	Project #: 105052-61	Same Day 2 Days
519-588 2378	Phone/Fax:	Site Location: Burn's Bog	1 Day 3-4 Days
ut of other states	Email:	Site #:	Date Required:
pies:	Copies:	sampled by: Dany Lusting	Rush Confirmation #:
Laboratory Us	e Only	Analysis Requested	Regulatory Criteria
123 NO Cooler 0			
Stal Present	Depot Reception	40 GP - 40 SP	DC CSR
sections MA may 8 56		□ MTBE 1/11 1/11 1/2.14 □ 12.14 □ Preserved read? read? read? read? 1000 □ 1000 □ 1000	
Cooling Media		C/11 MTBL //11 Director Direct	YX CS8
125 NO Cooler D		XIIIX	CCME
Seal Present		○VOC / BTESS / VPH ○MTBI ○VOC / BTESS / VPH ○MTBI ○TCH ○12 - 5 ○TCH ○14 - 5 ○14 - 5 ○14 - 5 ○14 - 5 ○14 - 5 ○14 - 5 ○14 - 5 ○14 - 5 ○14 - 5 ○14 - 5 ○14 - 5 ○14 - 5 ○14 - 5 ○14 - 5 ○14 - 5 ○14 - 5 ○14 - 5 <td></td>	
Seal Intact Temp	De la company de la serie de la		Drinking Water
		VOC / BTEOS. VOC / BTEOS. DITENTIAL Intered? Intered	BC Water Quality
YES NO Cooler D			the other
Seal Presett			
Costing Media		VVPH 1 VVPH eed Mee Metals fercury	
Sample Identification	Date Sampled Time Sampled ((in,min) Matrix	III of Containers III of Containers IIIIX F1 IIIIX F1 IIIIX F1 IIIIIX F1 IIIIX F1 IIIIIX F1 IIIIIX F1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Special Instructions
6.110-03	2020/12/08 10:00	λ	
GW18-03 WS05-E	2020/12/08 2000/104	2	
SW20-100	2020/12/08 10:00 11:01	2	
SW20-101	2020/12/08 14:30	λ	
WS04		2	
MW20-200	2020/12/08 (1:45	2	
DAW03	2020/12/08 11:45	2	
(MWG-DOT) MWOI	2020/12/08 12:45	2	
DNROZ	2020/12/08 14:30	2	
gradie and a second sec			
		conditions. Signing of this Drain of Custody document is acknowledgement and accepta	ince of
		Signature/ Print) Date (yyyy/mm/dd): Time (hh:mm):	一 記述がなななない、からんのと思い
Z Danay Lusina 20	20/12/08 15:45 Aug life	ALPKED 2000/12/08 15:55	此合物的有效的的存在分子的发展的多
			C090649_COC

Your Project #: 105052-01 Site Location: BURNS BAG Your C.O.C. #: g156046

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/12/16 Report #: R2968218 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C091049 Received: 2020/12/09, 17:05

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Conductivity @25C	2	N/A	2020/12/15	BBY6SOP-00026	SM 23 2510 B m
Elements by CRC ICPMS (total)	2	2020/12/14	2020/12/16	BBY7SOP-00003 /	EPA 6020b R2 m
				BBY7SOP-00002	
pH @25°C (1)	2	N/A	2020/12/15	BBY6SOP-00026	SM 23 4500-H+ B m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas Laboratories endeavours to analyze samples as soon as possible after receipt.

Your Project #: 105052-01 Site Location: BURNS BAG Your C.O.C. #: g156046

Attention: Evelyn Playle

HEMMERA ENVIROCHEM INC. 18th Floor, 4730 Kingsway Burnaby, BC Canada V5H 0C6

> Report Date: 2020/12/16 Report #: R2968218 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C091049 Received: 2020/12/09, 17:05

Encryption Key

Bureau Veritas Laboratories 16 Dec 2020 14:07:30

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Gail Pedersen, Key Account Specialist Email: Gail.Pedersen@bvlabs.com Phone# (604) 734 7276

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF WATER

BV Labs ID		ZA2056	ZA2057		
Sampling Data		2020/12/09	2020/12/09		
Sampling Date		14:30	09:10		
COC Number		g156046	g156046		
	UNITS	GW1804	WQ04	RDL	QC Batch
Misc. Inorganics					
Conductivity	uS/cm	61	57	2.0	A115167
рН	рН	5.54	5.97	N/A	A115165
RDL = Reportable Detection L	imit				
N/A = Not Applicable					

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID		ZA2056	ZA2057						
Sampling Data		2020/12/09	2020/12/09						
Sampling Date		14:30	09:10						
COC Number		g156046	g156046						
	UNITS	GW1804	WQ04	RDL	QC Batch				
Total Metals by ICPMS									
Total Calcium (Ca)	ug/L	3330	3640	50	A113963				
RDL = Reportable Detection Limit									

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

HEMMERA ENVIROCHEM INC. Client Project #: 105052-01 Site Location: BURNS BAG Sampler Initials: SB

			Matrix	Spike	Spiked	Blank	Method B	lank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS
A113963	Total Calcium (Ca)	2020/12/16	NC	80 - 120	101	80 - 120	<50	ug/L
A115165	pH	2020/12/15			102	97 - 103		
A115167	Conductivity	2020/12/15			101	80 - 120	<2.0	uS/cm

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Burnaby: 4606 Canada Way, Burnaby, BC VSG 1K5 Toll Free (833) 282-5227 Victoria: 851 Viewfield Road, Unit 1, Victoria, BC V9A 4V2 Toll Free (833) 282-5227 bylabs.com

CHAIN OF CUSTODY RECORD

G 156046

Invoice Information						Report In	nform	ation (if differs	from invoice)					Proj	ect le	forma	tion)					Tu	irnar	ound Time (TAT) Required
company: HEA	nm	RA	4			Company:					Que	tatio	n										5.7	7 Dirys	Regu	lar (Most analyses)
Contact Name:	141	4N				Confact Name:					P.O.	#/Af	E#:	_									PLEASE P	PROV	IDE A	DVANCE NOTICE FOR RUSH PROJECTS
Address: 473	0	Kin	asus			Address:								_										Ru	sh TAT	(Surcharges will be applied)
V54	0	206	PC:	~	_	Phone/Fax: Project #: 105052-01 Stel Location: Burns Bog								_	Same Day 2 Days											
thone/Fax: 519						Phone/Fax:					Site	Locat	tion:	24	Bi	51	15 1	30	A			_	1 Day			3-4 Days
male epic	est.	0.0	Hen	noneu	a (om	Email:	_				Site	8;						-	<i>.</i>			_	Date Require	ed:	_	
topies:					_	Copies:					San	pled	0y:	2	F€U	Es.	> P	SR	an	N		_	Rush Confirm	matio	n #:	
	_	0.12		Labora	atory Use	e Only			1000								Analys	lis Re	eques	ted						Regulatory Criteria
10	NO	Ceoler ID	1				Dee	ot Reception																		
Seal Presant	4		10	10	10		Dep	or neception		-					(Pan)	(Fair		ate		à	2					BC CSR
Seal Intact Cooling Media	/	Tump	10	10	10	1.4					D MTBE		H	12.14	Preserve	reset		Sulphate	8	Alkalinity	Lmm,					T YK CSR
115	NO	Cauler 1D		1	3.0	1					Ó	14	4/H	õ	D C	ì	par.	Õ	8	Ô.	D.					
Seal Present				-	-						Ŧ	Dvoc/atto/F1	198						900			CI LAND				CCME
Seal Intact		Temp		100	1.0	1. 2					VOC/BTEXS/VPH	8	EPH		~		Tield	١.		SVIIV						Drinking Water
Cooling Media			2		1						BTEX	Ó	Ó	HOT	tered	(intered)		13		nduc	Intrate:					
115	NO	Ceoler ID									8			Ã.	Ã.	5		1 Flue	l š	Å	E.	1			2	BC Water Quality
Seal Present	1.2										ó					S.		F	ΪŐ.	-		14			MALY	C Other
Seal Intact		Sump		199		1.2				16rs	×	1			Meta	Merr	and a								NOT ANALYZE	
Cooling Media	1000				-			_	-		2	2			hed	Pave 1	Men	30			8	4			NOO	
Sam	nple l	dentific	ation			Date Sample (rrvv/mm/d		Time Sampled (Ncmm)	Matrix	If of Contai	Dates / vPH	D876XF1	HWI	163	Dissolved Metals		Total Mercury	Chloride	1755	Han	D Nitrite	10H			HOLD - C	Special Instructions
· GW18	0	4				2020 In	loa	14:30		f	F						T	T	T	1		N				
WQ O						2020/2				1								T		1						
1																										
4																										
5																										
6																										
7							_								_	-	-									
							_			-	-				-	+	-	-		_			_	1		
9							-			-	-			_	-	+	-	-	-					l n		
ð Unfers	atter i	is here a	a la sere a		Anithed on the	the Changed Correct		est to Bureau Veriter'	the first factor in	1000			col at	-												統國法的基本國家的美國西歐
Relinguished b				_	-	yyyy/mm/dd):	-		Received by:		_	_	_				y/mm/		-		on son		te de one steeld	- 1		
	-		1.000							-		-	-						-	-		-		C	091	049_COC
			150	S	1 220	in line in A	1.16	1200	ALAU0	120	1 4.	1 m	Mr.		202	101	12/19	1		35	20	201				
BBm S	TE	1EN	1.314	0.89	1000	010 104		2.42	1. 100	ato.	c th	otics	ast	-	- 20.0	+	recht.	-	-	+	~	_				