Experimental Evaluation of Guard Rail Systems for Bridges

For

Ministry of Forests and Range, Engineering Branch, Field Operations Division (MoFR)

Vancouver - July 15, 2010

By C. Villiard, M. Khorasani, S.F. Stiemer, Department of Civil Engineering, UBC

Guard Rail System for Bridges

Why experimental studies?

To establish a baseline on "tried and true" systems of current guard rails

To evaluate and develop new systems based on the results

Guard Rail System for Bridges

Which systems were tested?

- I. Timber guard rails and risers on timber cross ties
- II. Timber guard rails and risers on timber brackets horizontally bolted to concrete deck panels
- III. All steel retro-fit system with short posts and connection to deck edge
- IV. All steel retro-fit system with long posts and connection to deck top

Static or Dynamic Testing?

For the CTR research for T203 and T501 with mechanical anchors, the results from pendulum test and static test are as

	Dynamic Capacity	Static Capacity
T203	271 kN	267 kN
T501	287 kN	258 kN

- Conclusion: Dynamic effects such as strain rates do not play a role in the relatively slow loading guardrails.
- Static tests were performed for improved accuracy and economy.

Experimental Testing

All testing was planned and performed with prior discussion and approval by MoFR of both method and detailing.

System I: Timber guard rail and risers on timber cross ties

Guard Rail System for Bridges

Guard Rail System for Bridges

System I: Failure Mode

Pull-in of timber washers at the end of the cross ties.

Fir

Hemlock

Guard Rail System for Bridges

System I: Failure Mode

Cracks on end face of 8x10" cross beams and pulled-in timber washers on the underside of cross beams

Guard Rail System for Bridges

System II: Timber rails and timber risers on a timber bracket

2010-08-05

Guard Rail System for Bridges

System II: Transverse Loading Test Setup

Guard Rail System for Bridges

System II: Failure Mode

Splitting of base timber bracket

Pull-trough of vertical bolt heads and timber washers

Guard Rail System for Bridges

System II: Vertical Loading Test Setup

Guard Rail System for Bridges

System II: Failure Mode

Failure by breaking at centre of rail and damaging ends

Damaged support on end side

Guard Rail System for Bridges

System II: Alternate Failure Mode

Crushing of timber bracket

Guard Rail System for Bridges

System II: Concrete Spalling in the Field

2010-08-05

Guard Rail System for Bridges

Transverse Load = Compression force from the timber bracket

 Vertical Load = shift the bottom mat of rebar to cause spalling of the concrete

Incorrectly sized concrete deck

2010-08-05

Ĺ.

Guard Rail System for Bridges

Concrete Capacity Transversely Loaded

2010-08-05

Guard Rail System for Bridges

Vertical Load Punching Capacity vs Demand

Demand: $\frac{1}{2}$ of axle weight of loaded logging truck = 100 - 120 kN

Capacity: 181 kN (f'c = 30 Mpa) , 165 kN (f'c = 25 Mpa)

Conclusions from System II

Concrete spalling is due to the transverse load (not the vertical load)

Increasing concrete slab thickness by 50 mm (from 175 mm to 225 mm) will increase its crushing capacity under transverse load by about 5 times.

Guard Rail System for Bridges

System III: All steel retro-fit with short posts and connection to deck edge.

2010-08-05

Guard Rail System for Bridges

2010-08-05

Guard Rail System for Bridges

System III: Failure Mode

Failure by stripping and rupturing the horizontal anchor bolts

Gap opening between base and guard rail post

Stripped bolts after failure

Guard Rail System for Bridges

System III: Failure Modes

Bolt Tension (45 degree shear) failure (rupture)

Stripped threads

Guard Rail System for Bridges

System IV: All steel retro-fit with long posts and connection to deck top.

2010-08-05

Guard Rail System for Bridges

2010-08-05

Guard Rail System for Bridges

System IV: Failure Mode

Tension and shear failure of vertical bolts

Tension failure (shear under 45°)

Guard Rail System for Bridges

Experimental Test Results

Data Summary

data	sorios / namo	max. capacity	comments
16.03.2010	System pre f	44.091	
19.03.2010	System 2 f	44.091	
23.03.2010	System I_3 f	50.525	
24.03.2010	System I_4 f	44.091	
29.03.2010	System I_1 h	38.225	
30.03.2010	System I_2 h	39.551	
01.04.2010	System I_3 h	37.847	
11.03.2010	System II_1 f	38.414	
12.03.2010	System II_2 f	38.036	
12.03.2010	System II_3 f	37.468	
08.04.2010	System II_1 h vert	111.08	
09.04.2010	System II_2 h vert	96.509	
12.04.2010	System II_3 h vert	118.271	
14.04.2010	System III_1	108	
14.04.2010	System III_2	128.3	
15.04.2010	System IV_1	177.5	2 bolts fail simultaneously
15.04.2010	System IV_2	168.796	2 bolts fail simultaneously
16.04.2010	System IV_3	222.16	3 bolts fail simultaneously
20.04.2010	System IV_4	166.715	2 bolts fail simultaneously, then third bolt

Introduction to "Formatted" Spreadsheets

A "formatted" spreadsheet applies macros in Microsoft Excel to perform the required calculations.

Therefore, the user should have enabled macros option in Excel for the spreadsheet to perform properly.

A "formatted" spreadsheet starts with a diagram or an image

The next section is reserved for user input.

Only this section allows user interaction.

24	INPUT				
25	performance factor	phiw	0.67		
26	load factor	lf	1.4		
27	weld size (leg)	WS	10	mm	
28	lug thickness	tlug	25	mm	
29	lug length	llength	300	mm	
30	wall thickness	twall	32	mm	- 24
31	applied force	VE	212	kN	
32	ultimate plate strength	Fu	0.45	kN/mm2	
33	ultimate electrode strength	Xu	0.48	kN/mm2	
34	angle of axis force/weld line	theta	45	degree	

2010-08-05

Guard Rail System for Bridges

The last section is the calculation section. The user does not require to enter any inputs here. Column E represents the equations used.

20		1 1			
36	CALCULATIONS				
37	min. plate thickness	t	MIN(tlug,twall)	mm	
38	cross section plate	Am	t"wlength	mm2	
39	weld length	wlength	llength"2	mm	
40	cross section weld	Aw	ws"wlength	mm2	
41	shear resistance base metal	Vrfb	0.67"phiw"Am"Fu	kN	\$13.13.2.2
42	shear resistance weld	Vrfw	0.67"phiw"Aw"Xu"(1+.5"SIN(RADIANS(30))^1.5)	kN	\$13.13.2.2
43	resulting shear resistance	Vrf	MIN(Vrfb,Vrfw)	kN	\$13.13.2.2
44					
45	design efficiency (<1 = o.k.)	de	Vrff(VFIF)		

۰

To update equations, the user must press *Alt/F8*, to in order to invoke the macro "*FormatSheet*.

<u>M</u> acro name	F		
FormatShe	et	<u></u>	Run
FormatShe PrintAll SCopyColu	et mnWidth	*	Cancel
SetPrintFor SetRowHei	mat ght		<u>S</u> tep Int
SetWidth			<u>E</u> dit
			Create
		*	<u>D</u> elete
M <u>a</u> cros in:	All Open Workbooks	•	Options.
Description			

If the user wants to change something in the input, as long as it is the numerical value in column G is changed, the entire spreadsheet will immediately change the results.

Therefore, it is not required to press *Alt/F8* after modifying any value in the input section.

Spreadsheets that compute ultimate capacities:

Employ solid mechanics / strength of materials approach

- Use median/common material characteristics (not Code values)
- Analyze every possible failure mode in order to identify the weakest mode as ultimate capacity of the system

No performance factors were applied because the prediction of test results was desired.

2010-08-05

Guard Rail System for Bridges

Example appearance of "formatted" spreadsheet

2010-08-05

Guard Rail System for Bridges

Spreadsheet Capability Overview

Computation of ultimate failure load based on solid mechanics/strength of material approach

 Computation of performance level required based on CHBDC

Computation of the new ultimate failure load of the improved systems

2010-08-05

Guard Rail System for Bridges

Experimental Results vs. Predicted Results

System	Test Results (average)	Predicted Results
System I_f	45.7 kN	36.7 kN
System I_h	38.5 kN	29.7 kN
System II_transverse_f	38 kN	45 kN
System II_vertical_h	108.6 kN	71 kN
System III	118.1 kN	101 kN
System IV	173.1 kN	141 kN

About Performance Levels

Strength requirements for barrier depends on the condition of the highway and are classified into 3 different Performance Level (PL)

Performance Level is dependent on:
Barrier Exposure Index (Be)
Percentage of Trucks on Road
Design Speed
Barrier Clearance

About the Exposure Index (Be)

Be = (AADT1) Kh Kc Kg Ks / 1000

where:

- AADT1 = Average Annual Daily Traffic for the first year after construction
- Kh = Highway Type Factors (Table 12.1 CHBDC)
- Kc = Highway Curvature Factors (Table 12.2 CHBDC)
- Kg = Highway Grade Factors (Table 12.3 CHBDC)
- Ks = Superstructure Height Factors (Table 12.4 CHBDC)

Tables to determine performance level

Table 12.5 Optimum performance levels — Barrier clearance less than or equal to 2.25 m (See Clause 12.4.3.2.4.)

0 5 10 15	PL-1 < 224.8 < 75.2 < 32.0	PL-2 ≥ 224.8 ≥ 75.2	PL-3
0 5 10 15	< 224.8 < 75.2 < 32.0	≥ 224.8 ≥ 75.2	
5 10 15	< 75.2 < 32.0	≥75.2	
10 15	< 32.0		
15		52.0-222.5	> 222.5
70	< 20.5	20.5-126.3	> 126.3
20	< 15.1	15.1-88.3	> 88.3
25	< 12.0	12.0-67.7	> 67.7
-10	< 7.4	7.4-40.0	> 40.0
0	< 53.2	≥ 53.2	
5	< 27.4	≥ 27.4	
10	< 16.5	16.5-111.3	> 111.3
15	< 12.0	12.0-63.8	> 63.8
20	< 9.6	9.6-44.8	> 44.8
25	< 7.8	7.8-34.4	> 34.4
40	< 5.2	5.2-20.4	> 20.4
	20 25 40 0 5 10 15 20 25 40 Guard Ra	20 < 15.1 25 < 12.0 40 < 7.4 0 < 53.2 5 < 27.4 10 < 16.5 15 < 12.0 20 < 9.6 25 < 7.8 40 < 5.2 Guard Rail System	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Performance level spreadsheet based on CHBDC

Performance level required

Barrier exposure index (Be) = 3.2

Required performance level is 1

2010-08-05

Guard Rail System for Bridges

Strength required by CHBDC?

CHBDC Performance Level 1 Requirements for barriers:

	Forces	Height of Load Application	Spread of Load
a) Transverse Load	50 kN	600 mm from base	1200 mm
b) Vertical Load	10 kN	top of barrier	5500 mm
c) Longitudinal Load	20 kN	600 mm from base	1200 mm

Performance level satisfied?

	Performance Level 1 (averaged values)							
	Expe	erimental r	esults	Testing equivalent code values				
	Resisting load [kN]	Load app. length [m]	Dist. load [kN/m]	Load [kN]	Load app. length [m]	Dist. load [kN/m]		
SYSTEM #1	42.63	1.05	38.75	60	1.2	50.0		
SYSTEM #2	37.97	1.05	34.52	60	1.2	50.0		
SYSTEM #3	118.15	1.05	107.41	60	1.2	50.0		
SYSTEM #4	173.15	1.05	157.41	60	1.2	50.0		

2010-08-05

Guard Rail System for Bridges

How to improve performance by design modifications? (1/2)

Timber washers could be larger, at best of a size 10x10" in order to cover the complete cross beam or guard rail.

Timber washers could be replaced by perforated plates or segments of structural channels.

 Vertical bolts could be located eccentrically to provide a larger compression area between the interconnection blocks in order to increase compression.

2010-08-05

Guard Rail System for Bridges

How to improve performance by design modifications? (2/2)

Strategically located straps on riser blocks can prevent premature splitting by bolt prying action.

Concrete deck thickness should be increased to a level to match guard rail capacity. In the current version for timber rail system, an increase from 175 mm to 225 mm (the latter quasi standard in Canada) would achieve this.

Larger washers to prevent pull-through (circular or square shaped)

Guard Rail System for Bridges

Larger washer cut from structural channel to contain splitting

2010-08-05

Guard Rail System for Bridges

Providing continuity to rails to achieve catenary action (System I)

continuity plate

2010-08-05

Guard Rail System for Bridges

Metal straps with horizontal fasteners to cross beams (System I)

Guard Rail System for Bridges

Metal strap to increase bending resistance to avoid splitting of riser block (System II)

2010-08-05

Guard Rail System for Bridges

Where to go from here?

- Analysis of the new systems based on the new images from the ministry.
- Impact of the longitudinal loads on the guardrails.
- Sensitivity analysis
- Design of all new systems with
- Cost analysis/optimization

2010-08-05

Guard Rail System for Bridges

Video: Crash testing I

Timber guard rails, chained

Guard Rail System for Bridges

Video:Crash testing II

Real crash test conducted by Industrias Duero, S.A. in accordance with Standard **EN1317**

> Containment level: H2 Working width: W5 Severity index: A

> > Steel guard rails, chained

Guard Rail System for Bridges