

Forest Fertilization Meeting

February 2, 2006

Prince George Civic Centre

 Best opportunity to grow more wood for the shortfall expected
 Government has provided funding
 Updated the Type II Silviculture Analysis

 Targeting spruce and Douglas-fir on our better growing sites Our analysis indicates that the best value is to fertilize stands that can be harvested in 10 years (60-90 years old) Next best is to fertilize 25-40 yearold stands

Table 6:Fertilized Area (ha)

Area Fertilized With 20 ha Minimum Treatment Unit (ha)

Period (5-year)	Total Area Scheduled for Fertilization in Woodstock (ha)	Early Fertilization of Managed Stands	Late Fertilization of Natural Stands	Late Fertilization of Natural Stands less than 60 years of age
1	16,636	8,648	6,067	1,919
2	20,598	11,855	4,000	487
3	14,540	10,949	1,915	51
4	9,118	3,394	2,662	51
5	4,909	1,337	562	0
6	2,759	1,213	265	0
7	658	99	149	0
TOTAL	69,218	37,493	15,620	2,508

The analysis shows:

- small, but valuable mitigation of 1.3% (7,500m³) of AAC in the short term (10-50 years)
- Substantial mitigation of 6.6% (41,800m³) in the mid-term (50-70 years)

Fertilizing Analysis

Using straight urea fertilizer (46-0-0), which is 46% nitrogen
 Applying at 435 kg/ha (200kg N/ha)

 Applied in late September through November in this area
 Temperatures below 10 C
 Ground is not frozen

 Transported in bulk by rail or truck to Quesnel
 Hauled to the site by truck
 Applied by helicopters

Fertilizer is drawn by augers out of the truck or railcar

- The hopper is set up to weigh each load
- Weight is adjusted to match the fuel burn of the helicopter
- After re-fueling, the loads are light, as fuel is burned, loads are increased.
- The weight of each load is recorded

Calibration

Known weight of fertilizer loaded
Known distance flown
Known swath width
Simple calculation of weight and area

Equipment

- Western Aerial Applicators uses these:
 - Llama lifts 800 kg; target is 300 ha./day
 - Hiller (turbine conversion) lifts 400 kg.; target is 100-120 ha./day

 206-B has been used; has lower lift capacity in the range of 375-400kg.

Operating Considerations

- Preferred maximum flight distance is 2 km
- Maximum distance for small treatment areas is 4km, but ferry time drastically cuts into productivity
 Vertical lift affects productivity

Operational Considerations

 Getting trucks from the supplier to the site can result in delays – breakdowns, driver fatigue or other problems result in downtime
 Delivery by rail seems to be more consistent if there is enough lead time

 Committed trucks hauling from a rail spur to the bush are effective

Operating Considerations

 Access has to be suitable to get a Super B-train truck to the site
 Need a staging area for the truck, hopper, and helicopter maneuvering

and landing.

 Staging areas can be surprisingly small; an old landing is ideal; a road junction can work

Preparations

 Provided a digital shape file of the units to be treated – includes no treatment areas

 Digital file downloaded into the helicopter GPS unit to provide live visual reference of treated/untreated areas.

Preparations

Preparations

 Provided a 1:20,000 orthophoto with treatment units and streams shown
 Provided a copy of emergency contacts
 Contractor has own spill and emergency contingency plans

Results

 Fertilized approx 400 ha on TFL 52 and approx 400 ha on Quesnel TSA
 GPS map showing actual coverage

GPS'd Treatment Area

'Smoothed' Treatment from GPS

Costs

- Aerial application cost of \$0.34/kg, or \$147.90/ha.
- Fertilizer cost of \$512/T, or \$204.80/ha. This included \$20/T for trucking
- Application cost of \$352.70

Plans for the Future

- Fertilize 2000-3000 ha on TFL 5 and 52
- Fertilize 2000-3000 ha on Quesnel TSA in cooperation with MOF and other licencees
- Establish monitoring system to determine gains

Issues

- Few helicopter companies set up for fertilizing
 - GPS installations not set up for live mapping
 - Do not have the augers or hoppers
 - Do not have ground personnel
 - Do not have the experience

Issues

 Availability of a convenient rail siding
 Demurrage payment on non-contract rail cars

Rail cars with low hoppers

Issues

 RESULTS does not handle forest cover polygon treatment units

 Has resulted in non-payment of holdback, which may result in higher costs in 2006

 Potential water quality issues if fertilizing occurs on a large scale