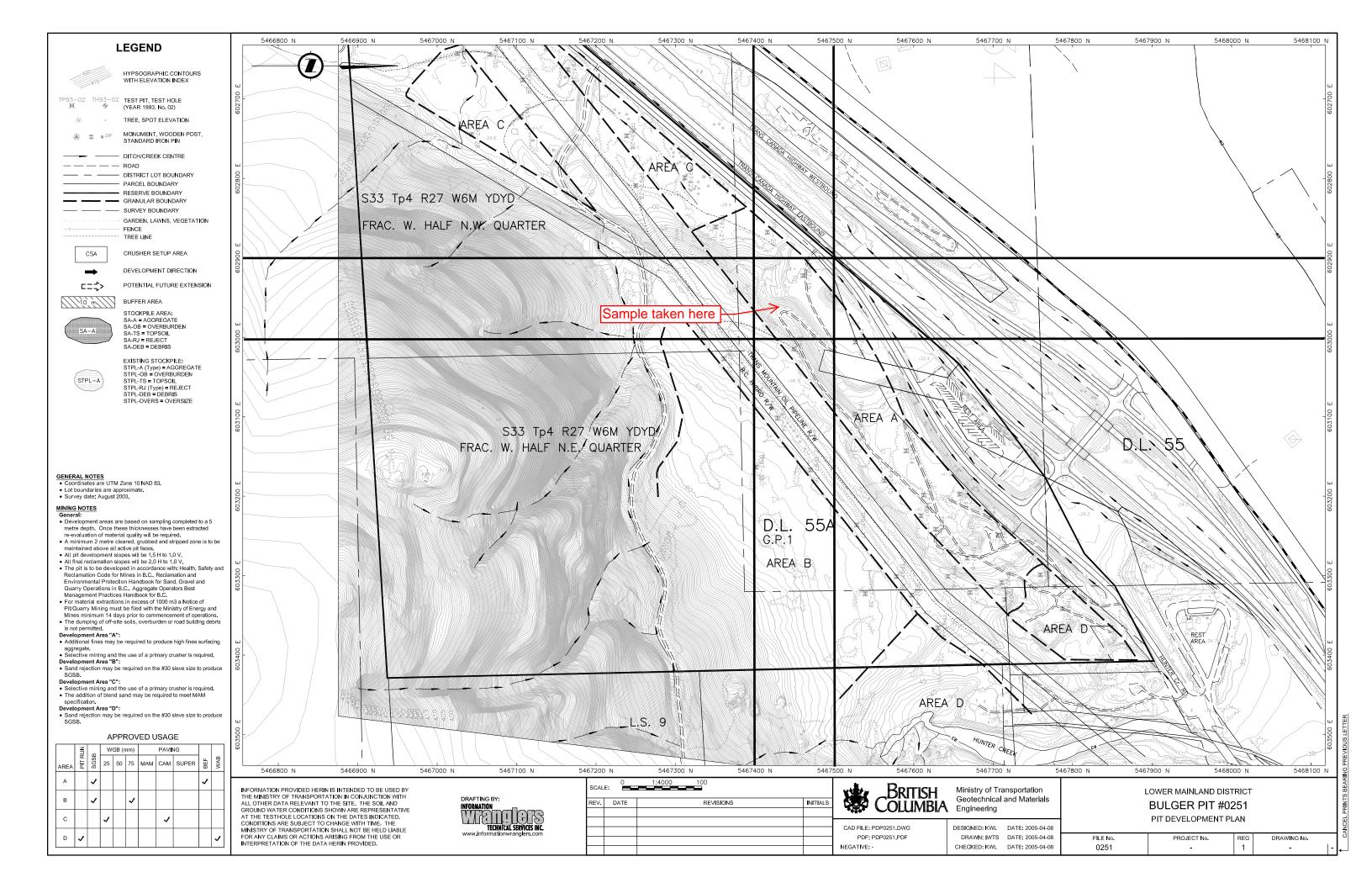
MINISTRY OF TRANSPORTATION **Laboratory Schedule of Tests**


Project: Bulger Pit

Location:

Lower Mainland District

The Best	Place on	Ear	th	Date:	Jul	y 2	1, 2	<u>014</u>												
TP/TH No.	Bag No.	Sample No.	PR Wash Sieve	25mm Crush and Wash Sieve	G. C. C.	riacture count	Mione Desired	MICTO DUVAI	Masoa	LOCGIII		Specific Gravity	Absorution	inondipoedy	Sand Equivalent	Petro Analysis	Petro No.	Petro for ARD/ML		
					A	В	С	F	С	F	С	F	С	F						
STPL 1	727	1	х	х	х	х	х	х						1 1 1		11 1	4.1111			entaint beautifu
							8.				. Ves		10.1		-					
		1 11											- 1							
								111			П		-							1 10
	11										-57									
		- 1																		
													110							
											1								,	
																,				
													,							
						14														
												- 1	-(
								. 1												
	7								× 2											
	7 4 1			Fac. 1 1																
		10								10		1 51 7					<u> </u>			
							12.19						1.2	\neg			1.75			
														\neg	1.7					
											,			\neg						
							1 5 5						100	-						
														\neg						
	11020	\Box					- 1							\neg						
					П		1.3			\neg	\Box									
		-					\neg		_	_	-	-		-	$\overline{}$					

Use 25mm WGB gradation spec for crushes

SUIGER PIT OVERS STOCKPILE/STPL SA-1 BAG-727 July 14,2019

AMEC Environment & Infrastructure #110 - 18568 - 96th Avenue Surrey British Columbia Canada, V4N 3P9

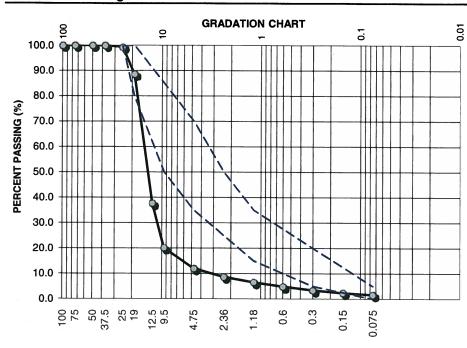
Tel: 604-295-8657 Fax: 604-295-8658

SIEVE ANALYSIS REPORT

CLIENT: Ministry of Transportation & Infrastructure

310 - 1500 Woolridge St. Coquitlam, BC V3K 0B8

ATTN: Terence Lai


Project Number: KA21098-300

Date: 28-Jul-2014

Client Contract No.: 156CS0824

Client Project No.: 39100-20-Bulger

PROJECT: Bulger Pit-Lower Mainland District

Lab Number: L5126

Date Sampled: Sampled by MOTI

Date Received: 1-Jul-14
Date Tested: 23-Jul-14
Sampled By: MOTI

Tested By: Kris McLean/ Rodrigo L.

TP/TH No.: STPL 1 Bag No.: 727 Material Type: Crush

Sample No.: 1

SIEVE SIZE (mm)

Gravel Sizes	Percent	Gradation Limits			
(mm)	Passing	Lower	Upper		
100	100	_			
75	100	-	•		
50	100	-	•		
37.5	100	-	•		
25	99	100 -	100		
19	89	80 -	100		
12.5	38	-			
9.5	20	50 -	85		

Sand Sizes And	Percent	Gradation Limits				
Fines (mm)	Passing	Lower	U	pper		
4.75	12	35	-	70		
2.36	8.6	25	-	50		
1.18	6.5	15	-	35		
0.6	4.9		-			
0.3	3.4	5	-	20		
0.15	2.3		-			
0.075	1.6	0	-	5		

Comments: Sieve analysis test was conducted in accordance with ASTM C136 and C117

Plotted to Table 202-C WGB gradation specification

Prepared By: Giti Ghorbanian

Senior Materials Technologist

Reviewed By:

Daniel St-Pierre, M.Sc., PE, P.Eng. Senior Civil Materials Engineer AMEC Environment & Infrastructure #110 - 18568 - 96th Avenue Surrey British Columbia Canada, V4N 3P9

Tel: 604-295-8657 Fax: 604-295-8658

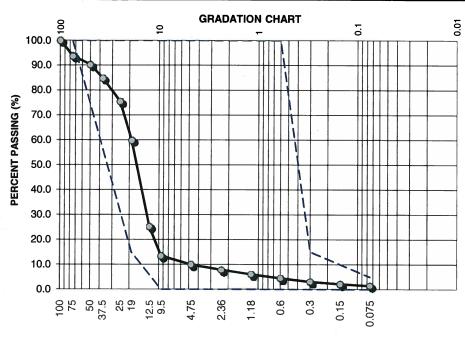
SIEVE ANALYSIS REPORT

CLIENT: Ministry of Transportation & Infrastructure

310 - 1500 Woolridge St.

Coquitlam, BC V3K 0B8

ATTN: Terence Lai


Project Number: KA21098-300

Date: July 28, 2014

Client Contract No: 156CS0824

Client Project No: 39100-20-Bulger

PROJECT: Bulger Pit-Lower Mainland District

Lab Number: L5126

Date Sampled: Sampled by MOTI

Date Received: 1-Jul-14
Date Tested: 22-Jul-14
Sampled By: MOTI

Tested By: Kris McLean

TP/TH No.: STPL 1
Bag No.: 727
Material Type: Pit Run

Sample No.: 1

SIEVE SIZE (mm)

Gravel Sizes	Percent	Gradation Limits			
(mm)	Passing	Lower	Upper		
100	100				
75	94	100 -	100		
50	90		•		
37.5	85	-			
25	75	-	•		
19	60	15 -	100		
12.5	25	-	•		
9.5	13	0 -	100		

Sand Sizes And	Percent	Gradation Limits				
Fines (mm)	Passing	Lower	Upper			
4.75	10		-			
2.36	7.8		-			
1.18	6.0					
0.6	4.5	0	- 100			
0.3	3.1	0	- 15			
0.15	2.1		-			
0.075	1.5	0	- 5			

Comments: Sieve analysis test was conducted in accordance with ASTM C136 and C117

Plotted to Table 202-C SGSB gradation specification

Prepared By: Giti Ghorbanian

Senior Materials Technologist

Reviewed By:

Daniel St-Pierre, M.Sc., PE, P.Eng. Senior Civil Materials Engineer AMEC Environment & Infrastructure #110 - 18568 - 96th Avenue Surrey British Columbia Canada, V4N 3P9 Tel: 604-295-8657

Fax: 604-295-8658

FRACTURE COUNT FOR COARSE AGGREGATE (BCH 1-13)

CLIENT: Ministry of Transportation & Infrastructure

310 - 1500 Woolridge St.

Coquitlam, BC V3K 0B8

ATTN: Terence Lai

Project Number: KA21098-300

Date: July 28, 2014

Client Contract No.: 156CS0824 Client Project No.: 39100-20-Bulger

PROJECT: Bulger Pit- Lower Mainland District

Sample Source & ID: STPL-1 Bag #727- SA #1 - Crushed

Lab No.: L5126

Sieve Size	Total No. of	No. of	No. of Non	% Fracture	Total %
	Particles	Fractured	Fractured	per Sieve	Fracture
(mm)		Particles	Particles	37 THE	ni ili
50 to 37.5		- 1 1			11 12
37.5 to 25.0					<u>_</u>
25.0 to 19.0	310	284	26	92	
19.0 to 12.5	258	149	109	58	
12.5 to 9.5	376	226	150	60	1 1 2
9.5 to 4.75	310	284	26	92	
Totals	1254	943			75

Comments:

Fracture Particles in Coarse Aggregate tests were conducted in accordance with BCH 1-13

Method A

Prepared By:

Giti Ghorbanian

Senior Materials Technologist

Reviewed By:

Daniel St-Pierre, M.Sc., PE, P.Eng

Senior Civil Materials Engineer

AMEC Environment & Infrastructure #110 - 18568 - 96th Avenue Surrey British Columbia Canada, V4N 3P9 Tel: 604-295-8657 Fax: 604-295-8658

FRACTURE COUNT FOR COARSE AGGREGATE (BCH 1-13)

CLIENT: Ministry of Transportation & Infrastructure

310 - 1500 Woolridge St. Coquitlam, BC V3K 0B8

ATTN: Terence Lai

Project Number: KA21098-300

Date: July 28, 2014

Client Contract No.: 156CS0824 Client Project No.: 39100-20-Bugler

PROJECT: Bulger Pit- Lower Mainland District

Sample Source & ID: STPL-1 Bag #727- SA #1 - Crushed

Lab No.: L5126

Sieve Size	Original	Fractured	Non-	%
	Weight	Particles	Fractured	Fracture
			Particles	
(mm)	(g)	(g)	(g)	
50 to 37.5				
37.5 to 25.0				
25.0 to 19.0	2697.3	1335.5	1361.8	
19.0 to 13.2	6215.2	5630.0	585.2	
13.2 to 9.5	1308.0	673.0	635.0	
Totals	10221	7639	2582	75

Comments:

Fracture Particles in Coarse Aggregate tests were conducted in accordance with BCH 1-13

Method B

Prepared By:

Giti Ghorbanian

Senior Materials Technologist

Reviewed By:

Daniel St-Pierre, M.Sc., PE, P.Eng. Senior Civil Materials Engineer AMEC Environment & Infrastructure #110 - 18568 - 96th Avenue Surrey British Columbia Canada, V4N 3P9 Tel: 604-295-8657

Test Results for Resistance of Aggregate to Degradation by Abrasion in the Micro-Deval

CLIENT: Ministry of Transportation & Infrastructure

310 - 1500 Woolridge St.

Coquitlam, BC V3K 0B8

ATTN: Terence Lai

Project Number: KA21098-300

Date: July 28, 2014

Client Contract No.: 156CS0824

Client Project No.: 39100-20-Bulger

PROJECT: Bulger Pit- Lower Mainland District

Sample Source & ID: SSTPL-1 Bag #727- SA #1 - Crushed

Lab No.: L5126

Coarse and Fine Aggregate

Grading	Initial Mass (g)	Final Mass (g)	Loss of Mass (g)	% Loss
	Α	В	A - B	(A-B)*100/A
Coarse	1500.4	1389.9	110.5	7.4
Fine	500.0	433.3	66.7	13.3

Comments:

Maximum size of aggregate is 25.0 mm.

Resistance of materials to Degradation by Abrasion in the Micro-Deval Apparatus was conducted in accordance with ASTM D6928 for Coarse aggregate and ASTM D7428 for Fine aggregate

Grading for coarse aggregate used for test is: 19-16 mm, 16-12.5 mm, 12.5-9.5 mm

Drain Brothers- Stony Lake Quarry was used as calibration coarse materials and percent loss is 15.0%. Southerland Sand was used as calibration fine materials and percent loss is 17.7%.

MOTI Standard:

Maximum acceptable value of any base material is 25 or less Maximum acceptable value of any Sub-base material is 30 or less

Prepared By: Giti Ghorbanian

Senior Materials Technologist

Reviewed By:

Daniel St-Pierre, M.Sc., PE, P.Eng.

Senior Civil Materials Engineer